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Abstract

Ultra-reliable and low-latency communications (URLLC) has been envisaged as the enabling

paradigm to support real-time communications with stringent requirements on latency and

reliability. The realization of URLLC will bring life-changing applications, e.g., smart man-

ufacturing for Industrial 4.0, autonomous networked vehicles, and remote surgery, to human

society. Notably, these applications typically require a target decoding error probability to be

less than 10−7 within a latency being lower than 1 ms. Such strictly low latency imposes an

unprecedented restriction on the size of packets. As such, short-packet communications (SPC)

has been proposed as the fundamental method to reduce the latency for URLLC.

This thesis aims to gain a comprehensive understanding of SPC for URLLC. Specifically,

this thesis investigates and addresses the following issues: 1) how to design SPC with lim-

ited channel estimation overhead in SPC (Chapters 2 and 3), 2) how to improve the design

of SPC to reduce the communication latency for URLLC (Chapter 4), and 3) how to design

secure SPC for URLLC under statistical quality-of-service (QoS) constraints (Chapter 5). The

contributions made in this thesis are summarized as follows:

First, we investigate two different channel training strategies for SPC in Chapter 2. We

study the requirement on channel reciprocity to activate uplink channel training, instead of

downlink channel training, to achieve a higher data rate for the downlink transmission from

a multi-antenna base station to a single-antenna user. We show the necessity and benefits of

activating uplink channel training for SPC with multiple transmit antennas. Then, we further

study the optimal SPC strategy in a multiple-input single-output system in Chapter 3. To

maximize the average achievable data rate, we determine the optimal allocation of the finite

resource (e.g., the total transmit power and a finite number of symbol periods) for downlink

training, uplink feedback, and data transmission.

Second, to reduce communication latency, in Chapter 4, we propose to use channel inver-

sion power control (CIPC) with channel reciprocity to eliminate the overhead of channel state

information (CSI) feedback, as well as achieve one-way URLLC where only the transmission

in one direction requires ultra reliability and low latency. Based on channel reciprocity, the

proposed CIPC schemes guarantee that the power of the received signal used to decode the

information is a constant value Q, by varying the transmit signal and power, which relaxes the

assumption of knowing CSI at the user. We derive new analytical expressions for the packet

loss probability of the proposed CIPC schemes, based on which we determine a closed interval

and a convex set for optimizing Q in CIPC with imperfect and perfect channel reciprocities,

respectively.
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Finally, we study how to realize secure SPC subject to a statistical QoS requirement and an

average power constraint in Chapter 5. We compare the secure transmission rates of short pack-

ets in different scenarios (i.e., with/without eavesdropper’s instantaneous CSI and with/without

channel estimation errors). To find the optimal power control policy that maximizes the ef-

fective secrecy throughout under QoS and power constraints, we apply an unsupervised deep

learning method with low complexity to address constrained functional optimization problems,

which do not have a closed-form solution in general. To provide more insights and demonstrate

the effectiveness of unsupervised deep learning, we derive the closed-form expression for the

optimal policy in a special case.

This thesis advances our understanding of the fundamental performance of SPC for URLLC.

It also provides guidelines to assist URLLC designers to solve important problems on how to

fully explore the advantages of SPC in practical wireless URLLC systems.
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Chapter 1

Introduction

1.1 Motivation

The fifth generation (5G) and beyond wireless communications aim to connect everything that

may benefit from being connected [2, 3], i.e., the Internet of Everything (IoE)1. The con-

nected “Everything” includes human, process, data, and things [3], where “things” can be au-

tonomous machines and devices, e.g., smart phones, sensors, actuators, cameras, vehicles [2]

with different levels of energy consumption, computation capability, transmit power, and la-

tency requirement. This calls for a fundamental shift from current networks originally designed

for human-centric communications (i.e., high data rate) to machine-centric communications,

which is envisioned for addressing the specific needs of “things” by enabling new applications

with stringent requirements on latency2 and reliability3. The envisioned services in 5G and

beyond can be grouped into three main scenarios [2, 7, 8], as follows:

• enhanced Mobile Broadband (eMBB): This scenario provides enhanced access to

multi-media content, services and data with improved performance and increasingly

seamless user experience.

• Ultra-Reliable and Low Latency Communications (URLLC): This scenario enables

the real-time communications with stringent requirements on latency and reliability.

• massive Machine-Type Communications (mMTC): This scenario supports ubiquitous

connectivity for an enormous amount of low-cost devices in energy-efficient way.

The arrival of 5G and beyond will open up lucrative new business opportunities for many

industrial sectors. One of the main challenges in 5G and beyond is the inclusion of support for

real-time interactive applications such as remote driving, intelligent transport systems, next-

generation factory automation, tele-surgery and Tactile Internet [2, 7, 8]. Such communication

1Cisco defines the IoE as the networked connection of people, process, data, and things.
2International Telecommunication Union (ITU) defines the latency as the time for a packet delivery from the

source to the destination in radio access network while satisfying being on the order of millisecond [2, Page 13].
3Reliability refers to the success probability of data transmission within a defined latency bound in channel

quality of coverage edge [4, 5, 6].

1
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aims to enable the wireless exchange of small packets with ultra-high reliability (error proba-

bility is on the order of 10−5) and ultra-low latency (user plane latency is on the order of 1 ms)

[9]. For example, different real-time interactive applications require diverse requirements on

latency and reliability. A brief summary of use cases is listed in Table 1.1 [1].

As can be seen from Table 1.1, the ultimate goal is to deliver small packets with high re-

liability in a real-time manner. In Table 1.1, there are two key parameters related to latency,

Table 1.1: Use cases of real-time interactive applications [1]

Use Case Latency
Reliability

(%)
Packet
Size

Traffic
Model

Power
distribution (Outage

management)

5 ms end-to-end latency,
3 ms air interface latency

99.9999 100 bytes aperiodic

Power
distribution (Protection)

15 ms end-to-end latency,
7 ms air interface latency

99.999 250 bytes periodic

Augmented reality/
Virtual reality

1 ms air interface latency/
4 ms air interface latency

99.999
32 bytes/
200 bytes

aperiodic

Factory automation
(Motion control)

2 ms end-to-end latency,
1 ms air interface latency

99.9999 32 bytes periodic

Intelligent transport
system

10 ms end-to-end latency,
7 ms air interface latency

99.999
1370
bytes

periodic

including (1) user plane latency (air interface latency), and (2) end-to-end latency. Specifically,

according to ITU, the minimum requirement for user plane latency4 in URLLC should not ex-

ceed 1 ms [2, 5]. Similarly, the reliability requirement for URLLC defined in 3GPP Release 16

[8, Page 25] requires that a single transmission of a small packet (i.e., 32 bytes) should satisfy

a reliability of 1− 10−5 (i.e., 99.999%) with a user plane latency of 1 ms. It is noted that the

definitions of latency and user plane latency are the same. Therefore, in this thesis, these two

terms are used interchangeably.

Besides, the overall end-to-end latency in cellular networks is determined by the delays in

radio access network (RAN), backhaul, core network, data center/cloud, and Internet server

[10, 11, 12, 13]. It increases significantly with the network load and the transmission distance

between the transmitter and the receiver and [12]. It is worthwhile to mention that communi-

cating with the gateway of the core network toward the Internet takes a minimum of 39 ms in

Long Term Evolution (LTE) networks [11], where the latency in RAN contributes to a large

proportion of the end-to-end latency (i.e., 10−20 ms [14]). We also find that the assumption

4ITU defines the user plane latency as “the contribution of the radio network to the time from when the source
sends a packet to when the destination receives it (in ms)” [5, Page 7].
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adopted commonly in 3GPP for a core/Internet latency component in LTE varies from 1 to 20

ms [10, Page 10]. Although the core network can be located close to the RAN to reduce the

latency [15], the latency of 1 ms cannot be achieved when considering the core network. For

URLLC applications, the end-to-end latency mainly focuses on the latency in RAN. From the

radio communication perspective, the latency in RAN is mainly contributed by the physical

layer and media access control (MAC) layer [11, 13, 16].

To achieve 1 ms latency in RAN, a short frame structure in 5G New Radio (NR) [17, 18, 19]

is proposed for short transmission time interval (TTI) by using mini-slots (durations of 1∼ 13

OFDM symbols) instead of a fixed slot duration in LTE (durations of 14 OFDM symbols) [20].

There are two main reasons for a short frame structure in 5G NR. Firstly, the TTI is set to the

same as the duration of one subframe (i.e., 1 ms) in LTE, which leads to the current latency in

LTE varying from several tens to hundreds of ms. Thus, the subframe length in 5G NR should

be much shorter than 1 ms to meet the latency requirement. For example, the new subframe

needs to take less than 1 ms to complete a single transmission which includes the process of

scheduling request, grant, data transmission, and acknowledgment. Secondly, in current LTE

networks, the subcarrier spacing is 15 kHz, and the operating frequency is below 6 GHz. It

is noted that frequency drift will occur due to poor local oscillator, which is in proportion

to the operating frequency. For example, 5G networks are expected to use mmWave in high

frequency, e.g., 26 GHz; therefore, a small fraction of frequency drift will make doppler shift

to be over several tens of kHz. Against this background, wider subcarrier spacing is expected

to be used in 5G NR. It will lead to shorter symbol length. Hence, the subframe will become

shorter when the same number of symbols are required in a subframe with shorter symbol

length.

The strictly low latency in URLLC imposes an unprecedented restriction on the size of

packets. Indeed, short packets have been recognized as the typical forms of the traffic gener-

ated by sensors and small mobile devices involved in mMTC and URLLC [21]. For example,

in industrial manufacturing and control systems, measurements and control commands are of

small size (e.g., 10 to 32 bytes) [19, 22, 23] and need to be communicated in real-time with

ultra-high reliability. The proposed short frame structure in 5G NR is beneficial to transmit

short packets for URLLC to reduce the latency up to 0.25 ms by dynamically adjusting the

size of TTI [24]. The short TTI includes the phases for control signaling, uplink and downlink

data transmissions, where control information contains scheduling requests/grants, transmis-

sion format information, and acknowledgments [18, 20].

Against this background, this thesis is motivated to investigate the fundamental problem

of how to design short-packet communications (SPC) to achieve URLLC by optimizing radio

resource management in such short TTI while satisfying the stringent requirements on latency

and reliability.
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1.1.1 Research Challenges

1.1.1.1 Signalling Overhead in Short-Packet Communications

The 5G and beyond networks are envisioned to support SPC for mission-critical applications

[21, 25], e.g., industrial automation and distributed smart grid, in which short packets (mea-

surements, control commands, and status updates are of small size 10-32 bytes) are expected to

exchange wirelessly with ultra-low latency and ultra-high reliability. However, the frameworks

in current wireless networks cannot be directly adopted to examine SPC. It is due to the fact that

current wireless networks are originally designed to transmit long packets for humman-centric

communications rather than short packets for mMTC/URLLC. It is worthwhile to mention

that the difference between long and short packets is characterized by the ratio of the size of

control information to the size of data information/the overall packet, where the packet size

(blocklength) is described by the number of degrees of freedom (channel uses or symbols) that

are needed to transmit the packet. Indeed, the control information in SPC is as important as

data information, while being negligible in current networks that use long-packets for packets

transmission.

SPC takes the effect of finite blocklength into account, which is different from the tradi-

tional long-packet communications (i.e., blocklength is sufficiently long to obtain an arbitrarily

low error probability [26]). As a consequence, the error probability in SPC is non-negligible

[21, 25, 27]. Against this background, the overhead in SPC has to be carefully designed to

achieve the stringent requirement on latency and reliability, since this overhead is not negligi-

ble and may become the dominating factor when the blocklength is finite and short. Within

the overhead, the part used for channel training which enables transceivers to learn the channel

state information (CSI) is unavoidable and could dominate the total overhead. Therefore, it is

necessary to investigate how to reduce the signalling overhead within limited resource (i.e., the

blocklength is finite and short) while satisfying the strict reliability requirement in SPC.

1.1.1.2 Secrecy in Short-Packet Communications

Due to the broadcast nature of the wireless medium, wireless transmissions are vulnerable to

security attacks [9, 28, 29, 30]. Existing cryptographic techniques are used at the upper layers

of the Open Systems Interconnection protocol architecture to prevent the illegitimate user from

accessing confidential information [28, 29]. Considering the strict delay budget in URLLC, the

latency caused by cryptography for encryption and decryption will become the bottleneck for

URLLC. Comparing to the traditional cryptographic approach, physical layer security (PLS)

has shown great potentials in 5G and beyond networks [31, 32, 33]. The key idea of PLS is

to realize wireless security at the physical layer by exploiting the intrinsic randomness of the

wireless medium. The advantages of PLS are mainly three folds [29, 31, 32, 34]: (1) security

level guarantee at the physical layer, (2) applicable to low-latency communications, (3) low im-
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plementation overheads for diverse/dynamic traffic in 5G and beyond networks. Specifically,

the security level achieved via PLS does not rely on the computational ability of illegitimate

users. Even if illegitimate users have powerful computational abilities to solve complicated

mathematical problems for deciphering, the security requirement can still be satisfied due to

the uncertainty in wireless channels [31, 32].

Apart from the aforementioned intrinsic benefits of PLS, the latency caused by secret key

exchange and encryption/decryption procedure is also a vital problem for URLLC. Since PLS

does not need additional time (or channel uses) for secret key exchange and management or

encryption/decryption as in the cryptographic method [34], it is suitable to transmit short pack-

ets in URLLC. Furthermore, 5G and beyond networks need to support diverse/dynamic traffic

and the overheads for secret key distribution, key management, and upper-layer cryptographic

approaches will be high, especially for hierarchical or decentralized architectures. To handle

this issue, PLS techniques can be used directly without complicated cryptographic approaches

at the upper layers, which significantly reduces implementation overheads. Therefore, PLS is

a promising approach to meeting the requirements on latency, reliability, and security. Despite

so, how to employ PLS techniques in SPC to achieve security under stringent requirements on

latency and reliability for URLLC applications is still unclear, which needs to be comprehen-

sively investigated.

1.1.1.3 Non-Convex Optimization in Short-Packet Communications

Shannon’s capacity has been widely used to characterize the maximal achievable rate in the

infinite blocklength regime, which is jointly convex in bandwidth and transmit power. How-

ever, considering finite blocklength in SPC, the maximal achievable rate is neither convex nor

concave with respect to (w.r.t.) radio resources (i.e., bandwidth and transmit power) [35, 36],

which leads to non-convex Quality of Services (QoS) constraints in optimizing resource allo-

cation for URLLC. In other words, radio resource management in SPC is very challenging.

Besides, the maximal achievable rate in the finite blocklength regime is lower than Shannon’s

capacity, which leads to the fact that the latency and reliability will be underestimated if Shan-

non’s capacity is used in optimizing resource allocation for URLLC [37]. Therefore, it is

desirable to propose a novel framework in dealing with non-convex optimization problems in

SPC.

1.1.2 Background

In this subsection, we provide the background information of performance metrics (e.g., max-

imal achievable rate and decoding error probability) used in this thesis for evaluating SPC,

which largely makes the thesis self-contained.
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1.1.2.1 Review of Traditional Performance Metrics in Infinite Blocklength Regime

The current wireless communication systems are actually assumed to work in the asymptotic

scenario where the blocklength is infinite. In such systems, the channel capacity C [26, 38]

and the outage capacity Cε [38, 39] are used as main performance metrics. Specifically, the

channel capacity C is the maximal achievable rate at which the message can be transmitted

with an arbitrarily low error probability by choosing sufficiently large blocklength. The outage

capacity Cε is the maximal achievable rate at which the message can be transmitted with the

error probability being less than ε (ε > 0) by choosing sufficiently large blocklength.

According to the definition of C and Cε , we note that there are no restrictions on the block-

length and C can be obtained from Cε by letting ε tend to 0, given by

C = lim
ε→0

Cε . (1.1)

1.1.2.2 Performance Metrics in Finite Blocklength Regime

Maximal Achievable Rate: It has been shown that the traditional performance metrics (C and

Cε ) provide inaccurate estimates on the maximum achievable rate in the context of SPC [21,

25]. Specifically, they are both asymptotic quantities by adopting the assumption of infinite

blocklength. Besides, the outage capacity fails to capture the rate penalty due to the channel-

estimation overhead while the channel capacity is independent on the packet reliability. How-

ever, the blocklength, channel-estimation overhead, and reliability need to be taken into ac-

count simultaneously for addressing the feasibility of SPC.

Against this background, a natural question to ask is “What are the performance metrics

for SPC?”. Fortunately, pioneering work on finite blocklength [27] provided the theoretical

principles that quantify the maximum coding rate for finite and short blocklength. In the finite

blocklength, the maximum achievable rate, denoted as R(T ,ε) [27], is given by

R(T ,ε) ≈C(γ)−
√

V (γ)

T
f−1
Q (ε)+O

(
log2 T

T

)
(1.2)

≈C(γ)−
√

V (γ)

T
f−1
Q (ε), (1.3)

where T is the blocklength (i.e., the number of channel uses), ε is the decoding error probabil-

ity, C(γ) = log2(1+ γ) is the channel capacity, V = (log2 e)2
[
1−1/(1+ γ)2

]
is the channel

dispersion [27], O( log2 n
n ) comprises remainder terms of order log2 n

n , and f−1
Q (·) denotes the

inverse of the Gaussian Q-function given by

fQ(x)
M
=
∫

∞

x

1√
2π

e−
t2
2 dt. (1.4)
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The approximation in (1.3) is referred as the normal approximation [27] by ignoring the term

of O( log2 n
n ). It has been shown that the approximation of R(T ,ε) is accurate for even very

short blocklength (e.g. T = 100) [25, 27].

Notably, the expression for R(T ,ε) can be regarded as a general expression for traditional

performance metrics of C and Cε , which can be directly obtained from R(T ,ε) by taking

appropriate limits. The corresponding relationships are summarized in Table 1.2.

Table 1.2: Relationships of performance metrics in finite and infinite regimes

Performance Metrics Relationships to R(T ,ε) Blocklength

C C = lim
ε→0

Cε = lim
ε→0

lim
n→∞

R(T ,ε) Infinite

Cε Cε = lim
n→∞

R(T ,ε) Infinite

Decoding Error Probability: It is noted that in the infinite regime for a given ε > 0, the

outage capacity Cε [38, 39] is the supremum of all rates R satisfying the outage probability is

lower than ε , i.e., Pout(R) ≤ ε , namely

Cε = sup{R : Pout(R) ≤ ε}, (1.5)

where the outage probability Pout(R) is defined as a function of the rate R, given by

Pout(R) = Pr [log2(1+ γ) < R] = Pr
[
γ < 2R−1

]
= Fγ(2R−1) =

∫ 2R−1

0
fγ(γ)dγ , (1.6)

where γ is the instantaneous SNR, fγ(γ) is the probability density function (PDF) of γ , and

Fγ(γ) is the cumulative distribution function (CDF) of γ .

However, for a given maximal achievable rate R, the decoding error probability ε in the

finite blocklength regime, can be obtained as

ε = E

[
fQ

(
C(γ)−R√

V (γ)/T

)]
=
∫

∞

0
fQ

(
C(γ)−R√

V (γ)/T

)
fγ(γ)dγ . (1.7)

The difference between the outage probability in (1.6) and the decoding error probability in

(1.7) is that the former is the integration of a PDF weighted by an indicator function while the

latter is the integration of a PDF weighted by a Gaussian Q-function which is never zero.

1.2 Literature Review

A number of performance limiting factors need to be addressed in order to unlock the full

potential of SPC for URLLC scenarios. In this thesis, we mainly focus on the following three
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important problems of SPC:

• How to design SPC with limited channel estimation overhead in the finite blocklength

regime?

• How to use channel inversion power control with channel reciprocity to improve the

design of SPC for signalling overhead reduction?

• How to employ PLS techniques in SPC to achieve security under stringent requirements

on latency and reliability for URLLC applications?

The related prior work is described in this section. The limitations of the existing work are also

discussed.

1.2.1 Transmission Design of Short-Packet Communications

Very recently, the benefits of SPC have been examined for emerging wireless mechanisms,

such as mobile edge computing [40], non-orthogonal multiple access[41, 42], physical layer

security [43, 44], cooperative relaying [45, 46, 47, 48], cooperative Internet of Things (IoT)

networks [49], factory automation [50], UAV communication systems [51, 52], wireless energy

transfer [48, 53], and radio resource management [16, 54, 55]. Recently, a novel architecture

that applies deep learning with wireless edge intelligence for SPC was proposed in [56, 57, 58],

which aims to provide practical guidelines into latency reduction in SPC for URLLC applica-

tions. In practical communication systems, the wise resource allocation for channel estimation

overhead plays a significant role in determining the transmission performance. Traditionally,

the impact of channel estimation overhead has been studied in the asymptotic scenario with

infinite blocklength (e.g., see [59, 60]). However, there have been only a few studies (e.g.,

[21, 25, 55]) that investigated the impact of channel estimation overhead when the blocklength

is finite and short. While [16, 25, 40, 42, 46, 53, 54, 59, 60] stand on their own merits, the

design of SPC with limited channel estimation overhead is still recognized as an open research

issue.

Channel Training Strategy: In order to satisfy the reliability requirement for URLLC, the

overhead in SPC has to be redesigned, since this overhead is not negligible compared to the

packet length. Within the overhead, the part used for channel estimation is unavoidable and

could dominate the total overhead when the requirement of URLLC is very stringent. For

the time division duplex (TDD) wireless communications from a base station (BS) to a user,

there are two channel training strategies before data transmission, including downlink channel

training and uplink channel training. For downlink channel training, the BS transmits pilot

signals to enable the user for estimating the downlink CSI from the BS to the user and then

the user feeds back the estimation to the BS. For uplink channel training, the user transmits

pilot signals to enable the BS for estimating the uplink CSI from the user to the BS and then
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the BS learns the downlink CSI based on the channel reciprocity between the uplink and the

downlink. Although uplink and downlink channel training are widely adopted in wireless

communications, their performance has never been examined in the context of SPC. The most

pressing challenge here is that the impact of the finite blocklength needs to be considered,

where the achievable data rates have never been derived by considering the cost of different

channel training strategies and the effect of the channel dispersion.

Channel Reciprocity: It is well known that the benefits of utilizing channel reciprocity to

enable uplink channel training in multiple-input multiple-output (MIMO) systems scale lin-

early with the number of transmit antennas at the BS [61, 62]. This is due to the fact that the

resources (e.g., time slots) used in the downlink channel training are linear functions of the

number of transmit antennas [61], while the ones used in the uplink channel training are in-

dependent of this number [62]. However, achieving channel reciprocity in practical scenarios

requires appropriate hardware calibrations to compensate for the unknown amplitude scaling

and phase shift between the downlink and uplink channels [63]. Meanwhile, we note that the

performance of uplink channel training highly depends on the amount of the achieved channel

reciprocity. Against this background, a never-before-answered question is “How much chan-

nel reciprocity is required to guarantee the uplink channel training to outperform the downlink

channel training?”. The answer to this question is pivotal for reducing the wireless transmis-

sion latency in SPC for URLLC applications.

Channel Estimation Overhead: Considering the low-latency constraint, the coding block-

length (i.e., channel uses or packet size) is required to be as short as possible in URLLC

applications [22, 23]. We note that it is a huge challenge to satisfy the reliability and latency

requirements of URLLC when the coding blocklength becomes short and limited in practice.

Specifically, the decoding error probability is no longer arbitrarily small for finite blocklength

and accurate CSI is hard to be achieved in wireless networks within a short time period. Ex-

isting studies, aiming at ensuring the requirements of URLLC in the finite blocklength regime,

mainly assumed that the CSI is available or can be accurately estimated by using negligible

channel uses. For instance, radio resource management in the finite blocklength regime was

investigated to satisfy QoS requirements with signaling overhead for downlink transmission

via cross-layer resource allocation in [54], and for short packet delivery via joint uplink and

downlink optimization in [64]. In [65], the optimal power allocation was studied for QoS-

constrained downlink multi-user networks with different types of data arrival. In the afore-

mentioned studies, the cost of channel estimation to satisfy QoS requirements was ignored

by adopting the assumption that CSI is a prior available or estimated by using negligible re-

sources. Meanwhile, the impact of channel estimation cost on transmitting short packets in the

finite blocklength regime was examined in the literature (e.g., [25, 66]), which revealed that

such cost can be dominant and significantly affects the achievable reliability, especially when

the low-latency requirement is very stringent. Therefore, how to significantly reduce or avoid
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the channel estimation overhead becomes an urgent and challenging research problem in SPC.

1.2.2 Channel Inversion Power Control in SPC for One-Way URLLC

Following the aforementioned discussions, we note that traditional channel estimation with

feedback may cost extra signalling overhead, which results in non-negligible transmission and

processing delay. As such, the traditional channel estimation may not work properly in some

URLLC services. Against this background, traditional channel estimation needs to be revisited

or modified with novel design in order to fulfill the strict requirements of URLLC. When

channel reciprocity holds, channel inversion power control (CIPC) can be used for wireless

communications, while eliminating the conventional requirement that a user needs to know

the CSI for decoding information [67, 68]. This is due to the fact that a BS can use CIPC to

adjust the magnitude and phase of the channel by varying the transmit power with a proper

precoding signal. As a consequence, the effective channel is a constant value, which is a

prior agreed between the BS and the user. This property leads to that CIPC may serve as a key

enabler of one-way URLLC in future wireless networks. Notably, one-way URLLC has a wide

range of applications. For example, in vehicular wireless networks the communication from a

BS to a vehicle that delivers an urgent message triggered by the reception and processing of

the uplink information requires one-way URLLC, while the communication on the other way

(mainly delivering periodically measurements or updates) may not require URLLC. Similar

application scenarios can also be found in digital medical systems and industrial IoT systems.

Although CIPC has been studied in different communication scenarios (e.g., [67, 68, 69]),

its performance and the associated optimization of the agreed constant power have never been

investigated in the context of SPC. It is worthwhile to mention that the optimization problem

in SPC is non-convex in general due to the consideration of maximal achievable rate in finite

blocklength regime. Besides, we note that channel reciprocity may not be perfect in practice

due to the challenging channel hardening issues [70, 71, 72]. As such, the impact of the

imperfectness on the performance of CIPC in one-way URLLC should be examined. In CIPC,

the power at the BS needs to approach infinity to ensure a constant power of the received

signal that is used to decode the useful information for some low-quality channel realizations.

As such, another key factor that limits the performance of CIPC is the maximum transmit

power constraint, which determines when the BS has to suspend its transmission. These issues

motivate us to tackle the feasibility and the optimal design of using CIPC in SPC to achieve the

one-way URLLC and establish the fundamental limit of one-way URLLC achieved by CIPC.

1.2.3 Physical Layer Security in Short-Packet Communications

PLS has been well investigated in the existing literature [29, 32, 73, 74], where the block-

length of channel codes is assumed to be long enough for achieving the secrecy capacity.
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However, to meet the latency and reliability requirements in URLLC applications, the block-

length of channel codes is short and the decoding error probability should be considered [75].

Given this necessity, [76] derived a lower bound on the maximal achievable secrecy rate in

the finite blocklength regime. Based on this result, secure short-packet transmissions were

further studied in [34, 44, 77]. In [44], the secrecy throughput in the finite blocklength regime

was studied, where the optimal blocklength was found under the secrecy constraint for the

single-antenna case and an artificial-noise-aided transmission scheme was investigated for the

multiple-antenna case. [34] studied the resource allocation for a secure multi-user downlink

short-packet transmission system, where the weighted sum throughput (WST) maximization

and total transmit power (TTP) minimization problems were addressed by jointly optimizing

bandwidth and power allocation. More recently, the total transmit power minimization prob-

lem in URLLC was studied in [77], where artificial noise is used to enhance the secrecy by

degrading the eavesdropper’s channel.

In addition to the transmission delay at the physical layer, the queueing delay at the link

layer is a significant component of the end-to-end latency. The existing studies on the se-

cure transmission under statistical quality-of-service (QoS) constraints (i.e., a queueing delay

bound and a delay bound violation probability) mainly focused on the scenarios with long

coding blocklength. Specifically, [78] optimized the power control policy to maximize the

secrecy data rate under statistical QoS constraints. The throughput and energy efficiency of

secure transmission of delay-sensitive data was studied in [79]. In [80], joint link selection

and power control policies were proposed to improve the secrecy throughput of a buffer-aided

two-hop communication link. Recently, how to achieve security and statistical QoS constraints

in non-orthogonal multiple access and cognitive radio networks were studied in [81] and [82],

respectively. Despite that these papers stand on their own merits, the impact of short coding

blocklength on secure transmission under statistical QoS constraints has not been investigated.

It is worth noting that the effect of channel estimation errors has not been taken into ac-

count in the previous studies. For example, in [44], the transmitter was assumed to have perfect

CSI of the intended user and only the statistical CSI of the eavesdropper. In [34, 77, 80, 81],

the perfect CSI of both the intended user and the eavesdropper was assumed to be available

at the transmitter. Such an assumption is over-optimistic and impractical in real wireless sys-

tems. Therefore, how to improve the achievable secrecy rate in the short blocklength regime

with channel estimation errors remains an open problem. It is further noted that the solu-

tions to WST maximization and TTP minimization problems in [34, 77] are suboptimal since

the successive convex approximation is used to convert non-convex problems to convex ones.

Although their results provide useful insights, the suboptimal solutions not only result in non-

negligible performance loss but also require iterative search with relatively high computational

complexity.

Recent breakthroughs in deep learning show that the deep neural network (DNN) is one
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of the most promising tools for functional approximation in wireless communication systems

[75]. If we can find the optimal solutions by using optimization algorithms, such as the algo-

rithm in [65], we can train a DNN by using the optimal solutions as labeled training samples.

Alternatively, one can use the objective function of the optimization problem as the loss func-

tion to train a DNN [83]. After offline training, the output of DNN (a near-optimal solution)

can be obtained by using the forward-propagation algorithm, which has low computational

complexity [56]. When using deep learning to optimize wireless networks, there are two major

issues: 1) lack of labeled training samples if the optimal solutions cannot be obtained and 2)

no QoS guarantee or power constraint if the objective function is used as the loss function.

To handle these issues, unsupervised deep learning has been proposed to solve constrained

optimization problems in [84, 85].

1.3 Thesis Outline and Contributions

This thesis mainly focuses on the transmission strategies and power control policies design

of SPC for URLLC applications. To reach these research goals, we consider different chan-

nel training strategies, optimal resource allocation, and channel inversion power control with

channel reciprocity to reduce the signalling overhead in SPC. We also establish a framework

for optimizing the power control policy to realize the secure transmission rate of short pack-

ets while satisfying the URLLC requirement. The specific contributions of each chapter are

detailed below:

Chapter 2 – Channel Training Strategies for SPC

In Chapter 2, we study the dowlink and uplink channel training strategies in SPC. Our results

show the necessity and benefits of activating the uplink channel training for SPC with multiple

transmit antennas. The main contributions of this chapter are summarized as follows:

• We examine the performance of the downlink and uplink channel training strategies in

SPC. Specifically, we derive closed-form expressions for the lower bounds on the data

rates achieved by these two strategies. These expressions allow us to determine the

minimum channel reciprocity that is required to ensure a higher data rate achieved by

the uplink channel training relative to the downlink channel training. We then determine

an analytical expression to approximate this minimum channel reciprocity to draw useful

insights into the affecting parameters.

• Our examination indicates that the minimum channel reciprocity decreases as the total

blocklength decreases, which demonstrates the superiority of the uplink channel train-

ing in the context of SPC. As expected, our results show that this minimum channel
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reciprocity also decreases as the number of transmit antennas at the BS increases. This

indicates that the uplink channel training becomes more desirable and easier to achieve

when a large number of transmit antennas are deployed at the BS. The derived minimum

channel reciprocity provides practical guidelines on choosing channel training strategies

and channel reciprocity calibrations.

The results in this chapter have been presented in [86], which is listed again for ease of

reference:

[86] C. Li, S. Yan, and N. Yang, “On channel reciprocity to activate uplink channel training

for downlink wireless transmission in Tactile Internet applications,” in Proc. IEEE Int. Conf.

Commun. (ICC) Workshop, Kansas City, MO, May 2018, pp. 1-6.

Chapter 3 – Optimal Resource Allocation for SPC

In Chapter 3, we study the optimal resource allocation (e.g., the total transmit power and a finite

number of symbol periods) for downlink training, uplink feedback, and data transmission to

maximize the average data rate in a multiple-input single-output (MISO) system which adopts

SPC. The main contributions of this chapter are summarized as follows:

• We design the optimal power and symbol period allocation to maximize the average

data rate of the downlink in a MISO system which uses SPC. In the system with finite

blocklength T , the NA-antenna access point (AP) estimates the downlink channel with

the aid of downlink training and uplink feedback, and then performs data transmission.

• We derive an approximate closed-form expression for the lower bound on the average

data rate taking into account T , based on which we determine the optimal symbol periods

allocated to downlink training, uplink feedback, and data transmission, as well as the

optimal power allocation between downlink training and data transmission. Aided by

numerical results, we examine the impact of system parameters on the optimal power

and symbol period allocation.

The results in this chapter have been presented in [66], which is listed again for ease of

reference:

[66] C. Li, N. Yang, and S. Yan, “Optimal transmission of short-packet communications in

multiple-input single-output systems,” IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 7199–

7203, Jul. 2019.

Chapter 4 – Channel Inversion Power Control for One-Way URLLC

In Chapter 4, we study the feasibility and optimal design of using CIPC to reduce the channel

estimation overhead for achieving one-way URLLC and establish the fundamental limit of
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one-way URLLC achieved by CIPC. The main contributions of this chapter are summarized

as follows:

• We develop a fundamental framework for using the truncated CIPC scheme to achieve

one-way URLLC. To this end, we first derive a new expression for the packet loss prob-

ability Pε of this scheme, which is determined by both the decoding error probabil-

ity caused by the finite blocklength T and the transmission probability enforced by the

maximum transmit power Pmax. We then derive an approximated but easy-to-calculate

expression for Pε as a function of the channel reciprocity characterised by the parame-

ter φ , based on which we explicitly determine a closed interval for the optimal constant

value Q to minimize Pε , where Q is the received signal power a priori agreed between

the BS and the user.

• We analyze the performance of the conventional CIPC scheme in the context of one-way

URLLC, which is the special case of the truncated CIPC scheme with Pmax → ∞. The

packet loss probability Pε of the conventional CIPC scheme converts into the decoding

error probability caused by the finite blocklength T , which enables us to derive a closed-

form expression (as an explicit expression of the blocklength T and the channel reci-

procity parameter φ ) to approximate Pε . The packet loss probability of the conventional

CIPC scheme offers an upper bound on the performance of the truncated CIPC scheme.

Thus, the closed-form expression significantly facilitates us to examine the performance

limit of one-way URLLC achieved by CIPC with imperfect channel reciprocity (i.e.,

0 < φ < 1).

• We derive the packet loss probability for the truncated CIPC scheme with perfect channel

reciprocity (i.e., φ = 1), denoted as Pφ=1
ε , which is not a special case of that for the

truncated CIPC scheme with imperfect channel reciprocity. We analyze the convexity of

Pε w.r.t. Q and establish a convex set for optimizing the value of Q in the truncated CIPC

scheme with perfect channel reciprocity. Our examination draws novel design guidelines

for achieving one-way URLLC with CIPC schemes. For instance, the maximum transmit

power or number of transmit antennas can be explicitly determined using our analysis to

perform a fixed-rate transmission with specific requirements on reliability and latency.

The results in this chapter have been presented in [87, 88], which are listed again for ease

of reference:

[87] C. Li, S. Yan, N. Yang, X. Zhou, and R. Chen, “One-way URLLC with truncated channel

inversion power control,” in Proc. IEEE Global Commun. Conf. (Globecom) Workshop,

Waikoloa, HI, Dec. 2019, pp. 1-6.

[88] C. Li, S. Yan, N. Yang, and X. Zhou, “Truncated channel inversion power control to enable

one-way URLLC with imperfect channel reciprocity,” submitted to IEEE Trans. Commun.
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Chapter 5 – Secure Transmission Rate of Short Packets

In Chapter 5, a comprehensive study of secure SPC with different assumptions on the CSI is

carried out. We investigate how much CSI is needed to realize secure SPC under the average

power constraint and queueing delay requirement. The main contributions of this chapter are

summarized as follows:

• We establish a framework for optimizing the power control policy under average transmit

power constraints. Based on the performance metric in [78], we formulate the objective

function as the effective secrecy throughput, which is the maximum achievable secrecy

rate in the finite blocklength regime with the statistical QoS requirement. The framework

is applied in four different scenarios, i.e., 1) the full CSI scenario (i.e., perfect CSI of

both the intended user and eavesdropper are available at the transmitter), 2) the partial

CSI scenario (i.e., perfect CSI of the intended user and statistical CSI of the eavesdropper

are available at the transmitter), 3) the full CSI scenario with channel estimation errors,

and 4) the partial CSI scenario with channel estimation errors.

• To provide useful insights, we derive the closed-form expressions for the optimal power

control policies in a special case. By comparing the solutions in the full CSI scenario

and the partial CSI scenario, we find that when the average signal-to-noise ratio (SNR)

is high, the knowledge of the perfect CSI of the eavesdropper only provides marginal

performance gain in terms of the effective secrecy throughput.

• To find numerical solutions with low-computational complexity in general cases, we

apply an unsupervised learning approach to find the optimal power control policy nu-

merically. The underlying idea is to use a DNN to approximate the normalized power

control policy and apply the primal-dual method to optimize the parameters of the DNN

and the Lagrangian multiplier. We validate the convergence behaviors, effectiveness and

accuracy of the proposed unsupervised learning method in both the special and general

cases. Numerical results show that the learning-based power control policy approaches

the closed-form optimal policy as the number of iterations increases in the special cases,

and achieves higher secure effective throughput than two existing power control poli-

cies in general cases, namely, the “water-filling" policy in [38] and the constant power

control policy.

• We further investigate the impacts of channel estimation errors on the normalized power

control policies in the full and partial CSI scenarios, where we consider imperfect chan-

nel estimation at the receiver and assume perfect feedback from the receiver to the AP.

Numerical results show that in the presence of channel estimation errors, the learning-

based power control policy can guarantee the average power constraint, while the closed-

form optimal power control policy cannot.
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The results in this chapter have been presented in [89, 90], which are listed again for ease

of reference:

[89] C. Li, C. She, and N. Yang, “Unsupervised learning for secure transmissions of short

packets under statistical QoS constraints,” in Proc. IEEE Global Commun. Conf. (Globecom)

Workshop, Taipei, Taiwan (ROC), Dec. 2020, pp. 1-6.

[90] C. Li, C. She, N. Yang and T. Q. S. Quek, “Secure transmission rate of short packets with

queueing delay requirement,” IEEE Trans. Wireless Commun, accepted on 30 June 2021, Early

Access.



Chapter 2

Channel Training Strategies for SPC

2.1 Introduction

In this chapter, we compare the uplink channel training and downlink channel training in the

context of SPC. We focus on investigating the requirement on channel reciprocity to activate

uplink channel training, instead of downlink channel training, to achieve a higher data rate for

the downlink transmission from a multi-antenna base station to a single-antenna user. We first

derive novel closed-form expressions for the lower bounds on the data rates achieved by two

channel training strategies by considering the impact of finite blocklength. The performance

comparison result of these two strategies is determined by the amount of channel reciprocity

that is utilized in the uplink channel training. We then derive an approximated expression for

the minimum channel reciprocity that enables uplink channel training to outperform downlink

channel training. Through numerical results, we demonstrate that this minimum channel reci-

procity decreases as the blocklength decreases or the number of transmit antennas increases,

which shows the necessity and benefits of activating uplink channel training for SPC with mul-

tiple transmit antennas. This work provides pivotal and unprecedented guidelines on choosing

channel training strategies and channel reciprocity calibrations, offering valuable insights into

latency reduction in SPC for URLLC applications.

This chapter is organized as follows. In Section 2.2, we describe the system model with

two different channel training strategies. We present the achievable data rates of two channel

training strategies in Section 2.3. In Section 2.4, we analyze the channel reciprocity for uplink

channel training outperforming downlink channel training. Numerical results and conclusion

are provided in Section 2.5 and 2.6, respectively.

2.2 System Model

We consider a MISO communications system where an NB-antenna BS communicates with a

single-antenna user. We denote hu as the NB× 1 uplink channel vector from the user to the

BS and denote hd as the 1×NB downlink channel vector from the BS to the user. All the

17
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channels are subject to independent quasi-static Rayleigh fading with the finite blocklength

T . We assume that the channels remain constant during one fading block. The entries of hu

and hd are assumed to be independent and identically distributed (i.i.d.) circularly symmetric

complex Gaussian random variables with zero mean and unit variance, i.e., hd ∼ CN (0,INB)

and hu ∼ CN (0,INB), where CN (µ ,ν) is the complex Gaussian distribution with the mean of

µ and the variance of ν and INB is an NB×NB identity matrix. Furthermore, we assume that

the transmit power Pb at the BS is fixed for each channel use. Additionally, we assume that the

user and the BS have the knowledge about the statistical information of all the channels.

2.2.1 Channel Training

• Uplink Channel Training: In the uplink channel training, hu is obtained at the BS

via uplink training where the user sends pilot sequences to the BS for estimating hu.

Considering the channel reciprocity between the uplink and the downlink, the downlink

channel vector can be expressed as a function of the uplink channel vector, given by

[72, 91]

hd =
√

φhT
u +

√
1−φeT , (2.1)

where φ is defined as the channel reciprocity coefficient between the uplink and the

downlink, hT
u represents the transpose of hu, and e is the NB×1 vector which reflects the

uncertain part of hu. The entries of e are i.i.d. and each of them follows CN (0,1).

We note that the value of φ quantifies the level of channel reciprocity, where 0≤ φ ≤ 1.

In practical scenarios, the level of channel reciprocity is determined by the uplink chan-

nel estimation error and the frequency offset between the transmitter and receiver [92].

Specifically, φ = 1 indicates that the perfect channel reciprocity is achieved such that

the downlink channel is exactly the same as the uplink channel. When φ decreases, the

channel reciprocity becomes less reliable. When φ = 0, the channel reciprocity does not

exist such that the downlink channel is independent of the uplink channel.

• Downlink Channel Training: In the downlink channel training, hd is obtained at the

BS via downlink training and uplink feedback where the BS sends pilot sequences to

the user for estimating hd and then the user feeds back the estimate. When the BS sends

pilot sequences in Ttr symbol periods, the received signal at the user is given by

yd =
√

ΛhdSd +nd, (2.2)

where Λ , TtrPb/NB, yd is the 1× Ttr received signal vector, Sd is the NB× Ttr pilot

sequence matrix transmitted by the BS which satisfies SdSH
d = INB , and nd is the 1×Ttr



§2.2 System Model 19

additive white Gaussian noise (AWGN) vector at the user with i.i.d entries following

CN
(
0,σ2

u
)
. We assume that the linear minimum mean square error (MMSE) estimator

is adopted at the user. Based on the known pilot sequences, the user obtains the estimates

of hd as [60, 93]

ĥd =

√
Λ

Λ+σ2
u

ydSH
d . (2.3)

As per the rules of the linear MMSE estimator, the entries of ĥd are i.i.d. and each

of them follows CN
(

0,σ2
ĥd

)
, where σ2

ĥd
= Λ/

(
Λ+σ2

u
)
. We note that the estimation

error, given by êd = hd− ĥd, is independent of the estimate ĥd. We also note that the

entries of êd are i.i.d. and each follows CN
(

0,σ2
êd

)
, where σ2

êd
= σ2

u /
(
Λ+σ2

u
)
. We

note that Ttr ≥NB needs to be ensured in the system, in order to obtain a reliable estimate

of hd.

2.2.2 Data Transmission

After obtaining the downlink channel vector through either the uplink channel training or the

downlink channel training, the BS selects an NB × 1 normalized beamforming vector v to

transmit signals to the user. The BS uses the obtained CSI as it is perfect. Therefore, the

transmitted signal x is written as x = vu, where u is the information signal transmitted from

the BS to the user. The received signal at the user in one symbol period is given by

y =
√

Pbhdx+ n =
√

Pbhdvu+ n, (2.4)

where n is the AWGN at the user with zero mean and variance σ2
u , while x is subject to the

average power constraint E
[
‖x‖2

]
= 1.

2.2.3 Data Rate with Finite Blocklength

Considering finite-blocklength transmission, the achievable data rate in the fading channel can

be tightly approximated as R (T ,ε ,γ) which is a function of the blocklength (i.e., the number

of channel use) T , the decoding error probability ε , and the SNR γ [25]. Mathematically, this

function is given by [27]

R (T ,ε ,γ) ≈C (γ)−
√

1
T

V (γ) f−1
Q (ε) , (2.5)

where C (γ) = log2 (1+ γ) is the channel capacity, V (γ) = (log2 e)2
(

1− (1+ γ)−2
)

is the

channel dispersion, and f−1
Q (·) is the inverse Gaussian Q-function. We note that (2.5) is tight,

even for a relatively small T , e.g., T = 100 [27].
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2.3 Achievable Data Rates of Uplink and Downlink Channel
Training Strategies

In this section, we focus on an ideal scenario, where the uplink channel training is perfect (i.e.,

no channel estimation error) and does not cost any time slot, meanwhile the feedback in the

downlink channel training is perfect (i.e., no feedback error) and of no cost in terms of time

slots. We would like to clarify that in this scenario, the ignored cost of time slots in two channel

training strategies may not be the same. Notably, in general this cost is higher for the downlink

channel training than that for the uplink channel training. In the uplink channel training, the

user can use only one time slot to send pilot sequences and the BS only has to feed ||h||, but

not h, back to the user. In the downlink channel training, however, the user has to feed h (i.e.,

NB complex numbers) back to the BS. We next derive lower bounds on the data rates achieved

by uplink channel training and downlink channel training.

2.3.1 Achievable Data Rate of Uplink Channel Training

Under the assumption of perfect uplink channel training, the BS has the perfect knowledge

about the uplink channel. As such, the beamforming vector is selected as v = hu/‖hu‖ and the

received signal at the user in one symbol period is given by

y =
√

Pbhdx+ n =
√

Pb

(√
φ hT

u +
√

1−φ eT
)

vu+ n

=
√

PbφhT
u

hu

‖hu‖
u+

√
Pb (1−φ )eT hu

‖hu‖
u+ n︸ ︷︷ ︸

ñ

. (2.6)

Following [60], in this work we consider the worst-case scenario for decoding at the user,

where ñ in (2.6) is approximated as the zero-mean Gaussian noise. Under this approxima-

tion, the achievable data rate derived below is a lower bound. As per (2.6), the signal-to-

interference-plus-noise ratio (SINR) at the user is given by

γu =
Pbφ‖hu‖2

Pb (1−φ ) |e
T hu|2

‖hu‖2 +σ2
u

=
Pbφ ‖hu‖2

σ2
ñ

, (2.7)



§2.3 Achievable Data Rates of Uplink and Downlink Channel Training Strategies 21

where σ2
ñ is the variance of ñ, given by σ2

ñ = Pb (1−φ )+σ2
u . Considering finite-blocklength

transmission, for a given ε the lower bound on the data rate can be approximated by [27]

Ru = E‖hu‖2

[
C (γu)−

√
1
T

V (γu) f−1
Q (ε)

]

= E‖h̄u‖2

[
C
(

γ
u
eff

∥∥h̄u
∥∥2
)]
−E‖h̄u‖2

[√
1
T

V
(

γu
eff

∥∥h̄u
∥∥2
)

f−1
Q (ε)

]
, (2.8)

where h̄u , hu/σhu is the normalized channel vector, σhu is the standard deviation of hu, h̄u ∼
CN (0,INB), γu

eff =
ρbφ

(1−φ )ρb+1 is the effective SNR, and ρb = Pb/σ2
u is the average SNR.

In the following theorem, we derive a closed-form expression for the lower bound on the

data rate achieved by the uplink channel training.

Theorem 2.1. The lower bound on the data rate achieved by uplink channel training is derived

as

Ru = Φ (γu
eff,NB)−Ψ (γu

eff,NB,T ) , (2.9)

where the functions Φ (γu
eff,NB) and Ψ (γu

eff,NB,T ) are given by (2.10) and (2.11), respectively.

Φ (γeff,NB) =
e

1
γeff

ln2 Γ(NB) γ
NB
eff

NB−1

∑
i=0

(
NB−1

i

)
(−1)NB−1−i G3,0

2,3

(
−i,−i

0,−1− i,−1− i

∣∣∣∣∣ 1
γeff

)
.

(2.10)

Ψ (γeff,NB,T ) =

√
2π

T

f−1
Q (ε)

Γ(NB) ln2
e−(NB−1) (NB−1)NB− 1

2

√
1− (1+ γeff (NB−1))−2.

(2.11)

Proof: See Appendix A.1. �

It is noted that Theorem 2.1 presents a channel-independent and accurate expression for the

lower bound on the data rate achieved by the uplink channel training. This expression allows

us to compare the performance of the uplink channel training and downlink channel training

efficiently.

2.3.2 Achievable Data Rate of Downlink Channel Training

As assumed in the ideal scenario, the feedback from the user to the BS is perfect. As such, the

BS has ĥd and the beamforming vector is selected as v = ĥd/‖ĥd‖. Then, the received signal
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at the user in one symbol period is given by

y =
√

Pbhdx+ n =
√

Pb
(
ĥd + êd

)
vu+ n

=
√

Pbĥd
ĥd∥∥ĥd
∥∥u+

√
Pbêd

ĥd∥∥ĥd
∥∥u+ n︸ ︷︷ ︸

n̂

. (2.12)

Once again, we consider the worst-case scenario for decoding at the user where n̂ in (2.12) is

approximated as Gaussian. Accordingly, the SINR at the user is given by

γd =
Pb
∥∥ĥd
∥∥2

Pb
|êdĥd|2

‖ĥd‖2 +σ2
u

=
Pb‖ĥd‖2

σ2
n̂

, (2.13)

where σ2
n̂ is the variance of n̂, given by σ2

n̂ = Pbσ2
êd
+σ2

u . Then, the lower bound on the data

rate achieved by the downlink channel training is written as

Rd =

(
1− Ttr

T

)
E‖ĥd‖2

[
C (γd)−

√
1
T

V (γd) f−1
Q (ε)

]

=

(
1− Ttr

T

)
E‖h̄d‖2

[
C
(

γ
d
eff

∥∥h̄d
∥∥2
)]

−
(

1−Ttr

T

)
E‖h̄d‖2

[√
1
T

V
(

γd
eff

∥∥h̄d
∥∥2
)

f−1
Q (ε)

]
, (2.14)

where h̄d , ĥd/σĥd
is the normalized channel estimate, σĥd

is the standard deviation of ĥd,

h̄d ∼ CN (0,INB), and γd
eff =

ρbσ2
ĥd

ρbσ2
êd
+1 is the effective SNR.

We next derive a closed-form expression for the lower bound on the data rate achieved by

the downlink channel training in the following theorem.

Theorem 2.2. The lower bound on the data rate achieved by the downlink channel training in

(2.14) is derived as

Rd =

(
1− Ttr

T

)[
Φ
(
γ

d
eff,NB

)
−Ψ

(
γ

d
eff,NB,T

)]
, (2.15)

where the functions of Φ
(
γd

eff,NB
)

and Ψ
(
γd

eff,NB,T
)

are given by (2.10) and (2.11), respec-

tively.

Proof: The proof is similar to the proof of Theorem 2.1 and thus omitted here. �
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2.4 Determination of Channel Reciprocity for Uplink Chan-
nel Training Outperforming Downlink Channel Training

In this section, we examine the minimum channel reciprocity coefficient (i.e., the minimum

value of φ , which is denoted by φ ∗) that enables the uplink channel training to outperform the

downlink channel training. To this end, we derive a closed-form expression to approximate φ ∗

in the following proposition, which is channel-independent and can be used to select the better

strategy between the uplink and downlink channel training in practice.

Proposition 2.1. The minimum channel reciprocity coefficient φ ∗ that enables the uplink chan-

nel training to outperform the downlink channel training is approximated as

φ
∗ =

(ρb + 1) (κ−1)
ρb (NB +κ−1)

, (2.16)

where κ =
(
1+ γd

effNB
) T−T∗tr

T and T ∗tr is the optimal value of Ttr that maximizes Rd in the down-

link channel training.

Proof: See Appendix A.2. �

2.5 Numerical Results

In this section, we present numerical results to examine the effectiveness of our analysis and

solution, including our newly derived closed-form expressions for the lower bounds on the

achievable data rates and the approximation of the minimum channel reciprocity coefficient.

In Fig. 2.1, we demonstrate the accuracy of our newly derived closed-form expression

for the lower bound on the data rate achieved by the uplink channel training. The simulated

and theoretical results are obtained from (2.8) and (2.9), respectively. In Fig. 2.1, we first

observe that the theoretical curves precisely match the simulated ones, which confirms the

correctness of (2.9) in Theorem 2.1. Moreover, as expected, in this figure we observe that the

data rate significantly increases with φ . Furthermore, we observe that the data rate approaches

a constant (but not infinity) as ρb→ ∞ when φ < 1, while this data rate increases to infinity as

ρb → ∞ when φ = 1. This is due to the fact that the lower bound on the data rate is a linear

function of ρb when φ = 1, since the effective SNR γu
eff becomes ρb as ρb → ∞ for φ = 1.

Differently, the lower bound is limited by the interference caused by the imperfect channel

reciprocity, since γu
eff becomes φ/(1−φ ) as ρb→ ∞ for φ < 1.

Fig. 2.2 plots the lower bounds on the data rates achieved by the uplink and downlink

channel training versus φ for different values of NB. The curves for the uplink and downlink

channel training are obtained from (2.9) and (2.15), respectively. In this figure, we first ob-

serve that the date rate achieved by the uplink channel training increases with φ , which meets
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Figure 2.1: The lower bound on the data rate achieved by the uplink channel training versus the average
SNR ρb for different values of φ with NB = 5, ε = 10−9, and T = 200.

Figure 2.2: The lower bounds on the data rates achieved by the uplink and downlink channel training
strategies versus the channel reciprocity coefficient φ for different value of NB with ρb = 10 dB, ε =

10−9, and T = 200.

our expectation. Importantly, the date rate achieved by the uplink channel training becomes

higher than that achieved by the downlink channel training when φ is greater than a specific

value, which is φ ∗. We also observe that φ ∗ decreases as the number of transmit antennas NB

increases. This is due to the fact that when NB increases, more time slots need to be used to

conduct downlink channel training, while the number of time slots used for the uplink channel
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training does not change (since NB is the number of receive antennas in the uplink).

Figure 2.3: The minimum channel reciprocity coefficient φ ∗ versus the blocklength T for different
values of ρb with NB = 10 and ε = 10−5.

In Fig. 2.3, we examine the accuracy of our approximation of the minimum channel reci-

procity coefficient φ ∗, for which the uplink channel training outperforms the downlink channel

training. To this end, we compare the simulated φ ∗ obtained based on (A.7) and the approxi-

mated φ ∗ obtained from (2.16). In Fig. 2.3, we first observe that the approximated curves are

very close to the simulated ones. Also, we observe that the approximation accuracy improves

when ρb increases, which is due to the fact that the rate loss caused by the finite blocklength

becomes negligible when ρb tends to be large and this rate loss is not considered in our ap-

proximation. In this figure, we further observe that φ ∗ increases with T and ρb. This is due

to the fact that the number of time slots (at least NB− 1) or the power saved by the uplink

channel training relative to the downlink channel training becomes less significant when T or

ρb increases, respectively.

2.6 Summary

In this chapter, we first fully examined the performance of uplink and downlink channel train-

ing strategies. In doing so, we derived closed-form expressions for the lower bounds on the

data rates achieved by these two strategies, in which the impact of finite blocklength and chan-

nel dispersion was considered. Aided by these expressions, we analytically determined an

expression to approximate the minimum channel reciprocity coefficient which enables the up-

link channel training to achieve a higher data rate than the downlink channel training. Our
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examination demonstrated that this minimum channel reciprocity coefficient decreases as the

blocklength decreases or the number of transmit antennas increases, revealing the benefits of

the uplink channel training in SPC with multiple transmit antennas.



Chapter 3

Optimal Resource Allocation for SPC

3.1 Introduction

In this chapter, we study the optimal SPC strategy which maximizes the average achievable

data rate of a MISO system. In this system, an NA-antenna AP transmits to a single-antenna

user with finite blocklength T after estimating the AP-user channel via downlink training and

uplink feedback. We determine the optimal allocation of the finite resource (e.g., the total trans-

mit power and a finite number of symbol periods) for downlink training, uplink feedback, and

data transmission to maximize the average data rate. Specifically, we derive an approximate

closed-form lower bound on the average data rate, an explicit result for the optimal number

of symbol periods for downlink training, an easy-to-implement method to find the optimal

number of symbol periods for uplink feedback, and a simple expression for the optimal power

allocation between data transmission and downlink training. By using numerical results, we

demonstrate the effectiveness of our analytical solutions and examine the impact of system

parameters, e.g., NA and T , on the optimal strategy.

This chapter is organized as follows. In Section 3.2, we describe the system model. In

Section 3.3, we first present the performance metrics of the considered MISO system. Then, we

formulate the optimization problem and analyze the optimal resource allocation to maximize

the average achievable data rate. Numerical results and conclusion are provided in Section 3.4

and 3.5, respectively.

3.2 System Model

We consider a MISO communication system where an NA-antenna AP transmits small packets

to a single-antenna user. We denote hd as the 1×NA channel vector from the AP to the user, the

entries of which are subject to independent quasi-static Rayleigh fading. Therefore, the entries

of hd are i.i.d. circularly symmetric complex Gaussian random variables with zero mean and

unit variance, i.e., hd ∼ CN (0,INA). We assume that the entries of hd remain constant during

one fading block. We also assume that the total duration of each fading block consists of T

27
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symbol periods (i.e., T channel uses), including Tt symbol periods used for downlink training,

Tf symbol periods used for uplink feedback, and Td symbol periods used for data transmission.

Therefore, we have Tt +Tf +Td = T . In the finite blocklength regime, the maximum achievable

rate is tightly approximated as

R≈C (γ)−
√

V (γ)/T f−1
Q (ε) , (3.1)

where T is the blocklength, ε is the decoding error probability, γ is the SNR, C (γ) = log2 (1+ γ)

is the Shannon capacity, V (γ) = (log2 e)2 (1− 1/(1 + γ)2
)

is the channel dispersion, and

f−1
Q (·) is the inverse Gaussian Q-function.

According to [27] and [25], the approximation in (3.1) is tight even when T is as low as 100.

We denote Pt and Pd as the transmit power per channel use at the AP for downlink training and

data transmission, respectively. We further denote P as the average transmit power per channel

use at the AP. Here, an average power constraint is considered over a fading block [60], i.e.,

PtTt + PdTd ≤ PT . Additionally, we assume that the user and the AP have the knowledge

about the statistical information of hd . The channel estimation in the considered MISO system

is performed as follows: First, the AP sends pilot sequences to the user for estimating hd ,

referred to as downlink training. Second, the user feeds back the estimate to the AP, referred to

as uplink feedback. We next formulate downlink training and uplink feedback in the following.

3.2.1 Downlink Training

When the AP sends pilot sequences in Tt symbol periods, the received signal vector at the user

is given by yd =
√

ΛhdSd +nd , where Λ , PtTt/NA, Sd is the NA×Tt pilot sequence matrix

transmitted by the AP which satisfies SdS†
d = INA , and nd is the 1×Tt AWGN vector at the user

with i.i.d entries, each of which follows the complex Gaussian distribution with zero mean and

variance σ2.

By adopting the MMSE estimator based on the known Sd , the user obtains the estimate

of hd as ĥd =
√

Λ
Λ+σ2 ydS†

d . As per the property of MMSE, the channel estimation error, given

by êd = hd − ĥd , is independent of the realizations of estimated channel [94]. We also note

that êd and ĥd have i.i.d. entries. Specifically, each entry of êd follows the complex Gaus-

sian distribution with zero mean and variance σ2
êd

while each entry of ĥd follows the com-

plex Gaussian distribution with zero mean and variance σ2
ĥd

, where σ2
êd
= σ2/

(
Λ+σ2

)
and

σ2
ĥd

= Λ/
(
Λ+σ2

)
. We assume that Tt ≥ NA is ensured in the MISO system to obtain a

reliable estimate of hd .
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3.2.2 Uplink Feedback

After downlink training, the user captures the channel direction information (CDI) given by

h̃ = ĥd/‖ĥd‖. Then, the user quantizes the CDI by selecting the best quantization vector

from the pre-shared codebook and conveys its index back to the AP over a feedback channel

with zero propagation delay. Here, the propagation delay means the physical transmission

duration from the AP to the user, which is formulated as the ratio between the transmission

distance and the speed of light. Typically, the communication distance in URLLC is less than

a few kilometers. Therefore, the propagation delay in the order of µs can be negligible [64].

Here, the codebook C is an NA× 2B matrix, i.e, C = {w1,w2, · · · ,w2B}, where wi refers to

the NA× 1 channel vector and i ∈
{

1,2, · · · ,2B
}

. We clarify that the relationship between Tf

and B is B = Tf log2 M, where M is the modulation order. The codebook is assumed to be

designed offline and known to both the AP and the user. Given the codebook C, the user

chooses the quantization vector that maximizes the SNR as the best quantization vector, i.e.,

wopt = argmax1≤i≤2B

∣∣h̃wi
∣∣2. The user then feeds back the index of selected quantization vector

to the AP. After obtaining the CDI, i.e., h̃, through downlink training and uplink feedback,

the AP sets the NA× 1 normalized beamforming vector as wopt to transmit to the user. The

transmitted signal x is written as x = woptu, where u is the information signal transmitted from

the AP to the user. The received signal at the user in one symbol period is given by

y =
√

Pdhdx+ n =
√

Pd ĥdwoptu+ nd . (3.2)

We consider the worst-case scenario [60, 90] for the decoding process at the user where

nd =
√

Pd êdwoptu+n in (3.2) is approximated as a Gaussian random variable with the variance

σ2
nd

. Under this consideration, the SNR at the user is given by

γ =
∣∣ĥdwopt

∣∣2Pd/σ
2
nd
= ρe

∥∥h̄d
∥∥2 cos2 (∠(h̃,wopt)

)
, (3.3)

where σ2
nd

= Pdσ2
êd
+ σ2 with σ2

êd
= NAσ2

Tt Pt+NAσ2 , ρe = Pd

(
1−σ2

êd

)
/σ2

nd
, h̄d , ĥd/σĥd

is the

normalized channel vector with the standard deviation σĥd
, and cos2

(
∠(h̃,wopt)

)
=
∣∣h̃wopt

∣∣2.

3.3 Performance Optimization

In this section, we perform the optimization of the symbol periods used for downlink training

and uplink feedback, i.e., Tt and Tf , as well as the transmit power allocated to data transmission

and channel training, aiming to maximize the average data rate under the average transmit

power constraint. To this end, we denote η as the power allocation coefficient such that η

and 1−η are the fraction of total transmit power allocated to data transmission and channel

training, respectively. Thus, we have ρdTd = ηρT and ρtTt = (1−η)ρT , where ρd = Pd/σ2,
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ρt = Pt/σ2, and ρ = P/σ2.

3.3.1 Lower Bound on Average Data Rate

We first derive a lower bound on the average data rate in the context of SPC. Considering nd

in (3.2) as a Gaussian random variable, a lower bound on the average data rate with limited

channel estimation overhead for SPC is

R = τE

[
C(γ)−

√
V (γ)/T f−1

Q (ε)

]
, (3.4)

where τ = 1− (Tt +Tf )/T and E [·] denotes the expectation operation w.r.t. the channel gain.

It is worth mentioning that (3.4) emphasizes the effects of the channel training and feedback

overheads [95] for a given decoding error probability. We note that the average data rate

is different from the average throughput (1− ε)R defined in [49], where the throughput is

averaged over different decoding error probabilities. In this work, we set the decoding error

probability as a constraint that can satisfy the reliability requirement. In addition, (3.4) only

focuses on the rate which is used to transmit data. That is why it is named as the average

data rate, but not the average throughput. In the following theorem, we derive an approximate

closed-form expression for this lower bound.

Theorem 3.1. The approximate closed-form expression for the lower bound on the average

data rate with limited channel estimation overhead is derived as

R≈ τ [Φ (ρ̃e,NA)−Ψ (ρ̃e,NA,T )] , (3.5)

where ρ̃e = µρe, µ = 1− (1− 1
NA
)2−

B
NA−1 , and Φ (ρ̃e,NA) and Ψ (ρ̃e,NA,T ) are given by (3.6)

and (3.7), respectively, with G3,0
2,3 (·|·) being the Meijer G-function [96, Eq. (9.301)].

Φ (ρ̃e,NA) =
e

1
ρ̃e

ln2 Γ (NA) ρ̃
NA
e

NA−1

∑
i=0

(
NA−1

i

)
(−1)NA−1−iG3,0

2,3

(
−i,−i

0,−1− i,−1− i

∣∣∣∣∣ 1
ρ̃e

)
.

(3.6)

Ψ (ρ̃e,NA,T ) =

√
2π

T

f−1
Q (ε)

ln2 Γ (NA)
e−(NA−1)(NA−1)NA− 1

2

√
1− (1+ ρ̃e (NA−1))−2. (3.7)

Proof: See Appendix B.1. �

It is worth mentioning that the results in [86] cannot be directly used in this work, since

this work considers a different system model from [86]. Specifically, in this work the AP (i.e.,

the transmitter) obtains the CSI by performing downlink channel training and asking the user
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to feed back the index of the quantization vector in terms of the channel direction information.

Differently, in [86] the transmitter obtains the CSI based on the channel reciprocity between

uplink and downlink.

3.3.2 Formulating and Solving Optimization Problem

We now formulate and solve the optimization problem of our interest. First, we re-express the

approximated expression for R given in (3.5) as R (Tt ,Tf ,η), i.e., a function of Tt , Tf , and η .

Then, we formulate the joint optimization of Tt , Tf , and η to maximize R (Tt ,Tf ,η) under the

average transmit power constraint as

max
Tt ,Tf ,η

R (Tt ,Tf ,η) (3.8a)

s.t. ρtTt +ρdTd ≤ ρT . (3.8b)

Considering the practical scenario and the accuracy of (3.1), we only focus on the case where

Tt ≥NA and Td >NA. For given codebook, the beamforming vector given in (3.2) is optimal for

the above optimization problem. Motivated by the results in [60], we derive the optimal value

of Tt which maximizes R (Tt ,Tf ,η) for given ρT , denoted by T ∗t , in the following theorem.

Theorem 3.2. For URLLC scenarios (i.e., SNR > 10 dB [37, 54, 64]), the optimal Tt that

maximizes R (Tt ,Tf ,η) for given ρT in the case of Tt ≥ NA and Td > NA is derived as

T ∗t = NA. (3.9)

Proof: See Appendix B.2. �

We note that the optimal Tt is the same as the number of transmit antennas NA, which phys-

ically means that the channels associated with all transmit antennas can be estimated during

the channel training phase.

Based on Theorem 3.2, it is clear that T ∗t is independent of η and Tf . Thus, the objective

function in (3.8) is rewritten as

max
Tf ,η

R (T ∗t ,Tf ,η) (3.10a)

s.t. ρtT ∗t +ρdTd ≤ ρT . (3.10b)

To solve (3.10), we first determine the optimal η which maximizes R (T ∗t ,Tf ,η) for given Tf

with T ∗t = NA, denoted by η∗. Then we perform a one-dimensional search to find the optimal

Tf based on the obtained η∗ and T ∗t . We note that the equality in (3.10b) is always guaranteed

due to the fact that a larger Td always leads to a higher R. This also indicates that we only need
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to determine the optimal values of η and Tf to find the optimal value of Td as T ∗d = T−T ∗t −T ∗f .

We next present the details for solving (3.10) with T ∗t = NA using a two-step approach.

Step 1: Find the optimal η for given Tf .

We note that R in (3.4) is a monotonically increasing function of γ when R is positive.

Also, the expectation in (3.4) is relevant to channel realizations but independent of ρ̃e. That is,

the maximum average data rate is achieved by maximizing ρ̃e for given Tt and Tf . Based on

(3.3), the effective SNR is given by

ρ̃e =
µPd

(
1−σ2

êd

)
Pdσ2

êd
+σ2 =

µρT η(1−η)

(Td−NA) (ν−η)
, (3.11)

where µ is defined below (3.5) and ν = ρT+NA
ρT (1−NA/Td)

. By taking the second derivative of ρ̃e

with respect to η , we find that ∂ 2ρ̃e
∂η2 = µρT 2ν(ν−1)

(Td−NA)(η−ν)3 < 0, which confirms that ρ̃e is a concave

function of η . As such, η∗ can be found by numerically solving for ∂ ρ̃e/∂η = 0, which gives

η
∗ = ν−

√
ν2−ν . (3.12)

Step 2: Find the optimal Tf .

We note that η∗ given in (3.12) is a function of T and Td (or equivalently, Tt +Tf ), which

is independent of the individual value of Tt or Tf . Since the optimal value of Tt is obtained, we

can efficiently perform a one-dimensional numerical search to find the optimal Tf .

Overall, we first simplify the optimization problem by using T ∗t = NA. Then, we max-

imize R over η for given Tf with T ∗t . After this, we find the optimal Tf , i.e., T ∗f , by using

one-dimensional search. The complexity of our proposed method for solving (3.10) is low.

Specifically, T ∗t can be obtained directly when NA and T are determined. Based on this, for

given Tf , we can obtain η∗ according to (3.12). Finally, we perform a one-dimensional numer-

ical search to find T ∗f within a finite range [T −NA,T ]. Hence, when system parameters are

determined, the optimization problem can be solved efficiently using our derived results with

relatively low complexity. The effectiveness of our approach will be validated in Section 3.4.

3.4 Numerical Results

Throughout this section, we consider the use of binary phase shift keying modulation for the

feedback from the user to the AP such that Tf = B.

In Fig. 3.1, we demonstrate the accuracy of our derived closed-form expression for the

lower bound on the data rate. The simulated and theoretical results are obtained from (3.4) and

(3.5), respectively. The simulated points are averaged over 10,000 channel realizations, and the

quantization codebook is generated based on the design criterion in [97]. In Fig. 1, we observe
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Figure 3.1: The average data rate R versus transmit SNR for different feedback symbol period Tf with
T = 200, NA = 4 and ε = 10−6.

that the theoretical results precisely match the simulated ones during the whole SNR range,

and the accuracy slightly increase when feedback symbol period increases. The observations

imply that the quantization approximation has a almost negligible impact on the average data

rate. Therefore, the closed-form expression derived in (3.5) serves as an accurate result for

the average data rate with limited channel training and feedback under the consideration of the

finite blocklength.

In Fig. 3.2(a), we plot the optimal symbol period for uplink feedback, T ∗f , versus T for

different number of antennas at the AP, i.e., NA = 4, 6, and 8. In this figure, we first observe

that T ∗f increases as T increases. This observation is not surprising since more channel uses

are allocated for downlink training and uplink feedback when T is larger. Also, we observe

that T ∗f decreases as NA decreases. This is due to the fact that decreasing NA reduces the

required channel uses for downlink training and uplink feedback. In Fig. 3.2(b), we plot the

optimal power allocation coefficient, η∗, versus T for NA = 4, 6, and 8. In this figure, we first

confirm that the simulated curves exactly match the approximated values, demonstrating the

correctness of our result derived in (3.12). We also observe that η∗ increases as T increases.

This is due to the fact that ρd remains stable and the ratio between Td and T increases as T

increases. Finally, we observe that η∗ decreases as NA increases. This is due to the fact that

the number of channel uses for downlink training, Tt , increases with NA, which reduces Td .

In Fig. 3.3, we plot the transmit SNR for downlink training and data transmission versus

T for different values of NA, i.e., NA = 10, 15, and 20. Here, we recall that ρd = Pd/σ2

and ρt = Pt/σ2. In this figure, we first observe that ρt gradually increases and ρd slightly
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Figure 3.2: The optimal feedback symbol period T ∗f and the optimal power allocation coefficient η∗

versus T with ρ = 10 dB and ε = 10−9.

Figure 3.3: The transmit SNR for downlink training and data transmission versus T for different NA

with ρ = 10 dB and ε = 10−9.

decreases and tends to be constant as T increases. However, we confirm that ρtT ∗t decreases

and ρdTd increases as T increases. This implies that the transmit power allocated to downlink

training decreases while the transmit power allocated to data transmission increases when T is

larger. We also observe that ρt increases as NA decreases. We further observe that ρd slightly

decreases as NA decreases for small T but approaches almost the same value for large T . This
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Figure 3.4: The average data rate R versus transmit SNR for different values of ε and T with optimal
η∗ and NA = 4.

observation can be explained by the fact that smaller NA reduces the required T ∗t but leads to a

negligible increase in Td . This results in an increase in ρt and a minor reduction in ρd in order

to guarantee ρtTt +ρdTd = ρT .

Fig. 3.4 plots the lower bound on the data rate versus the transmit SNR for different values

of ε and T . The curves are obtained from (3.5) with the optimal power allocation coefficient

η∗. In this figure, we first observe that, for given T , the data rate decreases when the decoding

error probability ε increases. It implies that the more strict requirement for reliability leads to

a larger rate loss. Moreover, for the same ε , the data rate increases when the blocklength T

increases as expected. We also find that the difference in data rates with different values of ε

becomes negligible when T increases.

3.5 Summary

In this chapter, we investigated the optimal resource allocation to maximize the average data

rate in a MISO system which adopts SPC. We proved that the optimal number of symbol

periods allocated to downlink training is equal to the number of transmit antennas at the AP.

We also derived the optimal power allocation between downlink training and data transmission

at the AP in closed form. Our outcomes provide a guideline to assist the URLLC designers

with the fundamental problem of transmit power and symbol period allocation to guarantee the

advantage of SPC in practice.
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Chapter 4

Channel Inversion Power Control for
One-Way URLLC

4.1 Introduction

In this chapter, we propose to use CIPC to achieve one-way URLLC, where only the transmis-

sion in one direction requires ultra reliability and low latency. Based on channel reciprocity,

our proposed CIPC schemes guarantee the power of received signal that is used to decode the

information to be a constant value Q, by varying the transmit signal and power, which relaxes

the assumption of knowing CSI at the user. Thus, the CIPC schemes eliminate the overhead of

CSI feedback, reduce communication latency, and explore the benefits of multiple antennas to

significantly improve transmission reliability. We derive analytical expressions for the packet

loss probability of the proposed CIPC schemes, based on which we determine a closed interval

and a convex set for optimizing Q in CIPC with imperfect and perfect channel reciprocity, re-

spectively. Our results show that CIPC is an effective means to achieve one-way URLLC. The

tradeoff among reliability, latency, and required resources (e.g., transmit antennas) is further

revealed, which provides novel principles for designing one-way URLLC systems.

This chapter is organized as follows. In Section 4.2, we first detail our considered scenario

of one-way URLLC together with the adopted assumptions. Then, we present our proposed

CIPC scheme and its associated performance metric. In Section 4.3, we analyze the packet loss

probability of the truncated CIPC scheme with imperfect channel reciprocity. In Section 4.4,

we examine the proposed CIPC scheme with perfect channel reciprocity. Numerical results

and conclusion are provided in Section 4.5 and 4.6, respectively.

4.2 System Model

In this section, we first detail our considered scenario of one-way URLLC together with the

adopted assumptions. Then, we present our proposed CIPC scheme and its associated perfor-

mance metric, i.e., the packet loss probability.

37
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Figure 4.1: Illustration of the considered one-way URLLC scenario.

As shown in Fig. 4.1, in this work we consider a downlink one-way URLLC scenario in

a TDD MISO communication system, where an Nt-antenna BS sends an urgent message trig-

gered by the reception and processing of the uplink information to a single-antenna user with

the stringent requirement of latency and reliability. Specifically, we consider the URLLC oc-

curring in the downlink, while the uplink transmission is non-URLLC. The user periodically

sends regular information in the uplink to the BS. Upon reception and processing of the uplink

information, BS decides whether or not to send an urgent message to the user in the down-

link. Hence, the downlink URLLC is actually triggered by the reception and processing of the

uplink information. This means that the downlink URLLC does not happen at any arbitrary

point in time, but it can only happen right after the reception and processing of a non-URLLC

communication in the uplink. This is an practically important scenario. For example, in the

context of wireless vehicular networks, a vehicle periodically reports its states and its observed

surrounding information to BS. The transmitted packets consist of both pilots and useful infor-

mation in order to enable BS to jointly perform channel estimation and information decoding.

Then, BS immediately analyzes the received information to decide whether an urgent control

information is required or not to be delivered to this vehicle. The processing task of analyz-

ing the network could be completed by well-trained deep neural networks with proper online

fine-tuning. It is noted that the processing delay could be one TTI (0.125 ∼ 1 ms) in 5G NR

[57]. As such, if the BS decides to immediately send out an urgent control message to the user,

this downlink URLLC happens with very minimal time gap from the uplink communication

that just happened. Therefore, it is reasonable to assume that the channel has not changed sig-

nificantly from the uplink communication to the downlink communication. It is followed that,

the BS can use the estimated channel information to perform downlink communication with

channel inversion power control.

We denote hu as the Nt×1 uplink channel vector from the user to the BS and denote hd as

the 1×Nt downlink channel vector from the BS to the user. Specifically, the downlink trans-

mission considered in this work requires URLLC, i.e., the downlink transmission with a high

reliability requirement needs to be performed within a finite blocklength T (or equivalently, T

channel uses). All the channels are subject to independent quasi-static Rayleigh fading such

that the entries of each channel vector are assumed to be i.i.d. circularly symmetric com-
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plex Gaussian random variables with zero mean and unit variance, i.e., hd ∼ CN (0,INt) and

hu ∼ CN (0,INt).

Considering the imperfect channel reciprocity, the downlink channel vector can be ex-

pressed as a function of the uplink channel vector, given by [72, 86]

hd =
√

φhT
u +

√
1−φeT , (4.1)

where φ is defined as the channel reciprocity coefficient between the uplink and downlink

channels, and e is the Nt× 1 vector that reflects the uncertain part of hu. The entries of e are

i.i.d. and each of them follows CN (0,1). We note that e is independent of hu. The adoption of

the channel reciprocity model in (4.1) is motivated by the fact that channel reciprocity requires

appropriate hardware calibrations to compensate for the unknown amplitude scaling and phase

shift between the downlink and uplink channels in practice [63]. The value of φ quantifies

the level of channel reciprocity, where 0 ≤ φ ≤ 1. In practical scenarios, the level of channel

reciprocity is affected by the uplink channel estimation error and the frequency offset between

the BS and the user [63]. Specifically, φ = 1 indicates that the perfect channel reciprocity

is achieved such that the downlink channel is exactly the same as the uplink channel. As φ

decreases, the channel reciprocity decreases. When φ = 0, the channel reciprocity does not

exist such that the downlink channel is independent of the uplink channel.

We assume that the BS knows hu perfectly. This is due to the fact that the uplink trans-

mission does not have strict requirement on latency, which makes it possible for the user to

periodically broadcast pilots for allowing the BS to estimate hu. Even if the estimation is not

perfect, the estimation error can be incorporated into the channel reciprocity coefficient φ in

(4.1). In order to enable a user (e.g., a vehicle) to decode the information without knowing

CSI, the CIPC scheme is used at the BS based on hu, which will be detailed in the following

subsection. The CIPC scheme can significantly reduce the communication latency and im-

prove transmission reliability to meet the requirements of URLLC. This is due the fact that

the CIPC scheme saves the signaling overhead used to feed back the estimated hu from BS

to a user and allows all the downlink channel uses being available for data transmission when

urgent information transmission is on demand.

4.2.1 Channel Inversion Power Control

In this work, the CIPC scheme is used at the BS to enable the user to decode the received

signals without knowing hd. The received signal in one channel use is given by

y =
√

Pahdx+w, (4.2)
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where w is the AWGN at the user with zero mean and variance σ2
w, x is the transmitted signal

which is subject to the average power constraint, i.e., E
[
‖x‖2

]
= 1, and Pa is the transmit

power. Following the imperfect channel reciprocity model given in (4.1), the received signal

in (4.2) can be rewritten as

y =
√

PaφhT
u x+

√
Pa (1−φ )eT x+w. (4.3)

In order to counteract the impact of downlink channel phase at the user, the transmitted

signal x is written as

x =
h∗u
‖hu‖

u, (4.4)

where u is the information signal transmitted from the BS to the user. Following (4.3) and

(4.4), the SINR at the user can be written as

γ =
Paφ‖hu‖2

Pa (1−φ )
|eT h∗u|2
‖hu‖2 +σ2

w

. (4.5)

In order to counteract the impact of downlink channel gain at the user, the BS varies its

transmit power to ensure

Pa‖hu‖2 = Q, (4.6)

where Q is a pre-determined constant value a priori agreed between the BS and the user. Then,

the SINR at the user in (4.5) can be rewritten as

γ =
φQ

(1−φ )
Q|eT h∗u|2
‖hu‖2‖hu‖2 +σ2

w

. (4.7)

Considering Rayleigh fading for hu, as per (4.6) we see that the transmit power Pa may

be infinite to guarantee Pa‖hu‖2 = Q for some realizations of hu. Without loss of generality,

in this work we consider a maximum transmit power constraint, denoted by Pa ≤ Pmax [68].

Specifically, the BS only transmits information to the user when the uplink channel gain, i.e.,

‖hu‖2, is greater than a specific value. Mathematically, the transmit power is given by

Pa =


Q
‖hu‖2 , ‖hu‖2 ≥ Q

Pmax
,

0, ‖hu‖2 < Q
Pmax

.
(4.8)

In this work, we refer to the CIPC scheme with a finite Pmax as the truncated CIPC scheme,

where the transmit power is truncated at a specific value. As Pmax → ∞, the truncated CIPC
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scheme converges to the conventional CIPC scheme, where transmission is always performed

regardless of the channel quality. In this work, we first analyze the truncated CIPC scheme and

then analyze the conventional CIPC scheme as a special case, which serves as a performance

benchmark for the truncated CIPC scheme.

4.2.2 Fixed-Rate Transmission and Packet Loss Probability

As per (4.8), we see that the BS does not always transmit information to the user in the trun-

cated CIPC scheme. The associated transmission probability, i.e., the probability that the BS

sends information to the user, is given by

pt(Q) = Pr{Pa ≤ Pmax} . (4.9)

We note that in the conventional CIPC scheme (i.e., where Pmax → ∞), the transmission is

always performed and thus, the transmission probability is one (i.e., pt(Q) = 1).

In URLLC scenarios, the packet loss from the BS to the user is caused by not only the

aforementioned transmission suspension induced by the considered maximum transmit power

constraint. When the transmission is performed, the packet loss still occurs due to the non-zero

decoding error probability for the finite blocklength [27]. In URLLC scenarios, the required

QoS is normally predetermined in terms of a specific transmission rate or packet loss probabil-

ity. In this work, we consider a fixed-rate transmission, where the information transmission rate

R from the BS to the user is predetermined to meet a certain requirement on QoS. We note that

adaptive-rate transmission can be considered in the context of URLLC, where the transmission

rate can be adapted as per a predetermined packet loss probability (which represents a certain

QoS in another form) and practical channel conditions. For fixed-rate transmission, based on

a widely used asymptotic expression for the non-zero decoding error probability given in [27],

the decoding error probability averaged over different channel realizations at the user is given

by

ε = E{hu,e}

[
fQ

(
(log2(1+ γ)−R)

√
T
V

)]
= E{hu,e}

fQ

√T (ln(1+ γ)−R ln2)√
1− (1+ γ)−2

 ,

(4.10)

where we recall that R is the information transmission rate, the SINR γ is given in (4.7),

V = (log2 e)2
(

1− (1+ γ)−2
)

is the channel dispersion, and fQ(·) denotes the Gaussian Q-

function with fQ(x) = 1√
2π

∫
∞

x e−
t2
2 dt.

We note that a closed-form expression for (4.10) is intractable. Thus, we adopt the linear
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approximation given by

fQ

(
(log2(1+ γ)−R)

√
T
V

)
≈Ω(γ) (4.11)

in this work, where [98, 99]

Ω(γ)
M
=


1, 0≤ γ ≤ α

1
2 −δ (γ− γ0) , α < γ < β

0, γ ≥ β ,

(4.12)

with δ =
√

T
2π
√

22R−1
, γ0 = 2R− 1, α = γ0− 1

2δ
, and β = γ0 +

1
2δ

. As such, the decoding error

probability ε defined in (4.10) can be rewritten as

ε =
∫

∞

0
fQ

√T (ln(1+ γ)−R ln2)√
1− (1+ γ)−2

 fγ(γ)dγ (4.13a)

≈
∫

α

0
fγ(γ)dγ +

∫
β

α

(
1
2
−δ (γ− γ0)

)
fγ(γ)dγ (4.13b)

=
∫

α

0
fγ(γ)dγ+

(
1
2
+δγ0

)∫
β

α

fγ(γ)dγ−δ

∫
β

α

γ fγ(γ)dγ (4.13c)

= Fγ(α)+

(
1
2
+ δγ0

)
(Fγ(β )−Fγ(α))−δ

∫
β

α

γ fγ(γ)dγ (4.13d)

(a)
=

(
1
2
−δγ0 + δα

)
Fγ(α)+

(
1
2
+ δγ0−δβ

)
Fγ(β )+ δ

∫
β

α

Fγ(γ)dγ , (4.13e)

where step (a) is obtained by
∫

β

α
γ fγ(γ)dγ =

∫
β

α
γdFγ(γ) = βFγ(β )−αFγ(α)−

∫
β

α
Fγ(γ)dγ .

In our considered truncated CIPC scheme, the non-zero decoding error occurs only when

the transmission is performed. As such, for the truncated CIPC scheme, the decoding error

probability is conditioned on that the transmit power is not zero (i.e., the channel condition

satisfies ‖hu‖2 ≥ Q
Pmax

). Therefore, following (4.10), the conditional average decoding error

probability of the truncated CIPC scheme is given by

ε

(
Q
∣∣∣∣‖hu‖2 ≥ Q

Pmax

)
= E{hu,e}

fQ

√T (ln(1+ γ)−R ln2)√
1− (1+ γ)−2

∣∣∣∣∣∣‖hu‖2 ≥ Q
Pmax

 . (4.14)

Considering the packet loss caused by both the transmission suspension at the BS and the

conditional non-zero decoding error probability at the user, the packet loss probability for our
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considered truncated CIPC scheme is given by

Pε(Q) = ε

(
Q
∣∣∣∣‖hu‖2 ≥ Q

Pmax

)
pt(Q)+ 1− pt(Q). (4.15)

We first find that the packet loss probability Pε(Q) is a monotonically increasing function

of the transmission rate R, since ε

(
Q
∣∣∣‖hu‖2 ≥ Q

Pmax

)
monotonically increases with R and

pt(Q) is not a function of R. Then, we find that pt(Q) monotonically decreases with Q and

ε

(
Q
∣∣∣‖hu‖2 ≥ Q

Pmax

)
decreases with Q. In other words, there exists an optimal value of Q that

minimizes Pε(Q) for the truncated CIPC scheme, which will be tackled in Section 4.3. We

further find that for the conventional CIPC scheme, we have pt(Q) = 1 and the condition

‖hu‖2 ≥ Q
Pmax

is always satisfied, which leads to the fact that the packet loss probability of

the conventional CIPC scheme is the same as the average decoding error probability given in

(4.10).

4.3 Truncated and Conventional CIPC with Imperfect Chan-
nel Reciprocity

In this section, we analyze the packet loss probability of the truncated CIPC scheme with

imperfect channel reciprocity (i.e., 0 < φ < 1). Specifically, we determine an upper bound

on the receive signal power (i.e., the value of Q), which provides a closed interval for the

optimal value of Q that minimizes the packet loss probability of the truncated CIPC scheme.

Moreover, an easy-to-calculate expression for this packet loss probability Pε is derived in this

section. Furthermore, we analyze the conventional CIPC scheme where the BS is not subject

to the maximum transmit power constraint, for the sake of performance comparison.

4.3.1 Packet Loss Probability of Truncated CIPC Scheme

When the maximum transmit power constraint is considered, the packet loss probability is

affected by the transmission probability and the decoding error probability. We note that,

for fixed R and T , the packet loss probability Pε(Q) given in (4.15) depends on Q heavily.

Therefore, in the following we first derive an approximated but easy-to-calculate expression

for Pε(Q) and then use it to determine the optimal value of Q that minimizes Pε(Q).

In order to derive the approximated expression for Pε(Q), we rewrite the SINR given in

(4.7) as

γ =
φQ

Q (1−φ )Z +σ2
w

, (4.16)

where we define Z = Y
X with X = ‖hu‖2 and Y =

|eT h∗u|2
‖hu‖2 =

∣∣∣eT h∗u
‖hu‖

∣∣∣2. We note that X is
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independent of Y . This is due to the fact that X depends on the norm of hu but not the phase,

while Y depends on the phase of hu but not the norm. Since the norm and phase of hu are

independent, we conclude that X and Y are independent.

We find that in order to calculate the decoding error probability ε

(
Q
∣∣∣‖hu‖2 ≥ Q

Pmax

)
, we

need to derive the conditional CDF of the SINR. Thus, we next derive this conditional CDF

with the maximum transmit power constraint, denoted by Fγ

(
γ

∣∣∣‖hu‖2 ≥ Q
Pmax

)
, and present it

in the following lemma.

Lemma 4.1. The conditional CDF of the SINR given in (4.16) with the maximum transmit

power constraint, Fγ

(
γ

∣∣∣‖hu‖2 ≥ Q
Pmax

)
, is given by

Fγ

(
γ

∣∣∣∣‖hu‖2 ≥ Q
Pmax

)
=

γup

(
Nt,

Q(1+ξ (γ))
Pmax

)
γup

(
Nt, Q

Pmax

)
(1+ ξ (γ))Nt

, (4.17)

where ξ (γ) = Qφ−γσ2
w

Qγ(1−φ )
, γlw(s,x) =

∫ x
0 e−tts−1dt is the lower incomplete gamma function [96,

Eq. (8.350.1)], γup(s,x) =
∫

∞

x e−tts−1dt is the upper incomplete gamma function [96, Eq.

(8.350.2)], and γlw(s,x)+ γup(s,x) = Γ(s) [96, Eq. (8.356.3)].

Proof: See Appendix C.1. �

We note that a closed-form expression for (4.14) is mathematically intractable. Therefore,

in the following theorem, we derive an approximated but easy-to-calculate expression for the

packet loss probability of the truncated CIPC scheme with the aid of Lemma 4.1.

Theorem 4.1. The packet loss probability of the truncated CIPC scheme with imperfect chan-

nel reciprocity in URLLC scenarios is approximated as

Pε(Q) =

[(
1
2
−δγ0 + δα

)
Fγ

(
α

∣∣∣∣‖hu‖2 ≥ Q
Pmax

)
+

(
1
2
+ δγ0−δβ

)
Fγ

(
β

∣∣∣∣‖hu‖2 ≥ Q
Pmax

)

+ δ

∫
β

α

Fγ

(
γ

∣∣∣∣‖hu‖2 ≥ Q
Pmax

)
dγ

]1−
γlw

(
Nt, Q

Pmax

)
Γ(Nt)

+
γlw

(
Nt, Q

Pmax

)
Γ(Nt)

, (4.18)

where Fγ

(
γ

∣∣∣‖hu‖2 ≥ Q
Pmax

)
is given in (4.17).

Proof: In order to prove Theorem 4.1 and derive the expression for Pε , we need to derive

the explicit expressions for pt(Q) and ε

(
Q
∣∣∣‖hu‖2 ≥ Q

Pmax

)
, which are detailed as below.

We first tackle the transmission probability pt(Q). By substituting (4.8) into (4.9), we

express the transmission probability as

pt(Q) = 1−Pr
{
‖hu‖2 ≤ Q

Pmax

}
= 1−

γlw

(
Nt, Q

Pmax

)
Γ(Nt)

, (4.19)
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where fX (x) = xNt−1e−x

Γ(Nt)
and FX (x) =

γlw(Nt,x)
Γ(Nt)

are the PDF and CDF of ‖hu‖2, respectively.

We next write the expression for the decoding error probability in (4.14) as

ε

(
Q
∣∣∣∣‖hu‖2 ≥ Q

Pmax

)
= Eγ

 f

√T (ln(1+ γ)−R ln2)√
1− (1+ γ)−2

∣∣∣∣∣∣‖hu‖2 ≥ Q
Pmax

 (4.20a)

(b)
=
∫

∞

0
f

√T (ln(1+ γ)−R ln2)√
1− (1+ γ)−2

∣∣∣∣∣∣‖hu‖2 ≥ Q
Pmax

 fγ

(
γ

∣∣∣∣‖hu‖2 ≥ Q
Pmax

)
dγ (4.20b)

(c)
≈
∫

α

0
fγ

(
γ

∣∣∣∣‖hu‖2 ≥ Q
Pmax

)
dγ +

∫
β

α

(
1
2
−δ (γ− γ0)

)
fγ

(
γ

∣∣∣∣‖hu‖2 ≥ Q
Pmax

)
dγ (4.20c)

(d)
=

(
1
2
−δγ0 + δα

)
Fγ

(
α

∣∣∣∣‖hu‖2 ≥ Q
Pmax

)
+

(
1
2
+ δγ0−δβ

)
Fγ

(
β

∣∣∣∣‖hu‖2 ≥ Q
Pmax

)
+ δ

∫
β

α

Fγ

(
γ

∣∣∣∣‖hu‖2 ≥ Q
Pmax

)
dγ , (4.20d)

where step (b) is obtained due to the fact that the transmission condition only has an impact on

the distribution, but not the range, of γ . Steps (c) and (d) are achieved due to the results given

in (4.13e). Finally, substituting (4.19) and (4.20d) into (4.15), we obtain the desired result in

(4.18). �

4.3.2 Optimization of Q for Truncated CIPC Scheme

In this subsection, we determine the optimal value of Q to minimize the packet loss probability

Pε(Q) of the truncated CIPC scheme for given T , R, and Pmax. The optimization problem at

the BS is given by

min
Q

Pε(Q) (4.21)

s.t. T ≥ 100, (4.21a)

where (4.21a) is the condition for achieving effective approximation for the maximal achiev-

able rate in the finite blocklength regime [27]. We note that current practical codes have typical

blocklength from 100 to 1000 for short-packet control information transmission, e.g., 168 in

[25]. Hence, (4.21a) can be applied into practical scenarios.

Due to the high complexity involved in the expression for Pε(Q) in (4.18), it may not be

easy to analytically solve the optimization problem in (4.21) by using (4.18). To cope with

this, we present the following lemma to determine an upper bound on Q for the packet loss

probability of the truncated CIPC scheme in the context of URLLC, which ultimately helps to

numerically solve the optimization problem.
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Lemma 4.2. In the context of URLLC, the value of Q in the truncated CIPC scheme is smaller

than a specific value, i.e., Q < Pmax(Nt− 1) with Nt > 1. It is noted that the value of Q is

determined by the maximum transmit power and the number of transmit antennas.

Proof: We note that the transmission probability pt(Q) in (4.9) monotonically decreases

when Q increases, which is due to the fact that the first-order partial derivative of pt(Q) w.r.t.

Q is given by

∂{pt(Q)}
∂Q

= −
e−

Q
Pmax

(
Q

Pmax

)Nt−1

PmaxΓ(Nt)
< 0. (4.22)

We also note that the second-order partial derivative of pt(Q) w.r.t. Q is given by

∂ 2{pt(Q)}
∂Q2 =

e−
Q

Pmax

(
Q

Pmax

)Nt+1
(Q−Pmax (Nt−1))

Q3Γ(Nt)
. (4.23)

As such, we note that the sign of ∂ 2{pt (Q)}
∂Q2 has three possibilities, which are given by

∂ 2{pt(Q)}
∂Q2


< 0, when 0 < Q < Pmax(Nt−1),

= 0, when Q = Pmax(Nt−1),

> 0, when Q > Pmax(Nt−1).

(4.24)

It is worth mentioning that Q needs to satisfy the condition of 0 < Q < Pmax(Nt−1). This

is due to the fact that when Q = Pmax(Nt− 1), as per (4.19) the probability pt(Q) becomes a

function of Nt only, which is given by

pt(Q) = pt(Pmax(Nt−1)) = 1− γlw (Nt,Nt−1)
Γ (Nt)

. (4.25)

We note that pt(Pmax(Nt − 1)) is a monotonically decreasing function of Nt and thus 1−
pt(Pmax(Nt− 1)) increases and approaches a constant value (i.e., 0.5) as Nt increases. Fol-

lowing (4.15), we have Pε(Q) > 1− pt(Pmax(Nt − 1)). As such, we note that using more

transmit antennas is not beneficial to improve reliability when Q = Pmax(Nt−1). We also note

that pt(Q) = 1− γlw(Nt, Q
Pmax)

Γ(Nt)
is a monotonically decreasing function of Q due to ∂{pt (Q)}

∂Q < 0

proved in (4.22). Thus, for Q > Pmax(Nt− 1), 1− pt(Q) is larger than 0.5 which violates the

requirement of URLLC. As such, for a given Pmax, we cannot meet the ultra-reliable require-

ment of URLLC by setting Q = Pmax(Nt− 1) and we have to decrease Q in order to further

increase the value of pt(Q) due to ∂{pt (Q)}
∂Q < 0. Therefore, reducing the value of Q is the only

solution to meet the requirement of URLLC, e.g., satisfying 1− pt(Q) ≤ 10−7. Therefore, in

the truncated CIPC scheme, the bound of Q can be determined as 0 < Q < Pmax(Nt−1), which
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completes the proof. �

With the aid of the upper bound on Q presented in Lemma 4.2, the optimization of Q in

(4.21) can be numerically solved by searching the optimal value of Q over the closed interval

[0,Pmax(Nt− 1)]. When the reliability requirement of URLLC is given, denoted as Preq
ε , we

can further explore the upper bound on Q by solving 1− pt(Q) ≤ Preq
ε . It is noted that 1−

pt(Q) =
γlw(Nt, Q

Pmax)
Γ(Nt)

is a monotonically increasing function of Q due to ∂{pt (Q)}
∂Q < 0 proved in

(4.22). As such, we can obtain an additional upper bound on Q, denoted by Qup, by solving
γlw

(
Nt,

Qup
Pmax

)
Γ(Nt)

= Preq
ε . Then by combining the closed interval in Lemma 4.2, we write the new

closed interval as 0 < Q < min
(
Pmax(Nt− 1),Qup

)
. In addition, we provide a convex set to

determine the optimal value of Q that minimizes the packet loss probability in our proposed

truncated CIPC scheme with perfect channel reciprocity, which will be detailed in Section 4.4.

4.3.3 Packet Loss Probability of Conventional CIPC Scheme

The conventional CIPC scheme is the CIPC scheme without the maximum transmit power con-

straint, i.e., with Pmax→ ∞. This means that the BS can always transmit signals and guarantee

Pa‖hu‖2 = Q in the conventional CIPC scheme. As such, as mentioned before, the transmis-

sion probability is one (i.e., pt(Q) = 1) for the conventional CIPC scheme, which leads to the

fact that the packet loss probability of the conventional CIPC scheme, i.e., P∞
ε (Q), is same as

the decoding error probability, i.e., ε(γ) defined in (4.10). This enables us to derive an approx-

imated but closed-form expression for the packet loss probability of the conventional CIPC

scheme, denoted as P∞
ε (Q), in the following corollary.

Corollary 4.1. For given finite blocklength T and transmission data rate R, the packet loss

probability of the conventional CIPC scheme, P∞
ε (Q), is approximated as

P∞
ε (Q) =

(
1
2
−δγ0 + δα

)(
1

1+ ξ (α)

)Nt

+

(
1
2
+ δγ0−δβ

)(
1

1+ ξ (β )

)Nt

+ δMNt
1

(
(−1)−NtM2

(
B− α

M2
(1+Nt,1−Nt)−B− β

M2

(1+Nt,1−Nt)

))
, (4.26)

where ξ (x) = Qφ−xσ2
w

xQ(1−φ )
, M1 =

Q(1−φ )
Q(1−φ )−σ2

w
, M2 =

Qφ

Q(1−φ )−σ2
w

, and Bx(a,b) =
∫ x

0 ta−1(1− t)b−1dt

is the incomplete beta function [96, Eq. (8.391)].

Proof: See Appendix C.2. �

We note that the closed-form expression for the packet loss probability of the conventional

CIPC scheme offers an upper bound on the performance of the truncated CIPC scheme. This

can be used to draw many useful insights with efficient calculations for practical communica-

tions scenarios.
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4.4 Truncated CIPC with Perfect Channel Reciprocity

In this section, we examine the proposed CIPC scheme with perfect channel reciprocity (i.e.,

φ = 1) in the context of URLLC. Specifically, we first derive the packet loss probability for

the truncated CIPC scheme with perfect channel reciprocity, which is not a special case of

that for the truncated CIPC scheme with imperfect channel reciprocity. We also prove that the

packet loss probability of the truncated CIPC scheme with φ = 1 is convex w.r.t. Q in a specific

set, which significantly facilitates the optimization of Q for the truncated CIPC scheme with

perfect channel reciprocity.

4.4.1 Packet Loss Probability of Truncated CIPC Scheme

The packet loss probability for the truncated CIPC scheme with perfect channel reciprocity

(φ = 1) is not a special case of that derived in Theorem 4.1 which is for the truncated CIPC

scheme with imperfect channel reciprocity (0 < φ < 1). In addition, the perfect channel reci-

procity can exist in some ideal scenarios and can aid to obtain an upper bound on the perfor-

mance of the truncated CIPC scheme in practical scenarios. This motivates us to consider the

truncated CIPC scheme with perfect channel reciprocity in this subsection.

Applying perfect channel reciprocity into our proposed truncated CIPC scheme (i.e., φ =

1) leads to hd = hT
u . As such, the received signal in (4.2) can be rewritten as

yφ=1 =
√

PahT
u x+w. (4.27)

Given (4.27), the SINR in (4.5) converts into the SNR given by

γφ=1 =
Q
σ2

w
. (4.28)

Based on (4.28), we derive the packet loss probability of our proposed truncated CIPC scheme

with perfect channel reciprocity in the following lemma.

Lemma 4.3. The packet loss probability of the truncated CIPC scheme with perfect channel

reciprocity in URLLC scenarios is derived as

Pφ=1
ε (Q) =1−

1−
γlw

(
Nt, Q

Pmax

)
Γ(Nt)


1− fQ


√

T
(

ln
(

1+ Q
σ2

w

)
−R ln2

)
√

1−
(

1+ Q
σ2

w

)−2


 . (4.29)

Proof: In order to prove Lemma 4.3, we first convert Pε(Q) defined in (4.15) into
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Pφ=1
ε (Q), which is given by

Pφ=1
ε (Q) = ε (Q) pt(Q)+ 1− pt(Q). (4.30)

We note that the transmission probability pt(Q) is derived in (4.19), i.e., pt(Q) = 1− γlw(Nt, Q
Pmax )

Γ(Nt)
,

which is also valid for the perfect channel reciprocity. Then, substituting the SNR, i.e., γφ=1

given by (4.28), into (4.10), the decoding error probability can be rewritten as

ε(Q) = fQ


√

T
(

ln
(

1+ Q
σ2

w

)
−R ln2

)
√

1−
(

1+ Q
σ2

w

)−2

 , (4.31)

where the expectation is eliminated, due to the fact that the SNR in (4.28) is independent of

channel realizations.

Finally, substituting (4.19) and (4.31) into (4.30), we obtain the desired result in (4.29),

which completes the proof. �

We note that the packet loss probability Pφ=1
ε (Q) is a monotonically increasing function

of the transmission rate R, since ε(Q) monotonically increases with R and pt(Q) is not a

function of R. Meanwhile, Pφ=1
ε (Q) monotonically decreases with Pmax, as pt(Q) increases

with Pmax and ε(Q) < 1 does not depend on Pmax. In the numerical results, we will examine

the required maximum transmit power to achieve URLLC with a certain transmission rate and

the maximum allowable packet loss probability.

4.4.2 Optimization of Q for Truncated CIPC Scheme

For given T , R and Pmax, the optimization of Q to minimize the packet loss probability in the

truncated CIPC scheme with perfect channel reciprocity is given by

min
Q

Pφ=1
ε (Q) (4.32)

s.t. T ≥ 100.

Considering the complexity involved in the expression for Pφ=1
ε (Q) derived in Lemma 4.3, it

still may not be easy to analytically solve the optimization problem (4.32). However, we prove

that Pφ=1
ε (Q) is convex w.r.t. Q in a specific convex set for the optimization problem (4.32),

which is detailed in the following proposition.

Proposition 4.1. The packet loss probability Pφ=1
ε (Q) of the truncated CIPC is a convex func-
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tion of Q for Q0 < Q < Pmax(Nt−1), where Q0 = σ2
wγa and γa is the solution to

ln(1+ γa)

(1+ γa)2−1
=

1
3

. (4.33)

Proof: See Appendix C.3. �

With the aid of monotonicity and convexity of Pφ=1
ε (Q) w.r.t. Q presented in Proposi-

tion 4.1 and the closed-form expression for Pφ=1
ε (Q) derived in Lemma 4.3, the optimization

of Q in (4.32) can be conducted by using some efficient numerical methods, e.g., finding the

solution of Q to ∂{Pφ=1
ε (Q)}/∂Q = 0 subject to Q0 < Q < Pmax(Nt−1) and then comparing

the resultant value of Pφ=1
ε (Q) with the values of Pφ=1

ε (Q) in the region of 0 < Q≤ Q0.

4.5 Numerical Results

In this section, we present numerical results to examine the performance of the proposed CIPC

schemes. Based on the numerical results, we draw useful insights into the impact of various

system parameters on the performance of the proposed schemes in the considered one-way

URLLC scenario. In the following, the value of noise variance is set to 1, i.e., σ2
w = 1.

Figure 4.2: The packet loss probability Pε (Q) versus the power of received signals Q in the truncated
CIPC scheme with R = 0.8, φ = 0.9, T = 100, Nt = 4, and Pmax = 23 dBm.

Fig. 4.2 plots the packet loss probabilities, Pε(Q), of the truncated and conventional CIPC

schemes versus the power of received signals, Q. The simulated and theoretical results are

obtained from (4.15) and (4.18), respectively. The simulated results are obtained by averaging
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over 10,000 channel realizations. We first observe that there indeed exists an optimal value of Q

that minimizes Pε(Q) for the truncated CIPC scheme. As clarified in our analysis, this is mainly

due to the maximum transmit power constraint, which results in that both the transmission

probability and the decoding error probability decrease when Q increases. We also observe

that the trend of theoretical results precisely match the simulated ones in the whole value range

of Q, which leads to that the optimal value of Q can be precisely searched via our derived easy-

to-calculate expression for the packet loss probability of the truncated CIPC scheme given in

(4.18).

It is noted that in Fig. 4.2 the black solid curve (with “legend Pφ=1
ε in Eq. (4.29)”) is the

packet loss probability of the truncated CIPC scheme with perfect channel reciprocity (i.e.,

φ = 1), while other curves are for imperfect channel reciprocity with φ = 0.9. As expected,

we observe that the reliability performance of the truncated CIPC scheme increases when φ

increases and the performance of the truncated CIPC scheme with perfect channel reciprocity

serves as an upper bound in practical scenarios where the channel reciprocity may not be per-

fect. Moreover, we observe that the packet loss probability of the conventional CIPC scheme

where Pmax → ∞, P∞
ε , monotonically decreases with Q. This is due to the fact that when the

transmit power is unbounded, the transmission always occurs and the transmission probability

is one (i.e., pt(Q) = 1). This leads to the fact that the packet loss probability of the conven-

tional CIPC scheme is the same as the average decoding error probability given in (4.10). In

fact, the decoding error probability is a monotonically decreasing function of Q, since the cor-

responding SINR monotonically increases with Q. Therefore, our second observation confirms

that our proposed performance metric is more appropriate for one-way URLLC applications

in practical wireless scenarios, since it considers the transmit power constraint. Furthermore,

we observe that the gap between the minimum packet loss probability of the truncated CIPC

scheme (with legend “Pε in Eq. (4.15) simulation results” and shown in green solid curve) and

the packet loss probability of the conventional CIPC scheme (with legend “P∞
ε in Eq. (4.26)”)

is not large and becomes smaller as Q increases. It is noted that infinite transmit power, i.e.,

Pmax→∞ is used in the conventional CIPC scheme, while its achievable minimum packet loss

probability is not sensitive to the value of Q and eventually approaches the packet loss prob-

ability of the proposed truncated CIPC scheme for given Pmax when Q is large enough. In

other words, the maximum transmit power plays a critical role in our proposed truncated CIPC

scheme for determining the achievable minimum packet loss probability.

Fig. 4.3 plots the packet loss probability Pε(Q) of the truncated CIPC scheme with imper-

fect channel reciprocity versus the power of received signal Q with different values of Nt. First,

we observe from this figure the existence of the optimal value of Q that minimizes Pε(Q). Sec-

ond, we observe that this optimal value is within the interval (0,Pmax(Nt−1)), which demon-

strates the correctness of our Lemma 4.2. Third, we observe that the minimum value of Pε(Q)

highly depends on the values of Nt, i.e., this minimum value decreases significantly with Nt.
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Figure 4.3: The packet loss probability Pε (Q) versus the power of received signal Q in the truncated
CIPC scheme for different value of Nt with R = 0.3, T = 150, φ = 0.9, and Pmax = 10 dBm.

This indicates that the reliability in URLLC can be improved by using more transmit antennas

in the truncated CIPC scheme. We note that, without the considered CIPC scheme, increasing

the number of transmit antennas may not improve reliability in URLLC. This is due to the fact

that the traditional channel estimation overhead increases when there is a higher number of

transmit antennas, which limits the reliability performance achieved by using multiple anten-

nas. Fourth, we observe that in the low regime of Q, the values of Pε(Q) for different values

of Nt are almost the same. Meanwhile, in the high regime of Q, the values of Pε(Q) are signif-

icantly different for different values of Nt. The main reason lies in the different impact of Nt

on Pε(Q) for different Q. Specifically, Pε(Q) is dominated by the conditional decoding error

probability ε

(
Q
∣∣∣‖hu‖2 ≥ Q

Pmax

)
when pt(Q) approaches 1. It is noted that ε

(
Q
∣∣∣‖hu‖2 ≥ Q

Pmax

)
and pt(Q) are the functions of Nt according to their definitions in (4.14) and (4.9), respectively.

To achieve an ultra low decoding error probability, e.g., 10−7, the value of pt(Q) needs to be

close to 1 in order to make the packet loss probability Pε(Q) approach the target value. In ad-

dition, we note that pt(Q) and ε

(
Q
∣∣∣‖hu‖2 ≥ Q

Pmax

)
are monotonically decreasing functions of

Q. Therefore, when Q is small, the transmission condition ‖hu‖2 ≥ Q
Pmax

can be easily satisfied,

which is not very sensitive to the value of Nt. However, when Q is high, ‖hu‖2 needs to be very

large to keep the same transmission condition for given Pmax. This is due to the fact that the

value of ‖hu‖2 significantly depends on the value of Nt. In other words, the value of Q heavily

affects the impact of Nt on Pε(Q).

Fig. 4.4 plots the achievable minimum Pε(Q) of the truncated CIPC scheme versus the
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Figure 4.4: The achievable minimum Pε (Q) versus the channel reciprocity coefficient φ for different
number of transmit antennas Nt with R = 0.5, T = 150, and Pmax = 23 dBm.

channel reciprocity coefficient φ for different values of Nt. We first observe that for a large

number of transmit antennas, e.g., Nt = 16, the minimum packet loss probability significantly

decreases with φ . This shows the benefits of using multiple antennas at the BS in the con-

sidered CIPC schemes for achieving reliability improvement in URLLC scenarios. We also

observe that the slope of the minimum packet loss probability with respect to φ increases as Nt

increases, which demonstrates that the benefit of using channel reciprocity to achieve URLLC

becomes more profound when the number of transmit antennas increases. Furthermore, in

the simulations used to plot this figure, we confirm that the transmission probability pt(Q)

increases and approaches one as the number of transmit antenna Nt increases.

Fig. 4.5 plots the packet loss probability of the truncated CIPC scheme with perfect channel

reciprocity Pφ=1
ε (Q) versus the power of received signal Q. As shown in Fig. 4.5, we observe

that the optimal value of Q that minimizes Pφ=1
ε (Q) is within the interval (Q0,Pmax(Nt−1)),

where Pmax(Nt−1) = 30 in this figure. More specifically, the figure shows that Pφ=1
ε (Q) first

decreases and then increases when Q increases. The result demonstrates the correctness of

Proposition 4.1, where Pφ=1
ε (Q) of the truncated CIPC is a convex function of Q for Q0 < Q <

Pmax(Nt−1).

Fig. 4.6 plots the maximum rate R versus the power of received signal Q in the truncated

CIPC scheme with perfect channel reciprocity, i.e., φ = 1, for different reliability requirements,

where Pφ=1
ε (Q) = 10−5,10−7 and 10−9. As shown in Fig. 4.6, the maximum achievable rate

decreases when the reliability requirement becomes more stringent. Moreover, we find that the
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Figure 4.5: The packet loss probability with perfect channel reciprocity, Pφ=1
ε (Q), versus the power

of receive signal Q in the truncated CIPC scheme with R = 0.5, T = 150, φ = 0.8, Nt = 4, and Pmax =

10 dBm.

Figure 4.6: The maximum rate R versus the power of received signal Q in the truncated CIPC scheme
with perfect channel reciprocity, i.e., φ = 1, for different packet loss probabilities Pφ=1

ε (Q) with T =

150, Nt = 4, and Pmax = 23 dBm.

maximum value of R that guarantees the target Pφ=1
ε (Q) first increases nonlinearly with Q and

then immediately reduces to zero as Q becomes larger. This is due to the fact that Pφ=1
ε (Q)
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Figure 4.7: The minimum packet loss probability P∗,φ=1
ε (Q) versus the maximum transmit power Pmax

for different values of R with Nt = 5 and T = 150.

first decreases and then increases when Q increases. In other words, when Q is larger than

the threshold that satisfying the reliability requirement, no achievable rate can be supported by

current system parameters.

Fig. 4.7 plots the minimum packet loss probability of the truncated CIPC scheme with

perfect channel reciprocity versus the maximum transmit power Pmax for different values of the

transmission rate R. As expected, we first observe that the minimum packet loss probability

monotonically decreases when Pmax increases, since increasing Pmax enables the BS to send

signals under more channel conditions and thus increases the transmission probability pt(Q).

This demonstrates that the maximum transmit power plays a critical role in the truncated CIPC

scheme. This figure also demonstrates that to guarantee a certain reliability, the required value

of Pmax increases when the transmission rate R increases, which can be explicitly determined

by our examinations. This reveals one specific contribution of this work, i.e., determining

system parameters (e.g., Pmax) for given requirements on the considered URLLC scenario.

Furthermore, we observe that the minimum packet loss probability increases when R increases,

which demonstrates the tradeoff between the transmission rate R and reliability in URLLC.

4.6 Summary

In this chapter, we proposed to use the CIPC schemes to achieve one-way URLLC with on-

hand performance evaluation. Specifically, we first derived expressions for the packet loss
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probabilities of the truncated and traditional CIPC schemes with imperfect channel reciprocity.

Using these expressions, we determined a closed interval for the optimal value of the received

signal power Q, which significantly facilitates the optimal design of the CIPC schemes. Then,

we analyzed the performance of the truncated CIPC scheme with perfect channel reciprocity,

which provides an upper bound on the performance of truncated CIPC in practical scenar-

ios. Based on this analysis, we proved that the optimal Q lies in a convex set in the case

with perfect channel reciprocity. Our examination explicitly determined the trade-off among

reliability, latency, and required communication resources (e.g., transmit antennas and trans-

mit power), which provides novel design guidelines into achieving one-way URLLC with the

CIPC schemes.



Chapter 5

Secure Transmission Rate of Short
Packets

5.1 Introduction

This chapter studies how to realize secure SPC subject to a statistical QoS requirement and an

average power constraint. It is noted that physical layer security (PLS) is promising for secure

short-packet transmissions in URLLC. The bottlenecks of applying PLS in practice include 1)

lack of accurate CSI of both the intended user and the eavesdropper; 2) high computational

complexity for solving optimization problems. To address the first issue, we compare the se-

cure transmission rates of short packets in different scenarios (i.e., with/without eavesdropper’s

instantaneous CSI and with/without channel estimation errors) and derive the closed-form op-

timal power control policy in a special case. To find numerical solutions in general cases, we

apply an unsupervised deep learning method for solving constrained functional optimization

problems, which has low complexity after the training stage. Through numerical results, we

obtain the following three key findings: 1) The learning-based power control policy approaches

the closed-form optimal policy in the special case and outperforms two existing power control

policies in general cases, 2) Knowing the instantaneous CSI of the eavesdropper only pro-

vides a marginal gain of the secure data rate in the high signal-to-noise ratio regime, and 3) In

the presence of channel estimation errors, the learning-based policy trained by the estimated

channels can guarantee the average transmit power constraint, while the closed-form policy

cannot.

This chapter is organized as follows. The system models and performance metrics are

given in Section 5.2. In Section 5.3, we formulate the optimization problem. In Section 5.4

and 5.5, we analyze the normalized optimal power control policy that maximizes the effective

secrecy throughput in the perfect full and partial CSI scenarios and derive the closed-form

solution and learning-based solution in special and general cases, respectively. In Section 5.6,

we investigate the estimation error of CSI for the optimal solutions in special and general cases.

Numerical results and conclusions are given in Section 5.7 and 5.8, respectively.

57
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5.2 System Model and Performance Metrics

5.2.1 System Model

In this chapter, we consider the downlink transmission in a wireless network, in which a single-

antenna AP transmits confidential short packets to an intended user in the presence of an eaves-

dropper. We assume that the intended user and the eavesdropper are each equipped with a

single antenna, due to size limitation. The wireless channels are assumed to be block fading

channels, i.e., small-scale channels are constant within each frame but vary among different

frames according to independent and identically distributed (i.i.d.) Rayleigh fading. Thus,

small-scale channel gains from the AP to the intended user and the eavesdropper in the ith

frame, denoted by gb[i] and ge[i], respectively, follow an exponential distribution with unit

mean. The duration of each frame is Tc, which is the channel coherence time. The large-scale

channel gains from the AP to the intended user and the eavesdropper are denoted by αb and

αe, respectively.

5.2.2 Performance Metrics

In this chapter, we aim to analyze the effective secrecy throughput in the finite blocklength

regime under statistical QoS constraints. We extend the definition of the effective secrecy

throughput in [78] to the finite blocklength regime, i.e., the effective capacity [100] of a queue-

ing system, where the service rate is characterized by the maximal achievable secrecy rate

with short blocklength codes [44, 76]. In the following, we briefly introduce the preliminary

concepts of effective secrecy throughput.

• Secrecy Rate in Finite Blocklength Regime: To reduce transmission delay, the du-

ration of a coding block (slot), denoted by Tb, is assumed to be shorter than Tc, i.e.,

Tb < Tc. The number of symbols transmitted in each slot, which is also referred to as

the blocklength of channel coding, is determined by the allocated bandwidth B and the

transmission duration Tb, i.e., TbB. Since Tb < Tc, the wireless channel is quasi-static.

The SNRs at the intended user and the eavesdropper, denoted by γb[i] and γe[i], are given

by

γb[i] =
αbgb[i]P[i]

NbB
and γe[i] =

αege[i]P[i]
NeB

, (5.1)

respectively, where P[i] is the transmit power in the ith frame, and Nb and Ne are the

single-sided noise spectral densities at the intended user and the eavesdropper, respec-

tively.

Let us denote the instantaneous secrecy rate in the ith frame by Rs[i]. According to

[44, 76], a lower bound on the maximal achievable secrecy rate (bits/s/Hz) for a given
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a s

Q

Figure 5.1: Queueing model.

decoding error probability εc and the information leakage δ is expressed as

Rs[i] >

Cs[i]−
√

Vb[i]
TbB

f−1
Q (εc)

ln2 −
√

Ve[i]
TbB

f−1
Q (δ )

ln2 , γb[i] > γe[i],

0, γb[i] ≤ γe[i],
(5.2)

where Cs[i] = log2 (1+ γb[i])− log2(1+ γe[i]) is the secrecy capacity in the infinite

blocklength regime, Vx[i] = 1− (1+ γx[i])−2, x ∈ {b,e}, is the channel dispersion, and

f−1
Q (·) is the inverse Q-function. In the sequel, we use the lower bound in (5.2) to char-

acterize the service rate.

• Effective Capacity and Statistical QoS Requirement: The statistical QoS requirement

is defined as a queueing delay bound and the maximum tolerable delay bound violation

probability, (Dq,εq). To meet the requirement, the steady state queueing delay, denoted

by D∞, needs to satisfy the following constraint

Pr{D∞ > Dq} ≤ εq. (5.3)

We apply the effective capacity to characterize the statistical QoS requirement in wireless

communications. It is defined as [54, 100]

EC(θ ) = − lim
N f→∞

1
θN f Tc

ln
(

E

[
e−θ ∑

Nf
i=1 TcBRs[i]

])
bits/s, (5.4)

where E[·] denotes the expectation operation, θ is the QoS exponent and N f is the num-

ber of frames.

It is noted that the effective capacity is used to analyze the performance of the queueing

system. Thus, it is independent on the blocklength. We also note that it is normal to

adopt the effective capacity to analyze the delay performance of a communication system

in the finite blocklength regime, such as [65, 101, 102]. According to the definition

[100], the effective capacity is defined as the maximum constant arrival rate a[n] that a

given service process s[n] can support to guarantee a statistical queueing requirement. In

Fig. 5.1, we see that there is no restriction on the nature of the service process. Thus, the
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service process can be the secrecy capacity, the Shannon capacity, the achievable rate in

finite blocklength regime, or any other performance metric that is related to the physical-

layer technologies. For our considered system, the service process is characterized by the

secrecy capacity in the finite blocklength regime, which is used to obtain the effective

capacity. Moreover, in order to analyze the end-to-end performance, we consider the

statistical QoS requirement in the Medium Access Control (MAC) layer in our work.

Since the effective capacity can be applied into any physical-layer service process, we

use it to characterize the statistical QoS requirement in our system.

In this work, we consider a constant arrival rate, a[n]. If EC(θ ) = a[n], the tail probabil-

ity of the steady state queueing delay can be expressed as [100]

Pr{D∞ > Dq} ≈ e−θa[n]Dq , (5.5)

where the approximation is accurate when Dq� Tc or Pr{D∞ > Dq} is extremely small

[54]. By substituting (5.5) into (5.3), we derive the expression for the QoS exponent as

θ =
ln(1/εq)
a[n]Dq

, which decreases when Dq and εq increase. By using the results in [54],

the analysis in this subsection can be easily extended to other packet arrival processes,

such as the Poisson arrival process, interrupted Poisson process, and switched Poisson

processes.

• Effective Secrecy Throughout: Since the wireless channels are i.i.d. among different

frames, Rs[i] and Rs[ j] are uncorrelated for all j 6= i. By substituting (5.2) into (5.4), the

effective capacity is re-expressed as

EC(θ ) = − lim
N f→∞

1
θN f Tc

ln
(

E

[
e−θ ∑

Nf
i=1 TcBRs[i]

])
= − lim

N f→∞

1
θTcN f

lnΠN f
i=1

(
E
[
e−θTcBRs[i]

])
= − lim

N f→∞

1
θTcN f

N f ln
(

E
[
e−θTcBRs[i]

])
= − 1

θTc
ln
(

E
[
e−θTcBRs[i]

])
bits/s. (5.6)

Since Rs[i] is i.i.d, we remove index i in the remaining of this paper for notational sim-

plicity. By normalizing the effective capacity with the bandwidth B, we obtain the nor-

malized effective secrecy throughput as

ESC = − 1
θTcB

ln
(

E
[
e−θTcBRs

])
bits/s/Hz. (5.7)
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5.3 Problem Formulation

To investigate the impact of eavesdropper’s CSI on the effective secrecy throughput, we for-

mulate the optimization problems that maximize the effective secrecy throughput subject to an

average transmit power constraint in two different scenarios, i.e., the full CSI and the partial

CSI scenarios. In the full CSI scenario, the small-scale channel gains of the intended user and

the eavesdropper are available at the AP. In the partial CSI scenario, the AP only knows the

small-scale channel gain of the intended user. In both scenarios, we assume that the large-scale

channel gains and the distributions of small-scale channel gains of the intended user and the

eavesdropper are known by the AP.

5.3.1 Problem Formulation in Full CSI Scenario

In the full CSI scenario, the AP adjusts transmit power according to gb and ge. We define

the normalized power control policy as µ (gb,ge) , P/P, where P is the maximum average

transmit power of the AP. Then, the average transmit power constraint is given by

E [µ (gb,ge)] =
∫

∞

0

∫
∞

0
µ (gb,ge) fgb (gb) fge (ge)dgbdge ≤ 1, (5.8)

where fgb (gb) and fge (ge) are the PDFs of gb and ge, respectively.

Given the definition of µ (gb,ge), the SNRs at the intended user and the eavesdropper can

be re-expressed as

γb =
P
P
× Pαb

NbB
gb = µ (gb,ge)ϕbgb; (5.9)

γe =
P
P
× Pαe

NeB
ge = µ (gb,ge)ϕege, (5.10)

respectively, where ϕx , Pαx/NxB, x ∈ {b,e}, is the average SNR.

We note that the achievable rate in (5.2) is zero when γb ≤ γe. It means that when ϕbgb <

ϕege, Rs = 0 for any power control policy. Thus, the optimal power control policy is µ (gb,ge) =

0 in the region of {(gb,ge) |ϕbgb < ϕege}, and the average power constraint in (5.8) can be re-

expressed as ∫
∞

0

∫
∞

ϕe
ϕb

ge

µ (gb,ge) fgb (gb) fge (ge)dgbdge ≤ 1. (5.11)
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Similar to (5.11), the effective secrecy throughput in (5.7) can be rewritten as

ESC = − 1
θTcB

ln

(∫
∞

0

∫ ϕe
ϕb

ge

0
fgb (gb) fge (ge)dgbdge

+
∫

∞

0

∫
∞

ϕe
ϕb

ge

Φ (µ (gb,ge) ,gb,ge) fgb (gb) fge (ge)dgbdge

)

= − 1
θTcB

ln
(

C0 +Ψ (µ (gb,ge) ,gb,ge)

)
, (5.12)

where C0,
∫

∞

0
∫ ϕe

ϕb
ge

0 fgb (gb) fge (ge)dgbdge. Φ (µ (gb,ge) ,gb,ge) and Ψ
(
µ (gb,ge) ,gb,ge

)
are

defined as follows,

Ψ
(
µ (gb,ge) ,gb,ge

)
=
∫

∞

0

∫
∞

ϕe
ϕb

ge

(
1+µ (gb,ge)ϕbgb

1+µ (gb,ge)ϕege

)−β

︸ ︷︷ ︸
Φ1(µ(gb,ge),gb,ge)

e
β(
√

Vb f−1
Q (εc)+

√
Ve f−1

Q (δ ))√
TbB︸ ︷︷ ︸

Φ2(µ(gb,ge),gb,ge)︸ ︷︷ ︸
Φ(µ(gb,ge),gb,ge)

× fgb (gb) fge (ge)dgbdge

=
∫

∞

0

∫
∞

ϕe
ϕb

ge

Φ(µ (gb,ge) ,gb,ge) fgb (gb) fge (ge)dgbdge, (5.13)

where β , θTcB
ln2 .

The optimal power control policy that maximizes the effective secrecy throughput under

QoS and average transmit power constraints can be obtained from the following problem,

max
µ(gb,ge)

ESC (5.14)

s.t. µ (gb,ge) ≥ 0 and (5.11).

Since C0 in (5.12) is a constant and ESC decreases with Ψ
(
µ (gb,ge) ,gb,ge

)
, maximizing

ESC is equivalent to minimizing Ψ
(
µ (gb,ge) ,gb,ge

)
. Therefore, the problem in (5.14) can be

further transformed as

min
µ(gb,ge)

Ψ
(
µ (gb,ge) ,gb,ge

)
(5.15)

s.t. µ (gb,ge) ≥ 0 and (5.11).

5.3.2 Problem Formulation in Partial CSI Scenario

In the partial CSI scenario, the transmitter can only adjust the transmit power according to

the value of gb. Thus, the normalized power control policy can be simplified as µ (gb). The
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average power constraint can be rewritten as

E [µ(gb)] =
∫

∞

0
µ(gb) fgb(gb)dgb ≤ 1. (5.16)

Similarly, the SNRs at the intended user and the eavesdropper can be re-expressed as follows:

γb =
P
P
× Pαb

NbB
gb = µ(gb)ϕbgb; (5.17)

γe =
P
P
× Pαe

NeB
ge = µ(gb)ϕege. (5.18)

Since Rs = 0 when φbgb < φege, the normalized effective secrecy throughput in (5.7) can

be rewritten as

ESC = − 1
θTcB

ln

{∫
∞

0

∫
∞

ϕb
ϕe

gb

fgb(gb) fge(ge)dgedgb +
∫

∞

0

∫ ϕb
ϕe

gb

0
Υ(µ(gb),gb) fgb(gb) fge(ge)dgedgb

}

= − 1
θTcB

ln

{
C1 +Ω

(
µ(gb),gb

)}
, (5.19)

where C1 ,
∫

∞

0
∫

∞
ϕb
ϕe

gb
fgb(gb) fge(ge)dgedgb. Υ(µ(gb),gb) and Ω

(
µ(gb),gb

)
are defined as fol-

lows,

Ω
(
µ(gb),gb

)
=
∫

∞

0

∫ ϕb
ϕe

gb

0

(
1+µ(gb)ϕbgb

1+µ(gb)ϕege

)−β

︸ ︷︷ ︸
Υ1(µ(gb),gb)

e
β(
√

Vb f−1
Q (εc)+

√
Ve f−1

Q (δ ))√
TbB︸ ︷︷ ︸

Υ2(µ(gb),gb)︸ ︷︷ ︸
Υ(µ(gb),gb)

fgb(gb) fge(ge)dgedgb

=
∫

∞

0

∫ ϕb
ϕe

gb

0
Υ(µ(gb),gb) fgb(gb) fge(ge)dgedgb. (5.20)

Then, the optimization problem in the partial CSI scenario is given by

max
µ(gb)

ESC (5.21)

s.t. µ (gb) ≥ 0 and (5.16).

Since C1 in (5.19) is a constant and ESC decreases with Ω
(
µ (gb) ,gb

)
, maximizing ESC

is equivalent to minimizing Ω
(
µ (gb) ,gb

)
. Therefore, problem (5.21) is equivalent to the
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following problem,

min
µ(gb)

Ω
(
µ (gb) ,gb

)
(5.22)

s.t. µ (gb) ≥ 0 and (5.16).

In both full and partial CSI scenarios, problems in (5.15) and (5.22) are functional opti-

mization problems, which lead to the fact that the optimal power control policies, µ (gb,ge)

and µ (gb), do not have closed-form expressions in general. To obtain useful insights, we first

derive the closed-form expressions of µ (gb,ge) and µ (gb) in a special case. Then, we apply

an unsupervised learning algorithm to find the optimal power control policy numerically in

general cases.

5.4 Closed-form Solution in Special Case

In this section, we derive the closed-form solution of the normalized optimal power control

policy that maximizes the effective secrecy throughput in a special case, where Vx ≈ 1, x ∈
{b,e}, and β = 1 in both full and partial CSI scenarios. We note that the channel dispersion,

given by Vx = 1− (1+ γx)
−2 is strictly smaller than 1. By substituting Vx ≈ 1 into (5.2),

we obtain a lower bound of the achievable secrecy rate. Thus, the QoS requirement can be

satisfied if the lower bound is used in the optimization. In addition, the approximation of

Vx ≈ 1 is accurate when the SNR is large, e.g., γx > 10 dB [36, 37], which is a prerequisite for

achieving low latency and high reliability.

5.4.1 Special Case in Full CSI Scenario

When Vx ≈ 1, the term Φ2 (µ (gb,ge) ,gb,ge) = e
β√
TbB ( f−1

Q (εc)+ f−1
Q (δ ))

in (5.13) is a constant

that does not depend on µ (gb,ge). As such, the problem in (5.15) can be further reduced as

min
µ(gb,ge)

∫
∞

0

∫
∞

ϕe
ϕb

ge

Φ1 (µ (gb,ge) ,gb,ge) fgb(gb) fge(ge)dgbdge (5.23)

s.t. µ (gb,ge) ≥ 0 and (5.11),
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where Φ1 (µ (gb,ge) ,gb,ge) =
(

1+µ(gb,ge)ϕbgb
1+µ(gb,ge)ϕege

)−β

. The optimal solution to this problem satis-

fies the first order necessary conditions [78, 103], given by

∂L1

∂ µ (gb,ge)
= 0, (5.24)

λ1

(∫
∞

0

∫
∞

ϕe
ϕb

ge

µ (gb,ge) fgb (gb) fge (ge)dgbdge−1

)
= 0, (5.25)

λ1 ≥ 0, µ (gb,ge) ≥ 0, and (5.11),

where L1 is the Lagrangian function defined as [103]

L1 ,
∫

∞

0

∫
∞

ϕe
ϕb

ge

(
1+ µ (gb,ge)ϕbgb

1+ µ (gb,ge)ϕege

)−β

fgb(gb) fge(ge)dgbdge

+λ1

(∫
∞

0

∫
∞

ϕe
ϕb

ge

µ (gb,ge) fgb(gb) fge(ge)dgbdge−1

)
(5.26)

and λ1 is the Lagrangian multiplier. For Rayleigh fading channels, the partial derivative of L1

w.r.t. the normalized power control policy µ (gb,ge) can be derived as [78]

∂L1

∂ µ (gb,ge)
=

[
∂

∂ µ (gb,ge)

{(
1+ µ (gb,ge)ϕbgb

1+ µ (gb,ge)ϕege

)−β}
+λ1

]
fgb (gb) fge (ge)

=

[
λ1−

β (ϕbgb−ϕege)
(

1+µ(gb,ge)ϕbgb
1+µ(gb,ge)ϕege

)1−β

(1+ µ (gb,ge)ϕbgb)
2

]
fgb (gb) fge (ge) . (5.27)

The value of β depends on the QoS requirement, channel coherence time, and bandwidth.

To derive the closed-form solution, we adjust the value of B to satisfy β = 1. When β = 1,

(5.24) can be simplified as[
λ1−

ϕbgb−ϕege

(1+ µ (gb,ge)ϕbgb)
2

]
fgb (gb) fge (ge) = 0. (5.28)

The optimal solution satisfies (5.28) for all the values of gb and ge. Thus, λ1 > 0 and the

closed-form expression for the optimal solution can be derived as

µ
∗
β=1 (gb,ge) =

τ1, gb− ϕe
ϕb

ge >
λ1
ϕb

,

0, gb− ϕe
ϕb

ge ≤ λ1
ϕb

,
(5.29)
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where

τ1 =
1

ϕbgb

(√
ϕbgb−ϕege

λ1
−1
)

. (5.30)

The optimal policy is a “water-filling” policy, and value of λ1 should satisfy the average trans-

mit power constraint, ∫
∞

0

∫
∞

ϕe
ϕb

ge+
λ1
ϕb

τ1 fgb (gb) fge (ge)dgbdge = 1, (5.31)

which is obtained by substituting (5.29) into (5.25). Since ϕe
ϕb

ge +
λ1
ϕb

strictly increases with λ1

and τ1 strictly decreases with λ1, the left-hand-side of (5.31) strictly decreases with λ1. Thus,

the value of λ1 that satisfies (5.31) is unique and can be obtained by binary search. We denote

it by λ ∗1 .

5.4.2 Special Case in Partial CSI Scenario

When Vx ≈ 1, the term Υ2 (µ(gb),gb) = e
β√
TbB ( f−1

Q (εc)+ f−1
Q (δ ))

in (5.20) is a constant. The

optimization problem in (5.22) can be re-expressed as

min
µ(gb)

∫
∞

0

∫ ϕb
ϕe

gb

0

(
1+ µ(gb)ϕbgb

1+ µ(gb)ϕege

)−1

fgb(gb) fge(ge)dgedgb (5.32)

s.t. µ(gb) ≥ 0 and (5.16).

The optimal solution to problem (5.32) should satisfy the following conditions [78, 103],

∂L2

∂ µ(gb)
= 0, (5.33)

λ2

(∫
∞

0
µ(gb) fgb(gb)dgb−1

)
= 0, (5.34)

λ2 ≥ 0, µ(gb) ≥ 0 and (5.16),

where L2 is the Lagrangian function defined as [103]

L2 ,
∫

∞

0

∫ ϕb
ϕe

gb

0

(
1+ µ(gb)ϕbgb

1+ µ(gb)ϕege

)−1

fgb(gb) fge(ge)dgedgb +λ2

(∫
∞

0
µ(gb) fgb(gb)dgb−1

)
,

(5.35)

and λ2 is the Lagrangian multiplier. For Rayleigh fading channel, the partial derivative of the

Lagrangian function L2 w.r.t the normalized power control policy µ(gb) can be derived as
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follows,

∂L2

∂ µ(gb)
=

[
λ2−

∫ ϕb
ϕe

gb

0

ϕbgb−ϕege

(1+ µ(gb)ϕbgb)
2 fge(ge)dge

]
fgb(gb)

=

[
λ2−

ϕbgb +
(

e−
ϕb
ϕe

gb−1
)

ϕe

(1+ µ(gb)ϕbgb)
2

]
fgb(gb). (5.36)

As such, (5.33) can be simplified asλ2−
ϕbgb +

(
e−

ϕb
ϕe

gb−1
)

ϕe

(1+ µ(gb)ϕbgb)
2

 fgb (gb) = 0. (5.37)

The optimal solution should satisfy (5.37) for all the values of gb. Thus, λ2 > 0 and the closed-

form expression for the optimal solution can be derived as

µ
?
β=1(gb) =

τ2, gb > gth
b

0, gb ≤ gth
b ,

(5.38)

where

τ2 =
1

ϕbgb


√

ϕbgb +
(

e−
ϕb
ϕe

gb−1
)

ϕe

λ2
−1

 , (5.39)

and gth
b is the solution of τ2 = 0, i.e.,

ϕb

ϕe
gth

b +
(

e−
ϕb
ϕe

gth
b −1

)
=

λ 2
2

ϕe
. (5.40)

The optimal policy is again a “water-filling” policy, and λ2 should satisfy the average transmit

power constraint, ∫
∞

gth
b

τ2 fgb(gb)dgb = 1, (5.41)

which is obtained by substituting (5.38) into (5.34). Since gth
b in (5.40) strictly increases with

λ2 and τ2 in (5.39) strictly decreases with λ2, the left-hand-side of (5.41) strictly decreases

with λ2. Thus, there is a unique value of λ2 that satisfies (5.41). We can obtain the unique

solution λ ∗2 by binary search. Given the value of λ ∗2 , the unique solution of gth
b can be obtained

from (5.40).

It is noted that [78] proved the above problems in the special case to be convex when β = 1
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and Vx ≈ 1. Therefore, our obtained closed-form solutions are globally optimal. Moreover, no

closed-form optimal solution has been obtained when queuing delay and security requirement

are considered [78, 79, 81, 104]. For example, [78] developed a numerical method to obtain

the optimal power control policy, but did not obtain closed-form optimal solutions. It is also

worth mentioning that our motivation of deriving the closed-form solution in the special case

is to use it as a benchmark to demonstrate the effectiveness of our learning-based solutions.

Therefore, it is very important and necessary to analyze the case with Vx ≈ 1.

5.5 An Unsupervised Learning-Based Solution in General Cases

It is noted that although the closed-form solution is available in the special case, the threshold

needs to be obtained by the binary search to satisfy the average transmit power constraint. With

the proposed unsupervised learning method, there is no need to search the threshold with the

binary search. Also, in the general case, it is very difficult, if not impossible, to derive closed-

form solutions for the first-order necessary conditions. To overcome this difficulty, we apply

an unsupervised learning method to find the solution numerically [84]. The underlying idea

is to use a DNN to approximate the normalized power control policy and apply the primal-

dual method to update the parameters of the DNN and the Lagrangian multiplier. After the

training stage, near-optimal solutions can be obtained from the output of the DNN by using the

forward-propagation algorithm, which has low computational complexity.

5.5.1 General Case in Full CSI Scenario

With the primal-dual method, problem (5.15) in the full CSI scenario can be converted into

max
λ f

min
µ(gb,ge)

L f , Ψ (µ (gb,ge) ,gb,ge)+λ f (E [µ (gb,ge)]−1) (5.42)

s.t. (5.13), µ (gb,ge) ≥ 0, and λ f ≥ 0,

where L f is the Lagrangian function of (5.15) and λ f is the Lagrangian multiplier.

The DNN used to approximate µ (gb,ge) in the full CSI scenario is denoted by µ̂ (gb,ge;ω f ),

where gb and ge are the inputs and ω f represents the parameters of the DNN (i.e., weights and

bias). Then, problem (5.42) can be rewritten as

max
λ f

min
ω f
L̂ f , Ψ (µ̂ (gb,ge;ω f ) ,gb,ge)+λ f (E [µ̂ (gb,ge;ω f )]−1) (5.43)

s.t. (5.13), µ̂ (gb,ge;ω f ) ≥ 0, and λ f ≥ 0,

where ω f and λ f are updated iteratively. In the tth iteration, the system generates N training

samples, {(g(t,n)b ,g(t,n)e ),n = 1, · · · ,N}, according to the distributions of gb and ge. From these
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realizations of small-scale channel gains, the estimated Lagrangian function is given by

L̂(t)f ,
1
N

N

∑
n=1

[
Φ
(

µ̂

(
g(t,n)b ,g(t,n)e ;ω

(t)
f

)
,g(t,n)b ,g(t,n)e

)
+λ

(t)
f

(
µ̂

(
g(t,n)b ,g(t,n)e ;ω

(t)
f

)
−1
)]

.

(5.44)

With the unsupervised learning approach in [84], the Lagrangian multiplier can be updated

according to

λ
(t+1)
f =

λ
(t)
f +φ

(t)
∂ L̂(t)f

∂λ
(t)
f

+

=

[
λ
(t)
f +φ

(t)

(
1
N

N

∑
n=1

µ̂

(
g(t,n)b ,g(t,n)e ;ω

(t)
f

)
−1

)]+
, (5.45)

where [x]+ ,max{x,0} and φ (t) is the learning rate.

In the primal domain, the stochastic gradient descent (SGD) algorithm is applied to minimize

the objective function in (5.43) by optimizing the parameters of the DNN, i.e.,

ω
(t+1)
f = ω

(t)
f −φ

(t)
∇ω f L̂

(t)
f , (5.46)

where

∇ω f L̂
(t)
f =

1
N

N

∑
n=1

[
∇ω f µ̂

(
g(t,n)b ,g(t,n)e ;ω

(t)
f

) ∂ L̂(t,n)f

∂ µ̂

(
g(t,n)b ,g(t,n)e ;ω

(t)
f

)]. (5.47)

We note that ∇ω f µ̂

(
g(t,n)b ,g(t,n)e ;ω

(t)
f

)
can be computed via backward propagation. The partial

derivative of L̂(t,n)f w.r.t µ̂

(
g(t,n)b ,g(t,n)e ;ω

(t)
f

)
can be obtained from

∂ L̂(t,n)f

∂ µ̂

(
g(t,n)b ,g(t,n)e ;ω

(t)
f

) = λ
(t+1)
f +

∂ Φ
(

µ̂

(
g(t,n)b ,g(t,n)e ;ω

(t)
f

)
,g(t,n)b ,g(t,n)e

)
∂ µ̂

(
g(t,n)b ,g(t,n)e ;ω

(t)
f

) . (5.48)

The second term in (5.48) can be obtained by substituting the values of µ̂

(
g(t,n)b ,g(t,n)e ;ω

(t)
f

)
,
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g(t,n)b and g(t,n)e into the following expression,

∂ Φ
(
µ (gb,ge) ,gb,ge

)
∂ µ (gb,ge)

=

[(
βϕbgb

f−1
Q (εc)√
TbBVb

(1+ µ (gb,ge)ϕbgb)
3 +

βϕege
f−1
Q (δ )
√

TbBVe

(1+ µ (gb,ge)ϕege)
3

)

− β (ϕbgb−ϕege)

(1+ µ (gb,ge)ϕbgb) (1+ µ (gb,ge)ϕege)

]

×
(

1+ µ (gb,ge)ϕbgb

1+ µ (gb,ge)ϕege

)−β

e
β

(√
Vb
TbB f−1

Q (εc)+
√

Ve
TbB f−1

Q (δ )
)
. (5.49)

5.5.2 General Case in Partial CSI Scenario

In the partial CSI scenario, problem (5.22) can be converted into

max
λp

min
µ(gb)

Lp ,Ω (µ (gb) ,gb)+λp (E [µ (gb)]−1) (5.50)

s.t. (5.20), µ (gb) ≥ 0, and λp ≥ 0,

where Lp is the Lagrangian function of problem (5.22) and λp is the Lagrangian multiplier.

When the normalized power control policy is approximated by a DNN denoted by µ̂ (gb;ωp),

where ωp represents the parameters of the DNN (i.e., weights and bias), problem (5.50) can be

rewritten as

max
λp

min
ωp
L̂p ,Ω (µ̂ (gb;ωp) ,gb)+λp (E [µ̂ (gb;ωp)]−1) (5.51)

s.t. (5.20), µ̂ (gb;ωp) ≥ 0, and λp ≥ 0.

The estimated Lagrangian function in the tth iteration, denoted by L̂(t)p , is given by

L̂(t)p ,
1
N

N

∑
n=1

[∫ ϕb
ϕe

gb

0
Υ
(

µ̂

(
g(t,n)b ;ω

(t)
p

)
,g(t,n)b

)
fge(ge)dge +λ

(t)
p

(
µ̂

(
g(t,n)b ;ω

(t)
p

)
−1
)]

.

(5.52)

The Lagrangian multiplier λ
(t+1)
p and the parameters of DNN ω

(t+1)
p can be updated ac-

cording to the following method [84],

λ
(t+1)
p =

[
λ
(t)
p +φ

(t) ∂ L̂(t)p

∂λ
(t)
p

]+
=

[
λ
(t)
p +φ

(t)

(
1
N

N

∑
n=1

µ̂

(
g(t,n)b ;ω

(t)
p

)
−1

)]+
(5.53)
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and

ω
(t+1)
p = ω

(t)
p −φ

(t)
∇ωpL̂

(t)
p = ω

(t)
p −φ

(t)

1
N

N

∑
n=1

∇ωp µ̂

(
g(t,n)b ;ω

(t)
p

)
∂ L̂(t,n)p

∂ µ̂

(
g(t,n)b ;ω

(t)
p

)

,

(5.54)

where ∇ωp µ̂

(
g(t,n)b ;ω

(t)
p

)
can be computed via backward propagation and ∂ L̂(t,n)

p

∂ µ̂

(
g(t,n)b ;ω (t)

p

) can be

derived as follows,

∂ L̂(t,n)p

∂ µ̂

(
g(t,n)b ;ω

(t)
p

) =
∫ ϕb

ϕe
gb

0

∂ Υ
(

µ̂

(
g(t,n)b ;ω

(t)
p

)
,g(t,n)b

)
∂ µ̂

(
g(t,n)b ;ω

(t)
p

) fge(ge)dge +λ
(t+1)
p . (5.55)

The first term in (5.55) can be obtained by the following two steps. First, substitute the values

of µ̂

(
g(t,n)b ;ω

(t)
p

)
and g(t,n)b into the following expression,

∂ Υ
(
µ (gb) ,gb

)
∂ µ (gb)

=

(
1+ µ (gb)ϕbgb

1+ µ (gb)ϕege

)−β
[(

βϕbgb
f−1
Q (εc)√
TbBVb

(1+ µ (gb)ϕbgb)
3 +

βϕege
f−1
Q (δ )
√

TbBVe

(1+ µ (gb)ϕege)
3

)

− β (ϕbgb−ϕege)

(1+ µ (gb)ϕbgb) (1+ µ (gb)ϕege)

]
e

β

(√
Vb
TbB f−1

Q (εc)+
√

Ve
TbB f−1

Q (δ )
)
.

(5.56)

Second, evaluating the integral term by generating multiple realizations of ge according to its

distribution.

5.6 Power Control Policy with Imperfect CSI

In this section, we investigate the impacts of channel estimation errors on the normalized power

control policies in the full and partial CSI scenarios. We consider the imperfect channel es-

timation at the receiver and assume that the feedback to the AP is perfect. More specifically,

the AP broadcasts pilots to the receivers, where the MMSE estimator is applied for channel

estimation. After that, the receivers will feed the estimated CSI back to the AP. Finally, the AP

adjusts the transmit power according to the estimated CSI.

In the following, we consider channel estimation errors in the following two scenarios:

• Channel Estimation Error in Full CSI Scenario: The AP knows the estimated CSI of

the main channel and the eavesdropper’s channel. The eavesdropper is assumed to be an

ordinary user of the network. For example, the AP transmits the packets consisting of
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1) non-confidential messages for the eavesdropper and 2) confidential messages for the

intended user. In this case, both of the receivers feed back the estimated CSI to the AP.

• Channel Estimation Error in Partial CSI Scenario: The AP only knows the estimated

CSI of the main channel. For this scenario, the eavesdropper is a malicious user that does

not cooperate with the AP. In this case, the eavesdropper will not feed back the estimated

CSI, but we assume distribution of the eavesdropper’s channel is available at the AP.

5.6.1 Channel Estimation Error Model

According to [60, 105], the actual CSI, hx, x ∈ {b,e}, can be obtained from the estimated main

channel and the estimation error according to

hx = ĥx +∆hx, (5.57)

where ĥx and ∆hx are the estimated channel coefficient and the estimation error, respectively.

Recall that, in this work, we assume that hx, x ∈ {b,e} follows complex Gaussian distribu-

tions with zero mean and unit variance, i.e., hx ∼ CN (0,1). As per the rules of the MMSE es-

timator in the Bayesian linear model [106], ĥx and ∆hx follow complex Gaussian distributions,

i.e., ĥx ∼ CN
(

0,σ2
ĥx

)
and ∆hx ∼ CN

(
0,σ2

∆hx

)
, where σ2

ĥb
= 1−σ2

∆hb
and σ2

ĥe
= 1−σ2

∆he
.

For simplicity, we assume that the estimation error at the intended user and the eavesdropper

follow the same complex Gaussian distribution, i.e., σ2
e , σ2

∆hb
= σ2

∆he
.

As such, the received signal at the intended user and the eavesdropper can be expressed as

yb =
√

αb
√

Pĥbs+
√

αb
√

P∆hbs+ nb; (5.58)

ye =
√

αe
√

Pĥes+
√

αe
√

P∆hes+ ne, (5.59)

where s is the transmitted signal with E[|s|2] = 1, |s| denotes the modulus of s, and nb and ne

are the additive white noise at the intended user and the eavesdropper, respectively. The SINR

at the intended user and the eavesdropper are

γb =
αb|ĥb|2P

αb|∆hb|2P+NbB
=

αbĝbP
αbzbP+NbB

; (5.60)

γe =
αe|ĥe|2P

αe|∆he|2P+NeB
=

αeĝeP
αezeP+NeB

, (5.61)

where ĝb , |ĥb|2, ĝe , |ĥe|2, zb , |∆hb|2, and ze , |∆he|2. Since ĥx and ∆hx follow complex

Gaussian distributions, ĝx and zx are exponentially distributed, i.e., ĝx ∼ Exp[1/(1−σ2
e )] and

zx ∼ Exp(1/σ2
e ).

To obtain the effective secrecy throughput with estimation errors, we consider the worst
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case that the channel estimation errors are treated as one part of the additive noise [60]. As

such, the SINRs at the intended user and the eavesdropper are converted into SNRs, which are

given by

γb =
αbPĝb

αbPσ2
e +NbB

=
P
P ĝb

P
P σ2

e +
1

ϕb

; (5.62)

γe =
αePĝe

αbPσ2
e +NeB

=
P
P ĝe

P
P σ2

e +
1
ϕe

, (5.63)

where ϕx = Pαx/NxB, x ∈ {b,e}, is the average SNR. Based on the expressions of SNRs, we

can futher derive the effective secrecy throughput in full and partial CSI scenarios, respectively.

5.6.2 Full CSI Scenario

To meet the average transmit power constraint, the normalized power control policy, µ (ĝb, ĝe),

should satisfy the following constraint,

E [µ (ĝb, ĝe)] =
∫

∞

0

∫
∞

0
µ (ĝb, ĝe) fĝb (ĝb) fĝe (ĝe)dĝbdĝe ≤ 1, (5.64)

where fĝb (ĝb) and fĝe (ĝe) are the PDFs of ĝb and ĝe, respectively.

Like (5.12), the effective secrecy throughput can be rewritten as

ESC = − 1
θTcB

ln
(

C2 +
∫

∞

0

∫
∞

ϕ̂e
ϕ̂b

ĝe

Ξ
(
µ (ĝb, ĝe) , ĝb, ĝe

)
fĝb (ĝb) fĝe (ĝe)dĝbdĝe

)
= − 1

θTcB
ln
(

C2 +Θ
(
µ (ĝb, ĝe) , ĝb, ĝe

))
, (5.65)

where C2 ,
∫

∞

0
∫ ϕ̂e

ϕ̂b
ĝe

0 fĝb (ĝb) fĝe (ĝe)dĝbdĝe. Ξ
(
µ (ĝb, ĝe) , ĝb, ĝe

)
and Θ

(
µ (ĝb, ĝe) , ĝb, ĝe

)
are

defined as follows,

Θ
(
µ (ĝb, ĝe) , ĝb, ĝe

)
=
∫

∞

0

∫
∞

ϕ̂e
ϕ̂b

ĝe

(
1+ µ(ĝb,ĝe)ĝb

µ(ĝb,ĝe)σ2
e +1/ϕb

1+ µ(ĝb,ĝe)ĝe
µ(ĝb,ĝe)σ2

e +1/ϕe

)−β

︸ ︷︷ ︸
Ξ1

(
µ(ĝb,ĝe),ĝb,ĝe

)
e

β

(√
Vb
TbB f−1

Q (εc)+
√

Ve
TbB f−1

Q (δ )
)︸ ︷︷ ︸

Ξ2

(
µ(ĝb,ĝe),ĝb,ĝe

)
︸ ︷︷ ︸

Ξ
(

µ(ĝb,ĝe),ĝb,ĝe

)
× fĝb (ĝb) fĝe (ĝe)dĝbdĝe

=
∫

∞

0

∫
∞

ϕ̂e
ϕ̂b

ĝe

Ξ
(
µ (ĝb, ĝe) , ĝb, ĝe

)
fĝb (ĝb) fĝe (ĝe)dĝbdĝe, (5.66)

where Vx = 1− (1+ γx)
−2. From (5.62), the SNRs at the intended user and the eavesdropper
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with channel estimation errors are given by

γb =
µ (ĝb, ĝe) ĝb

µ (ĝb, ĝe)σ2
e +

1
ϕb

and γe =
µ (ĝb, ĝe) ĝe

µ (ĝb, ĝe)σ2
e +

1
ϕe

, (5.67)

respectively.

As we can see from (5.67), the power control policy affects both of the signal power and

the noise power, which is different from the scenarios with the perfect CSI. This makes it more

challenging to find the optimal solutions, and the closed-form solutions are not available even

with the approximation Vx ≈ 1. Moreover, with the perfect CSI, the problems are convex when

Vx ≈ 1 is applied. With the imperfect CSI, the problems are non-convex.

Similar to the problem formulation in Section 5.3.1, C2 is a constant and ESC decreases with

Θ
(
µ (ĝb, ĝe) , ĝb, ĝe

)
. Thus, maximizing ESC is equivalent to minimize Θ

(
µ (ĝb, ĝe) , ĝb, ĝe

)
.

The optimal power control policy that maximizes the effective secrecy throughput can be ob-

tained by solving the following problem,

min
µ(ĝb,ĝe)

Θ
(
µ (ĝb, ĝe) , ĝb, ĝe

)
(5.68)

s.t. µ (ĝb, ĝe) ≥ 0 and (5.64).

5.6.2.1 Closed-form Solution in Special Case

With channel estimation errors, one can hardly derive the closed-form solution of problem

(5.68). As a benchmark, the AP can apply the closed-form solution in (5.29) by treating the

estimated CSI as the actual CSI. In the special case, where Vx ≈ 1, x ∈ {b,e}, and β = 1, the

normalized power control policy can be obtained by substituting ĝb and ĝe into (5.29).

5.6.2.2 Unsupervised Learning for Power Control in General Case

With the primal-dual method, problem (5.68) can be converted into

max
λi f

min
µ(ĝb,ĝe)

Li f ,Θ
(
µ (ĝb, ĝe) , ĝb, ĝe

)
+λi f (E [µ (ĝb, ĝe)]−1) (5.69)

s.t. (5.66), µ (ĝb, ĝe) ≥ 0, and λi f ≥ 0,

where Li f is the Lagrangian function of (5.68) and λi f is the Lagrangian multiplier. By ap-

proximating µ (ĝb, ĝe) with a DNN, i.e., µ̂ (ĝb, ĝe;ωi f ), the functional optimization problem in
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(5.69) can be re-expressed as a variable optimization problem,

max
λi f

min
ωi f
L̂i f ,Θ

(
µ̂ (ĝb, ĝe;ωi f ) , ĝb, ĝe

)
+λi f (E [µ̂ (ĝb, ĝe;ωi f )]−1) (5.70)

s.t. (5.66), µ̂ (ĝb, ĝe;ωi f ) ≥ 0, and λi f ≥ 0,

where the parameters of the DNN ωi f and the Lagrangian multiplier λi f are updated iteratively.

In the tth iteration, N training samples are used to estimate the Lagrangian function,

L̂(t)i f ,
1
N

N

∑
n=1

[
Ξ
(

µ̂

(
ĝ(t,n)b , ĝ(t,n)e ;ω

(t)
i f

)
, ĝ(t,n)b , ĝ(t,n)e

)
+λ

(t)
i f

(
µ̂

(
ĝ(t,n)b , ĝ(t,n)e ;ω

(t)
i f

)
−1
)]

.

(5.71)

Then, the Lagrangian multiplier λ
(t+1)
i f and the parameters of DNN ω

(t+1)
i f can be updated

iteratively according to

λ
(t+1)
i f =

λ
(t)
i f +φ

(t)
∂ L̂(t)i f

∂λ
(t)
i f

+

=

[
λ
(t)
i f +φ

(t)

(
1
N

N

∑
n=1

µ̂

(
ĝ(t,n)b , ĝ(t,n)e ;ω

(t)
i f

)
−1

)]+
; (5.72)

ω
(t+1)
i f = ω

(t)
i f −φ

(t)
∇ωi f L̂

(t)
i f

= ω
(t)
i f −φ

(t) 1
N

N

∑
n=1

[
∇ωi f µ̂

(
ĝ(t,n)b , ĝ(t,n)e ;ω

(t)
i f

) ∂ L̂(t,n)i f

∂ µ̂

(
ĝ(t,n)b , ĝ(t,n)e ;ω

(t)
i f

)], (5.73)

where ∇ωi f µ̂

(
ĝ(t,n)b , ĝ(t,n)e ;ω

(t)
i f

)
can be computed via backward propagation and

∂ L̂(t,n)ip

∂ µ̂

(
ĝ(t,n)b , ĝ(t,n)e ;ω

(t)
i f

) = λ
(t+1)
i f +

∂ Ξ
(

µ̂

(
ĝ(t,n)b , ĝ(t,n)e ;ω

(t)
i f

)
, ĝ(t,n)b , ĝ(t,n)e

)
∂ µ̂

(
ĝ(t,n)b , ĝ(t,n)e ;ω

(t)
i f

) . (5.74)

The second term in (5.74) can be obtained by substituting the values of µ̂

(
ĝ(t,n)b , ĝ(t,n)e ;ω

(t)
i f

)
,

ĝ(t,n)b and ĝ(t,n)e into the following expression,

∂ Ξ (µ (ĝb, ĝe) , ĝb, ĝe)

∂ µ (ĝb, ĝe)
=

∂ Ξ1 (µ (ĝb, ĝe) , ĝb, ĝe)

∂ µ (ĝb, ĝe)
Ξ2
(
µ (ĝb, ĝe) , ĝb, ĝe

)
+

∂ Ξ2 (µ (ĝb, ĝe) , ĝb, ĝe)

∂ µ (ĝb, ĝe)
Ξ1
(
µ (ĝb, ĝe) , ĝb, ĝe

)
. (5.75)

According to the definitions of Ξ1
(
µ (ĝb, ĝe) , ĝb, ĝe

)
and Ξ2

(
µ (ĝb, ĝe) , ĝb, ĝe

)
in (5.66), the

partial derivatives of Ξ1 (µ (ĝb, ĝe) , ĝb, ĝe) and Ξ2 (µ (ĝb, ĝe) , ĝb, ĝe) w.r.t µ (ĝb, ĝe) can be de-

rived as (5.76) and (5.77), respectively.
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∂ Ξ1 (µ (ĝb, ĝe) , ĝb, ĝe)

∂ µ (ĝb, ĝe)
= −

( ĝb/ϕb

(µ(ĝb,ĝe)σ2
e +1/ϕb)

2

1+ µ(ĝb,ĝe)ĝe
µ(ĝb,ĝe)σ2

e +1/ϕe

−

(
1+ µ(ĝb,ĝe)ĝb

µ(ĝb,ĝe)σ2
e +1/ϕb

)(
ĝe/ϕe

(µ(ĝb,ĝe)σ2
e +1/ϕe)

2

)
(

1+ µ(ĝb,ĝe)ĝe
µ(ĝb,ĝe)σ2

e +1/ϕe

)2

)

×β

(
1+ µ(ĝb,ĝe)ĝb

µ(ĝb,ĝe)σ2
e +1/ϕb

1+ µ(ĝb,ĝe)ĝe
µ(ĝb,ĝe)σ2

e +1/ϕe

)−β−1

. (5.76)

∂ Ξ2 (µ (ĝb, ĝe) , ĝb, ĝe)

∂ µ (ĝb, ĝe)
=

( β f−1
Q (εc)√

TbB
ĝb/ϕb

(µ(ĝb,ĝe)σ2
e +1/ϕb)

2

√
Vb

(
1+ µ(ĝb,ĝe)ĝb

µ(ĝb,ĝe)σ2
e +1/ϕb

)3 +

β f−1
Q (δ )
√

TbB
ĝe/ϕe

(µ(ĝb,ĝe)σ2
e +1/ϕe)

2

√
Ve

(
1+ µ(ĝb,ĝe)ĝe

µ(ĝb,ĝe)σ2
e +1/ϕe

)3

)

× e
β√
TbB (
√

Vb f−1
Q (εc)+

√
Ve f−1

Q (δ ))
. (5.77)

5.6.3 Partial CSI Scenario

In this scenario, the transmit power is adjusted according to the estimated CSI of the intended

user. The constraint on the normalized power control policy, µ(ĝb), is given by

E [µ(ĝb)] =
∫

∞

0
µ(ĝb) fĝb(ĝb)dĝb ≤ 1. (5.78)

The effective secrecy throughput can be rewritten as

ESC = − 1
θTcB

ln
(

C3 +
∫

∞

0

∫ ϕ̂b
ϕ̂e

ĝb

0
Π
(
µ (ĝb) , ĝb

)
fĝb (ĝb) fĝe (ĝe)dĝedĝb

)
= − 1

θTcB
ln
(

C3 +Λ
(
µ (ĝb) , ĝb

))
, (5.79)

where C3 ,
∫

∞

0
∫

∞
ϕ̂b
ϕ̂e

ĝb
fĝb (ĝb) fĝe (ĝe)dĝedĝb. Π

(
µ (ĝb) , ĝb

)
and Λ

(
µ (ĝb) , ĝb

)
are defined as

follows,

Λ
(
µ (ĝb) , ĝb

)
=
∫

∞

0

∫ ϕb
ϕe

ĝb

0

(1+µ (ĝb)ϕbĝb

1+µ (ĝb)ϕeĝe

)−β

︸ ︷︷ ︸
Π1

(
µ(ĝb),ĝb

) e
β
(
√

Vb f−1
Q (εc)+

√
Ve f−1

Q (δ ))√
TbB︸ ︷︷ ︸

Π2

(
µ(ĝb),ĝb

)
︸ ︷︷ ︸

Π
(

µ(ĝb),ĝb

)
fĝb (ĝb) fĝe (ĝe)dĝedĝb

=
∫

∞

0

∫ ϕb
ϕe

ĝb

0
Π
(
µ (ĝb) , ĝb

)
fĝb (ĝb) fĝe (ĝe)dĝedĝb, (5.80)

where Vx = 1− (1+ γx)
−2, x ∈ {b,e}. From (5.62), the SNRs at the intended user and the
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eavesdropper can be derived as

γb =
µ (ĝb) ĝb

µ (ĝb)σ2
e +

1
ϕb

and γe =
µ (ĝb) ĝe

µ (ĝb)σ2
e +

1
ϕe

. (5.81)

Similar to the problem formulation in Section 5.3.2, C3 is a constant and ESC decreases with

Λ
(
µ (ĝb) , ĝb

)
. Thus, maximizing ESC is equivalent to minimizing Λ

(
µ (ĝb) , ĝb

)
. Then, the

optimal power control policy can be obtained by solving the following problem,

min
µ(ĝb)

Λ
(
µ (ĝb) , ĝb

)
(5.82)

s.t. µ (ĝb) ≥ 0 and (5.78).

5.6.3.1 Closed-form Solution in Special Case

Similar to the full CSI scenario, we can obtain a benchmark by treating the estimated CSI as

the actual CSI. In the special case, where Vx ≈ 1, x ∈ {b,e}, and β = 1, the normalized power

control policy can be obtained by substituting ĝb into (5.38).

5.6.3.2 Unsupervised Learning for Power Control in General Case

With the primal-dual method, problem (5.82) can be converted into

max
λip

min
µ(ĝb)

Lip ,Π
(
µ (ĝb) , ĝb

)
+λip (E [µ (ĝb)]−1) (5.83)

s.t. (5.80), µ (ĝb) ≥ 0, and λip ≥ 0,

where Lip is the Lagrangian function of (5.82) and λip is the Lagrangian multiplier. By ap-

proximating µ (ĝb) with a DNN, i.e., µ̂ (ĝb;ωip), the functional optimization problem in (5.83)

can be re-expressed as a variable optimization problem,

max
λip

min
ωip
L̂ip ,Π

(
µ (ĝb;ωip) , ĝb

)
+λip (E [µ (ĝb;ωip)]−1) (5.84)

s.t. (5.80), µ (ĝb;ωip) ≥ 0, and λip ≥ 0,

where the parameters of the DNN ωip and the Lagrangian multiplier λip are updated iteratively.

In the tth iteration, N training samples are used to estimated the Lagrangian function,

L̂(t)ip ,
1
N

N

∑
n=1

[∫ ϕb
ϕe

ĝb

0
Π
(

µ̂

(
ĝ(t,n)b ;ω

(t)
ip

)
, ĝ(t,n)b

)
fĝe (ĝe)dĝe +λ

(t)
ip

(
µ̂

(
ĝ(t,n)b ;ω

(t)
ip

)
−1
)]

.

(5.85)
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Then, the Lagrangian multiplier λ
(t+1)
ip and the parameters of DNN ω

(t+1)
ip can be updated

iteratively according to

λ
(t+1)
ip =

λ
(t)
ip +φ

(t) ∂ L̂(t)ip

∂λ
(t)
ip

+

=

[
λ
(t)
ip +φ

(t)

(
1
N

N

∑
n=1

µ̂

(
ĝ(t,n)b ;ω

(t)
ip

)
−1

)]+
; (5.86)

ω
(t+1)
ip = ω

(t)
ip −φ

(t)
∇ωipL̂

(t)
ip = ω

(t)
ip −φ

(t) 1
N

N

∑
n=1

[
∇ωip µ̂

(
ĝ(t,n)b ;ω

(t)
ip

) ∂ L̂(t,n)ip

∂ µ̂

(
ĝ(t,n)b ;ω

(t)
ip

)],

(5.87)

where ∇ωip µ̂

(
ĝ(t,n)b ;ω

(t)
ip

)
can be computed via backward propagation and

∂ L̂(t,n)ip

∂ µ̂

(
ĝ(t,n)b ;ω

(t)
ip

) =
∫ ϕb

ϕe
ĝb

0

∂ Π
(

µ̂

(
ĝ(t,n)b ;ω

(t)
ip

)
, ĝ(t,n)b

)
∂ µ̂

(
ĝ(t,n)b ;ω

(t)
ip

) fĝe (ĝe)dĝe +λ
(t+1)
ip . (5.88)

Similar to (5.55), the first term in (5.88) can be obtained by following two steps. First, substi-

tute the values of µ̂

(
ĝ(t,n)b ;ω

(t)
ip

)
and ĝ(t,n)b into (5.75). Second, evaluating the integral term by

generating multiple realizations of ge according to its distribution.

It is worth mentioning that our unsupervised learning method does not require the infor-

mation of channel distribution, but only needs some samples of the channel realizations to

perform the SGD algorithm, where a batch of CSI estimated from the receiver is used. More-

over, in order to ensure the pre-train DNN working well in practical systems, transfer learning

can be applied into the fine-tune pre-trained DNN, based on the estimated CSI in practical

systems. As such, the initial performance of the pre-trained DNN is better than the one initial-

ized with random parameters, in terms of the initial achievable rate and the convergence time

[40, 75, 107, 108].

5.7 Numerical Results

In this section, we provide numerical results to reveal some useful insights and demonstrate

the effectiveness of the unsupervised learning method (with legend “DNN"). In the special

case when β = 1 and Vx = 1, we compare the proposed learning-based power control policy

with the closed-form optimal power control policy (with legend “Closed Form"). In other

general cases, we compare the learning-based power control policy with two baselines in the

existing literature. The first one is the “water-filling" policy that maximizes the Shannon’s

capacity of the intended user [38] (with legend “Basedline 1”). The second one is the constant

transmit power policy, µ = P/P = 1 (with legend “Basedline 2”). It is worth mentioning that

the water-filling policy obtained in our work is different from the water-filling policy [38] and
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the low-complexity on/off power allocation policy [109]. The low-complexity on/off power

allocation policy in [109] can achieve the near-optimal performance as the average SNR goes

to infinity with the main channel CSI only. However, it does not guarantee the statistical QoS

constraint in the finite blocklength regime, and hence is not a reasonable baseline.

Table 5.1: Simulation Parameters and Hyper-Parameters

Duration of each frame, Tc 1 ms
Duration of each block (slot), Tb 0.125 ms
Path loss model, 10 log10(α) 35.3+ 37.6 log10(d)
Single-sided noise spectral density, N0 -173 dBm/Hz
Learning rate, φ (t) 0.001
Number of hidden layers 4
Number of neurons in 1st, 2nd, 3rd, and 4th hidden layer 10/10/4/2
Batch size for each iteration, N 100
Activation function ReLU

Hidden Layer Output LayerInput Layer

10 Neuros

4 Neuros

10 Neuros

2 Neuros

Figure 5.2: Illustration of our DNN model with one input layer, four hidden layers, and one output
layer.

5.7.1 System Parameters

Specifically, we build a DNN model in Fig. 5.2, which consists of one input layer, four hidden

layers, and one output layer. The input and output of the DNN are the small-scale channel

gains (based on the assumptions of available CSI in different scenarios) and the corresponding

normalized transmit power, respectively. The initial weights of the DNN are Gaussian random

variables with zero mean and unit variance, and the initial bias are fixed at 0.1. The initial value

of the Lagrangian multiplier is set as 0. In each iteration, we generate 100 channel realizations

to update the Lagrangian multiplier and the parameters of the DNN according to the primal-
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dual method. The final power control policy is obtained after 104 iterations, where the Adam

optimizer is used to minimize the loss function. To show the performance of our method in

low and high SNR regimes, we adjust the distance between the AP and the intended user,

denoted by d. Other simulation parameters and hyper-parameters of the DNN are summarized

in Table 5.1.

5.7.2 Performance Evaluation

In Fig. 5.3, we illustrate the convergence behaviors of the unsupervised learning method by

comparing it with the closed-form optimal power control policy. We take the full CSI scenario

as an example, and provide the normalized effective secrecy throughput, ESC, and the right-

hand side of the average power constraint, E [µ (gb,ge)]−1≤ 0, against the iteration number

in Fig. 5.3(a) and Fig. 5.3(b), respectively. The expectations in normalized effective secrecy

throughput and transmit power constraints are taken over 100 successive iterations. The re-

sults in Fig. 5.3 show that the unsupervised learning method converges after 2000 iterations,

i.e., the normalized effective secrecy throughput approaches the optimal values obtained from

the closed-form method and the right-hand side of the average power constraint approaches

zero. The results indicate that the learning-based method converges rapidly and can satisfy

the constraint. From the path loss model in Table 5.1, we can obtain that ϕb = ϕe ≈ 6.16 dB

when d = 300 m and ϕb = ϕe ≈ 12.78 dB when d = 200 m. As can be seen from the figure,

when d = 200 m, the average SNR is larger than 10 dB, and the normalized effective secrecy

throughput via the learning-based method in the general case converges to the one in the spe-

cial case as the iteration number increases. These results confirm that the approximation of

Vx ≈ 1 is accurate in the high SNR regime. However, when d = 300 m, the average SNR is

smaller than 10 dB. As such, the channel dispersion is smaller than 1. By substituting Vx < 1

into (5.2), we obtain a larger value of the achievable secrecy rate when comparing the case

of Vx < 1 to the case of Vx ≈ 1. It will eventually lead to the normalized effective secrecy

throughput achieved by the learning-based method in the general case being larger than that in

the special case. Therefore, the observation from the figure is not surprising. It confirms that,

when d = 300, the normalized effective secrecy throughput via the learning-based method in

the general case is larger than the one in the special case.

In Fig. 5.4, we show the performance comparison of the unsupervised learning method in

the full CSI scenario against two different power control policies with different values of d.

It is clear that the learning-based power control policy outperforms the two baselines, and the

performance gain in the low SNR regime is larger than that in the high SNR regime (i.e., 30 %

gain when d = 300 m versus 10 % gain when d = 200 m).

In Fig. 5.5, we show the normalized effective secrecy throughput in the special cases with

or without the instantaneous CSI of the eavesdropper. Specifically, the normalized optimal
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Figure 5.3: Convergence of the proposed unsupervised learning method in full CSI scenario in terms of
(a) the normalized effective secrecy throughput and (b) the normalized average power constraint versus
the iteration number for different value of d, where P̄ = 20 dBm, ϕb = ϕe, θ = 10−3, β = 1, εc = 10−5,
and δ = 10−2.

power control policies in the special case for both of the full and partial CSI scenarios are

obtained from (5.29) and (5.38), respectively. It can be seen from the figure that knowing the

instantaneous CSI of the eavesdropper’s channel for power control does not provide significant

performance improvement when the average SNR is larger than 25 dB.
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Figure 5.4: Performance comparison of unsupervised learning in full CSI scenario with different power
control policies for different value of d, where P̄ = 20 dBm, ϕb = ϕe, θ = 10−3, B = 1 MHz, β =
θTcB
ln2 6= 1, εc = 10−5, and δ = 10−2.
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Figure 5.5: Normalized effective secrecy throughput versus the average SNR at the intended user with
different QoS requirements, where Vb =Ve = 1, β = 1, ϕb = ϕe, εc = 10−5, δ = 10−2, and d = 300 m.

In Fig. 5.6, we plot the normalized effective secrecy throughput, ESC, and the right-hand

side of the normalized average power constraint, E [µ (gb,ge)]−1≤ 0, against the variance of

channel estimation errors. The results are generated in the full CSI scenario via the unsuper-

vised learning method and the closed-form power control policy. To illustrate the impact of
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Figure 5.6: Normalized effective secrecy throughput and normalized average power constraint in full
CSI scenario versus the variance of channel estimation errors, where P̄ = 20 dBm, θ = 10−3, β = 1,
ϕb = ϕe, εc = 10−5, δ = 10−2, and d = 200 m.

model mismatch on the average power constraint, we substitute ĝb and ĝe into the closed-form

solution in (5.29) by assuming that the distributions of ĝb and ĝe are the same as that of gb and

ge (e.g., Rayleigh fading is considered in this work). The results in Fig. 5.6 show that the ef-

fective secrecy throughput of the learning-based method degrades as the variance of estimation

errors increases, but the average power constraint can be guaranteed. This is because that the

learning-based method is trained by the estimated channels. The average power constraint can

be satisfied as we estimate the average power consumption according to the batch of training

samples, where the samples are obtained from the estimated CSI. However, the closed-form

method assumes that the estimated CSI and the actual CSI follow the same distribution. Due

to the model mismatch, the average power constraint cannot be satisfied.

5.8 Summary

In this chapter, we carried out a comprehensive study of secure short-packet transmissions

with different assumptions on the CSI. We derived closed-form solutions of optimal power

control policies in the special case and used the unsupervised deep learning algorithm to solve

the optimization problem numerically in general cases. Our numerical results showed that

the unsupervised deep learning algorithm converges to the closed-form solution after a small

number of iterations in the special case. In general cases, the unsupervised deep learning

algorithm also converges fast and outperforms two existing power control policies. The results
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also indicated that knowing the instantaneous CSI of the eavesdropper only provides marginal

performance gains in terms of the effective secrecy throughput. Moreover, we found that

the learning-based policy can guarantee the average transmit power constraint with channel

estimation errors. Due to the mismatch between the channel model and the estimated channel,

the closed-form policy for the special case cannot guarantee the constraint. Given that the

effective secrecy throughput decreases rapidly with the variance of channel estimation errors,

how to design power control policies that are robust to the channel estimation errors deserves

further study. Furthermore, when the number of samples is limited and insufficient, generative

adversarial networks (GANs) may be used to generate some synthetic samples. [110, 111, 112,

113] showed that a synthetic dataset with a large number of training samples can be obtained

from a GAN model trained with limited real-world data samples. In addition, how to train

GANs and whether the GAN-aided power control policy can guarantee the statistical QoS

requirements or not need to be comprehensively investigated in future studies.



Chapter 6

Conclusions

In this chapter, we first summarize the general conclusions drawn from the thesis, and then

outline some future research directions arising from this thesis.

6.1 Thesis Conclusions

This thesis focused on the transmission strategies and power control policies design of SPC to

exploit the benefits of SPC for supporting URLLC applications. In particular, we focused on

the channel training strategies of SPC in Chapter 2, the optimal resource allocation of SPC in

Chapter 3, the reduction of communication latency and signalling overhead in Chapter 4, and

the physical layer security of SPC in Chapter 5. The detailed contributions and directly related

future works are given as follows.

Channel training strategies in SPC: In Chapter 2, the performance of dowlink and up-

link channel training strategies in SPC was studied. We derived closed-form expressions for

the lower bounds on the data rates achieved by these two strategies, in which the impact of

finite blocklength was considered. Aided by these expressions, we analytically determined

an expression to approximate the minimum channel reciprocity coefficient which enables the

uplink channel training, instead of downlink channel training, to achieve a higher data rate for

the downlink transmission in the MISO system. Our examination demonstrated that this min-

imum channel reciprocity coefficient decreases as the blocklength decreases or the number of

transmit antennas increases, revealing the benefits of the uplink channel training in SPC with

multiple transmit antennas.

The presented work serves as the first step to explore the fundamental benefits of the uplink

channel training in SPC with multiple transmit antennas, which shows the potential to improve

the reliability performance of SPC and support future URLLC applications. For future work, it

is interesting to investigate the signalling overhead of two different channel training strategies

in SPC when the multi-user scenarios with single and multiple receiver antennas are consid-

ered.

Optimal resource allocation for SPC: In Chapter 3, we studied the optimal transmission
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strategy of SPC for the downlink transmission in the MISO system. We investigated the opti-

mal resource allocation (e.g., the total transmit power and a finite number of symbol periods)

for downlink training, uplink feedback, and data transmission to maximize the average data

rate. Specifically, we proved that the optimal number of symbol periods allocated to downlink

training is equal to the number of transmit antennas at the AP. We also derived an approximate

closed-form lower bound on the average data rate, an easy-to-implement method to find the

optimal number of symbol periods for uplink feedback, and a simple expression for the op-

timal power allocation between data transmission and downlink training. Through numerical

results, we examined the impact of various system parameters, e.g., the number of antennas at

the AP and the blocklength, on the optimal solutions.

The presented work serves as the first step to provide a guideline to assist URLLC designers

with the fundamental problem of transmit power and symbol period allocation to guarantee

the advantage of SPC in practice. For future work, the impact of feedback error needs to

be investigated. The considered MISO system can be also extended to a MIMO system for

improving the reliability. However, the signalling overhead is high when more receive antennas

are used. Therefore, the system parameters (e.g., the number of receive and transmit antennas

and the blocklength ) in SPC need to be well designed to meet the URLLC requirement.

Channel inversion power control for one-way URLLC: In Chapter 4, we studied the

feasibility and optimal design of using CIPC in SPC to reduce the channel estimation over-

head for achieving one-way URLLC and establish the fundamental limit of one-way URLLC

achieved by CIPC. With the aid of channel reciprocity in TDD systems, our proposed CIPC

schemes guarantee the power of received signal that is used to decode the information to be a

constant value Q, by varying the transmit signal and power, which relaxes the assumption of

knowing CSI at the user. Thus, the CIPC schemes eliminate the overhead of CSI feedback,

reduce communication latency, and explore the benefits of multiple antennas to significantly

improve transmission reliability. Specifically, we first derived expressions for the packet loss

probabilities of the truncated and traditional CIPC schemes with imperfect channel reciprocity.

Using these expressions, we determined a closed interval for the optimal value of the received

signal power Q, which significantly facilitates the optimal design of the CIPC schemes. Then,

we analyzed the performance of the truncated CIPC scheme with perfect channel reciprocity,

which provides an upper bound on the performance of truncated CIPC in practical scenarios.

Based on this analysis, we proved that the optimal Q lies in a convex set in the case with perfect

channel reciprocity. Our results showed that CIPC is an effective means to achieve one-way

URLLC.

The presented work serves as the first step to determine the trade-off among reliability,

latency, and required communication resources (e.g., transmit antennas and transmit power)

for one-way URLLC with CIPC schemes. For future work, the multi-user scenario needs to be

analyzed to implement the proposed scheme in URLLC applications, e.g., industrial factory.
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Secure transmission rate of short packets: In Chapter 5, we conducted a comprehensive

study of secure SPC via PLS techniques with different assumptions on CSI. We investigated

how much CSI is needed to realize secure SPC under the average power constraint and the

queueing delay requirement by comparing the secure transmission rates of short packets in dif-

ferent scenarios (i.e., with/without eavesdropper’s instantaneous CSI). We also derived closed-

form solutions of optimal power control policies in the special case and used the unsupervised

deep learning algorithm to solve the optimization problem numerically in general cases. Our

numerical results showed that: 1) The learning-based power control policy approaches the

closed-form optimal policy in the special case and outperforms two existing power control

policies in general cases, 2) Knowing the instantaneous CSI of the eavesdropper only provides

a marginal gain of the secure data rate in the high signal-to-noise ratio regime, and 3) In the

presence of channel estimation errors, the learning-based policy trained by the estimated chan-

nels can guarantee the average transmit power constraint, while the closed-form optimal policy

cannot.

The presented work serves as the first step to explore the fundamental benefits of using

PLS techniques with deep learning to achieve security in SPC, which shows the potentials

and benefits of applying deep learning to support URLLC applications in the near future. For

future work, it is meaningful to analyze the property of the learning-based algorithm, e.g., the

stability and the convergence speed with proper initialization. Besides, how to design power

control policies that are robust to the channel estimation errors deserves further study.

6.2 Future Research Directions

The optimal design of SPC plays a crucial role in supporting URLLC applications. While the

state-of-the-art wireless communication systems cannot support SPC to satisfy the stringent

requirements of latency and reliability in URLLC. Besides, due to the non-stationary property

of wireless networks and non-convex constraints involved in SPC, the acquisition of optimal

solutions to optimization problems normally results in large processing delays. It is noted

that the processing delay caused by finding the optimal solutions to optimization problems in

Chapter 2, Chapter 3, and Chapter 4 are assumed to be negligible. However, the corresponding

signal processing time may dominate the overall end-to-end latency when conducting search-

ing algorithms iteratively, which definitely violates the latency requirement of URLLC.

Fortunately, with the advancement of deep learning and their breakthroughs especially in

computer vision for real-time image processing, researchers have started to investigate the use

of deep learning in optimizing wireless networks [75, 84, 114, 115, 116, 117, 118]. The exist-

ing research contributions have shown that the deep learning algorithm is a promising method

in solving complicated non-convex optimization problems in wireless networks. Therefore, by

applying deep learning into optimization problems in wireless networks, the processing time
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could be significantly reduced by applying well-trained deep neural networks. For example, the

processing task could be completed within one TTI (1 ms) in 5G NR [57]. More specifically,

a traditional method to find the optimal power control policy in SPC is to execute optimization

algorithms [65], which is in general of high computational complexity and hence can hardly

be implemented in real time. To avoid the time-consuming optimization algorithms, learning-

based power control algorithms have been developed for wireless networks [56, 83, 119, 120].

Specifically, the transmitter can obtain the optimal power control policy from a well-trained

DNN, after offline training. Here, the forward-propagation algorithm has great potential to

compute the output of a DNN in a real-time manner, due to its lower computational complex-

ity rather than iterative optimization algorithms.

Motivated by the aforementioned potentials of deep learning, it is promising to use it in

SPC to achieve real-time radio resource management in one TTI in 5G NR to support URLLC

applications. A fundamental tutorial of applying deep learning for URLLC was recently pre-

sented in [75], which illustrates how to jointly utilize the model-based and knowledge-based

deep learning algorithms to support URLLC applications. However, the optimal design of SPC

with deep learning to fully unlock diverse URLLC applications is still at the very early stage,

which triggers many challenges that are needed to be addressed in future research. Some of

future research problems on this topic are listed as follows:

• Model mismatch: In Chapter 5, we assume that the DNN trained in off-line could al-

ways match the real communication system when analyzing the secure transmission rate

in SPC. However, wireless networks are in general non-stationary. As such, some prac-

tical QoS constraints might cannot be guaranteed, which refers to a issue of model mis-

match. Therefore, an adaptive learning-based framework is needed for practical wire-

less networks to dynamically perform the fine-tuning. Only few early works [40, 57]

proposed to use deep reinforcement learning with transfer learning to solve the issue.

However, some ideal assumptions are made to model the problem using theoretical

model-based knowledge, which eventually leads to conservative strategy in term of re-

source allocation for URLLC applications. Therefore, the impact of model mismatch in

URLLC applications is unclear, which is worth being well studied and verified.

• Scalability: As mentioned in Chapter 5, there are some major issues when using deep

learning to optimize wireless networks: 1) lack of labeled training samples, 2) no QoS

guarantee. Apart from that, scalability is another challenging issue in URLLC with mas-

sive connections (e.g., factory automation and autonomous vehicles). With the increas-

ing number of devices in 5G and beyond wireless networks, the increasing optimization

variables and related constraints would significantly degrade the performance of deep

learning-based algorithm. The main reason is that most of well-established optimiza-

tion algorithms only work well for small and medium scale problems. Recently, GNN
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is proposed to address the scalability issue for wireless networks [119, 121, 122] due

to the property of GNNs that the number of parameters of a GNN does not increase

with the dimension of the input. It will be very interesting to investigate how to utilize

a GNN to address the scalability in URLLC applications while satisfying the stringent

requirements on latency and reliability.
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A.1 Proof of Theorem 2.1

In order to prove Theorem 2.1, we have to solve two integrals in the following:

Φ (γu
eff,NB) = E‖h̄u‖2

[
C
(

γ
u
eff

∥∥h̄u
∥∥2
)]

=
∫

∞

0
log2(1+ γ

u
effx) fX (x)dx (A.1)

and

Ψ (γu
eff,NB,T ) = E‖h̄u‖2

[√
1
T

f−1
Q (ε)

√
V
(

γu
eff

∥∥h̄u
∥∥2
)]

=
∫

∞

0

√
1
T

f−1
Q (ε)

√
V (γu

effx) fX (x)dx, (A.2)

where fX (x) = xNB−1e−x/Γ(NB) is the PDF of ‖h̄u‖2, since h̄u ∼ CN (0,INB).

We first tackle the integral in (A.1). Substituting fX (x) into (A.1), setting y = 1+ γu
effx, and

using the binomial expansion given in [96, Eq. (1.111)], we rewrite Φ (γu
eff,NB) as

Φ(γu
eff,NB) =

e
1

γu
eff (γu

eff)
−NB

Γ(NB) ln2

∫
∞

1
(y−1)NB−1 ln(y)e

− y
γu
eff dy

=
e

1
γu
eff (γu

eff)
−NB

Γ(NB) ln2

NB−1

∑
i=0

(
NB−1

i

)
(−1)NB−1−i

∫
∞

1
yi ln(y)e

− y
γu
eff dy. (A.3)

Using the Meijer’s G-Function [96, Eq. (9.301)], we obtain

∫
∞

1
yi ln(y)e

− y
γu
eff dy=G3,0

2,3

(
−i,−i

0,−1− i,−1− i

∣∣∣∣∣ 1
γu

eff

)
. (A.4)

Substituting (A.4) into (A.3) we obtain Φ (γeff,NB) in (2.10). We now solve the integral in

(A.2). Substituting fX (x) into (A.1) and setting t = x/ (NB−1), Ψ (γu
eff,NB,T ) in (A.2) can be
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rewritten as

Ψ (γu
eff,NB,T ) =

f−1
Q (ε)

Γ(NB)

√
1
T

∫
∞
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√
V (γu

eff x)e(NB−1)
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NB−1

)
dx
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∫
∞

0
e(NB−1)(ln t−t)

√
V (γu

eff t (NB−1)) dt

=
f−1
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η
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∫
∞

0
eηg(t)

ϕ(t) dt, (A.5)

where g(t) = ln t− t, η = NB−1, and ϕ(t) =
√

V (γu
efftη).

Then, it is noted that Laplace’s method [123] is a technique used to approximate integrals

of the form
∫ b

a eM f (x)dx, where f (x) is a twice-differentiable function, M is a large number, and

the endpoints a and b could possibly be infinite. Therefore, we can approximate the integral in

(A.5) via the Laplace method as

∫
∞

0
eηg(t)

ϕ(t)dt ≈ eηg(t0)ϕ(t0)

√
2π

η |g′′(t0)|
, (A.6)

where g
′′
(t) = −1/t2 and t0 = 1, which is obtained by solving g

′
(t) = 1/t− 1 = 0. Finally,

substituting t0 = 1 and (A.6) into (A.5), we obtain the desired result in (2.11) by performing

some algebra manipulations, which completes the proof.

A.2 Proof of Proposition 2.1

According to its definition, φ ∗ can guarantee Ru = Rd. Following (2.9) and (2.15), we find that

in order to guarantee Ru = Rd we need

Φ (γu
eff,NB)−Ψ (γu

eff,NB,T ) =
(

1− T ∗tr
T

)[
Φ
(
γ

d
eff,NB

)
−Ψ

(
γ

d
eff,NB,T

)]
. (A.7)

We find that it is difficult to obtain an expression for φ ∗ from (A.7) directly. To tackle this,

we find that the rate loss (i.e., Ψ (γu
eff,NB,T ) or Ψ

(
γd

eff,NB,T
)
) is negligible comparing to the

channel capacity. Then, we approximate (A.7) as

Φ (γu
eff,NB) =

(
1− T ∗tr

T

)
Φ
(
γ

d
eff,NB

)
. (A.8)

Although a closed-form solution for φ ∗ is still mathematically intractable, we present an accu-

rate approximation based on the Jensen’s inequality. That is, when χ is a concave function, we
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have E [χ(x)] ≤ χ (E[x]). We then approximate (A.8) as

log2
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d
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where (a) holds since E
[∥∥h̄u

∥∥2
]
= E

[∥∥h̄d
∥∥2
]
= NB.

After performing some algebraic manipulations, we reach the desired result given in (2.16)

following (A.9), which completes the proof.
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B.1 Proof of Theorem 3.1

With the aid of the Jensen’s inequality and the approximation of quantization errors given in

[124], the average data rate in (3.4) can be approximated as

R≈τEh̄

[
C (ρ̃eh̄)−

√
V (ρ̃eh̄) f−1

Q (ε)/
√

T
]

, (B.1)

where, h̄ =
∥∥h̄d
∥∥2. Then we obtain (3.5) by following the procedure similar to [86, Appendix

A].

B.2 Proof of Theorem 3.2

The first derivative of R (Tt ,Tf ,η), given in (B.1), with respect to Td is derived as

∂R (Tt ,Tf ,η)
∂Td
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1
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where h̄ =
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Q (ε)/(
√
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(
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)
.

We find that α1 < 1 and α2 < 1 due to Td > NA. Then, we need to show that Ω (ω) =

log2 (1+ω)−
√

ω(2+ω)
1+ω

− ω

(1+ω) ln2 ≥ 0 for all ω ≥ω0, where ω0 is the solution to Ω (ω) = 0.

It is noted that Ω (ω) = 0 at ω = ω0 and for all ω ≥ ω0 its first derivative is given by

dΩ (ω)/dω =

(
ω

ln2
− 1√

ω(2+ω)

)
1

(1+ω)2 > 0. (B.3)

We also find that dΩ (ω)/dω is a monotonically increasing function of ω for all ω ≥ ω0,
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where the value of ω0 is relatively small compared to the required value of SNR in URLLC

scenarios (e.g., the SNR > 10 dB [37, 54, 64]). Therefore, we conclude that the optimal value

of Tt is the minimum value of Tt for given ρT in the case of Tt ≥ NA and Td > NA. This is due

to the fact that (3.4) is a monotonically increasing function of Td and keeping the minimum

value of Tt maximizes R (Tt ,Tf ,η) for given Tf .
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C.1 Proof of Lemma 4.1

The conditional CDF of the SINR with the maximum transmit power constraint is rewritten as
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where ξ (γ) is defined below (4.17). Then, we write Pr
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where fX(x) = xNt−1

Γ(Nt)
e−x, FY(y) = 1−e−y, and γup(s,x) is defined below (4.17). By substituting

(C.2) into (C.1), we obtain the result in (4.17), which completes the proof.

C.2 Proof of Corollary 4.1

Following Theorem 4.1 and considering Pmax→ ∞, the packet loss probability of the conven-

tional CIPC scheme, P∞
ε (Q), is given by
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where
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= 0 as Pmax→ ∞.

Then, we need to derive the CDF of the SINR to solve the integration in (C.3). According

to Lemma 4.1, we obtain Fγ

(
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)
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= 0 into (4.17), which leads to
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where γup (Nt,0) = Γ(Nt). As such,
∫
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where step (e) is achieved by using 1
1+ξ (γ)

= M1γ

γ+M2
, while ξ (x), M1, M2, and Bx(a,b) are

defined below (4.26). Then, we obtain (4.26) by substituting (C.4) and (C.5) into (C.3), which

completes the proof.

C.3 Proof of Proposition 4.1

In order to find the optimal Q to minimize the packet loss probability, Pφ=1
ε (Q), we need to find

the monotonicity and convexity of Pφ=1
ε (Q) w.r.t. Q. To this end, we first derive the first-order
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derivative of Pφ=1
ε (Q) w.r.t. Q, which is given by

∂{Pφ=1
ε (Q)}
∂Q

=
∂{pt(Q)}

∂Q

(
ε(Q)−1

)
+ pt(Q)

∂{ε(Q)}
∂Q

. (C.6)

Then, the second-order derivative of Pφ=1
ε (Q) w.r.t. Q is obtained as

∂ 2{Pφ=1
ε (Q)}
∂Q2 =

∂ 2{pt(Q)}
∂Q2

(
ε(Q)−1

)
+ 2

∂{pt(Q)}
∂Q

∂{ε(Q)}
∂Q

+ pt(Q)
∂ 2{ε(Q)}

∂Q2 .

(C.7)

In order to determine the sign of ∂ 2{Pφ=1
ε (Q)}
∂Q2 , we first need to tackle ∂{pt (Q)}

∂Q and ∂ 2{pt (Q)}
∂Q2 .

Recall that ∂{pt (Q)}
∂Q < 0 and ∂ 2{pt (Q)}

∂Q2 have been derived in (4.22) and (4.23), respectively.

As such, we find that pt(Q) is a monotonically decreasing function of Q due to ∂{pt (Q)}
∂Q < 0.

Besides, with the aid of the proof in Lemma 4.2, we can obtain that ∂{pt (Q)}
∂Q < 0 and ∂ 2{pt (Q)}

∂Q2 <

0 for 0 < Q < Pmax(Nt−1). Then, we detail the signs of ∂{ε(Q)}
∂Q and ∂ 2{ε(Q)}

∂Q2 as follows.

We first find the sign of ∂ε(Q)
∂Q . To this end, we rewrite the decoding error probability in

(4.10) as ε(γφ=1) = f (A(γφ=1)), where A (γφ=1) =
√

T(ln(1+γφ=1)−R ln2)√
1−(1+γφ=1)

−2 . As such, the first-

order partial derivative of ε(Q) w.r.t. Q is derived as

∂{ε(Q)}
∂Q

=
∂{ f (A(γφ=1))}

∂Q
=

∂
{

f (A(γφ=1))
}

∂{A(γφ=1)}
∂{A(γφ=1)}

∂γφ=1

∂γφ=1

∂Q
. (C.8)

We note that the sign of ∂{ε(Q)}
∂Q is determined by the signs of

∂{ f (A(γφ=1))}
∂{A(γφ=1)} , ∂{A(γφ=1)}

∂γφ=1
, and

∂γφ=1
∂Q . As such, we can conclude that ε(Q) is a decreasing function of Q if we can prove

∂{ f (A(γφ=1))}
∂{A(γφ=1)}

∂{A(γφ=1)}
∂γφ=1

∂γφ=1
∂Q < 0. In order to prove this, we present the following three results

given by

∂
{

f (A(γφ=1))
}

∂{A(γφ=1)}
= − 1√

2π
exp
(
−

A2(γφ=1)

2

)
< 0, (C.9)

∂{A(γφ=1)}
∂γφ=1

=

√
T
(

1− ln(1+γφ=1)−R ln2
(1+γφ=1)2−1

)
√
(1+ γφ=1)2−1

> 0, (C.10)

∂γφ=1

∂Q
=

1
σ2

w
> 0. (C.11)

We note that (C.9) is obtained due to the properties of the Q-function and (C.10) is obtained

due to the proof in [86, Appendix A]. According to (C.9), (C.10), and (C.11), we obtain
∂{ f (A(γφ=1))}

∂Q =
∂{ f (A(γφ=1))}

∂{A(γφ=1)}
∂{A(γφ=1)}

∂γφ=1

∂γφ=1
∂Q < 0, which results in ∂{ε(Q)}

∂Q < 0. We then find
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the sign of ∂ 2{ε(Q)}
∂Q2 . To this end, we express ∂ 2{ε(Q)}

∂Q2 as

∂ 2{ε(Q)}
∂Q2 =

∂ 2{ f (A(γφ=1))}
∂Q2 . (C.12)

In order to obtain the sign of
∂ 2{ f (A(γφ=1))}

∂Q2 , we rewrite
∂ 2{ f (A(γφ=1))}

∂Q2 as

∂ 2
{

f (A(γφ=1))
}

∂Q2 =
∂ 2
{

f (A(γφ=1))
}

∂{A(γφ=1)}∂Q
∂{A(γφ=1)}

∂γφ=1

∂γφ=1

∂Q

+
∂
{

f (A(γφ=1))
}

∂{A(γφ=1)}
∂ 2{A(γφ=1)}

∂γφ=1∂Q
∂γφ=1

∂Q

+
∂
{

f (A(γφ=1))
}

∂{A(γφ=1)}
∂{A(γφ=1)}

∂γφ=1

∂ 2γφ=1

∂Q2

=
∂ 2
{

f (A(γφ=1))
}

∂{A2(γφ=1)}

{
∂{A(γφ=1)}

∂γφ=1

}2{
∂γφ=1

∂Q

}2

+
∂
{

f (A(γφ=1))
}

∂{A(γφ=1)}
∂ 2{A(γφ=1)}

∂γ2
φ=1

{
∂γφ=1

∂Q

}2

+
∂
{

f (A(γφ=1))
}

∂{A(γφ=1)}
∂{A(γφ=1)}

∂γφ=1

∂ 2γφ=1

∂Q2 , (C.13)

where ∂ 2γφ=1
∂Q2 = 0. Based on the properties of the Q-function, we express

∂ 2{ f (A(γφ=1))}
∂{A2(γφ=1)}

as

∂ 2
{

f (A(γφ=1))
}

∂{A2(γφ=1)}
=

A(γφ=1)√
2π

exp
(
−

A2(γφ=1)

2

)
> 0. (C.14)

For now, we have
∂ 2{ f (A(γφ=1))}

∂{A2(γφ=1)}
> 0 in (C.14),

∂{ f (A(γφ=1))}
∂{A(γφ=1)} < 0 in (C.9), ∂{A(γφ=1)}

∂γφ=1
> 0 in

(C.10), ∂γφ=1
∂Q > 0 in (C.11), and ∂ 2γφ=1

∂Q2 = 0. Thus, determining the sign of
∂ 2{ f (A(γφ=1))}

∂Q2 is

equivalent to identifying the sign of ∂ 2{A(γφ=1)}
∂γ2

φ=1
. As per the proof given in [87, Appendix A],

we prove that ∂ 2{A(γφ=1)}
∂γ2

φ=1
< 0 for γφ=1 > γa, where γa is the solution to

ln(1+ γa)

(1+ γa)2−1
=

1
3

. (C.15)

Following (5.1), γφ=1 > γa leads to

γφ=1 > γa =⇒
Q
σ2

w
> γa =⇒ Q > Q0, (C.16)
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where Q0 = σ2
wγa As such, for Q > Q0, we have

∂ 2{ f (A(γφ=1))}
∂Q2 > 0, due to

∂ 2
{

f (A(γφ=1))
}

∂Q2 =
∂ 2
{

f (A(γφ=1))
}

∂{A2(γφ=1)}︸ ︷︷ ︸
>0

{
∂{A(γφ=1)}

∂γφ=1

}2

︸ ︷︷ ︸
>0

{
∂γφ=1

∂Q

}2

︸ ︷︷ ︸
>0

+
∂
{

f (A(γφ=1))
}

∂{A(γφ=1)}︸ ︷︷ ︸
<0

∂ 2{A(γφ=1)}
∂γ2

φ=1︸ ︷︷ ︸
<0

{
∂γφ=1

∂Q

}2

︸ ︷︷ ︸
>0

+
∂
{

f (A(γφ=1))
}

∂{A(γφ=1)}︸ ︷︷ ︸
<0

∂{A(γφ=1)}
∂γφ=1︸ ︷︷ ︸

>0

∂ 2γφ=1

∂Q2︸ ︷︷ ︸
=0

> 0. (C.17)

Then, following (C.17), we find that ∂ 2{ε(Q)}
∂Q2 > 0 for Q > Q0, due to

∂ 2{ f (A(γφ=1))}
∂Q2 > 0.

Based on the analysis above, the sign of ∂ 2{Pε (Q)}
∂Q2 in (C.7) is determined as

∂ 2{Pφ=1
ε (Q)}
∂Q2 =

∂ 2{pt(Q)}
∂Q2︸ ︷︷ ︸

<0 for 0<Q<Pmax(Nt−1)

(
ε(Q)−1

)
︸ ︷︷ ︸

≤0

+2
∂{pt(Q)}

∂Q︸ ︷︷ ︸
<0

∂{ε(Q)}
∂Q︸ ︷︷ ︸
<0

+ pt(Q)︸ ︷︷ ︸
>0

∂ 2{ε(Q)}
∂Q2︸ ︷︷ ︸

>0 for Q>Q0

> 0. (C.18)

To summarize, we prove that ∂ 2{Pφ=1
ε (Q)}
∂Q2 > 0 for Q0 < Q < Pmax(Nt−1), which completes the

proof.
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