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 25 

Abstract 26 

  27 

The behaviour of pollinators has important consequences for plant mating. Nectar-feeding birds often 28 

display behaviour that results in more pollen carryover than insect pollinators, which is predicted to 29 

result in frequent outcrossing and high paternal diversity for bird-pollinated plants. We tested this 30 

prediction by quantifying mating system parameters and bird visitation in three populations of an 31 

understory bird-pollinated herb, Anigozanthos humilis (Haemodoraceae). Microsatellite markers 32 

were used to genotype 131 adult plants, and 211 seeds from 23 maternal plants, from three 33 

populations. While outcrossing rates were high, estimates of paternal diversity were surprisingly low 34 

compared with other bird-pollinated plants. Despite nectar-feeding birds being common at the study 35 

sites, visits to A. humilis flowers were infrequent (62 visits over 21,552 recording hours from motion-36 

triggered cameras, or equivalent to one visit per flower every 10 days), and the majority (76%) were 37 

by a single species, the western spinebill Acanthorhynchus superciliosus (Meliphagidae). Pollen 38 

counts from 30 captured honeyeaters revealed that A. humilis comprised just 0.3% of the total pollen 39 

load. For 10 western spinebills, A. humilis pollen comprised only 4.1% of the pollen load, which 40 

equated to an average of 3.9 A. humilis pollen grains per bird. Taken together, our findings suggest 41 

that low visitation rates and low pollen loads of floral visitors have led to the low paternal diversity 42 

observed in this understory bird-pollinated herb. As such, we shed new light on the conditions that 43 

can lead to departures from high paternal diversity for plants competing for the pollination services 44 

of generalist nectar-feeding birds. 45 

 46 

 47 

 48 

 49 



 50 

Introduction 51 

 52 

Polyandry is a near ubiquitous feature of land plants, where mating with more than one pollen donor 53 

typically leads to multiple individuals siring seeds (Pannell and Labouche 2013). From a female 54 

perspective, polyandry may be beneficial if it increases the amount of pollen received, thereby 55 

alleviating pollen limitation and increasing the number of offspring (Knight et al. 2005). Further, 56 

genetically diverse pollen loads deposited onto stigmas provide an opportunity for fitness benefits 57 

from competition among pollen from potential sires within pistils (Wilson 1990; Minaar et al. 2018), 58 

and an opportunity for female choice among diverse male gametophytes (Delph and Havens 1998). 59 

Multiple donors to the offspring gene pool reduces biparental inbreeding, and increases the likelihood 60 

of favourable combinations of diverse genes within progeny, enhancing adaptive ability (Breed et al. 61 

2014; Nora et al. 2016). From a male perspective, fitness benefits from polyandry arise from pollen 62 

carryover and increased access to mates (Mitchell et al. 2013). The fitness benefits of multiple 63 

paternity favour the evolution of floral traits that increase both pollinator visitation and pollen transfer 64 

between plants, and those plant traits that increase female choice and/or opportunities for male-male 65 

competition, such as large stigmas or elongated styles (Pannell and Labouche 2013; Barrett and 66 

Harder 2017; Christopher et al. 2020).  67 

 68 

Almost 90% of 400,000 flowering plant species are dependent on animals for pollination (Ollerton 69 

2011), the behaviour of which has profound effects on the frequency of polyandry in wild plant 70 

populations (Mitchell et al. 2009a,b). In particular, the tendency for pollinators to move to nearby 71 

flowers to reduce energy expenditure when foraging (Pyke et al. 1977; Pyke 1981) suggests that most 72 

pollen movement is also among nearby flowers, resulting in geitonogamy and pollen deposition from 73 

near neighbours (Linhart 1973; Escaravage and Wagner 2004; Hardy et al. 2004). From the 74 

perspective of the plant, pollinator behaviour resulting in longer distance pollen dispersal and pollen 75 



carryover can lead to a greater capacity for mating with multiple sires (Ellstrand 1984; Pannell and 76 

Labouche 2013; Mitchell et al. 2013). Consequently, fitness benefits associated with higher genetic 77 

diversity in offspring are likely to have played a major role in driving floral evolution to exploit pollen 78 

vectors that display behaviours that promote mate diversity (Krauss et al. 2017; Ratto et al. 2018). 79 

 80 

The evolution of pollination by birds is a major evolutionary trend in many groups of flowering plants 81 

(Wilson et al. 2007; Cronk and Ojeda 2008; Anderson et al. 2016; Abrahamczyk 2019). Globally, it 82 

has been estimated that members of at least 65 plant families rely on birds for pollination, with over 83 

1,000 bird species predicted to affect pollination in at least some plant species (Cronk and Ojeda 84 

2008; Regan et al. 2015).  Compared to many insect pollinators, nectarivorous birds exhibit less 85 

rigorous grooming techniques (Holmquist et al. 2012), have a capacity to forage over larger areas 86 

(Higgins 1999; Hadley and Betts 2009), and some taxonomic groups display more frequent intra and 87 

inter-species aggression that can interrupt optimal foraging behaviour (Stiles 1978; Schemske 1980; 88 

Hopper and Moran 1981; Cheke and Mann 2008; Phillips et al. 2014; Krauss et al. 2017). Therefore, 89 

the behaviour of birds is predicted to increase levels of pollen carryover, pollen dispersal and the 90 

diversity of pollen deposited on stigmas relative to other groups of pollinators (Krauss et al. 2017). 91 

As such, pollination by birds has the potential to promote frequent outcrossing, accentuated pollen 92 

dispersal distances, and high mate diversity among plants (Ford et al. 1979; Krauss et al. 2009; 93 

Bezemer et al. 2016, 2019; Krauss et al. 2017; Ayre et al. 2019).  94 

 95 

At present, tests of the predictions of the genetic consequences for pollination by birds are 96 

predominately based on studies of woody shrubs and trees. These studies have provided support for 97 

the prediction that bird pollinators tend to facilitate extensive pollen carryover (Krauss et al. 2009), 98 

which promotes both paternal diversity (Campbell 1998; Krauss et al. 2017; Bezemer et al. 2019) and 99 

genetic connectivity between geographically isolated individuals and populations (Byrne et al. 2007; 100 

Bezemer et al. 2016; Ritchie et al. 2019; Nakanishi et al. 2020). However, few studies have examined 101 



non-woody species (Krauss et al. 2017), which in many cases will occur in the understory, are less 102 

floriferous than their woody counterparts, and experience lower pollinator visitation rates (e.g. 103 

Collins and Briffa 1982; Kay and Schemske 2003; Turner and Midgely 2016). Despite these 104 

potentially important ecological differences, we know of only one mating system study for a bird-105 

pollinated herb species. This study suggested mixed mating with low to moderate levels of 106 

outcrossing for sunbird (Nectariinidae) pollinated Babiana spp. (Iridaceae), although estimates were 107 

deemed unreliable by the authors due to issues with the markers employed (De Waal et al. 2012). 108 

These findings do, however, raise the possibility that understory species may exhibit departures from 109 

the general hypothesis of high paternal diversity for bird-pollinated plants.  110 

 111 

South western Australia has an exceptionally high number of bird-pollinated plant species (Kieghery 112 

1982), many of which are largely unstudied herbaceous or understory species (Phillips et al. 2010). 113 

The genus Anigozanthos (Haemodoraceae) contains 11 species endemic to south western Australia, 114 

all of which exhibit floral traits associated with pollination by nectar-feeding birds (Ford et al. 1979; 115 

Hopper 1993). Anigozanthos humilis is a relatively common and geographically widespread perennial 116 

herb, with nectar-feeding red wattlebirds (Anthochaera carunculata; Meliphagidae), western 117 

spinebills (Acanthorhynchus superciliosus; Meliphagidae) and brown honeyeaters (Lichmera 118 

indistincta) known to visit their flowers (Hopper and Burbidge 1978; van der Kroft et al. 2019). Here, 119 

we quantify the mating system and paternal diversity in A. humilis to test the hypothesis that 120 

pollination by nectar-feeding birds facilitates frequent outcrossing, extensive pollen dispersal and 121 

high paternal diversity (Krauss et al. 2017). We complement our genetic data with field data on 122 

pollinator visitation rates and pollen loads for a mechanistic understanding of our genetic results. 123 

 124 

Materials and Methods 125 

 126 

Study species and study site 127 



Anigozanthos humilis is short-lived, common and widespread perennial herb that occurs in a range 128 

of kwongan, woodland and forest habitats (Hopper 1993). Anigozanthos humilis is a rhizomatous 129 

seeder species, germinating in autumn and flowering from late winter to late spring (Hopper 1993). 130 

Scapes are 10 - 30 cm long with a single terminal inflorescence (Fig. 1) (Hopper 1993). Generally, 131 

up to six inflorescences are produced by one plant over a single flowering season, and ten flowers 132 

produced on average per inflorescence, with only one or two flowers being open and receptive to 133 

pollen at any given time (Hopper 1977; Hopper 1993). The flowers range in size from 25 – 50 mm 134 

long, have six stamens and an elongated stigma near the front of a tubular perianth, while the nectary 135 

lies at the base of the flower, above the basal ovary (Hopper 1993). The flowers range in colour from 136 

yellow to red to orange and last up to three days (Hopper 1993). Nectar production averages 10-20 137 

l per flower per day, and contains 10-20% sugar (Hopper 1993). Pollen grains from A. humilis 138 

remain viable for one day after being released, while the stigma remains receptive for the first few 139 

days after the flower opens (Hopper 1993). 140 

 141 

Study populations were located in Ioppolo Nature Reserve (INR), north of Perth, Western Australia 142 

(31° 28' 54.20'' S, 115° 57' 52.23'' E). Ioppolo Nature Reserve contains remnant banksia woodland 143 

covering ~ 1200 ha (van der Kroft et al. 2019). The sandy south-western lowlands of the reserve are 144 

dominated by Banksia ilicifolia (Proteaceae) and Adenanthos cygnorum (Proteaceae), transitioning 145 

to Banksia menziesii and Banksia attenuata woodland with increasing elevation (van der Kroft et al. 146 

2019). The higher elevations in the north-east of the reserve are predominantly occupied by 147 

Eucalyptus marginata (Myrtaceae) with some scattered Banksia grandis over lateritic soils (Hort and 148 

Hort 2010). Anigozanthos humilis is found scattered across these sites within the reserve. 149 

 150 

To assess variability in mating system parameters, three A. humilis populations (named A, B and C) 151 

were chosen within INR. Our study populations were separated by 550-1200 m. Each of these 152 

populations co-occurred with at least some mass-flowering plants that are visited by birds for nectar 153 



(Ford et al. 1979; Collins and Briffa 1982; Ramsey 1988; Millar et al. 2000). In population A, A. 154 

humilis occurred with spring-flowering Banksia ilicifolia, summer flowering B. attenuata, winter 155 

flowering B. menziesii, and mid-winter to early-summer-flowering A. cygnorum. In population B, A. 156 

humilis occurred with A. cygnorum, Banksia menziesii, and B. attenuata. In population C, A. humilis 157 

occurred with early-winter to early-summer-flowering Eucalyptus marginata, early-spring to early-158 

summer-flowering B. grandis, B. attenuata, and A. cygnorum. These co-occurring woody shrubs and 159 

small tree species often produce large floral displays offering significant quantities of nectar and/or 160 

pollen when compared with the smaller rewards offered by A. humilis (Collins and Briffa 1982; 161 

Hopper 1993; van der Kroft et al. 2019).  162 

 163 

Sample collection and seed treatment 164 

Within equivalent areas (ca. 2.7 ha) across the three populations (see Supplementary materials S.1), 165 

a total of 131 adult flowering A. humilis plants were located (N = 30 (A), 56 (B), 45 (C)). All sampled 166 

plants were considered candidate sires for paternity analyses, and 70 were also sources of seed (i.e. 167 

maternal plants). Universal Transverse Mercator (UTM) coordinates were recorded for all sampled 168 

plants to an accuracy of < 1 m using a Trimble Geo7X GeoExplorer differential GPS (Digital 169 

Mapping Solutions, Perth, W.A., Australia). A 1 cm2 leaf tissue sample was taken from the flowering 170 

scape of each flowering individual and kept cool in a collection tube before being stored at -80°C 171 

prior to DNA extraction. A total of 266 filled fruits were collected from 70 maternal plants across the 172 

three populations and dried at room temperature for one month until seeds were released (van der 173 

Kroft et al. 2019). Viability of seeds was inferred by the presence of an embryo using an MX-20 174 

digital X-ray cabinet, (Faxitron, Tucson AZ, U.S.A.). Seeds with an embryo present were deemed 175 

viable and germinated following published protocols (van der Kroft et al. 2019). 176 

 177 

Microsatellite Genotyping 178 



Genomic DNA was extracted from frozen adult leaf samples following a modified Carlson extraction 179 

method as per Anthony et al. (2016). Seedlings were sampled when approximately 1 cm tall, and 180 

genomic DNA extracted as per Anthony et al. (2016) with the following modifications: one ceramic 181 

bead and 1 ml of Carlson extraction buffer were added to 2 ml specimen collection tubes, seedling 182 

tissue was ground in a MP Fastprep-24 5G Homogeniser (MP Biomedicals, San Diego CA, USA) for 183 

2 cycles of 20 seconds, no chloroform: isopropyl  step was used, and after tubes air-dried for 2 hours 184 

DNA pellets were dissolved in 20 l of 0.1 M Tris-EDTA, instead of 50 l used for adults.  185 

 186 

Four primer pairs were used to amplify microsatellite loci. Primer pairs were developed by Ayre et 187 

al. (2017) for Anigozanthos manglesii and optimised for A. humilis using DNA extracted from four 188 

families each made up of the maternal plant and six offspring. Screened primer pairs were grouped 189 

into one multiplex mix using QIAGEN Multiplex PCR kit (QIAGEN, Venio, Limburg, Netherlands). 190 

The multiplex master mix contained 5.1 l of Master Mix, 1.9 l of Q-Solution, 2 l of DNA at a 191 

concentration of 5-10 ng/l and 1 l of forward and reverse primers diluted to 2 mM. Multiplex PCR 192 

conditions were as follows: 95°C for 15 min, then 35 cycles of (94°C for 30 sec, 59°C for 1 min 30 193 

sec, 72°C for 30 sec), then 60°C for 30 min. DNA amplification was carried out in a Veriti 194 

Thermocycler (Life Technologies, Carlsberg, CA, USA). Fragment analysis was carried out on an 195 

automated ABI sequencer (3500 Genetic Analyzer, Applied Biosystems) and samples were scored 196 

for allelic variation using GENIOUS V.7.1.4 (Kearse et al. 2012).  197 

 198 

Correcting for null alleles 199 

Null alleles were identified and scored from individual family arrays using an iterative approach with 200 

paternity assignment, made possible by hyper variability at these four loci (all loci were heterozygous 201 

for almost all individuals). Corrected data adjusted apparent homozygotes to null heterozygotes with 202 

a dummy value (500) representing the null allele for 2 of 4 loci (further explanation in results). 203 

Similarly, apparently missing data at a locus were scored as null homozygotes. Mendelian inheritance 204 



in progeny arrays and parentage assignments were used to confirm these corrections, which were then 205 

applied to the full data set (offspring, maternals, candidate paternals), and these corrected data were 206 

used for all genetic analyses. 207 

 208 

Genetic diversity  209 

Parameters of genetic diversity were estimated on null allele corrected data using GenAlEx V6.51b2 210 

(Peakall and Smouse 2012). Diversity measures included Na (Number of alleles), Ne (effective 211 

number of alleles), HE (expected heterozygosity), and HO (observed heterozygosity) (Peakall and 212 

Smouse 2012).  213 

 214 

Mating system, paternal diversity, paternity assignment and pollen dispersal 215 

Mating system parameters and paternity assignment was estimated for 211 germinants from 23 216 

maternal plants (pop. A, N = 72 offspring from 9 maternals; B, 76 from 7; C, 63 from 7). Mean family 217 

size was 9.2 offspring per maternal plant. Parental inbreeding coefficient (F), multi-locus outcrossing 218 

rate (tm), single locus outcrossing rate (ts), bi-parental inbreeding rate (tm-ts), correlation of paternity 219 

(rp), and effective number of pollen donors per family (1/rp) were all estimated using MLTR (Ritland 220 

2002). Standard errors were calculated according to 1000 bootstraps.  221 

 222 

Paternity assignment implementing maximum likelihood was undertaken using CERVUS V3.0.7 223 

(Kalinowski et al. 2007). Here, Logarithm of Odds (LOD) scores estimate the likelihood of paternity 224 

given the genotypes of the maternal, offspring and each candidate sire. Simulation was used to define 225 

critical values of LOD scores and delta, the difference between the most likely and second most likely 226 

candidate sire, with one mismatch allowed. Paternity was inferred when the most likely sire exceeded 227 

thresholds for the LOD score and delta. Paternity assignments from CERVUS were then contrasted 228 

to those manually estimated from full exclusion analysis with no mismatches allowed. Discrepancies 229 

were checked by correcting for missed null alleles or when non-maternal and putative sire alleles at 230 



a mismatched locus were <2 base pairs different in size. Final paternity assignment was based on 231 

these corrected exclusion results.   232 

 233 

In addition, parentage and sibship was inferred jointly using maximum likelihood (ML) methods in 234 

COLONY v 2.0.6.5 (Jones and Wang 2010). Parameter settings included medium precision, full 235 

likelihood, long length of run, 10 runs, strong sibship prior based on known maternals, polygamy for 236 

males and females, inbreeding present, and a mutation rate of 0.0001. Paternal genotypes, inferred 237 

from ML configurations of each offspring with known maternal, were used to infer ML full- and half-238 

sibships for each family. This enabled an estimate of paternal diversity without assignment to a 239 

candidate from the known potential pool of sires. Paternity assignment results were used to estimate 240 

realised pollen dispersal distances. Realised pollen dispersal distances were calculated by measuring 241 

the distance (in metres) between maternal plants and assigned sires.  242 

 243 

Bird abundance and visits to Anigozanthos humilis flowers  244 

To estimate honeyeater abundance, 10-minute area searches were undertaken in each of two 1-ha 245 

plots in each of the three sites. Area searches were undertaken on four occasions during the flowering 246 

period of A. humilis (8th - 23rd October 2018). All observations were made during the morning, three 247 

to five hours after dawn, using methods adapted from Davis et al. (2014). The start order of the 1-ha 248 

area searches was randomised to minimise temporal bias. For each plot, one observer walked through 249 

the entirety of the plot noting all nectar feeding birds observed and/or heard, while a second person 250 

scribed. For analysis, only honeyeater species observed visiting A. humilis plants during the study 251 

were included. Tukey’s Post-Hoc tests were used to compare A. humilis pollinating honeyeater 252 

abundance across the three sites with 95% confidence intervals. 253 

 254 

Bird visitors to A. humilis flowers were detected using motion-triggered cameras (Reconyx HyperFire 255 

Semicovert IR model). For each of five flowering plants per population, two cameras were set up (30 256 



cameras total) and remained in place until flowering was complete. Cameras were redeployed on 257 

another plant if flowers were lost to herbivory by kangaroos (which happened six times). Methods of 258 

camera deployment and programming for capturing vertebrate visitors to flowers followed Krauss et 259 

al. (2018) and van der Kroft et al. (2019). Cameras were checked once every two weeks until 260 

flowering was complete. Images were processed manually and for photographs that captured floral 261 

visits, the following was recorded: the visiting species, its sex (if determinable), colour band pattern 262 

(if present – see below), number of probes per visit per plant (including multiple probes to the same 263 

flower), duration of the visit, and time and date of visit. Non-parametric Kruskal-Wallis rank sum 264 

tests and post-hoc Dunn’s test (Dinno 2017) were used to test for differences between populations 265 

for pollinator visits per 10 days, using individual plants as the replicates (R Core Team, 2017). 266 

 267 

To assess individual visitation patterns by floral visitors, 9 western spinebills and 14 brown 268 

honeyeaters were captured by mist-netting and individually colour banded to enable identification in 269 

camera trap images. At the time of capture, generally between 07:00 and 11:00 AWST, all banded 270 

birds were swabbed for pollen with a fuchsin gelatine cube at locations where pollen was most likely 271 

to have accumulated, namely the forehead, lores, gape and throat (Wooller et al. 1983; Kearns and 272 

Inouye 1993). Each gelatine cube was melted on a glass microscope slide with a coverslip and sealed 273 

with nail polish. Using a bifocal microscope, pollen grains were counted and classified to species, 274 

genus or family level by comparison to a reference library created from flowering plant species at 275 

INR in September 2018. Pollen counts were pooled from 30 captured honeyeaters across the three 276 

INR populations and the percentage of A. humilis pollen in the total pollen load was quantified. 277 

Species captured included; brown honeyeater (Lichmera indistincta, n = 14), new holland honeyeater 278 

(Phylidonyris novaehollandiae, n = 5), red wattlebird (Anthochaera carunculata, n = 1), and western 279 

spinebill (Acanthorhynchus superciliosus, n =10). The percentage of A. humilis pollen and co-280 

flowering species pollen for the three INR populations was calculated for individuals of both western 281 

spinebills and brown honeyeaters. 282 



 283 

Results 284 

 285 

Genetic diversity  286 

Null alleles were detected at significant frequencies in maternal genotypes from progeny arrays in 287 

two of the four loci (Am8 and Am76). From these, 14 of 17 (82%) apparently homozygous maternal 288 

loci were clearly shown to be null heterozygotes. There were no null alleles detected from these 289 

progeny arrays for Am71 and Am82. Overall, for 4 loci across 23 maternal plants (92 locus by plant 290 

combinations), only 3 locus-plant combinations (3.3%) were confirmed as homozygotes, 96.4% were 291 

heterozygous. For the complete dataset of 131 adult plants, allelic diversity was very high at these 4 292 

loci (Na = 20 (Am8), 18 (Am82), 32 (Am71) and 38 (Am76)) (Table 1). This is an under-estimate of 293 

the true allelic diversity because of known null alleles, which from the known maternal genotypes 294 

were detected at frequency (null) = 0.17 (Am8) and 0.13 (Am76). Due to null alleles, observed 295 

heterozygosity (HO) was lower than the expected heterozygosity (HE) (Table 1).  296 

 297 

Mating systems, paternal diversity and realised pollen dispersal 298 

From MLTR, the overall estimate of multilocus outcrossing rate (tm = 0.85), and within population 299 

estimates (tm = 0.77, 0.88, 0.90) were all high but significantly different from one (Table 2). The high 300 

variability at these markers also enabled the unambiguous identification of selfed from outcrossed 301 

offspring. Selfed offspring (n = 35, 16.6%) were clearly differentiated from outcrossed offspring as 302 

the former possessed no non-maternal alleles, the later typically possessed 3 or 4 non-maternal alleles 303 

across 4 loci, but never one nor zero. From these data, unambiguous outcrossing rates varied among 304 

populations (0.75 (B), 0.87 (C), 0.89 (A)), and were very similar to MLTR estimates. Outcrossing 305 

rates among the offspring of flowers within individual plants varied markedly, from complete 306 

outcrossing to complete selfing. The MLTR estimates of bi-parental inbreeding overall (tm – ts = 0.04) 307 

and within populations (tm – ts = 0.03, 0.06, 0.09) were all low. Estimates of correlated paternity were 308 



high overall (rp = 0.32) and within populations (rp = 0.22, 0.36, 0.46), and consequently estimates of 309 

effective number of pollen donors overall (1/rp = 3.1) and within populations (1/rp = 2.2, 2.8, 4.5) 310 

were consistently low (Table 2).  311 

 312 

Paternity was assigned by maximum likelihood analysis for 117 of the 211 (55%) offspring 313 

genotyped. For 96 of 211 offspring (45%), all known potential sires were excluded as a true sire, 314 

indicating that the true sire lay beyond the plots where plants were sampled. Multiple paternity rates 315 

varied markedly among families and among populations, from entire full-sib families (in two 316 

families, one completely selfed, one completely outcrossed) to near complete half-sib families 317 

(almost all offspring with a different sire). From paternal inference of all offspring in COLONY, 318 

mean (+ SE) number of sires for a mean of 9.2 offspring per family was 3.5 (+0.3). From COLONY, 319 

overall estimates of the ratio of offspring half sibs to full sibs per population were 60:40 (A), 71:29 320 

(B) and 85:15 (C). 321 

 322 

From paternity assignments, realized pollen dispersal reflected near neighbour mating, where for 323 

approximately 80% of all offspring, known sires were within 20 m of the maternal mate, including 324 

selfs (Fig. 2). For offspring with paternity assigned, the maximum detected pollen dispersal distances 325 

(PDD) were 129 m (A), 20 m (B), and 30 m (C). Median detectable pollen dispersal distances were 326 

low (3 m (A), 3 m (B), 9 m (C)), with an overall mean (±SE) of 8.0 m (± 1.4). These PDD values 327 

underestimate the true extent of pollen dispersal due to the high percentage of offspring (45%) for 328 

which all known potential sires were excluded, and therefore the true sire occurred beyond the known 329 

candidate pool of sires (Fig. 2). Although the distance between mates for these unassigned offspring 330 

is not known, and could be less than the maximum distance between known mates, the high 331 

proportion of unassigned offspring does reflect an extended tail to the pollen dispersal distribution.   332 

 333 

Bird abundance and visitation to Anigozanthos humilis flowers 334 



The motion-triggered cameras detected 62 visits by birds (including repeat visits by banded 335 

individuals) to A. humilis plants over a total of 21,552 recording hours across the three populations. 336 

From the number of inflorescences monitored, this equates to approximately one visit per 337 

inflorescence every 10 days. Given that most flowers are open and receptive for up to 3 days, this 338 

means that most flowers are not pollinated. The most common floral visitors were western spinebills 339 

(N = 47), followed by New Holland honeyeaters (Phylidonyris novaehollandiae; Meliphagidae) (N = 340 

6), silvereyes (Zosterops lateralis; Zosteropidae) (N = 6), and brown honeyeaters (N = 3). Silvereyes 341 

appeared to act as nectar thieves, as photos showed them feeding at the base of the corolla tube of A. 342 

humilis flowers and not making contact with the anthers or stigma. This behaviour suggests that 343 

silvereyes are unlikely to effect pollination for A. humilis. Despite the known local abundance of 344 

honey possums and their high visitation rates to co-flowering Banksia menziesii and B. ilicifolia 345 

(Krauss et al. 2018), they were not recorded visiting flowers of A. humilis, nor in an earlier study (van 346 

der Kroft et al. 2019).  347 

 348 

Pooled 2-ha survey data showed that, for those species that pollinate A. humilis, the average number 349 

of honeyeater individuals in A (±SE) (N = 21 ± 1.6) was approximately double that of B (N = 10 ± 350 

1.0) (P = 0.0070), and five times that of C (N = 4 ± 0.7) (P < 0.001). Despite variation in number of 351 

honeyeater individuals, the average visits to A. humilis per 10 days (±SE) were low in all populations 352 

(1 ± 0.5 (A); 3 ± 1.6 (B), 0.1 ± 0.8 (C)) (Fig. 3). Populations A and B were significantly different in 353 

number of visits from C (P = 0.049 (A), P < 0.001 (B)), but not each other (P = 0.072). The average 354 

number of honeyeater flower probes per visit per plant (±SE) (2.7 ± 0.2 (A); 5.1 ± 2.5 (B), 1.9 ± 1.0 355 

(C)) did not differ significantly between populations (P = 0.54).  356 

 357 

Few of the banded western spinebills (N = 9) and brown honeyeaters (N = 14) (Supplementary 358 

materials S.4) were recorded by motion-triggered cameras visiting A. humilis plants (site A = 3 359 

individuals, site B = 1; site C = 0). These visits generally occurred in the morning, although some 360 



vitiations occurred between midday and dusk. Three of these banded birds returned to A. humilis 361 

plants more than once. One banded western spinebill (Australian Bird and Bat Banding Scheme 362 

number: 01A46230) was detected returning to the same plant ten times over seven days between 8th 363 

and 24th October 2018. Paternity analysis of seven offspring from this plant showed that four were 364 

selfed and three were sired by a plant 20 m away. One brown honeyeater (01A46222) was detected 365 

visiting a plant over two consecutive days (5th and 6th October 2018), and one western spinebill 366 

(01A46216) was detected making three visits to the same plant over three days (12th, 13th and 24th 367 

October 2018). 368 

 369 

Pollen counts from 30 captured honeyeaters revealed that A. humilis comprised only 0.3% of the total 370 

pollen load. For 10 western spinebills, A. humilis pollen comprised 4.1% of the pollen load, which 371 

equated to an average of 3.9 pollen grains, and a maximum of 13 A. humilis pollen grains per bird. 372 

(Table 3). For 14 brown honeyeaters, only one A. humilis pollen grain was identified. Across all birds, 373 

A. cygnorum accounted for at least 79% of all pollen, although this value is underestimated as the 374 

percentage of A. cygnorum pollen was calculated from counts that were capped at 1000 (recorded 3 375 

times), and Banksia pollen comprised 8%. The abundance of pollen of co-flowering species varied 376 

among population and honeyeater species (Table 3 and Supplementary materials S.5). For western 377 

spinebills, pollen of an unknown Myrtaceae species was carried in the greatest abundance at A and 378 

C, while A. cygnorum pollen was the most common at B. For brown honeyeaters, A. cygnorum pollen 379 

was most abundant for all three populations.  380 

 381 

Discussion 382 

 383 

The mating system of the bird-pollinated Anigozanthos humilis was characterised by frequent 384 

outcrossing, low paternal diversity, and a pollen dispersal distribution characterised by near 385 

neighbour mating and an extended tail. These parameters were all similar among populations, despite 386 



variation in the relative abundance of co-flowering bird-pollinated plants and the abundance of 387 

honeyeaters. While high outcrossing rates, despite self-compatibility, are consistent with predictions 388 

for plants pollinated by nectar-feeding birds, the low paternal diversity and predominantly near 389 

neighbour mating for A. humilis are departures from those predictions (Krauss et al. 2017). The 390 

estimates of mate diversity in A. humilis were also lower than that previously reported for most other 391 

Australian plant species that rely in-part or completely on bird pollination, and lower even than most 392 

insect-pollinated plants (Table 4).  393 

 394 

Our observations on pollinator visitation rates and pollen loads provides a mechanistic understanding 395 

of the low mate diversity in A. humilis. In this study, visitation rates by honeyeaters to the flowers of 396 

A. humilis were extremely low (on average one visit every 10 days or less). As a consequence, the 397 

amount of A. humilis pollen detected on individual honeyeaters was also extremely low (0-13 grains). 398 

Further, mixed pollen loads on birds were dominated by co-occurring vertebrate-pollinated shrubs 399 

and trees, especially Adenanthos cygnorum, Banksia menziesii, and B. ilicifolia. The combination of 400 

these three factors provides the ecological context for the surprisingly low paternal diversity for this 401 

bird-pollinated herb. These observations are also consistent with previous conclusions of severe 402 

pollen limitation in A. humilis, where mean fruit set following cross-pollination by hand was 37 times 403 

greater than that following natural pollination (van der Kroft et al. 2019).  404 

 405 

Almost 96% of the pollen loads on western spinebills, the most frequent bird pollinator to A. humilis, 406 

was heterospecific. This very low purity of pollen loads suggests that heterospecific pollen transfer 407 

(Morales and Traveset 2008) may have a significant impact on the success of bird pollination for A. 408 

humilis and consequences for parental diversity. For example, the abundant deposition of 409 

incompatible pollen of other species can dilute competition among conspecific pollen donors, and 410 

reduce access to ovules because of clogging of stigmas and styles with heterospecific pollen, 411 

impacting male and female fitness through lower mate diversity, seed siring and production (Waser 412 



1978; Snow et al. 1996; Morales and Traveset 2008; Mitchell et al. 2009a,b). A consequence of the 413 

adaptation to pollination by generalist nectar feeders may be a tolerance to heterospecific pollen, 414 

especially of phylogenetically distinct species (Fang et al. 2019; Streher et al. 2020). A tolerance may 415 

mean foreign pollen does not have a negative competitive or physical effect on the pistil, and may 416 

itself be an adaptation that contributes to the maintenance of high species diversity in plant 417 

communities (Fang et al. 2019). Further research into the consequences of heterospecific pollination 418 

is required to test these hypotheses, but would lead to a better understanding of the relationship 419 

between the behaviour of generalist bird-pollinators and the competition by plants for their pollinator 420 

services (Mitchell et al. 2009b). Our results in A. humilis do, however, highlight the influence that 421 

the more rewarding members of a plant community can have on the behaviour of generalist nectar-422 

feeding bird pollinators, potentially resulting in inefficient pollination and lower mate diversity for 423 

less common, less floriferous and less rewarding co-occurring plants. 424 

 425 

 426 

Despite the poor delivery of pollen to the flowers of A. humilis, outcrossing rates were high and 427 

comparable to other specialist bird-pollinated plants (Table 4). High outcrossing rates, despite self-428 

compatibility, reflect strong preferential outcrossing, demonstrated by hand-pollination studies that 429 

have shown the number of seed per fruit following self-pollination can be 1% of that following cross-430 

pollination (van der Kroft 2019). Bird pollinator behaviour and the flowering phenology of A. humilis 431 

further promotes outcrossing. Unfortunately, most of the birds banded were rarely captured by our 432 

cameras, meaning that a behavioural estimate of whether repeat visitation to the same flower is likely 433 

to regularly contribute to self-pollination is not possible. However, in A. humilis, only two flowers 434 

are open and receptive at any given time for an inflorescence, of which there are typically only one 435 

or two per plant (Hopper 1993). Having few receptive flowers on a plant at one time minimises 436 

geitonogamous pollination and promotes outcrossing (Harder and Barrett 1995; Snow et al. 1996; 437 

Mitchell et al. 2004). However, this strategy comes at a cost of low visitation rates by pollinators, 438 



especially when other co-occurring bird-pollinated species outcompete for pollinators by providing a 439 

more abundant and rewarding nectar resource (Ramsey 1988; Collins and Briffa 1982; Mitchell et al. 440 

2009b). 441 

 442 

Relatively infrequent visits by bird pollinators to the flowers of A. humilis compared to those of co-443 

occurring mass-flowering species appears to be a feature of populations of this species in banksia 444 

woodlands (Whelan and Burbidge 1980; Collins and Briffa 1982; Ramsey 1988), and possibly other 445 

Anigozanthos populations in natural habitats (Brown 1988; Ayre et al. 2020; though see Phillips et 446 

al. 2014). Low visitation rates may be driven by a combination of low visibility of plant species with 447 

short scapes (Dudash et al. 2011), comparatively low per plant nectar rewards (Thomson 1988) and 448 

potentially low foraging efficiency (Linhart 1973; Pyke 1981). More generally, many other bird-449 

pollinated plant species are also visited infrequently, including some species of understory herbs (Kay 450 

and Schemske 2003; Turner and Midgely 2016), small shrubs (Johnson et al. 2010) and epiphytes 451 

(Ackerman et al. 1994; Micheneau et al. 2006). Like A. humilis, these species tend to be characterised 452 

by comparatively low numbers of open flowers or total nectar rewards, suggesting that our findings 453 

with A. humilis could be applicable to a wider range of understorey species that are also pollinated 454 

by generalist species. As such, we shed new light on the conditions that can lead to departures from 455 

high paternal diversity predicted for plants pollinated by nectar-feeding birds. Competition for bird 456 

pollinators appears to be a limiting factor for herbaceous species, likely exacerbated in the presence 457 

of heavily co-flowering trees and shrubs. 458 

 459 

Given this ecological context, it is unsurprising that mating systems can vary significantly within and 460 

among plant populations (Whitehead et al. 2018). Pollinator abundance, movement patterns and 461 

behaviour, and competition for their services, may vary dramatically depending on plant population 462 

sizes and flowering plant species composition (Linhart 1973; Collins and Briffa 1982; Phillips et al. 463 

2014). The current study extends this understanding of variability in the mating system and 464 



pollinators to a mechanistic understanding of the variability that exists in the mating portfolio (Barrett 465 

and Harder 2017) among individuals and populations of plants pollinated by nectar-feeding birds.  466 

For example, while low visitation rates were the norm for A. humilis, camera traps highlighted one 467 

plant that was recorded being visited by the same banded bird on 10 occasions over 7 days, while 468 

other plants were not visited at all. Between maternal plants and their offspring, mating was found to 469 

vary from complete selfing to complete outcrossing for A. humilis. For species that have low visitation 470 

rates from bird pollinators, self-compatibility may provide a bet-hedging strategy, enabling seed set 471 

despite severe pollen limitation. Indeed, self-incompatibility may have evolved in response to more 472 

reliable pollination by birds in co-occurring mass-flowering dominant tree species such as Banksia 473 

menziesii (Ramsey and Vaughton 1991). However, for Anigozanthos humilis, extremely high 474 

heterozygosity at the genetic markers deployed suggest that preferential outcrossing and fitness 475 

benefits through heterosis could promote the evolutionary benefits of bird pollination, wide 476 

outcrossing and paternal diversity, despite the inefficiencies associated with its pollination.  477 

 478 

Our work with A. humilis suggests that the ecological and genetic consequences of pollination by 479 

birds can differ greatly depending on the plant species involved. While studies on bird-pollinated 480 

shrubs and trees have typically shown frequent visitation (e.g. Collins and Briffa 1982; Ramsey 1988; 481 

Krauss et al. 2018) and a trend for high paternal diversity (Table 4; Krauss et al. 2017), here we have 482 

seen a very different result. If this pattern occurs more broadly in bird-pollinated plants with few or 483 

inconspicuous flowers, it raises the question of why bird pollination evolves in these lineages? 484 

Reasons hypothesised for the evolution of bird pollination include more efficient pollen transfer 485 

(Castellanos et al. 2003), low availability of insect pollinators in certain habitats, and higher mate 486 

diversity (Krauss et al. 2017). However, these explanations may not apply to many of the less 487 

floriferous bird-pollinated plants such as A. humilis that co-occur with species that have much higher 488 

visitation rates. Given that there is a large diversity of herbs that are known to be bird pollinated or 489 

conform to the bird pollination floral syndrome (e.g. Keighery 1980; Rosas-Guerrero et al. 2014), a 490 



key question that remains is what are the ecological consequences of this strategy, and why did it 491 

evolve in this group of plants? Given that genetic studies on this group of plants are surprisingly few 492 

(e.g. Table 4), there is a need to test the generality of our genetic results, and understand the fitness 493 

consequences of bird pollination under conditions of infrequent pollinator visitation.  494 
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Figures 793 

 794 

Figure 1. Anigozanthos humilis growing in Ioppolo Nature Reserve (INR), Western Australia (left). 795 

The inflorescences of A. humilis generally have a single scape with numerous subtubular flowers 796 

forming an inflorescence. At INR, flowers of A. humilis are visited almost exclusively by honeyeaters, 797 

with the western spinebill (right and below) the most frequent visitor, note the dusting of yellow 798 

pollen on the birds head (right). Photos by Joshua Kestel. 799 

 800 



 801 

Figure 2. Realized pollen dispersal distributions from paternity assignment of offspring for 802 

Anigozanthos humilis in each of three populations (A,B,C), and combined. Y-axis shows the 803 

proportion of total, x-axis shows upper bound of distance in meters between mates (solid bars) and 804 

between all pairs of plants (open bars) for each distance class. Also shown are proportion of offspring 805 

that were the product of self-fertilization (self) and the proportion of offspring for which all known 806 

potential sires were excluded as the true sire, so pollen is inferred to have originated from outside the 807 

study plot area, but true distance is unknown.  808 
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 819 

Figure 3. Measures of bird visitation from 30 motion-triggered cameras monitoring 15 Anigozanthos 820 

humilis plants across three sites (Populations A, B, C) in Ioppolo Nature Reserve, Western Australia. 821 

Average number of visits by birds to plants per 10 days, and average number of probes per visit by 822 

birds (counting multiple probes to the same flower) are shown with standard errors. 823 
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Electronic Supplementary materials 833 

 834 

Figure S.1 Map of the three Anigozanthos humilis populations at Ioppolo Nature Reserve (INR), 835 

Western Australia. Symbols indicate the locations of individual plants. Image from Google Earth. 836 

 837 

 838 

Table S.2. Distance and density parameters for 131 Anigozanthos humilis plants surveyed after 839 

herbivory, across three sites (Populations A, B, C) in Ioppolo Nature Reserve, Western Australia. 840 

 841 

 842 

Parameters A  B  C 

Area surveyed (ha) 1.84 
 

4.54 
 

1.64 

A. humilis plants surveyed 33 
 

 57 
 

45 

A. humilis density (plants per ha) 18 
 

13 
 

30 

Average distance between        

A. humilis plants (m) 
51.81 ± 1.44  129.08 ± 2.07  62.44 ± 1.21 

Range of distances between      

A. humilis plants (m) 
0.55 – 141.71  0.75 – 281.32  0.03 – 163.29 

300 m

N Pop. C

Pop. B

Pop. A



S.3 Canopy species flowering phenology   843 

Within each of the three A. humilis populations, co-flowering canopy species known to be visited by 844 

bird species for nectar were surveyed on the 19th September 2018, 23rd October 2018, and 25th 845 

October 2018. Co-flowering canopy species were surveyed within each population by walking in a 846 

grid-like pattern across two 1-ha plots. The number of flowers/ inflorescences on each co-occurring 847 

co-flowering bird pollinated canopy species was counted by an observer at ground level. In pop. A, 848 

B. ilicifolia was the dominant co-occurring co-flowering canopy species, contributing 61% of the 849 

total floral resources available during the A. humilis flowering season. Within pop. B, B. menziesii 850 

was the dominant canopy species, providing 82% of the total floral resources available within the 851 

population. A. cygnorum was the only species flowering in pop. C, and in relatively small numbers.  852 

 853 

S.4 Bird banding by population 854 

Honeyeaters documented visiting Anigozanthos humilis in van der Kroft et al. (2019) were captured 855 

and banded over five sessions from 11th September 2018 - 28th September 2018. During every session, 856 

mist nets were opened at each site prior to sunrise and checked every 20 mins. Pre-recorded western 857 

spinebill and brown honeyeater calls were played from Bluetooth speakers located next to each of the 858 

nets. Captured western spinebills and brown honeyeaters were measured and fitted with a standard 859 

metal band and two to four colour bands subject to an approved marking scheme from the Australian 860 

Bird and Bat Banding Scheme. Across all three A. humilis populations, 25 birds were banded. Number 861 

of birds banded by site were: 5 western spinebills, 6 brown honeyeaters (population A); 5 western 862 

spinebills, 6 brown honeyeaters (B); 1 western spinebill and 2 brown honeyeaters (C).  863 

 864 

Table S5.  Pollen counts from 30 netted honeyeater species in Ioppolo Nature Reserve, Western 865 

Australia. Names of bird species are abbreviated to published four letter abbreviations as follows; 866 

BrHo = brown honeyeater, NHHo = new holland honeyeater, ReWB = red wattlebird, and WeSp = 867 

western spinebill. Pollen was not counted above 1000 grains per sample. For calculations, individuals 868 



with more than 1000 grains were rounded down to 1000. ID code refers to band numbers for the 869 

Australian Bird and Bat Banding Scheme. 870 

  871 



 872 

  873 

 874 

 875 

Pop. ID code 
Bird 

sp. 

Number of grains 

Adenanthos 

cygnorum  

Banksia 

sp. 

Anigozanthos 

humilis 

Unknown 

pollen sp. 2  

Unknown 

Myrtaceae 

A 01A46221 BrHo 1000 15 0 0 68 

A 03727926 NHHo 47 379 6 0 12 

A 03727925 NHHo 0 1 0 0 4 

A 03727924 NHHo 33 21 0 3 14 

A 03727923 NHHo 9 54 0 0 1000 

A 03727922 NHHo 34 0 0 0 1 

A 07312571 ReWB 5 27 0 0 98 

A 01A46215 BrHo 303 0 0 0 0 

A 01A46217 BrHo 935 79 0 0 18 

A 01A46225 BrHo 10 122 0 0 0 

A 01A46234 BrHo 450 29 0 0 0 

A 01A46223 WeSp 22 59 13 0 122 

A 01A46222 BrHo 910 98 0 0 0 

A 01A21624 WeSp 18 13 0 0 22 

A 01A46216 WeSp 12 0 1 0 22 

B 01A46219 WeSp 0 5 0 0 0 

B 01A46218 WeSp 19 5 8 1 1 

B 01A46234 BrHo 800 0 0 0 0 

B 01A46232 WeSp 11 14 4 0 0 

B 01A46233 BrHo 1000 0 0 0 0 

B 01A46231 WeSp 5 1 1 0 1 

B 01A46230 WeSp 107 0 0 0 0 

B 01A46229 BrHo 750 25 1 0 0 

B 01A46219 WeSp 39 58 7 0 3 

B 01A46228 BrHo 760 30 0 0 0 

B 01A46227 BrHo 270 1 0 0 1 

B 01A46226 BrHo 1000 28 0 0 0 

C 01A46220 WeSp 50 7 5 19 310 

C 01A46236 BrHo 1000 0 0 1 0 

C 01A46235 BrHo 1000 0 0 0 1 


