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Abstract 
 Internal gravity waves are buoyancy-driven oscillations which can arise in a 
density-stratified fluid. They exist throughout the oceans and atmosphere, the 
oceanic internal wavefield being sufficiently energetic for nonlinear effects to play 
an important role in the internal wave dynamics. 
 Numerical studies of oceanic internal waves (such as Broutman & Young, 
1986) have suggested that under the right conditions a weak internal gravity wave 
can be strongly refracted and frequency-shifted by the time-varying shear of a large-
amplitude internal wave. 
 My project aimed to experimentally observe this type of strongly nonlinear 
interaction by generating the required internal gravity waves in a continuously 
stratified aqueous solution. The waves were observed using a colour schlieren 
system, and power spectra of the internal wavefield were obtained using conductivity 
probes and polarimetry. 
 Several nonlinear phenomena were observed, including anharmonic waves 
and forced sum and difference frequencies, as well as second-harmonic generation 
from the wave sources. However a combination of wavelength limitations imposed 
by viscosity, inescapable restrictions on the strong wave amplitude and severe 
observational difficulties all conspired to prevent detection of the particular 
nonlinear interaction of interest. A proposed apparatus could overcome these 
difficulties, but its construction would be quite beyond the scope of an Honours 
project. 
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Glossary of symbols 
 
Most capital letters refer to the background waves, and lowercase to the test wave or 
a generic wave. Dashed quantities are measured with respect to the rotated 
coordinates (x', z'). 
Subscript c refers to the value of a quantity at a caustic. 

Roman 
c =

k
2   phase velocity 

cg = k   group velocity 

cg  z C
1
cg C( )  component of test wave group velocity parallel to 

background phase velocity 
G=cgz'/C  
g = g ˆ z   acceleration due to gravity 

k=(k,l,m) wavevector 
M' magnitude of background wavevector 
mc' test wavenumber in y' direction at a caustic 
mi' incident test wavenumber in y' direction 

N buoyancy frequency N2
=
1

o

g o =
g

o

o

z
 

n refractive index 
p = po +  p  pressure (po is the hydrostatic equilibrium pressure) 

r = (x,y,z)  position vector 
S solute concentration 

t time 

u = (u,v,w) velocity 
Uc' background flow speed at a caustic 
ˆ x , ˆ y , ˆ z  unit vectors of Cartesian coordinates; ˆ z  points 

vertically upwards 

Greek 
  angle of k to the horizontal 
 magnitude of Re(k) 

 =2 /|k| wavelength 
= o +    density ( o is the hydrostatic equilibrium density) 

  angular frequency 

Other 
h = x, y,0( )  horizontal gradient operator 
k = k, l, m( )  gradient acting in wavenumber space 





Chapter 1: Introduction 

1.1 What are internal gravity waves? 
 There are many phenomena in fluids which are driven by buoyancy forces 
arising from the action of gravity on density differences in that fluid (Turner, 1973) - 
the most familiar example would be the convection which arises in an unstable 
density stratification. In a fluid with a stable density stratification (that is, with 
density increasing with depth), it is possible to have wave motion as an oscillation 
about that stratification, since a fluid element displaced from its equilibrium depth 
will experience a gravitational restoring force tending to return it to its original 
depth. Such waves are called internal gravity waves as they can propagate through 
the interior of a stratified fluid and are driven by gravity. My project is concerned 
with the interaction of internal gravity waves in an aqueous solution whose density 
increases continuously with depth. More details on these waves and their interactions 
are revealed in Chapter 2 - for the moment it is sufficient to say that the waves 
involve oscillations of the fluid velocity, density and pressure about the hydrostatic 
equilibrium state. 

1.2 Motivation: oceanic internal waves 
 The Earth's oceans and atmosphere are stably stratified for much of their 
depth and internal gravity waves propagating through these regions have great 
oceanographic and meteorological importance (Müller et al., 1986). Below the 
shallow well-mixed layer at the surface of the oceans, the water density increases 
with depth right down to the sea floor, allowing internal gravity waves to exist 
throughout the bulk of the oceans (Lighthill, 1978). Similarly, the atmosphere is 
stably stratified above a mixed layer near the ground. Density stratification in the 
oceans is due chiefly to changes in temperature and salinity, whilst that of the 
atmosphere is more the result of variation in potential temperature with height (that 
is, the temperature distribution which would result if the entire atmosphere were 
adiabatically brought to the same pressure) (Lighthill, 1978; Gill, 1982). This project 
was concerned with wave phenomena more relevant to oceanography than to 
meteorology.  
 Internal waves are found throughout the oceans, as a random superposition of 
different amplitudes, wavenumbers and frequencies. The range of vertical 
wavelengths is from around one meter to about one kilometre, whilst the horizontal 
wavelengths can be from a few metres up to tens of kilometres. (Müller, et al., 
1986). Typical velocities and vertical displacements are around 5 cm/s and 7 m, 
respectively, and wave periods can range from several minutes up to 12 hours 
(Lighthill, 1978; LeBlond & Mysak, 1978; Garrett & Munk, 1972, 1975). The wave 
periods are long because the restoring buoyancy force which drives the waves is very 
small in weakly stratified fluids such as the oceans. 
 Internal waves are very important in oceanography for many reasons, the 
main one being that they are thought to play a crucial role in the overall energy 
balance of the oceans by transporting energy from the planetary scales at which it is 
generated to the very small scales at which the energy is dissipated by molecular 
processes (Müller et al., 1986). 
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 Measurements of oceanic currents and temperature fluctuations due to 
internal wave motions have been taken since the 1920's (Briscoe, 1975). Since then, 
a great deal of data has been collected from field surveys throughout the oceans, 
which has given researchers a quite detailed picture of the oceanic internal 
wavefield. By 1970 essentially all the oceans had been surveyed in all seasons, and 
most of the data had been spectrally analysed. However it was not until 1972 that an 
attempt was made to characterise the essential features of the internal wavefield 
throughout the oceans by single model (Garrett & Munk, 1972). The Garrett & 
Munk (GM) spectra were essentially power-law fits to the available data, showing 
wavefield energy as a function of frequency and of vertical and horizontal 
wavenumber. As more detailed observations have been made, this empirical model 
has undergone a number of revisions, such as the 1975 version shown in Fig. 1.2.1 
(Garrett & Munk, 1975). 
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Fig. 1.2.1: The GM75 internal wave spectrum compared to observations (adapted 
from Garrett & Munk, 1975). 

 Observations of internal wave spectra throughout the oceans show a 
remarkable agreement with the “universal” Garrett & Munk model spectrum of 1975 
(see Fig. 1.2.1), and distorted spectra rapidly relax to this universal form (Müller et 
al., 1986). These observations suggest that the GM spectrum is close to a steady 
state, with energy transfers between different parts of the spectrum maintaining the 
equilibrium spectral shape. The sources and sinks of internal wave energy also have 
a bearing on the spectral shape, but since these are likely to be more localised and 
sporadic in nature, and occur at quite different parts of the spectrum, some 
redistribution process in the wavefield is also needed to account for the equilibrium. 
To oversimplify, the hypothesis is that wave energy is transported from the large 
planetary scales at which it is generated to the microscales where it is dissipated, and 
this energy cascade from large to small scales comes about through interactions 
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between internal waves of different wavenumbers (LeBlond & Mysak, 1978; Müller 
et al., 1986). 

1.3 Theoretical efforts 
 Since energy transport through the internal wave spectrum is forbidden by 
linear theory, such transport is an intrinsically nonlinear process. The problem of 
explaining the origin and stability of the empirical GM spectrum has inspired a great 
deal of theoretical work on nonlinear interactions between internal gravity waves. 
Such investigations have often involved statistical methods to model the transport of 
energy through the continuum of waves in the spectrum via the “resonant triads” 
which arise in weakly nonlinear interactions. These allow groups of three waves to 
interact strongly with each other only if they satisfy certain selection criteria, and 
thus restricts the number of interactions which need to be taken into account. 
 However Holloway (1980, 1982) and others pointed out that oceanic internal 
waves are about 100 times too energetic for weakly nonlinear theory to be 
applicable. This meant that a full understanding of the oceanic internal wavefield 
would probably require a theory incorporating strong nonlinear interactions, which 
allow much more indiscriminate energy transport through the spectrum than is 
possible with resonant triads. Theoretically describing the spectral evolution under 
the influence of such indiscriminate energy exchange is a daunting problem. As a 
result, several researchers have investigated strongly nonlinear processes which can 
occur when only a few waves are present (rather than a continuous spectrum), in 
order to understand some of the basic processes which can occur. 

1.4 Project aims 
 In this project I attempted to observe experimentally some of the strongly 
nonlinear interactions predicted by the theoretical investigations of Broutman and 
others (Broutman, 1984, 1986; Broutman & Grimshaw, 1988; Broutman & Young, 
1986; Macaskill & Broutman, 1988; Broutman & McIntyre, 1994; Thorpe, 1989). 
Waves were generated in a stratified salt or sugar solution and observed chiefly by 
optical methods, providing both flow visualisation and frequency spectra. 

1.5 Thesis overview 
 The following chapter presents the theoretical issues which needed to be 
addressed in designing and conducting my experiments. The details of strongly 
nonlinear theory and both inviscid and viscous linear theory were of crucial 
importance to my project. 
 Chapter 3 presents the apparatus used for producing both internal gravity 
waves and stratified aqueous solutions, whilst Chapter 4 discusses the numerous 
methods used for their observation. 
 The experimental results are presented in Chapter 5 and discussed in Chapter 6. 
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Chapter 2: Wave theory 

2.1 Inviscid linear wave theory 
 To understand the behaviour of nonlinear internal gravity waves we must first 
grasp the very unusual properties of these waves as predicted by linear theory, which 
applies in the case of infinitesimal wave amplitude. A fairly rigorous derivation of 
the properties of infinitesimal plane internal gravity waves is given in Appendix 1. 
This section will summarise the most important results of that derivation, and 
provide them with a physical interpretation. The results are all quite standard and can 
be found in any good physical oceanography text, such as Gill (1982) or LeBlond & 
Mysak (1978). 
 The fluid properties are described as functions of time t and of position 
r=(x,y,z) relative to right-handed Cartesian coordinate axes which are fixed to an 
inertial reference frame. The coordinates are chosen so that the z axis points 
vertically upwards. The fluid is characterised by the density (r,t), pressure p(r,t) and 
velocity u(r,t), and is assumed to be inviscid. Furthermore the conduction of heat, 
diffusion of solute and compressibility of the fluid are neglected (as these are seen in 
retrospect to be insignificant on the time and distance scales of the waves), so the 
density of a fluid element is constant. Gravity is assumed to be the sole external 
force, so the inviscid fluid is driven only by buoyancy forces and pressure gradients.  
 When at rest (ie. u(r,t)=0 r,t), the pressure and density of the fluid are 
denoted po and o, respectively and are functions of z only. A very important 
parameter governing the motion of a density-stratified fluid under gravity is the 
buoyancy frequency N defined by 

 
N2

=
1

o

g o =
g

o

o

z  (2.1.1), 

where g is the acceleration due to gravity and g is its magnitude. The buoyancy 
frequency is a measure of the stability of a stratified fluid: it is real for stably 
stratified fluids, and imaginary if the stratification is unstable. If an element of fluid 
in a stably stratified fluid is given a small vertical displacement from its equilibrium 
depth, it will oscillate vertically about that equilibrium depth with a frequency N. 
This frequency is larger for steeper density gradients, as this increases the restoring 
force arising from a given vertical displacement. The imaginary value of N in an 
unstable stratification indicates that arbitrarily small displacements from equilibrium 
(initially) increase exponentially with time. 
 When the fluid is in motion, the perturbations p', ' to the resting state are 
defined by 

 p = po +  p ,   = o +    (2.1.2). 

If the perturbations u, p' and ' to the resting state are infinitesimally small, products 
of these terms may be neglected from the equations of motion, a procedure known as 
linearisation. 
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 The linearised equations of motion admit plane wave solutions when N is 
constant (ie. the fluid density increases exponentially with depth), with sinusoidal 
variations in u, p' and ' given by 

 
u =

km

k2 + l2
,

lm

k 2 + l2
,1

 
 

 
 
w(r, t)

 (2.1.3), 

 
 p =

m o

k2 + l2
w(r ,t)

 (2.1.4) 

and 
  =
i oN

2

g
w(r, t)

 (2.1.5) 

respectively. Here 

 w(r, t) = W exp i k r t( )[ ] (2.1.6) 

is the vertical component of the velocity field, k=(k,l,m) is the wavevector,  the 
wave frequency and W is an arbitrary small constant. We use the usual convention 
whereby the actual physical quantity is the real part of any complex expression. 
 The expression for u shows that the waves are plane polarised, and it is easy 
to show that u and k are perpendicular, that is, the waves are transverse. The 
perturbation density field ' arises simply from advection of the background density 

o by the vertical velocity field w. Note that the factor of i in (2.1.5) indicates a + /2 
phase shift in ' relative to p' and w. A representation of these fields is shown in Fig. 
2.1.2, and will be explained more fully later. 
 The wavevector k and frequency  are connected by the dispersion relation 
which, for short waves such that |k| >> N2/2g, may be written 

 = N cos  (2.1.7), 

where  is the angle of k to the horizontal (see Figs. 2.1.1 & 2.1.2). Note that N 
forms an upper limit on the possible frequencies of infinitesimal internal gravity 
waves. The dispersion relation shows that short internal gravity waves are extremely 
anisotropic: the frequency depends only on the direction of the wavevector, not its 
magnitude. Thus the wavelength =2 /|k| is independent of  - a disturbance at a 
given frequency can produce waves of any wavelength, provided they are 
sufficiently short. Surfaces of constant  in wavenumber space are surfaces of 
constant , ie. cones. This is illustrated in Fig. 2.1.1. 
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Fig. 2.1.1: Surfaces of constant  in wavenumber space. 

 The phase velocity c (the propagation velocity of surfaces of constant phase) 
is defined by 

 c =
k
2  (2.1.8) 

(where  is the magnitude of k) and is thus parallel to k. The group velocity cg is 
defined as the gradient of  in wavenumber space, and is thus perpendicular to the 
conical surfaces of constant . Hence the group and phase velocities are 
perpendicular, as shown in Fig. 2.1.1. 
 Analytically, taking the gradient with respect to k of the dispersion relation 
gives 

 cg =
Nm k 2 + l2

3

km

k2 + l2
,

lm

k2 + l2
, 1

 
 

 
 
 (2.1.9), 

showing (by comparison with (2.1.3)) that cg is parallel to u, and that 

 cg c = 0  (2.1.10). 

 In contrast, an isotropic dispersion relation would imply surfaces of constant 
frequency which are spheres centred on the origin. The group velocity is normal to 
these surfaces and is thus parallel to the phase velocity - a much more familiar 
situation. 
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 A vertical slice though a portion of a plane internal gravity wave at an instant 
in time is shown in Fig. 2.1.2. Wavefronts (lines of constant phase) extend from the 
bottom right to the top left and propagate towards the lower left with the phase 
velocity c. The variation of the three fields along lines perpendicular to the 
wavefronts is shown. Although the wavefronts are moving to the lower left, the wave 
energy is propagating to the upper left with the group velocity cg. 
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Fig. 2.1.2: The structure of a plane internal gravity wave. 

 Physically, the anisotropy of the dispersion relation (which implies that c and 
cg are not parallel) can be understood as follows. A vertical buoyancy force acts on 
the density perturbations, directed upwards for negative perturbations and 
downwards for positive. For short waves, the pressure gradient (directed normal to 
the wavefronts) exactly cancels the component of the buoyancy force normal to the 
wavefronts. Thus the only restoring force is parallel to the wavefronts, resulting in a 
transverse wave. This restoring force is proportional to cos , giving the anisotropic 
dispersion relation (Lighthill, 1978). 
 In terms of the wavelength =2 /|k|, the magnitudes of the phase and group 
velocities are 

 c =
2

=
N cos

2
 (2.1.11) 

and 

 cg =
N sin

2
 (2.1.12). 
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Thus both velocities are proportional to wavelength, but |c| increases with increasing 
frequency, whilst |cg| decreases. 

 Wave energy generated by an infinitesimal simple-harmonic disturbance at a 
frequency less than N will travel away from the source region with the group 
velocity cg, that is, along cones whose angle to the vertical is . This results in the 

cross pattern of waves shown in Fig. 2.1.3, where the wave energy is confined to 
narrow beams extending away from the source (the small dotted rectangle 
corresponds to the portion of a plane wave shown in Fig. 2.1.2). Wavefronts extend 
along these beams and propagate across them towards the horizontal plane 
containing the source, as shown by the fine arrows in the figure. The wavefronts 
appear “from nothing” at the insides of the cones, and disappear “into nothing” at 
their outsides. This appearing and disappearing trick is possible because the 
wavefronts carry no energy in their propagation direction. Note that the vertical 
components of the group and phase velocities are opposite in sign - this allows one 
to tell the direction of the group velocity by observing that of the phase velocity. If 
the source is two-dimensional, the wave energy is confined to travel one-
dimensionally and thus suffers no loss of intensity with distance (ignoring the effects 
of viscosity). The contrast between the behaviour of internal gravity waves and the 
spherical wavefronts seen in the familiar case of isotropic dispersion could hardly be 
more marked. 

at rest with oscillating wavemaker  

Fig. 2.1.3: Internal waves spreading from a small source. 

 In addition, if the periodic oscillation of the source is not simple-harmonic, 
wave beams will form for each Fourier component of the oscillation whose 
frequency lies below N. Each beam has a different angle  given by the dispersion 
relation for the frequency of the Fourier component which produced it, and as a 
result the different frequencies in the wavefield will separate out as they spread from 
the source. Thus the wave motion at a sufficient distance from a small source will be 
simple-harmonic, no matter how complex the disturbance which produced it. 
Furthermore, a periodic source oscillation which is not simple-harmonic will not 
produce higher frequencies in the wavefield if the extra harmonics lie above the 
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buoyancy frequency. Thus the (propagating) wavefield is band-limited by N, even if 
the source oscillation is not. This is so because source motions with >N produce 
evanescent waves which die off exponentially with distance from the source rather 
than forming free waves. These conclusions based on linear theory are strictly valid 
only for infinitesimal waves, and begin to break down as the wave amplitude 
becomes large (Samodurov, 1974; Kistovich et al., 1990). 
  These predictions of linear theory were confirmed experimentally by 
Mowbray and Rarity (1967) using a modified schlieren technique to observe waves 
produced in a stratified salt solution. Although they were far from infinitesimal, the 
behaviour of the waves generated in my project was to a large degree dictated by the 
constraints predicted by linear theory. 

2.2 Ray theory 
 We have seen in the previous section the properties of linear plane internal 
gravity waves in a medium with a constant buoyancy frequency N. Although plane 
waves are unrealistic in that they are infinite in both spatial and temporal extent, they 
still form a useful starting point in understanding the properties of more localised 
linear waves in inhomogeneous media. 
 To be more specific, a plane wave in some property  (such as the 
perturbation density of an internal gravity wave) is of the form 

 (r, t) = Aexp i k r t( )[ ]  (2.2.1), 

where the amplitude A, wavevector k and frequency  are constant. A more general 
wave motion is of the form 

 (r, t) = A(r ,t)exp iP(r, t)[ ]  (2.2.2), 

with a variable amplitude A(r,t) and a phase function P(r,t). If the amplitude function 
is slowly varying in space and time compared with the phase function, the waves are 
“nearly plane”, and can be described by way of ray theory. This is identical to the 
approach of geometrical optics as an approximation to wave optics, and is also 
known as the WKB approximation. 
 By analogy with plane waves, we define the local frequency and wavevector 
of such a nearly-plane wave by 

 =
P

t
 (2.2.3) 

and k = P  (2.2.4), 

respectively. These immediately imply that 

 
k
t
+ = 0  (2.2.5). 

This is often called the conservation of crests equation, as it implies that wavecrests 
can be neither created nor destroyed. The applicability of ray theory is closely linked 
to the validity of (2.2.5), which breaks down when A(r,t) varies on similar time or 
distance scales to P(r,t). 
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 In a medium whose properties vary in space or time, the dispersion relation 
connecting  and k depends on these variations. Thus the dispersion relation is of the 
form 

 (r, t) = k(r ,t); (r, t)( )  (2.2.6), 

where the parameter (r,t) represents the influence of the properties of the medium, 
such as variations in the buoyancy frequency N. 
 We can define the local group velocity by 

 cg = k  (2.2.7). 

This is analogous to the plane wave case, but now cg is a function of r and t. The 
wave energy from a point propagates with a velocity cg which varies with position 
and time, along a curved path known as a ray. Ray theory treats a wave like a 
particle (a wave packet) moving with velocity cg and with properties  and k which 
can vary as the “particle” propagates. In a frame moving with the ray, these 
variations are given by (LeBlond & Mysak, 1978) 

 
dk
dt

=  (2.2.8) 

and 
d

dt
=

t
 (2.2.9), 

which follow from the conservation of crests equation (2.2.5). 
 If the medium has no variation with respect to time, it is clear from (2.2.9) 
that the frequency remains constant along a ray. The short-wave dispersion relation 
(2.1.7) remains applicable when the buoyancy frequency N is constant in time and 
varies on length scales much greater than a wavelength (Lighthill, 1978). Since  is 
constant for a given ray, this results in a relationship between the local propagation 
angle  and the local value of N: 

 cos (r )( ) =
N(r)

 (2.2.10). 

Thus internal gravity waves are refracted by variations in N, that is, by deviations of 
the density profile from an exponential increase with depth. As shown in Appendix 
1.3, N can only be a function of the vertical coordinate z for a fluid in hydrostatic 
equilibrium, so if the wavefield involves negligible density variations, the refraction 
will be a function of depth alone. 
 This refraction serves to confine waves within a depth range in which their 
frequency is exceeded by the buoyancy frequency. This is illustrated in Fig. 2.2.1.  
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Fig. 2.2.1: Wave refraction and trapping due to a variation in N. 

 The trajectory of a ray moving into a region of decreasing N becomes more 
steeply inclined to the horizontal, and becomes vertical if it reaches a depth at which 
N= . At this point the ray's group velocity vanishes and it cannot proceed into the 
region in which N<  (a progressive wave solution is not possible in this region). The 
ray path forms a cusp as it doubles back on itself and propagates back through the 
region in which N> . If the ray is bounded above and below by depths at which 
N<  (as in the figure), it is confined to propagate in the intervening layer. 
 Such a situation exists in the oceans, where there is a layer close to the surface 
called the thermocline through which the density increases rapidly with depth due to 
a steep temperature gradient. Below the thermocline, the density varies much more 
gradually (resulting in a lower N), whilst the layer between the thermocline and the 
surface is well mixed by surface wave action and other instabilities, and so has 
essentially no gradient and zero N. Thus the higher-frequency oceanic internal waves 
are confined to propagate essentially two-dimensionally in this thermocline region 
(Lighthill, 1978). 
 Ray theory greatly simplifies calculations of complicated wave motions. With 
a knowledge of (r,t) the dispersion relation (2.2.6) can be derived, allowing the 
local group velocity to be found at any (r,t) for a given k. Starting from a point at 
which the values of  and k are known, the ray propagation direction can be found 
from (2.2.7). Taking a small step in this direction, new values of  and k can be 
found from (2.2.8) and (2.2.9), allowing the new value of cg to be found. Ray paths 
can be found in this way by integrating cg through the fluid. 
 Ray theory becomes invalid when the conservation of crests equation (2.2.5) 
breaks down, which occurs at places known as caustics where neighbouring rays 
cross. Ray theory also begins to lose its applicability when variations in the medium 
become large on time and length scales comparable to the period and wavelength of 
the rays, respectively. 
 The above results can be generalised for ray propagation in a moving 
medium. Let U(r,t) represent an ambient current which varies appreciably on length 
and time scales much greater than the period and wavelength, respectively, of the 
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rays. Then a stationary observer will measure a Doppler-shifted frequency ' given 
by 

   = + k U  (2.2.11), 

and rays will propagate with velocity cg+U, as they are advected by the current. The 
frequency  defined earlier is that measured in a frame moving with velocity U, and 
is often called the intrinsic frequency. The wavevector k is unaffected by the 
transformation between frames, and  still satisfies the dispersion relation (2.2.6). 
 In a moving medium, (2.2.8) and (2.2.9) are replaced by (Lighthill, 1978) 

 
dk
dt

= k( )U  (2.2.12) 

and 
d   

dt
=

t
+ k

U
t

 

 
 
 
 (2.2.13), 

where (as before) the derivatives are taken in a frame moving with the advected rays. 
From (2.2.12) we see that the rays are refracted by the shear due to the background 
current. Equation (2.2.13) shows that the frequency observed by a stationary 
observer can also be changed by fluctuations in the current, as we would expect from 
(2.2.11). 

2.3 The effects of viscosity 
 All the previous discussion has neglected the viscosity of the fluid medium. 
Thomas & Stevenson (1972) considered the case of two-dimensional linear waves in 
a viscous density-stratified incompressible fluid with constant N. They derived a 
similarity solution for the internal waves generated by a two-dimensional simple-
harmonic localised disturbance of negligible dimensions. 
 To describe the wavefield of a downgoing internal wave beam produced by a 
two-dimensional simple-harmonic disturbance at the origin, it is helpful to use 
rotated coordinate axes x' and z' parallel to the group and phase velocity of the 
waves, respectively. Thus x' is directed along the beam and z' across it as shown in 
Fig. 2.3.1. Then in terms of  (a dimensionless measure of distance across the 
beam), Thomas & Stevenson (1972) derive displacement profiles of the form shown 
in Fig. 2.3.2 for several values of t.  
 The locus of points of constant  is given by 

  z =
 x μ *

2 *N sin

 

 
  

 
 

1

3

 (2.3.1), 

where *  and μ*  are the density and viscosity, respectively, at the depth of the wave 
source. This is curve is shown in Fig. 2.3.1. 
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Fig. 2.3.1: Definition of coordinates aligned with the downgoing wave beam 
(adapted from Thomas & Stevenson, 1972). 

 The displacement profiles shown in Fig. 2.3.2 as a function of  will thus 
become broader as x' increases, since the value of z' for a given value of  increases 
with x', as given by equation (2.3.1) and shown in Fig. 2.3.1. This similarity solution 
imposes a minimum wavelength for the waves produced by a small source at a given 
distance x' from the source. A plot of z' against x' for various values of  is shown in 
Fig. 2.3.3 for typical parameters used in my experiments. By comparison with Fig. 
2.3.2 we see that the longest wavelength expected from such a small source in a tank 
60 cm long is about 5 cm. Thomas & Stevenson (1972) conducted experiments with 
a stratified salt solution which verified these predictions of their theory. 
 Kistovich et al. (1990) and Ivanov (1989) experimentally investigated wave 
generation by a source whose dimensions were not negligible. The sources used 
were vertically oscillated cylinders of various sizes. They found that the form of the 
beam generated depended on the ratio of the cylinder diameter to the viscous wave 
scale Lv given by 

 Lv =
1

N

gμ *
*

 

 
  

 
 

1

3

 (2.3.2). 

If the diameter was less than Lv, the wave produced was a unimodal beam with a 
maximum at the centre, as predicted by Thomas & Stevenson. Cylinders whose 
diameters exceeded this scale produced bimodal beams, with two maxima 
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corresponding to the top and bottom of the cylinder. For the stratifications used in 
my experiments, Lv is about 1.4 cm. 
 

 

Fig. 2.3.2: Similarity displacement profiles at different times (adapted from Thomas 
& Stevenson, 1972). 
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Fig. 2.3.3: Curves of constant  for my experiments. 
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2.4 Weak nonlinear interactions 
 Up to this point, we have considered only waves of infinitesimal amplitude, 
which are described by linear theory. Such waves will pass through one another 
without any change in their properties, and a linear combination of infinitesimal 
waves remains a solution of the linearised equations of motion. Under such 
conditions, there is no transfer of energy between different frequencies. 
 However, it is observed that the oceanic internal wavefield has a spectrum 
(see Fig. 1.2.1, for example) whose shape is essentially the same throughout the 
oceans (Garrett & Munk, 1972, 1975). Furthermore, distorted spectra are seen to 
return rapidly to this “universal” form. These intriguing empirical results have been 
the subject of intense theoretical investigation for several decades. An explanation 
consists of three parts: an understanding of energy sources, energy sinks and 
mechanisms by which energy may be redistributed in the spectrum. This 
redistribution must rely on some type of nonlinear interaction between waves in 
different parts of the spectrum, as linear theory prohibits such energy exchange. 
 In the process of linearisation, the nonlinear governing equations (A.1.12) and 
(A.1.13) become (A.1.14) and (A.1.15) by neglecting the terms 

 u   , u( )u  (2.4.1 a,b) 

and   
u
t

 (2.4.2) 

which involve products of the perturbation variables p', ' and u (see Appendix 1.3). 
As is clear from Fig. 2.1.2, the first two neglected terms are identically zero for a 
short plane wave, as u is perpendicular to gradients in ' and u. Thus a short finite-
amplitude plane wave is a valid solution for the nonlinear equations of a fluid with 
constant N, provided (2.4.2) remains negligibly small. 
 In general, a linear combination of such plane waves will not be a solution of 
the nonlinear equations, as the terms (2.4.1) may then be nonzero. However as 
Phillips (1960) pointed out (in the context of surface waves but equally valid here), if 
we have two plane waves of frequencies 1, 2 and wavevectors k1, k2 whose 
amplitudes are not too large, the nonlinearities are essentially quadratic. These 
quadratic terms result in secondary temporal and spatial variations characterised by 
frequencies 

 3 = 1 ± 2  (2.4.3) 

and wavevectors k3 = k1 ± k2  (2.4.4), 

which can be considered as small forcing terms to the linear equations. 
 In general 3, k3 will not satisfy the dispersion relation (so the phase velocity 
of these secondary components will not match that of a free wave with the same 
wavevector) and the amplitude of the secondary component will remain small. 
 However, if 3, k3 do satisfy the dispersion relation, the forced secondary 
component can then propagate as a free wave in its own right. In this case, the two 
initial waves together with the secondary wave form a resonant triad, and energy can 
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be exchanged between the three waves. From (2.4.3) and (2.4.4) it is clear that in this 
case the three waves are on an equal footing (they are all free to propagate), so the 
distinction between primary and secondary waves loses its significance (Turner, 
1973). The existence of resonant triads has been confirmed experimentally by 
McEwan (1971) and McEwan et al. (1972), amongst others. 
 These weakly nonlinear interactions have been incorporated into many 
statistical theories which attempt to explain the structure and evolution of the 
oceanic internal wavefield as a result of the formation of resonant triads amongst 
waves in different parts of the frequency and wavenumber spectra. Statistical 
theories are used because the wavefield is treated as being comprised of waves of all 
possible frequencies and wavenumbers, each with a spectral density which evolves 
with time. Such theories are reminiscent of those of quantum field theory and have 
actually been formulated in terms of Feynman diagrams of possible interactions, 
with propagating waves treated as particles and wave motions which fail to satisfy 
the dispersion relation described as virtual particles (Hasselmann, 1966). Such 
schemes can also incorporate the interaction of the internal wavefield with surface 
and seismic waves and with bottom topography. 

2.5 Strong nonlinear interactions 
 Although a great deal of work has been done on describing the oceanic 
internal wavefield in terms of weak interactions (see Müller et al., 1986), oceanic 
internal waves are often about 100 times too strong for weak theory to be applicable 
(Holloway, 1980, 1982). Thus it would seem that theories which incorporate strong 
nonlinear interactions will be needed to fully account for the observed oceanic wave 
spectra. The development of fully nonlinear statistical wave theories is a daunting 
task, as strong interactions allow much more indiscriminate energy transport 
between waves than interactions based on resonant triads. Thus several researchers 
have “started small” by investigating the strong nonlinear interactions of only two 
waves, in order to understand some of the basic processes which can occur when 
weakly nonlinear interaction theory breaks down. 
 Some of the most important interactions of the oceanic internal wavefield are 
between waves which are widely separated in terms of wavenumber (Müller et al., 
1986). Consequently, if the long wave is much stronger than the short wave, and of a 
much lower frequency, the effect of the long wave on the propagation of the short 
wave can be calculated by using ray theory. The weak short wave can be considered 
to be a “test” ray which does not modify the background long-wave flow. Using ray 
theory, the time-varying background flow due to the long wave can be arbitrarily 
strong, and the refraction and frequency shift of the short wave ray as it travels 
through this field can be found from equations (2.2.12) and (2.2.13). Note that the 
short wave frequency along a ray can change, since the background flow is time-
dependent.  
 Consider a purely two-dimensional interaction in which no properties of the 
wave field depend on y. Thus both the background and test waves have group and 
phase velocities parallel to the plane y=0. It is helpful to define rotated coordinates 
(x', z') parallel to the group and phase velocity, respectively, of the background wave, 
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which we assume to be downgoing (so that the vertical component of its group 
velocity is negative). We will denote quantities relating to the background wave by 
capital letters and reserve lowercase characters for the weak test wave; dashed 
quantities are measured with respect to the rotated (x', z') axes. This is illustrated in 
Fig. 2.5.1 - note that this rotated coordinate system is identical to that defined in 
section 2.3. 
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Fig. 2.5.1: Coordinates aligned with the background wavefield. 

 The background wave is considered to be infinite in extent in the x' direction, 
so the background field is a function of z' and t alone. It is clear from equation 
(2.2.12) that the component k' of the test wavevector in the x' direction is conserved. 
Thus the ray equations give the variation in m' of the test ray as a function of z' and t. 
Note also that only the component cg  z C

1
cg C( )  of the test wave group velocity 

in the z' direction is important, as the ray experiences no change in the background 
wavefield by moving in the x' direction. 
  The background field of the long wave affects the test ray through both the 
velocity and density gradient variations it produces. As is clear from equation 
(2.2.12), the ray is refracted through the action of the shear field produced by the z' 
dependence of the velocity field, and also refracted by the local modifications to N 
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arising from the density variations. The ray equations allow calculations of the test 
wave refraction to be made relatively easily (in some cases even analytic results can 
be found), yet places no restriction on the background wave amplitude. This 
approach was followed by Broutman and co-workers, and by Thorpe (1989), 
amongst many others. 
 Broutman and his collaborators looked at the effect of the shear field alone, 
by choosing a background which involved only horizontal fluid motions and hence 
no density variations (Broutman, 1984, 1986; Broutman & Grimshaw, 1988; 
Broutman & McIntyre, 1994; Broutman & Young, 1986; Macaskill & Broutman, 
1988). As this work provided the theoretical framework for my experiments, I will 
discuss it in some detail. The background chosen was an inertial wave, a limiting 
case of a gyroscopic wave, which is an internal wave driven by the Coriolis forces 
arising in a rotating reference frame such as the Earth1. The phase velocity of such 
waves is vertical, so the (x', z') coordinates are identical to the unrotated (x, z) 
coordinates in this case. Apart from simplifying the analysis, an inertial wave was 
chosen because these waves are amongst the strongest in the oceanic internal 
wavefield (Broutman & Young, 1986). 
 The inertial background wave was chosen to have phase velocity pointing 
upwards. The wave had infinite horizontal extent but was confined vertically by a 
Gaussian envelope - the vanishing group velocity implies that this envelope is 
stationary. A test internal gravity wave was propagated upwards from below the 
inertial wave envelope, and its path traced by numerically integrating the ray 
equations. 
 It was found (Broutman & Young, 1986) that no matter how weak the 
background field, there would always exist a range of test wavenumbers m' in which 
test rays would meet caustic surfaces (surfaces on which neighbouring rays cross) at 
certain phases in the background field. Broutman (1986) showed that the unphysical 
singularities given by ray theory at these caustics can be removed by standard Airy 
integral methods. 
 The top figure in Fig. 2.5.2 shows the position of a test wave packet as a 
function of time as it propagates through the shear field of the background wave (the 
coordinate z' is scaled by the characteristic width L of the Gaussian envelope 
enclosing the background wave). It is evident from this figure that the test ray group 
velocity changes abruptly when it encounters a caustic surface. These surfaces 
enclose the local velocity maxima of the background wave and thus move upwards 
with the inertial wave phase velocity C. The caustic surfaces close off at large |z'| due 
to the Gaussian envelope. 

                                            
1 Gyroscopic waves have a similar anisotropic dispersion relation to internal gravity waves, but the maximum 

frequency is the inertial frequency f rather than the buoyancy frequency N. Inertial waves are gyroscopic 

waves at the inertial frequency and consist of horizontal, circularly polarised currents with a vertical 

wavevector and phase velocity (pointing either up or down) and zero group velocity. Further details on inertial 

waves can be found in many oceanographic texts, such as LeBlond & Mysak (1978) or Apel (1987). 
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Fig. 2.5.2: Test ray refraction by caustics (from Broutman & McIntyre, 1994). 

 A test wave packet can encounter a caustic when the component cg  z of its 
group velocity parallel to C differs from C=|C|, so that the ray is in motion relative to 
the background wavefronts. When a ray arrives at a caustic (either by catching up 
with it or being overtaken), its value of cg  z  is altered so that it cannot penetrate the 
caustic surface (it becomes less than C if it was initially greater, or greater if it was 
initially less). The caustics themselves are defined as the surfaces on which cg  z =C, 
and the change in cg  z  is greatest at these surfaces because the test wave packet 
experiences a sustained shear by remaining at the same phase of the background 
wave for an appreciable time. As shown in the lower figure in Fig. 2.5.2, there are 
accompanying abrupt changes in the wavenumber m' of the test wave at each 
encounter with a caustic, and also more gradual changes due to the shear field. 
 The propagation of test rays through the background wave can be more fully 
understood in terms of Fig. 2.5.3. Broutman & Young (1986) showed that the 
quantity '' defined by 

 ''= '-Cm' (2.5.1) 

is conserved when the Gaussian envelope of the background wave is infinitely broad 
(ie. L ). Here ' is the Doppler-shifted frequency defined in (2.2.11), where the 
velocity field is that due to the background wave. '' is the frequency of the test 
waves as measured by an observer moving with velocity C. When L is finite, 
numerical experiments show that '' is slowly varying on the scale of the inertial 
wave envelope, and to a first approximation a wave packet may be considered to 
retain its initial value of '' as it passes through the background wave (Broutman & 
Young, 1986). Thus the wave packet is constrained to remain on a contour of 
constant '' such as those shown in Fig. 2.5.3. The vertical axis in these figures is the 
phase =M'(z'-Ct)/2  of the background wave. The small figures to the right show 
the variation in the background wave velocity field as a function of . 
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 Broutman & Young (1986) show that a given value of '' can be achieved by 
two distinct values of m' in the fluid at rest (a large distance away from the 
background wave), but a test ray cannot change from one of these roots to the other, 
since the intervening values of m' are forbidden (they correspond to different values 
of ''). Near the centre of the background wave envelope, the '' contours become 
strongly distorted, resulting in a region of closed contours where these two roots are 
connected. This region of closed contours enables the test ray to have a large 
permanent change in m' by switching over to the other root, while still conserving 
''. 

 The process is illustrated in the succession of diagrams in Fig. 2.5.3. In Fig. 
2.5.3a, the test wave approaches the inertial wavefield with ''= t'' and cg  z <<C, and 
thus moves backwards relative to the wavefronts, as shown by the arrow. Note the 
second contour of ''= t'' is separate from the incident contour in this figure. As the 
test wave packet travels closer to the centre of the inertial wave envelope the 
contours become more distorted, until the two contours for ''= t'' join into a closed 
curve as shown in Fig. 2.5.3b. The test wave packet orbits this contour as shown by 
the arrows, alternately having cg  z <C and cg  z >C. The test wave is stationary with 
respect to the background wave phase when the tangent to this contour is horizontal - 
this corresponds to an encounter with a caustic surface as shown in Fig. 2.5.2. As the 
background wave strength increases still further the closed contour of ''= t'' 
becomes confined so that the test wave cannot pass through all phases of the 
background wave (see Fig. 2.5.3c) - this corresponds to the finite width of the caustic 
surfaces in Fig. 2.5.2, which exclude the test wave from the vicinity of the velocity 
maxima of the background wave. The background wave amplitude experienced by 
the test wave decreases once the packet passes the maximum of the Gaussian 
envelope, and eventually the contour ''= t'' breaks into two separate curves once 
more. 
 The test wave packet can finish up on either of the disconnected curves after 
its encounter with the background wave, depending on the number of times it 
encountered a caustic. This is also clear from Fig. 2.5.2: cg  z  “toggles” between two 
distinct values each time the test wave reaches a caustic, so when the test wave 
escapes it essentially retains the value of cg  z  it had from its last encounter with a 
caustic. As is evident from Fig. 2.5.2, the test wave is most likely to escape from the 
background wave when cg  z >>C, which from Fig. 2.5.3 corresponds to a value of |m'| 
much less than the value |mc'| at the caustic (Broutman & Young, 1986). Thus the 
probable change in the test wave is most drastic when the incident test wave has 
cg  z <<C and |m'|>>|mc'| - this is a so-called “third-kind” encounter (Broutman & 
McIntyre, 1994). The decrease in |m'| in such an encounter corresponds (by the 
dispersion relation (2.1.7)) to an increase in frequency, since k' is conserved. The 
decrease in |m'| also corresponds to an increase in the wavelength of the short wave, 
contrary to the transport of energy from large to small scales predicted by statistical 
weak interaction theories and expected from studies of the oceanic internal 
wavefield. This remarkable result shows the difference it makes to consider fully 
nonlinear interactions, and it was the aim of my project to observe this effect 
experimentally. 
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Fig. 2.5.3: Contours of constant '' vs. background phase  (adapted from Broutman 
& Young, 1986). 

 As is clear from Fig. 2.5.3, only test waves which have an initial value of m' 
sufficiently close to mc' will find themselves on a closed '' contour at the maximum 
of the background wave envelope and thus be able to have a change in m'. The extent 
of the region of closed contours at the background wave maximum gives the range of 
incident wavenumbers m' which can be refracted - as shown in Fig. 2.5.3, this region 
is larger for greater peak background wave velocities. Furthermore, the larger 
regions of closed contours can connect more widely separated values of m' and so 
produce more drastic refraction. Thus refraction becomes both larger and more likely 
as the background wave is made stronger. 
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2.6 Adaptation of Broutman & Young's theory 
 Section 2.5 gave an overview of the main points of the theory developed by 
Broutman and collaborators to describe the effect of a strong inertial wave on the 
trajectory of a “test” internal gravity wave. This section describes an adaptation of 
this theory which replaces the inertial wave by a strong internal gravity wave, as was 
done in my experiments. 
 As was shown in section 2.1 (equations (2.1.11) and (2.1.12)), the magnitudes 
of the phase velocity C of the background wave and group velocity cg of the test ray 
depend on their propagation angle and hence on their frequency. Thus the ratio 
G cgz'/C depends on the waves' frequencies as well as their wavelengths and the 
angle between their wavefronts. In section 2.5, the inertial wave frequency was 
fixed, and only the dependence on the test wave frequency needed to be considered. 
When both waves are internal gravity waves (as in my case), both frequency 
dependencies need to be considered. This is the subject of this section - the theory is 
generalised to cases in which the angle  is not fixed at 90° (see Fig. 2.5.1). 
 From (2.1.11), the phase speed of the background wave is 

 C= /M' (2.6.1), 

where  is the frequency of the background wave, and M' the magnitude of its 
wavevector. From (2.1.12) and the dispersion relation (2.1.7), the magnitude of the 
group velocity of the incident test wave is 

 cg =
N

1
N

 
 

 
 

2

 (2.6.2), 

where  is the magnitude of its wavevector and  its frequency. Referring back to 
Fig. 2.5.1, it is clear that cgz' is given by 
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 (2.6.3). 

Thus we have 
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 (2.6.4), 

which for a given M'/  is a function of only /N and /N. A plot of G is shown in 
Fig. 2.6.1, and will be discussed shortly. 
 The adaptation of predicted wavenumber variations to the case of internal 
gravity waves is somewhat more complicated, since we no longer have the 
simplification that g is parallel to the z' axis. Thus the dispersion relations are most 
simply expressed in terms of the unrotated coordinates, but the rotated coordinates 
are best for describing the geometry of the wave interactions. 
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 Referring to Fig. 2.5.1, we can derive the following relations between the 
components of the test wavevector in these two coordinate systems: 

 k = cos = k' sin +m' cos  (2.6.5) 

 m = sin = k ' cos +m' sin  (2.6.6) 

 k '= sin( ) = k sin mcos  (2.6.7) 

 m' = cos( ) = k cos + msin  (2.6.8). 

 I use the sign convention that frequencies are positive, but the components of 
wavevectors may have either sign. Note from Fig. 2.5.1 that k, m, k' and m' are 
negative, whilst  and M' are positive. As in section 2.5, uppercase symbols belong 
to the background wave, whilst lowercase is reserved for the test wave. 
 As in section 2.5, we define the frequency '' by 

 ''= -U'k'-Cm' (2.6.9). 

This is the test wave frequency as measured by an observer moving with velocity C - 
it suffers Doppler shifts due to the background wave velocity field, as well as the 
motion of the observer. The conservation of '' in a plane background wave follows 
from the proof in Broutman & Young (1986). 
 From the dispersion relation (2.1.7), the test wave frequency is given by 

 =
kN

k '2 +m' 2
kN

m'
 (2.6.10), 

where the latter approximation applies when |m'|>>|k'|, corresponding to a small 
angle between the test wave and the background wave. This approximation is 
applicable to the incident test waves in my experiments, but may not be valid for the 
refracted ray if the refraction is strong (this prevented me from deriving values of m' 
and  for a refracted ray). In this approximation, we have by (2.6.5) and the 
dispersion relation (2.1.7) that  

 =
Nk'

m'
sin +  (2.6.11). 

The conservation of '' implies, from (2.6.9) and (2.6.11) that 

 m' =
1

2C
   +  U  k ( ) ±    +  U  k ( )

2
+ 4CN  k sin[ ]  (2.6.12). 

This gives two different m' values for a given '' when U'=0. These m' values 
coalesce at a caustic, where from (2.6.12), (2.6.9) and (2.6.7) the value mc' of m' at a 
caustic is given by 

  m c =
N

 M sin( )sin  (2.6.13). 

 For a third-kind encounter, we need |mi'|>>|mc'|, where mi' is the incident 
wavenumber of the test wave. Thus we need to minimise 

 
 m c
 m i
=

1

cos( )

N  M 
sin( )sin  (2.6.14). 
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 Figs. 2.6.1 and 2.6.2 show non-dimensional plots of G (from (2.6.4)) and of 
mc'/mi' (from (2.6.14)), respectively. Using the dispersion relation, these are shown as 
functions of the incident /N, with each curve corresponding to a different value of 

/N. In both plots, curves intersect the horizontal axis when /N= /N, allowing 
/N to be determined for each curve. We need small values of both G and mc'/mi' for 

a third-kind encounter, and these plots show that this requires either  or >>M' 
for the incident wave, as it is impractical to use /N 1 since the refracted ray will 
have an even higher frequency. Thus to have a third-kind encounter in which the test 
wave frequency is significantly higher than that of the background wave, we also 
need the test wave to be much shorter than the background wave. 
 Equation (2.6.12) also allows us to find the value Uc' of U' at a caustic. The 
square root in (2.6.12) is zero in this case, giving 

  U c =
N sin

 m i
+

C  m i
 k 

+
4CN sin

 k 
 (2.6.15), 

where from (2.6.9) I have used the expression 

 ''= -Cmi' (2.6.16), 

where m'=mi' when U'=0, far from the background wave. Equation (2.6.15) gives the 
minimum peak flow speed in the background wave required to create a caustic (and 
hence strong refraction) for a given mi'. From (2.6.7), (2.6.8) and (2.6.1), (2.6.15) 
may be written in the non-dimensional form 

 
N

 U c =
sin

cos( )
+

N  M tan( )
+

4 sin

N  M sin( )
 (2.6.17), 

which (by the dispersion relation (2.1.7)) depends only on the dimensionless 
parameters /N, /N and /M'. The implications of this equation will be discussed in 
Chapter 6, using the experimental value of /M'. 
 
 The analysis of this section is only a partial adaptation of the theory, whose 
implications need to be treated with considerable caution. It was intended as a guide 
for devising experiments rather than a rigorous theory to be tested. The changes 
introduced by replacing the inertial wave by an internal gravity wave are more far-
reaching than was considered here, since an internal gravity wave produces a 
variation in the density gradient as well as a shear field, and this results in a time- 
and space-dependent local buoyancy frequency which also refracts the rays. This 
was entirely ignored in this section, but Thorpe (1989) asserts that refraction due to 
the shear field is negligible compared to that due to the density variations under the 
conditions encountered in my experiments.2 
 Another caveat is that the ray-theory approaches of both Thorpe (1989) and 
Broutman and collaborators may not be applicable to my experimental situation, as 

                                            
2 Thorpe (1989) produced a formulation of refraction by the background wave's density variations which used 

ray theory for the test wave and ignored the shear field of the strong wave. He calculated some numerical 

results, but produced no analytic results of use to my project. The numerical results were of little use as they 

did not apply to the parameters used in my experiments. 



Fig. 2.6.1: Normalised G vs. ω for various Ω.

Fig. 2.6.2: Normalised mc'/mi' vs. ω for various Ω.
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my apparatus could not produce a large separation in wavelength and frequency 
between the test and background waves. 
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Chapter 3: Experimental methods 

3.1 Overview of the apparatus 
 This project aimed to use internal gravity waves to observe the strongly 
nonlinear interactions predicted by the numerical work of Broutman and others. To 
achieve this I needed a density-stratified medium and sources of both long, large 
amplitude waves and short, weak waves. The apparatus and methods used to observe 
the waves and their interactions are discussed in Chapter 4. 
 The experiments were conducted in a rectangular glass tank with internal 
dimensions 50  60  20 cm, giving a volume of 60 L (see Fig. 3.1.1). There was a 
hole in the centre of the tank's base through which it was filled with either a salt 
(NaCl) or sugar (sucrose) solution of varying concentration, creating a density-
stratified solution. The tank filling process is presented in section 3.2, and the effects 
of diffusion on a gradient so produced are discussed in Appendix 2. 
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Fig. 3.1.1: The experimental tank. 
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 Since both the theory and the optical visualisation methods are simpler for 
two-dimensional flows, the apparatus inside the tank was designed to have very little 
variation in the y direction throughout the 20 cm internal width of the tank. As salt 
water was used to produce most of the stratifications, the metal parts of the apparatus 
which were in contact with the solution were made from either aluminium or 
stainless steel to reduce corrosion. 
 At either side of the tank were mechanisms (built by Mr Tony Beasley) for 
supporting and oscillating the two wavemakers -see Fig. 3.1.2. Each consisted of a 
vertically sliding section driven by a DC electric motor via a crank arm. Each crank 
arm was 68 cm long and strokes did not exceed ±3 cm, so the wavemaker motion 
was very close to sinusoidal. The stroke of each crank was continuously variable 
between 0 and ±11 cm, and the speed of each motor was also continuously and 
independently variable, from 0 to 0.9 rad/s for the background wave and from 0 to 
3.0 rad/s for the test wave. The wavemakers themselves were two-dimensional forms 
cut from Perspex and supported at an adjustable height by two metal arms. Thus the 
two wave sources were variable in frequency, stroke, mean vertical position and in 
profile. Several different wavemaker profiles were made and tested - some examples 
are shown in Fig. 3.1.3. The large wavemakers produced greater particle 
displacements and thus stronger waves. 
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Fig. 3.1.2: The crank system for oscillating a wavemaker. 
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 The wavemakers were held flush against the end walls to avoid mixing. As 
illustrated in Fig. 3.1.1, they produced waves in the manner shown in Fig. 2.1.3, but 
only one side of the cross pattern was produced due to the presence of the end wall. 
The wall coincides with a plane of symmetry of the flow pattern in Fig. 2.1.3 
(considering it to be two-dimensional), so its presence makes no difference to the 
flow, apart from small boundary-layer effects due to viscosity. The wave generators 
were placed at the ends of the tank in order to increase the volume of the tank which 
could be used for experiments, and also to reduce the number of wave beams 
present. 
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Fig. 3.1.3: Cross-sections of some of the wavemakers used. 

 The waves generated by these sources were strongly reflected by the tank 
walls and the water surface, so a considerable amount of damping was made in order 
to reduce this effect (see Fig. 3.1.1). Effective damping makes the tank response 
more like that of an unbounded system, as it reduces the Q of the resonant cavity 
formed by the tank so that resonant modes are not so important. The damping was 
made from plastic flyscreen mesh supported on wire frames, and reduced the wave 
amplitude by increasing the viscous dissipation of its energy. Damping was found to 
be most effective when its outer layers were very diffuse. This reduced reflection 
from the damping itself, and provided extra damping on the way out for any waves 
reflected by deeper layers of mesh or the walls of the tank. After some refinements 
the damping was sufficiently effective to make any reflected waves undetectable. 
 A colour schlieren system provided a means of visualising the wavefield. The 
system viewed a circular area of the tank 30 cm in diameter, as shown in Fig. 3.1.1. 
Further details on the schlieren system and other detection methods used can be 
found in Chapter 4.  
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3.2 Setting up a density gradient 
  A reasonably constant density gradient was created by the apparatus shown 
in Fig. 3.2.1, described in Oster (1965). To start with, the two identical buckets 
contained solutions at the maximum and minimum densities required for the tank. 
The buckets were connected by a pipe with a tap and the bucket containing the less 
dense solution had a second pipe connecting it to the bottom of the tank via a tap and 
flow meter. The volume of solution in each bucket was carefully adjusted to ensure 
that there was no pressure difference between the two ends of the pipe connecting 
the buckets, and that the total volume was that required to fill the tank. 

Experimental tank

denser solution less dense
solution

stirrer

tap

tap

flow meter

gravity
feed

 

Fig. 3.2.1: Tank filling apparatus. 
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 The bucket containing the less dense solution had a stirrer which ensured that 
its contents was kept thoroughly homogenised. Water in the mixed bucket was fed 
slowly by gravity into the bottom of the tank, where a baffle ensured that it spread 
horizontally along the bottom. Dense water flowed into the mixed bucket to equalise 
the bucket pressures, continually increasing the fluid density in the mixed bucket 
which fed into the tank. New fill water spread under the water already in the tank, 
gradually lifting the less dense older layers towards the top. 
 The result was a tank filled with water whose density increased monotonically 
with depth. In order to obtain a reasonably constant density gradient the volume flux 
into the tank needed to be kept constant, as incoming fluid mixed with that already in 
the tank to a degree which depended on the flow rate. To keep this mixing constant, 
the flow was continuously monitored by the flow meter and adjusted manually using 
the tap throughout the filling process. 
 If the flow rate from the dense bucket was half the flow from the mixed 
bucket into the tank, and the horizontal area of the tank was constant throughout its 
height, the tank fill had a linear variation of density with depth. To achieve this 
equipartition of flow from the buckets, the flow into the tank needed to be slow 
enough so that the two buckets remained close to equilibrium. This slow filling also 
reduced the amount of mixing in the tank and made the solution in the mixed bucket 
more homogeneous. When the horizontal area of the tank was reduced at some 
height (for example, by having a wavemaker of large horizontal size in the tank), the 
gradient was reduced in this region. This turned out to be more of a problem for the 
schlieren system than for the waves themselves - this will be discussed further in 
Chapter 4. The damping shown in Fig. 3.1.1 was sufficiently diffuse not to adversely 
affect the gradient in this way. 
  Once the tank had been filled, it was left to diffuse for a few hours, as 
diffusion acts to make the density gradient more constant in the body of the tank. 
Very smooth gradients were obtained by filling the tank over about 2.5 hours and 
leaving it to diffuse overnight. The effects of diffusion on salt or sugar gradients are 
discussed in detail in Appendix 2 where it is shown that in the short term (hours to 
days), diffusion tends to linearise the gradient at intermediate depths. However over 
a few weeks, diffusion reduces the depth range over which the density profile is 
linear, until eventually the entire tank has a uniform density. This large-scale 
diffusion is sufficiently slow to allow experimentation with an essentially constant 
stratification for a week or two in salt water, or three times as long with a sugar 
gradient (as sugar diffuses three times more slowly than salt). Typical density 
gradients used in my experiments had a density increase of 15% over the 50 cm 
depth of the tank, giving a buoyancy frequency of about 1.65 rad/s. 
 In practice, diffusion was not the only mechanism which disturbed the 
gradient. The flow around the wavemaker could separate in turbulent eddies which 
mixed the gradient, the mixed fluid intruding across the tank at its equilibrium depth. 
If the wavemakers were smoothly shaped, kept flush against the end walls and not 
moved too rapidly (ie. the product of frequency and stroke kept sufficiently small), 
this mixing could be kept at a negligible level. Convection could be caused by 
differences between the tank and ambient temperatures, and by the cooling and 
increased solute concentration of the uppermost layers by evaporation. The first 
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cause was effectively countered by keeping the room temperature constant and 
avoiding direct sunshine on the tank, as well as filling the tank with water at the 
ambient air temperature. Evaporation was minimised by floating polystyrene foam 
on the top of the water, and enclosing the top of the tank in several layers of 
polyethylene plastic wrap. 
 A more serious danger for the stratification was gross mixing caused by 
moving the apparatus inside the tank. It was extremely difficult to change such 
things as the position of the damping or the wavemaker shape without so damaging 
the stratification that it would need to diffuse for several days to recover, if it could 
recover at all. Thus the tank contents needed to be planned and positioned before the 
tank was filled if good results were to be obtained. The process of mixing solutions, 
filling the tank and allowing diffusion to smooth the gradient took at least two full 
days, severely limiting the number of experimental geometries which could be tried. 
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Chapter 4: Wave observation methods 

4.1 Overview 
 As shown in section 2.1 (equations (2.1.3) - (2.1.5)), internal gravity waves 
involve periodic variations in the velocity, density and pressure of the fluid, and any 
of these could in principle be observed to measure the properties of the waves. 
 The velocity at a point can be measured down to 1 mm/s by using a thermistor 
probe connected to a constant-temperature bridge circuit (McEwan, 1971; McEwan, 
Mander & Smith, 1972). Alternatively, by adding tracers to the fluid (such as dye 
streaks or neutrally buoyant particles), the velocity field can be inferred by 
measuring the displacement field (Merzkirch, 1974). Adding rheoscopic particles 
(“fish flakes”) to the fluid allows the shear structure of the waves to be seen, again 
giving a (qualitative) indication of the velocity field. 
 The density field can be measured by a number of different methods. The 
refractive index of a salt (NaCl) or sugar (sucrose) solution is related to its density 
(see Fig. 4.2.1), as is the conductivity of a salt solution (Fig. 4.5.1) and the optical 
rotation of a sugar solution (Fig. 4.6.1). The variation of refractive index can be 
observed using shadowgraph, Moiré, schlieren or interferometric techniques 
(Merzkirch, 1974; Oster, 1965; Holder & North, 1963), whilst conductivity probes 
and polarimeters can be used to measure conductivity and optical rotation, 
respectively (Head, 1983; Lambert & Davey, 1974). In the course of my 
experiments, all of these methods except interferometry were used to observe the 
density field, and in addition dye streaks were used to observe the fluid 
displacements. In practice, the pressure fluctuations were too small to be easily 
measured. 

4.2 Shadowgraph 
 The refractive index of a salt or sugar solution is nearly linearly related to the 
density of the solution, as Fig. 4.2.1 shows. The refractive index gradients resulting 
from spatial variations in the density of the solution will refract light rays, thus 
allowing the density variations to be detected. 
 The shadowgraph method is the simplest technique used for observing 
refractive index variations. It involves merely illuminating the test region (ie. the 
tank) with parallel light from a small source, and placing a screen on the other side 
of the test section (see Fig. 4.2.2 below). Light rays which pass through regions in 
which the second derivative 

 v
2n

2n

x 2
+

2n

z2
 (4.2.1) 

of the refractive index n is not constant will be brought closer together or spread 
further apart, depending on the sign of this second derivative (see Fig. 4.2.2 for the 
orientation of the coordinates). This results in variations in brightness of the screen's 
illumination, giving an image of the variations of v

2n  across the test region (Holder 
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& North, 1963; Merzkirch, 1974). This lensing process is identical to that which 
produces a pattern of ripples on the bottom of a pool under sunlight. 
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Fig. 4.2.1: Refractive index of salt and sugar solutions vs. density. 
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Fig. 4.2.2: A shadowgraph system. 

 Because the shadowgraph technique visualises second derivatives of the 
refractive index, it is not very sensitive and is difficult to use to observe internal 
gravity waves (although it has been done - see Thorpe, 1989). It has the advantage of 
being extremely simple to set up - all that is needed is a slide projector as a light 
source and a sheet of tracing paper to form the screen. The projector is placed at 
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some distance from the test region so the light is reasonably parallel. I used a 
shadowgraph to monitor turbulent flow separation around the large wavemaker so 
that the attendant mixing could be minimised. 

4.3 Moiré technique 
 A simple modification to the shadowgraph technique allows it to detect 
variations in the first derivative of the refractive index, greatly increasing its 
sensitivity (Ivanov, 1989; Oster, 1965). Transparent sheets printed with a large 
number of parallel black lines are placed on either side of the test section with their 
lines at a small angle. The screen shows overlapping shadows of the two sets of 
lines, which form a Moiré pattern. To a very good approximation, a refractive index 
gradient will refract light through an angle proportional to that gradient (Mowbray, 
1967), thus shifting the relative positions of the two sets of lines on the screen. The 
Moiré pattern is very sensitive to such changes in the relative positions of the lines, 
and so enables the detection of slight changes in the refractive index gradient. The 
system is sensitive only to refractive index gradients normal to the lines, but this 
directional sensitivity can often be an advantage if gradients parallel to the lines are 
unimportant. 
 A Moiré system was set up briefly and found to be sufficiently sensitive to 
detect internal gravity waves, but was not used extensively as it was less effective 
than the colour schlieren system already set up. The Moiré technique may be worth 
considering for further work, as it is far easier to get working than schlieren but has 
similar sensitivity. This technique can also be used to view a larger tank area than is 
possible with a schlieren system. 

4.4 Schlieren techniques 
 Due to their sensitivity, schlieren methods are often used for visualising the 
refractive index changes produced by internal gravity waves. The basic idea is 
shown in Fig. 4.4.1. Light diverging from a narrow slit at the focus of a parabolic 
mirror (M1) forms a collimated beam of light. This passes through the test section 
and is incident on a second mirror (M2) which directs the light to a lens which forms 
an image of the test section. A knife edge is placed in the focal plane of M2, where 
an image of the source slit is formed, and positioned to block half the source image, 
producing a uniform loss of intensity in the image of the test section. 
 A refractive index gradient in a region of the test section will refract the light 
from that region, forming an image of the slit at the focus of M2 which is slightly 
shifted in relation to the image formed by undisturbed rays. If that shift has a 
component normal to the knife edge (so the amount of the image cut out by the knife 
edge is different), the image of the test section will show the shift as a different 
brightness in the disturbed region. This is illustrated in Fig. 4.4.2. 
 Geometrical constraints require the light reflected by the mirrors to be off-
axis (as in Fig. 4.4.1), which results in two main aberrations: coma and astigmatism. 
The coma of M1 is cancelled out by that of M2 if the angles of the Z-shaped setup in 
Fig. 4.4.1 are equal. The astigmatism is not removed in this way, and becomes more 
severe as the angles in the Z are increased (Holder & North, 1963; Merzkirch, 1974). 
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The astigmatism results in the source image having a focal distance from M2 which 
is slightly longer for horizontal than for vertical directions (considering the Z in Fig. 
4.4.1 to be in a vertical plane). If the slit and knife edge are not vertical or horizontal, 
the image plane of the source is not well defined and the resulting schlieren image of 
a homogeneous test section is unevenly illuminated. This problem is eliminated if 
the slit and knife edge are vertical or horizontal, as this gives a well defined image 
plane for the source (the focus in only one direction is relevant). 
 A standard schlieren system as described above produces images of the test 
section which display differences in the refractive index gradient normal to the knife 
edge as different shades of grey. Such a system can be made very sensitive, and is a 
standard visualisation method used in shock wave research and many other fields 
(Kleine & Grönig, 1991). Since the first rather than the second derivative of n is 
visualised, schlieren techniques are usually more sensitive than shadowgraphs. 
However, as it is only sensitive to refractive index gradients in one direction (unlike 
shadowgraphs), it can sometimes be difficult to interpret the images of complex flow 
patterns. 
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Fig. 4.4.1: A typical schlieren system. 
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Fig. 4.4.2: Shift in the slit image due to refraction. 

 
 In order to display gradients in different directions in a single image, a colour-
coding system can be used. In such a colour schlieren system, the source slit is 
replaced by a pinhole (with a white light source) and the knife edge by a transparent 
slide with a multicoloured pattern (see Fig. 4.4.3). The image of the pinhole passes 
through different colours on the slide depending on the refractive index gradients it 
has encountered, and by a suitable choice of slide pattern this allows the visualisation 
of two-dimensional gradients. Also, the position of the pinhole and slide may be 
interchanged, which can provide some advantages such as allowing the use of 
schemes to eliminate the effect of astigmatism and not limiting the imaging of the 
test section by the transparency of the slide. 
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Fig. 4.4.3: The colour schlieren system. 

 The refractive index of sugar or salt solutions is very nearly a linear function 
of their density, as Fig. 4.2.1 illustrates. Thus an undisturbed stratified fluid will 
have some refractive index variation with depth, which will refract the parallel beam 
used in a schlieren system. Mowbray (1967) studied the Euler-Lagrange equations 
(which describe the refraction of light rays through a medium with nonuniform 
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refractive index) and showed that if the refractive index (and hence density) 
increases linearly with depth, the rays will all be refracted downwards by the same 
angle. Thus the schlieren technique can be used in this case by making the simple 
modification of lowering M2 and tilting it slightly so that the refracted parallel beam 
is collected by M2 and reflected to the knife edge or filter. This will result in a 
uniform image in the absence of waves, and a system which visualises perturbations 
from this linear density stratification, that is, it shows v    rather than v . 
 It is convenient that diffusion initially acts to produce such a constant density 
gradient through the middle section of the stratification, as shown in Appendix 2. 
However as diffusion proceeds, this linear portion of the stratification becomes 
narrower, gradually decreasing the region of the tank in which the schlieren 
technique is useable. As shown in Fig. A2.3, this degradation also reduces the depth 
range through which N is nearly constant and internal waves are relatively 
unrefracted. 
 The system used in my experiments is shown in Fig. 4.4.3. The mirrors used 
were 30 cm in diameter with a focal length of 2.44 m, made by OWL. The white 
light source was a standard Kodak slide projector (with a 250 W halogen lamp) 
placed underneath the bench which supported the tank. Many different pinholes were 
tried, but the most effective was a hole in black cardboard about 0.5 mm in diameter. 
About 35 different slides were produced by drawing the required pattern on a 
computer and outputting this to a colour slide recorder. The selection of slide 
patterns produced allowed a large range of sensitivities to both refraction direction 
and magnitude. The CCD colour video camera was fairly standard: a National F10, 
with a zoom lens set at 55 mm. The camera could display a stopwatch in a corner of 
the screen, giving a timebase for the film. A scale reference was provided by a 5 cm 
grid drawn on the tank, and the schlieren images were recorded in time-lapse or real 
time on VHS tape. 
 A considerable amount of effort was required to develop a colour schlieren 
system of sufficient sensitivity to detect internal gravity waves. The first problem 
encountered was bulging of the Perspex tank, which in effect formed a very poor 
lens, strongly refracting the light and making the schlieren image unusable. The glass 
tank used for all subsequent experiments was much more rigid, but still bulged 
sufficiently to alter the colours around the edges of the schlieren image. The glass 
used in the tank was 8 mm thick, and to rebuild it using thicker, more rigid glass 
would have been prohibitively expensive. In addition, the image was disturbed by 
the slightly uneven thickness of the glass. 
 In order to partly overcome these difficulties, a very strong gradient was used. 
This increased the refraction due to the waves compared to that caused by the tank, 
and also aided the detection of the waves. The gradients used typically had a 15% 
change in density over the 50 cm depth of the tank - the gradient could not have been 
much steeper over this depth without saturating the salt solution at the bottom of the 
tank. 
 To obtain sufficient sensitivity to detect the weak test waves, the colour bands 
in the slides needed to be about 0.5 mm wide or less. With this sensitivity, it was 
impossible to avoid also seeing the distortions of the tank. The image of the pinhole 
(and hence the pinhole itself) needed to be at least as small as the stripe width in 



38 
 
order to give good colour definition in the image. This reduced the available light, 
but thankfully the CCD camera was just sensitive enough to produce useable images 
(although images became excessively noisy if the pinhole size was reduced much 
below 0.5 mm). 
 Another difficulty with the schlieren system was that there was a depth range 
with a reduced gradient due to the effect of the large-amplitude wavemaker on the 
filling process. This had only a minor effect on the waves (waves were refracted by 
less than 5° for most frequencies), but produced strong vertical refraction of the light 
passing through this region. Any slide whose pattern varied vertically thus produced 
an image in which the colours were distorted in this region. Slide patterns consisting 
of vertical stripes were used instead of bullseyes to eliminate this effect (see Fig. 
5.2.4 for an example). 
 The angle between the parallel beam through the test section and that from the 
pinhole (or to the camera) was about 12°. This angle could not be reduced due to 
space restrictions and resulted in considerable astigmatism, the vertical and 
horizontal foci of M2 being about 4.5 cm apart when the tank was empty. This made 
it very difficult to obtain an even background colour when using a slide with a two-
dimensional pattern. One solution I developed was to put the coloured slide in front 
of the light source, then use two slits in front of the camera. A vertical slit was 
placed at the horizontal focus, and a horizontal slit at the vertical focus, the net result 
being the same as if a square aperture had been used in a non-astigmatic system. 
Although this system worked very well when the tank was empty, any identifiable 
vertical or horizontal foci were destroyed by the lensing which occurred when the 
tank was full (due to the tank's distortions). Thus in practice the two-slit approach 
was no better than just putting a pinhole approximately in the focal “plane” of the 
second mirror. 

4.5 The conductivity probe 
 The conductivity of a salt (NaCl) solution depends strongly on the electrolyte 
concentration, which in turn determines the density of the solution at a given 
temperature. This is clear from Fig. 4.5.1, which shows a curve fit from Ruddick & 
Shirtcliffe (1979). 
 A commercial miniature four-electrode conductivity probe (model 5021 from 
Precision Measurement Engineering) and associated electronics were used to 
measure the density fluctuations in a very small region around the probe tip, which is 
shown in Fig. 4.5.2. The probe tip was attached to a long stainless steel shaft and 
lowered vertically into the tank to the desired location (the upper damping had holes 
through it to allow this). 
 The probe electronics applied a 10 kHz alternating current between the outer 
two electrodes and monitored the potential difference between the voltage probes. 
Virtually no current was drawn by the voltage probes, so the reading they give was 
unaffected by their surface impedances (Head, 1983). An alternating current was 
used to avoid electrolytic effects. 
 The control electronics included a feedback loop which adjusted the current to 
maintain a constant RMS potential difference between the voltage sensing 
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electrodes. The DC output voltage signal from the electronics was proportional to the 
RMS current needed to maintain the constant RMS voltage between the probes, and 
was thus proportional to the conductivity of the solution. The output was recorded by 
a chart recorder at first, and later by a data acquisition and analysis program I 
developed for the purpose (this is discussed in section 4.7 and Appendix 3). 
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Fig. 4.5.1: The relationship between density and conductivity of a salt solution. 
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Fig. 4.5.2: The four-electrode conductivity probe (scale diagram). 
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Fig. 4.5.3: Calibration of the conductivity probe. 

 A calibration curve for the conductivity probe is shown in Fig. 4.5.3. The 
nonlinear relationship between conductivity and density evident from this figure was 
insignificant for the very small density fluctuations of the waves I investigated, and 
so conductivity changes were taken to be directly proportional to density changes. 
As I was interested only in the spectral content of density variations, the output 
signal was not converted into an absolute density. The probe reading averaged over a 
region of radius 0.2 mm in the immediate vicinity of the electrode wires and had a 
response time of 2 ms (Head, 1983) - this was more than adequate for observing the 
internal gravity waves I produced. 
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4.6 Polarimetry 
 Many media exhibit the property of optical activity, which means that they 
rotate the plane of polarisation of linearly polarised light traversing the medium. This 
effect is due to the medium exhibiting a different refractive index for left- and right-
circularly polarised light. These are orthogonal polarisations, so any polarisation may 
be expressed as a linear combination of them. Thus a plane polarised light wave can 
be decomposed into left- and right-circularly polarised waves with a phase lag 
between them determined by the linear polarisation angle. In an optically active 
medium, the left- and right-circular polarisations travel with different speeds, so the 
phase difference between them (and thus the direction of plane polarisation) changes 
by an amount proportional to the distance traversed in the medium - that is, the plane 
polarisation direction rotates as the wave propagates through the medium (Guenther, 
1990). 
 Only media with some “handedness” can treat the two circular polarisations 
differently and thus be optically active. Many molecules are chiral, meaning they are 
different from their mirror images and thus come in distinct right- and left-handed 
forms. Solutions of such molecules are optically active. The degree of rotation is 
proportional to the wavenumber of the light, the distance traversed and the refractive 
index difference for the two circular polarisations. In a solution of a chiral solute, 
this last quantity is closely proportional to the solute concentration, and can thus be 
used as method for measuring the concentration. The concentration in turn gives the 
density of the solution, which fluctuates in the presence of internal gravity waves and 
can thus be used for their detection. 
 Sodium chloride ionises in solution to the obviously achiral ions Na+ and Cl-, 
so salt water is not optically active. However sucrose (table sugar) does produce 
optically active solutions, and this was the solute used when polarimetry was utilised 
to detect the waves. 
 Fig. 4.6.1 (based on the cubic curve fits of Ruddick & Shirtcliffe, 1979) 
shows the angular rotation per centimetre of a sucrose solution as a function of its 
density. 
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Fig. 4.6.1: Optical rotation at 589 nm vs. density of a sucrose solution.  
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 An internal gravity wave involves small oscillations in the density, which will 
result in small changes in the direction of polarisation of polarised light passing 
through the medium. As Fig. 4.6.1 makes clear, the change in polarisation direction 
is very nearly linearly related to the change in density (especially when the density 
fluctuations are small). Detection of these small changes in the polarisation direction 
(less than 1°) requires a sensitive instrument. 
 The polarimeter used had been designed and built at RSES some years 
previously by Mr. Derek Corrigan and Dr. Barry Ruddick, based on a paper by 
Lambert & Davey (1974). It allowed a continuous, direct readout of polarisation, and 
was sensitive to changes as small as 0.03° when correctly aligned. Fig. 4.6.2 is a 
simplified diagram showing its principle of operation. The polarised light source was 
a Spectra-Physics 4 mW helium-neon laser (632.8 nm), whose output thus had an 
extremely well-defined wavenumber and was also highly polarised, with an 
extinction ratio of approximately 1000:1 due to Brewster windows in the laser 
cavity. Thus it formed an excellent source as it gave an unambiguous rotation angle 
and also sampled the medium along a narrow beam, effectively making a point 
measurement of the two-dimensional flow. 
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Fig. 4.6.2: Schematic of the polarimeter. 
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 The beam was aligned along the y axis and passed through the tank to the 
detector apparatus. This consisted of a spinning chopper disc (driven at 136 rad/s 
(1300 rpm) by a servo-stabilised motor) with a polarising filter at its centre. The 
laser beam passed through this polariser and onto a photodiode, where, by Malus' 
Law, it produced a sinusoidal signal at twice the frequency of the rotation. An 
LED/photodiode pair had its light path interrupted by the chopper disc, and the 
signal produced by this was used to generate a square wave which provided a 
reference phase. The phase shift between this signal and the sine wave produced by 
the polariser was proportional to the angle by which the polarisation had been rotated 
and hence to the integrated density along the light path through the tank. 
 The electronics detected the time difference between the zero-crossings of the 
two signals and converted this to an analog output proportional to the angle of 
rotation, and also provided a digital display of the rotation angle in degrees. A data 
acquisition program (see section 4.7) was used to record and analyse the analog 
output signal. The zero point for the rotation angle was arbitrary and could be 
adjusted by simply rotating the laser about its axis - as I was interested only in 
fluctuations in the angle rather than an absolute measure of the angle itself, the zero 
point was set to any convenient value. 
 Alignment of the polarimeter was a difficult task and involved a considerable 
amount of adjustment to minimise the noise level. This was done mainly by using an 
oscilloscope to monitor the output of the photodiode behind the polariser and 
carefully adjusting the laser alignment to obtain a stable sinusoidal signal. A lens 
could be placed at a variable position in front of the polariser in order to correct for 
slight misalignments. The lens also served to increase the acceptance angle of the 
detector, thus allowing for refraction of the beam by internal gravity waves in the 
tank. In order to avoid reflections from the tank feeding back into the laser, the beam 
was put on a slight angle to the y axis. 

4.7 Data acquisition 
 I wrote a program for data acquisition and analysis using the LabVIEW 
package on a PC. The digitising board in the computer could acquire data from any 
analog source, such as the conductivity bridge, polarimeter, or the photodiode used 
in the attempts at making quantitative schlieren measurements. The program I wrote 
allowed the user to choose the sampling frequency and the number of samples to 
acquire and to perform a Butterworth lowpass filtering of this data, with an 
adjustable cutoff frequency and rolloff slope (this filtering capability was not 
actually needed in my experiments). The AC one-sided power spectra of both the 
raw and filtered data were automatically calculated, with the option of normalising 
the spectra. Plots of the raw and filtered waveforms and their power spectra were 
displayed. A timer was also provided, giving an absolute timebase to the samples 
which could be synchronised with an external timer (such as the on-screen stopwatch 
in the video recordings), allowing a direct comparison between the schlieren image 
and the detected signal. 
 In order to reduce high-frequency random noise the program included an 
oversampling capability. The user could choose some oversampling factor (say 50), 
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increasing the actual sampling frequency by this factor. The data returned from the 
sampling would consist of averages taken over every 50 samples, thus giving the 
same number of data points and the same effective sampling frequency as if there 
had been no oversampling. If the signal was essentially constant during those 50 
samples but was obscured by some symmetrically-distributed high-frequency noise, 
this averaging procedure could dramatically reduce the noise level, especially at high 
frequencies. 
 All the acquired data and analysis could be saved to a file readable with 
Microsoft Excel, so that further analysis, calculations, plots or printouts could easily 
be made. A data file was tabulated with the raw and filtered samples listed against 
the synchronised timebase provided by the timer (in both hours:minutes:seconds and 
total seconds). The raw and filtered power spectra were tabulated against frequency 
in Hz. A data file included the settings used to acquire it, providing a complete 
record for later reference. 
 A printout of the program and further technical details can be found in 
Appendix 3. 
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Chapter 5: Results 

5.1 Observed wave properties 
 A basic requirement for a laboratory system to display significant shear-
induced refraction of the type predicted by Broutman and collaborators was to have 
sufficiently small initial values of G and mc'/mi'. As shown in section 2.6, these 
conditions depend strongly on the wavelengths and frequencies of the waves - as the 
frequency was easily varied, the challenge was to produce an appropriate wavelength 
ratio. Furthermore, I needed a background velocity field of sufficient strength to 
produce caustics in the background wave.  
 When wave frequencies were sufficiently high to separate the upgoing and 
downgoing waves from a source, schlieren images could be used to determine 
wavelengths. This was not altogether straightforward, as the viscous wave envelopes 
contained only about one wavelength (see section 2.3), and the effect of a number of 
co-propagating wavelengths at the same frequency would be difficult to differentiate 
from that of an envelope. Furthermore, since the schlieren system detects refractive 
index gradients, it is more sensitive for short waves than long waves of the same 
amplitude. 
 Further wavelength information was found by using tracers. Small crystals of 
potassium permanganate (KMnO4) dropped into the tank left dyed trails which were 
advected by the velocity field. Tiny bubbles occasionally rising from the bottom 
damping also served as tracers, as they dragged up denser fluid in a trail behind 
them, which was visible in the schlieren image for a few seconds before diffusing 
away3. 
 Fourteen different wavemakers in a wide variety of shapes and sizes were 
used in an attempt to produce waves of significantly different wavelength (see Fig. 
3.1.3 for some examples). It had been hoped that the wavelength would scale with 
the wavemaker size, allowing a large wavelength difference between the background 
and test waves, and thus a small value of G. However, as shown in section 2.4 the 
situation is complicated by the effects of viscosity. As predicted in that section, at a 
distance of 30 cm from the source the shortest wavelength which could be produced 
was about 4 cm. Wavemakers smaller than the viscous wave scale Lv (about 1.4 cm 
in my experiments) all produced the same wavelengths - reducing the wavemaker 
diameter from 1 cm to 0.5 cm only reduced the wave amplitude. This result was 

                                            
3 Although the bubble trails involved only small density changes, these changes were over very small 

distances, and so produced refractive index gradients sufficient to be detected by the schlieren system. I 

attempted to make a bubble injector to utilise this effect, but it proved very difficult to produce sufficiently 

small single bubbles. A fine “spray” of hundreds of bubbles of the right size (and hence sufficiently small 

rising velocity) could easily be produced, but this was of little use as a tracer and was more damaging to the 

gradient than a single bubble. 
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disappointing, as it meant that the scale of the waves would not be so small 
compared to that of the schlieren viewing field and the tank.4 
 Having a fairly large minimum wavelength would have been tolerable if 
much larger background waves could be produced. Unfortunately, as mentioned in 
section 2.4, increasing the wavemaker diameter beyond Lv results in bimodal wave 
beams rather than a longer wavelength. Such a large diameter source acts in a similar 
way to a pair of sources smaller than Lv located at the top and bottom of the large 
wavemaker (wave generation is most effective at the top and bottom of the 
wavemaker because that is where the greatest fluid displacements occur). Thus a 
large wavemaker produced two pairs of strong beams (one pair propagating upwards, 
the other downwards). The wavelengths of these beams was no more than about 7 
cm, giving less than a factor of two difference between the wavelengths of the test 
and background waves. 
 As illustrated by Fig. 2.6.1, to achieve a small value of G under these 
circumstances requires the test wave to have a frequency only slightly greater than 
that of the background wave. Although the validity of theory based on the ray 
equations is highly questionable under such circumstances (little difference between 
the ray frequency and wavelength and the temporal and spatial variation of its 
surroundings), there is no firm line at which ray theory suddenly breaks down. The 
experiment went ahead to see whether the predictions of Broutman's theory could be 
extrapolated to this laboratory situation. 
 Throughout this thesis the “short waves” approximation (2.1.7) to the 
dispersion relation (A1.30) has been used, which applies when >>N2/2g. The 
smallest wavenumber was that of the background waves, about 2 /7 cm-1  90 m-1. 
N was typically 1.6 rad/s, giving N2/2g  0.13 m-1, clearly showing the validity of the 
“short waves” approximation. 
 Wave amplitudes were found by measuring the displacements of potassium 
permanganate streaks in the tank. It was found that the displacements were about ±1 
cm for the background wave, and around ±0.05 cm for the test ray, giving a large 
contrast between the strengths of the waves. This is important, since the theory 
assumes that the test ray is too weak to affect the background wave. At a typical 
frequency of 0.55 rad/s, this gives peak velocities of 0.55 and 0.025 cm/s for the two 
waves. The peak background wave velocity was about a factor of 13 less than the 
minimum required to produce caustics predicted by equation (2.6.17). The required 
amplitudes could not be generated with my apparatus (see section 6.1) - 
unfortunately, this was not realised until it was too late to build anything new. 
However, the background waves were still sufficiently strong to exhibit nonlinear 
                                            
4 From (2.3.1), the limiting wavelength is proportional to the cube root of the kinematic viscosity μ/ . 

Unfortunately, there are few fluids which are significantly less kinematically viscous than water (apart from 

exotic things like liquid hydrogen or superfluid helium). The most appropriate fluid I found in Lide (1991) 

was CHCl2F, a CFC refrigerant with one-quarter the kinematic viscosity of water which would thus reduce the 

limiting wavelength to 63% of the value in my experiments. This is not a very significant reduction, and this 

liquid boils at 8.9°C, making it difficult to work with. Apart from the question of its effectiveness as a solvent 

(so it could be density-stratified), using this liquid would also have reduced the background wavelength as 

discussed in the next paragraph. 
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behaviour, as will be shown in section 5.4. Their phase velocity was about 0.6 rad/s - 
this value is only slightly greater than the fluid velocities, and is an indication that 
the waves cannot be treated as infinitesimal. 
 Measurements were made of the ray propagation angle as a function of the 
wave generator frequency. As shown in Fig. 5.1.1, the measured values of cos  fell 
on a straight line intersecting the origin when plotted against . The line in this 
figure is the theoretical prediction using the value of N calculated from the density 
change over the depth of the tank. Although this is not a new result (it was verified in 
1966 by Mowbray & Rarity), it at least shows that the behaviour of these nonlinear 
waves remains constrained by these predictions of linear theory. 
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Fig. 5.1.1: cos  vs.  for N=1.65 rad/s. 

5.2 Schlieren results 
 The initial idea for the experiments was to observe the effect of the strong 
wave on the test wave by using the schlieren system. Wavelengths could be seen 
directly, and frequencies could be deduced from the angles of the wavefronts (or 
speed of the motors for the incident waves). As I had no clear theoretical predictions 
of the frequency of a refracted ray (and hence its angle), it seemed ideal to have a 
technique such as schlieren which allowed the whole interaction region to be 
surveyed. The schlieren system was used extensively to observe the waves and fine-
tune the design of the damping to intercept the waves in the desired way. It was 
invaluable as a means of seeing the wavefield, but proved to be less useful for 
observing wave refraction itself. 
 About 10 hours of video footage was recorded through the schlieren system, 
much of which was recorded at 3/14 time lapse to aid visual perception of these low-
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frequency waves. The schlieren system was refined until it was sufficiently sensitive 
to detect the weak test waves - Figs. 5.2.1, 5.2.2 and 5.2.3 show typical images of the 
tank at rest, with test waves and with background waves respectively. The area 
visible in these figures is shown in Fig. 5.2.5. Both wave sources were outside the 
field of view: the test wavemaker was at the lower right, and the background wave 
source was to the left. The scale grid in these figures has lines with a 5 cm spacing, 
and damping is visible at the bottom of each image. A reference time is shown at the 
bottom right and the run number is displayed at the top left. 
 These images were obtained with the slide shown in Fig. 5.2.4, which was 
aligned vertically and was thus sensitive only to horizontal refractive index 
gradients. This made the system oblivious to the strong vertical refraction through 
the region of reduced density gradient due to the large amplitude wavemaker (as 
discussed in section 4.4). Unrefracted rays passed through the clear central stripe, 
giving an uncoloured background. Horizontally refracted rays passed either through 
the primary or secondary colours depending on the sign of the horizontal refractive 
index gradient, and were given different colours from each group depending on the 
degree of refraction. Rays refracted by a very large amount missed the stripes 
altogether and produced black regions in the schlieren image. From Fig. 2.1.2 it is 
clear that the maxima of the refractive index gradient coincide with the regions of 
maximum flow speed in a single wave beam - thus refraction maxima correspond to 
regions of maximum velocity either parallel or antiparallel to the group velocity, 
these two flow directions producing horizontal refractive index gradients of opposite 
sign so wave “peaks” and “troughs” appear with different colours when using the 
slide in Fig. 5.2.4. 
 The colours visible around the edges of Fig. 5.2.1 are due to a slight bulge in 
the tank (a few millimetres over 60 cm), and those in the central region result from 
slight inconsistencies in the thickness of the glass tank walls. This was confirmed by 
draining the tank - the colours at the edges disappeared, but those in the centre 
remained. The density gradient was made very steep to increase the refraction due to 
the waves relative to that caused by the tank, but when the schlieren system was 
sensitive enough to detect the test wave, it also saw the tank's distortions. Rays 
which pass through these distortions have a constant offset to their refraction in 
addition to the fluctuating refraction from the waves, so the colours in these regions 
vary about a colour other than white. This results in the apparent distortion of the 
wavefronts in Fig. 5.2.2. Although this spoilt the aesthetic impact of the images, it 
was of little importance for my experiments since the visibility of wavelengths and 
wavefront angles was virtually unaffected. 
 The background wave image (Fig. 5.2.3) displays a pair of downgoing wave 
beams from the top and bottom of the wavemaker (as shown in Fig. 5.2.5), and a 
reflected upgoing beam at the top right (the upper damping had been removed for 
this run). A weaker upgoing ray is also visible. 
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Fig. 5.2.5: Wave interaction geometry. 

 The experimental geometry is shown above in Fig. 5.2.5. The upgoing test 
wave intersected the downgoing background wave beam at a shallow angle, and any 
downshift in |m'| as predicted by ray theory would result in refraction to a higher 
frequency and hence a steeper angle to the horizontal. Unfortunately, this sent any 
refracted wave into the upgoing beam from the background source. Although no 
strong refraction would be expected from this wave5, it greatly obscured the view of 
any test wave refracted by the downgoing beam. This was a severe problem because 
the background wave was so much stronger than the test wave. Having vertical 
stripes for the schlieren slide helped slightly by making the system more sensitive to 
steeper wavefronts. 
 Several approaches were tried to reduce the obscuring effect of the upgoing 
beam. The angular separation between the beams could be enlarged by increasing 
their frequency, but this was of limited use since the downgoing beam needed to 
remain above the test wave source (which in turn needed to be kept at least 5 cm 

                                            
5 G is negative in this case because the wavefronts in the upgoing beam are propagating downwards, so 

caustics cannot form because an upgoing test wave packet will always be in motion relative to the background 

wavefronts. 



Fig. 5.2.4: A colour schlieren slide (twice actual size).

Fig. 5.2.6: Schlieren image of test waves (Fig. 5.2.2)
with strong background waves.



51 
 

from the bottom of the tank to avoid the diffused region). Damping the upgoing 
beam was also found to be of little use, since there was insufficient space between 
the source region and the viewing area for the thickness of damping needed. This 
problem was exacerbated by the relatively large distance required for the two beams 
to separate out enough so that the upgoing beam could be damped without 
substantially affecting the downgoing beam. 
 Another problem with damping was that it restricted the range of wave 
frequencies which could be used, since beams of different frequencies (and hence 
angles) may not have been intercepted by the damping in an appropriate way. 
Damping could not be moved without badly damaging the gradient, so the tank had 
to be drained and refilled whenever a new damping geometry was tried. In the end, 
no satisfactory method was found for removing the unwanted waves. 
 The view was further cluttered by second harmonic generation from both 
wave sources. It was found that when the frequency of either wave source was less 
than N/2, a second, steeper set of wave beams was often produced in addition to the 
expected beams. The ray angles suggested that these extra waves had twice the 
frequency of those in the main beams, and measurements with a conductivity probe 
confirmed this and showed that the amplitude of the second harmonics was about 
40% that of the primary wave beams. These waves were especially conspicuous 
because the schlieren system was more sensitive to their steeper wavefronts, so I 
spent about a week trying to understand and eliminate them (this is discussed in 
Appendix 4). Plausible generation mechanisms were hypothesised, but these did not 
provide a direct method for eliminating the effect.  
 Two remedies of limited usefulness were to position damping to remove the 
second harmonic waves (only suitable when the main wave beams were narrow and 
source frequency was close to N/2 so that the second harmonic was well separated), 
or to choose a wavemaker frequency above N/2 so that second harmonics could not 
form spatially separated beams. The first approach was effective in some cases, but 
the second was not of much use for the background waves, since they needed a 
frequency less than N/2 in order to remain above the test wavemaker. As the 
frequency of the test wave needed to be close to that of the background, this also had 
to be below N/2. 
 Thus the view of the test ray in the schlieren image was almost completely 
obscured by the two broad upgoing background waves, and often by the second 
harmonics as well. This is clear from Fig. 5.2.6, which is the same as Fig. 5.2.2 
except that the background wave is also present (this is a stronger wave than that 
shown in Fig. 5.2.3). In the 32 experimental runs with both wavemakers operating 
(encompassing a wide range of different experimental arrangements and conditions), 
there was no detectable evidence for refraction of the test ray, mainly because it was 
almost invisible in the background wavefield. 
 If the gradient had not had a strong disturbance due to the large-displacement 
wavemaker, it would have been possible to align the stripes in the slide so that the 
schlieren system was insensitive to the gradients produced by the background wave. 
Although this would have also made it difficult to detect the incident test wave (due 
to its similar angle), a significantly refracted test ray would have been very 
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conspicuous. As it was, the stripes needed to be vertical so that the region at the level 
of the background wavemaker could be seen. 

5.3 Digital image subtraction 
 I attempted to use a digital image subtraction technique to remove the 
obscuring effect of the background waves. The principle was simple: obtain digitised 
images of the background field with and without the test waves, and “subtract” them, 
leaving only the effect of the test waves. 
 To create subtractions, I needed to select images which had the same phase of 
the background wave so that they would differ only by the presence of the test wave. 
Wire markers were made which attached to each wavemaker mechanism and 
extended outside the tank to the schlieren viewing area (these are the horizontal lines 
visible in Figs. 5.2.1 - 5.2.3). The markers moved up and down with the 
wavemakers, giving a visual indication of the phase of the test and background 
waves in the video recording. I digitised sections of suitable video footage using the 
FusionRecorder package on a Macintosh computer. Each recording consisted of a 
complete cycle of the background wave at one-quarter scale resolution, digitised in 
colour at 10 frames per second with JPEG compression. 
  I selected frames to subtract using the phase markers as a guide, coupled with 
the timer in the video recordings (accurate to 0.1 s) and precise measurements of the 
wavemaker's period. These frames were copied into Adobe Photoshop to subtract the 
images using the “difference” function. This returned an image in which the red, 
green and blue intensities of each pixel were the absolute values of the differences 
between these primary colours in the corresponding pixels of the original images. 
Thus the subtraction produced dark areas where there was little difference between 
the two images, and brightly coloured or white areas where the test wave produced 
some change in the schlieren image. 
 About a dozen difference images were produced, using a number of different 
wave frequencies. Fig. 5.3.1 is a typical example showing two original images and 
their difference. The effect of the test wave can be seen as the bright regions at the 
right and the top of the difference image. The rest of the image is not completely 
dark, due to slight misalignments between the images. These have many origins: air 
currents in the room (which produced visible fluctuations in the schlieren image), 
jitter and noise in the video recording, artefacts of the image compression process 
and of course slight temporal mismatching of images due to the finite sampling 
frequency of the frames. Although the difference image clearly shows the presence 
of the test wave and its rough location, it doesn't show any crucial details (such as 
wavefronts) which are needed to determine the test wave's frequency and 
wavelength. None of the difference images produced gave any such indications of 
the behaviour of the test wave in the background field. 
 Part of the problem was that discrete coloured stripes were used in the 
schlieren system. The test wave shifted the positions of the background wave's 
colour bands in the schlieren image, but this shift was not detectable unless it 
changed the colour of a pixel. Thus the difference image only shows the effect of the 
test wave at the edges of the colour bands produced by the background wave. 



Fig. 5.3.1: Digital image subtraction.
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 To avoid this problem I tried subtracting images produced using a linear 
greyscale slide in the schlieren system to produce a continuously graded image. The 
greyscale on the slide needed to be quite broad to so that the refraction due to the 
background wave would not go beyond it - as a result, the test wave produced only 
small changes in the image intensity. Although these could be seen by eye, they were 
undetectable with the 8-bit resolution of the greyscale digitising system, and the 
difference image was uniformly black. A colour “rainbow” slide could have been 
used instead of the greyscale, but this would have resulted in difference images 
whose sensitivity depended on the background wave phase (although not so strongly 
as for discrete colours). 
 It would have been nice to have a program which could subtract 
corresponding frames of two digitised sections of video footage to produce a movie 
of the difference, which may have revealed the temporal behaviour of the test wave 
and perhaps given an indication of whether refraction was occurring. As it was, I had 
to do subtractions on a frame-by-frame basis, which I quickly found to be an 
inordinately laborious way to construct an animation since each subtraction took 
around 10 minutes. 

5.4 Point probe results 
 Once I had concluded that the schlieren system would not enable the detection 
of refracted test rays even with digital image-processing techniques, a new detection 
approach needed to be found. The schlieren method was defeated by the cluttered 
wavefield, and it was hoped that this problem would be overcome by looking at the 
frequency spectrum of the system, as only the two incident wave frequencies were 
expected in addition to that of a refracted ray. This spectral analysis was achieved by 
using the LabVIEW program I wrote to acquire and analyse data from point 
measurement probes, first a conductivity probe and later the polarimeter. 
 Unfortunately, point probes have several intrinsic drawbacks. By definition, a 
single point probe can only detect fluctuations at a point in the two-dimensional flow 
and so cannot be used to determine wavelengths6 (as frequency and wavelength are 
not related). A more serious limitation of point probes is that they must be placed at 
the right location to detect a wave of interest, since wave energy is strongly confined 
to narrow beams. Thus the position of a refracted wave needs to be quite well known 
before it can be detected. Unfortunately I didn't have any theory which could be 
directly applied to predict refracted ray paths, so there was a certain amount of 
guesswork involved in positioning the probe. 
 The procedure used with both the conductivity probe and the polarimeter was 
to position the probe at a location where the refracted ray was likely to appear and 
where the background wavefield was relatively weak. Then four power spectra were 
collected: the background noise in the absence of waves, the test wave alone, both 

                                            
6 Wavelengths can be determined by using correlations between two or more spatially separated probes, but 

this was too complicated (because of the narrow envelopes relative to the wavelengths) for a project of this 

scope. It was also largely unnecessary since wavelengths of at least the incident waves could be determined 

from the schlieren images. 
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the test and background waves, and finally the background wave alone. A nonlinear 
refraction of the test wave was expected to result in a peak in the spectrum obtained 
with both waves present which did not appear in the spectra of either wave 
separately and could not be explained by the weak interaction theory of section 2.4. 
 Power spectra were usually obtained for the frequency range from DC to 0.5 
Hz, as the buoyancy frequency was usually around 0.25 Hz so most wave energy 
should have fallen in this band. A typical spectrum of the background waves is 
shown in Fig. 5.4.1. The most remarkable result at first was that both the test and 
background waves appeared to have higher harmonics - up to the 6th harmonic in the 
case of the background wave. As the figure shows, most of these harmonics lay 
above the buoyancy frequency, a situation which is forbidden under linear theory. At 
first it appeared that this was simply an artefact of the detection method used - any 
nonlinearity in the signal processing from the tip of the conductivity probe to the 
data acquisition board of the PC would have resulted in higher harmonics by 
producing a non-sinusoidal periodic signal in response to the (presumed sinusoidal) 
conductivity variations at the tip of the probe. 
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Fig. 5.4.1: A typical background wave power spectrum. 

 The conductivity probe was carefully calibrated using the data acquisition 
system, so nonlinearities in the entire measurement apparatus could be investigated. 
The nonlinearity of the calibration curve (see Fig. 4.5.3) was insufficient to account 



55 
 

for the observed spectral content, due to the very small density fluctuations of the 
waves.7 
 The probe produced a wake visible in the schlieren system which washed 
back and forth past the probe tip in the oscillating velocity field of a wave, so the 
probe was measuring the conductivity variation of its disturbed wake rather than that 
of the wave itself. This may have explained some of the higher harmonic generation 
since the effect was stronger when a sheath was put around the probe tip to increase 
the disturbance of the wake. 
 Thus I decided to try some sort of non-invasive technique for detecting the 
waves which would not disturb the flow in this way. The first attempt was to build a 
quantitative schlieren system (with the help of Mr. Derek Corrigan), using a 
photodiode to detect intensity variations of a black and white schlieren image formed 
about 1.2 m behind the focus of the second mirror (using a linear greyscale slide). 
Although the circuit displayed sufficient sensitivity to detect the waves, the 
refraction in the wavefield was so strong that a shadowgraph image was formed in 
addition the schlieren image. This gave the photodiode a strongly nonlinear response 
to the waves, with sharp peaks corresponding to the passage of a bright focused 
region. As this nonlinearity could not be calibrated out, the quantitative schlieren 
approach was abandoned. 
 The next approach was to use polarimetry. The 9th tank fill was stratified with 
sugar8 rather than salt so that the optical rotation would increase linearly with depth. 
After painstaking alignment, the polarimeter was sensitive to rotations as small as 
0.03°, which was sufficient to detect the test waves. However when spectra were 
obtained, they displayed higher harmonics in much the same way as the waves 
detected by the conductivity probe. Although some slight nonlinearity in the 
polarimeter response was expected due to refraction of the laser beam by the waves 
(so it integrated the optical rotation over slightly different light paths at different 
wave phases), this was insufficient to explain the strength of the higher harmonics. 
 Thus I concluded that the higher harmonics were real features of the internal 
wavefield. The existence of such anharmonic waves in an exponentially stratified 
fluid was predicted and experimentally verified by Kistovich et al. (1990). Here is a 
simplified overview of their theory: When particle displacements in an exponentially 
stratified fluid are small, the nonlinearity of the density gradient is insignificant and a 
displaced particle experiences a Hookean restoring force, giving oscillations with a 
sinusoidal time dependence. When particle displacements are large enough to “see” 
that the density gradient is nonlinear, the restoring force is no longer Hookean and 
this results in non-sinusoidal temporal waveforms. In this case, the anharmonic 
waves form beams confined to propagate at an angle to the vertical determined by 
                                            
7 Also, the quadratic dependence on density could produce nothing higher than the second harmonic. 
8 As the viscosity of sugar solutions increases rapidly with concentration for relative densities above ~1.15 

(Lide, 1991) and thus increases the minimum wavelength, the density increase was reduced to 10% over the 

depth of the tank. The schlieren sensitivity was not greatly affected, since refractive index increases more 

rapidly with density for a sugar solution than for a salt solution (see Fig. 4.2.1). The kinematic viscosity at the 

depth of the test wavemaker was approximately doubled, but the increase in wavelength was only 25% 

because of the cube-root dependence of (2.3.1).  
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the fundamental frequency  they contain, according to the same dispersion relation 
as for linear waves. The higher harmonics (integer multiples of the fundamental 
frequency ) are all packed into the same beam, rather than forming spatially 
separated modes as predicted by linear theory. Although the fundamental frequency 
is limited by N, the higher harmonics are not band-limited, since they simply express 
the fact that “natural” large-amplitude oscillations have a non-sinusoidal time 
dependence in a nonlinear density gradient.9 
 The results of Kistovich et al. (1990) applied in the case of an exponential 
stratification (giving a constant N). However, the stratifications I used were close to 
linear by virtue of the filling technique used and the effect of diffusion. A perfectly 
linear gradient gives a Hookean buoyant restoring force regardless of the 
displacement magnitude, resulting in a monochromatic frequency spectrum 
(Kistovich et al., 1990). However, the density gradients in my experiments were not 
perfectly linear, even away from the diffused regions at the top and bottom of the 
tank (see Appendix 2). Apart from minor kinks in the gradient due to mixing from 
the wavemaker and other disturbances, there was a strong decrease in the gradient at 
the height of the background wavemaker, caused by the effect of its large 
displacement on the filling process. Due to its large vertical size (around 10 cm), this 
defect in the gradient was not removed effectively by diffusion. Thus this region had 
a significant and essentially permanent nonlinearity in the density profile, which 
could explain the anharmonic waves detected in this region, and the fact that the 
degree of anharmonicity varied with position in the tank. Furthermore, since I was 
observing the density fluctuations produced by the waves, even a simple-harmonic 
displacement field would produce non-sinusoidal variations in density in a region 
with a nonlinear gradient. 
 Unfortunately, the disturbed gradient at the depth of the large-amplitude 
wavemaker was the ideal location for detection of refracted test rays, as (by 
definition) it lay in the relatively calm region between the up- and down-going 
background beams. Thus it was unfeasible to move the detection to a more linear 
part of the gradient. If the density profile of the tank was known, it could have been 
possible to calibrate out some of the effect of the nonlinear gradient. Due to 
awkward alignment problems, this would have been impractical to attempt by 
traversing the polarimeter. The measurement would have been much easier with the 
conductivity probe, but the tank would need to be refilled with salt water, which 
would have meant recollecting all the data to make use of the calibration.10 
 When both wavemakers were running, the spectrum became more cluttered 
by weakly nonlinear interactions between the two waves. The nonlinear response of 
                                            
9 It is important to distinguish this phenomenon from the generation of spatially separated second-harmonic 

beams by the source (as discussed in Appendix 4). The anharmonicity is manifested only through the 

anharmonic particle motion, and not through the formation of spatially separated beams - the dispersion 

relation is modified and only the fundamental frequency determines the wave angle. Thus both the 

“fundamental” and “second harmonic” wave beams generated by a source can actually be anharmonic waves. 
10 Incidentally, filling the tank with a gradient produced with both sugar and salt (so conductivity and 

polarimetry could be used together) would have produced further complications, due to the double-diffusive 

convection which can arise as a result of the different diffusivities of these solutes (Turner, 1973). 
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the fluid resulted in frequencies which were the sum or difference of the test wave 
frequency (or frequencies) and a harmonic of the background wave. These were non-
resonant triads, and represented forced oscillations rather than travelling waves (see 
section 2.4). As shown in Fig. 5.4.2, this effect contributed a large number of 
additional peaks to the spectra, which could all mask a peak due to a refracted ray11. 
Thus I couldn't escape from clutter by looking at the frequency spectrum as I had 
hoped. 
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Fig. 5.4.2: Typical power spectrum with test and background waves. 

 Given that I had no reliable theoretical predictions of the frequency of a 
refracted ray, I could not be sure that its peak would be unobscured by the other 
peaks (or even that I had the detector in the right place). Thus I tried a number of 
different frequency combinations in order to shift the peaks slightly and alter the 
angle at which the rays intersected, which in turn effectively altered the position of 
the detector relative to the intersection region. The range of possible frequencies was 
limited by damping and other geometrical constraints, as well the requirement that G 
be kept small. 
 To obtain sufficient spectral resolution to discriminate the peaks, at least 1024 
samples were required, giving 512 distinct frequency bands in the one-sided 
spectrum (the number of samples was a power of two so that a fast Fourier transform 

                                            
11 The second harmonic appears more powerful than the fundamental in this figure because the detector was 

closer to the second-harmonic beam than the primary beam. 
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could be used). To obtain a spectrum from 0 to 0.5 Hz required a sampling rate of 1 
Hz, resulting in a collection time of at least 1024 s (about 17 min). Better resolution 
was obtained by taking 2048 samples, but this took 34 min. Given that four spectra 
needed to be obtained for each run, this placed a severe time constraint on the 
number of experiments which could be attempted. 
 Of the 16 different experimental runs, covering a range of parameters, there 
were no spectral peaks observed which could not be explained as either harmonics of 
the incident waves, or sum or difference frequencies due to weak non-resonant 
interactions. 
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Chapter 6: Discussion 

6.1 Why it didn't work 
 As explained in the previous chapter, I found no evidence for refraction of the 
test rays in any of my experiments. Although the results were not conclusive due to 
the extreme difficulties encountered in observing the wavefield, there are several 
good reasons to tentatively conclude that such refraction did not occur. 
 Firstly, the test and background waves were very similar in both wavelength 
and frequency: the wavelengths differed by a factor of 1.75, and the frequencies 
typically differed by only 50%. In such circumstances the validity of theory based on 
the ray equations is very dubious - the spatial and temporal variations of the medium 
cannot be ignored on the scale of the test wavelength and period, especially when the 
variations are large as in my experiments.12 
 Fig. 6.1.1 shows how the frequency and wavelength problems are coupled. 
This figure is similar to Fig. 2.6.1, but in order to clarify the difficulty in separating 
the frequencies, G /M' is plotted as a function of the ratio /  of the wave 
frequencies for different values of /N. These curves intersect the horizontal axis 
when / = /N (implying =N) and when / =1. A small value of /  is required 
in order to use ray theory, and the figure shows that this implies a large value of 
G /M' when  is not approaching N. Thus to achieve a small G, /M' must be large, 
and this is exactly where the difficulty lay. 
 Although wavelengths shorter than the viscous minimum are nearly 
impossible to make, much longer wavelengths can be produced using a mechanically 
complex wavemaker such as that described by McEwan (1972). By the time the 
seriousness of the wavelength problem was realised it was too late to begin 
construction of such a mechanism, especially since a larger tank would have been 
needed to accommodate the necessary damping (damping thickness needs to be 
comparable to a wavelength to be effective). 
 A second reason to doubt the applicability of the theory is that it ignores the 
density variations produced by the background wavefield, which according to 
Thorpe (1989) are a much stronger source of refraction than the background wave 
shear under my experimental conditions. Thus the dynamics of the interaction 
between the two waves may have been completely different from that described by 
the theory I used. Viscosity was ignored by Broutman and collaborators and by 
Thorpe (1989), and this may also have had an important role to play in the 
interaction since the wavelengths are at the viscous limit. 

                                            
12 Some of the calculations of Broutman & Young (1986) and Broutman & McIntyre (1994) had frequencies 

or wavelengths differing by factors as small as  2.3 and 1.5, respectively. However when the frequency 

difference was small a very large wavelength difference was chosen, and vice-versa - no calculations had both 

the wavelength and frequency so similar as they were in my experiments. In any case, the ray-theoretical 

results under these conditions were not checked against calculations made without making the ray 

approximation, so the validity of the theory in these cases was not verified. 

 



Fig. 6.1.1: Normalised G vs. Ω/ω for various Ω/N.
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Fig. 6.1.2: Normalised 1/Uc' vs. ω/N for various Ω/N, with κ/M'=7/4.
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 Even if the theory had been applicable to my experimental circumstances, it 
predicted that a third-kind interaction could not occur. In my experiments I was able 
to achieve small values of G and mc'/mi' as required for a third-kind encounter, but 
the background wave amplitude fell well short of that required to produce caustics, 
which are a prerequisite for this kind of refraction. Equation (2.6.17) gives the 
minimum peak background wave current Uc' required to produce a caustic for given 
incident wave frequencies and wavelengths. In units of N/ , Uc' varies between 1 and 
+ , so it is more convenient to plot its inverse as in Figs. 6.1.2 and 6.2.1. As for 
Figs. 2.6.1 and 2.6.2, each curve corresponds to a constant value of /N given by the 
intersection of the curve with the horizontal axis (the widely separated uppermost 
curve is for /N=0). Fig. 6.1.2 was plotted with /M'=7/4 as in my experiments.13 
For the typical values /N=0.5 and /N=0.35, this gives N/( Uc') 0.14. With N=1.6 
rad/s and =2 /4 cm-1, this implies a minimum peak current of 7.3 cm/s, well in 
excess of the 0.55 cm/s produced by the background waves in my experiments. 
 The wave flow velocity could be increased by making the wavemaker longer 
in relation to its height and increasing the stroke. Velocity was also proportional to 
frequency, but this was limited by the requirement that the downgoing background 
wave beam remain above the test wavemaker. Unfortunately, none of these 
parameters could be optimised more than they already were without greatly 
increasing the mixing at the wavemaker, which produced intrusions that spread 
across the tank and interfered with the wave detection. At a frequency of =0.56 
rad/s (ie. with N=1.6 rad/s and /N=0.35 as above), particle displacements of ±13 
cm are needed to produce the required peak velocity. The required 26 cm wide 
wavemaker would be much too large for the 60 cm tank width, and would also have 
produced large distortions to the gradient in the filling process. 
 Furthermore, this flow velocity is extremely difficult to achieve at the 
background wavelength without producing substantial mixing, due to the large 
shears involved. Indeed, waves of such strength are likely to have been intrinsically 
unstable. The Richardson number, Ri, is a dimensionless measure of the potential for 
instability in a sheared, stratified fluid. It is defined by 

 Ri =
N 2

u z( )
2  (6.1.1) 

(where u is the flow speed) and it can be shown that a stratified fluid is stable when 
Ri>1/4 at all points in the flow (Apel, 1987). Thus a necessary (but not sufficient) 
condition for instability is that Ri<1/4 at some point. The minimum Richardson 
number for low-frequency background waves is approximately 

 Rimin =
N

 M  U max

 

 
  

 
 

2

 (6.1.2), 

which gives Rimin 10 for the background waves in my experiment, indicating their 
stability. If these waves had the peak flow speed required to produce caustics, (6.1.2) 
gives Rimin=0.06, showing that these strong waves are very likely to be unstable. 
                                            
13 the plotted curves are inaccurate when  differs greatly from , since the approximation (2.6.10) begins to 

break down. 
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 The required value of Uc' could be made comparable to the experimental 
values by reducing N by a factor of 13 or more. Unfortunately, this would reduce the 
gradient by a factor of about 180 and make the waves virtually undetectable. Also, 
the minimum Richardson number would not be changed, so the waves would still 
probably be unstable. 

6.2 How it could be done (maybe) 
 The previous section listed several important parameter values which could 
not be achieved with my apparatus. This section outlines an experimental apparatus 
which could overcome these difficulties and satisfy the requirements of the (dubious) 
theory I used. 
 Let us start from scratch and use the required parameters to determine the 
experimental arrangement (rather than the other way around). Due to the lack of 
trustworthy theoretical predictions (as density variations are ignored), a method such 
as schlieren is needed to survey a large part of the wavefield and search for refracted 
rays. This in turn would require a region which gave a clear view of the test waves 
after they had interacted with the background wave, so a solution would need to be 
found to the cluttered wavefield which plagued my schlieren observations. 
 A major part of the problem was the upgoing background wave, and this 
could be eliminated using the wavemaker design of McEwan (1972). This consists of 
a series of flat plates which pivot about parallel horizontal axes as sketched in Fig. 
6.2.2. They are joined by rubber sheets to created an undulating surface with zero 
total displacement which mimics the standing wave pattern of an intersecting pair of 
up- and down-going waves. The top of the wavemaker is against a horizontal 
reflecting surface, at which point the wavemaker motion has an antinode. The 
downgoing wave propagates freely, but the upgoing is reflected to form part of the 
downgoing beam. The net effect is the same as a wavemaker of twice the height 
(made by putting a mirror image of the wavemaker on top of it) which produces only 
a downgoing wave beam. 
 We can now choose all the wave parameters and see what requirements this 
places on the apparatus. I will start by choosing the test wave frequency to be =N/2, 
which will eliminate second-harmonic generation from this source while still 
allowing ample scope for frequency increases as a result of the interaction. This 
frequency results in test waves which propagate at 30° to the horizontal. 
 I choose a background frequency of =N/6, which gives a reasonable 
frequency contrast with the background wave, and results in wavefronts inclined at 
about 10° to the horizontal. Also, having the test frequency an integer multiple of the 
background frequency results in sum and difference peaks in the frequency spectrum 
which overlap those of the background wave harmonics instead of cluttering the 
spectrum. 
 Choosing a moderately small value of G=0.3 should produce a weak third-
kind refraction, and from Fig. 2.6.1 this implies /M'=6, giving a significant 
wavelength contrast. Using these values, Fig. 2.6.2 gives mc'/mi'=0.65, which 
indicates that only moderate changes in m' are possible. 
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 Accepting the viscous limitation in the minimum wavelength implies =2 /4 
cm-1 or less in an interaction region, so the background wavenumber is at most 
M'=2 /24 cm-1. The waves produced by McEwan's design have a wavelength 
determined by the spacing of the pivoting plates, and have no upper wavelength limit 
imposed by viscosity as they do when generated by the simple oscillating forms used 
in my experiments (McEwan, 1972). Thus this mechanism is capable of producing 
the large wavelength required. 
 The background wavelength and angle determine the scale and geometry of 
the apparatus. The long wavelength implies a very large tank, as shown in the scale 
diagram Fig. 6.2.2. - note the size of my experimental tank for comparison. The test 
wave source is positioned so that refracted rays will not be intercepted by the 
background wave reflector. The upgoing test waves pass through the downgoing 
background wave and into the viewing area, with the left beam removed by damping 
(having both the test and background waves coming from the same side increases the 
size of the viewing area). This damping could also be positioned to remove any 
second-harmonic wave beam produced by the background wave source. 
 The wave reflector needs to be a thin sheet so that it will have a negligible 
effect on the gradient in the viewing area, but must still be rigid enough to 
effectively reflect the strong background waves without allowing their energy to pass 
into the area above. The viewing area is located at a depth which would be largely 
unaffected by the distorted gradient produced by the displacement of the background 
wavemaker. 

viewing area

damping

Scale: 1:40

0 1 2 m

background
wavemaker

test wavemaker

my tank (to scale)

thin, rigid wave reflector

 

Fig. 6.2.2: Proposed wave-interaction apparatus. 
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 The apparatus in Fig. 6.2.2 produces interacting waves which have significant 
differences in both wavelength and frequency, and sufficiently small values of G and 
mc'/mi'. We now need to address the question of the wave amplitude required to 
produce caustics in this case. Fig. 6.2.1 is the same as Fig. 6.1.2, but it was plotted 
for /M'=6. From this figure, we see that the peak background flow velocity must 
exceed Uc'=N/(0.15 ).14 
 The tank in the figure has a depth of 2 m, and a linear change of density by 
15% over this depth gives a buoyancy frequency N=0.84 rad/s, about half the value 
used in my experiments.15 Using this value of N and the viscous-limited test 
wavenumber, we have Uc'=3.6 cm/s - this is less than the value required in my 
experiments, due mostly to the reduced value of N. For the frequency =0.14 rad/s 
(implied by /N=1/6 and N=0.84 rad/s), this requires particle displacements of ±25 
cm, which needs a wavemaker which moves through at least 50 cm as shown in the 
figure. Although these displacements are large, the shear is reduced by the long 
wavelength and the background wave has a minimum Richardson number of 0.8, 
indicating stability. It would be a technical challenge to build a wavemaker which 
could combine the required displacements and wavelength, however. 
 Thus the apparatus shown in Fig. 6.2.2 should be just capable of producing 
the appropriate conditions for these interactions. Due to the sheer size of the viewing 
area, it would be prohibitively expensive to use a schlieren system to observe the 
waves (mirrors of about 1 m diameter would be required), but the Moiré technique 
could be used instead (see section 4.3). However there would probably be some 
difficulty in achieving the required sensitivity, since the gradient is one-quarter of 
that used for my experiments. 
 It hardly needs to be stated that a 2  4 m tank would be very expensive to 
build and use. If it had a thickness of 0.2 m as in my experiments, it would have a 
volume of 1600 L; the solution alone would weigh over 1700 kg and about 160 kg of 
salt would be required for each fill. Despite the large dimensions, the wavelength 
and frequency separation between the waves may still be insufficient for the 
predicted interactions to occur, and an even larger tank could be needed (since 
reducing  increases the length of the wave reflector required). Before embarking on 
such a large-scale project it would be prudent to construct a theory which explicitly 
included the effects of density fluctuations (and even those of viscosity) and 
addressed the validity of ray theory, so that there would be good reasons for 
expecting the experiment to work. 
 Alternatively, one could test the theory of Broutman and collaborators more 
directly by using a rotating system so that inertial waves could be used, as was done 
in their analysis. Such a system would still need to be large to obtain sufficient scale 
separation between the viscous test ray and the inertial wave, and a rotating system 
                                            
14 This value is somewhat tentative, as the rays meet at a fairly steep angle (20°) so (2.6.10) is not such a good 

approximation. 
15 This is close to the steepest gradient possible with salt (and hence the largest value of N), as the solution 

saturates when the density increase reaches 20% (Lide, 1991). Sugar solutions are less useful for steep 

gradients due to the rapid increase in viscosity for densities greater than about 15% above water. Other solutes 

may enable the formation of steeper gradients than are possible with NaCl. 



Fig. 6.2.1: Normalised 1/Uc' vs. ω/N for various Ω/N, with κ/M'=6.
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could make observations very difficult. Apart from needing to place the detection 
apparatus in the rotating reference frame, a rotating tank would need to be cylindrical 
and this would make refractive-index techniques very difficult to implement. 
However, an advantage of using inertial waves is that they involve no density 
variations and so would not interfere with measurements of the density field. 
 In any case, it is clear from Fig. 6.2.2 that the tank and other apparatus used 
for my experiments were quite inappropriate to observe the shear-induced refraction 
predicted by Broutman and others. 
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Conclusion 
 Broutman and others have developed a theory based on the ray approximation 
to describe the strongly nonlinear interaction of a weak, short test ray with the shear 
field of a strong inertial wave of large wavelength. This theory was modified to 
replace the inertial wave by a long, large-amplitude internal gravity wave. The 
density perturbations due to the long wave were ignored in this adaptation. 
 An apparatus was developed for the generation of strong internal gravity 
waves in a stratified salt or sugar solution, with the objective of observing the 
predicted nonlinear interaction. Schlieren and polarimetric techniques were refined 
to improve their suitability for detection of internal gravity waves, and a data 
acquisition and analysis system was developed to provide Fourier analysis of the 
wavefield.  
 Waves were detected and found to obey the linearised dispersion relation 
despite being in the nonlinear regime. Second-harmonic generation was observed 
from the wave sources and plausible explanations were developed for this 
phenomenon. Also observed were nonlinear effects such as anharmonic waves and 
sum and difference frequencies due to the large wave amplitude. 
 However, the particular nonlinear interaction I set out to observe was not 
detected. Although its absence was not conclusively demonstrated due to the serious 
observational difficulties encountered, there were sound theoretical reasons for 
suspecting that the interaction did not occur. Due to inescapable limitations of the 
apparatus, the background wave was more than an order of magnitude too weak to 
generate the required shear field. Also, the wavelength and frequency separation 
between the waves was limited by viscosity and could not be increased to a sufficient 
level. There were doubts as to the validity of the theory used, since it ignored the 
density fluctuations of the strong wave. 
 An apparatus was proposed which could generate waves with appropriate 
frequencies, wavelengths and amplitudes for the predicted interactions, but due to its 
large size it would be prudent to develop a more directly applicable theory before 
attempting construction. 
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Appendix 1: Derivation of the basic 
properties of internal gravity waves 

 
The derivation of the basic properties of internal gravity waves is quite standard. The 
following derivation is based on those given by Gill (1982), Lighthill (1978) and 
LeBlond & Mysak (1978). 

A1.1 The equations of motion 
 We wish to find the modes of free oscillation under the influence of gravity of 
a fluid whose density is a function of position when at rest. First of all, we make the 
continuum approximation that the fluid has the same basic properties at all length 
scales - that is, we ignore the fact that the fluid is comprised of discrete molecules. 
The behaviour of this fluid will be described from the Eulerian perspective, as a 
function of time t and of position r relative to coordinate axes which are fixed in 
space relative to an inertial reference frame. 
 The fluid is described by the density (r,t), pressure p(r,t) and velocity u(r,t), 
and is assumed to be inviscid. 
 The substantive derivative of any scalar or vector function (r,t) is defined as 

 

D

Dt
=

t
+ u( )

 (A1.1). 

This is the time derivative of  taken by following the motion of the fluid element 
under consideration. 
 Using the substantive derivative, the basic equations relating , p, and u are 
the continuity equation (conservation of mass) 

 
D

Dt
+ u = 0  (A1.2) 

and the inviscid momentum equation (conservation of momentum) 

 
Du
Dt

= p + g  (A1.3), 

where (A1.3) assumes that the only external force is that due to the gravitational 
acceleration g. 
 In order to close this set of equations relating , p, and u we need a third 
equation, this being the equation of state for the fluid. Salt or sugar solutions were 
the fluids used in my project, which have equations of state of the form 

 = (p,S,T) (A1.4), 

where S and T are the concentration of solute and the temperature, respectively. 
 Molecular diffusion of the solute and conduction of heat are insignificant on 
the time and distance scales defined by the frequency and wavelength of the waves 
considered in this project, so a fluid element may be assumed to preserve its values 
of S and T: 
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DS

Dt
= 0  (A1.5) 

 
DT

Dt
= 0  (A1.6). 

 Furthermore, the density of the solution is only a weak function of pressure, 
and for the small pressure variations in this project this dependence can also be 
ignored - that is, the liquid is assumed to be incompressible: 

 
p
= 0  (A1.7) 

In effect, this eliminates acoustic waves from consideration, as (A1.7) implies an 
infinite sound speed. Given (A1.5), (A1.6) and (A1.7), the density of a material fluid 
element remains constant: 

 
D

Dt
= 0  (A1.8) 

which combined with (A1.2) implies that the velocity field is solenoidal (divergence-
free): 

 u = 0  (A1.9). 

 To summarise, the equations of motion governing this inviscid, 
incompressible, diffusionless fluid in an inertial frame in which gravity provides the 
only body force are (A1.3), (A1.8) and (A1.9). 

A1.2 The hydrostatic equilibrium state 
 It will greatly clarify later working to introduce the resting state of the fluid, a 
state of hydrostatic equilibrium defined by u(r,t)=0 r,t. The pressure and density in 
the resting state are denoted po and o, respectively - note that these are functions of r 
but not of t. 
 In general the pressure and density are given by 

 p = po +  p ,   = o +    (A1.10), 

which defines the perturbations p', ' to the resting state. 
 The resting state defined by u=0, p'= '=0 satisfies (A1.8) and (A1.9) 
identically, whilst (A1.3) implies 

 po = og  (A1.11). 

 In the non-equilibrium case, combining (A1.11) and (A1.10) with (A1.8) and 
(A1.3) gives 

 
D   

Dt
+ (u ) o = 0  (A1.12) 

and 

 
Du
Dt

=  p +   g  (A1.13), 
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respectively. Note that (A1.11) removes the contributions of po and o from the right-
hand side of (A1.13), showing that only the perturbations p' and ' to the 
equilibrium state provide any driving forces to alter the momentum. 

A1.3 Linearisation 
 For the moment, let us consider infinitesimal perturbations u, p' and ' to the 
static equilibrium state. In this case, any products of these small quantities can be 
neglected, a procedure known as linearisation. 
 Equation (A1.9) is linear in u and hence unchanged by linearisation, whilst 
(A1.12) becomes 

 
  

t
+ (u ) o = 0  (A1.14) 

and the linearised form of (A1.13) is 

 o

u
t

=  p +   g  (A1.15). 

 We now define right-handed Cartesian coordinate axes with unit vectors 
ˆ x , ˆ y , ˆ z  such that the z axis points vertically upwards so that g = g ˆ z , where g=|g|. In 

these coordinates we write r = (x,y,z) and u = (u,v,w) = uh + w ˆ z . Note that (A1.11) 
implies po=po(z) and hence o= o(z), since po must also be a function of z alone. 
 Now (A1.9) can be written 

 h uh +
w

z
= 0  (A1.16), 

where h = x, y,0( )  is  acting only on the horizontal coordinates. Similarly, 
(A1.14) can be written 

 
  

t
+ w o

z
= 0  (A1.17) 

and (A1.15) becomes 

 o

uh
t

= h  p  (A1.18) 

and 

 o

w

t
=

 p 

z
  g  (A1.19). 

 Taking the time derivative of (A1.19) and substituting (A1.17) yields 

 o

2w

t2
+ N2w

 

 
  

 
=

2  p 

t z
 (A1.20), 

where the buoyancy frequency N=N(z) is defined by 

 N2
=
1

o

g o =
g

o

o

z
 (A1.21). 

The buoyancy frequency is a parameter of fundamental importance in a density-
stratified fluid, as will become clear shortly. 
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Taking the time derivative of (A1.16) allows uh to be eliminated via (A1.18) to give 

 o

2w

t z
= h

2
 p  (A1.22). 

Taking the horizontal Laplacian of (A1.20) and differentiating (A1.22) with respect 
to both t and z allows us to eliminate p', yielding an expression for w alone: 

 2
2w

t2
+ N2

h
2w

N2

g

3w

z t2
= 0  (A1.23). 

A1.4 The dispersion relation 
 If we assume N to be constant, (A1.23) is a fourth order partial differential 
equation for w with constant coefficients. We will look for plane wave solutions to 
this equation, ie. solutions of the form 

 w =W exp i k r t( )[ ]  (A1.24), 

where W is some constant, k=(k,l,m) is the wavevector and  the frequency of the 
waves. We use the usual convention whereby the actual physical quantity is the real 
part of (A1.24). 
 Substitution of (A1.24) into (A1.23) yields the following dispersion relation 
linking  to k: 

 k 2 + l2 +m 2 N2

2 k2 + l 2( ) + im
N2

g
= 0  (A1.25). 

The factor i in the third term of (A1.25) indicates that at least one of the components 
of the wavevector must be complex. The exponential growth or decay associated 
with the imaginary component is in fact only an apparent problem. The condition 
that N is constant implies 

 o exp
N 2z

g

 

 
  

 
 (A1.26). 

If we assume equipartition between kinetic and potential energy, the total wave 
energy density is 

 E = o u
2  (A1.27), 

so for E to remain constant, we must have 

 u exp
N 2z

2g

 

 
  

 
 (A1.28). 

Thus we would expect m to be complex, the imaginary part giving the exponential 
behaviour of (A1.28). Substituting m=mR + imI (where mR and mI are both real) into 
(A1.25) and equating real and imaginary parts gives 

 mI =
N2

2g
 (A1.29), 

as expected, as well as the real dispersion relation 
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 2
=
N2 k2 + l2( )

2 +
N4

4g2

 (A1.30), 

where  is the magnitude of Re(k). To simplify notation, we will consider only the 
real part of m from now on, and write m=mR and k=(k,l,mR). Note that (A1.30) 
implies that 2 N 2 , that is, the internal wave spectrum is band limited in 
frequency. 
 For short waves, we have  >> N2/2g and (A1.30) simplifies to 

 = N cos  (A1.31), 

where  is the angle of k to the horizontal (see Fig. 2.1.1). Note that in this short 
wave case, (A1.31) implies that the wavelength =2 /|k| is independent of  - a 
disturbance at a given frequency can produce waves of any wavelength, provided 
they are short enough to satisfy (A1.30). 

A1.5 The nature of the wavefield 
 We now derive the form of the other components uh, p' and ' of the 
wavefield, given that w is given by (A1.24) and N is constant. Substituting (A1.24) 
into (A1.22) and (A1.17) gives 

  p =
m o

k2 + l2
w  (A1.32) 

and 

   =
i oN

2

g
w  (A1.33), 

respectively. Note that the factor of i in (A1.33) indicates a + /2 phase shift in ' 
relative to p' and w. Now uh can be found using (A1.32) and (A1.18): 

 uh = (k, l)
m

k 2 + l2
w  (A1.34), 

which when combined with (A1.24) gives the complete velocity field: 

 u =
km

k2 + l2
,

lm

k 2 + l2
,1

 
 

 
 
W exp i k r t( )[ ] (A1.35). 

It is clear from (A1.35) that 

 u k = 0  (A1.36), 

that is, plane internal gravity waves are transverse. 
 The phase velocity is defined as 

 c =
k
2  (A1.37), 

whilst the group velocity is defined by cg = k , where k = k, l, m( )  is  
acting in wavenumber space. For short waves, substituting (A1.30) into (A1.38) we 
find (after some tedious algebra) that the group velocity is 
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 cg =
Nm k 2 + l2

3

km

k2 + l2
,

lm

k2 + l2
, 1

 
 

 
 
 (A1.38). 

By comparison with (A1.35) it is clear that cg is parallel to u and hence 

 cg c = 0  (A1.39), 

showing that the group and phase velocities are perpendicular, so that the wave 
energy propagates along the wavefronts. The implications of this peculiar behaviour 
will be elaborated in the main text. 
 In terms of the wavelength =2 /|k|, the magnitudes of the phase and group 
velocities are 

 c =
2

=
N cos

2
 (A1.40) 

and 

 cg =
N sin

2
 (A1.41). 

Thus both velocities are proportional to wavelength, but |c| increases with increasing 
frequency, whilst |cg| decreases. 
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Appendix 2: The effects of diffusion 
 The solute concentration in the tank becomes increasingly uniform as a result 
of diffusion. In the absence of waves, the density (and hence concentration) must 
depend spatially only on the vertical coordinate z, as horizontal density variations are 
destroyed by the unbalanced pressure gradients they induce. Thus the diffusion can 
be described by the one-dimensional diffusion equation 

 
S

t
= D

2S

z2
 (A2.1), 

where we ignore the weak dependence of the diffusivity D on the solute 
concentration S=S(z,t). 
 It is clear from this equation that a linear variation of S with z will be stable, 
as the time derivative is zero. However, in a finite tank we have boundary conditions 
of zero flux of solute through the top and bottom of the tank, forcing the density 
gradient to be zero there. Thus a nonzero gradient in the body of the tank cannot be 
stable, as 2S/ z2 must be nonzero at at least two depths. The time derivative is 
largest where the gradient changes rapidly with depth, thus quickly smoothing out 
small-scale nonlinearities in the density profile. Nonlinearities over large scales 
(such as between the top of the tank and the linear gradient at mid-depth) take much 
longer to be affected. Thus in the short term diffusion acts to produce a constant 
gradient away from the top and bottom boundaries, which is utilised to smooth out 
the gradient after a fill. In the longer term the influence of the boundary conditions 
spreads out into the body of the tank, gradually reducing the extent of the linear 
density variation. 
 It was of great importance for the feasibility of this project that the gradient 
remained essentially constant through most of the tank for a reasonable number of 
days, to allow experiments to be conducted. The general solution to (A2.1) subject to 
the boundary conditions of zero flux through the planes z=0 and z=d is easily shown 
to be 

 S z, t( ) = Aj
j=0

exp
j

d
 
 

 
 

2

Dt
 

 
  

 
 cos

j

d
z

 
 

 
 
 (A2.2), 

where the coefficients Aj are determined by Fourier analysis from the initial 
conditions. Note that small-scale nonlinearities in the gradient (ie. terms with large j) 
decay very much more rapidly than larger scale features. If at t=0 the concentration 
varies linearly between Smax at z=0 and Smin at z=d, the coefficients are 

 

A0 =
Smax + Smin

2
,

Aj> 0 =

4 Smax Smin( )
j2 2

for odd j,

0 for even j

 

 
 

 
 

 (A2.3). 

 This solution and the variation it implies for N (see equation (2.1.1)) were 
plotted for a number of different values of t in order to plan where the wavemakers 
needed to be placed to ensure that they could generate travelling waves at the 



73 
 

frequency required. An example is shown in Figs. A2.1, A2.2, which were calculated 
for a typical gradient made with salt and a depth d=50 cm. These calculations were 
made assuming that density is proportional to salt concentration - for my purposes, 
the error introduced by ignoring the slight nonlinearities in this dependence is 
negligible (see Ruddick and Shirtcliffe, 1979). In these figures, note that the gradient 
relaxes very rapidly to begin with, then changes much more slowly once 2S/ z2 has 
been reduced, so the gradient through most of the tank remains useable for over a 
week. Note also that N is not constant for a constant density gradient, as it also 
depends on o. The Boussinesq approximation ignores this dependence, and gives a 
constant N at t=0, as shown in Fig. A2.2. 
 The values of D are 1.484 10-9 m2/s for salt and 0.521 10-9 m2/s for sugar 
(Lide, 1991), so a gradient made with sugar will diffuse around three times more 
slowly than the salt gradient shown in the figure. It is fortunate that D is sufficiently 
small for the overall gradient to have a lifetime of a week or two, but sufficiently 
large for small-scale disturbances to diffuse out in a matter of days. It is clear that the 
diffusion is negligible on the timescale of a wave period (of the order of one minute), 
as was assumed in Chapter 2. 
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Fig. A2.1: The effect of diffusion on a density gradient in salt water. 
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Fig. A2.2: The effect of diffusion on the buoyancy frequency N. 

 The drop-off in N at the top and bottom of the tank refracts rays as described 
by the ray theory in section 2.2. This refraction is shown in Fig. A2.3 for a number 
of frequencies. Note that the higher frequencies are more severely refracted and 
more confined than the lower frequencies, and that there is also weak refraction 
through the constant-gradient region, since this differs from the exponential density 
variation (A1.26) required for a constant N. Overall, for frequencies not too large 
compared with N, the refraction is very slight away from the top and bottom 
boundaries. 
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Fig. A2.3: Ray refraction in a diffused salinity gradient. 
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Appendix 3: LabVIEW data acquisition 
program 

 This appendix presents the data acquisition program I wrote to collect and 
analyse the analog signals produced by the polarimeter and the conductivity bridge. 
The package used was LabVIEW version 3 for Windows, by National Instruments. 
This provides a very comprehensive environment for the construction of “virtual 
instruments” or VI's (in fact, “VIEW” stands for “Virtual Instrument Engineering 
Workshop”). The National Instruments data acquisition board in the PC could be 
controlled by the VI software. The programming ‘language’ used is intuitive but 
rather unusual and requires some explanation. 
 The programming environment consists of a vast array of modules (called 
“sub-VI's”) analogous to procedures or subroutines, whose functions range from 
simple arithmetic to data acquisition, analysis, hardware control, file handling and 
other complex functions. Standard programming constructs such as loops, decision 
structures and local variables are also provided. The distinguishing feature of 
LabVIEW programming is that it is entirely graphical: all sub-VI's and programming 
constructs are represented by icons, and lines drawn between the icons represent 
exchange of information between these objects (analogous to passing parameters 
between procedures in Pascal). Thus programs look like circuit diagrams showing 
signal connections between components. 
 Illustrations of this can be found on the next few pages, after the “front 
panel”. Program constructs such as loops and case statements are represented by 
frames surrounding parts of the diagram - some have been labelled to make the 
structure more comprehensible. Printouts are shown displaying the contents of all the 
IF constructs in either state, as well as both steps (0 and 1) in the sequence construct. 
The wiring convention used is that sub-VI's accept inputs at their left and produce 
outputs at the right. “Wires” carrying different data types (such as integers, arrays or 
strings) are shown with a different pattern or thickness. 
 The program executes by the “dataflow” process, whereby a sub-VI will 
produce an output as soon as it receives all the inputs it needs. Thus the execution is 
not a sequential, linear process as it is with most text-based languages, and many 
steps may be executing simultaneously (at least conceptually, as it is running on a 
single-processor machine). The sequence construct is used to dictate an order to the 
processing done inside it - in my case, to acquire and filter the data before 
calculating its power spectrum. 
 The contents of all sub-VI’s I wrote (and the sub-VI's inside them in some 
cases) are shown on later pages, together with their connection terminals. All other 
icons represent VI’s which are part of the LabVIEW package - these are discussed in 
detail in the manuals. 
 The user-interface to the program is provided by the “front panel”, which 
mimics the controls and indicators of an electronic instrument whose circuitry is the 
program. A wide variety of different controls and indicators are provided, and can be 
arranged to form the front panel in the same way as one constructs pictures using an 
object-oriented drawing program. These indicators and controls also appear as icons 
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in the circuit diagram and can be wired in to provide the user with interactive input 
and output from the program. 
 The front panel of the data acquisition program I constructed is shown on the 
next page. It allows the user to adjust the hardware settings and data acquisition 
parameters (such as sampling frequency and number of samples - the total sampling 
time display is updated automatically) and to reset the timer to any given time, 
allowing synchronisation with an external timebase (accurate to better than 500 ms). 
The lowpass Butterworth filter order (rolloff) and cutoff frequency can be adjusted, 
as can the oversampling factor. Oversampling reduces high-frequency random noise 
by taking a number of samples in each user-defined sampling period and averaging 
over these samples to produce each data point. The “GRAB DATA” button initiates 
data acquisition and displays the expected finish time. Once acquired, the raw and 
filtered data and their one-sided AC power spectra are displayed and the user is 
given the opportunity to save all the data in a spreadsheet-readable file of the chosen 
name. 
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Appendix 4: Second harmonic 
generation 

 The wavemakers were found to produce secondary waves at twice the driving 
frequency  when  was less than N/2. The mechanism by which these second-
harmonic waves were produced was puzzling. Second-harmonic wave generation has 
been widely reported in the literature (for example, Mowbray & Rarity, 1966; 
Kistovich et al., 1990), but to my knowledge its origin has not been discussed. 
 Although the wavemaker motion was not exactly sinusoidal due to the finite 
size of the stroke relative to the crank length, Fourier analysis of the calculated 
wavemaker motion showed that the amplitude of the second harmonic should have 
been about 0.4% as large as that of the fundamental. Wave generation efficiency 
could not have increased by a factor of 100 between the fundamental and second 
harmonic frequencies, so the anharmonicity of the crank motion was insufficient to 
account for the strength of the second harmonic wave (40% that of the fundamental). 
 Second-harmonic generation did not depend strongly on the wavemaker size 
or shape (several wavemakers were tried, from 1 cm to 10 cm high, with profiles 
ranging from square to semicircular), or on the flow around the wavemaker (it made 
no difference if there was a gap of 5 mm between the wavemaker and the wall). 
However the second harmonic wave amplitude decreased more rapidly than that of 
the fundamental when the stroke of the wavemaker was reduced, suggesting two 
possible causes for the phenomenon: 
 [1] The dependence on wave amplitude suggested that the second 
harmonic may have arisen as a result of some nonlinear process. In particular, the 
following mechanism would explain the general results. Consider the up- and down-
going wave beams from the source to both have frequencies equal to that of the 
wavemaker, but to consist of a range of different wavelengths (recall that wave 
frequency and wavelength are not coupled by the dispersion relation). As the beams 
were only about 1.5 wavelengths wide, their spatial Fourier transforms would not 
have been very monochromatic, and such a collection of wavelengths is plausible. 
The up- and down-going wave beams overlap in the vicinity of the wavemaker, and 
a resonant triad could form in this region (see section 2.4). If we use subscripts 1 and 
2 for the two beams and 3 for a second harmonic, then a possible resonant triad is 
given by 

 3= 1+ 2=2 1 (A4.1) 

and k3=k1+k2 (A4.2). 

Note that (A4.1) gives the second harmonic frequency. To result in a travelling 
wave, k3 must satisfy the dispersion relation (2.1.7) for the frequency 2 1 - this is 
why a range of wavelengths is needed in the two primary beams. As Fig. A4.1 
shows, such a condition can be satisfied if the interacting wavevectors from the two 
beams have the correct ratio of magnitudes. 
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Fig. A4.1: Wavevectors for a resonant triad. 

 [2] The second possible mechanism: The wavemaker has a sinusoidal 
vertical motion with frequency . In regions in which the slope of the wavemaker 
does not change sign over the length of one stroke, the resultant horizontal fluid 
displacements are also periodic, with the same frequency (and higher harmonics of 
that frequency if the wavemaker is curved). Near the point at which the tangent to 
the wavemaker is vertical, horizontal fluid displacements change sign twice over one 
cycle of the wavemaker, resulting in horizontal motions with a frequency 2  which 
are strong compared to those of frequency . Horizontal motions are important in a 
stratified fluid because they are not inhibited by restoring buoyancy forces. The 
horizontal motion with frequency 2  may result in a second-harmonic wave beam. 
The region which generates this second harmonic wave becomes larger as the stroke 
is increased, thus increasing the relative amplitude of the second harmonic as 
observed. 
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