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Abstract

Quantum optics has been, from its beginning, a driving force both for the exploration of
fundamental limits of the quantum world and for conceiving seminal ideas and applications
of the so-called quantum technologies. The last 20 years have seen a rapid development of
ideas and proof-of-principle experiments involving the fields of quantum communication,
quantum computation, quantum metrology and quantum simulation.

The so-called continuous variable (CV) approach to quantum optics, which uses many
photons in collective states, and information encoded in continuous observables, has many
interesting properties, especially from a communications perspective. It is inherently
broadband and compatible with standard Telecom infrastructures. Moreover, entangle-
ment, one of the fundamental resources of quantum optics, can be generated determinis-
tically.

One of the main challenges for all quantum information technologies is scalability,
being able to generate and manipulate many quantum resources to achieve practical tasks
efficiently. One approach to solve the issue of scalability is to use highly multimode
quantum states. The quantum description of the electromagnetic field associates each
photon (particle of light) with a mode (way for light to propagate). In a multimodal
approach, we look at the quantum state bases and optical modes bases conjointly and tailor
quantum fields not only in given modes, but also optimise the spatio-temporal shapes of
the modes in which the state is defined. This opens wide perspectives for treating complex
quantum states.

In particular, using ultra-fast pulses of light which contain many temporal/spectral
modes, we are able to generate large entangled states of light using simple resources. In this
thesis, we used an optical parametric oscillator pumped synchronously (SPOPO) with an
optical frequency comb to generate multimode squeezed vacuum states. These can be used
to form cluster states: the basic resource for Measurement Based Quantum Computation
(MBQC). They can also be used in metrology or to simulate complex networks.

One of the advantages of this set-up is its tunability. Indeed, by changing the spectrum
of the OPO pump with a pulse shaper, we can tailor the properties of the generated
quantum state. In this work, we focus on the optimisation of the pump spectral shape to
generate specific states. Using simulations based on Machine Learning Algorithms (MLA),
we find optimal pump profile for typical target states. We then implement those shapes
on the experimental set-up and measure the resulting quantum states using a multipixel
homodyne detection. We also study intra-cavity dispersion effects. Dispersion inside the
SPOPO cavity is indeed one of the main factors that limits the number of entangled modes
in the generated quantum states. A systematic study of dispersion effects is therefore
necessary to model the SPOPO output accurately. This works paves the way toward
a fully tunable device that can be optimised in real time to generate specific quantum
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Introduction

Light is a fascinating thing. Human beings are naturally gifted with light detectors and
it is our most direct way to interact with reality. Yet light eludes us and the journey
towards a full understanding of its nature was long, full of surprises and would require the
brightest minds of generations. Light has both been a tool and a catalyst, the actor and
the director in this fiction superseding movie that is the history of modern physics. It was
used to probe the inner workings of reality long before its own nature was fully understood.
Indeed many revolutionary ideas in physics have lead to re-examine our understanding of
light. Its status completely changed, from particles, to waves, to a quantum field, which
is somewhat the modern synthesis of the two.

Since ancient times, people have been using lenses and mirrors to shape and control
light. In the 17thcentury, Galileo, Kepler, Snell, Descartes and Newton among others,
studied and (re)discovered the refraction and reflection properties of light. Using this
knowledge, they designed powerful telescopes and microscopes that allowed to observe the
world at small and large scales with unprecedented precision. Among those observation,
the study of the movement of planets by Ticho Brahe, allowed Kepler to later formulate his
famous laws, a cornerstone to Newton’s Principia: the foundation of classical mechanics.

There was still no consensus about the nature of light then, Huygens proposed a
wave theory of light, while Newton described light as made of particles. The debate was
apparently solved by Young and Fresnel who designed experiments to show that light can
produce interference effects, a signature of waves. Although, at the time, the exact nature
of those waves remained unknown. It was later revealed, in an unexpected way, in 1865,
when electricity and magnetism where unified by Maxwell under a single theory. Maxwell’s
equations predict that oscillations of the electric and magnetic fields can propagate as a
wave, a wave that just happens to move at the speed of light. Therefore light is nothing but
a propagating perturbation in the electromagnetic field. As these oscillations can happen
at any frequency, even those undetectable by the human eye, a whole new spectrum of
light was discovered, in the form of radio waves, microwaves, X-rays and others. Those
same waves are now our main way to probe the early history of the universe with the
cosmic microwave background. Light also had a pivotal role in the discovery of special
relativity. The Michelson-Morley experiment, based on light interference, was attempting
to probe the motion of earth relative to aether, the hypothetical propagation medium for
electromagnetic waves. The negative results showed the speed of light was the same in all
moving frames, in contradiction with the old principle of Galilean relativity. Solving this
paradox would lead Einstein to revolutionise the concepts of time and space. Extending
his ideas to non-inertial frames, Einstein then developed general relativity, which in turn
predicted new behaviours for light, for example that it can be bended by large masses.
Observations of the deviation of light from distant stars by the sun were one of the first
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experimental confirmation of this new theory. Light can also be “stretched” as space
expands, an effect that allows astronomers to study the history of expansion of the universe.

Finally light had a major role in the development of quantum physics as well. Three
of the unexplained experimental facts that puzzled scientist in the early 19thcentury and
lead to the foundations of quantum mechanics are associated with light: the ultraviolet
catastrophe of black body radiation, the photoelectric effect and the discrete emission
spectrum of atoms. Today, light is understood as a quantised electromagnetic field car-
rying one of the four fundamental interactions known by modern physics. Photons, the
particles of light, are excitations of this field. A better understanding of the quantum
properties of light and its interaction with matter lead to the invention of lasers [1], which
now have countless applications in our everyday life. Lasers greatly improved our ability
to control and measure quantum objects. It became an essential tool in fundamental re-
search to probe new physics, to the point that it is now possible to carry out in the lab
the “gedanken” experiments imagined a century ago by the founding fathers of quantum
mechanics [2]. At the time, these thought experiments were simply ways to highlight and
better apprehend the counter-intuitive behaviour of the quantum realm.

Entanglement is, without a doubt, the most intriguing property that quantum particles
like photons can exhibit [3, 4]. Two entangled photons cannot be considered individually,
but form a quantum state as a whole. This means that a measurement performed on one
of the photons may influence the quantum state of the other photon regardless of their
spatial separation, even when the two are spacelike separated and should not be able to
causally influence each other. Locality and causality are closely bonded and this “spooky
action at distance” was troubling for many physicists, especially for Einstein, Podolsky and
Rosen [5], who thought this violation of locality could only mean that the quantum theory
was incomplete. They exposed their idea with a thought experiment, now known as the
EPR paradox. A heated debate ensued that divided the physicist community in two camps.
Those who believed something had to be wrong in the theory and those who believed
the theory was complete and rejected this paradox with metaphysical arguments on the
concept of reality. This problem remained mostly ignored as an ontological one, until John
Stuart Bell brought a new outlook on this paradox and formulated it in empirical terms
with his famous inequality [6,7]. Any hypothetical more complete and local theory would
necessarily predict measurement results that satisfy the inequality. Later experiments [8–
11] proved this inequality was indeed violated. This results is sometime thought of as a no
hidden variable result although it is more accurate to think of it as a non-locality one. In
any case, the old Einstein-Bohr debate was settled [12], no theory based on our common
sense or natural intuition could account for the behaviour of quantum particles.

Entanglement is now at the core of the quantum technology revolutions. Using entan-
glement, quantum teleportation [13–18] has been achieved over large distances [19] and
let us contemplate the quantum internet [20], a large quantum network ushering in a new
era of communication. Quantum resources are already used in communication and cryp-
tography with quantum key distribution [21–23] which was even achieved over a satellite
to earth link [24]. Using quantum resources, the qubits, for information encoding and
processing [25, 26], entirely new algorithms [27, 28] can be implemented that would im-
prove the current computing capabilities by orders of magnitude. The ideal, universal
quantum computer [25] is still far from being accessible and difficult (may be impossible?)
challenges have to be overcome [29]. But imperfect implementations of quantum comput-
ers have already shown to supersede current classical computers on certain tasks [30, 31].



Algorithms are already proposed to use these imperfect quantum computers for practical
tasks [32–36].

Entanglement is an important resource for quantum computers [37] and it has been
shown [38] that any quantum computation can be done by building a large entangled
resource called the cluster state (costly operation) and performing local single qubits
measurements (“easy” operation). Entanglement is not limited to bipartite states and
multipartite entangled photons can be produced by mixing single photons with linear
optical components [39–43]. But this approach is not particularly appealing because of its
limited scalability. Indeed, in the so called discrete variable regime, entanglement cannot
be easily generated deterministically and post-selection analysis is necessary to rule out
the unwanted contributions in the state. This post-selection makes the resource scarce
when the number of entangled photons is scaled up.

Another intriguing property of the quantum realm is vacuum fluctuations. Even in
vacuum, a quantum field exhibits some intrinsic fluctuations. The results is an intrinsic
noise in the light field. This noise can be harnessed to produce unbiased random num-
bers [44]. But it also bounds the precision of conventional measurements to the so-called
standard quantum limit [45]. However, this noise can be controlled and reduced in partic-
ular states of light called squeezed vacuum states [46], in order to enhance the precision
of measurements [47]. This was done for example, in the VIRGO and LIGO gravity-wave
detection experiment [48,49]. The field fluctuations in two separated regions of space can
also be correlated in a similar way to the EPR entangled particles. This type of entan-
glement is different from the one we mentioned for a discrete number of photons (discrete
variable). Here the entanglement is carried by many photons, and the EPR correlation is
present in variables, the field quadratures, that span a continuous range of values. Those
states belong to the so-called continuous variable (CV) regime of quantum optics [50].

CV entanglement is also useful for quantum processing [51,52] as multipartite CV clus-
ter state can be produced and used for quantum computation [53,54]. In the CV regime,
that entanglement is generated deterministically [55, 56]. This makes the generation of
large entangled resources more practical in CV. A standard way to generate CV EPR
states is to first produce squeezed states with optical parametric oscillators (OPO) and
use linear optics components to mix the various squeezed beams [57–59]. This way, large
cluster states have already been created in the time and frequency domains [60–63].

Our research group focusses on using optical frequency combs (OFC) to generate such
states. This type of laser source was developed in the 1980s [64, 65]. It produces ultra
short pulses of light [66] (down to the attosecond regime [67–69]) and has various appli-
cations in non-linear optics, spectroscopy [70, 71], metrology [72, 73] and quantum optics.
An OFC contains a large number of evenly spaced frequency modes. By synchronously
pumping an optical parametric oscillator (SPOPO) cavity with an OFC it is possible to
produce a complicated network of entangled frequency bands [74–76], i.e. a cluster state.
We can measure arbitrary superposition of these frequencies which is effectively equiva-
lent to mixing them with linear optics components. Depending on the frequency basis
(modes) of the measurement, the state will either appear as a collection of independent
squeezed states or a collection of entangled modes. This multimode state can be tuned
by shaping the spectrum of the pump to the parametric down conversion process. This
quantum resource is therefore reconfigurable and versatile. In general it is not possible to
determin analytically what the pump spectrum should be for a desired output state and
an optimization method must be used.



The main work conducted during my PhD concerned the optimisation of the structure
of the SPOPO output quantum state by tuning the spectral shape of the pump. Two
states were of particular relevance and interest: the first one is a state with a high degree
of squeezing in one mode. This state is most relevant for metrology purposes. Indeed, it
has been shown [77] that for single parameter estimation, the optimal way to maximize
sensitivity is to put the most squeezed state available in a well defined light mode. The
second state has identical squeezing in as many modes as possible. This state is the best
approximation of an ideal large cluster state. The optimal pump shapes for these two states
were obtained from simulations of the SPOPO cavity. The numerical optimisation was
carried out with machine learning algorithms, in the hope that they could later be adapted
to a live optimisation of the experimental set-up. Indeed, imperfections are present in the
experiment and they have a non-trivial effect on the SPOPO output quantum state and
its measurements.

The main results of this work are:

• the discovery of simple pump shapes by numerical optimization for the two afore-
mentioned objective SPOPO outputs. The numerical optimization was carried out
with a reduced number of degrees of freedom, this ensured obtained the pump shapes
would be simple and therefore experimentally testable. Even so, significant changes
in the SPOPO output state were predicted, both in terms of squeezing and su-
permode shapes. In some cases the supermodes had measurable spectra (not too
broadband).

• the experimental testing of some of those shapes. For some pump shapes, the pre-
dicted effect on the supermodes spectra was confirmed. The effect on the squeezing
levels was partially confirmed although limited by losses in the detection systems.

• the modelling of intracavity dispersion effects on the SPOPO output state. The
first numerical optimization revealed that for some pump shapes it is important to
take intracavity dispersion into account to predict the SPOPO output accurately. A
simple model is used here and confirms what can be expected: The main effect of
dispersion in our regime is a spectral filtering effect that reduces the bandwidth of
the supermodes.

0.1 Thesis outline

The thesis is organised as follows. In the first part, we introduce the necessary theoretical
background. Chapter 1 recalls the general basic principles of the quantum description of
light, with emphasis on the continuous variable regime. It also introduces most of the
notations used throughout this thesis. Chapter 2 presents the tools necessary for the
analysis and measurement of multimode Gaussian states.

In the second part, we describe the various experimental devices we use. Chapter 3
presents our light source with emphasis on spectral phase effects as they play an important
role in the SPOPO pump shape. Chapter 4 concerns synchronous cavities, how a cavity
affects the spectral shape of a transmitted frequency comb. Chapter 5 describes the pulse
shaper: the device that allows us to tune the pump spectral shape as well as our mea-
surement basis. Chapter 6 concerns the modelling of multimode entanglement generation
using a non-linear component. It gives the model used to simulate the SPOPO output



for a given pump spectral shape and contains the results of our simulation of intra-cavity
dispersion effects.

In the last part, we detail the methods and results of machine-learning optimisation of
the SPOPO pump. Chapter 7 presents the two machine learning algorithms we used and
the corresponding optimal pump shapes obtained from simulation. Chapter 8 explains how
various types of homodyne measurements can be used to reconstruct the multimode quan-
tum state. Finally Chapter 9, gives the experimental results obtained with the optimal
pump profiles.

Another significant part of the work done during this PhD concerned the generation
of quantum random numbers from a squeezed state of light. It has no direct connection
with the rest of this work and was already described in great details in a paper [78], we
therefore choose to reproduce this paper in the appendix A.1.
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Chapter 1

Quantum light

Contents
1.1 Quantising the Electromagnetic (EM) field . . . . . . . . . . . . 9

1.1.1 The classical free EM field . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 The photon: a harmonic oscillator excitation . . . . . . . . . . . 11
1.1.3 Quadrature operators and commutation relations . . . . . . . . . 12

1.2 Quantum state representation . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Discrete variable representation: the Fock basis . . . . . . . . . . 14
1.2.2 Continuous variables and Phase-Space representations . . . . . . 14
1.2.3 Statistical mixtures and the density operator . . . . . . . . . . . 16

1.3 Importance of modes . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Mode basis change . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.2 Intrinsically single-mode and multimode states . . . . . . . . . . 17

1.4 A zoo of quantum states . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Fock states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.3 Squeezed vacuum states . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.4 EPR states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1 Quantising the Electromagnetic (EM) field
In this section we briefly introduce the theoretical tools and notations used for a quantum
description of the electromagnetic (EM) field. Following the description given in [79], we
define the notion of modes and show that the EM field consists in a set of independent
quantum harmonic oscillators, one for each mode.

1.1.1 The classical free EM field

Classically, the EM field is described by two real vector fields1 (E(r, t),B(r, t)). Their
behaviours are governed by Maxwell’s equations [80, 81] (see also [82, 83] for a modern
course on classical electrodynamics). In vacuum, these equations lead to the following
propagation equation for the electric and magnetic fields:

∇2E(r, t)− 1
c2
∂2E(r, t)
∂t2

= 0 (1.1)

1Throughout this thesis we adopt the bold notation for vectors.

9



This equation has infinitely many solutions which are as many ways for the EM field to
propagate (spherical waves, plane waves, pulses of light etc.). It is often useful to introduce
a basis of such solutions, so that, thanks to the linearity of this equation, any field can be
described as a linear superposition of those solutions. A mode of the EM field is just an
element of such a basis. There are multiple bases of modes and the one we choose to use
depends on the constraints and symmetries of a given situation.

It is convenient to consider a finite cubic volume of space1 V = L3 with periodic
boundary conditions so that solutions to Eq. (1.1) can be expanded over a basis of linearly
polarised, plane waves labelled by index l 2:

E(r, t) = E(+)(r, t) + E(−)(r, t) (1.2)
E(+)(r, t) =

∑
l

Elαl(t)ul(r) with ul(r) = eikl·rεl (1.3)

E(−)(r, t) =
(
E(+)(r, t)

)∗
(1.4)

Because of the boundary conditions, components of the wave vector k must satisfy:

kx = 2πnx
L

where nx ∈ Z (1.5)

ky = 2πny
L

where ny ∈ Z (1.6)

kz = 2πnz
L

where nz ∈ Z (1.7)

Index l = (nx, ny, nz, p) labels both the wave vector components and the polarisation
p = 1, 2. We also use the convention −l = (−nx,−ny,−nz, p).

Several points are worth noticing in this expansion:

• The electric field is a real quantity which means its positive and negative frequency
parts must be complex conjugate of each other. There is some redundancy in con-
sidering both of them and it is therefore convenient to introduce the analytical field3

E(+). It also greatly simplifies the calculus and is useful for the quantisation of the
EM field.

• The real quantity El is introduced so that αl(t) is unit-less, its physical meaning will
become clear later.

• From the propagation Eq. (1.1) the form of αl(t) is easily found to be:

αl(t) = αl(0)e−iωlt with ωl = ckl kl ≡ |kl| (1.8)

αl(0) is just a constant that determines the initial condition of the field.

• Finally because of the boundary conditions (1.5) we have:∫
V

ul(r) · ul′(r) dV = εl · εl′
∫
V
e±i(kl−kl′ )·r dV = V δll′ (1.9)

Where δll′ is the Kronecker delta symbol. This relation guarantees the orthogonality
of the modes.

1This volume is introduced just as a tool for calculation and will then be taken to be infinite.
2The fact that the temporal and spatial parts of a mode can be factorised is not obvious and is a

consequence of Eq. (1.1)
3Sometimes also referred to as complex amplitude or positive frequency part of the field.



Similarly we have for the magnetic field:

B(r, t) =
∑
l

ε′l
El
c
αl(t)eikl·r + c.c. (1.10)

with ε′l = kl
kl
× εl and c.c. is the complex conjugate.

1.1.2 The photon: a harmonic oscillator excitation

In this section we recall the canonical quantisation of the electromagnetic field detailed
in [79]1. In (non-relativistic) quantum mechanics, the state of a (pure) system is given
by a vector |ψ(t)〉 of a Hilbert space H [84]. Any physical observable correspond to
a hermitian operator2 acting on H . The dynamic of a quantum system is given by a
hermitian operator, the Hamiltonian, which represent the total energy.

The total energy of the electromagnetic field contained in a cubic volume V = L3 is:

U =
∫
V

1
2ε0(‖E(r, t)‖2 + c2‖B(r, t)‖2) dV (1.11)

Using the expansions from Eq. (1.3), Eq. (1.10) and the boundary relations Eq. (1.9) one
can show that:

U = ε0V
∑
l

E 2
l (αl(t)α∗l (t) + α∗l (t)αl(t)) (1.12)

= ε0V
∑
l

E 2
l (αl(0)α∗l (0) + α∗l (0)αl(0)) (1.13)

So the total energy of the EM field is just the sum of the energy contained in each mode
and the energy of each mode is conserved. A quantum description of the field is obtained
by promoting the complex constants αl(0) to operators âl, called the field operators. The
Hamiltonian of the free field is then a sum of Hamiltonians over each independent normal
mode:

Ĥ =
∑
l

Ĥl with Ĥl = ε0V E 2
l (âlâ†l + â†l âl) (1.14)

Each of those is the Hamiltonian of a harmonic oscillator (see Fig. 1.1). Excitations of
these oscillators are photons, the fundamental particles of light. El is the amplitude of
the electric field in this mode for a single excitation (one photon). For the corresponding
energy to be an energy quantum ~ωl we need:

El =
√

~ωl
2ε0V

(1.15)

For the quantum description to be complete, the field operators need to follow the com-
mutation relations: [

âl, â
†
l′

]
= δll′ (1.16)

[âl, âl′ ] = 0 (1.17)
1Note however that the field here is described in the Heisenberg picture unlike in [79].
2More generally, measurements can be described by positive operator-valued measure (POVM).



Fig. 1.1 Representation of the quantum harmonic oscillator eigenmodes. The
ψk(q) represent the eigenmodes wavefunction and their offset is their energy
(eigenvalue). V (q) is a harmonic potential.

So the Hamiltonian of mode l is finally:

Ĥl = ~ωl
2 (âlâ†l + â†l âl) (1.18)

= ~ωl(â†l âl + 1
2) (1.19)

(1.20)

And the quantum operator for the electric field reads:

Ê(+)(r, t) =
∑
l

Elâlul(r, t) (1.21)

where ul(r, t) = ei(kl·r−ωlt)εl.

1.1.3 Quadrature operators and commutation relations

The field operators we defined in the previous section are not hermitian operators and do
not correspond to physical observables. From the field operators, we can define hermitian
operators, analogous to momentum and position of a harmonic oscillator. They are called
the quadrature operators and are given by1:

q̂l = â†l + âl (1.22)

p̂l = i
(
â†l − âl

)
(1.23)

1Other conventions exists for defining the quadratures, this one corresponds to a vacuum shotnoise
equal to 1



And the converse:

âl = 1
2 (q̂l + ip̂l) (1.24)

â†l = 1
2 (q̂l − ip̂l) (1.25)

These hermitian operators correspond to the observables we will access in the experiment.
Note that they do not correspond to external degrees of freedom like position and mo-
mentum, but are just mathematically similar. Instead they represent internal degrees of
freedom of the field. Their meaning is clearer if we express the electric field in terms of
those operator:

Ê(r, t) =
∑
l

εl

√
~ωl

2ε0V
(âle−i(ωlt−kl·r) + â†l e

i(ωlt−kl·r)) (1.26)

=
∑
l

εl

√
~ωl

2ε0V
(q̂l cos(ωlt− kl · r) + p̂l sin(ωlt− kl · r)) (1.27)

With this expression we see that the quadrature operators, sometimes referred to as, am-
plitude and phase, are just the amplitude of the cosine and sine channels of the electric field
modes. From Eq. (1.16) and (1.24), we get the commutation relations for the quadrature
operators:

[q̂l, p̂l′ ] = 2iδll′ (1.28)
[q̂l, q̂l′ ] = 0 (1.29)
[p̂l, p̂l′ ] = 0 (1.30)

Quadratures can also be defined at arbitrary phase θ with:

x̂θl = cos θq̂l + sin θp̂l (1.31)

= eiθâ†l + e−iθâl (1.32)

The commutation relation (1.28) leads to a Heisenberg inequality for the amplitude
and phase quadratures of a given mode. For a pair of arbitrary operators Ô1 and Ô2
this inequality is determined by the commutation relation between those operator (see for
example [85]): 〈

∆Ô2
1

〉〈
∆Ô2

1

〉
≥
( 1

2i
〈[
Ô1, Ô2

]〉)2
(1.33)

Where the variance of the operator in state ψ is defined by:〈
∆Ô2

〉
= 〈ψ|Ô2|ψ〉 − 〈ψ|Ô|ψ〉2 (1.34)

This gives for the amplitude and phase quadratures:〈
∆q̂2

l

〉〈
∆p̂2

l′

〉
≥ δll′ (1.35)

This inequality indicates that there is a fundamental limit to the precision with which
one can simultaneously measure both quadratures for a given mode of the EM field. This
property is at the foundation of quantum communication protocols and is closely linked
to the no-cloning theorem [86].



1.2 Quantum state representation

In this section we introduce representations of the quantum state of the EM field. There
are many different representations and some may be more relevant to certain types of
states.

1.2.1 Discrete variable representation: the Fock basis

The most natural way to describe an arbitrary quantum state is to expand it on a known
basis of states. Eigenvectors of the single mode Hamiltonian Ĥl of Eq. (1.18) form an
orthonormal basis1. They are called Fock states, they are eigenstates of the number
operator n̂l = â†l âl, and are labelled according to their eigenvalues: n̂l |k〉 = k |k〉. Any
single mode state can be decomposed in that basis with:

|ψ〉 =
∑
n

cn |n〉 (1.36)

This is called a discrete variable representation as the state is described by a discrete set
of complex numbers {cn}.

There is a Fock basis associated with each of the modes but since the total Hamiltonian
is a sum over each mode Ĥ =

∑
l ~ωl

(
n̂l + 1

2

)
and the n̂l commute (see Eq. (1.16)), the

eigenvectors of Ĥ are just tensor products of the single mode Fock states:

|n1, n2, ..., nl, ...〉 := |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nl〉 ⊗ · · · (1.37)

So any multimode state can be decomposed in that basis:

|ψ〉 =
∑

n1,n2,...,nl,...

Cn1,n2,...,nl,... |n1, n2, ..., nl, ...〉 (1.38)

This representation is useful when one manipulates single or few photon states and
does photon counting measurements. However, for continuous measurements which will
be the main concern of this thesis, other representations are better suited.

1.2.2 Continuous variables and Phase-Space representations

In the laboratory, we often use a measurement technique called homodyne detection (de-
tailed in section 2.3.3). It allows us to directly access the quadratures q̂l, p̂l of a given mode.
It is therefore useful to represent a state using a basis of eigenvectors of the quadrature
operators2(here we drop the mode index for simplicity):

|ψ〉 =
∫
ψ(q) |q〉dq (1.39)

=
∫
ψ̃(p) |p〉 dp (1.40)

1This follows from the spectral theorem
2Here unlike in Eq. (1.36), the decomposition is continuous. This is because, even though q̂ is hermitian,

it is not compact on H so the spectral theorem does not apply. The pseudo-eigenvectors |q〉 do not belong
to H . Certain restrictions exist on ψ(q) in order for |ψ〉 to belong to H . As “good” experimental physicists
we will swipe all those mathematical difficulties under the carpet.



where the eigenvectors |q〉 form an orthonormal and complete basis (similar expression for
|p〉) :

q̂ |q〉 = q |q〉 (1.41)〈
q
∣∣q′〉 = δ(q − q′) (1.42)∫

|q〉〈q|dq = 1 (1.43)

ψ(q) and ψ̃(p) both fully describe the quantum state, they are Fourier transform of each
other. The q and p quadrature are referred to as conjugate variables. ψ(q) (resp. ψ̃(p))
represents the amplitude probability distribution for measuring the quadrature value q
(resp. p).

Since q̂ and p̂ do not commute and cannot be measured simultaneously, there exists
no proper joint probability distribution in phase space to describe |ψ〉. Nevertheless one
can still define a function on the full phase space that give a useful representation of |ψ〉.
It’s called the Wigner function [87–89] and is defined as:

W|ψ〉(q, p) := 1
2π

∫
R
ψ

(
q + y

2

)∗
ψ

(
q − y

2

)
e−ipy dy (1.44)

It’s marginals are
∫
RW|ψ〉(q, p) dp = |ψ(q)|2 and

∫
RW|ψ〉(q, p) dq =

∣∣∣ψ̃(p)
∣∣∣2 but it is not

a probability density function and it can take negative values. It is sometimes called a
quasi-probability distribution.

A Wigner distributions can also be associated to any operator with:

WÔ(q, p) := 1
2π

∫
R

〈
q + y

2

∣∣∣∣Ô∣∣∣∣q − y

2

〉
e−ipy dy (1.45)

The Main properties and relations associated with the Wigner representation are given
in Table. 1.1.

This phase space representation is extended to multimode states in a straightforward
way. The multimode quadrature eigenvectors form an orthonormal and complete basis
(similar expression for |p〉) :

|q〉 := |q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |ql〉 ⊗ · · · (1.54)〈
q
∣∣q′〉 = δ(q − q′) (1.55)∫

|q〉〈q|dq = 1 (1.56)

And the multimode quantum state is decomposed as:

|ψ〉 =
∫
ψ(q) |q〉dq (1.57)

=
∫
ψ̃(p) |p〉 dp (1.58)

The multimode Wigner function is defined as:

W|ψ〉(q,p) :=
( 1

2π

)n ∫
Rn
ψ

(
q + y

2

)∗
ψ

(
q − y

2

)
e−ip·y dny (1.59)

Other phase-space representation exist [90, 91] but their description lies outside the
scope of this thesis.



Wρ̂(q, p) :=
( 1

2π

)∫
R

〈
q + y

2

∣∣∣∣ρ̂∣∣∣∣q − y

2

〉
e−ipy dy (1.46)

W (q, p) ∈ R (1.47)∫
R
Wρ̂(q, p) dp = 〈q|ρ̂|q〉 =

pure state
|ψ(q)|2 (1.48)∫

R
Wρ̂(q, p) dq = 〈p|ρ̂|p〉 =

pure state

∣∣∣ψ̃(p)
∣∣∣2 (1.49)∫

R2
Wρ̂(q, p) dq dp = Tr(ρ̂) =

pure state
1 (1.50)

|〈ψ|φ〉|2 = 4π
∫
R2
Wψ(q, p)Wφ(q, p) dq dp (1.51)

Tr
(
ρ̂ Ô

)
=
∫
R2
Wρ̂(q, p)WÔ(q, p) dq dp (1.52)

−1 ≤Wρ̂(q, p) ≤ 1 (1.53)

Table 1.1 – Main properties of the Wigner function

1.2.3 Statistical mixtures and the density operator

Until now we have only described so called pure systems. When the quantum state is
subject to classical noise or is not isolated, this description is not sufficient. It is necessary
to describe statistical superposition of states |ψ〉1, |ψ〉2, ... Such mixed states are described
by the density operator, first introduced by John Von Neumann [92]:

ρ̂ =
∑
i

pi |ψi〉〈ψi| with
∑
i

pi = 1 (1.60)

where the pi represent the statistical weights of the pure states |ψi〉.
Just like pure states, mixed states can be decomposed on the Fock basis with:

ρ̂ =
∑
mn

cmn |m〉〈n| (1.61)

In this Fock representation the states are fully characterised by the matrix with co-
efficients cmn = 〈m|ρ̂|n〉. The diagonal terms {cnn} correspond to the probabilities of
detecting the particular Fock state |n〉, they are called populations. The off diagonal
terms {cmn}m6=n represent fixed phase relationships between the Fock states |m〉 and |n〉,
they are called coherences. Example of Fock basis expansion will be given for several
quantum states of interest. Incidently, any other operator Ô can also be described with
its Fock basis matrix elements 〈m|Ô|n〉.

Wigner distributions can also describe mixed states and are obtained from the density
operator with:

Wρ̂(q, p) =
( 1

2π

)∫
R

〈
q + y

2

∣∣∣∣ρ̂∣∣∣∣q − y

2

〉
e−ipy dy (1.62)

1.3 Importance of modes
The quantum state representations we introduced rely on Fock states {|n〉l} and quadra-
ture eigenstates {|q〉l} which are associated to the monochromatic travelling plane wave



modes {ul}. This basis choice is somewhat arbitrary, and the EM field can be expanded
on other bases. A given quantum state may therefore have very different representations
for different mode bases. For this reason, there is a very intricate link between the modes
structure and the quantum states structure. This motivates the search for properties of
quantum states that are intrinsic i.e independent of the mode basis.

1.3.1 Mode basis change

Any basis of functions that solve Eq. (1.1) define a set of modes. A given set of mode
functions {gl} can be expanded on another set of modes {fl} with:

gl(r, t) =
∑
m

Ulmfm(r, t) (1.63)

and the converse:
fl(r, t) =

∑
m

U∗mlgm(r, t) (1.64)

where {Uml } are complex coefficients given by:

Ulm = 1
V

∫
V

fm(r, t)∗gl(r, t) dV (1.65)

The new basis gl is associated with a new set of creation/annihilation operators {b̂l}.
These are also related to the creation/annihilation operators {âl} associated with {fl}. To
find the right formulae for the field operator transformations, we require that the total
electric field expressed in both bases is identical. This gives the formulae:

b̂l =
∑
m

U∗lmâm (1.66)

b̂†l =
∑
m

Ulmâ
†
m (1.67)

and the converse:

âl =
∑
m

Umlb̂m (1.68)

â†l =
∑
m

U∗mlb̂
†
m (1.69)

1.3.2 Intrinsically single-mode and multimode states

The notion of multimode states of light is particularly important to this thesis. Here we
will briefly sketch the difference between a state of light that is essentially single-mode
and one that is intrinsically multimode, more details can be found in [93].

As we already mentioned, there is an intricate link between the mode basis and the
state representation. In particular the notion of separability1 depends on the mode basis.
Given two bases {ul}, {vl} we may have for example:

|Ψ〉 = 1√
2

(|10〉u1,u2
+ |01〉u1,u2

)⊗ |0, 0, · · ·〉u3,··· (1.70)

= |1〉v1
⊗ |0, 0, · · ·〉v2,··· (1.71)

1A given state is separable if it is written as a tensor product of single mode states.



In the representation corresponding to ul, the state is not separable and modes u1, u2 are
entangled but it is not the case in the vl representation.

A state is said to be intrinsically single mode if there exists a basis of modes in which
the state is written:

|Ψ〉 = |ψ1〉 ⊗ |0, 0, . . .〉 (1.72)

Conversely, if there is no such basis, the state is intrinsically multimode. Note that the full
vacuum state (vacuum |0〉 for all modes) has the same representation in all mode bases.

We can examine further the multimode aspect of a state and define its minimal number
of occupied mode or degree [94]. That is to say, for all possible mode bases, the minimal
n such that the state can be written:

|Ψ〉 = |ψ〉u1,...,un ⊗ |0, 0, . . .〉un+1,··· (1.73)

The n first modes are then called the principal/minimal modes.

1.4 A zoo of quantum states
In this section we introduce the states most encountered in quantum optics. Unless spec-
ified otherwise, we will only consider a single mode of the EM field and won’t write the
index labelling the mode explicitly.

1.4.1 Fock states

Fock states (or Number states) {|n〉}n∈N are eigenstates of the Hamiltonian, they define
photons. They form a complete orthonormal basis so that any state can be written as a
superposition of Fock states. Fock states are defined as eigenstates of the number operator
n̂ = â†â.

The state |0〉 is called the vacuum state, it is the ground state of the EM field and
corresponds to an empty field. Note however, that many physical observable can take non
zero values in this state. In particular, the EM field fluctuations are non zero in vacuum
〈0|Ê2|0〉 6= 0. The main properties of Fock states are summarised in Table. 1.2.

Fig. 1.2 shows typical quadrature measurements from the vacuum state. The electric
field is non zero and shows some fluctuations, these fluctuations are at the origin of shot
noise, it is the intrinsic quantum noise of the electric field. The field has no coherence, no
defined phase, as is the case for any Fock state. The q and p distributions follow a normal
distribution.

Fig.1.3 shows typical quadrature measurements for a two photon Fock state. The field
does not have any defined phase, it’s fluctuation are bigger than in the vacuum state. The
q and p distributions follow a Hermite-Gauss distribution.

Fig. 1.4 shows the Wigner functions of the vacuum state and two photon state. Note
the Wigner function of the two photon state goes negative, which reveals the quantum
nature of that state.

1.4.2 Coherent states

Coherent states where first introduced by Erwin Schroedinger [95] and where later thor-
oughly studied by Glauber, Klauder and Sudarshan [96–98]. The coherent state is the
state that most resembles the classical EM field state with defined amplitude and phase
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√
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∆p̂2
〉

= 2k + 1 (1.81)
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2

)
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Table 1.2 – Main properties of Fock states

Fig. 1.2 (a) Typical quadrature sampling from the vacuum state |0〉 at different
phases (xθ is defined by Eq. (1.31)). (b) Probability distribution and sampling
frequencies of q̂ in the vacuum state |0〉.

(see Fig. 1.6). The set of coherent states (for a given EM mode) {|α〉}α∈C are parametrised
by their coherent amplitude α. α is a complex number, its real/imaginary part represent
the mean amplitude/phase of the EM field. Coherent states can be defined as eigenstates
of the annihilation operator â. The variances of the amplitude and phase quadratures of
coherent states are equal to 1, thus, a coherent state is a minimum uncertainty state. A
source of coherent states can be well approximated in the laboratory by a heavily attenu-
ated source of laser light. The attenuation serves to reduce extraneous noise sources due



Fig. 1.3 (a) Typical quadrature sampling from the two photon state |2〉 at differ-
ent phases (xθ is defined by Eq. (1.31)). (b) Probability distribution and sampling
frequencies of q̂ in the two photon state |2〉.

Fig. 1.4 (a) Wigner distribution of the vacuum state |0〉. Wigner distribution
of the two photon state |2〉.

to the lasing mechanism, and thereby prepare a nearly pure, coherent state. Note that the
coherent state with α = 0 coincides with the vacuum state defined in section 1.4.1. Be-
cause the coherent states are labelled by a continuous index they form an over-complete
basis of H . The main properties of coherent states are summarised in table 1.3. The
Fock decomposition of coherent states follows a Poissonian distribution (see Fig. 1.5). In
Wigner representation the coherent state is represented by a bivariate normal distribution
with variance 1 and mean given by 2 Re(α) and 2 Im(α) (see Fig. 1.6).

1.4.3 Squeezed vacuum states

Unlike coherent states, squeezed vacuum states have a quadrature variance below 1. They
are also minimum uncertainty states, and the conjugate quadrature variance must exceed
1 to preserve the minimum uncertainty product. In phase space, these states therefore
look like a vacuum state squeezed along a certain axis and stretched (anti-squeezed) along
the orthogonal axis, hence their name.

Squeezed states can be obtained by the action of the squeezing operator on vacuum:
Ŝ(ζ) = e

1
2(ζâ†2−ζ∗â2) where ζ = reiθ is a complex parameter. The reduced quadrature



â |α〉 = α |α〉 (1.84)

|α〉 = D̂(α) |0〉 (1.85)

D̂(α) = eαâ†−α∗â = e−
1
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2
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1
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Table 1.3 – Main properties of coherent states
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Fig. 1.5 Fock distribution of the coherent state

variance is a very useful characteristic of those state, it is used for example in metrology
when a measurement is polluted by quadrature noise. Fig. 1.7 shows the photon number
distribution of squeezed vacuum states with various squeezing parameters. Fig. 1.8 shows



Fig. 1.6 (a) Typical quadrature sampling from the coherent state |α = 3〉 at
different phases (xθ is defined by Eq. (1.31)). (b) Probability distribution and
sampling frequencies of q̂ in the coherent state |α = 3〉.

∣∣∣ζ = reiφ
〉

= Ŝ(ζ) |0〉 (1.94)

Ŝ(ζ) = e
1
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2 (1.98)

〈q̂〉 = 〈p̂〉 = 0 (1.99)〈
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〉
= e2r cos2(φ2 ) + e−2r sin2(φ2 ) (1.100)〈
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〉
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W|ζ〉(q, p) = 1
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(1.103)

Table 1.4 – Main properties of vacuum squeezed states

the typical quadrature measurements from a squeezed vacuum state and typical quadrature
distributions.
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Fig. 1.7 Fock distribution of the squeezed vacuum state

Fig. 1.8 (a) Typical quadrature sampling from the squeezed vacuum state
|ζ = 0.7〉 (6.1 dB) at different phases (xθ is defined by Eq. (1.31)). (b) Prob-
ability distribution and sampling frequencies of q̂ and p̂ in the squeezed vacuum
state |ζ = 0.7〉.

1.4.4 EPR states

Another important state in CV quantum optics is the EPR state or two-mode squeezed
vacuum state. Unlike all the states we presented until now, the EPR state is multimode.



EPR states can be obtained by the action of the two mode squeezing operator on vacuum:

|ζ〉EPR = Ŝ2(ζ) |0, 0〉 (1.104)

= e
1
2

(
ζâ†1â

†
2−ζ

∗â1â2
)
|0, 0〉 (1.105)

= 1
cosh(r)

∞∑
n=0

(
eiφ tanh(r)

)n
|n, n〉 (1.106)

where ζ = reiθ is a complex parameter. This form shows that the EPR state is made up of
pairs of equal numbers of photons in two modes. This state exhibits correlation between
the quadratures of the two modes:〈

(q1 − q2)2
〉

=
〈

(p1 + p2)2
〉

= e−2r ≤ 1 (1.107)

These correlation cannot be accounted for classically, they are evidence of the entangle-
ment between the two modes and exemplify the famous EPR paradox raised by Einstein,
Podolsky and Rosen [5].
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Gaussian states and operations
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Out of the large variety of quantum states and operations, the Gaussian ones are
of particular interest for this thesis. There are several reason that make the Gaussian
framework useful:

• Gaussian states play a central role in quantum communication and information pro-
cessing, in particular they are of great practical relevance for continuous variables
(CV) quantum optics. Most standard light sources are well described by Gaussian
states and Gaussian entanglement can be generated deterministically.

• Many practical transformations preserve the Gaussianity of quantum states.

• On the theoretical side, powerful analytic tools exist that make Gaussian analysis
easier and insightful.

That being said, non-Gaussianity is also an interesting feature of quantum states. In
quantum computing, in particular, non-Gaussianity is required in order to implement truly
quantum algorithms. This non-Gaussianity feature can be added to a carefully prepared
Gaussian state by photon subtraction. In our lab, this has been studied theoretically [99–
104] and realized experimentally [105, 106] for multimode states. But the present work
deals exclusively with the first step of preparing an optimised Gaussian state.
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In this chapter we introduce the theoretical tools of Gaussian quantum information.
Details on Gaussian quantum information can be found in [107] and reference therein. For
an overview of the background mathematical formalism of real symplectic groups see [108].
For details on the multimode aspects of Gaussian states see [93].

2.1 Gaussian states, gaussian unitaries

Simply put, Gaussian states are just quantum states that have a Gaussian Wigner function.
The vacuum squeezed state and coherent state introduced in section 1.4.3 are Gaussian
states. Gaussian operations are processes that preserve the Gaussianity of the state.

2.1.1 Phase-space representation and covariance matrix

Any Gaussian function is fully determined by its first and second order moments, and
the Wigner function fully describes the quantum state. Therefore, a reduced number of
parameters is sufficient to describe Gaussian states. This makes their analysis simpler.

Here we introduce the tools to describe Gaussian states. For simplicity we will consider
a finite number of modes n. In the following we will often arrange the quadrature field
operators in vectors1:

x̂ := (q̂, p̂)T := (q̂1, . . . , q̂n, p̂1, . . . , p̂n)T (2.1)

We can also arrange the creation and annihilation operators in vectors:

â := (â1, . . . , ân)T (2.2)

â† := (â†1, . . . , â†n)T (2.3)

Note that with this notation â† 6= âT∗. One then goes from the quadratures to the field
operators with2: (

q̂
p̂

)
= W

(
â
â†

)
(2.4)(

â
â†

)
= W−1

(
q̂
p̂

)
(2.5)

with3 W =
(
1 1

−i1 i1

)
and W−1 = 1

2

(
1 i1
1 −i1

)
.

Gaussian states are states that are represented by a Gaussian Wigner function W (x)
of R2n in phase space. Any such function is fully characterised by its first and second
moments. The first moment is called the displacement or mean vector:

x := 〈x̂〉 = Tr(x̂ρ̂) (2.6)
1In this thesis we’ll use the “QQPP” convention where the quadratures are grouped by type,

in the literature another convention exist (“QPQP”) where the quadratures are arranged by mode:
x̂ := (q̂1, p̂1, . . . , q̂n, p̂n)T .

2We adopt a bold notation for matrices in the following.
3These conventions correspond to shotnoise equal to 1.



The second moment is called the covariance matrix V and is defined as:

Vij := 1
2 〈{δx̂i, δx̂j}〉 (2.7)

Where δx̂i := x̂i − 〈x̂i〉 and {,} is the anti-commutator1.
It is a 2n × 2n symmetric, real, positive semi-definite matrix which must satisfy the

uncertainty relation2:
V + iΩ ≥ 0 (2.8)

Where Ω is the symplectic form:

Ω :=
(

0 1

−1 0

)
(2.9)

The Wigner function can be expressed explicitly from the first and second moments
with [109]:

W (x) = 1
(2π)n

√
det(V)

exp
(
−1

2(x− x)TV−1(x− x)
)

(2.10)

The purity of a Gaussian state is calculated from the covariance matrix with:

µ = 1√
det(V)

(2.11)

2.1.2 Example of Gaussian states

In section 1.4 all the quantum states we introduced were Gaussian except for the Fock
states. Table 2.1 summarise the moments of those states.

Gaussian states x V

Vacuum state |0〉
(

0
0

) (
1 0
0 1

)

Coherent state |α〉
(

2 Re(α)
2 Im(α)

) (
1 0
0 1

)
Vacuum squeezed state

|ζ = r〉

(
0
0

) (
e2r 0
0 e−2r

)

EPR state
|ζ = r〉


0
0
0
0

 VEPR =


cosh 2r sinh 2r 0 0
sinh 2r cosh 2r 0

0 0 cosh 2r − sinh 2r
0 0 − sinh 2r cosh 2r


Table 2.1 – First and second moments of common Gaussian states.

Given that Gaussian states are fully characterised by their first and second order
quadrature moments, it is worth representing the quadratures of Gaussian states with
a ball on a stick picture (see Fig. 2.1). In this phasor diagram representation, the stick

1Note the definition of covariance matrix here differs from the classical definition because we use the
anti-commutator. This is necessary to obtain a symmetric V because of the non commutativity of q̂i and
p̂i but this definition reduces to the standard one in the classical case.

2Here the ≥ 0 has to be understood as positive semi-definiteness.



represents the mean and the ball represent the covariance of the quadratures. This diagram
can be seen as an extension of the classical phasor diagram defined for classical EM fields,
where the field would exhibit some intrinsic noise.

Fig. 2.1 Example of phasor diagram representation for |0〉 and |α〉.

Fig. 2.2 illustrates the quadrature correlations of an EPR state. Taken individually,
each mode is just a thermal state, but the quadrature of the two modes are correlated so
that q̂2 − q̂1 and p̂1 + p̂2 are squeezed below the shot noise limit.

Fig. 2.2 Phasor diagram representation a two mode squeezed vacuum state. q̂1
and q̂2 are correlated while p̂1 and p̂2 are anti-correlated. Mixing a q squeezed
vacuum state and a p squeezed vacuum state on a balanced beam splitter creates
an EPR state.



2.1.3 General Gaussian unitaries, Bogoliubov/Symplectic transforma-
tions

Unitary transformations that map Gaussian states to Gaussian states are called Gaussian
unitaries. They are generated from Hamiltonians that are at most second-order polyno-
mials in the field operators [107]:

Û = exp
(
−iĤt

~

)
with Ĥt

~
= i

(
â†Tα + â†TBâ + â†TCâ†

)
+ h.c. (2.12)

where α ∈ Cn, B and C are n × n complex matrices, and h.c. designates the hermitian
conjugate of the first term.

Using the Baker-Campbell-Hausdorf formula, one can show that, in the Heisenberg
pictures, this corresponds to an affine transformation of the field operators:

b̂ = Û †âÛ = Eâ + Fâ† + α (2.13)

where E and F are complex matrices1. In order for the commutation relations to be
conserved we have:

EFT − FET = 0 (2.14)
EET − FFT = 1 (2.15)

We can rewrite the mode transformation in the compact form:(
b̂
b̂†

)
=
(

E F
F∗ E∗

)(
â
â†

)
+
(

α
α∗

)
(2.16)

This is the so-called Bogoliubov–Valatin transformation and the Hamiltonian in Eq. (2.12)
is sometimes called a Bogoliubov Hamiltonian2. For more details on Bogoliubov Hamilto-
nians see for example [111,112].

In terms of the quadratures, such transformations correspond to an affine map:

x̂b = Sx̂a + d (2.17)

where d = W
(

α
α∗

)
∈ R2n and S = W

(
E F
F∗ E∗

)
W−1. Because of Eqs. (2.14) and (2.15),

the matrix S is symplectic, i.e. STΩS = Ω. Eq. (2.17) is refereed to as a symplectic
transformation.

Under such transformation, the displacement and covariance matrix are changed as:

x→ Sx + d (2.18)
V→ SVST (2.19)

If the transformation does not change the mean photon number we have α = 0 and d = 0.
The operators D̂(α), Ŝ(ζ), and Ŝ2(ζ) that we introduced in section 1.4 are all Gaussian

unitaries. A table that summarises the main Gaussian unitaries and their properties is
given in appendix A.2, to be used as an aide-memoire.

1In general E and F both depend on α, B and C in a non trivial way.
2Bogoliubov introduced such quadratic Hamiltonian to describe a weakly interacting Bose gas [110]



2.1.4 General mode basis change

A particular type of Gaussian unitary is the one corresponding to a simple basis change (as
described in section 1.3.1). Indeed according to Eq. (1.66) the mode and field operators
were changed according to:

v = Uu (2.20)
b̂ = U∗â (2.21)

b̂† = Uâ† (2.22)

and

u = U†v (2.23)
â = UT b̂ (2.24)

â† = U†b̂† (2.25)

This corresponds to a particular case of Eq. (2.16) with E = U∗ and F = 0 and Eq. (2.15)
then expresses the unitarity of U1. This mode basis change is generated by the second
term in the Hamiltonian of Eq. (2.12).

In terms of the quadratures it is easy to show that the transformation is given by the
matrix:

x̂b =
(

X Y
−Y X

)
x̂a (2.26)

Where X = Re(U), Y = Im(U) and we have by unitarity of U:

XXT + YYT = 1 (2.27)
XYT −YXT = 0 (2.28)

Which implies that O :=
(

X Y
−Y X

)
is orthogonal and symplectic2.

The state moments are changed according to:

x→ Ox (2.29)
V→ OVOT (2.30)

2.2 Decompositions of Gaussian states and operations
A convenient feature of Gaussian transformation is that they can be decomposed into a
set of subtransformations [113] (also Gaussian), which are easier to interpret physically,
and construct experimentally. For a unitary (lossless) transformation this decomposition
is the Bloch-Messiah (BM) reduction3. A lossy transformation is non-unitary so the BM
decomposition doesn’t apply to it. Losses will result in classical noise in the quantum
state. But, using the Williamson decomposition, any Gaussian state can be modelled

1The unitary matrix U must not be confused with the time evolution unitary operator Û .
2Every orthogonal symplectic matrix can be written in this form.
3Sometimes called Euler decomposition.



as an initial state with independent modes containing all the classical noise that evolved
under a unitary Gaussian transformation. Combining these two decompositions gives a
general way to describe a lossy Gaussian operations.

In our experiment we use a synchronously pumped optical parametric oscillator (SPOPO).
It acts as a complex Gaussian transformation that mixes and entangles its input modes
(see section 6.4). Using these decompositions we will be able to recover the eigenmodes of
this transformation.

2.2.1 Bloch-Messiah reduction

The Bloch Messiah theorem [114,115] states that in transformations such as (2.16), E and
F can be decomposed into a pair of unitary matrices U and V and a pair of non-negative
diagonal matrices ΛE and ΛF satisfying Λ2

E −Λ2
F = 1 by1:

E = UΛEV† (2.31)
F = UΛFVT (2.32)

The physical meaning behind this decomposition, in the context of a multimode optical
circuit, is that any complex combination of multi-port linear interferometers, squeezers
and down-converters is equivalent to a circuit with a multi-port interferometer, a set of
single-mode squeezers and a second interferometer (see Fig.2.3).

Fig. 2.3 A schematic view of the Bloch-Messiah theorem (Figure from [115]).
D2 (resp. E4) represents a 2 (resp. 4) mode down converter, S represents a single
mode squeezer.

The Bloch-Messiah decomposition is sometimes formulated in terms of the quadrature
transformation. In that case, it states that any symplectic matrix S can be decomposed

1Bloch-Messiah decomposition is a particular case of singular value decomposition (SVD) of E and F.
It is unique up to a permutation of the modes.



into:

S = O1

(
K 0
0 K−1

)
O2 (2.33)

Where K is a positive diagonal matrix and O1, O2 are orthogonal and symplectic.

Given that S = W
(

E F
F∗ E∗

)
W−1, it is easy to show1 that these two formulations are

related by2:

O1 =
(

Re(U) − Im(U)
Im(U) Re(U)

)
O2 =

(
Re(V) − Im(V)
Im(V) Re(V)

)T
(2.34)

K = ΛE + ΛF K−1 = ΛE −ΛF (2.35)

This theorem is very useful to find the eigenmodes of the SPOPO (supermodes). Indeed
as we will see in section 6.4, the SPOPO transformation creates complex correlations
between the different frequency components of the signal beam. This transformation is
formally identical to the circuit picture in Fig. 2.3 where each input is a different frequency
mode. Assuming we start with a vacuum state input V0 = 1, the output covariance matrix
can be written:

V = SV0ST = O1KO2V0OT
2 KOT

1 = O1K2OT
1 (2.36)

Where S represents the symplectic transformation of the SPOPO, O1 describes a mode
basis change, from the basis in which V is defined to the basis of the SPOPO eigenmodes,
and K2 describes the squeezing level of the individual eigenmodes.

2.2.2 Williamson decomposition

Williamson’s theorem [116, 117] states that any real positive definite matrix can be de-
composed as:

V = SVWST (2.37)

where S is symplectic and VW = diag(κ1, . . . , κn, κ1, . . . , κn) is called the Williamson
normal form of V. 0 ≤ κ1 ≤ · · · ≤ κn are the Williamson/symplectic eigenvalues. If
we require V to be a bona fide covariance matrix (i.e. that verifies Eq. (2.8)) then the
Williamson eigenvalues must be ≥ 1. This theorem shows that any Gaussian state can be
reduced into a collection of independent symmetric thermal states under symplectic trans-
formations. This is called the thermal decomposition and the κn represent the thermal
states’ quadrature variance.

We can therefore model any measured noisy covariance matrix as an initial matrix VW

that contains all the classical noise, which is then transformed in a symplectic way by the
unitary operation of the SPOPO.

1The proof of this relation is given in Appendix A.2.
2Note that here the sign of Im(U) is reversed compared to formula (2.26). This is because in (2.31) U

is acting on the annihilation operators, whereas, in the mode basis definition of Eq. (2.20), U∗ is acting
on the annihilation operators.



2.2.3 One decomposition to rule them all

Since S from Eq. (2.37) is symplectic we can apply the BM decomposition to it. Combining
the decompositions of Eqs. (2.37) and (2.33) one gets:

V = O1 KO2VWOT
2 K︸ ︷︷ ︸

Ṽ

OT
1 (2.38)

So that the quantum state measured at the SPOPO output can be modelled as the
result of an input state with independent modes containing classical noise, on which the
SPOPO acts with a symplectic transformation. First mixing the original independent
modes with a basis change O2, then squeezing each of the resulting modes independently
with K, then mixing them again with the basis change O1.

O1 gives the transformation from the measurement basis to the supermode basis and
Ṽ describes the covariance matrix of the quantum state in the supermode basis. The
diagonal of Ṽ contains the supermodes’ predicted squeezing levels taking into account
losses. Ṽ is not diagonal in general because classical noise induces correlation between the
supermodes but it is close to diagonal as long as the classical noise isn’t too large. Finally
we get the eigenmodes of the SPOPO as the columns of U defined from O1 as:

O1 =
(

Re(U) Im(U)
− Im(U) Re(U)

)
(2.39)

2.3 Gaussian measurements

In this section we introduce the tools needed to describe the main measurement technique
used throughout this thesis: homodyne detection. It is an example of Gaussian measure-
ment i.e. a measurement scheme that produces a Gaussian probability distribution of
outcomes for any Gaussian state. We also show how a squeezing operation affects the
quantities we measure in the experiment.

In order to fully understand the spectral features of the homodyne detection signal in
the MHz range, we first change the discrete mode description to a continuum and introduce
the sideband/two-mode formalism [118, 119]. Under this formalism, the amplitude and
phase modulation of the electric field appear as excitations in the side-band modes around
the carrier optical frequency ω0. This allows us to define modulation quadratures as
combination of the side-band quadratures. Homodyne detection gives direct access to those
modulation quadratures. A degenerate down conversion process squeezes the modulation
quadratures.

2.3.1 Continuum of modes, two-mode formalism and envelope operators

Until now we have described the quantum EM field by a discrete set of modes and as-
sociated operators. This discrete set emerged because we considered a finite volume of
space V = L3 = LA with periodic boundary conditions. In some cases, this volume might
be physically relevant, when the field is confined into a cavity or if conditions are really
periodic, like on a lattice for example. However, in free space, there is often no partic-
ular meaningful volume to consider. In particular we want to take the limit when the
longitudinal distance tends to infinity.



In the following we show that under some approximations, taking this limit allows
to define continuous field operators and quadratures that represent the sine and cosine
amplitude and phase modulation channels around the carrier optical frequency ω0 [120].
In the time domain, they represent time-dependent envelope operators for the electric
field.

We will only consider a single polarisation for simplicity. Let us assume that the
only populated modes are those corresponding to plane wavefront propagating in the +z
direction, the electric field then reads:

Ê(+)(z, t) =
∑
l≥0

√
~ωl

2ε0V
âle−iωl(t− zc ) (2.40)

=
∑
l≥0

∆ω
√

~ωl
4πε0cA

âl√
∆ω

e−iωl(t− zc ) (2.41)

Because of boundary condition (1.5), the (positive) frequencies ωl are separated by ∆ω =
2πc
L . As we increase L, the mode spacing will shrink to zero and this sum will become
an integral

∑
l ∆ω →

∫
dω. The field modes operators will be labelled by a continuous

frequency parameter:
âl√
∆ω
→ â(ω) (2.42)

The discrete Kronecker delta symbol of the periodic boundary condition will become a
Dirac delta function:

δl,l′

∆ω → δ(ω − ω′) (2.43)

So the continuous mode commutation relation becomes:[
â(ω), â†(ω)

]
= δ(ω − ω′) (2.44)

Finally the analytic field reads:

Ê(+)(z, t) =
∫ ∞

0
dω
√

~ω
4πε0cA

â(ω)e−iω(t− zc ) (2.45)

Note that â(ω) now has Hz−1/2 units, so that n̂(ω) = â†(ω)â(ω) can be interpreted as the
spectral density of photons.

In practice we are only interested in modes in a small bandwidth ∆ω around a central
optical frequency ω0 � ∆ω, and all the other modes will be left in the vacuum state. So it
is useful to count modes starting from the central frequency ω0 and expand the analytical
field over a new set of modes that combine the upper and lower sidebands of ω0. With
a change a variable Ω = ω − ω0, and leaving the longitudinal space dependence out for
simplicity we can rewrite Eq. (2.45) as:

Ê(+)(t) = E0e−iω0t

(∫ ω0

0
dΩ
√
ω0 − Ω
ω0

â(ω0 − Ω)eiΩt +
∫ ∞

0
dΩ
√
ω0 + Ω
ω0

â(ω0 + Ω)e−iΩt
)

(2.46)
with E0 =

√
~ω0

4πε0cA . All the side-band frequencies we will consider are small compared to
the optical frequency so we can extend the integration range of the first term to infinity



without significant errors and approximate
√

ω0−Ω
ω0
≈
√

ω0+Ω
ω0
≈ 1. The real electric field

operator can now be re-written:

Ê(t) = Ê(+)(t) + Ê(−)(t) (2.47)

= E0

(
cos(ω0t)

∫ ∞
0

dΩ
(
â(ω0 − Ω) + â†(ω0 + Ω)

)
eiΩt +

(
â(ω0 + Ω) + â†(ω0 − Ω)

)
e−iΩt

+ sin(ω0t)
∫ ∞

0
dΩ
(
−iâ(ω0 − Ω) + iâ†(ω0 + Ω)

)
eiΩt +

(
−iâ(ω0 + Ω) + iâ†(ω0 − Ω)

)
e−iΩt

)
(2.48)

= E0
(

cos(ω0t)
∫ ∞

0
dΩ q̂c(Ω) cos(Ωt) + q̂s(Ω) sin(Ωt)

+ sin(ω0t)
∫ ∞

0
dΩ p̂c(Ω) cos(Ωt) + p̂s(Ω) sin(Ωt)

) (2.49)

Where we have introduced the new quadratures:

q̂c(Ω) = q̂(ω0 − Ω) + q̂(ω0 + Ω) (2.50)
p̂c(Ω) = p̂(ω0 − Ω) + p̂(ω0 + Ω) (2.51)
q̂s(Ω) = −p̂(ω0 − Ω) + p̂(ω0 + Ω) (2.52)
p̂s(Ω) = q̂(ω0 − Ω)− q̂(ω0 + Ω) (2.53)

And q̂(ω0 ± Ω), p̂(ω0 ± Ω) are the standard quadratures associated with mode (ω0 ± Ω).
q̂c/s and p̂c/s correspond to the cosine/sine modulation channels. q̂c/s represent am-

plitude modulation while p̂c/s represent phase modulation as described in Fig. 2.4. The
modulation quadratures follow the commutation relations:[

q̂c/s(Ω), q̂c/s(Ω′)
]

=
[
p̂c/s(Ω), p̂c/s(Ω′)

]
= 0 (2.54)[

q̂c/s(Ω), p̂c/s(Ω′)
]

= 4iδ(Ω− Ω′) (2.55)[
q̂c/s(Ω), p̂s/c(Ω′)

]
= 0 (2.56)

To finish we will introduce a last set of operators, which will be useful to define the
notion of envelope operators:

q̂(Ω) = â†(ω0 − Ω) + â(ω0 + Ω) = q̂c(Ω) + iq̂s(Ω)
2 (2.57)

p̂(Ω) = i
(
â†(ω0 − Ω)− â(ω0 + Ω)

)
= p̂c(Ω) + ip̂s(Ω)

2 (2.58)

This formula may appear strange at first, in particular, notice how these operators mix
creation and annihilation operators at different frequencies. They are not proper quadra-
ture operators as they are not hermitian, but they follow quadrature-like commutation
relations: [

q̂(Ω), q̂†(Ω′)
]

=
[
p̂(Ω), p̂†(Ω′)

]
= 0 (2.59)[

q̂(Ω), p̂†(Ω′)
]

= 2iδ(Ω− Ω′) (2.60)[
q̂(Ω), p̂(Ω′)

]
= 0 (2.61)



Fig. 2.4 Phasor diagram representation of the cosine/sine amplitude and phase
modulation channels.
Upper left: even coherent excitations of the sidebands in phase with the carrier
produces cosine amplitude modulation of the envelope.
Upper right: odd coherent excitations of the sidebands in quadrature with the
carrier produces sine amplitude modulation of the envelope.
Lower left: even coherent excitations of the sidebands in quadrature with the
carrier produces cosine phase modulation of the envelope.
Lower right: odd coherent excitations of the sidebands in phase with the carrier
produces sine phase modulation of the envelope.

Their definition can be naturally extended to negative frequencies with:

q̂(−Ω) = q̂
†(Ω) (2.62)

p̂(−Ω) = p̂
†(Ω) (2.63)

So that the electric field can be re-written:

Ê(t) = E0
(

cos(ω0t)
∫ ∞

0
dΩ
(
q̂
†(Ω)eiΩt + q̂(Ω)e−iΩt

)
(2.64)

+ sin(ω0t)
∫ ∞

0
dΩ
(
p̂
†(Ω)eiΩt + p̂(Ω)e−iΩt

) )
(2.65)

= E0
(

cos(ω0t)
∫
R

dΩ q̂(Ω)e−iΩt + sin(ω0t)
∫
R
p̂(Ω)e−iΩt

)
(2.66)

We can now define the time domain envelope quadrature operators as the Fourier transform
of q̂ and p̂:

q̂(t) :=
∫
R

dΩ√
2π
q̂(Ω)e−iΩt (2.67)

p̂(t) :=
∫
R

dΩ√
2π
p̂(Ω)e−iΩt (2.68)

(2.69)

This gives the following simple form to the real electric fields:

Ê(t) = E0 (q̂(t) cos(ω0t) + p̂(t) sin(ω0t)) (2.70)



We can also define a time domain envelope annihilation operator:

â(t) = q̂(t) + ip̂(t)
2 (2.71)

=
∫
R

dΩ√
2π
â(ω0 + Ω)e−iΩt (2.72)

So that the complex field is simply (reintroducing the longitudinal spatial dependency of
Eq. (2.45)):

Ê(+)(z, t) = E0â(t− z

c
)e−iω0(t− zc ) (2.73)

The name envelope operator becomes clear with the last expression: the field is the product
of a carrier travelling plane wave with an envelope given by â

(
t− z

c

)
. Finally, the envelope

field operator can be defined in the spectral domain as well, as the Fourier transform of
â(t):

Â(Ω) := F [â(t)](Ω) = â(ω0 + Ω) (2.74)
Likewise, in the spectral domain, the analytical field just reads:

Ê(+)(z, ω) := F [Ê(+)(z, t)](Ω) = E0Â(ω − ω0)eik(ω)z (2.75)
= E0â(ω)eik(ω)z (2.76)

All this two-mode formalism may seem a bit convoluted given that we end up with
a simple and intuitive definition for â(t) and Â(Ω) but it’s crucial to a complete under-
standing of squeezing and how it is linked with sideband modes correlations as we will see
in section 2.3.4. Some points are worth noticing:

• The envelope operator â(t) is only properly defined as the Fourier transform of Â(Ω)
as long as its temporal and spatial variation are slow compared with the carrier
variations which is exactly equivalent to the narrow bandwidth excitation condition.

• Although the envelope quadrature q̂(t) is a well defined observable, the Fourier
component Ω of q̂(t) is not. It is not given by q̂(ω0+Ω). Rather, it is a combination of
the sideband quadratures q̂(ω0−Ω), q̂(ω0+Ω), p̂(ω0−Ω) and p̂(ω0+Ω) (same for p̂(t)).
In the spectral domain the relevant observables that we access with measurements
are the modulation channel quadratures q̂c, p̂c, q̂s, and p̂s. More details will be given
in the following sections where we look at intensity and homodyne measurements.

2.3.2 Intensity measure

To measure light we use photodiodes. They are made of P-N doped semi-conductors and,
when used with a reverse bias voltage, they emit an electrical current proportional to the
intensity of the incident light. In this configuration, photodiodes are able to detect large
amounts of light with high efficiency and low noise. Their quantum efficiency (photon to
electron conversion ratio) typically reaches 90 % to 95 %.

In the following we will consider that the photocurrent generated by a photodiode is
proportional to the field intensity operator integrated over the surface of the detector and
over its temporal response. The intensity operator1 is defined as [120]:

Î(r, t) = 2ε0cÊ(−)(r, t)Ê(+)(r, t) (2.77)
1This expression is valid under the electric-dipole and rotating wave approximations for a parallel

polarised beam



So the photocurrent reads:

î(t) = R

∫
Sd

d2ρ

∫
R

dτ r(τ)Î(r, t− τ) (2.78)

Where Sd is the detector area, R is the photodetector responsivity in A W−1 and r(t)
is the (real) normalised temporal response of the detector1. The typical width of r(t) is
the inverse of the detector Bandwidth: τBW = 1

BW . If we only consider a single trans-
verse spatial mode entirely contained in the detector surface, using Eq. (2.73) we see the
photocurrent is just proportional to the integrated photon number rate:

î(t) = R ~ω0

∫
R

dτ r(τ)â†(t− τ)â(t− τ) (2.79)

We can now specifically look at the photocurrent when a bright excitation α0 ∈ R, α0 �√
BW is present in the field at the carrier frequency ω0:〈

Ê(+)(t)
〉

= E0α0e−iω0t (2.80)

Note that in this expression α0 has s−1/2 units, α2
0 can be interpreted as the mean photon

rate. To take into account this bright excitation we can displace the field operators with
D̂ω0(α0):

D̂†ω0(α0)â(ω)D̂ω0(α0) = â(ω) + α0δ(ω − ω0) (2.81)
⇒ D̂†ω0(α0)â(t)D̂ω0(α0) = α0 + â(t) (2.82)

If we assume α0 is large compared to the field excitations at any other frequency we can
keep only terms in α0, we get:

î(t) = R ~ω0

(
α2

0 + α0

∫
R

dτ r(τ)q̂(t− τ)
)

(2.83)

We see two contributions in the photocurrent. The first term is constant, it corresponds to
the DC contribution and is proportional to the mean photon rate n = α2

0. The second term
corresponds to the AC contribution, it contains the time dependence and is proportional
to
√
n. Its time fluctuations are given by the photodetector response and the envelope

amplitude quadrature q̂(t), which corresponds to amplitude modulations in the field. As
expected, with intensity measurements, we are sensitive to the amplitude modulation in
the beam but not the phase modulation.

In the case where all modes but ω0 are in the vacuum we find that 〈0|̂i(t)|0〉 = R~ω0α
2
0

and2 〈0|∆î(t)∆î(t+ τ)|0〉 = (R~ω0)2α2
0. We get back the standard result that the signal

to noise ratio is proportional to
√
n (Poissonian noise).

We can go one step further and expand q̂(t−τ) in the frequency domain using Eq. (2.67)
to get:

î(t) = R ~ω0
(
α2

0 + α0

∫
R

dΩ q̂(Ω)e−iΩt
∫
R

dτ√
2π
r(τ)eiΩτ

︸ ︷︷ ︸
r̃(Ω)

)
(2.84)

1∫
R

dt r(t) = 1 and for causality reasons we have r(t > 0) = 0
2This is immediate once we show 〈0|q̂(t− τ)q̂(t)|0〉 = δ(τ)



Finally using the fact that q̂(Ω) + q̂(−Ω) = qc(Ω) and i (q̂(−Ω)− q̂(Ω)) = qs(Ω) we have:

î(t) = R ~ω0

(
α2

0 + α0

∫ ∞
0

dΩ r̃(Ω) (cos(Ωt)q̂c(Ω) + sin(Ωt)q̂s(Ω))
)

(2.85)

Again we see the photocurrent signal is sensitive to amplitude modulations of the field,
since q̂c and q̂s represent the amplitude modulation channels1 as we illustrated in Fig. 2.4.

In a realistic intensity measurement the photocurrent will be polluted by some elec-
tronic noise2. In general this noise is orders of magnitude larger than the noise induced
by the terms q̂c and q̂s. But direct intensity measurements can still resolve the poissonian
noise coming from these terms because of the scaling by α0.

When the field does not contain a bright coherent excitation, however, the contribution
from the electronic noise dominates the signal. Another measurement technique is needed
in order to detect the vacuum field fluctuations. This technique called homodyne detection
is described in the next section. Incidently, this technique allows us to recover the phase
modulations channel (p̂c and p̂s) as well.

2.3.3 Homodyne detection

The homodyne detection (HD) technique consists in interfering the field to be measured
(the signal) with a strong coherent reference field (the local oscillator). This way the
fluctuations of the signal are amplified by the local oscillator above the electronic noise
level of the detector. One also needs to make sure the noise contributions from the local
oscillator does not pollute the measurement.

To achieve this the first homodyne detection schemes [121] (one port HD) used the
configuration depicted in Fig. 2.5 (a). The local oscillator (LO) and signal were interfered
on a very unbalanced beam splitter with high transmission and low reflection t >> r. This
way the signal is almost fully transmitted and amplified by a factor r|αLO| by interference.
The LO noise that leaks in is scaled by r2|αLO| so it is negligible if r is sufficiently small.

Fig. 2.5 (a) Single port and (b) dual port homodyne detection schemes.

1Note that what defines amplitude or phase modulation depends on the carrier phase. Here we found
the AC photocurrent depends only on q̂c and q̂s because we set α0 ∈ R. More generally, AM correspond
to even (resp. odd) excitations in phase (resp. in quadrature) with the carrier and PM correspond to even
(resp. odd) excitations in quadrature (resp. in phase) with the carrier.

2This noise comes from the photodiode and the electronic circuit used after the photodiode to amplify
the signal



Nowadays we use a more practical technique introduced by Yuen and Chan [122,123]
that allows to better suppress the noise contribution of the LO while using it’s amplitude
fully. For that, the signal and LO are interfered on a balanced beam splitter, the two
output photocurrents are measured and subtracted (see Fig. 2.5 (b)). The signal is still
amplified by the LO amplitude. Most of the LO noise contributions are perfectly correlated
on the two detectors and therefore cancel on the subtracted signal.

To see this let’s calculate the subtracted photocurrent:

î−(t) = î2(t)− î1(t) (2.86)

∝
∫
R

dτ r(τ)
( (

Ê(−)
LO (t− τ) + Ê(−)(t− τ)

) (
Ê(+)

LO (t− τ) + Ê(+)(t− τ)
)

−
(
Ê(−)

LO (t− τ)− Ê(−)(t− τ)
) (

Ê(+)
LO (t− τ)− Ê(+)(t− τ)

) ) (2.87)

= 2
∫
R

dτ r(τ)Ê(−)(t− τ)Ê(+)
LO (t− τ) + h.c. (2.88)

∝
∫
R

dτ r(τ)â(t− τ)â†LO(t− τ) + h.c. (2.89)

If the LO is a strong, coherent monochromatic beam at frequency ω0, we can write âLO(t) =
αLO + δâLO(t). Keeping only terms in αLO = |αLO|eφLO we simply get:

î−(t) ∝ |αLO|
∫
R

dτ r(τ)x̂φLO(t− τ) (2.90)

with x̂φLO(t) = eiφLO â†(t) + e−iφLO â(t) = cosφLOq̂(t) + sinφLOp̂(t) (2.91)

The homodyne detection therefore measures the quadrature of the signal in phase with
the LO. We can again look at î−(t) in the frequency domain and see that it measures the
AM and PM channels:

î−(t) ∝ |αLO|
∫

dΩ r̃(Ω)â(ω0 + Ω)e−iφLOe−iΩt (2.92)

= |αLO|
(

cosφLO

∫ ∞
0

dΩ r̃(Ω) (cos(Ωt)q̂c(Ω) + sin(Ωt)q̂s(Ω)) (2.93)

+ sinφLO

∫ ∞
0

dΩ r̃(Ω) (cos(Ωt)p̂c(Ω) + sin(Ωt)p̂s(Ω))
)

(2.94)

In our analysis, to extract useful information from the homodyne photocurrent signals
we will demodulate them and only extract a small bandwidth. There are two main reasons
for that. First, the interesting quantum correlations that we want to access are only present
up to a few MHz as they are limited by the OPO cavity linewidth (see chapter 4). The
second reason is that classical noise sources dominate the signal at low frequencies. To
get the best ratio of quantum signal over classical noise we will therefore restrict our
measurement to a band of tens of kHz at 1 MHz.

Mixing down î(t) with an electronic local oscillator (eLO) signal e(t) ∝ cos(ωmt+ φm)
and a low pass filter of bandwidth ∆Ω = 2π

T � ωm allows to sample the quantity:

ŝ = cosφLO

(
cosφm

∫ ωm+∆Ω

ωm−∆Ω
dΩ q̂c(Ω) + sinφm

∫ ωm+∆Ω

ωm−∆Ω
dΩ q̂s(Ω)

)
(2.95)

+ sinφLO

(
cosφm

∫ ωm+∆Ω

ωm−∆Ω
dΩ p̂c(Ω) + sinφm

∫ ωm+∆Ω

ωm−∆Ω
dΩ p̂s(Ω)

)
(2.96)



Here we removed the term r̃(Ω) which is justified if the detected bandwidth (ωm−∆Ω, ωm+
∆Ω) is well within the detector bandwidth. The relevant quantities we access in the
experiment are the q̂c/s and p̂c/s integrated over the demodulation bandwidth (ωm −
∆Ω, ωm + ∆Ω). We can change which one we access by tuning the LO phase (to select q
or p) and the electronic demodulation signal phase (to select c or s). See [124] for more
details on the spectral analysis of homodyne measurements.

Another important feature of the homodyne detection is that it is a projective mea-
surement. By this we mean that homodyne detection measures the part of the signal that
is in the LO spatial and temporal mode. In this analysis where the LO is monochro-
matic at frequency ω0 we measure modes in the signal at frequencies in the vicinity of
ω0. Anything in the signal at frequencies far1 from ω0, would not be measured. But the
LO mode need not be a monochromatic one and in general we will measure the sidebands
of whatever spectral mode the LO is in. These sidebands may include a broad range of
frequencies, but they will always describe phase/amplitude amplitude modulation of the
LO temporal mode. We will give more details on homodyne measurement in the case of
a non monochromatic LO in section 3.3.

2.3.4 Squeezing and sideband noise correlations

Now that we have precisely defined the quantities we measure with homodyne detection,
we will show that a second order linearity acts as a two mode squeezing operator on the
sideband modes â(ω0±Ω). This creates correlations in the q̂(ω0±Ω) and p̂(ω0±Ω) which
amounts to squeezing/anti-squeezing of the modulation channel quadratures q̂c(Ω), p̂c(Ω),
q̂s(Ω) and p̂s(Ω).

More details on second order linearities will be given in chapter 6, but the important
feature here is that under certain conditions it is possible to convert photons from a pump
at frequency ωp into pairs of signal and idler photons at frequencies ωi and ωs, a process
called parametric down conversion (PDC). For reasons of energy conservation we have
ωi + ωs = ωp. Writing ωp = 2ω0, we can label the signal and idler frequencies from
the pump half frequency: ωs = ω0 + Ω. So that the idler photon frequency has to be
ωi = ω0−Ω. In other words the pump photons are converted to side-band photons around
half the pump frequency. This can be modelled by a Hamiltonian of the form2:

Ĥ = iζ(â†(ω0 − Ω)â†(ω0 + Ω)) + h.c. (2.97)

The corresponding unitary evolution is:

Û = eζâ†(ω0−Ω)â†(ω0+Ω)−ζ∗â(ω0−Ω)â(ω0+Ω) (2.98)

This is just the two mode squeezing operator we introduced in section 1.4.4. Through this
unitary evolution the quadrature of the signal and idler modes are transformed according
to3: (

q̂(ω0 − Ω)
q̂(ω0 + Ω)

)
→
(

cosh r q̂(ω0 − Ω) + sinh r q̂(ω0 + Ω)
sinh r q̂(ω0 − Ω) + cosh r q̂(ω0 + Ω)

)
(2.99)

1further than the bandwidth of the detector
2This process happens for all side-band frequencies within the phase-matching bandwidth.
3We take ζ = r ∈ R+ for simplicity



and: (
p̂(ω0 − Ω)
p̂(ω0 + Ω)

)
→
(

cosh r p̂(ω0 − Ω)− sinh r p̂(ω0 + Ω)
− sinh r p̂(ω0 − Ω) + cosh r p̂(ω0 + Ω)

)
(2.100)

This introduces coupling between the quadrature at ω0 − Ω and ω0 + Ω. Going to the
AM and PM channels, this transformation acts independently on each mode and takes
the simple form: 

q̂c(Ω)
q̂s(Ω)
p̂c(Ω)
p̂s(Ω)

→


er q̂c(Ω)
e−r q̂s(Ω)
e−rp̂c(Ω)
erp̂s(Ω)

 (2.101)

In other words, a PDC process can create EPR correlations between the modes ω0−Ω
and ω0 +Ω. These correlations result in squeezing of the modulation channel quadratures.
In general PDC is a two mode process, the only frequency for which the PDC acts as a
single mode squeezing operation is the carrier frequency ω0.



Part II

Experimental tools
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Chapter 3

Ultrafast light
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3.1 Optical frequency combs

The term optical frequency comb (OFC) refers to a particular class of pulsed laser where a
large number of the laser cavity longitudinal modes are excited coherently using a technique
called mode-locking. This broadband excitation along with a high degree of coherence
allows to produce ultra-short pulses down to the femtosecond and even attosecond regime1.
OFC were first developed as tools to measure the cycles of atomic optical clocks. The high
phase stability between the “teeth” of the comb allows to reach unprecedented precisions
in time and frequency measurement. Since then, they have been used for a wide range of
applications as well as fundamental research in metrology, spectroscopy, on optical, atomic,
molecular, and solid-state systems [65, 73, 125, 126]. In 2005, John Hall and Theodor
Hänsch won the Nobel prize [127, 128] for their life long contributions to the field of
precision optical frequency metrology as well as for their technical vision and expertise
that resulted in the realisation of the OFC.

In the following sections we detail the characteristics of the femtosecond laser used in
our experiment and give some precision on the temporal and spectral representation of
the laser output field.

1An attosecond (10−18 s) is inconceivably short: there are more attoseconds in one second than there
are seconds in the age of the universe !
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3.1.1 The Mira laser

In our experiment, we use a titanium-sapphire (Ti:Al2O3) MIRA-900 [129] laser pumped
by a continuous-wave beam at 532 nm produced by a VERDI G-15 [130] laser. The MIRA
laser has a ∼ 4 m long cavity that contains a pulse compressor [131] and a Lyot filter [132].
The Ti:Sapph crystal has a broadband gain curve which allows many longitudinal modes
of the cavity to be above threshold and oscillate (see Fig. 3.1). The pulse compressor is
used to compensate intra-cavity dispersion and obtain regular longitudinal resonances over
a broad spectral range. The Lyott filter allows to tune the gain central frequency. Coher-
ent oscillation of all the longitudinal modes above threshold (mode locking) is achieved
passively using a slit thanks to the Kerr lensing effect in the crystal (see [133–135]).

Fig. 3.1 Principle of mode-locked oscillation of ultra-fast lasers. The crystal
gain curve is broad enough to cover many of the available longitudinal modes of
the cavity (dotted line). As a result many longitudinal mode can lase (oscillate).
If they do so conjointly and coherently (in phase), the laser emits a train of
ultra-short pulses: this is the mode-locked operation. (Figure from [136])

As a result the laser outputs a ∼ 76 MHz repetition rate frequency comb centred at
795 nm, with a ∼ 10 nm full width half maximum (intensity) envelope well approximated
by a Gaussian function. The available average power is around 1.8 W (∼ MW peak power).
For a more detailed description of the laser source and beam preparation in our set-up
see [137,138] (thorough but in french) or [139] (in english but less complete).

3.1.2 Single pulse of light

In this section we will look at a single pulse of light and it’s description in the time and
frequency domains. Let’s consider a pulse with a carrier frequency ω0, and pulse envelope
a(t), it’s analytical field reads:

E(+)(t) = E0a(t)e−iω0t (3.1)



Which is simply the following in the spectral domain:

E(+)(ω) = E0F [a(t)e−iω0t](ω) (3.2)
= E0a(ω − ω0) := E0a(Ω) (3.3)

In the spectral domain, the field is given by the Fourier transform of the envelope centred
at the carrier frequency. This shows that to have short pulses, one needs a broad spectral
envelope.

3.1.3 Spectral representation

An OFC (like the one depicted in Fig. 3.1) can be modelled by a set of evenly spaced
Dirac distributions1 with an envelope. The Dirac comb structure comes from the laser
cavity longitudinal modes whereas the envelope depends on the response of the laser gain
medium2. The laser cavity longitudinal modes correspond to frequencies for which the
round-trip phase is a multiple of 2π:

φ(ωk) = 2πk for k ∈ Z (3.4)

If we neglect (non-linear) intra-cavity dispersion3 the round-trip phase can be developed
to first order around the gain envelope central frequency ω0:

φ(ω) ≈ φ(0) + (ω − ω0)φ(1) (3.5)

Where the 0thand 1storder coefficients are given by:

φ(0) := φ(ω0) = L

c
ω0n0 (3.6)

= Lω0
vϕ

(3.7)

φ(1) :=
(
∂φ

∂ω

)
ω=ω0

= L

c

(
n0 + ω0

(
∂n

∂ω

)
ω0

)
(3.8)

= L

vg
(3.9)

L being the cavity length and n(ω) the cavity medium refractive index4. We also defined
the phase and group velocity:

vϕ = c

n0
(3.10)

vg = 1
1
vϕ

+ ω0
c

(
∂n
∂ω

)
ω0

(3.11)

1More realistically the teeth of the comb can be described by Lorentzian functions with widths equal
to the laser cavity linewidth

2It is also affected by the intra-cavity dispersion
3In practice femtosecond lasers are so broadband that dispersion needs to be compensated.
4If the cavity contains media of different index (air and cavity crystal), n(ω) should be understood as

the effective index (mean index weighted by medium length).



The phase velocity corresponds to the speed of a monochromatic light component ω0
whereas the group velocity corresponds to the speed of a narrow pulse of light with carrier
frequency ω0. Eq. (3.5) can now be re-written:

φ(ω) = ω0L( 1
vϕ
− 1
vg

)︸ ︷︷ ︸
∆φCE

+ωL

vg
(3.12)

We will see in the next section that the first term can be interpreted as the round trip
dephasing between the pulse envelope and its carrier. It is straightforward to show that
the resonance condition (3.4) implies the resonant frequencies are given by:

∀k ∈ Z, ωk = ωCE + kωr (3.13)

with:

ωr = 2π
φ1

= 2πvg
L

(3.14)

ωCE = −vg
L

∆φCE = ω0

(
1− vg

vϕ

)
= Lω0ωr

2π

(
1
vg
− 1
vϕ

)
(3.15)

So that finally the electric field emitted by this laser can be described in the spectral
domain by:

E(+)(ω) = a(ω − ω0) IIIωr(ω − ωCE) (3.16)

Where a(ω) describes the envelope and IIIωr(ω) :=
∑
k∈Z δ(ω − kωr) describes the comb

structure. Such a spectrum is represented in Fig. 3.2. ωr is the repetition frequency of the
laser and ωCE is the carrier to envelope offset (CEO) frequency. Note that in general the
envelope is not centred on one of the longitudinal mode frequency, so the frequency ω0 is
not part of the frequency comb.

Fig. 3.2 Spectral field of a frequency comb. It consists of many narrow and
evenly spaced frequencies, the “teeth”, with a broadband envelope. This is just
a schematic representation, for the laser used in our experiment, the envelope
contains hundreds of thousands of “teeth”.



3.1.4 Temporal representation

Now that we gave a spectral description of an OFC let us look at it in the time domain.
The electric field in the time domain is given by the Fourier transform of Eq. (3.16), using
the standard properties of the Fourier transform (see Appendix A.3) we get:

E(+)(t) = F−[a(ω − ω0) IIIωr(ω − ωCE)](t) (3.17)

= 1√
2π

(
a(t)e−iω0t

)
⊗
(
F−1[IIIωr(ω)](t)e−iωCEt

)
(3.18)

= Tr
2π

∑
k∈Z

a(t− kTr)e−iω0(t−kTr)e−ik∆φCE (3.19)

with Tr = 2π
ωr
, ∆φCE = ωCE

2π
ωr
. Therefore we see that this laser emits a train of pulses

separated by Tr, which is consistent with ωr being the repetition rate. The pulses envelope
is given by a(t) which is the Fourier transform of a(ω−ω0). Note that the carrier frequency
of the pulses is ω0. However, ω0 is not necessarily a resonant frequency of the cavity. The
successive pulses carrier are dephased by ∆φCE. This is called the carrier to envelope
phase (CEP), it can be given an intuitive meaning if we look at its definition in terms of
the phase and group velocities:

∆φCE = Lω0( 1
vg
− 1
vϕ

) (3.20)

The carrier frequency speed is vϕ therefore on each cavity round-trip it accumulates a
phase Lω0

vϕ
. Due to intra-cavity linear dispersion, the envelope speed is vg 6= vϕ so its

cavity round-trip phase is Lω0
vg

. Therefore there is an increasing dephasing between the
carrier and the envelope from pulse to pulse (see Fig. 3.3).

Fig. 3.3 Temporal field of a femtosecond laser: the train of pulses. The laser
emits a train of femtosecond pulses with carrier frequency ω0. The pulses are
spaced by the repetition period Tr. At each successive pulse the carrier accumu-
lates a phase delay ∆φCE relative the envelope. The temporal envelope of the
pulse is the Fourier transform of the frequency comb spectral envelope.

It is often convenient to consider only the spectral envelope a(Ω) of the frequency comb
and forget about the “teeth” structure. Given the Fourier relation between the spectral
envelope and the single pulse temporal envelope, this corresponds to looking at a single



pulse of the train. For many cases this is sufficient as all the pulses will experience the
same effects. However, there are exceptions. For example, when using an oscillator like a
cavity which makes successive pulses interact.

3.2 Dispersion effects
As we saw in the previous sections, short pulses of light have a broad spectral content.
They are therefore sensitive to dispersion effects in media with a refractive index that
varies with frequency. These effect are important to consider when working with ultra-
fast lasers. In particular second-order phase dispersion (also called group delay dispersion
(GDD), group velocity dispersion (GVD) or simply chirp) can have detrimental effect
as it will lead to a broadening of the pulses as they propagate. One needs to avoid or
compensate chirp in order to preserve short pulses and their high peak powers. But
chirp can also be harnessed as a resource. For example, it is used in the chirp pulse
amplification (CPA) technique [140, 141] that allows to amplify femtosecond pulses up to
PW peak powers. In 2018, Donna Strickland and Gérard Mourou shared half a Nobel
price for their ground-breaking work on this technique.

Part of the work of this thesis consisted in analysing the effect of the dispersion in the
SPOPO cavity. As we will see in section 6.4.2, dispersion is the main effect that limits
the squeezing in higher order supermode. In this section we will discuss the effects of
dispersion on pulses by looking at spectral phase on the frequency combs. Propagation
through any lossless medium can be described by a spectral phase.

3.2.1 Spectral phase

Let’s write the analytical field in the time/frequency domain as:

E(+)(t) = E0a(t)e−iω0t (3.21)
E(+)(Ω) = E0a(Ω) with Ω = ω − ω0 (3.22)

We will define the temporal and spectral phases as the phases of the envelopes, namely:

a(t) = |a(t)|eiϕ(t) (3.23)
a(Ω) = |a(Ω)|eiφ(Ω) (3.24)

We now look at the effect of propagation in a dispersive medium on temporal and
spectral phases. In particular we will look at 0th, 1st and 2nd order effects as most situation
we encountered experimentally correspond to these. We will therefore Taylor expand the
spectral phase to 2nd order around the carrier frequency ω0:

φ(Ω) ∼ φ(0) + Ωφ(1) + Ω2

2 φ(2) (3.25)

where:

φ(0) := φ(ω0) (3.26)

φ(1) :=
(
∂φ

∂ω

)
ω0

(3.27)

φ(2) :=
(
∂2φ

∂ω2

)
ω0

(3.28)



3.2.2 Constant phase

A constant phase φ(Ω) = φ(0) corresponds to a dephasing of the carrier (see Fig. 3.4):

E(+)(t) = E0|a(t)|e−i(ω0t−φ(0)) (3.29)

A constant phase is identical in the spectral and temporal domain.

Fig. 3.4 Effect of constant spectral phase in the time domain: the carrier is
delayed.

3.2.3 Linear phase

For a linear spectral phase φ(Ω) = Ωφ(1), the field in the time domain becomes:

E(+)(t) = E0
∣∣∣a(t− φ(1))

∣∣∣e−iω0t (3.30)

This results in a delayed pulse envelope as shown in Fig. 3.5. The carrier is not delayed
with respect to the original pulse which results in a carrier to envelope offset in the delayed
pulse. φ(1) = L

vg
is called the group delay.

Propagation through a non dispersive medium (n = cst) just correspond to delaying
the pulse envelope and carrier by the same amount. Indeed, if the refractive index is
constant, the accumulated phase over a distance l is just:

φ(Ω) = ω0nl

c︸ ︷︷ ︸
φ(0)

+Ω nl

c︸︷︷︸
φ(1)

(3.31)



Fig. 3.5 Effect of linear spectral phase in the time domain: the envelope is
delayed.

3.2.4 Quadratic phase: chirp

For a quadratic spectral phase φ(Ω) = Ω2

2 φ
(2) both the carrier and envelope are affected

in the time domain. The exact effect will depend on the type of spectral envelope. Let us
take a Gaussian envelope for example:

|a(Ω)| = 1
(2π)1/4∆Ω1/2 e

− Ω2
4∆Ω2 (3.32)

Without chirp the pulse temporal envelope is simply:

a(t) = 1
(2π)1/4∆t1/2

e−
t2

4∆t2 (3.33)

with ∆t = 1
2∆Ω . With the quadratic linear phase the temporal pulse envelope becomes:

a(t) = 1
(2π)1/4γ1/2 e

− t2
4γ2 with γ = ∆t

√
1− i φ

(2)

2∆t2 ∈ C (3.34)

= 1
(2π)1/4∆t′1/2

e−
t2

4∆t′2 ei t
2φ(2)

8∆t′4 eiψ2 (3.35)

Where:

∆t′ = ∆t

√√√√1 +
(
φ(2)

2∆t2

)2

(3.36)

ψ2 = Arg γ−1/2 (3.37)



So after the propagation in a second order dispersive medium, a Gaussian pulse stays
Gaussian, but it broadens (regardless of the dispersion sign). The carrier is also changed,
the envelope temporal phase becomes:

ϕ(t) = ψ2 + t2φ(2)

8∆t′4 (3.38)

The first term is just a constant dephasing of the carrier. The second represent a linear
change in the frequency of the carrier from the beginning to the end of the pulse1 (see
Fig. 3.6). This is why this phenomena is called chirp. In the acoustic wave domain such
pulses produce a chirping sound because of the ramping of the carrier frequency.

Fig. 3.6 Effect of quadratic spectral phase in the time domain: the pulse is
broadened, the carrier is delayed and the carrier instantaneous frequency ramps
up (φ(2) > 0) or down (φ(2) < 0) from the beginning to the end of the pulse.

Group velocity dispersion (GVD) and group delay dispersion (GDD) are other common
names for chirp. They represent other quantities than the quadratic phase coefficient φ(2)

but they describe the same effect.

3.3 Homodyne measurement with a frequency comb refer-
ence

Now that we described what an OFC looks like in the temporal and spectral domain. Let
us take a step back, and consider what a homodyne detection measures when the LO beam
is an OFC. Let ψn(t) be a complete and orthonormal basis of functions for the envelope

1The instantaneous frequency can be defined as the time derivative of the phase



of the pulses. We consider that the support of those functions is [−Tr
2 ,

Tr
2 ]. Since the basis

is orthonormal and complete, we have:∫ Tr
2

−Tr2
ψn(t)ψn′(t)dt = δnn′ (3.39)∑
n

ψn(t)ψn′(t′) = δ(t− t′) (3.40)

The envelope for the full train of pulses can then be written:

fn(Ω, t) =
∑
k∈Z

ψn(t− kTr)eik2π(ω0
ωr

+ Ω
ωr

) with Ω ∈ [−ωr/2, ωr/2] (3.41)

This equation is identical to Eq. (3.19), we have just taken out the carrier term e−iω0t

(here we look at the envelope), and Ω is just the carrier to envelope frequency (noted
ωCE in Eq. (3.19)). Note that fn is a function of time and describes the pulse train in
the time domain. Ω can be thought of as a labelling parameter for fn. Each value of
Ω ∈ [−ωr/2, ωr/2] corresponds to a frequency comb with different CEO.

The envelope quantum field operator of Eq. (2.73) can now be expanded over such
trains of pulse (see [138] for details):

â(t) =
∑
n

∫ ωr
2

−ωr2
dΩ ŝn(Ω)fn(Ω, t) (3.42)

Note how this expansion spans over two parameters:

• A discrete parameter n that labels the pulse envelope function ψn(t).

• A continuous parameter Ω that labels the carrier to envelope frequency of the pulse
train.

Operator ŝn(Ω) is the annihilation operator for a pulse train in mode fn(Ω, t):

ŝn(Ω) =
∫
R

dt f∗n(Ω, t)â(t) (3.43)

These new operators follow the commutation relations:[
ŝn(Ω), ŝn′(Ω′)

]
= 0 and

[
ŝn(Ω), ŝ†n′(Ω

′)
]

= δnn′δ(Ω− Ω′) (3.44)

Let’s say the LO is a bright coherent beam with amplitude α0 in mode f0(Ω0, t).
Provided that the detector bandwidth is small compared with the repetition rate of the
pulse train f0, one can show that the photocurrent takes the same form as Eq. (2.92),
except this time the q̂c/s(Ω)/p̂c/s(Ω) represent the frequency comb amplitude and phase
modulation channels defined as:

q̂c(Ω) = q̂f0(Ω0 − Ω) + q̂f0(Ω0 + Ω) (3.45)
p̂c(Ω) = p̂f0(Ω0 − Ω) + p̂f0(Ω0 + Ω) (3.46)
q̂s(Ω) = −p̂f0(Ω0 − Ω) + p̂f0(Ω0 + Ω) (3.47)
p̂s(Ω) = q̂f0(Ω0 − Ω)− q̂f0(Ω0 + Ω) (3.48)



Where q̂f0(Ω) and p̂f0(Ω) are the quadrature operators corresponding to the pulse train
mode f0(Ω, t):

q̂f0(Ω) = ŝ†0(Ω) + ŝ0(Ω) (3.49)

p̂f0(Ω) = i
(
ŝ†0(Ω)− ŝ0(Ω)

)
(3.50)

Fig. 3.7 gives a pictorial representation of q̂c(Ω) when ψ0(t) is a Gaussian function. A
detailed explanation is given in the figure caption.

Fig. 3.7 Representation of the cosine amplitude modulation channel quadrature
for a frequency comb with a Gaussian envelope.
Left part: time domain representation of a train of Gaussian pulses with ampli-
tude modulation. ∆φ0 is the carrier to envelope phase of the pulse train. Ω is
the amplitude modulation frequency.
Right part: spectral domain representation of the modulated pulse train. The
dotted blue line corresponds to the frequency comb without amplitude modula-
tion f̃0(Ω0, ω). ω0 is the central frequency of the comb envelope (it is also the
carrier frequency). Ω0 is the carrier offset frequency of the comb f̃0, it corre-
sponds to the difference between the carrier frequency ω0 and the frequency of
the central tooth of the comb. When amplitude modulation is applied to the
train pulse, sidebands appear around each of the comb teeth.
q̂c(Ω) represents the amplitude modulation channel of a frequency comb mode.

One last point is worth noting here. In section 2.3.1 when we introduced the side-
band modes and modulation channels, we insisted that this description is only valid if the
sideband frequencies considered are small compared to the carrier frequency: Ω � ω0.
In a similar manner, the description given in the present section is only valid because
the different frequencies involved have very different scales. In particular we require that
Ω� ωr � ω0. Otherwise, the commutation relations of Eq. (3.44) are no longer valid.





Chapter 4

Synchronous optical cavities
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In this thesis, we generate multimode entangled states by optically pumping a non-
linear crystal. In order to enhance this effect, the non-linear component is placed within
an optical cavity to form an optical parametric oscillator (OPO). As light circulates in
the cavity, it experiences the non-linearity at every round-trip. The laser source used
in our experiment is an optical frequency comb (see chapter 3), it contains a very large
number of modes (the teeth of the comb). In order for this comb structure to be preserved
in the output quantum state of the OPO we need to ensure the pump repetition rate is
matched with the OPO cavity free spectral range. This happens for a particular length
of the cavity, when it is matched to the distance between two pulses of the pump. We
refer to this condition as synchronous pumping, hence the name SPOPO. In this chapter,
we describe optical cavities and the particular effects that arises when sending an OFC
through a cavity.

4.1 Ring cavity input-output relations

The SPOPO cavity is a ≈ 4 m long ring cavity1. The overall cavity geometry is rather
complex but it can be modelled with a simpler ideal cavity as in Fig. 4.1. Here is a list of
the cavity components (as labelled in Fig. 4.1) and their functions:

• The crystal (labelled as BIBO) is a 2 mmBIBO crystal, it is the non linear component
that is used to generate entanglement (see chap. 6)

• M2 and M13 are concave mirrors (R = 250 mm) used to focus the intra-cavity beam
into the crystal with a waist of ≈ 38 µm.

1A ring cavity is a particular type of cavity geometry where the light circulate one-way as opposed to
the Fabry-Perot geometry where the light goes back and forth
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Fig. 4.1 (a) Real SPOPO cavity used in the experiment. (b) Schematic rep-
resentation of the SPOPO cavity. The pump beam Ep is non resonant and is
tapped off with a dichroic mirror. The cavity is modelled with an input coupler,
an ouput coupler, a roundtrip phase φ and roundtrip losses η.

• M4 and M11 are also concave mirrors (R = 6 m) that allow to further control the
beam waist and ensure the cavity stability.

• M1 is the input coupler mirror, its reflectivity is Ri = r2
i = 99.85 % (at 795 nm).

• M10 is the output coupler mirror, its reflectivity is Ro = r2
o = 80 %.

• M3 and M7 are chirped mirror, they each compensate for 50 fs2 of dispersion.

• The cavity contains a delay line (mirrors M8 and M9) to fine tune its length, and a
piezo-electric transducer (on mirror M7) to lock it.

• All other mirrors are highly reflective folding mirrors.

We now give the input output relations for such a cavity. We call Ei, Er, Eo, Ev, the
input, reflected input, transmitted output and incoming output fields respectively. And
Eci , E ′ci Eco and E ′co will refer to the intra-cavity fields as apparent in Fig. 4.1. Finally,
let us call ti/o and ri/o the input/output coupler amplitude transmission and reflection
coefficients, and, ηio and ηoi, the intra-cavity losses from input to output and output to
input respectively.

The various fields are related according to the following equations:

Eci = tiEi − riE ′ci (4.1)
Er = tiE

′
ci + riEi (4.2)

Eo = toEco + roEv (4.3)
E ′co = toEv − roEco (4.4)
Eco = tηioeiφioEci (4.5)
E ′ci = tηoieiφoiE ′co (4.6)

Where tηio/oi =
√

1− ηio/oi and φio/oi represent the phase accumulated from the in-
put/output coupler to the output/input coupler.

Note we keep the term Ev that corresponds to light sent into the cavity from the output
coupler because this term will be relevant for the quantum treatment. Indeed, in the
quantum description of light, vacuum has some associated non zero field. Ev corresponds
to this vacuum field and it will couple in and out of the cavity and affect the output
quantum state. In fact when we use the SPOPO to produce squeezing, the only bright



coherent light we send into the cavity is the pump field Ep which is non resonant. So all
the contributions in Eq. (4.1) correspond to vacuum fields. Since ri ≈ 1, the major input
contribution to the intra-cavity field will be Ev.

Technically, to keep a unitary description, we should also include a vacuum field con-
tribution from the intra-cavity losses because they are modelled with a reflective interface.

After a few calculation these Eqs. (4.1) are reduced to a linear input/output system:

Eo = tEi + rvEv (4.7)
Er = tvEv − rEi (4.8)

With:

t = titotηioeiφio

1− rirotηeiφ r = − ri − rotηeiφ

1− rirotηeiφ (4.9)

tv = titotηoieiφoi

1− rirotηeiφ rv = ro − ritηeiφ

1− rirotηeiφ (4.10)

When there are no losses inside the cavity we have |t|2 = |tv|2, |r|2 = |rv|2 and
|t|2 + |r|2 = 1. The cavity is then symmetric in terms of input and output, but in the
more general case the input and output are not symmetric.

The intensity transmission can be put in the form:

T = |t|2 = Tmax

1 +m sin2(φ2 )
(4.11)

with Tmax = (1−Ri)(1−Ro)(1−ηio)
(1−
√
RiRo(1−η))2 and m = 4

√
RiRo(1−η)

(1−
√
RiRo(1−η))2 .

We see that the cavity will be resonant for frequencies with a round-trip phase that is
a multiple of 2π. The round-trip phase at frequency ω is:

φ(ω) = k(ω)L = ωn(ω)L
c

(4.12)

≈ ωL

c
(4.13)

where L is the cavity round-trip length and we considered the optical index of air constant
n(ω) ≈ 1. Therefore, the round-trip phase varies linearly with frequency and the resonant
frequencies are just given by:

ωp = 2πp c
L

(4.14)

The spectral response of the cavity is then given by evenly spaced resonances, the spacing
between two resonant frequency is called the free spectral range (FSR): ωcavr = 2π c

L .
If the cavity input and output coupler reflectivity is high and the intra-cavity losses

small we have m � 1. The sine function can then be linearised around resonances and
the cavity spectral response is well approximated by a Lorentzian:

T (ω) = Tmax

1 + (2ω−ωl∆ω )2 with ∆ω = 4c
L
√
m

(4.15)

Figure 4.2 show the typical spectral response around a resonance frequency.
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Fig. 4.2 Spectral response of an optical cavity near resonance.

The cavity finesse is defined as the ratio between the free spectral range and the
resonances FWHM. It quantifies the quality of the cavity as a resonator. It can be thought
of as the photons typical number of cavity round-trip. If m is large enough its given by:

F = π

√
m

2 (4.16)

If the cavity is injected onto a single spatial mode with a monochromatic laser of
wavelength λ0, we observe evenly spaced resonances as we scan the cavity length. Those
resonances are separated by integer multiples of λ0. The width of those peaks is also
determined by the finesse1, their FWHM is given by ∆l = λ0

F (see Fig. 4.3).

4.2 Synchronous cavities
We now look at what happens when the cavity is injected with an OFC.

4.2.1 Transmission of a frequency comb without CEO and partial reso-
nances

If we neglect the CEO, the frequencies of an optical comb are: ωk = kωr with k ∈ N, ωr
being its repetition frequency. We can also label them starting from the central tooth ω0:
ωp = ω0 + pωr with p ∈ Z. The central tooth is a large multiple of ωr: ω0 = Nωr,
N � 1.

Given that the cavity is resonant for all frequencies verifying Eq. (4.14) (without disper-
sion), it is possible to tune the cavity length in order for all the frequencies of a frequency

1Provided the linewidth of the laser is small compared with the cavity linewidth



Fig. 4.3 Response of an optical cavity pumped by a monochromatic laser when
scanning the cavity length.

comb to be simultaneously resonant. For a synchronous cavity we have:

∀p φ(ωp) = 0 mod 2π (4.17)

This corresponds to matching the cavity free spectral range with the comb repetition rate
ωcavr = ωr, the corresponding cavity length is:

Lr = 2π c

ωr
(4.18)

The frequency comb is then fully transmitted through the cavity (see Fig. 4.4):

∀p ∈ Z Iout(ωp) = TmaxIin(ωp) (4.19)

In the time domain, this means the cavity round-trip time is equal to the delay between
successive pulses. This is the so-called synchronous cavity.

Lr is the only cavity length for which all the comb teeth are simultaneously resonant.
However, there are some other cavity lengths for which a sufficient portion of the teeth are
resonant so that the output intensity is significant. These are called partial resonances.
Partial resonances occur for:

L = Lr + δL = Lr + pλ0 with p ∈ Z (4.20)

p = ±1 correspond to the closest cavity length for which ω0 becomes resonant again.
Fig. 4.4 represents the spectral response for different values of δL. The red and black
arrows represent the transmitted teeth at main and partial resonance respectively. At the
first partial resonance, ω0 is perfectly resonant. But the other teeth are not, they are



slightly detuned from the cavity resonances. This detuning increase as we move further
away from ω0. As a result the transmitted spectrum will be altered. Note this detuning
is exaggerated here to underline this effect. In practice for our laser ω0

ωr
≈ 106 so this

detuning effect will only be visible for high order partial resonance and/or for teeth far
from ω0.
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Fig. 4.4 Spectral response of an optical cavity pumped by a frequency comb
at main and partial resonance. The red arrows represent the frequency teeth of
the transmitted OFC at main resonance (full transmission). The black arrows
represent the frequency teeth of the transmitted OFC at first secondary resonance
δL = λ0. The comb is not fully transmitted, the teeth transmission weakens as
we move away from the comb central frequency ω0. Here the effect is exaggerated
for clarity. In our experimental condition, the decrease in teeth transmission is
only visible far from ω0.

Fig. 4.5 shows the typical profile of the transmitted intensity when scanning the cavity
length around the main resonance δL = L − Lr. We clearly distinguish the secondary
resonance, they have a smaller finesse and a smaller peak intensity. Unlike when pumped
by a continuous laser, the successive resonance are no longer equivalent, there is a unique
preferred resonance corresponding to the synchronous pumping.
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Fig. 4.5 Transmitted intensity through a cavity injected by an OFC when
scanning the cavity length.

4.2.2 CEO effects

Until now we considered that the teeth of the frequency comb corresponded to multiples
of ωr. But as we saw in section 3.1.3 the tooth of the frequency comb are actually shifted
relative to the ω = 0 frequency by the carrier to envelope frequency ωCE:

ωp = ωCE + pωr (4.21)

This shift came from the fact that inside the laser cavity the phase and group velocity are
different, so the carrier accumulates a phase relative to the pulse envelope.

This is true for other cavities as well. This means that equation (4.13) is not strictly
correct. For a more accurate description, we need to take into account the dispersion
effects and consider the frequency dependence of the refractive index in the cavity. This
dispersion comes from the intra-cavity mirrors as well as the cavity medium. If we linearise
the round-trip phase around ω0 we get, as in Eq. (3.12):

φ(ω) = ω0L

(
1
vcav
ϕ

− 1
vcav
g

)
+ ωL

vcav
g

(4.22)

= 2πω − ω
cav
CE

ωcav
r

(4.23)

Where vcav
ϕ and vcav

g are the intra-cavity phase and group velocities, defined as in Eq. (3.10).
As in section 3.1.3, we have used ωcav

CE = ω0(1−vcav
g

vcav
ϕ

). The free spectral range is now changed

to ωcav
r = 2π v

cav
g

L . The cavity resonances are shifted from the 0 frequency by ωcav
CE just like



the frequencies of the optical comb1. The pth teeth of the comb then has a round-trip
phase in the cavity:

φ(ωp) = 2π
(
ωCE − ωcav

CE + pωr
ωcav
r

)
(4.24)

Because of the CEO term δωCE = ωCE−ωcav
CE here, even if we match the FSR to the comb

repetition rate, the teeth will be shifted off resonance. So the synchronous cavity condition
is no longer given by matching the repetition rate and the FSR. We show in Fig. 4.6, for
different values of δωCE, what the typical transmitted intensity looks like when scanning
the cavity length. For non zero δωCE the main resonance length shifts by:

δL = −λ0
δωCE

ωr
mod λ0

δωCE

2ωr
(4.25)

The partial resonances are still present at integer values of λ0 from the main resonance.
When scanning the cavity length, because of this CEO offset effect, it is sometimes difficult
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Fig. 4.6 Effect of CEO on the scanning response of an optical cavity pumped
by a frequency comb

to distinguish between the main resonance and the second one2. This can be a problem,
when locking the cavity length to a resonance. If the main and secondary resonance look
similar in terms of transmitted intensity, it means the transmitted spectrum is roughly
identical. However, in the experiment, we need to make sure we always lock the cavity
length to the same length. Indeed, we use the cavity transmission as a reference beam
for the alignment of other components. For example, we use it to optimise the homodyne
detection contrast. If we change the cavity lock point, and switch to the nearest secondary

1Note in general ωcav
CE and ωCE are not equal as the group and phase velocities of the laser cavity and

SPOPO cavity are not necessarily equal
2They become identical when δωCE

ωr
= 1

2



resonance, the CEO of the transmitted OFC changes. This can drastically affect the
homodyne contrast.

In the experiment, we ensure to be consistently locked to the same resonance and
we use the neighbouring peaks to identify our locking peak. For example if two peaks
appear to have the same resonance intensity, it is not relevant which one we choose as the
transmitted spectrum will be similar, but we have to stay consistent, so we just choose
the “left” one and make sure we always lock to the “left” peak.

4.2.3 Intra-cavity dispersion effects

The last effect to consider for synchronous cavities is the intra-cavity chirp (quadratic
dispersion). It is particularly relevant when working with a broadband laser or when the
cavity contains a highly dispersive medium. As we explained in section 3.2.4, chirp is
just the quadratic term in the Taylor expansion of the phase. Because of this term, the
resonant frequencies of the cavities will no longer be evenly spaced. As we move away
from the central frequency ω0, the cavity FSR will decrease. The resonance are therefore
desynchronised relative to the OFC teeth. This detuning increase as we move further away
from ω0. This limits the number of teeth that can be resonant simultaneously. Fig 4.7
shows the spectral intensity transmission of the cavity in our experimental conditions for
increasing values of intra-cavity chirp. We consider an input OFC, with central wavelength
λ0 = 795 nm and a 10 nm FWMH Gaussian envelope. Note we do not consider CEO effects
here and the cavity length is set to the main resonance. Since the OFC contains a very
large number of teeth (> 100000), we only represent the envelope of the frequency comb.
We see that chirp imposes limits to the spectral width of the comb envelop that the cavity
can transmit. This effect is non negligible, for φ(2) = 500 fs2 the FWHM is reduced by
almost half. In our experiment the SPOPO cavity chirp is φ(2) ≈ 250 fs2. This dispersion
is mostly caused by the non-linear crystal in the cavity.
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Fig. 4.7 Effect of intra-cavity chirp on the transmitted spectral intensity |a(ω)|2
(a(ω) is defined from Eq. (3.16)). Because of the quadratic phase term, the cavity
resonances are not evenly spaced. But the frequency comb teeth are, so they are
detuned. This detuning increase for teeth far from the central frequency ω0, to
the point that the teeth are no longer transmitted through the cavity. The net
effect is a narrowing of the OFC spectral envelope.



Chapter 5

The pulse shaper
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A pulse shaper, as its name suggests, is a device that can manipulate the temporal
variation of the amplitude and phase of a pulse of light. This thesis deals extensively with
the notion of temporal/spectral modes of light and how they can be shaped to produce
and measure multimode entangled states. So the pulse shaper is a central tool in our
experiment. Pulse shaping techniques were originally proposed for pico-second pulses [142]
and applied later to femto-second pulses [143].

In this chapter we first explain the basic working principles of pulse shapers and give
details about the design of the pulse shaper we used in the experiment to tune the pump
beam spectrum. We then describe the effect of various misalignments on the pulse shaper
response. For more details about the different pulse shaper designs and its applications
see [144,145].

5.1 General principle

The pulse shaping technique we use in this work is often referred to as Fourier Optical
Processing [146], and the general idea is quite simple. Femtosecond pulses are incredibly
short, so it is hopeless to try to directly manipulate the temporal properties of individual
pulses with acousto-optic or electro-optic devices. But as we saw in section 3.1.2 the
temporal and spectral properties of light are related. So we can instead manipulate the
pulse in the spectral domain. This is what a pulse shaper does.

Fig. 5.1 shows the general principle of a pulse shaper. Using a diffraction element (a
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Fig. 5.1 Scheme of a pulse shaper. The spectral component of the incoming
pulse are spatially separated with a grating and imaged onto an SLM which
imprint a tunable phase shift on each of them. The spectral components are then
recombined in a symmetric way.

grating in our case), the various frequency components of light may be spatially separated,
allowing one to access and manipulate each of them independently. After that, these
components are recombined into a single beam with the same diffracting element. Given
Eq. (3.2), if one can shape the spectral amplitude of a pulse, the temporal envelope of the
pulse will be changed accordingly.

Each spectral component is usually manipulated using a phase plate or a spatial light
modulator (SLM), which can be though of as an array of tunable phase-shifters. After
being separated by the grating the spectral components of the beam are imaged onto the
SLM with a cylindrical lens or mirror. The SLM then adds a given phase to each frequency
component. In other word we tune the spectral phase φ(Ω) of the beam. Additionally
using a “trick” detailed in section 5.1.2 one can also tune the spectral amplitude |a(Ω)|.
The different frequency components of the beam are then recombined.

As a result the temporal pulse envelope a(t) is fully tunable. Of course there are some
resolution limits to the pulse shaping abilities. Those will be discussed in section 5.2.

5.1.1 Diffraction grating

The diffraction grating is an optical element with a fine periodic structure. When the
typical size of this structure is of the same order of magnitude or smaller than the wave-
length of the incident light, diffraction will occur: due to an interference effect, the various
spectral component of light get spatially separated (see Fig. 5.2). The diffraction formula
relates the output propagation angle of each spectral component θd of wavelength λ with
its input incidence angle on the grating θi and the grating pitch d1:

sin θi + sin θd = m
λ

d
for m ∈ Z (5.1)

1This formula is written for a reflective grating (θd counted from the incidence normal) with oriented
values for angles.



Fig. 5.2 Scheme of a reflection grating. (a) Polychromatic light is diffracted by a
grating. The various frequency component have different diffraction angle except
for diffraction order m = 0. (b) The diffraction angles correspond to constructive
interference of light path scattered from adjacent rulings of the grating.

This formula is easily understood if we require that the phase difference between light
rays hitting different parts of the grating be a multiple of λ (condition for constructive
interference, see Fig. 5.2). Diffraction grating can be reflective or transmissive.

Each wavelength can constructively interfere at a different output angle for each value
of m. These are referred to as diffraction orders. Order 0 corresponds to the condition
sin θd = − sin θi which is simply the standard reflection law for mirrors θi = θd in the case
of reflection gratings (or parallel transmission for transmission gratings). In the standard
convention, negative (resp. positive) diffraction orders m < 0 (resp. m > 0) correspond
to θd being more obtuse (resp. acute) than the standard (m = 0) reflection angle.

The particular shape of the grating pattern will determine the repartition of light
between the various diffraction orders. Grating are sometimes optimised to diffract max-
imally in a single diffraction order, these are called blazed grating. Additionally they
are often designed to be more efficient when the diffraction angle coincides with the in-
cidence angle, this is called the Littrow configuration. In our experiment we use a 2400
gr/mm holographic grating model 05HG2400-400-1 from Richardson [147]. The grating is
optimised to diffract in order −1 so the diffraction angle is found with:

θd(θi, λ) = arcsin
(
−λ
d
− sin θi

)
(5.2)

5.1.2 SLM

A spatial light modulator is a device that can imprint some spatial phase modulation on
a light beam. In our case we use a liquid crystal SLM (LCOS-SLM model X10468-05
from Hamamatsu [148]), which is a 2D array of liquid crystals that can be individually
addressed with an electrical signal. The liquid crystals act as tunable wave-plate that
change the phase of light reflected by the SLM surface without any intensity change. The
SLM has 792× 600 square pixels of size δxpx = 20 µm.

When used in a straight forward way SLM can only affect the phase of the incoming
beam, not its amplitude. However, we can use a special trick to tune the spectral amplitude
as well. In our geometry the beam is diffracted horizontally by the grating and the different
spectral components of the beam are imaged horizontally on the SLM with a cylindrical
mirror. The vertical degree of freedom of the beam remains unchanged. We can use it



to imprint a vertical blazed grating pattern on the SLM (see Fig. 5.3). The output beam

Fig. 5.3 Even though the liquid crystal of the SLM only affect the phase of the
input beam, one can imprint a vertical grating structure on the SLM therefore
tuning the amplitude of light diffracted in order 1. We use the depth of the
grating pattern to control the amplitude of light a diffracted in order 1. We use
the vertical position of the grating pattern to control the phase φ.

will then be vertically diffracted. Using a sawtooth structure, the light is only diffracted
in orders 0 and 1. If we fix the grating pitch and make sure we filter the first order on
the output with a pinhole, we can then tune the amplitude of each spectral component by
modulating the magnitude of the vertical grating pattern. Additionally, the relative phase
between horizontally adjacent components can be tuned by shifting vertically the grating
pattern instead of adding a global phase offset (see [149,150] for more details).

5.2 Input output transformation

In this section we establish the input-output relationships for a pulse shaper. First with an
idealised plane-wave model that allows us to point out one of the pulse shaper resolution
limits. Then we improve this model and take the input beam size into account, this leads
to a second resolution limit. When designing a pulse shaper both these resolutions must
be considered, the worst of the two will be the limiting factor of the pulse shaper.

5.2.1 Simplified model: plane waves - pixel complexity

Let us assume that the input beam can be modelled by a polychromatic plane wave with
spectral width ∆λ, centred at λ0. Assuming this spectral width is not too big we can
linearise Eq. (5.2) in λ, we get the diffraction angle:

θd(λ) ≈ θ(0)
d + θ

(1)
d (λ− λ0) with θ

(0)
d := θd(λ0) = θL (5.3)

θ
(1)
d := ∂θd

∂λ
= −1
d cos θ(0)

d

(5.4)

After the grating the diffracted light is then imaged onto the SLM with a cylindrical mirror
of focal length f . For the grating plane and SLM plane to be imaged on one another the
set-up must respect a 4-f configuration (as in Fig. 5.1). In this case the grating and SLM



planes are Fourier image planes and an angle out of the grating will be matched to a
position on the SLM. So the typical total spread of the light on the SLM will be:

∆L = α∆λ with α =
∣∣∣θ(1)
d

∣∣∣f = f

d cos θ(0)
d

(5.5)

α is the spatial dispersion of the pulse shaper often expressed in mm/nm. The wave-
length resolution on the SLM is fixed by the difference in wavelength of light hitting two
neighbouring pixels:

δλpx = δxpx
α

(5.6)

Where δxpx is the SLM pixel pitch. The quality of a pulse shaper is often expressed in
terms of its complexity, that is the maximum number of features one can imprint on a
given spectrum. Given that the input light has spectral width ∆λ and that the resolution
is δλpx, the complexity is then simply:

ηpx = ∆λ
δλpx

= f∆λ
dδxpx cos θ(0)

d

(5.7)

Note that this expression assumes the SLM surface is wide enough to encapsulate the
whole ∆λ. For that the SLM width must be large enough compared to ∆L.

We see that, for a given input spectrum, the complexity can be improved in several
ways:

• increase the focal distance f : with a longer focal distance the diffracted light is
collimated into a larger beam. Two wavelength components will be spread further
apart on the SLM hence the improvement in complexity.

• increase the groove density a = 1
d : a higher groove density will mean the grating

spreads light with a broader angle, leading to a larger spread on the SLM hence the
higher complexity.

• decrease the pixel pitch δxpx: a smaller pixel size means two neighbouring pixel will
shape closer wavelength hence the higher resolution.

It is important to note that the complexity cannot be improved indefinitely by changing
a and f because at some point the beam size will exceed the available SLM size. a and f
should be tuned to spread the beam optimally on the SLM. So ultimately the complexity
is limited by the only incompressible parameter, that is the number of pixel on the SLM.
This is why we call δλpx and ηpx the pixel resolution and pixel complexity.

In our experiment, a = 2400 mm−1, f = 250 mm, ∆λ ≈ 1.3 nm, δxpx = 20 µm and
θ

(0)
d = 28.5° so the pixel resolution is δxpx ≈ 0.0293 nm and the pixel complexity is
ηpx ≈ 44.4.

There is another limit to resolution and complexity in a pulse shaper that comes from
entirely optical considerations. It is called the optical complexity. This limit appears when
the input beam size is taken into account. We detail it in the next section.



5.2.2 Effect of finite beam size - optical complexity

When we looked at the effect of the grating we considered the incoming beam as a plane
wave. A plane wave would be focused into an infinitely small point (or vertical line) in
the SLM plane, but that won’t be true for any realistic input beam with finite size. For a
realistic beam, a single spectral component coming out of the grating will have some finite
spatial extension which will result in a spot on the SLM plane. Only when this spot size
is significantly smaller than the SLM pitch can the plane wave approximation be valid.

Consider for example, an input Gaussian beam with waist wi ≈ 1 mm at λ0 = 795 nm,
and a focal length f = 250 mm, the focused waist size is given by the standard relation:

wo = λ0f

πw
≈ 0.05 mm (5.8)

This is bigger than the pixel pitch of 0.02 mm that we used. So in our case, the input
beam size needs to be taken into account. A single frequency component will actually
spread on several pixels on the SLM and smear our shaping. This can severely limit the
resolution of the pulse shaper, regardless how good its pixel complexity is.

We refer to the resolution limit coming from this effect as the optical resolution. Note
that the bigger the input beam, the smaller the spot on the SLM. This is consistent with
the previous treatment of section 5.2.1, in the limit of an input beam with infinite spatial
extension we recover the plane wave approximation.

An additional complication appears when we consider the input beam’s width. Even for
a single spectral component, the beam size right after the grating is different to the input
beam size. To understand this, consider the spatial Fourier decomposition of the input
beam. The beam can be described as a collection of plane waves with direction spanning
a small angle around the main propagation direction of the beam. Each of these plane
waves will therefore have a slightly different incidence angle on the grating. According
to Eq. (5.2) the diffraction angle depends not only on the wavelength but also on the
incidence angle on the grating. So each plane wave in the Fourier spatial decomposition
of the input beam will be diffracted at a slightly different angle. The net effect will be a
change in the output beam size, whenever the incidence angle on the grating is different
from the Littrow angle.

Consider a Gaussian input beam with waist wi onto the grating. We will also consider
that the input beam has a Gaussian spectrum with width ∆λ (standard deviation in
intensity). The field envelope on the grating reads:

E(x, λ) = E0e
− x2
w2
i e−

λ2
4∆λ2 (5.9)

where x correspond to the transverse direction relative to the beam’s direction of propa-
gation. In the spatial-Fourier domain this gives:

E(kx, λ) = Ẽ0e
− k2

x
4∆k2

i e−
λ2

4∆λ2 with ∆ki = 1
wi

(5.10)

kx is the transverse wave-vector that parametrises the plane wave components. We can
also parametrise it with the angle β relative to the kx = 0 component: kx = k0 sin(β).
Using basic geometry we see the component with angle β has an incidence angle on the
grating given by:

θi = β + θ
(0)
i (5.11)



So the relative incidence angle δθi = θi − θ(0)
i is just given by β. If the incident beam is

large enough (∆ki
k0
� 1), β is small and we can linearise the sine function:

kx = k0 sin β (5.12)
≈ k0β (5.13)
≈ k0δθi (5.14)

Similarly, we can write the beam coming out of the grating in the Fourier domain and we
have:

kx ≈ k0δθd with δθd = θd − θ0
d (5.15)

If we differentiate the diffraction law of Eq. (5.2) we obtain:

dθd = α dλ− cos θi dθi√
1− (−aλ− sin θi)2 (5.16)

= α dλ− cos θi
cos θd

dθi (5.17)

So that in the small angle approximation we have:

∆kout ≈ k0∆θd = k0
cos θ(0)

i

cos θ(0)
d

∆θi (5.18)

Where ∆kout is the width of the Fourier distribution of the diffracted beam. So that finally
the waist right after the grating is:

w′ = cos θ(0)
d

cos θ(0)
i

wi (5.19)

Note that here we considered that each frequency component had the same spatial shape
and we fully separated the spatial and frequency dependencies in the expression of E(x, λ).
This approximation is valid in most cases when the light spectrum is narrow enough.

Given the waist of the beam after the grating it will be focused onto the SLM to a
typical size:

δxopt = 2wo = 2λ0f

πw′
= 2cos θ(0)

i

cos θ(0)
d

λ0f

πwi
(5.20)

This corresponds to a wavelength resolution:

δλopt = δxopt
α

= 2cos θ(0)
i λ0

πwia
(5.21)

and the corresponding complexity is:

ηopt = ∆λ
δλopt

= πwia∆λ
2 cos θ(0)

i λ0
(5.22)

We see that, for a given input spectrum, the optical complexity can be improved in
two ways:



• increase the groove density a: a grating with higher groove density will spread light
with a broader diffraction angle, leading to a larger spread on the SLM hence the
higher complexity. Just as before with the pixel complexity, one cannot increase a
indefinitely because the SLM has a finite size.

• increase the input waist wi: for a single frequency component, a bigger input waist
leads to a smaller waist on the SLM, which reduces the smearing of different fre-
quencies. The input beam cannot be made arbitrary big for obvious reasons. At
some point it will start clipping on the optical components of the pulse shaper. The
limiting one is usually the grating or SLM (vertical size).

Note that, unlike in the case of pixel complexity, increasing the focal length does not
improve the optical complexity. This is because even if it would broaden the spread of the
diffracted beam, it would also increase the waist size of individual frequencies on the SLM
by the same amount, therefore cancelling the improvement.

In our experiment, wi ≈ 3 mm, a = 2400 mm−1, ∆λ ≈ 1.3 nm, λ0 = 397.5 nm and
θd(0) = 28.5° so the optical resolution is δλopt = 0.031 nm and the optical complexity is
ηopt ≈ 42.1.

The pulse shaper was designed to maximise and have similar values for both the optical
and pixel complexities. Ultimately the resolution of the pulse shaper is limited by the
smaller complexity, so there is no point in increasing one, if the other stays small. Both
complexities being around 40 we should be able to imprint up to 40 “features” in the pump
spectrum. The real complexity of the pulse shaper in the experiment may be smaller
because of effects we did not consider here (misalignment for example). Nevertheless, this
design analysis gives us a rough idea of the resolutions to expect. In section 7.2 when we
optimise the pump profile, we consider that the pump is divided into 8 frequency bands.
So the complexity of our design should be enough to implement the optimal pump shape
we find.

5.3 Effects of various misalignments

Until now we considered an ideal pulse shaper configuration, with an input beam waist
on the grating, and a perfect 4-f configuration. In practice the pulse shaper needs to
be aligned and the different distances tuned in order to approach these conditions. It is
therefore useful to know the detrimental effects that appear when one deviates from these
conditions. This will allow the experimentalist to isolate the parameter that needs to be
corrected for a given observed error.

In this section we present the effects of various misalignments on the pulse shaper
output. We won’t look at the effects of horizontal angles, details on that can be found
in [151]. There are four separate distances to tune to reach the 4-f configuration, however
in our case we use a folded pulse shaper configuration with a reflective SLM, only one
grating and one cylindrical mirror. The light back-propagates to the mirror and grating
after reaching the SLM. So there are only two independent distances to tune: the grating
to cylindrical mirror distance and the SLM to cylindrical mirror distance. We also look
at effects of input waist position and grating rotation.



5.3.1 Input waist position

The first parameter that might be off is the input waist position. In section 5.2.2 we
assumed the waist of the input beam was positioned on the grating. If the input waist
position is displaced longitudinally, the waist of the beam in the SLM plane would change
as Eq. (5.8) is only valid when the input waist is in the object plane of the focusing element.
But this effect is actually negligible as long as the waist position offset is small compared
with the Rayleigh range of the input beam. This is the case in our design as the input
waist is typically several millimetres so the Rayleigh range is several meters.

5.3.2 Grating rotation

The diffraction grating needs to be aligned so that the rulings of the grating lie in a plane
normal to the optical table. This ensures that the beam is diffracted horizontally. If this
is not the case, the diffraction plane is tilted and resolution will decrease because single
frequency components will spread on several pixel columns on the SLM. Moreover when
coming back to the grating, the different spectral components will recombine at different
heights which will result in vertical spatial chirp on the output beam. By spatial chirp we
designate any kind of spatio-temporal coupling in the beam. When a beam is spatially
chirped, different transverse point of the beam have different spectral contents. And
equivalently, different frequency components of the beam have different spatial profiles.
To correct the vertical chirp, we need to rotate the grating around the axis perpendicular
to its plane and correct alignment with vertical angle. This procedure must be repeated
until the vertical chirp is minimised.

5.3.3 Grating-cylindrical mirror distance

The distance between the cylindrical mirror and the grating is the most critical. If it is not
equal to f the output beam will be both temporally and spatially (horizontally) chirped.

Temporal chirp or group velocity dispersion refers to the quadratic spectral phase
we described in section 3.2.4. It appears because the different spectral components of
the beam have different paths and therefore different optical path lengths in the pulse
shaper (see Fig. 5.4). In the following we will show that this path difference amounts to a
quadratic phase. We condider the different frequency components on a plane orthogonal
to the direction of propagation of the central frequency of the beam. For a given frequency
component, the accumulated phase from the grating is just φ(ω) = ω

c l(ω), where l(ω) is
the optical path length. For frequencies close to the central frequency ω0, writing the
Taylor expansion of φ(ω) up to 2ndorder, we have:

δφ(Ω) := φ(ω)− φ(ω0) (5.23)

≈ Ωφ(1) + Ω2

2 φ(2) (5.24)

with Ω := ω − ω0 (5.25)

and φ(1) :=
(
∂φ

∂ω

)
ω0

= l0
c

+ ω0
c

(
∂l

∂ω

)
ω0

(5.26)

φ(2) :=
(
∂2φ

∂ω2

)
ω0

= 2
c

(
∂l

∂ω

)
ω0

+ ω0
c

(
∂2l

∂ω2

)
ω0

(5.27)



Fig. 5.4 Schematic representation of the diffraction path of two different fre-
quencies ω0 and ω0 +Ω, and the resulting path difference δl. For small deviations
around the central diffraction angle θd(ω0), the phase difference scales quadrati-
cally with the frequency offset Ω.

l(ω) is linked to the diffraction angle difference δθd(ω) := θd(ω)− θd(ω0) by (see Fig. 5.4):

l(ω) = l0
cos(δθd(ω)) (5.28)

Using this expression, it is easy to show that:(
∂l

∂ω

)
ω0

= 0 (5.29)(
∂2l

∂ω2

)
ω0

= l0

(
∂θd
∂ω

)2

ω0

(5.30)

So that finally the phase difference between different frequency components can be written:

δφ(Ω) = l0
c

Ω +
ω0l0

(
∂θd
∂ω

)2

ω0

c

Ω2

2 (5.31)

The first term just corresponds to the standard linear phase that different frequencies
accumulate when propagating conjointly. The second is responsible for the temporal
chirp, using Eq. 5.3 it can be written:

φ(2) = l0λ
3
0a

2

2πc2 cos2(θ(0)
d )

(5.32)

When the grating to cylindrical mirror distance is equal to f this optical path difference is
exactly compensated by the cylindrical mirror so that there is no resulting chirp after the



mirror. When the cylindrical mirror is at distance f + δ from the grating, however, the
temporal chirp is not entirely compensated. After the mirror there remains the temporal
chirp:

φ(2) = δλ3
0a

2

2πc2 cos2 θ0
d

(5.33)

As a typical example, for λ0 = 397.5 nm , δ = 1 mm, a = 2400 mm−1 and θ(0)
d = θL = 28.5°

we obtain φ2 ≈ 830 fs2, which is non negligible. Note that it is possible to compensate
this chirp with the SLM profile.

The second detrimental effect of a wrong grating-mirror distance is horizontal chirp.
It comes from the fact that if the diffracted beam is not properly collimated with the
cylindrical mirror, each frequency component will return on the grating with a different
incidence angle than when it left. As a result the various frequency components will not
properly recombine into a single beam, hence the horizontal chirp.

5.3.4 SLM-cylindrical mirror distance

We now look at what happens when the SLM-cylindrical mirror distance is off. If the
cylindrical mirror is placed at f relative to the grating then, regardless of the SLM position,
the individual spectral component are all parallel after the mirror. After reflection on the
SLM they will back-propagate to the grating with the same angle. So the output beam
should be well recombined and won’t show any sign of spatial chirp. The SLM position
will not change the temporal chirp either for the same reason (remember temporal chirp
is caused by the angular dispersion as we saw in the previous section).

The position of the SLM is therefore not critical in terms of spatial or temporal chirp.
The main effect will be a loss of resolution when the SLM is not in the focal plane of
the cylindrical mirror. We can estimate how sensitive this will be. The waist of a single
frequency component in the focal plane of the cylindrical mirror is wo = cos θ(0)

i

cos θ(0)
d

λ0f
πwi

. We can
estimate how critical the SLM position is by looking at the Rayleigh range corresponding
to this waist size:

zR = πw2
o

λ0
= λ0f

2

πw2
i

(5.34)

where we have assumed for simplicity θ
(0)
i = θ

(0)
d = θL. This gives about 0.9 mm for a

25 cm focal length and 3 mm input waist. So the SLM position is quite critical, if it’s off
by only a few millimetre, the optical resolution of the pulse shaper will be considerably
reduced.

To tune the position of the SLM, one can look at the output beam and try to collimate
it. Note however that the distance between the grating and cylindrical mirror will also
affect the output beam collimation. So ideally one must first optimise the grating-mirror
distance, and then optimise the SLM position. We can also optimise the SLM position
by looking at the pulse shaper resolution. To measure the resolution, we can for example,
put the vertical diffraction pattern on a single column of the SLM and look at the spectral
width of the pulse shaper output with a spectrometer.

When studying the effects of pulse shaper misalignment, I ran into a common miscon-
ception that I would like to highlight here. In many textbooks and articles on pulse shaping
where the pulse shaper has an unfolded configuration as in Fig. 5.1 (with 2 gratings), the
distance between gratings is often cited as the cause of temporal chirp (as in [152] for



example). The equation for chirp is then often given in terms of L − 4f , where L is the
actual grating-grating distance:

φ(2) = λ3
0a

2

2πc2 cos2 θ
(0)
d

(L− 4f) (5.35)

This is a bit misleading because, even if the full line is not 4f long, there won’t be any
chirp as long the grating-lens distances are both equal to f . So really it is the grating-lens
distance that matters. Of course if the lens-SLM distances are both f , then any departure
from the 4f configuration comes from error in the grating-lens distances and in that case
formula (5.35) is correct.

I believe this misleading way of presenting chirp in pulse shapers comes from pulse
compressors, which were studied before pulse shapers were invented. In pulse compres-
sors [153–157], there is no lens or SLM, just two grating. The chirp depends on the
grating-grating distance, and is given by Eq. (5.35) where L − 4f is replaced by the
grating-grating distance.

In the folded geometry, if the SLM position is off, the full line won’t be 4f long. If one
uses formula (5.35), this may lead to think that the position of the SLM has an effect on
temporal chirp, but that is not true.



Chapter 6

Non linear optics
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6.1 Introduction

In this thesis we aimed at producing particular types of entangled states. This entangle-
ment is produced using a second order linearity inside a dielectric material. In this section
we introduce such non-linearities and explain how second order non-linearities can be used
to generate entangled states.

A dielectric medium is an insulating material that can be polarised in the presence
of an external electric field. It contains no free charges but it’s constituents (atoms or
molecules) do contain bound charges that will move under the influence of an external
field. The charge distribution “stretches” locally and produces an effective electric dipole.
All these dipoles add up and contribute to an effective bulk polarisation density. This
polarisation then acts as a source term for the electromagnetic field.

In the simplest case the polarisation density at a given point is just proportional to
the applied external field: P(t) = ε0χ

(1)E(t). The total field within the material is then
usually described by the electric displacement field D(t) = ε0E(t) + P(t). χ(1) is the linear
susceptibility, it is used to describe effects like refraction at the interface between materials
and is linked to the refractive index with n2 = 1 + χ(1).

In more general cases, if the external field is sufficiently intense, we observe a non-linear
response:

P(t) = ε0(χ(1)E(t) + χ(2)E(t)2 + χ(3)E(t)3 + ...) (6.1)

79



This expansion of the polarization density as a Taylor series is a perturbative description, it
is valid as long as the external field is not too large. Here we omitted the time dependency
of the susceptibilities for simplicity. If the susceptibilities χ(n) do not depend on time,
the response is called instantaneous. χ(2) describes the second order non-linearity. It is
responsible for effects like sum frequency generation or parametric down conversion. The
most relevant aspect of second order non-linearity for the generation of entanglement is
its ability to mix field components at different frequencies.

To see this, consider an input field with two monochromatic components: E(t) =
E1e−iω1t + E2e−iω2t + c.c. , the second order part of the polarisation will then be:

P(2)(t) = ε0χ
(2)
(
|E1|2 + |E2|2 (6.2)

+ E 2
1 e−2iω1t + E 2

2 e−2iω2t (6.3)
+ 2E1E2e−i(ω1+ω2)t (6.4)

+ 2E1E
∗
2 e−i(ω1−ω2)t

)
+ c.c. (6.5)

So the second order response of the medium creates new field components at frequencies
0, 2ω1, 2ω2, ω1 − ω2 and ω1 + ω2. Each new component is a result of the interaction of 2
components in the input field:

• The 0 frequency term corresponds to the interaction of the ω1 (resp.ω2) component
with itself. This effect is called optical rectification

• The 2ω1 (resp.2ω2) frequency term also corresponds to the interaction of the ω1
(resp.ω2) component with itself. This effect is called second harmonic generation

• The ω1 +ω2 frequency term corresponds to the interaction of the ω1 and ω2 compo-
nents. This effect is called sum frequency generation

• The ω1 − ω2 frequency term also corresponds to the interaction of the ω1 and ω2
components. This effect is called difference frequency generation

In general all these effects do not happen simultaneously. Indeed, we still haven’t con-
sidered the spatial degree of freedom of the fields. Each of the new excited fields will propa-
gate in the medium. To generate a non zero contribution on average, the excited fields pro-
duced in each point of the medium need to interfere constructively. If we consider sum fre-
quency generation for example, with plane input waves: E1/2(t) = E1/2e−i(ω1/2t−k1/2·r), the
sum field created at ω3 = ω1 + ω2 will propagate with wave-vector k3 with |k3| = n(ω3)ω3

c .
The different source contributions will then constructively interfere only if:

k3 = k1 + k2 (6.6)

This is the so called phase matching condition.
In equation (6.1) we did not consider the vectorial nature of the electric field, if we do

the non linear susceptibility becomes a tensor and the ith component of the polarisation
now reads 1:

Pi = ε0(χj(1)
i Ej + χ

jk(2)
i EjEk + χ

jkl(3)
i EjEkEl + ...) (6.7)

1Here we used Einstein’s notation for summation



Now the linear response of the medium is described by a matrix χ(1). It accounts for
birefringence effects in the medium. Higher order terms are tensors of increasing order
that describe the non-linear response. Now, different polarisation may interact to produce
the new frequencies.

In particular for second order effects, it is possible to satisfy the phase matching con-
ditions (Eq.(6.6)) even for co-propagating fields. Indeed, if the medium is birefringent,
different polarisation components experience different optical index. If the medium is a
uniaxial crystal, there is one preferred polarisation that experiences an extraordinary in-
dex ne while the others have the ordinary index no. With a carefully designed dielectric
crystal and input field polarisation we may have for example:

ne(ω1 + ω2) = no(ω1)ω1 + no(ω2)ω2
ω1 + ω2

(6.8)

This would then ensure the phase matching condition of Eq. (6.6) is met for co-propagating
beams. This way of ensuring phase matching is very commonly used. It is the technique
we used in this experiment.

The second order non-linear effects are often called three wave mixing. This is because
when a field is created at say ω3 = ω1 + ω2, this new frequency component can then
interact with the ω1 (resp. ω2) component to produce a source term for the ω2 (resp. ω1)
component through down-conversion. This effect is the converse of the first one and has
the same phase matching condition. Therefore, any newly excited frequency can convert
back into the field that it originated from. The three field component will effectively be
coupled by a set of differential equations.

6.2 Second harmonic generation
In the experiment we use second harmonic generation to produce a field that is later used
as a pump for a down-conversion process. This is a common technique. Down-conversion
involves input fields that have different frequencies. Instead of using two separate lasers,
which would not be coherent with each other (unless stabilised to a common reference),
we first generate the pump with second harmonic generation (which only requires a single
input field).

Technically speaking, we should call it sum frequency generation because, as we saw,
our laser is a frequency comb and contain many frequency components. Any component
ωk will interact with any other ωl to produce the sum frequency ωk + ωl. The frequencies
of the input comb are given by Eq. (3.13) and the resulting frequency comb will have the
same repetition rate:

ωk = 2ωCE + kωr (6.9)

Phase matching will only be satisfied over a finite bandwidth so the envelope of the newly
generated comb will depend both on the input envelope and on the phase matching.

Throughout this section we refer to the input field as the pump and the generated sum
frequency field as the signal. Let us now derive the equations for the produced signal field.
The propagation equation for the electric field in the non-linear crystal is deduced from
Maxwell’s equations (see appendix A.4):

∇2E(r, t)− 1
c2
∂2E(r, t)
∂t2

= 1
ε0c2

∂2P(r, t)
∂t2

(6.10)



where P ≡ PL + PNL is the electric polarisation of the medium:

PL,i = ε0
∑
j

χ
(1)
ij Ej (6.11)

PNL,i = ε0
∑
jk

χ
(2)
ijkEjEk (6.12)

Here we only consider up to second order non linearity. We can rewrite this equation for
analytical fields, in the spectral domain. Looking only at the relevant polarisation for the
signal field we get:

∇2E(+)
s (r, ω) + ω2

c2 (1 + χ(1)(ω))E(+)
s (r, ω) = − ω2

ε0c2P
(+)
NL (r, ω) (6.13)

where index s refers to the polarisation of the signal field. Under the paraxial approxima-
tion, the field can be described with transverse envelope whose longitudinal variation are
slow compared to the carrier phase

∣∣∣∂2a
∂z2

∣∣∣� ∣∣∣k ∂a∂z ∣∣∣:
E(+)
s (r, ω) = as(r, ω)eik(ω)z (6.14)

and assuming that the spatial profile remains unaffected, the propagation equation for the
signal field envelope constrained to the z axis is given by:

∂as(z, ω)
∂z

= iω
2ε0cn(ω)P

(+)
NL (z, ω)e−ik(ω)z (6.15)

where we used the dispersion relation k2(ω) = n(ω)2ω2/c2 and n(ω)2 = 1 + χ(1)(ω).
For SFG, the second order non-linear polarisation is given by:

P(+)
NL (z, ω) = ε0χ

(2)
∫
R

dω′√
2π

E(+)
p (z, ω′)E(+)

p (z, ω − ω′) (6.16)

where the input pump1 field is E(+)
p . We will also describe the pump field under the

paraxial approximation with its envelope2:

E(+)
p (z, ω) = Epup(z, ω)eikp(ω)z (6.17)

Injecting equations (6.14) and (6.16) into (6.15) yields the propagation equation for
the envelope of the signal:

∂as(z, ω)
∂z

= iωχ(2)

2ns(ω)cE
2
p

∫
R

dω′√
2π
up(z, ω′)up(z, ω − ω′)ei∆k(ω,ω′)z (6.18)

where we introduced the wave vector mismatch along the propagation axis:

∆k(ω, ω′) = kp(ω′) + kp(ω − ω′)− ks(ω) (6.19)
1Note in this section we refer to the input beam at 800 nm as the pump and the generated SHG beam

at 400 nm as the signal. Next when we will look at PDC the roles will be inverted
2Note here, unlike in Eq. (6.14), we introduced the constant Ep so that up(z, ω) is unitless.



If we assume the pump is undepleted1 we may neglect the longitudinal variations of up
and integrate Eq. (6.18) over the length of the crystal lc to get the output signal envelope:

as(ω) = iωχ(2)lc
2nsc

E 2
p

∫
R

dω′√
2π
up(ω′)up(ω − ω′)Φ(ω, ω′) (6.20)

Where Φ(ω, ω′) = sinc(∆k(ω,ω′)lc
2 ) is the phase matching function. In the following the

frequency dependence of the pre-factor will be neglected and it will be evaluated at the
signal central frequency 2ω0. We will write: χ = 2ω0deff lc

nsc
= 4πdeff lc

nsλ0
, where deff = χ(2)

2 is
the effective non-linear coefficient.

Eq. (6.20) can be simplified even further if we neglect second order dispersion in the
crystal, in which case:

∆k(Ω) ≈ (2k(0)
p − k(0)

s ) + Ω(k(1)
p − k(1)

s ) with Ω = ω − 2ω0 (6.21)

With k
(0)
p := kp(ω0), k(0)

s := ks(2ω0), k(1)
p :=

(
∂kp
∂ω

)
ω=ω0

and k
(1)
s :=

(
∂ks
∂ω

)
ω=2ω0

. We
assume that phase matching is verified for the central pump and signal frequencies ω0 and
2ω0 so that the 0thorder term is null. ∆k does not depend on Ω′ = ω′ − ω0 and may be
taken out of the integral, so the signal becomes:

as(Ω) = i
χE 2

p√
2π

Φ(Ω)(up ⊗ up)(Ω) (6.22)

The signal is simply the auto-convolution of the pump field multiplied by Φ which will
act as a filter function. For short crystal, the phase matching function is broader and the
signal bandwidth will be limited by the pump bandwidth while for long crystal Φ will be
the limiting factor.

The first order approximation is not sufficient to properly model the SHG when the
input spectrum is broad enough and/or the crystal is long enough. We can go one step
further and Taylor expand the phase mismatch to second order:

∆k(Ω,Ω′) = Ω(k(1)
p − k(1)

s ) + Ω2

2 (k(2)
p − k(2)

s ) + Ω′2k(2)
p − ΩΩ′k(2)

p (6.23)

Fig. 6.1 illustrates how the first term of the integral (Eq. (6.20)) limits the bandwidth
of the signal. Fig. 6.2 shows the exact and first order approximation phase matching
function.

In our experiment the input spectrum has a 9.8 nm FWHM (in intensity) and we use
a 300 µm BiBO crystal, it is a good compromise to get good signal power and bandwidth.
In these conditions the first order approximation is sufficient to calculate the output signal
field (see Fig. 6.3). The numerical calculation give a 2.44 nm FWHM output, the measured
experimental width is around 2.8 nm. This discrepancy could be due to walk-off effects in
the crystal: walk-off reduces the effective length over which the signal and pump overlap
which can result in a broader spectrum (shorter effective crystal length).

1This approximation will be valid for sufficiently thin crystals.



Fig. 6.1 Illustration of how the term up(ω′)up(ω − ω′) in Eq. (6.20) limits the
bandwidth of the SHG beam.

Fig. 6.2 First order approximation (a) and exact form (b) of the phase matching
function Φ(ω, ω′).

The SHG power at the crystal output is given by (see appendix A.5):

PSHG = 2nscε0fr

∫
R

dt
∫
R2

d2ρ
∣∣∣E(+)
s (ρ, t)

∣∣∣2 (6.24)

= 2nscε0frSs

∫
R

dω |as(ω)|2 (6.25)

= 2nscε0frχ
2E 4
p

1
2π︸ ︷︷ ︸

g

∫
R

dω
∣∣∣∣∫
R

dω′ up(ω′)up(ω − ω′)Φ(ω, ω′)
∣∣∣∣2︸ ︷︷ ︸

I

(6.26)

Where Ss is the effective transverse area of the signal beam and we used Parseval’s identity
to replace the time integral by a frequency one. The integral term I can be calculated
numerically and the pre-factor can be expanded in terms of the input beam’s power Pp,
effective area Sp, and repetition rate fr using Ep =

√
Pp

2npcε0frSp :

g = nscε0Ssfr
π

χ2E 4
p (6.27)

= 4πSs
Sp

P2
pd

2
eff l

2
c

nsn2
pcε0λ2

0frSp
(6.28)

For Gaussian beams of waist w the effective area is S = πw2

2 . The waist of the signal beam
will just be ws = wp√

2 , so that Ss
Sp

= 1/2. Note this is consistent with the signal field being



Fig. 6.3 Signal generated by second-harmonic generation for a 300 µm BiBO
crystal and a pump centred at 795 nm with a 9.8 nm FWHM. The first order
approximation gives the same result as the exact treatment. The FWHM are
given in intensity and correspond to the width of a Gaussian fit.

quadratic in the pump field, it also corresponds to matching the pump and signal beam
Rayleigh ranges. Since there is perfect phase matching for the central frequencies we have
ns = np = n, so the SHG efficiency reads1:

ηSHG := PSHG

Pp
= 2π Ppd2

eff l
2
c

n3cε0λ2
0frSp

I (6.29)

In Fig. 6.4 we show the SHG power and efficiency calculated for different pump values.

6.3 Parametric down conversion
We now describe parametric down conversion (PDC). It is the non-linear effect we use
to produce multimode entangled states. The pump we use for this process is produced
using SHG as described in the previous section. PDC can be seen as the converse of SHG,
instead of two input field interacting to produce an output field at higher frequencies, we
now have one input field that is converted into two output fields at lower frequencies. For
PDC, the second order non-linear polarisation is given by

P(+)
NL (z, ω) = ε0χ

(2)
∫ +∞

−∞
E(+)
p (z, ω + ω′)E(−)

s (z, ω′) dω′√
2π

(6.30)

1Even though the pump bandwidth/pulse duration does not appear explicitly in this expression, it
does affect the value of I



Fig. 6.4 SHG conversion efficiency for a 300 µm BiBO crystal and a 20 µm
waist input pump field with a fr = 76 MHz repetition rate, λ0 = 795 nm central
wavelength and 9.8 nm FWHM.

where E(+)
p is the pump1 field and E(+)

s is the generated signal field.
Injecting equations (6.14) and (6.30) into (6.15) yields the propagation equation for

the envelope of the signal:

∂as(z, ω)
∂z

= iωχ
(2)

2nsc
Ep

∫
R

dω′√
2π
up(z, ω + ω′)a∗s(z, ω′)ei∆k(ω,ω′)z (6.31)

where we used Eq. (6.17) to define the pump envelope up and we have introduced the wave
vector mismatch along the propagation axis

∆k(ω, ω′) = kp(ω + ω′)− ks(ω′)− ks(ω) (6.32)

6.3.1 Classical treatment for real signal envelopes

Let us first consider a real signal envelope, we can rewrite Eq. (6.31) as

∂as(z, ω)
∂z

= K (z)as(z, ω) (6.33)

Where K (z) is an integral transform with kernel K(z, ω, ω′) acting on envelopes a(z, ω)
as:

K (z)a(z, ω) :=
∫
R

dω′K(z, ω, ω′)a(z, ω′) (6.34)

with K(z, ω, ω′) = i ωχ(2)

2
√

2πnsc
Epup(z, ω + ω′)ei∆k(ω,ω′)z (6.35)

1Note that by “pump” we now refer to the 400 nm light.



Using a Magnus expansion [158] Eq.(6.34) may be formally integrated into:

aout
s (ω) = exp

( ∞∑
k=0

Sk

)
ain
s (ω) (6.36)

where S0 =
∫ zout

zin
dzK (z) (6.37)

S1 = 1
2

∫ zout

zin
dz
∫ z

zin
dz′

[
K (z),K (z′)

]
(6.38)

S2 = 1
6

∫ zout

zin
dz
∫ z

zin
dz′

∫ z′

zin
dz′′

([
K (z),

[
K (z′),K (z′′)

]]
(6.39)

+
[
K (z′′),

[
K (z′),K (z)

]])
(6.40)

· · · (6.41)

In the weak pumping limit we may just keep the first term of the expansion so that:

aout
s (ω) = eS0︸︷︷︸

G

ain
s (ω) (6.42)

If we neglect the pump depletion and assume it’s homogeneous along the crystal we
may evaluate the z integral over the phase factor (as we did with Eq. (6.20)). We will also
evaluate the pre-factor at the central frequency ω0 so the kernel of S0 becomes:

S0(ω, ω′) = ig up(ω + ω′)Φ(ω, ω′)︸ ︷︷ ︸
L(ω,ω′)

with g = ω0χ
(2)lc

2nsc
Ep√
2π

(6.43)

where as in section 6.2 the phase matching function is given by:

Φ(ω, ω′) = sinc(∆k(ω, ω′)lc
2 ) (6.44)

In order for the envelope as(ω) to stay real (as we required) we need the pump to be
purely imaginary: E(+)

p (ω) = iEpup(ω). In other words the pump needs to be in quadrature
with the signal. In that case L(ω, ω′) is real and it is also symmetric by definition (see
Eq. (6.32) and (6.43)), so it can be diagonalised1 in an orthogonal basis of real eigenvectors:

L(ω, ω′) =
∑
k

Λks(k)(ω)s(k)(ω′) (6.45)

We can write this relation without explicitly writing the kernel of L with the notation:
L =

∑
k Λk

∣∣∣s(k)
) (
s(k)

∣∣∣. It follows immediately that the
∣∣∣s(k)

)
are also eigenvectors of G :

G
∣∣∣s(k)

)
= erk

∣∣∣s(k)
)

with rk = gΛk (6.46)

The envelope functions s(k)(ω) are called the supermodes, they correspond to spectral
shape that remain the same when propagating in the crystal. They are amplified or
de-amplified by a factor e±rk depending on the pump phase.

1Other hypotheses are necessary since the space is infinite dimensional but we will assume it’s valid.



Given a phase matching function and a pump spectral shape, we can diagonalise
L(ω, ω′) numerically to find the supermodes. To do so we discretise the frequency range,
replace the integral operator L with a matrix and the envelope functions a(ω) with vec-
tors. The eigen-decomposition of Eq. 6.45 can be written:

L = VΛVT (6.47)

Where Λ is a diagonal matrix containing the eigen-values1 and V is orthogonal and con-
tains the eigen-vectors as columns.

6.3.2 Complex signal envelope and quantum treatment

In the general case where we keep a complex signal envelope, Eq. (6.31) couples as(z, ω)
and its conjugate a∗s(z, ω), we may write them as a 2 component vector:

as(z, ω) =
(
as(z, ω)
a∗s(z, ω)

)
(6.48)

which allows to rewrite equation (6.33) as a matrix linear differential equation:

∂as(z, ω)
∂z

= KKK (z)as(z, ω) with KKK (z) =
(

0 K (z)
K (z)∗ 0

)
(6.49)

The Magnus expansion from Eq. (6.36) is still valid if we replace K (z) by it’s matrix
operator version KKK (z) and we again keep the first term only:

aout
s (ω) = GGG ain

s (ω) (6.50)

where:
GGG = exp

(
0 S0

S ∗
0 0

)
(6.51)

The quantum description is simply obtained by replacing the envelope functions by
the quantum field operators â(ω).

Again we will discretise the frequency and work with a discrete set of operators:

â := (. . . , âk, . . . )T with âk := â(ωk) (6.52)

As in Eq. (6.47) the linear integral operators GGG and S0 become (infinite) matrices that we
write with bold straight notation: G, S0. In the case where the pump has a flat spectral
phase: E(+)

p (ω) = Epeiφp up(ω)︸ ︷︷ ︸
∈R

, we can take out the phase term out of S0 and write:

G = exp
(

0 ei(φp+π/2)S0
e−i(φp+π/2)S0 0

)
(6.53)

=
(

cosh(S0) ei(φp+π/2) sinh(S0)
e−i(φp+π/2) sinh(S0) cosh(S0)

)
(6.54)

1Note that when we discretise the frequency, we need to scale the eigen-values by the discretisation
step for consistency: Λcont → Λdiscrδω



So that given the spectral decomposition of L (6.47), G can be decomposed as:

G = G1 ⊕G2 ⊕ · · · (6.55)

Where each Gn acts on the subspace generated by
(
ŝn
ŝ†n

)
with:

Gn =
(

cosh(rn) sinh(rn)
sinh(rn) cosh(rn)

)
(6.56)

and ŝ = UφVâ with Uφ =
(
ei(φp+π/2)/2 0

0 e−i(φp+π/2)/2

)
(6.57)

Gn is the mode transformation of the single mode squeezing operator (see table A.1). So
when expressed in the supermode basis (basis of the eigenvectors of L), the transformation
acts independently on each mode and corresponds to a simple squeezing operation. The
supermodes quadrature are squeezed along p̂ (resp. q̂) for positive (resp. negative) eigen-
values Λn:

WGnW−1 =
(
ern 0
0 e−rn

)
(6.58)

The term Uφ represents a global phase factor identical for all the supermodes, it shows
that the squeezed supermodes are in quadrature with the pump.

The squeezing factor rn is obtained with:

rn = gδωΛk = 2πdeff lc
nλ0

√
P0frτ

ncε0A
γΛn (6.59)

Where γ = δω
ωr

is the discretisation rate.
Thanks to the eigen-decomposition of L we just did a Bloch-Messiah decomposition of

G.
Figure 6.5 shows the supermode calculated numerically for a Gaussian pump of 2.8 nm

FWHM (intensity) centred at λp = 397.5 nm, with a 2 mm BIBO crystal. The supermode
obtained do not depend on the sampling rate and frequency range as long as they are
sufficient to sample the variation of L(ω, ω′) and cover its range. Fig 6.6(a) shows the
squeezing value calculated for a 20 mW pump with a waist in the crystal of 38 µm.

6.3.3 Pump spectral phase effects

When the pump phase is not flat, L is not real so it no longer has an eigenvalue decom-
position. But we can use the Autonne-Takagi decomposition [159]:

L = VΛVT (6.60)

where Λ is a real non negative diagonal matrix containing the singular values of L1 and
V is unitary. With this decomposition it follows that:

S0S0
∗ = VK2V† with K = gδωΛ (6.61)

1We will often refer to these as eigenvalues although strictly speaking this term should be reserved for
diagonalisation.



Fig. 6.5 Supermodes of the down conversion process for a Gaussian pump of
2.8 nm FWHM (intensity) centred at λp = 397.5 nm, with a 2 mm BIBO crystal.
The FWHM of the Hermite-Gauss fits are indicated on each graph.

Evaluating the exponential in G explicitly and using Eq. (6.61) we have:

G =
(

E F
F∗ E∗

)
(6.62)

E = 1+ S0S0
∗ + S0S0

∗S0S0
∗ + · · · (6.63)

= V cosh(K)V† (6.64)
F = S0 + S0S0

∗S0 + · · · (6.65)
= V sinh(K)VT (6.66)

So that again G acts independently on the supermode as:

Gn =
(

cosh(rn) sinh(rn)
sinh(rn) cosh(rn)

)
(6.67)

ŝ = Vâ (6.68)

Again we just did a Bloch-Messiah decomposition of G using the Takagi factorisation of
L. Now the squeezing parameters rn are all positive and all the supermodes are p̂ squeezed.
This results looks identical to the one of Eq. (6.56) but there is a significant difference. In
Eq. (6.56), the matrix V that defines the supermode basis is a real orthogonal matrix, and
all the supermodes are real up to a common global phase factor. In Eq. (6.67) however, V
is now a unitary complex matrix, so a priori, each of the supermodes can have arbitrary
phases relative to the pump. In other words, if we look at q and p quadratures defined
with a fixed phase relative to the pump, in the first case the supermode were all either



Fig. 6.6 (a) Single pass squeezing values. (b) SPOPO squeezing/antisqueezing
values.

q or p squeezed while in the second each supermode can be squeezed along an arbitrary
axis.

This method will allow us to calculate the supermodes and their squeezing parameters
for general complex spectral shapes of the pump. As an example, Fig. 6.7 shows the result
of this factorisation method for a pump with a quadratic phase (chirp) of 750 fs2. This
changes significantly the shapes of the supermode but the squeezing level are not changed.

The Autonne-Takagi decomposition will be useful to calculate the SPOPO output
when we shape the spectrum of the pump (see section 7.2).

6.4 SPOPO

In our experimental set-up, the non linear crystal we use for PDC is placed inside a cavity.
This allows to amplify the non-linear effect and reach higher squeezing levels. In this
section, we will first recall a few results obtained in [138, 160] that allow to describe the
supermodes of the SPOPO when intra-cavity dispersion is neglected. We then try to
extend the description to take into account the intra-cavity dispersion.

6.4.1 SPOPO without dispersion, input-output relations.

A thorough model for the SPOPO supermodes has already been developed. We won’t
reproduce this analysis here but give the main results. The SPOPO cavity is modelled
with a single coupling mirror of reflectivity r for simplicity. This is justified as we will
be interested in the output field when no seed field is coupled into the cavity and the
input coupler reflectivity is high compared to the output coupler one. So it is sufficient
to only consider the input vacuum field coupling into the output coupler (see chapter 4
for the details of our cavity). It can be shown [138] that the SPOPO acts as a symplectic
transformation on the input field:(

âout

âout†

)
= R

(
âin

âin†

)
(6.69)

R =
(

E F
F∗ E∗

)
(6.70)



Fig. 6.7 First supermodes of the PDC process for a complex pump with a
quadratic phase corresponding to a chirp of 750 fs2. All other parameters are
identical to the simulation of section 6.3.2.

And R is related to the cavity round-trip transformation T by:

R = (T− r1)(1− rT)−1 (6.71)

The round trip transformation is also symplectic and can be decomposed into T = GU.
Where G is defined as in section 6.3.2 and U is the round-trip transformation without
pump, it acts independently on each frequency component and can be described with a
spectral phase Φ:

U =
(
eiΦ 0
0 e−iΦ

)
(6.72)

Φ is diagonal and represents the phase accumulated per round-trip by each frequency
component.

When the intra-cavity dispersion is neglected, Φ contains a constant and a linear
component. In this case, when pumping synchronously with an optical frequency comb, U
and G share a family of eigen-modes. Those modes are frequency-combs whose envelopes
are given by the supermodes obtained for the single pass PDC in section 6.3.2. In the



supermode basis, the SPOPO transformation is then reduced to:

R = R1 ⊕R2 ⊕ · · · (6.73)

with Rn =
(
Cn Sn
Sn Cn

)
(6.74)

(6.75)

Where1:

Cn = 2r − (r2 + 1) cosh rn
−(1 + r2) + 2r cosh rn

(6.76)

Sn = (r2 − 1) sinh rn
−(1 + r2) + 2r cosh rn

(6.77)

(6.78)

This allows to estimate the squeezing levels of the supermodes from the single-pass
gains rn obtained in section 6.3.2. If we include the effect of intra-cavity round-trip losses
η the squeezing/anti-squeezing level of supermode n are given by [150]:

〈
p̂2
n

〉
= η(1− r2)e−2rn + (

√
1− ηe−rn − r)2

(1− r
√

1− ηe−rn)2 (6.79)

〈
q̂2
n

〉
= η(1− r2)e2rn + (

√
1− ηern − r)2

(1− r
√

1− ηern)2 (6.80)

We show in Fig. 6.6(b) the calculated squeezing levels for a cavity with coupler reflectivity
r = 0.8, and intra-cavity losses η = 0.074.

6.4.2 Simulation of intra-cavity dispersion

We now consider the problem of modelling intra-cavity dispersion effects on the super-
modes of the SPOPO. Calculations based on the Edlén model [161] shows that dispersion
due to air amounts to about 80 fs2 per cavity round trip. The amount of dispersion
from the crystal is about 330 fs2 (for lc = 2 mm) and 150 fs2 is compensated with chirped
mirrors. So in our set-up the total intracavity rount-trip dispersion is around 250 fs2. Al-
though this may not seem like a lot, it is already enough to start to limit the bandwidth
of the transmitted seed field as we saw in section 4.2.3. We are at the limits of tolerable
dispersion. If we wanted more broadband supermode we would have to compensate more
dispersion inside the cavity2.

More importantly, high order supermodes have a large bandwidth and will be dras-
tically filtered by dispersion. This means the squeezing curve in Fig 6.6 is not realistic,
squeezing will drop much faster as higher order modes get increasingly filtered by the
cavity.

1Here we neglect the CEO effects for simplicity, see [138] for the full expressions.
2It is not straight forward to compensate dispersion inside the SPOPO cavity. Having a pulse com-

pressor inside the cavity would introduce too much intra-cavity losses. Similarly dispersion compensation
mirrors tend to be more lossy for larger compensation.



6.4.2.1 Naive approach

A somewhat naive approach to model the effects of intra-cavity dispersion is to follow
the same approach we used in section 4.2.3 when analysing an input field transmission.
In other words we first find the supermodes for a single pass process (no cavity), then
we simulate the transmission of these modes through a filtering dispersive cavity. This
approach is not strictly correct for reasons that we will detail in the next section, however
it gives the right results for our dispersion regime.

6.4.2.2 Full treatment

The model of the previous section is not strictly correct because, the dispersion and non-
linear gain effect inside the cavity happen conjointly and at every round-trip. In general,
the phase effect described by U and the gain effect described by G do not commute.
In which case the Bloch-Messiah decomposition of R and T do not correspond to the
same supermodes. But we may still calculate R numerically and perform a Bloch-Messiah
decomposition. This is done in symplectic space, by first noting that:

WRW−1 = (WTW−1 − r1)(1− rWTW−1)−1 (6.81)

Then calculating the inverse of 1− rWTW−1 by block using the Schur complement. The
Bloch-Messiah decomposition of R is then calculated using an algorithm based on the
polar decomposition1 (see [163] for example).

Fig. 6.8 shows the simulations of the SPOPO supermodes and squeezing levels using
this technique for various dispersion values. Dispersion reduces the spectral width of the
supermodes. It decreases the squeezing of high order supermodes.

Although the full-treatment give similar results to the naive approach, it would be
interesting to study it further. In particular to find out case when the dispersion not only
filters the supermodes bandwidth but also changes significantly the supermode shape and
structure.

1We use the bloch messiah decomposition from the strawberry field package of Xanadu [162]



Fig. 6.8 SPOPO simulation with intra-cavity dispersion for r = 0.8. (a):
squeezing levels. (b), (c) and (d): first supermodes (amplitude absolute value).
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Chapter 7

Numerical optimisation of the
pump spectrum
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In this chapter we present the results of SPOPO pump optimisation using numeri-
cal simulations. We maximise certain desirable features of the SPOPO output state by
tuning the spectral shape of the pump. The SPOPO output modes and squeezing levels
are obtained by Autonne-Takagi decomposition of the joint spectral distribution as pre-
sented in section 6.3.3. Two different machine learning algorithms (MLA) are used for
optimisation: an artificial neural network (ANN) algorithm and a reinforcement learning
algorithm based on projective simulation (PS). This is a continuation of the work done by
Francesco Arzani in [164], where the pump profile was optimised using an evolutionary
algorithm.

Machine learning algorithms are not necessarily more effective than other standard
optimisation algorithms for solving this particular problem. But they have already been
proven efficient for the optimisation of experimental set-up [165]. They can automati-
cally discover interesting features within the system to be optimised. This makes them
promising for a future live optimisation of our set-up. Indeed, our experiment suffers from
technical limitations that are hard to estimate and model, like the diffraction losses in the
pulse shaper for example. A direct optimisation of the experimental set-up would then
probably lead to different solutions than the ones obtained from simulation.
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This chapter is divided in 3 sections: first we introduce the two algorithms we used and
give an example of live optimisation of a simple experimental set-up with ANN. We then
discuss the particular problem of pump shape optimisation. We recall previous results
and give the details of our optimisation. Finally, we present the results for various cost
functions and parameters.

7.1 Introduction to machine learning

In the 1950s and early 1960s, theoretical research on the concept of artificial intelligence
and how to design it created the building blocks of machine learning as we know it to-
day [166, 167]. Later, in the 90s, thanks to the improvement in processor hardware capa-
bilities these algorithms could be implemented on practical tasks. Since then, they have
known a huge success especially in tasks like image recognition [168], language process-
ing [169] and game solving [170]. They now dominate the industry of internet and big data.
The range of applications and different types of MLA is very large and a complete review
of MLA is well outside the scope of this thesis. We will however, introduce the framework
of the two algorithm we used. The first algorithm is a reinforcement learning algorithm
based on projective simulation (PS), the second is a deep learning algorithm based on ar-
tificial neural networks (ANN). Both techniques have been shown to outperform humans
on complex tasks [170,171].

7.1.1 Reinforcement learning with projective simulation

In the reinforcement learning framework, the algorithm is described by an agent that learns
through interaction with a dynamic rewarding (or punishing) environment (see Fig. 7.1).
The agent’s task is divided in steps, at each time-step the agent chooses randomly within
a set of possible actions in order to maximise a cumulative reward. The action is chosen
given the current (and possibly past) state of the environment and will influence the future
state of the environment. Given the new state of the environment, a reward is produced
that quantifies the quality and relevance of the previous action. The training is done by
tuning the probabilities for the agent to choose a given action conditioned on a given state
of the environment. The goal of the training is to reach an optimum between exploration
of new actions that may lead to good rewards and exploitation of accumulated knowledge
by repeating previously successful actions.

Reinforcement learning algorithms are generally described mathematically by a Markov
decision process. There is a set of possible environment states or percepts, s ∈ S, a set of
available actions, a ∈ A, and the decision making process of the agent at time step t is
determined by a set of conditional probabilities P (t)(a|s). The reward λ(t)(s′) is determined
given the new state of the environment s′ and is used to update the probabilities for the
agent decision making.

Projective simulation [173, 174] (PS) is a type reinforcement learning algorithm that
allows the agent to show some creative behaviour i.e. deal with unprecedented situation.
It can relate a given situation to other conceivable ones and project itself into potential
future situations. This is achieved with the introduction of an Episodic Compositional
Memory (ECM). The ECM consists in a network of elementary patches called clips which
represent remembered percepts and actions. The learning process consists in a stochastic
walk in the ECM network. In the original algorithm the agent is allowed to reinvoke past



Agent

Environment

Action

Reward

Interpreter
State/Percept

(Optical set-up, 
pump spectral shape, ...)

(Cost measurement,
SPOPO simulation, ...)

Fig. 7.1 Schematic view of a reinforcement learning algorithm. At each time
step, the agent/actor performs an action, this action modifies the state of the
environment, leading to a reward. (Image of the agent reproduced from [172])

experience before real action is taken but that feature will not be used in the present work.
We use an implementation of PS developed by Alexei Melnikov and Katja Ried [175]

and later used for quantum optics experiments design [176]. Let N be the number of
percepts (possible states of the environment) andM the number of actions, the probability
p

(t)
ij for taking action aj (j ∈ [1,M ]) given the current percept si (i ∈ [1, N ]) is written as:

p
(t)
ij =

h
(t)
ij∑M

k=1 h
(t)
ik

(7.1)

where h is the weight matrix and is initialised to h(0) = J. Where J is the N ×M matrix
with every coefficient equal to 1. After each interaction with the environment the weight
matrix is updated to:

h(t+1) = h(t) − γ(h(t) − J) + λ(t)g(t+1) (7.2)

where γ is the damping parameter responsible for memory loss (decay towards uniform
probability distribution), λ(t) is the reward set by the user depending on the new percept
state and g(t) is a matrix, called the glow matrix, that allows to reward recent successes
more than old ones. g is initialised to 0 and if edge (i, j) was traversed during the last
decision making process, gij is set to one. g decays to zero according to:

g(t+1) = (1− η)g(t) (7.3)

where η is the glow matrix damping parameter that control the dynamic of the decay.
Note that g allows for “long term” decision making as even if a single action does not lead



to an immediate reward (λ(t1) = 0), the corresponding edge gt1ij is still set to 1 so that if a
reward is later awarded (λ(t2>t1) > 0), the corresponding edge (i, j) will still be modified
in h(t2). This is necessary because in many optimisations, a given action may be useless
in the short term, but necessary as a transition step in the long run .

The description of the algorithm we gave here is rather abstract and general. Indeed
the code developed by Alexei Melnikov and Katja Ried is a general framework that can
be applied to various optimisation problems. The details of our implementation will be
discussed in section 7.2.2.

7.1.2 Supervised learning with neural networks

7.1.2.1 Generalities

The second ML algorithm we used is a deep learning algorithm, i.e. an algorithm based
on artificial neural networks (ANN). These types of structures are inspired by biological
neural networks in brains. A neuron has input connections to other neurons, the dendrites,
from which it can receive stimuli in the form of an electro-chemical signal, and an output
connection, the axon, from which it can stimulate another neuron1. The neuron will
“fire” if it’s stimulated above some threshold. The ANN mimics this architecture with a
network of elementary blocks called perceptrons (or simply neurons) that are dispatched
in layers and connected to one another (see Fig. 7.2). The first layer is connected to the
inputs of the program, this input can take various forms, for example in the context of
image recognition it could be the pixel RGB values. The last layer outputs the result
of the computation, again this output can take various form, for example the estimated
probability for an input image to contain a cat. The neural network is called deep when it
contains multiple layers between the input and output layers. These are called the hidden
layers.

The output is calculated sequentially, starting from the input layer, each neuron j
outputs a number:

aj = f

 ∑
i∈inputs

wijxi + bj

 (7.4)

Where the xi are input signals (either the output of perceptrons in the previous layer, or
direct input), wij are weights associated with each connections and bj are biases (offsets)
associated to each perceptron. The function f is a threshold-type function that introduces
non-linearity in the system2.

In supervised deep learning, one has access to a large number of inputs and corre-
sponding objective outputs called the training set. The weights and biases are initialised
to random values and are then modified until the output of the ANN is satisfactory for
the training set, that is, it is sufficiently close to the objective output. This optimisation,
called back-propagation, is done using another algorithm, usually some kind of gradient
descent. The idea is that if the training set is sufficiently large, the ANN can be trained
to approximate the mapping between the input and output space sufficiently closely, such
that a yet unseen input, may also be mapped accurately. The art of training is subtle, one
must be careful not to train the ANN too hard on the training set to prevent overfitting
which would reduce the ANN performance outside the training set.

1This is a major simplification of course, a real neural network is far more complex.
2This non-linearity is necessary for the network to achieve complex tasks



Fig. 7.2 Schematic overview of a deep artificial neural network

In our case, we are interested in the optimisation of some parameters of our experiment
and are trying to optimise some cost function (level of squeezing of the first supermode
for example). The goal of the ANN is to predict accurately the landscape of this cost
function (dependence on the input parameter). Once the ANN is trained, it is very fast
to evaluate an output. This allows us to find input parameters that minimise the cost by
a minimisation algorithm.

The ANN algorithm we used was developed by Aaron D. Tranter and Harry J. Slatyer.
It was used in [165] to successfully optimise the experimental parameters of a magneto-
optical trap. We had no role in the development of this algorithm, our work was mainly
to interface it with our problem and Aaron Tranter provided formidable help in doing so.
The algorithm consists of a 5-hidden layer (densely connected) network with 64 neurons
each. Gaussian error linear unit (GELU) is used as the activation function and back-
propagation is done with the Adam optimisation algorithm [177] (extension of stochastic
gradient descent).

A training set of parameters is generated randomly in a way that ensures the parameter
space is uniformly sampled. Three separate ANNs are trained on this set. Each ANN is
used to predict the input parameters that will minimise the cost function using the L-
BFGS-B algorithm [178]. These new parameters are tested and added to the training
set and the ANNs are trained again. This last step is repeated until the algorithm gets
“stuck” in a local minima. When the algorithm sees no significant improvement in the
cost and has been exploring the same region for a certain number of steps, it is randomly
kicked into another region.



7.1.2.2 Experiemental test: cavity auto-alignment

Before running it on the SPOPO pump optimisation, this algorithm was tested on a simple
experimental set-up. It was a good occasion to get familiar with the interfacing of this
machine learning code while working on a set-up with a reduced number of parameters.

The set-up (see Fig. 7.3) is made of a high finesse ring cavity to which a laser beam
can be aligned with 6 parameters: the vertical and horizontal angle of two alignment
mirrors (position/angle) and the longitudinal position of two lenses (mode matching). The
laser is a Nd:YAG laser based on a Non-Planar Ring Oscillator (NPRO) cavity (model
Prometheus [179]). It provides a low noise coherent light source (≈ 1 kHz linewidth) at
1064 nm. The mirror angle and lens position is tuned using DC servo motor actuators

Fig. 7.3 Scheme of the cavity auto-alignment set-up. 4 actuators placed on the
x and y axes of steering mirrors are used for beam alignment to the cavity. 2
actuators placed on translation stages allow to tune the longitudinal position of
two lenses for cavity mode-matching. A deformable mirror (DM) can also be
used to shape the beam’s spatial phase.

(models Z812B and Z825B from thorlabs [180]). The motors contain a rotary encoder
which allows us to determine the position of the actuator and control it with a feedback
loop. We use a homebuilt motor driver circuit board using a TB6612FNG chip [181] and
an FPGA (model NI-7813R from National Instrument [182]) to generate the driving signal
and collect and analyse the encoder signals from the actuators.

The quality of the cavity alignment is determined from a cavity scan signal. A photo-
diode collects the transmitted beam from the cavity output as its length is scanned with
a piezoelectric transducer. The cost function can be set to maximise the amplitude of a
target peak using a peak detection code or more simply on the maximum of the whole
trace.

The algorithm has to be started from a position where peaks are present in the cavity
trace, so it cannot be used on a completely misaligned set-up. From there the algorithm
will first sample the parameters randomly then converge towards an optimal alignment.
Results of a typical optimisation are shown in Fig. 7.4. We empirically set the number
of original training runs to 300. After those training runs, the algorithm starts testing
parameters predicted from the ANNs, it gets to an optimal alignment after ∼ 300 more
runs. It then continues exploring the parameter space without noticeable improvement.
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Fig. 7.4 Result of optimisation of the actuator position. The graph in the first
row shows the cost for each run and the second row shows the corresponding
typical cavity scan traces. The cost function to minimise, is defined as minus
the amplitude of a target cavity peak. The first 300 runs randomly sample the
parameter space. The subsequent runs correspond to minima in the trained ANN
landscape or exploration “kicks”.

We then tried to optimise the transverse profile of the beam using a deformable mirror
(DM) with the same algorithm. We used a Segmented Deformable Mirror model Multi-1.5-
SLM from Boston Micromachine [183]. The SDM surface consists in 144 reflective pixels
placed on MEMS (micro-electro-mechanical systems) covering a surface of 3.3× 3.3 cm2.
Each pixel can be individually addressed and displaced longitudinally, therefore changing
the transverse phase of the reflected beam.

We tried a very naive way of implementing the optimisation by letting the algorithm
directly control the 140 pixel positions (The 4 corner pixels are locked). Figure 7.5 shows
the result of a typical run, with some configuration of the DM and the corresponding
cavity scan traces. After the initial training phase the algorithm rapidly converged toward
a position where almost all the pixels of the DM either at one or zero. This is a local
minimum and is less preformant than a flat DM shape. But the corresponding trace is
barely distinguishable from the one given by a flat DM. A more relevant approach would
be to put larger shapes on the DM like superposition of Zernick polynomials and have the
algorithm tune the coefficient of those polynomials.

7.2 Pump spectral shape optimisation

7.2.1 Previous results

Numerical optimisation of the pump spectral profile for various tasks has already been
studied by Francesco Arzani in [184]. He used an evolutionary algorithm developed in [185].
In this section we recall his main results. The pump was optimised for two main tasks:

• Maximisation of the squeezing degeneracy among the first k supermodes1. The
1Ideal cluster states, which have applications in quantum computation and communication, can be
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Fig. 7.5 Result of optimisation of the DM profile. The graph in the first row
shows the cost for each run. The second and third rows show the corresponding
typical cavity scan traces and DM profiles. The cost function to minimise, is
defined as minus the maximum of the cavity scan trace. The first 300 runs ran-
domly sample the parameter space. The subsequent runs correspond to minima
in the trained ANN landscape or exploration “kicks”.

fitness function to maximise is:

f1(u) = 1
Λ1(u)

100∑
j=1

Λj (7.5)

where u represent the parameters of the pulse shaper and Λj > 0 are the singu-
lar values1 of the joint spectral distribution (diagonal elements of Λ obtained by
Eq. (6.60)). The supermode squeezing levels (in dB) are proportional to the Λj > 0.
The fitness function is normalised by the singular values of the first supermode (the
absolute value of squeezing can be adjusted in principle by changing the power of
the pump).

well approximated experimentally if we have as many degenerate squeezed modes as possible
1We also use the term eigenvalue although that is an abuse as the joint spectral distribution is not

always diagonalisable.



• Maximisation of the squeezing of the first supermode relative to the others. The
function to maximise is1:

f2(u) = Λ1(u)
Λ2(u) (7.6)

Note the values Λj are in decreasing order so maximising f2 does amount to max-
imising squeezing of the first supermode relative to all the others.

Since the pulse shaper is a passive component, it can be difficult to implement exper-
imentally pump shapes that differ significantly (in amplitude) from the initial Gaussian
shape. Indeed, using solutions with little amplitude overlap with the original unshaped
profile would mean throwing away a lot of the available power. That could be accept-
able in theory if we’re only interested in relative squeezing level. However in practice we
want to be able to achieve an absolute experimental improvement of squeezing with pump
shaping. For this reason, Francesco adapted the optimisation using constrained fitness
functions:

f1 = f1 −
3

(5w(u))6 (7.7)

f2 = f2 −
1

(5w(u))6 (7.8)

Where w(u) is the power ratio between the shaped and initial pump profile. Its multi-
plicative coefficient and exponent have been adjusted empirically.

Result of optimisation of f1 and f2 is shown in Fig. 7.6. The optimal pump profiles
obtained this way ((c) and (d)) have complex variations and seem hard to implement
experimentally. Indeed, the limited resolution of the pulse shaper, and the diffraction
losses when implementing a shape with such small features would mean losing a lot of
pump power. Ultimately the performance would be worse than with an unoptimised
pump profile. Worse, the corresponding supermode spectral shapes in Fig. 7.6(b) are
quite complex which makes them impossible to measure experimentally.

We therefore seek a simpler optimisation with a reduced number of pump parameters
that constrain the pump to simpler shapes. There is also hope for simple desirable features
to emerge in the pump. The idea behind the present work was to use an algorithm
that could eventually be run directly on the experiment, therefore including all those
detrimental effects in the optimisation without having to model them. Using a different
optimisation algorithm is also a way to confirm the results obtained in [164] independently.

7.2.2 Simulation parameters and details

We now detail the parameters of our optimisation. For both algorithm, we consider a pump
spectrum centred at 397.5 nm with a 3.54 nm FWHM (intensity), the simulation spans a
frequency range of 9 nm corresponding to 6 standard deviation of the pump spectrum. This
range is divided in n = 4, 8, 16 or 32 frequency bands. For each of these frequency bands
(frexels) the pump is shaped by a factor akeiφk , k ∈ [1, n]. The phases φk and amplitudes
ak of the frexels are the parameter to be optimised. We ran 3 types of optimisation: using
just amplitude shaping (φk = 0), just phase shaping (ak = 1), and both (full shaping).

1Note the values Λj are in decreasing order



Fig. 7.6 Results of pump shaping optimisation from [164] for degenerate squeez-
ing (f1) and maximum first to second mode squeezing ratio (f2). (a) Normalised
gain distributions obtained for unshaped (Gaussian) profile and optimised pro-
files. (b) First supermodes resulting from the pump optimising f1 (top) and f2
(bottom). The solid blue line represents the amplitude, in arbitrary units, while
the orange dashed line represents phase, in radiants (scale on the right). (c) and
(d) show the pump profiles maximising f1 and f2, respectively. The gray dashed
line shows the original Gaussian, the solid blue line shows the optimal amplitude
profile, and the red dotted line shows the optimal phase.

For a given pump profile, we calculate the supermodes eigenvalues Λk using the Autonne-
Takagi decomposition1 as presented in section 6.3. From the eigenvalues we can evaluate
the cost functions to be maximised. We ran the optimisation with two different fitness/cost
functions:

• Optimising degenerate eigenvalues:

f1(u) =
100∑
k=1

Λk
Λ1
− 3

(5w(u))6 (7.9)

• Optimising the first eigenvalue:
f2(u) = Λ1 (7.10)

1For the optimisation we actually just use singular value decomposition (SVD) as it sufficient to get
the eigenvalues and less computationally intensive. The Takagi decomposition is used when we want to
recover the supermode spectral shapes.



This function differs from the one used by Francesco. We did not normalise it to Λ2
so that the pump power penalty is already included in this cost.

7.2.2.1 ANN parameters

For the ANN algorithm, the amplitude and phase span a continuous range:

∀k ∈ [1, n], ak ∈ (0, 1) (7.11)
φk ∈ (−π, π) (7.12)

The ANN ensemble is trained to learn the landscape of the cost function f(a,φ) exactly
as in section 7.1.2.2:

• The cost is evaluated for a certain set of random parameters, the ANNs are trained
to reproduce this landscape.

• A minimisation algorithm finds the optimal of the ANNs landscapes and these next
parameters are tested experimentally.

• After appending these new parameters and cost to the training set, the ANNs are
trained again.

• The last two steps are repeated a certain number of times until satisfactory solution
is found or the algorithm is halted.

7.2.2.2 PS parameters

With the PS algorithm the amplitudes and phases span discrete values corresponding to
a given dynamic range m:

∀k ∈ [1, n], ak ∈ {0,
1

m− 1 , . . . , 1} (7.13)

φk ∈ {0,
2π

m− 1 , . . . , 2π} (7.14)

The pump initial state corresponds to ak = 0.5 and φk = 0, ∀k, except when using only
phase shaping, in which case ak = 1 and φk = 0, ∀k. Available actions for the agent are
to raise the amplitude or phase value of a pump frexel by one increment. This increase
is cyclic so that the amplitude or phase will be set to its minimum if it had reached
its maximum value. The training consists in tuning the probabilities associated to the
available actions of the agent. These actions correspond to transition between different
possible states of the pump spectral shape (the environment) and can be represented as a
network of clips as in Fig. 7.7.

The optimisation is divided into trials. Each trial consists of individual steps in which
the agent chooses an action. If the action leads to a fitness function f1/2 that beats a
certain threshold, the agent is rewarded (with λ = 1) and the trial ends. Otherwise (λ = 0)
and the trial continues. There is a maximum number of steps for each trial, if it is reached,
the trial ends regardless of the agent’s success. At the beginning, the threshold is set to
the first obtained value of the fitness function. When, the threshold has been beaten 5
times it is refreshed to the last obtained fitness function value. This is to ensure the agent
doesn’t get stuck repeating the same action forever. Note that even if the initial successes



Fig. 7.7 Simple example of percept network for n = 2, m = 3, with amplitude
shaping only. The agent starts at the red node. At each step it can go up
(amplitude increase in the left frexel) or down (increase in the right frexel). The
corresponding transition probabilities are initialised to 1

2 and evolve according to
Eqs. (7.2) and (7.3). The green curves show the unshaped pump profile.

of the agent are no longer rewarded after a while, the agent still keeps a “memory” of
them thanks to the glow matrix g (see section 7.1.1 for more details).

After each step the agent actions probabilities are updated with the h matrix according
to Eqs. (7.2) and (7.3). The damping factors are set to γ = 0.01 and η = 0.4. Further
analysis would be required to find optimal values for these hyper-parameters. This is left
for future work.

The total number of possible percepts is m2n and the number of edges 2n×m2n (in the
case of full shaping). The percept space gets huge even for a small number of frexels and
dynamic range so it’s out of the question to store and manipulate an h matrix containing
that many elements. Instead we just keep record of the already explored routes and new
routes are added to h when they are explored for the first time.

7.3 Results

We now present the results of the optimisation by the two algorithms. For the ANN
algorithm we ran the optimisation with 4, 8, 16 and 32 pump frexels. For the PS algorithm,
the dynamic range was set to m = 5. The bad scaling of percept space meant we could not



divide the pump any more than 16 frexels. This is sufficient for a first analysis because
the spectral resolution of the pump shaper limits the number of frequency bands that can
be shaped experimentally. In chapter 5, we found the pulse shaper complexity was around
40 so any simulation with 40 frexels or more is beyond what our pulse shaper can achieve.
Moreover, in the experiment, detrimental effects, like power loss from diffraction, start
appearing when we try to imprint more complex features in the pump. Finally, this small
number of frexel was enough for interesting features to emerge from the optimisation. In
some cases, we found the same optimal pump shape for n = 8 and n = 16. In the future,
it would be interesting however to investigate optimisation keeping a small number of
parameters but shaping the pump in a continuous way (polynomial functions for example).
A first investigation in that direction was done with a cubic interpolation of the shaping
profiles but it is not reported in this thesis.

To test out the algorithms we first run them with amplitude shaping only, then phase
shaping only, then both. For both cost functions f1 and f2, we find that phase shaping only
is sufficient to achieve the optimum. Indeed, with full shaping, the algorithms converged
towards no changes in the spectrum amplitude. This is understandable as any amplitude
shaping will somehow “waste” some of the available input pump power.

7.3.1 Maximising parametric gain

In this section we show the results obtained for optimisation of fitness function f2.
We first show the result corresponding to amplitude shaping only. Fig. 7.8 shows the

optimal pump shapes found by the PS algorithm for various numbers of frexels. For n = 4
and n = 8, the number of percepts is reasonable (625 and 390625), so we were able to
find and confirm the optimum by a brute force approach exploring all the possibilities (see
Fig. 7.9). For n = 4 the algorithm converged to the best possible pump shape. For n = 8
it reached a shape that resembles the actual optimum found by brute force, but it would
need more trials to converge. For n = 16, it is obvious the algorithm didn’t reach the
optimum as the best cost obtained is less than for n = 8, but the obtained shape seems
to share common features with the n = 8 optimum.

We confirmed these results with the second algorithm (ANN). Fig. 7.10 shows the
obtained pump shapes for n = 8, 16 and 32. The ANN algorithm was more efficient to
deal with larger parameter spaces, it converged even for n = 16 and obtained the same
shape as for n = 8. For n = 32 the algorithm didn’t converge but again it seems the
optimal pump shape would share features with the n = 16 case or would even be identical.

Interestingly, the optimal pump shape for f2 with amplitude shaping are quite simple
and symmetric, with amplitude values either at 1 or 0. For the PS algorithm, one could
suspect this result is an artefact coming from a too small dynamic range (m = 5). This
is not the case however because the ANN algorithm, which uses a continuous amplitude
range, confirmed those shapes.

We then ran the same optimisation with phase shaping only. Fig. 7.11 shows the results
for the PS algorithm with n = 4 and n = 8. In both cases the algorithm did converge
to the optimum (as confirmed by the brute force approach of Fig. 7.9). This optimum is
better than the one obtained with amplitude shaping only. Again, for n = 8, the optimal
shapes obtained are quite simple with phases either at 0 or π (note there is a degeneracy
here as −π ≡ π), so the optimal pump is real (with sign flips). For n = 4, it’s more
complicated, and the optimal pump is complex.



Fig. 7.8 Result of the pump amplitude shaping optimisation of f2 using the PS
algorithm for various parameters.
(a) 4 frexels, 100 trials of 50 steps. 42 rewarded states, best is the 36thwith
f2 = 35.39.
(b) 8 frexels, 400 trials of 200 steps. 58 rewarded states, best is the 56thwith
f2 = 39.89.
(c) 8 frexels, 500 trials of 400 steps. 101 rewarded states, best is the 91stwith
f2 = 39.88.
(d) 16 frexels, 700 trials of 400 steps. 143 rewarded states, best is the 143rdwith
f2 = 38.39.

For full shaping the percept space is twice as large and the PS algorithm struggles to
converge even for n = 8. However the ANN performs better (see Fig. 7.12). For n = 8, it
converged to a pump profile with almost no amplitude shaping and a phase profile almost
identical to the one obtained in Fig. 7.11. The value of f2 is also slightly smaller than what
was obtained with phase shaping only. So it appears amplitude shaping is not necessary
and the optimal value of f2 is achieved with phase shaping only (at least for n = 8).

All the results of this section on the optimisation of the first supermode eigenvalue
(f2) are summarised in Table 7.1. In the following, we will refer to the optimal pump
shape for maximising f2 using amplitude shaping only and n = 8 frexels as the f (a)

2 shape
(Fig. 7.10 (a)). And we will refer to the optimal pump shape for maximising f2 using
phase shaping and n = 8 frexels as the f (φ)

2 shape (Fig. 7.11 (b)).
We now look, at the spectral shapes of the supermodes obtained with these pump



Fig. 7.9 Result of brute force pump shaping optimisation with amplitude (top
row) and phase (bottom row) when maximising f2 (left column), f1 (middle
column), and maximum squeezing measured in a frequency band basis (right
column). The green dotted line is the unshaped pump profile, the red and blue
lines are the shaped amplitude and phase respectively. The x-axis is wavelength
in nm and the y-axis is arbitrary unit for amplitude and radian for phase.

Pump shaping type Amplitude Phase

f2
(see Eq. (7.10))

n = 4 35.39 39.97
n = 8 40.08 46.29
n = 16 40.08 N/A

Best pump
profile

n = 4
(
0 1 1 0

) (
π −π/2 π −π/2

)
n = 8

(
0 1 0 1 1 0 1 0

) (
0 π 0 π π 0 π 0

)
n = 16 (0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0) N/A

Table 7.1 – Results of optimisation of f2. For full shaping the best profiles match the
phase shaping ones.

shapes. In Fig. 7.13 we show the supermodes corresponding to the f (φ)
2 shape. The

supermodes have similar shapes to the unshaped pump case but they are significantly
broader. The relative simple spectral shapes of those supermodes compared to the one
obtained in the previous results of Francesco (Fig. 7.6) is promising. Indeed, provided
we have a local oscillator beam with a broad enough spectrum, we could measure those
modes directly in our experiment. For the f (a)

2 shape, the supermodes are very similar
(same shapes, similar widths) and we don’t show them here.

7.3.2 Maximising eigenvalue degeneracy

We now look at the optimisation of fitness function f1 (defined in Eq. (7.9)). As in
the previous section 7.3.1, the optimal pump shapes are achieved with phase shaping
only. Fig. 7.14 shows the results of optimisation of f1 with the PS algorithm using phase
shaping only (we also confirmed those results with the brute-force approach). Once again



Fig. 7.10 Result of the pump amplitude shaping optimisation of f2 using the
deep learning algorithm for various parameters.
(a) 8 frexels, 500 total runs, 300 training runs, best cost f2 = 40.08.
(b) 16 frexels, 600 total runs, 300 training runs, best cost f2 = 40.08.
(c) 32 frexels, 600 total runs, 300 training runs, best cost f2 = 39.67.

the optimal pump shapes have simple forms with frexel phase values of 0 or π. Results of
the optimisation of f1 are summarised in Table 7.2. In the following, we will refer to the

Pump shaping type Amplitude Phase
f1 n = 4 49.38 48.20

(see Eq. (7.9)) n = 8 56.50 69.50

Best pump
profile

n = 4
(
1 0.5 0.25 1

) (
π −π/2 π −π/2

)
n = 8

(
1 0.25 1 0 0 0 0 0.75

) (
0 π 0 π 0 π 0 π

)
Table 7.2 – Results of optimisation of f1. For full shaping the best profiles match the
phase shaping ones.

optimal pump shape for maximising f1 and n = 8 frexels as the f (φ)
1 shape (Fig. 7.14 (a)).

The corresponding supermodes and gains are given in Fig. 7.15. There is important
degeneracies in the eigenvalues which is not surprising since by optimising f1, we are
trying to get eigenvalues as degenerate as possible. The first 12 eigenvalues are degenerate



Fig. 7.11 Result of the pump phase shaping optimisation of f2 using the PS
algorithm for various parameters.
(a) 4 frexels, 100 trials of 50 steps. 20 rewarded states, best is the 15thwith
f2 = 39.97.
(b) 8 frexels, 400 trials of 200 steps. 79 rewarded states, best is the 70thwith
f2 = 46.29

Fig. 7.12 Result of the full pump shaping optimisation of f2 using the ANN
algorithm. 8 frexels, 700 total runs, 300 training runs, best cost f2 = 46.14.

by groups of 4. The supermodes have a very interesting structure with quite complex
spectral shapes. They look very different from the one we obtained when optimising f2.
We can look at the first degenerate subspace in a different basis of mode to get a better
understanding of the physical meaning of this SPOPO output. It is possible to find linear
combination of the first 4 supermodes to find modes that have simpler spectral shape.
These simpler modes are shown in Fig. 7.16. The corresponding basis change is given by



Fig. 7.13 (a) Gains of the Takagi decomposition for unshaped and optimal pump
profile for maximising f2. (b), (c) and (d) first 3 supermodes (they are real).

Fig. 7.14 Result of the pump phase shaping optimisation of f1 using the PS
algorithm for various parameters.
(a) 4 frexels, 100 trials of 50 steps. 20 rewarded states, best is the 19thwith
f1 = 48.20.
(b) 8 frexels, 1000 trials of 200 steps. 81 rewarded states, best is the 77thwith
f1 = 69.50



Fig. 7.15 (a) Gains of the Takagi decomposition for unshaped and optimal pump
profile maximising f1. (b), (c) and (d) First 3 supermodes.

the unitary matrix:

U = 1
2


1 i 1 i
1 −i 1 −i
1 −i −1 i
1 i −1 −i

 (7.15)

The spectral shapes of the new modes are simple Gaussian functions with a central wave-
length at ≈ 795±40 nm, and a linear spectral phase corresponding to a delay of ≈ ±360 fs.
Given that the 4 first eigenvalues are equal: Λ1 = Λ2 = Λ3 = Λ4, in the supermode basis
the covariance matrix of the first degenerate subspace can be simply written:

V =
(

Vqq 0
0 Vpp

)
(7.16)

with Vqq =


e2r 0

e2r

e2r

0 e2r

 = V−1
pp and r = gΛ1 (7.17)



Fig. 7.16 Spectral shapes of the modes given by the linear combinations:
(a) s1+is2+s3+is4

2 , (b) s1−is2+s3−is4
2 , (c) s1−is2−s3+is4

2 , (d) s1+is2−s3−is4
2 . Where

s1−4 are the 4 first supermodes of Fig. 7.15.

In the new basis the covariance matrix reads (see section 2.1.4):

V′ = OVOT (7.18)

=


V+

EPR 0 0 0
0 V+

EPR 0 0
0 0 V−EPR 0
0 0 0 V−EPR

 with V±EPR =
(

cosh r ± sinh r
± sinh r cosh r

)
(7.19)

where O =
(

Re(U) Im(U)
− Im(U) Re(U)

)
. V′ is just the concatenation of two EPR states covari-

ance matrices (see Table 2.1). So for this subspace the SPOPO output consists in two
independent EPR states. One where the two correlated modes are centred at ≈ 795+40 nm
and another with modes centred at ≈ 795−40 nm. In both cases, the two correlated mode
have an opposite time delay of ≈ ±360 fs. A similar type of structure with a degeneracy
of 2 was found in the context of non-degenerate phase matching [186].

This interesting mode structure is exactly identical for the second and third degenerate
subspace, except the corresponding modes are given by first and second order Hermite-
Gauss function (also with a central wavelength of ≈ 795 ± 40 nm, and a linear spectral
phase corresponding to a delay of ≈ ±360 fs).

This optimisation was carried out without taking into account the effects of intra-cavity



dispersion. As we discussed in section 6.4.2, one of the effect of dispersion is to limit the
spectral width of the supermodes. The modes we just discussed are very broadband so
this simulation is unlikely to be accurate in the case of a realistic set-up. In practice
supermodes like the one of Fig. 7.15 would be completely filtered out by the cavity. This
is also true to a lesser extent with the optimisation of f2 in section 7.3.1 as we found pump
shaping was broadening the spectral shapes of the supermodes.

Nevertheless it would be interesting to investigate those modes without a cavity in a
single pass parametric down conversion setting. In particular, one may think about using
those modes as the building blocks to construct a large continuous variable cluster state
in a similar way to what was done for the continuous wave regime in [63].

A more complete analysis of the pump optimisation is still to be carried out (with
more frexels, different dynamic range and hyperparameters, etc.), and other cost functions
could be implemented. The optimisation could also be adapted to include the effect of
intra-cavity dispersion using technique described in section 6.4.2.2. This wasn’t done here
because the method of section 6.4.2.2 is quite computationally intensive. Its running
time would have to be improved before it can be used efficiently in the pump shaping
optimisation.

Nevertheless, the results we obtained in this section are enough to start implementing
them in the experiment. Indeed the supermodes obtained when maximising the gain of
the supermode are simple enough and the gain improvement seems significant enough to
be measured experimentally.





Chapter 8

Covariance matrix reconstruction
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Given the simple pump spectral shapes obtained with the MLA optimisation in chap. 7,
we now want to implement them in the experiment and measure the effect on the SPOPO
output state. The SPOPO output is a Gaussian state and is fully characterised by it’s
covariance matrix. In this chapter we detail how the covariance matrix of the SPOPO
output can be reconstructed with homodyne measurements.

We use two different techniques, a standard single mode homodyne detection with
a tunable LO and a frequency resolved multimode homodyne detection: the multipixel
homodyne detection. The first technique only allows a partial recovery of the covariance
matrix but has reduced losses compared to the second. It can also be used to directly
measure the squeezing level of individual supermodes. The second can recover the full
covariance matrix, however it is more lossy. It is useful to recover the spectral shapes of
the supermodes but does not give very good estimates for the squeezing levels. In this
chapter we give the details of these two techniques.

8.1 Reconstruction from standard homodyne measurement

8.1.1 Principle

In this section we present how standard homodyne detection (SHD) can be used to re-
construct the covariance matrix of a Gaussian quantum state in a given real mode basis
{uk(r, t)} (the measurement basis). This technique only allows partial recovery of the co-
variance matrix. Indeed, one has to assume that the qp correlation terms of the covariance
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matrix are zero. This means the off-diagonal blocks of the covariance matrix are null:

Vqp = Vpq = 0 (8.1)

with V =
(

Vqq Vqp

Vpq Vpp

)
(8.2)

Because of the assumption of Eq. (8.1), we cannot use this technique to reconstruct arbi-
trary Gaussian quantum states. For the SPOPO output state, assumption of Eq. (8.1) is
valid as long as the pump is real (if we neglect intra-cavity dispersion). This follows from
the results of section 6.3.2 where we showed that for a real pump1, the supermodes are
real and in the supermode basis the covariance matrix takes the simple form:

V(s) =
(

V(s)
qq 0
0 V(s)

pp

)
(8.3)

with V(s)
qq =


e2r1 0

. . .
0 e2rn

 =
(
V(s)
pp

)−1
(8.4)

For any real mode basis change, given by the orthogonal matrix O, from the supermode
basis, to the measurement basis, the covariance matrix is given in the measurement basis
by:

V =
(

O 0
0 O

)
V(s)

(
O 0
0 O

)T
(8.5)

=
(

OV(s)
qq OT 0
0 OV(s)

pp OT

)
(8.6)

So the qp terms stay null for any real basis change. In our experiment we use a basis of
real modes as the measurement modes (see section 8.1.2), so the assumption on qp terms
is justified for real pump shapes.

We now detail how the qq and pp block of V can be reconstructed from homodyne
measurements. We already gave the general working principle of homodyne detection in
section 2.3.3. For a coherent LO beam in mode uk(r, t) with amplitude α0 = |α0|eiθ, the
signal of the subtracted photocurrent can be written:

sk(θ) = |α0| (cos θ qk + sin θ pk) + e (8.7)

where qk and pk are samples from the signal quadratures in mode uk and e corresponds
to electronic noise. If we scan the LO phase θ slowly compared to our acquisition speed,
we can calculate the variance over a rolling window to get2:

Vk(θ) := Var[sk(θ)] (8.8)

= |α0|2
(
cos2 θ

〈
q2
k

〉
+ sin2 θ

〈
p2
k

〉
+ 2 cos θ sin θ 〈qkpk〉

)
+
〈
e2
〉

(8.9)

1More precisely a pump with a flat phase, the absolute phase of the pump doesn’t matter
2In our experiment we directly measured the variance with an electronic spectrum analyser.



For simplicity of notation and without loss of generality we assume 〈qk〉 = 〈pk〉 = 0. We
can measure the electronic noise (dark noise)

〈
e2〉 and shot noise variance |α0|2 separately

by blocking either all inputs or only the signal input to the homodyne detection:

V dark =
〈
e2
〉

(8.10)

V shot
k = |α0|2 +

〈
e2
〉

(8.11)

and using these measures, calculate the corrected signal variance trace:

Ṽk(θ) := Vk(θ)− V dark

V shot
k − V dark (8.12)

= cos2 θ
〈
q2
k

〉
+ sin2 θ

〈
p2
k

〉
+ 2 cos θ sin θ 〈qkpk〉 (8.13)

=
〈
q2
k

〉
+
〈
p2
k

〉
2︸ ︷︷ ︸
ak

+
〈
q2
k

〉
−
〈
p2
k

〉
2︸ ︷︷ ︸
bk

cos(2θ) (8.14)

where in the last equality we made the assumption 〈qkpk〉 = 0. ak can be obtained by
taking the mean of this signal over a large number of periods of θ (or integer number of
periods of θ). And bk can be obtained from the amplitude of the trace oscillations (with
a sine fit for example). From these coefficients we can immediately recover the diagonal
terms of Vqq and Vpp.

To reconstruct the non diagonal terms, we collect homodyne traces where the LO mode
is shaped into all the possible sums of pairs of modes from {uk}. If we shape the LO (using
a pulse shaper) into the mode uk+u′k√

2 , the corrected variance of the signal we get is:

Ṽkk′(θ) =1
2

〈
q2
k

〉
+
〈
q2
k′
〉

+ 2 〈qkqk′〉+
〈
p2
k

〉
+
〈
p2
k′
〉

+ 2 〈pkpk′〉
2︸ ︷︷ ︸
akk′

(8.15)

+ 1
2

〈
q2
k

〉
+
〈
q2
k′
〉

+ 2 〈qkqk′〉 −
〈
p2
k

〉
−
〈
p2
k′
〉
− 2 〈pkpk′〉

2︸ ︷︷ ︸
bkk′

cos 2θ (8.16)

where we also assumed 〈qkpk′〉 = 0. Again akk′ and bkk′ are easily recovered from this trace
with a fit. Combining terms from the mode uk+u′k√

2 and individual uk and uk′ measurements
we get:

Akk′ := akk′ − ak − ak′ = 〈qkqk′〉+ 〈pkpk′〉 (8.17)
Bkk′ := bkk′ − bk − bk′ = 〈qkqk′〉 − 〈pkpk′〉 (8.18)

(8.19)

Finally the qq and pp blocks of the covariance matrix are given by:

Vqq = A + B
2 (8.20)

Vpp = A−B
2 (8.21)

As we will eventually shape the pump beam, we can’t always assume the pump is real,
so we need a more general way to reconstruct the covariance matrix. This alternative
technique will be presented in section 8.2



8.1.2 Frexel modes and supermodes reconstruction

In theory the technique we described in the previous section works for any real mode
basis {uk}. In practice, we use a frequency band basis, we call them the frexels modes.
The frequency range of interest is divided into frequency bands of equal width: Ik =
(ωk, ωk+1). The frexel modes correspond to portions of the LO spectrum over these bands:

uk(ω) =
{
ckuLO(ω) if ω ∈ Ik

0 otherwise. (8.22)

where uLO is the full spectrum of the unshaped LO beam and ck is a normalisation
constant. These modes are particularly convenient to use. They are easy to produce with
our pulse shaper and their orthogonality is guaranteed because they don’t overlap. It is
also the most natural basis to use. In this basis the various terms of the covariance matrix
are interpreted as correlation between frequency bands.

In our experiments, the (unshaped) LO beam has a FWHM around 10 nm. We cannot
properly measure a quantum state if its spectral content is large compared to this width
because the frexel modes only have significant power within the range of the LO spectrum.
In other words, for frexel modes well outside the typical LO range, the α0 in Eq. (8.7)
would be null and we would only measure electronic noise (no clearance). The simulations
of section 6.3.2 (see Fig. 6.5) show that the first few supermodes are well within this
frequency range. However, higher order supermodes are increasingly broadband so we
need a broader LO spectrum to measure them.

To get a broader LO spectrum, we use a photonic crystal fibre (PCF). This nano-
structured fibre was designed and fabricated specifically for our purposes in the Max
Planck Institute by Nicolas Joly. It has a core of ∼ 1.3 µm with a honeycomb structure (see
Fig. 8.1 upper right corner). The fibre produces Kerr type non-linearities that coherently
broadens the spectrum of the injected light through phase auto-modulation effects. This
broadening increases with the fibre length and input power. Fig. 8.1 shows the measured
output spectra for a 40 mm long PCF and various input powers.

With the PCF we get new frexel modes with significant power over a broader frequency
range. Fig. 8.2 shows the measured frexels modes (not normalized) obtained by shaping
of the LO, with and without PCF. For all measurements within this thesis, we used the
PCF frexel modes.

Once we have reconstructed the covariance matrix we can apply the decomposition
presented in section 2.2.3. Because we assume the qp terms are zero, the basis change
matrix O1 then takes the simple form:

O1 =
(

U 0
0 U

)
(8.23)

Where U is a real orthogonal matrix. The supermodes are reconstructed as linear combi-
nation of the frexels modes given by the columns of U.

8.1.3 Mesurement details

We use a homodyne detector with a photodiode pair (model S3590 from hamamatsu [187]),
the photodiode are mounted back to back so that their output photocurrent is directly
subtracted. The quantum efficiency of the photodiodes is around 95 %. A home-made



Fig. 8.1 Effect of a 40 mm photonic crystal fiber (PCF) on the LO spectrum for
various input powers.

transimpedance amplifier circuit1 then amplifies this subtracted photocurrent and converts
it to a voltage. The signal is then further amplified and filtered with:

• a 5 MHz cut-off frequency low pass filter (LPF) model BLP-5+ from minicircuit [188].

• a low noise amplifiers model ZFL-500LN-BNC+ from minicircuit [189].

This signal is analysed with an electronic spectrum analyser (ESA) model MXA N2090A
from Agilent Technologies. It gives access to the power spectral density of the photocur-
rent, which is proportional to the quadrature variance as given by Eq. (8.8) (see [124,190]
for details). The variance traces are acquired at 1 MHz with a 100 kHz resolution band-
width (RBW) and a 1 kHz video bandwidth (VBW). The LO phase is scanned at 5 Hz
with a PZT. The typical visibility of the homodyne detection, measured as the contrast
between the LO beam and the SPOPO transmitted seed beam, was 91 %. The spatial and
temporal/spectral mismatches of the LO and seed beam both contribute in reducing the
visibility.

The shot noise variance was measured for different LO powers (see Fig. 8.3) to deter-
mine the saturation point of the homodyne detection. The LO power is adjusted to about
1 mW to ensure the highest clearance (∼ 10 dB) between shot noise and dark noise while
staying in the linearity region.

1circuit designed by Young-Sik Ra



Fig. 8.2 Measured frexel modes intensity spectrum, (a) without PCF, (b) with
PCF. The modes are not normalised to highlight the advantage of using PCF.

8.2 Multipixel homodyne detection

8.2.1 Principle

The multipixel homodyne detection (MHD) is a measurement technique designed to recon-
struct the full covariance matrix of a quantum state. In particular, it allows to recover the
qp terms of the covariance matrix that remained inaccessible to the standard homodyne
detection (SHD). In the SHD technique, the reason we can not extract the qp terms is that
we do not have phase information on the homodyne traces. Because each trace Vkk′(θ) is
measured sequentially there is no reliable way to determine the phase relationship between
two successive traces. In other words the LO phase θ is initialised at a random value for
each new trace. The MHD technique, solves this issue by acquiring all traces simulta-
neously, so there is a fixed phase between them. The MHD is nothing but a frequency
resolved homodyne detection.

Fig 8.4 shows a multipixel homodyne detection scheme. After interfering the LO and
the signal beams on a balanced beam-splitter, the different frequency components of both
outputs are spatially separated using a diffracting element (a grating in our case). Each
frequency band is measured separately with a photodiode, and the photocurrents are
subtracted two by two for matching frequency bands. With this technique, traces of the
form of Eq. 8.7 are acquired simultaneously for all frexels. Calculating the covariance
between those traces and using simple phase shaping on the LO beam (see section 8.3),
we can then recover all the terms of the covariance matrix.

8.2.2 Design

The elements of the multipixel homodyne detection have to be chosen according to the
bandwidth of the LO beam and the supermodes to be measured. Ideally, we want each
frexel to encapsulate a part of the signal spectrum that is big enough so that the whole
signal modes fall into our detection. But small enough to be able to resolve the spectral
variation of those modes. Ultimately we are limited by the number of frequency pixel, i.e.
photodiodes, available. In the following section we will derive the relevant parameters to
optimise for the design and show the characteristics of the chosen design.

We consider an input LO field with a Gaussian spectral intensity width (standard



Fig. 8.3 Homodyne detection calibration: measured shot noise (corrected of
dark noise) for various LO powers.

deviation) ∆λ centred at λ0. We also assume a Gaussian spatial profile of waist w0
positioned on the grating. This assumption is reasonable as, just like with the pulse
shaper (see section 5.3.1), the actual waist position will have little effect on the design.
Our goal is to determine the repartition of this field on the photodiodes. The signal to
be measured must have a comparable bandwidth to the LO beam we use if we want to
be able to measure it properly. To simplify the problem we assume that the lenses of the
microlens array (see Fig. 8.4) have no separation between them and will focus efficiently
all the light they encapsulate into the corresponding photodiode. We also linearise the
diffraction relation. Finally we consider that the diffraction plane is perfectly horizontal
and limit the description to this plane.

Under all those conditions, the normalised intensity along the microlens array plane
can be written:

I(x, δλ) = w0
fλ0

exp
(
−2(x− αδλ)2

w′2
− δλ2

2∆λ2

)
with w′ = fλ0

πw0
(8.24)

where f is the focal length of the collimation lens, α = af

cos θ(0)
d

is the diffracting power of
the grating, δλ = λ−λ0 is the wavelength detuning (see Fig. 8.5). This expression is quite
easy to understand, it has two contributions. The first term in the exponential corresponds
to the spatial distribution of light along x. This term also depends on δλ because of the
diffracting elements that separate the frequency components spatially. Each frequency
component keeps it’s spatial Gaussian shape so the spatial waist after the lens is just
w′ = fλ0

πw0
. And, as we saw with the pulse shaper in section 5.2, each frequency component

is shifted to the central position αδλ by the grating (Eq. (5.5)). The second term e−
δλ2

2∆λ2

just corresponds to the frequency distribution of the input Gaussian spectrum. Integrating



Fig. 8.4 The multipixel homodyne detection (MHD) scheme. After interference
of the LO and signal beam on a balanced beam splitter, the different frequency
components of both outputs are spatially separated using a grating. Each fre-
quency band is measured separately with a photodiode, and the photocurrents
are subtracted two by two for matching frequency bands.

Eq. (8.24) over δλ we get the total intensity at transverse position x:

I(x) = 1√
2π∆x

e−
x2

2∆x2 with ∆x =

√
α2∆λ2 + (w

′

2 )2 (8.25)

We see that the beam total intensity follows a Gaussian of width ∆x. We can simplify
this expression even further if we notice that in our conditions the second term in the
square root in ∆x is negligible compared to the first so that: ∆x ≈ α∆λ. This simple
expression allows us to choose a combination (a, f) that spreads the LO optimally on the
photodiodes. For example if we require that the 8 photodiodes encapsulate 5 standard
deviation of the input field1 we get the condition:

8δx = 5∆x (8.26)

⇒ f ≈
8δx cos θ(0)

d

5a∆λ (8.27)

1This correspond to collecting ∼ 99 % of the input power.



Fig. 8.5 Schematic representation of the effect of the grating in the multipixel
homodyne detection scheme. Each frequency is shifted transversally relative to
the central frequency by αδλ. Each frequency component has a waist w′ = fλ0

πw0
after the grating and focusing element.

Where δx is the microlens array pitch. In our experiment, we have a grating with a = 1800
gr/cm available and the microlens array has a δx = 1 mm pitch. For a 10 nm FWHM LO
this gives f ≈ 129 mm. This is a bit too small to achieve in practice as we need enough
space between the different optical components to fit their mounts so we finally chose a
focal length of 175 mm.

The normalised spectral intensity of light that is collected by each photodiode is easily
determined with:

In(δλ) =
∫ (n+1)δx

nδx
dx I(x, δλ) (8.28)

= 1
2
√

2π∆λ
e−

δλ2
2∆λ2

(
erf(
√

2 (δx(n+ 1)− αδλ)
w′

)− erf(
√

2 (δxn− αδλ)
w′

)
)

(8.29)

Where the number n ∈ [−4, 3] labels the photodiodes. Each photodiode collects a portion
of the input spectrum. The spectral shape of the LO within this portion will determine
the corresponding mode measured by homodyne detection (the frexel mode).

The power fraction of the input collected by photodiode n is then:

Pn =
∫ ∞
−∞

dδλ In(δλ) (8.30)

= 1
2

(
erf(
√

2δx(n+ 1)
2∆x2 )− erf(

√
2δxn

2∆x2 )
)

(8.31)

Fig. 8.6 shows the predicted light repartition on the photodiodes for our design. 93.5 %
of the input light is collected, the overlap between neighbouring modes is below 4.5 %.
Fig. 8.6 also shows the corresponding measured frexel modes (without PCF). The mea-
surement was acquired by scanning a single diffraction column on the SLM while recording
the intensity in each photodiodes.

8.2.3 Mesurement details

The details of the electronic set-up used for multipixel homodyne acquisition is shown in
Fig. 8.7. Our multipixel homodyne detector uses photodiode arrays model S4111 from



Fig. 8.6 (a) Predicted frexel mode spectral shape. (b) Measured frexel mode
spectral shape.

hamamatsu [191] and home-made amplifier circuits designed by Cai Yin and Jon Roslund.
The quantum efficiency of the photodiodes is around 80 %. The signal from each photodi-
ode is amplified by this circuit before subtraction with it’s counterpart. The subtraction
is done with a power splitter model ZSC-2-1+ from minicircuit [192], the subtracted pho-
tocurrent is filtered with a 5 MHz low-pass filter model BLP-5+ from minicircuit [188] and
a home-made 25 kHz high pass filter. It is then amplified with 2 successive low noise ampli-
fiers model ZFL-500LN-BNC+ from minicircuit [189] and mixed down at 1 MHz using an
electronic local oscillator, a doubled balanced mixer model ZAD-3+ from minicircuit [193]
and a 100 kHz home-made low pass filter. This signal is then digitised and acquired with
a NI-PXI-5105 oscilloscope from National Instrument [194] with a 2 MHz sampling rate
and 12-bit resolution. The acquisition time is set to 50 ms to span a few periods of the LO
scan. We use 8 photodiodes and the LO power is set to ∼ 15 mW which gives shot noise
to dark noise clearances between ∼ 10 dB for the central frexels and ∼ 5 dB for the side
frexels. For all measurements, the typical homodyne visibility is ∼ 91 %.

8.3 Reconstruction from multipixel homodyne

8.3.1 Principle

As in section 8.1.1, the signal from photodiode i can be written as:

si(θ) = αi(cos θ qi + sin θ pi) + ei (8.32)

Where αi is a proportionality factor that depends on the LO power, θ is the LO phase,
qi and pi are samples from the quadratures of the signal in the LO frexel mode i and ei
is the electronic noise. αi is proportional to the LO power available on frexel i, the signal
from photodiode i will only be relevant if the photodiode collects enough power from the
LO, otherwise the electronic noise will dominate. A typical homodyne trace is shown in
Fig. 8.8.

Assuming the sampling frequency fs is fast enough compared to the LO phase scanning,
we can compute variance and covariance of these signals over rolling windows, the size of
this window determines the video bandwidth (VBW). Here, the demodulation bandwidth
is RBW = 100 kHz, and we use a video bandwidth of V BW = 1 kHz.
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Fig. 8.7 Photo and scheme of the electronic modulation, filtering and amplifi-
cation line used for multipixel homodyne detection.

Given the expression of sθi (Eq. (8.32)), the covariance between two traces i, j is:

Cij(θ1, θ2) := Cov(si(θ1), sj(θ2)) (8.33)
= αiαj(cos(θ1) cos(θ2) 〈qiqj〉+ sin(θ1) sin(θ2) 〈pipj〉 (8.34)
+ cos(θ1) sin(θ2) 〈qipj〉+ sin(θ1) cos(θ2) 〈piqj〉) + 〈eiej〉 (8.35)

When measuring shot noise, since for vacuum
〈
x2〉 =

〈
p2〉 = 1, we get the variance terms:

Var(si(θ)) = α2
i +

〈
e2
i

〉
(8.36)

So we can renormalise the covariances to:

C̃ij(θ1, θ2) := Cij(θ1, θ2)− 〈eiej〉√(
〈si(θ1)2〉 −

〈
e2
i

〉) (
〈sj(θ2)2〉 − 〈e2

j 〉
) (8.37)

Fig. 8.9 shows typical renormalised covariance traces obtained.
Using trigonometric relation this can be written given Eq. (8.33) as:

C̃ij(θ1, θ2) = 1
2
(
(cos(θ1 − θ2) + cos(θ1 + θ2)) 〈qiqj〉 (8.38)

+ (cos(θ1 − θ2)− cos(θ1 + θ2)) 〈pipj〉 (8.39)
+ (sin(θ1 + θ2)− sin(θ1 − θ2)) 〈qipj〉 (8.40)

+ (sin(θ1 + θ2) + sin(θ1 − θ2)) 〈piqj〉
)

(8.41)



Fig. 8.8 Typical homodyne trace obtained from the multipixel homodyne de-
tection.

We now show that from this expression, using only phase shaping on the LO beam
we can recover each term of the covariance matrix. The covariance trace expression of
Eq. 8.38 contains all terms of the covariance matrix for the frexel pair (i, j). In order to
isolate each term we just need two measurement: one with the same LO phase for both
frexels (θ1 = θ2) and one with a π/2 phase shift between the two frexels (θ1 = θ2 ± π

2 ).
We will therefore take several acquisition with different phase shifts imprinted on certain
frexels of the LO beam using the pulse shaper. In order to get for all frexel pairs, one
acquisition with θ1 = θ2 and one acquisition with θ1 = θ2 ± π

2 , we implement a sequence
of phase shaping on the LO with the following frexel phase values:

•
(
0 0 0 0 0 0 0 0

)
•
(
π
2

π
2

π
2

π
2 0 0 0 0

)
•
(
π
2

π
2 0 0 π

2
π
2 0 0

)
•
(
π
2 0 π

2 0 π
2 0 π

2 0
)

For a given frexel pair (i, j) there are 4 different possible cases:

• The trace with no LO phase shift for either frexel i, j: θ1 = θ2 = θ.

• The trace with π/2 LO phase shift for both frexel i, j: θ1 = θ2 = θ + π/2.

• The trace with a π/2 phase shift in the LO for frexel i: θ1 = θ + π/2, θ2 = θ.

• The trace with a π/2 phase shift in the LO for frexel j: θ1 = θ, θ2 = θ + π/2.



Fig. 8.9 Typical covariance traces obtained from multipixel homodyne detec-
tion. The graph in row i and column j corresponds to the covariance trace
between the signals from frexel i and j.

When the LO phase is the same for frexels i and j, we get:

C̃ij(θ, θ) = 〈qiqj〉+ 〈pipj〉
2︸ ︷︷ ︸
aij

+ 〈qipj〉+ 〈piqj〉
2︸ ︷︷ ︸
bij

sin 2θ + 〈qiqj〉 − 〈pipj〉2︸ ︷︷ ︸
cij

cos 2θ

(8.42)

C̃ij(θ + π/2, θ + π/2) = 〈qiqj〉+ 〈pipj〉
2︸ ︷︷ ︸
aij

+ −〈qipj〉 − 〈piqj〉2︸ ︷︷ ︸
−bij

sin 2θ + −〈qiqj〉+ 〈pipj〉
2︸ ︷︷ ︸
−cij

cos 2θ

(8.43)

When there is a π/2 phase shift between frexel i and j, we get:

C̃ij(θ, θ + π/2) = 〈qipj〉 − 〈piqj〉2︸ ︷︷ ︸
a
π/2
ij

+ 〈pipj〉 − 〈qiqj〉2︸ ︷︷ ︸
b
π/2
ij

sin 2θ + 〈qipj〉+ 〈piqj〉
2︸ ︷︷ ︸
c
π/2
ij

cos 2θ (8.44)

C̃ij(θ + π/2, θ) = −〈qipj〉+ 〈piqj〉
2︸ ︷︷ ︸

−aπ/2ij

+ 〈pipj〉 − 〈qiqj〉2︸ ︷︷ ︸
b
π/2
ij

sin 2θ + 〈qipj〉+ 〈piqj〉
2︸ ︷︷ ︸
c
π/2
ij

cos 2θ (8.45)

If we know the phase θ (details of phase determination are given in the next sec-
tion 8.3.2) we can then fit the function f(θ) := a + b sin θ + c cos θ to those covariance
traces to recover the terms aij , bij , cij , aπ/2ij , b

π/2
ij , c

π/2
ij .



And finally we can reconstruct the covariance matrix terms with:

〈qiqj〉 = aij + cij = aij − bπ/2ij (8.46)

〈pipj〉 = aij − cij = aij + b
π/2
ij (8.47)

〈qipi〉 = 〈pixi〉 = bii (8.48)

〈qipj〉 = a
π/2
ij + c

π/2
ij = a

π/2
ij + bij (8.49)

〈piqj〉 = −aπ/2ij + c
π/2
ij = −aπ/2ij + bij (8.50)

Note we have cij = −bπ/2ij and bij = c
π/2
ij . This system is overdetermined and we can

either use the a, b or a, c terms to reconstruct the covariance matrix. The two methods
give similar results.

Once the covariance matrix is reconstructed we can use the decomposition we presented
in section 2.2.3 to find the supermodes.

8.3.2 Phase reconstruction

To apply the reconstruction technique we just described we have to know the value of θ
(LO phase) for all the variance and covariance traces we obtained. In order to do so we
will use the variance trace of a single frexel, here we use the 4thfrexel (one of the central
frexels). This trace will show oscillation in the variance that will allow us to recover θ.
We saw the (normalised) variance trace could be written:

Vi(θ) = cos2(θ)
〈
q2
i

〉
+ sin2(θ)

〈
p2
i

〉
+ cos(θ) sin(θ)(〈qipi〉+ 〈piqi〉) (8.51)

=
〈
q2
i

〉
+
〈
p2
i

〉
2 + 〈qipi〉+ 〈piqi〉

2 sin 2θ +
〈
q2
i

〉
−
〈
p2
i

〉
2 cos 2θ (8.52)

Since the single mode quantum state corresponding to this pixel mode is Gaussian, we
can just set 〈qipi〉 = 〈piqi〉 = 0. This just amounts to a particular choice of quadrature
definition (or LO reference phase) where the squeezed and anti-squeezed quadrature are
along qi and pi. We will also consider that the squeezed quadrature is pi and qi is anti-
squeezed. In other words, we set the LO phase convention so that θ = 0 corresponds to
measuring the anti-squeezed quadrature of the phase reference frexel mode. We finally
have:

Vi(θ) =
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i

〉
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〉
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〉
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〈
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i

〉
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cos 2θ (8.53)

We then fit the function g(t) := a cos(2πft+ φ0) + b to this trace and recover the LO
phase with:

θ = 2πft+ φ0
2 (8.54)

The initial guesses for the fit are calculated using the fast Fourier transform (FFT) of the
trace. Note that with our phase convention a ≥ 0 but the fit might converge to a negative
value for a in which case we need to add/subtract π/2 to θ.

There is an additional subtlety to consider here. When using Eqs. (8.42), (8.44) and
(8.45), we implicitly consider that the phase of the LO on the 4thfrexel we use for phase
reconstruction is not shifted by the pulse shaper. If it is, then all other shifted frexels can



be considered as not shifted, since all phases are referenced to the 4thfrexel. Likewise all
the unshifted frexel can be considered shifted by −π/2. In other word, for all measurement
where the phase reconstruction frexel is shifted by π/2, we have the 3 alternative cases:

• No phase shift on the LO for frexel i and j: θ1 = θ2 = θ − π/2.

• π/2 phase shift on the LO for both frexel i and j: θ1 = θ2 = θ.

• π/2 phase shift on the LO for frexel i: θ1 = θ, θ2 = θ − π/2.

• π/2 phase shift on the LO for frexel j: θ1 = θ − π/2, θ2 = θ.

In those cases we get traces given by:

C̃ij(θ − π/2, θ − π/2) = 〈qiqj〉+ 〈pipj〉
2︸ ︷︷ ︸
aij

+ −〈qipj〉 − 〈piqj〉2︸ ︷︷ ︸
−bij

sin 2θ + 〈pipj〉 − 〈qiqj〉2︸ ︷︷ ︸
−cij

cos 2θ

(8.55)

C̃ij(θ, θ) = 〈qiqj〉+ 〈pipj〉
2︸ ︷︷ ︸
aij

+ 〈qipj〉+ 〈piqj〉
2︸ ︷︷ ︸
bij

sin 2θ + 〈qiqj〉 − 〈pipj〉2︸ ︷︷ ︸
cij

cos 2θ

(8.56)

C̃ij(θ − π/2, θ) = 〈qipj〉 − 〈piqj〉2︸ ︷︷ ︸
a
π/2
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(8.57)

C̃ij(θ, θ − π/2) = 〈piqj〉 − 〈qipj〉2︸ ︷︷ ︸
−aπ/2ij

+ 〈qiqj〉 − 〈pipj〉2︸ ︷︷ ︸
−bπ/2ij
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cos 2θ

(8.58)
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In this chapter we present the measurement results of the SPOPO output using the
techniques described in chapter 8 for the various optimal pump profiles (f (a)

2 , f (φ)
2 , f (φ)

1 )
obtained in chapter 7. We first measure the SPOPO output with the original Gaussian
spectrum of our pump (no shaping). This gives us a reference of the SPOPO supermodes
and squeezing levels in the absence of pump shaping. We then implement the pump
shapes obtained in chapter 7, and measure significant changes in the supermodes shapes
and squeezing levels.

These changes are in good qualitative agreements with the simulations of chapter 7.
However, the purity of the measured quantum state is limited due to losses and to the finite
spectral range and resolution of our multipixel detection. This is particularly limiting for
one of the pump shape (f (φ)

1 ) which gives supermodes with particularly complex spectral
shapes.

9.1 Flat pump
In all measurements of this chapter the pump power was set to 20 mW. We first present the
measurement without pump shaping. This gives us a reference of the SPOPO supermodes
and squeezing levels in the absence of squeezing. We use 3 types of measurements that
are complementary:

• Covariance matrix measurement with the multipixel homodyne detection technique
(MHD) described in section 8.2. This measurement allows a full covariance matrix
recovery but has a limited bandwidth and frequency resolution.

• Covariance matrix measurement with the standard homodyne detection technique
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(SHD) described in section 8.1. This measurement has a larger bandwidth and
double the frequency resolution of MHD, but does not work for all quantum states.

• Direct supermode quadrature measurement with standard homodyne detection. This
measurement has better efficiency and lower losses compared to MHD, and SHD but
does not recover the full quantum state and require knowledge of the supermodes
spectral shape. We present the results of this measurement in section 9.2.

Fig. 9.1(a) shows the mean covariance matrix reconstructed from multipixel homodyne
detection (MHD) over 100 acquisitions with the technique of section 8.3. Fig. 9.1(b), (c)

Fig. 9.1 Covariance matrix reconstructed from multipixel homodyne measure-
ments without pump shaping. 100 acquisitions were taken. (a) shows the mean
covariance matrix coefficients. (b), (c) and (d) show the mean coefficients and
errors bars of the Vqq, Vqp and Vpp blocks respectively. Since the covariance
matrix is symmetric, (b), (c) and (d) only represents the coefficients of the up-
per triangular part. The coefficients are plotted row by row according to the
lookup table in (b). Red bars correspond to the diagonal coefficients. 1 has been
subtracted to the diagonal coefficients of the covariance matrix to highlight the
variations in the off-diagonal terms.

and (d) show the mean coefficients and error bars (1 standard deviation) of the Vqq, Vqp

and Vpp blocks respectively. Since the covariance matrix is symmetric we only represent



its upper triangular part. They are represented in a 1D fashion (flattened) in the order
given by the lookup table of Fig. 9.1(b) (reading row by row). All the coefficients of the
Vqp and Vpq blocks are close to 0. As we saw in section 8.1.1, this is consistent with the
pump being real.

We then recover the supermodes and squeezing levels from this covariance matrix
using the decomposition presented in section 2.2.3. The first eigenvectors and squeezing
levels are presented in Fig 9.2. The reconstructed estimates for the squeezing levels are

Fig. 9.2 Squeezing levels (a) and spectral shapes (b), (c), (d) of the first super-
modes reconstructed from the multipixel homodyne measurement of the SPOPO
output without pump shaping.

quite low (maximum ∼ 1.5 dB). The higher anti-squeezing level indicates impurity in the
reconstructed supermodes. The limited values of squeezing are caused by various loss
sources:

• Intra-cavity losses in the SPOPO causes some intrinsic impurity in the output quan-
tum state. This impurity increases with pump power (see Eq. (6.79)).

• Optical losses in the path from the SPOPO output to the multipixel detection. They
are mostly due to the limited efficiency of the MHD gratings (∼ 90 %).

• Losses from homodyne detection visibility (V = 91 %).

• Losses from the limited quantum efficiency (∼ 80 %) of the detectors.



• Even with no losses, some impurity will always appear as the exact supermodes
can only be so well approximated by combinations of the frexel modes due to finite
spectral resolution and range.

The eigenvectors are mostly real with flat phases or pi phase shifts between frexels.
Again this is consistent with the fact that our pump has no spectral phase. The frexels
modes of the MHD technique are portion of the Gaussian spectrum of the LO beam and
don’t have a rectangular spectral shape (see Fig. 8.6). So in order to reconstruct a faithful
estimates of the SPOPO supermodes we need to multiply the eigenvectors of Fig. 9.2
with the frexel mode shapes of Fig. 8.6. Doing so, we recover the supermode spectral
shapes shown in Fig. 9.3. Note the reconstructed supermodes are not smooth because
they are piecewise functions so there can be sharp edges at the interface between frexels.
The supermode spectral shapes are close to Hermite-Gauss functions as expected from the
results of section 6.3.2. We fit them with such functions to get an estimate of their width
and central wavelength.

Fig. 9.3 Absolute amplitude of the supermodes reconstructed from multipixel
measurement without pump shaping (in blue solid line) and fit by Hermite-Gauss
functions (in orange dotted line). The central wavelength and FWHM of the fits
are shown on each plot.

It is obvious from Fig. 9.3 that the multipixel homodyne detection is not broadband
enough to encapsulate the whole supermodes, the 3rdsupermode is already well outside the
measurement range. We could change the design of the MHD to get a broader detection
bandwidth. However, this would be at the cost of spectral resolution because we are



ultimately limited by the number of frequency bands of detection (8 in this case). Going
to a broader spectral width would mean having a lower frequency resolution and we may
not be able to resolve the spectral variations of higher order supermodes. In the current
design, we are already at the limit of the necessary resolution to capture the spectral
variations of the 4thsupermode (see Fig. 9.3).

For this pump setting (no pump shaping), since the qp blocks of the covariance matrix
are close to zero, we can use the standard homodyne measurement technique presented
in section 8.1. This allows to perform a more broadband measurement, and also have a
better resolution. We use 16 frexel modes and the LO spectrum broadened with the PCF
fibre. Our detection spans a range from ∼ 783 nm to ∼ 807 nm. The qq and pp blocks of
the covariance matrix measured using this technique are shown in Fig 9.4.

Fig. 9.4 Vqq (a), (c) and Vpp (b), (d) blocks of the covariance matrix of the
SPOPO output, measured using the standard homodyne detection technique,
without pump shaping. The second row shows the values and standard deviation
of the matrix elements. Since the covariance matrix is symmetric, (c) and (d)
only represents the coefficients of the lower triangular parts of Vqq and Vpp. The
plotting order of the coefficients is given by the lookup table in (c). Red bars
correspond to the diagonal coefficients. 1 has been subtracted to the diagonal
coefficients to highlight the variations in the off-diagonal terms

The reconstructed Vqq and Vpp have similar shapes to the ones from MHD measure-
ments (Fig. 9.1). Vqq has significant positive anti-diagonal terms. This shows there are



qq correlations between symmetric pairs of frequencies around the central frequency. And
Vpp has significant negative anti-diagonal terms, showing pp anti-correlations between the
same frequency band pairs. Note the scale of the coefficient here (Fig 9.4) is different to the
one of the MHD measurements (Fig. 9.1). This is not surprising since the dimensionality
of the covariance matrix is different (different frexel numbers).

From Vqq and Vpp, using the matrix decomposition introduced section 2.2.3, we re-
construct the supermodes spectral shape and their squeezing levels. Fig. 9.5 shows those
squeezing/anti-squeezing levels and the corresponding supermodes. Again, as with the

Fig. 9.5 (a) Squeezing levels and first supermodes (b), (c), (d) reconstructed
from standard homodyne measurement without pump shaping. The mode are
shown in order of decreasing anti-squeezing value. In (b), (c) and (d), the blue
bars represent the eigenvector coefficients and the orange dotted lines are fit by
Hermite-Gauss functions. The central wavelength and FWHM of the fits are
reported each graphs.

MHD measurements, the squeezing values, and purity of the supermodes is limited by
losses and the finite resolution and range of the measurement. Here, unlike with the
MHD measurements, the frexel modes are essentially rectangular functions (see Fig. 8.2
b). Therefore we do not need to multiply the eigenvectors with the frexel modes. The
eigenvectors already give a faithful representations of the supermodes. Since the SHD
technique assumes Vqp = Vpq = 0, the supermodes are real functions. We also fitted the
supermode with Hermite-Gauss function to determine their typical width.



The supermodes are quite well described by Hermite-Gauss functions as expected from
the simulations of section 6.3.2. Actually, the first supermode shows some oscillations on
the sides around 785 nm and 805 nm, where it becomes negative. This deviation from
the Hermite-Gauss shape is also present in the numerical results from simulations (see
Fig. 6.5). Indeed the supermodes are well described by Hermite-Gauss functions for large
phase matching functions (short crystals). When the width of the phase matching and
the width of the pump spectrum are comparable, we start seeing these oscillations in the
supermodes. They are a residue of the sinc function of phase matching (see Eq. 6.44).

There is a discrepancy between the supermode widths obtained by MHD and SHD,
especially for the first supermode. The supermodes obtained by SHD are more accurate
because of the better spectral range and resolution. Still the supermode widths obtained
by SHD (5.9 nm) are larger than the one predicted by the numerical simulations of Fig. 6.5
(4.2 nm). This cannot be an effect of intra-cavity dispersion as it tends to narrow the mode
bandwidth, simulation taking dispersion into account predicted an even smaller width of
∼ 3.2 nm (see Fig. 6.8). A possible explanation could be a spatial mismatch between the
SPOPO cavity mode and the pump beam, due to walk off of the pump in the crystal for
example. As a result the effective crystal length for PDC interaction would be smaller
which would give broader supermodes.

Ultimately, to have a more accurate measurement of the supermodes squeezing lev-
els, we need to do a direct homodyne measurement where the LO is shaped into the
supermodes. For that we can use the estimate of the supermode shapes we have recon-
structed from MHD and SHD measurements. We also did this measurement. The results
are shown in Table. 9.1 of the following section, when we analyse the effect of amplitude
pump shaping and compare it to the unshaped measurements of this section.

The measurements of this section validates both the multipixel and standard homo-
dyne detection scheme to measure the SPOPO output. Both these technique are in good
qualitative agreement between themselves and with the theoretical results of section 6.3.2.

9.2 Optimising maximum squeezing
We now look at the SPOPO output for various pump shaping profiles designed to maximise
the squeezing level of the first supermode. We test two pump profiles (shown in Fig. 9.6):
one with amplitude shaping only (profile f (a)

2 ) and one with phase shaping only (profile
f

(φ)
2 ). It turns out that even the phase shaping profile corresponds to a real pump spectrum

as the frexel phase values are either 0 or π. This means the qp terms of the covariance
matrix should be null and we can use the SHD technique to reconstruct the covariance
matrix.

9.2.1 With amplitude shaping

In this section, we use the optimal pump profile f (a)
2 found in section 7.3.1 (see Fig. 9.6(a))

that corresponds to maximising squeezing in the first supermode using amplitude shaping
only.

Fig. 9.7 shows the covariance matrix reconstructed from multipixel homodyne mea-
surement for 100 acquisitions. The covariance matrix obtained is qualitatively similar to
the one in the previous section. The Vqp blocks are close to 0 as expected (real pump).
The anti-diagonal terms of Vqq and Vpp have a larger magnitude than the one obtained



Fig. 9.6 (a) f (a)
2 : pump profile that maximises squeezing in one mode with

amplitude shaping. (b) f (φ)
2 : pump profile that maximises squeezing in one mode

with phase shaping. The red line shows the amplitude (in a.u.), the blue line
shows the phase (in rad) and the green dotted line represents the unshaped pump
profile.

without pump shaping (see Fig. 9.1). So the qq correlations and pp anti-correlations of
the symmetric frequency bands have been increased by the pump shaping.

Fig. 9.8 shows the reconstructed squeezing levels and eigenvectors. Again the eigen-
vectors are mostly real with flat phases or pi phase shifts between frexels elements. The
squeezing levels do not seem to be improved by pump shaping, in fact they are slightly
worse compared to the one of Fig. 9.2. The anti-squeezing level of the first few modes is
significantly increased however. Based only on these observations, it is difficult to give a
precise interpretation of the efficiency of pump shaping to maximise the squeezing level
of the first mode. The increased anti-squeezing could be a sign that more squeezing is
present in the first supermodes but is not visible in the noisy MHD measurements. To
make sure the squeezing in the first mode is improved by pump shaping we will need to
measure it directly.

Multiplying the eigenvectors of Fig. 9.8 by the frexels modes of Fig. 8.6 we obtain the
supermodes of Fig. 9.9. The first supermode seems to be broadened by pump shaping as
predicted by the simulation of section 7.3.1 (Fig. 7.13) but we reach the bandwidth limit
of the multipixel homodyne detection.

To get a better estimate of the supermode spectrum we perform the covariance mea-
surement with the SHD technique. Fig. 9.10 shows the qq and pp blocks of the covariance
matrix measured using this technique. The increase in the magnitude of the anti-diagonal
coefficients is confirmed by this measure.

Fig. 9.11 shows the reconstructed supermodes from the SHD measurements. There
is no significant difference here in the squeezing and anti-squeezing levels compared with
Fig. 9.5. Unlike with the MHD measurement we do not observe an increase in the first
supermode anti-squeezing level.

The first supermode is significantly broadened by the pump shaping as expected from
the simulations of section 7.3.1 (see Fig. 7.13). It goes from a 5.88 nm FWHM to a 8.44 nm
FWHM (intensity). However this broadening seems to be limited to the first supermode
in apparent contradiction with the simulation results. This is probably an effect of the
limited measurement range. As higher order modes are broader they are more sensitive



Fig. 9.7 Covariance matrix reconstructed from multipixel homodyne measure-
ments with pump shape f (a)

2 . 100 acquisitions were taken. (a) shows the mean
covariance matrix coefficients. (b), (c) and (d) show the mean coefficients and
errors bars of the Vqq, Vqp and Vpp blocks respectively. Since the covariance
matrix is symmetric, (b), (c) and (d) only represents the coefficients of the up-
per triangular part. The coefficients are plotted row by row according to the
lookup table in (b). Red bars correspond to the diagonal coefficients. 1 has been
subtracted to the diagonal coefficients of the covariance matrix to highlight the
variations in the off-diagonal terms.

to this effect.
Note the 3rdmode shown in Fig 9.11 follows a 3rdorder Hermite-Gauss function, when

we would expect it to be a 2ndorder Hermite-Gauss function. This is just a mode ordering
issue. Here we order modes by decreasing anti-squeezing level. Mode number 4 is not
shown in Fig. 9.11 but it follows a 2ndorder Hermite-Gauss function. It actually correspond
to the 3rdsupermode and if we look at the squeezing level we see that it is more squeezed
than mode number 3. In other word, classical noise (from measurement, losses, ...) is not
equal for all the supermodes. So the reconstructed squeezing levels of Fig. 9.11 are each
affected differently by noise. As a result the reconstructed squeezing and anti-squeezing
level do not necessarily decrease as mode order increase, as would be expected for the
theoretical supermodes.

To determine whether pump shaping did improve squeezing in the supermode, we
measure squeezing directly with and without amplitude pump shaping. To do that we



Fig. 9.8 Squeezing levels (a) and spectral shapes (b), (c), (d) of the first super-
modes reconstructed from the multipixel homodyne measurement of the SPOPO
output with pump shape f (a)

2 .

shape the LO into the first 4 modes of an Hermite-Gauss basis. The squeezing and anti-
squeezing levels are then directly determined from the signal variance minima and maxima
(respectively) when scanning the LO phase. For measurements without pump shaping we
use a HG basis with a ∼ 6 nm FWHM, (this correspond to the width of the first supermode
reconstructed in Fig. 9.5). For measurements without pump shaping we use a HG basis
with a∼ 8.5 nm FWHM, (this correspond to the width of the first supermode reconstructed
in Fig. 9.11). Results are shown in Table 9.1.

Squeezing level (dB) Anti-squeezing level (dB)
mode no pump shaping pump shaping no pump shaping pump shaping
HG0 3.79 (4.43) 3.78 (4.42) 4.32 (4.58) 4.55 (4.82)
HG1 1.30 (1.45) 1.81 (2.04) 3.14 (3.36) 4.06 (4.31)
HG2 0.70 (0.78) 0.16 (0.18) 2.81 (3.01) 3.06 (3.27)
HG3 0.63 (0.70) 0.53 (0.59) 1.83 (1.98) 2.72 (2.92)

Table 9.1 – Results of direct squeezing measurement with and without amplitude pump
shaping. Squeezing values are corrected for dark noise and the value in parenthesis indicate
the estimated value of squeezing corrected from losses (visibility). We model losses as
vacuum noise coupling.



Fig. 9.9 Absolute amplitude of the supermodes reconstructed from multipixel
homodyne detection measurement for amplitude pump shaping.

When using pump shaping, there is an increase of ∼ 0.6 dB in the squeezing of the
second supermode (if we look at the loss corrected values). Although there is no measurable
increase in the squeezing of the first supermode, the increased anti-squeezing value does
suggest that the pump shaping works as expected. There is also a decrease of the squeezing
level of the other supermodes. So the pump shape f (a)

2 does affect the squeezing levels and
the supermode shapes as predicted by the simulations (see Fig. 7.13). The effect is small
however. It would need to be confirmed with other measurements. In particular, to make
sure this is not an effect of the chosen measurement basis, we would need to perform the
measurements for a range of HG bases of varying width. This is left for future work.

9.2.2 With phase shaping

We now use the pump phase shaping profile f (φ)
2 obtained in section 7.3.1. We recall this

pump profile in Fig. 9.6. This shape corresponds to maximising squeezing in the first
supermode using phase shaping only (it is also the optimum when using full shaping of
phase and amplitude).

Fig. 9.12 shows the covariance matrix reconstructed from multipixel homodyne mea-
surement. The covariance matrix obtained is similar to the one in section 9.2.1 with
amplitude shaping. But there are non negligible terms in the qp blocks.

Fig. 9.13 shows the reconstructed squeezing levels and eigenvectors. The pump shaping
does not seem to change the squeezing values significantly. The anti-squeezing increases



Fig. 9.10 Vqq (a), (c) and Vpp (b), (d) blocks of the covariance matrix of the
SPOPO output, measured using the standard homodyne detection technique,
with pump shape f (a)

2 . The second row shows the values and standard deviation
of the matrix elements. Since the covariance matrix is symmetric, (c) and (d)
only represents the coefficients of the lower triangular parts of Vqq and Vpp. The
plotting order of the coefficients is the same as in Fig. 9.4. Red bars correspond
to the diagonal coefficients. 1 has been subtracted to the diagonal coefficients to
highlight the variations in the off-diagonal terms.

slightly. Here, the second, and third eigenvectors are not real, they have a significant
spectral phase. But it is a linear spectral phase and could be explained by a drift in the
LO delay line. All the phases are referenced to the LO phase, if there is a mismatch of the
optical delay between the LO beam and the signal beam paths, a contribution will appear
in the qp terms of the covariance matrix. This contribution reflects the linear spectral
phase between the frexel modes. The reconstructed supermodes show this linear spectral
phase.

Multiplying the eigenvectors by the frexels modes of Fig. 8.6 we obtain the supermodes
of Fig. 9.14. Unlike for amplitude pump shaping the first supermode is not significantly
broadened. So for the MHD measurement, pump shaping seems to have a negligible effect
on the SPOPO output.

To get a better estimate of the supermode spectrum we perform the covariance mea-
surement with the standard homodyne measurement technique. Fig. 9.15 shows the qq
and pp blocks of the covariance matrix measured using this technique and Fig. 9.16 shows



Fig. 9.11 Supermodes reconstructed from standard homodyne measurement and
fit by Hermite-Gauss functions. The mode are shown in decreasing anti-squeezing
value order.

the reconstructed supermodes. The covariance matrix obtained is similar to the one in
section 9.2.1.

The order of the supermode is again affected by noise. The actual first supermode is the
mode labelled in Fig. 9.16 as mode number 2. This is apparent in its higher squeezing level.
The squeezing of the first supermode is slightly increased compared to the measurement
without pump shaping (see Fig. 9.4). The first supermode (on the bottom right graph) is
significantly broadened by the pump shaping as predicted by simulations, it goes from a
5.88 nm FWHM to a 8.20 nm FWHM (intensity).

To confirm the effects of the pump shape f (φ)
2 on the squeezing levels we would need to

measure the squeezing directly, by shaping the LO into the estimated supermode spectral
shapes (as we did for f (a)

2 ). This is left for future work.
In conclusion, both pump shape designed to increase squeezing in the first supermode

seem to work. This was confirmed in the case of amplitude pump shaping, by direct
measurement of the supermode squeezing. Both pump shapes increase significantly the
width of the first supermode as was predicted by simulations. The higher order supermode
seem unaffected but this is probably just an effect of the finite measurement range. For
the case of phase shaping, more measurement would be required to confirm the increase in
squeezing. In particular the MHDmeasurement does not agree with the SHD measurement



Fig. 9.12 Covariance matrix reconstructed from multipixel homodyne measure-
ments with pump shape f (φ)

2 . 100 acquisitions were taken. (a) shows the mean
covariance matrix coefficients. (b), (c) and (d) show the mean coefficients and
errors bars of the Vqq, Vqp and Vpp blocks respectively. Since the covariance
matrix is symmetric, (b), (c) and (d) only represents the coefficients of the up-
per triangular part. The coefficients are plotted row by row according to the
lookup table in (b). Red bars correspond to the diagonal coefficients. 1 has been
subtracted to the diagonal coefficients of the covariance matrix to highlight the
variations in the off-diagonal terms.

and shows no improvement in squeezing nor any change in supermode shape.

9.3 Optimising degenerate squeezing

The last pump shape we investigate is f (φ)
1 (see Fig. 9.17). It is the shape that maximises

the squeezing degeneracy according to the machine learning simulations.
Fig. 9.18 shows the covariance matrix reconstructed from multipixel homodyne mea-

surement. The qp terms of the covariance matrix are close to 0 as the pump is real. The
covariance matrix differs significantly from the one of sections 9.1 and 9.2. There are still
significant off diagonal terms in the Vqq and Vpp blocks. But the structure of the qq and
pp correlations is more complex than before. In particular the correlated/anti-correlated
frexel are no longer distributed pairwise around the central frequency.



Fig. 9.13 Squeezing levels (a) and spectral shapes (b), (c), (d) of the first super-
modes reconstructed from the multipixel homodyne measurement of the SPOPO
output with pump shape f (φ)

2 .

Fig. 9.19 shows the corresponding squeezing levels and eigenvectors reconstructed with
the usual technique. It is hard to affirm just from this measurement whether the squeezing
degeneracy is increased by this pump shaping. The squeezing distribution among the first
few supermodes does not seem to be significantly “flatter” than in the case without pump
shaping (Fig. 9.2). There seem to be a flattening effect on the anti-squeezing level though.
The anti-squeezing levels are also lower on the whole than in the results of Fig. 9.2.

The supermode shapes are significantly altered by the pump shaping. They are no
longer close to Hermite-Gauss functions. Despite their complicated shapes, the supermode
are still close to real functions. The frexel relative spectral phases are multiples of π (or
close). This is consistent with the qp blocks of the covariance matrix being close to 0.

The shapes of the supermode were too complicated for us to measure the squeezing
levels with a direct measurement. The frequency resolution of our LO pulse shaper is
small enough in theory to imprint the supermode shapes on the LO. However, with shapes
given by the eigenvectors of Fig. 9.19, a small error in the central frequency, is enough to
obtain an entirely different mode. The accuracy of the LO pulse shaper to realise those
shapes is therefore highly dependent on the pulse shaper frequency calibration. We did
not manage to reproduce the supermode shapes with enough accuracy to successfully do
a direct squeezing measurement.

We do not have any simulated shape to which we can compare those modes either.
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Fig. 9.14 Absolute amplitude of the supermodes reconstructed from multipixel
measurement for the pump phase shaping profile that maximises squeezing in the
first supermode.

Indeed our simulation model for pump shaping optimisation did not take into account
intra-cavity dispersion. As we saw, the modes we obtained with the simulation for the
pump shape f (φ)

1 were way too broadband and would be filtered by the SPOPO cavity in
a realistic setting where dispersion is present. Further work needs to be done to adapt
the machine learning optimisation to include the effects of intra-cavity dispersion, so that
realistic and measurable modes could be obtained from the simulations.

To conclude this chapter let us recall the important results we obtained here. We
investigated the SPOPO output quantum state for three pump shapes: f

(φ)
1 , f (a)

2 and
f

(φ)
2 (see Fig. 9.17 and 9.6)). We used 3 measurement techniques: the MHD which allows

full covariance matrix recovery even when the pump and the supermodes are not real.
The SHD which has better frequency range and resolution but cannot recover the full
covariance matrix and is limited to cases where the pump is real. And the direct squeezing
measurement, which has reduced losses compared to the other two techniques but require
knowledge of the supermodes to be measured.

For f (a)
2 and f (φ)

2 , we reconstructed the supermodes of the SPOPO output with MHD
and SHD and confirmed the effects predicted by our simulation. The supermodes are real,
they still have Hermite-Gaussian shapes and their bandwidths are increased by the pump
shaping. For f (a)

2 we even confirmed the increase of squeezing in the second supermode



Fig. 9.15 Vqq (a), (c) and Vpp (b), (d) blocks of the covariance matrix of the
SPOPO output, measured using the standard homodyne detection technique,
with pump shape f (φ)

2 . The second row shows the values and standard deviation
of the matrix elements. Since the covariance matrix is symmetric, (c) and (d)
only represents the coefficients of the lower triangular parts of Vqq and Vpp. The
plotting order of the coefficients is the same as in Fig. 9.4. Red bars correspond
to the diagonal coefficients. 1 has been subtracted to the diagonal coefficients to
highlight the variations in the off-diagonal terms.

with a direct measurement.
For f (φ)

1 , we only used MHD measurements. The covariance matrix was altered sig-
nificantly by this pump shaping and the resulting supermodes have complicated shapes.
The anti-squeezing levels do seem to be “flattened” by this pump shaping as predicted but
further investigation is required. We were not able to successfully measure the squeezing
level directly. The complex spectral shapes are hard to realise experimentally. Even if
our pulse shaper resolution is sufficient, it is hard to guarantee that the different mode we
shape the LO in will be orthogonal. This is due to the imperfect pulse shaper calibration
in terms of frequency and phase mapping.



Fig. 9.16 Supermodes reconstructed from standard homodyne measurement and
fit by Hermite-Gauss functions. The mode are shown in decreasing anti-squeezing
value order.

Fig. 9.17 f
(φ)
1 : pump profile that maximises squeezing degeneracy with phase

shaping. The red line shows the amplitude (in a.u.), the blue line shows the phase
(in rad) and the green dotted line represents the unshaped pump profile.



Fig. 9.18 Covariance matrix reconstructed from multipixel homodyne measure-
ments with pump shape f (φ)

1 . 100 acquisitions were taken. (a) shows the mean
covariance matrix coefficients. (b), (c) and (d) show the mean coefficients and
errors bars of the Vqq, Vqp and Vpp blocks respectively. Since the covariance
matrix is symmetric, (b), (c) and (d) only represents the coefficients of the up-
per triangular part. The coefficients are plotted row by row according to the
lookup table in (b). Red bars correspond to the diagonal coefficients. 1 has been
subtracted to the diagonal coefficients of the covariance matrix to highlight the
variations in the off-diagonal terms.



Fig. 9.19 Squeezing levels (a) and spectral shapes (b), (c), (d) of the first super-
modes reconstructed from the multipixel homodyne measurement of the SPOPO
output with pump shape f (φ)

1 .



Conclusion and outlook

In the course of this thesis, we engineered multimode entangled Gaussian states by tuning
the spectral shape of a pulsed laser beam synchronously pumping an optical parametric
oscillator (SPOPO). This work contains two significant advances. The first concerns the
optimisation of the SPOPO pump using machine learning algorithm. The second concerns
the study of the effect intra-cavity dispersion on the SPOPO output.

Using a pulse shaper, it is possible to tune the SPOPO pump spectrum and tailor the
properties of the SPOPO output state. As long as intra-cavity dispersion is neglected, the
pump spectral shape along with the phase matching properties of the non linear crystal
fully determines the SPOPO output quantum state. But this relation between the pump
shape and the SPOPO output is non trivial. One must therefore use an optimisation
process in order to find a pump spectrum that produces a given desirable output quan-
tum state. It is possible to estimate the SPOPO output using numerical calculations, so
the pump shape can be optimised numerically. This has been initiated in the work of
Francesco Arzani and Jonathan Roslung [164] who used evolutionary algorithm for pump
optimisation. However, various experimental limitations like the finite resolution of the
pulse shaper or the measurement losses meant that the optimal pump shape found could
not be implemented nor the SPOPO output state measured. To obtain measurable quan-
tum states with practically achievable pump shapes, we ran optimisations with a reduced
number of pump parameters. For that we used machine learning algorithms. This was
a way to confirm the previously obtained results in an independent way. A longer term
goal was to adapt these algorithm to a live optimisation of the experimental set-up. This
remains to be done but would be very interesting as any pump optimisation is ultimately
limited by experimental factors (pulse shaper resolution, measurement losses, ...). A live
optimisation would automatically include those detrimental effects to find practical pump
shapes that achieve a desirable output quantum state.

In an effort towards the design of a fully automated set-up, a machine learning al-
gorithm based on artificial neural network (ANN) was put to the task of pump shaping
optimisation. This algorithm, designed by Aaron Tranter and Harry Slatyer, already
proved to be efficient in the live optimisation of a complex experimental set-up and was
tested on a “toy” set-up for the optimisation of a spatial light modulator. The (ANN)
was implemented on the numerical simulations of pump shaping with a reduced number
of parameters. Having less parameters ensured a faster optimisation but also the exper-
imental feasibility of the obtained pump shapes. The first implementation on numerical
calculations rather than directly on the experimental set-up was also due to the worldwide
sanitary crisis. The results of the ANN were confirmed with a second machine learning
algorithm: a reinforcement learning algorithm based on projective simulation.

The pump was optimised for two target states. The first state has the highest possible
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squeezing level concentrated in one mode. This state is particularly relevant for metrology.
Indeed, in single parameter estimation with a multimode Gaussian state, the best estimate
can be obtained when all the squeezing resource is concentrated in one mode. The second
state has degenerate squeezing levels among as many modes as possible. This state is
more relevant for measurement based quantum computation (MBQC). Indeed this state
can be used to construct a good approximation of a continuous variable cluster state.

The obtained optimal pump shapes were then implemented in the experiment. In order
to measure the SPOPO output, a multipixel homodyne detection device was rebuilt. For
the first target state, the measurement confirmed the efficiency of the proposed pump
shapes in optimising squeezing in a single mode. The influence of pump shaping on the
SPOPO supermode shapes was also in good qualitative agreement with what was predicted
by the simulations. For the second target state, the measurements were not sufficient
to confirm the effects of pump shaping on the squeezing degeneracy. Nevertheless the
supermodes spectral shapes were successfully measured.

When we ran the pump numerical optimisation, we used a single pass PDC model to
predict the SPOPO output, all cavity effects were neglected. But we showed that certain
pump shapes can lead to a significant spectral broadening of the SPOPO output. This
is the case for pump shapes optimised for the second target state, for example. In this
case intra-cavity dispersion can no longer be neglected. Based on a previous modelling
of the SPOPO [160] (without dispersion), we studied the effect of intra-cavity dispersion
with numerical simulations. In the conditions of our experimental set-up, the main effect
of intra-cavity dispersion is simply to limit the bandwidth of the SPOPO output. It also
limits the number of supermodes with significant squeezing levels. In the cases we studied,
the overall supermode shapes remained similar. A more complex effect on the shapes of the
SPOPO supermodes is not excluded however. This could be the case for particular pump
shaping conditions, when the SPOPO supermodes have complicated spectral shapes, but
it remains to be studied.

Two main lines of research appear particularly relevant for extending the present work.
On the simulation side, the intra-cavity modelling should be included in the pump shape
numerical optimisation so that the SPOPO output can be predicted accurately, regardless
of the pumping conditions. On the experimental side, the machine learning optimisation
can be adapted to control and optimise the pump and LO beam pulse shapers in real time.
The covariance matrix reconstruction can be improved by increasing the frequency range
and resolution of the measurements and reducing losses. For reducing losses, more efficient
grating and photodiodes with higher quantum efficiencies can be used. The frequency
range and resolution can be improved if we have more frequency bands. For that the LO
spectrum needs to be broadened even further, and more photodiodes need to be added to
the multipixel homodyne detection.



Appendix A

Appendix

A.1 A squeezed state QRNG
Part of the work of my PhD concerns a subject that has no direct link with the work on
SPOPO pump shape optimisation. This was mostly conducted during my first year at
the Australian National University. The results were published in details in a paper. This
paper is reproduced here.

The main idea of this work is to use a single mode squeezed vacuum (produce by
an OPO) as a source of quantum random numbers. Using a particular measurement and
randomness extraction protocol, it is possible to certify the security of the random numbers
regardless of the trust we put in the quantum source.

159



PHYSICAL REVIEW APPLIED 12, 034017 (2019)

Real-Time Source-Independent Quantum Random-Number Generator with
Squeezed States

Thibault Michel ,1,2,† Jing Yan Haw,1 Davide G. Marangon,3 Oliver Thearle,1 Giuseppe Vallone,3,4

Paolo Villoresi,3,4 Ping Koy Lam,1,‡ and Syed M. Assad 1,*

1
Centre for Quantum Computation and Communication Technology, Department of Quantum Science,

The Australian National University, Canberra, ACT 0200, Australia
2
Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de

France, 4 Place Jussieu, 75252 Paris, France
3
Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Padova, Via Gradenigo 6B,

35131 Padova, Italy
4
Istituto di Fotonica e Nanotecnologie – CNR, Via Trasea 7, 35131 Padova, Italy

 (Received 18 March 2019; revised manuscript received 3 July 2019; published 11 September 2019)

Random numbers are a fundamental ingredient in fields such as simulation, modeling, and cryptogra-
phy. Good random numbers should be independent and uniformly distributed. Moreover, for cryptographic
applications, they should also be unpredictable. A fundamental feature of quantum theory is that certain
measurement outcomes are intrinsically random and unpredictable. These can be harnessed to provide
unconditionally secure random numbers. We demonstrate a real-time self-testing source-independent
quantum random-number generator (SI QRNG) that uses squeezed light as a source. We generate secure
random numbers by measuring the quadratures of the electromagnetic field without making any assump-
tions about the source other than an energy bound; only the detection device is trusted. We use homodyne
detection to measure alternately the Q̂ and P̂ conjugate quadratures of our source. P̂ measurements allow
us to estimate a bound on any classical or quantum side information that a malicious eavesdropper may
obtain. This bound gives the minimum number of secure bits we can extract from the Q̂ measurement. We
discuss the performance of different estimators for this bound. We operate this QRNG with a squeezed-
state source and compare its performance with a thermal-state source. This is a demonstration of a QRNG
using a squeezed state, as well as an implementation of real-time quadrature switching for a SI QRNG.

DOI: 10.1103/PhysRevApplied.12.034017

I. INTRODUCTION

Random numbers are used as a resource in many appli-
cations such as statistical analysis, numerical simulation,
encryption, and communication protocols. Random num-
bers must satisfy three main requirements: they must
be uniformly distributed, independent, and unpredictable.
Pseudorandom numbers are generated by a computer via
algorithmic routines from a seed. They have the advantage
of being easy to implement and fast, but they are intrinsi-
cally not secure, due to their deterministic generation [1],
and some commonly used pseudorandom-number gener-
ators (PRNGs) have been shown to be insecure [2]. Their
randomness can also be flawed [3], which can lead to errors
in simulations [4,5]. Physical random-number generators

*thibault.michel@lkb.upmc.fr
†ping.lam@anu.edu.au
‡cqtsma@gmail.com

use a stochastic physical process as the source of ran-
domness [6,7]. They are slower than PRNGs but can still
achieve a very high generation rate and have been used
as a seed for PRNGs. In random-number generators based
on classical systems, the randomness usually originates
from a lack of knowledge of the initial state of the sys-
tem, in which case the security relies on the assumption
that no one has a better knowledge of this original state.
On the other hand, quantum systems [8] offer an interesting
alternative source of randomness, as the outcomes of mea-
surements on such systems are intrinsically random, due
to Born’s rule [9]. This has been harnessed to create long-
term-stable [10], fast quantum random-number generators
(QRNGs) [11–14], which can operate in a self-testing fash-
ion [15] or even on a mobile phone [16]. Full security is
not guaranteed, however, as measurement outcomes may
still be correlated with those of another party [17]. This is
the case whenever the source of randomness is in a mixed
state. To guarantee full security, it is possible to exploit
nonlocal Bell-state measurements [18,19] and extract true
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random numbers without any assumptions about the source
of randomness or the measurement device [20–24]. But
these implementations are very slow, with bit rates of
around a few tens of bits per second. In a similar fash-
ion, generation protocols using light emitted from distant
cosmic sources have been recently proposed and demon-
strated [25–27]. As a faster alternative, one can implement
a semi-device-independent QRNG by assuming that only
either the source [28] or the detection device [29–33] is
trusted. In a source-independent quantum random-number
generator (SI QRNG), the source of randomness can be
arbitrary and controlled by an adversarial party, yet it can
still yield secure random numbers. One way to achieve
source independence is to measure alternately and ran-
domly two conjugate observables. Roughly speaking, by
switching between different measurement bases, one is
able to assess the purity of the source, which can in turn
set a bound on its extractable randomness. This can be for-
malized rigorously using the entropic uncertainty relation
[34], which was first introduced in Ref. [35].

SI QRNGs based on the entropic uncertainty relation
have already been demonstrated for both discrete [29]
and continuous variables (CV) [31]. However, in these
proof-of-principle experiments, the randomness estima-
tion was always done in postprocessing after collecting
all the raw data. Moreover, in the previous CV work,
no actual quadrature switching was implemented, as the
source of entropy was the vacuum. Here we implement
a continuous-variable SI QRNG where all processing is
done in real time. Additionally, we dynamically switch
between two measurement bases to alternate between a
check measurement and a random-data measurement. The
only assumption about the source that remains is that it
has a bounded energy and falls within our measurement
range. The SI QRNG is self-testing and changes its output
secure bit rate depending on the check-measurement data.
Although theoretical proposals for using squeezed states as
sources of entropy for a QRNG have been made [31,36],
we report an experimental use of squeezed states as an
entropy source for a QRNG.

This paper is organized as follows. In Sec. II, we present
the protocol and experimental details for generating ran-
dom numbers. The protocol requires estimating a lower
bound on the conditional min-entropy. In Sec. III, we
present the real-time entropy-estimation procedure and the
statistics of the random numbers generated. Because of
the finite sample size, we find that the evaluated condi-
tional min-entropy is positively biased, which can lead to
an overestimation of the randomness rate. To mitigate this,
we propose and discuss other more robust estimators in
Sec. IV. Finally, we conclude in Sec. V with a discussion
of several ways to extend the work presented in this paper,
as well as a summary of our work. Various notation is used
in the following; for convenience, we provide a glossary of
this notation in Appendix A.

II. PROTOCOL AND EXPERIMENT

In a SI QRNG, we are attempting to generate secure
random numbers without having to trust the source of
entropy. This is possible by performing trusted measure-
ments on two noncommuting observables. Our experiment
is performed on continuous-variable light fields, and the
observables measured are the field quadratures Q̂ and P̂.
By measuring the check quadrature P̂, we put a bound on
how much secure randomness can be extracted from the
orthogonal random-data quadrature Q̂. In the following, we
provide details of how this bound can be calculated.

A. Randomness bound from conditional min-entropy

In our experiment, even though the quadrature observ-
able has a continuous degree of freedom, the data that
are recorded are ultimately discrete. The discretization
size is determined by the finite resolution of the digitizer.
This finite resolution implies that we do not measure
the observables Q̂ and P̂, but rather their discretized
counterparts. Formally, we measure the positive-operator-
valued measure (POVM)

{
Q̂k

δq

}
k∈[−(m/2),m/2−1]

, where

Q̂k
δq = ∫Ik

δq
dq|q〉〈q| and

I k
δq =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
−∞,

(
k + 1

2

)
δq
]

for k = −m
2

,
[(

k − 1
2

)
δq,
(

k + 1
2

)
δq
)

for − m
2

< k <
m
2

− 1,
[(

k − 1
2

)
δq, ∞

)
for k = m

2
− 1.

(1)

The even integer m denotes the total number of bins, the
index k enumerates the outcomes, and δq > 0 specifies the
precision of the measurement. The measurement outcomes
qk on state ρA appear with probability p(qk) = Tr[ρAQ̂k

δq]
and are stored in a classical register Qδq. The POVM{

P̂k
δp

}
k∈[−(m/2),m/2−1]

corresponding to measurements of P̂

is defined in the same way, with precision δp .
As we do not trust the source of randomness, let

us assume that ρA can be correlated with the state of
a malicious party Eve (E), who will try to guess the
QRNG output. This corresponds to ρA being mixed and
ρA = TrE(ρAE), where ρAE is the collective state. After a
measurement on system A with outcome k, Eve’s state
collapses to ρk

E . So, the total collective state is now a
classical-quantum state,

ρQE =
∑

k

p(qk)|k〉〈k|A ⊗ ρk
E . (2)

The maximum amount of secure extractable randomness
from a single-shot measurement of Qδq is then given
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by [17,37–41]

rε
sec(Qδq|E) = Hmin(Qδq|E) − 2 log2

1
ε

, (3)

where ε is the security parameter and Hmin(Qδq|E) is the
conditional min-entropy of Qδq [37]. The protocol is then
said to be ε-secure, which means that the probability of
distinguishing the output from a truly uniform independent
distribution is smaller than 1

2 (1 + ε) [41]. The conditional
min-entropy Hmin(Qδq|E) is defined as [38,39,42]

Hmin(Qδq|E) = − log2 max
{Êk}

∑
k

p(qk)Tr[Êkρ
k
E]

︸ ︷︷ ︸
pguess({Êk})

, (4)

where {Êk} is a POVM on the system E. The quantity
pguess({Êk}) is the average probability for the adversary Eve
to correctly guess the index k using a measurement strategy
{Êk}. The maximization of the POVM {Êk} corresponds to
finding the best measurement strategy Eve might apply to
guess the index k of the postmeasurement state ρQE . The
amount of secure randomness is then the smallest condi-
tional min-entropy for states ρQE consistent with Alice’s
state ρA. If the state ρA is pure, this implies that A and E
are independent, ρAE = ρA ⊗ ρE , in which case the condi-
tional min-entropy reduces to the classical unconditional
min-entropy

Hmin(Qδq) = − log2 max
k

{p(qk)}. (5)

Here Eve’s best guessing strategy is to guess the most
likely index k every time. For any state, Hmin(Qδq) ≥
Hmin(Qδq|E) and the difference can be seen as the amount
of side information accessible to Eve. To compute the
exact value of Hmin(Qδq|E) in Eq. (4), one needs to know
ρQE . Since Alice does not have access to E, she would need
to perform a complete tomography of ρA to find all compat-
ible states ρQE . This is tedious for an infinite-dimensional
system. Instead, one can bound Hmin(Qδq|E) by the max-
entropy of the conjugate quadrature Hmax(Pδp) using the
entropic uncertainty relation (EUR), [34,35,43–48]:

Hmin(Qδq|E) + Hmax(Pδp) ≥ − log2 c(δq, δp), (6)

where the max-entropy is defined as

Hmax(Pδp) = 2 log2

∑
k

√
p(pk), (7)

and p(pk) = Tr[ρAP̂k
δp ] is the probability of outcome pk.

The classical unconditional max- and min-entropies are
equivalent to the Rényi entropies [49] of order 1

2 and ∞,

respectively. The EUR can be seen as a generalization of
the Heisenberg uncertainty relation. Additionally,

c(δq, δp) = 1
4π

δq δp S(1)

0

(
1,

δq δp
8

)2

(8)

is a measure of the incompatibility between the two mea-
surements, where S(1)

0 is the zeroth radial prolate spheroidal
wave function of the first kind [50]. This is a constant that
depends only on the discretization sizes δq and δp . The
wave function comes about by considering the maximum
overlap between the eigenstates of Q̂δq and P̂δp . Because of
the Heisenberg uncertainty relation, a quantum state with
zero extension in P̂ has an infinite extension in the conju-
gate variable Q̂. However, when considering a discretized
observable, this is no longer true. Because of the finite bin
size, a quantum state which would yield a single value p0

for Pδp with probability 1 could still have a finite Q̂ exten-
sion. The constant c(δq, δp) characterizes this fact. Note
that Eq. (8) is written in accordance with the convention
that the vacuum state has a quadrature variance of 1.

A complete description of the EUR is outside the scope
of this paper, but one can easily get an intuitive under-
standing of this relation from a simple example. Con-
sider a P-squeezed state; as the squeezing increases, the
Pδp measurement will be less spread out, and therefore
Hmax(Pδp) decreases. To respect the EUR, Hmin(Qδq|E)

has to increase with the amount of squeezing. So, mea-
suring squeezing on P̂ indicates a certain amount of purity
of the state, which means reduced correlations with Eve.
Conversely, if Eve’s side information is high [Hmin(Qδq|E)

small], the state measured on Alice’s side is highly mixed
and the Pδp measurement is very spread out, and so
Hmax(Pδp) is high, in agreement with the EUR.

As illustrated by this simple example, the EUR pro-
vides a bound on Hmin(Qδq|E) and the amount of side
information accessible to Eve. This bound is obtained
by measuring the orthogonal quadrature P̂ and evaluating
Hmax(Pδp). We will call this bound Hlow(Pδp). From Eq.
(6), we have

Hmin(Qδq|E) ≥ −Hmax(Pδp) − log2 c(δq, δp)︸ ︷︷ ︸
Hlow(Pδp )

. (9)

Note that this bound depends only on the outcome of the
measurement of Pδp , not Qδq, as underlined by the nota-
tion Hlow(Pδp). It is also independent of E, in other words,
unconditional.

The above relation (and the EUR) holds for a POVM{
Q̂k

δq

}
,
{

P̂k
δq

}
that spans the entire phase space (from −∞

to ∞) with a constant bin size δp , δq. In practice, how-
ever, our detection has a finite range, so we assume that
the input states ρA are limited in phase space and have
no support in the two extreme bins. These extreme bins,
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defined in Eq. (1), have infinite width. This requirement
corresponds to bounding the energy of the input state.
Here we assume that this requirement is satisfied. Even
though this assumption is reasonable, it is important to
stress that, strictly speaking, the QRNG is not fully source-
independent, as some assumption is made about the source
[51]. This assumption would need to be checked in order to
fully claim source-independence. The assumption can be
verified by including an energy test as part of the protocol
[52–54]. A different approach was followed in Ref. [31],
where the effect of the finite range was taken into account
by evaluating how the finite range impacts the estimation
of the max-entropy in the worst-case scenario, correspond-
ing to out-of-range measurements all belonging to different
bins of the discretized P quadrature.

B. Experimental details

As shown in Fig. 1, the experimental setup has two parts.
The first part is an untrusted entropy source, which consists
of a quantum state ρA that may be mixed and correlated
with that of a malicious party E: ρA = TrE(ρAE). We oper-
ate the device with two sources, a squeezed state and
a thermal state. A shot-noise-limited 1064-nm Nd:YAG
continuous-wave laser provides the laser source for this
experiment. A portion of the 1064-nm light is frequency-
doubled to provide a pump field at 532 nm. The thermal
state is generated with amplitude and phase electro-optic
modulators, to which we send a white-noise electronic sig-
nal from two independent function generators. By varying

the amplitudes of the noise sent to the modulators, we
change the variance of this thermal state to see the effect
on the secure bit rate. A squeezed state with around 3 dB
of squeezing is generated with a seeded doubly resonant
optical parametric amplifier (OPA) in a bow-tie geometry.
Details of the squeezed-state generation can be found in
the Supplemental Material [55] and in Ref. [56].

The second part of the setup is a trusted measurement
device, which consists of a homodyne detector that can
measure one of two conjugate quadratures Q̂ and P̂ on
the state ρA by locking the phase of a local oscillator
(LO) using amplitude or phase modulation. The ac com-
ponent of the signal field is obtained from the subtracted
current by mixing it down to 15 MHz and filtering with
a 2 MHz-cutoff-frequency low-pass filter. It is then dig-
itized over m = 212 bins. The acquisition rate is set at
200 kHz, well below the Nyquist frequency of the low-
pass filter to avoid any time correlation in the signal. Note
that the overall speed of the QRNG is not limited by the
acquisition time but by the quadrature-switching and data-
hashing time. More details of the acquisition are given in
the Supplemental Material [55].

The measurement device switches randomly between
two measurement states: check measurements and random-
data measurements. Check measurements are performed to
evaluate the amount of true random numbers that we may
extract using our bound from Eq. (9), and random-data
measurements are performed to get the data from which the
random numbers are extracted. On average, a check mea-
surement is performed once every ten measurement cycles.

FIG. 1. Scheme and protocol of the SI QRNG. A local oscillator whose phase is locked to measure the check quadrature is interfered
with an untrusted entropy source, which can be a squeezed, thermal, or unknown state. The two output beams are detected, and the
resulting photocurrents are subtracted. From this homodyne measurement, the min-entropy of the random-data quadrature is estimated.
The phase lock then switches to the orthogonal random-data quadrature, and the same homodyne measurement is performed. The raw
random numbers are hashed according to the previous min-entropy estimation. Some of the secure random bits obtained in this way
are used to determine when the next lock switch will happen. The check quadrature is measured randomly, on average once every ten
runs.
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In the check measurement state, three measurement
steps are performed. In the first step, the LO and signal
beams are blocked using servo-controlled beam blocks,
and the electronic dark noise is recorded. In the sec-
ond step, the signal beam is blocked, while the LO is
unblocked. This allows us to record the vacuum shot noise.
In the third step, both the signal and the LO beams are
unblocked; the LO is locked to P̂, and the check data
are recorded. The data are then normalized according to
the shot noise corrected for dark noise: σ 2

shot, cor = σ 2
shot −

σ 2
dark. In this way, all electronic noise is accounted for as

impurity in ρA.
From the check data, we evaluate the probabilities p(pk)

using the frequentist estimator and Hmax(Pδp) from Eq.
(7). For each evaluation, the bin size δp is recalculated, in
units of shot noise, using the corrected shot-noise measure-
ment. The corresponding value of c(δq, δp) is then evalu-
ated using a precalculated polynomial approximation. In
the experiment, we have averages δq = (14.45 ± 0.09) ×
10−3 and δq = (15.56 ± 0.09) × 10−3 for the thermal-
state and squeezed-state runs, respectively. The bound
Hlow(Pδp) is then estimated using Eq. (9) and stored in the
computer for use in the random-data measurement stage.
The variance of Pδp is also recorded.

In the random-data measurement state, both the signal
and the LO beams are unblocked. The LO phase is locked
to Q̂, and the raw data are recorded. The data are then
normalized according to the shot noise corrected for dark
noise taken from the previous check measurement. In order
to eliminate Eve’s information, we apply the Toeplitz-
matrix hashing algorithm [57] to the raw data to obtain
the secure random data. The length of the Toeplitz matrix
is determined by the randomness bound evaluated in the
check stage. A few bits of the hashed random numbers are
used to determine whether the next stage will be a check
or random-data measurement stage.

For each check and random-data measurement, we col-
lect n = 16 000 points, and so the data are hashed in
blocks of size n. This number is chosen as a trade-off
between accurate bound estimation and hashing time. Col-
lecting data blocks larger than this means better precision
in our bound estimation but a longer hashing time. In our
implementation, to avoid slowing down the protocol, the
random Toeplitz matrix is generated once at the start of
the experiment using a trusted QRNG source [13]. How-
ever, for the hashing to be fully secure, a new hashing
function randomly chosen from a family of two-universal
hashing functions should be used every time [41,58,59].
This is so that Eve does not have knowledge of the hash
function prior to preparing the state, so that she can-
not implement deception strategies tailored to the hashing
function. For monitoring purposes, we also evaluate the
unconditional min-entropy Hmin(Qδq) using the frequentist
estimator. Appendix B shows a flow-chart representation
of the protocol.

III. RESULTS AND ESTIMATION-ERROR
ANALYSIS

As mentioned before, the QRNG is operated with two
different sources: a P̂-squeezed state and a thermal state.
In order to generate secure randomness, we use the bound
provided by Hlow(Pδp) in Eq. (9). To apply this bound, we
need to know the value of Hmax(Pδp). In Sec. III A, we
present a real-time experimental result where the frequen-
tist estimator for Hmax(Pδp) is used. In Sec. III B, we show
that this estimator is biased, which may compromise the
security of the QRNG.

A. Real-time entropy estimation

In the experiment, the entropies are calculated in real
time using the frequentist estimator. After measuring n =
16 000 data points and binning the outcomes into m = 212

bins, the probabilities are estimated by

p freq
k = nk

n
,

where nk denotes the number of outcomes in the kth bin.
The frequentist estimators are then given by

H freq
min (�n) = − log2

maxk{nk}
n

, (10)

H freq
max(�n) = 2 log2

m∑
k=1

√
nk

n
, (11)

where �n = (n1, n2, . . . , nm). The entropy bounds H freq
low (Pδp)

and the unconditional classical entropy H freq
min (Qδq) from

the experiments are recorded for the thermal and the
squeezed state. These are presented as points in Figs. 2(a)
and 2(b) as a function of the check-data variance. In the
same figure, we also plot simulation results H sim

low (Pδq)

and H sim
min(Qδq) obtained by sampling n points from a per-

fect Gaussian distribution. These simulations are repeated
1000 times to estimate the mean and standard deviation of
the estimated entropy bound. Finally, the theoretical val-
ues we would expect for a perfect discretized Gaussian
distribution,

p(pk) = 1
2

erf
(

pk + δp/2√
2σ

)
− 1

2
erf
(

pk − δp/2√
2σ

)
, (12)

are plotted as the solid lines H th
low(Pδq) and H th

min(Qδq). As
one can see from Eqs. (5) and (7), the min- and max-
entropies are in the range [0, log2 m = 12] and depend
on the number of bins used. To analyze the entropy
independently of the number of bins, we therefore plot
entropy rates, that is, the entropy per bit, H/12. Note that
the unconditional min-entropy Hmin(Qδq) would be the
extractable randomness if we trusted the source entirely.
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(a) (b)

Check-quadrature variance (SNU) Check-quadrature squeezing (dB)

FIG. 2. Entropy bound and classical min-entropy for (a) a thermal state with different values of noise and (b) a P̂-squeezed state with
33% loss. SNU, shot-noise units. The red solid lines show the theoretical unconditional min-entropy of the random-data quadrature
Q̂. This gives the extractable randomness if the source is trusted. The blue solid lines show the theoretical bound on the conditional
min-entropy Hmin(Q|E) obtained from the entropic uncertainty relation. This gives the secure extractable randomness for an untrusted
source. The blue and red points show the corresponding experimental data calculated in real time using a frequentist estimator on data
samples of length n = 16 000. For most values of squeezing, we find that H freq

low > H freq
min , which appears to be in violation of the EUR,

Eq. (9). This apparent violation arises due to a bias in the frequentist estimators. The dashed lines show the corresponding simulation
results, and the shaded area corresponds to a 5-standard-deviation uncertainty region.

However, if the source is untrusted, the secure extractable
randomness is given by the conditional min-entropy
Hmin(Qδq|E). As we explain in Sec. II A, Hlow(Pδp) is a
bound on the extractable randomness, so its value in Figs.
2(a) and 2(b) (blue points) corresponds to the secure hash-
ing rate that we use. For example, if Hlow(Pδp) = 0.5, then
blocks of raw random numbers from Qδq measurements are
hashed down to half their size.

The thermal-state results in Fig. 2(a) illustrate the dif-
ference between the conditional and unconditional min-
entropy. Indeed, a thermal state can be purified by a
two-mode squeezed state such that the outcome of a mea-
surement on that state may well be correlated with a mode
obtained by Eve. This amount of quantum or classical side
information is the difference between the unconditional
min-entropy, which quantifies the entropy of the measure-
ment distribution, and the conditional min-entropy, which
quantifies the entropy given any possible side information.
For a thermal state, the higher the variance, the higher
the min-entropy, which reflects the apparent random noise
in the quadrature measurement, yet the conditional min-
entropy is lower because the state could be a two-mode
squeezed state with higher correlations.

The data points in Fig. 2(a) appear in clusters; each of
these clusters corresponds to a different noise amplitude
sent to the modulators, that is, a different input thermal
state. For input states with low variance, the uncondi-
tional min-entropy Hmin(Qδq) and the bound Hlow(Pδq) on
the conditional min-entropy are close. This corresponds
to a low amount of side information, as the state has
low impurity. For example, if a pure vacuum state or

a coherent state were used as a source of randomness,
the unconditional min-entropy Hmin(Qδq) and the bound
Hlow(Pδq) would be approximately equal. For noisier
inputs, the unconditional min-entropy increases; however,
the bound Hlow(Pδq) decreases, which corresponds to a
higher amount of side information. Indeed, even if the state
is noisier and appears more random, it is also more mixed,
and potentially more correlated with that of Eve, which is
why Hmin(Qδq|E) decreases, and so does Hlow(Pδq). For the
thermal-state run, the secure bit rate varies between 7.2
kb/s for the state with lower variance to 5.2 kb/s for the
state with higher variance.

The experimental results for the squeezed states are plot-
ted in Fig. 2(b). This shows that higher squeezing gives
rise to more extractable randomness. Indeed, measuring
squeezing on one quadrature guarantees increased noise
in the conjugate antisqueezed quadrature. Unlike in the
thermal-noise case, this noise is not correlated with another
system. For example, having 5 dB squeezing on the source
increases the entropy rate by around 10% compared with
the vacuum. Therefore using a squeezed state as an entropy
source can improve the QRNG bit rate, especially with
broadband squeezing. For the squeezed-state run, the bit
rate was 8.2 kb/s. In the simulation results, the impurity of
the squeezed state is accounted for by inferring the amount
of loss in the state from the two-quadrature variance mea-
surement. This is estimated to be 33%. This is the reason
why the min-entropy and the bound are not equal; they can
only be equal for a pure state.

As we mentioned in Sec. II A, the unconditional min-
entropy is always larger than the conditional min-entropy.
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So, regardless of the input state, we must have

Hmin(Qδq) ≥ Hmin(Qδq|E) ≥ Hlow(Pδq), (13)

where the second inequality comes from the definition
of Hlow(Pδq) [Eq. (9)]. In particular, we should have
Hmin(Qδq) ≥ Hlow(Pδq). The theoretical curves indeed
show this behavior, and the only point in Fig. 2(a) where
H th

min(Qδq) = H th
low(Pδq) is for a variance of 1, which corre-

sponds to a pure vacuum or coherent state. On the other
hand, the simulation curves and experimental points do
not always respect this inequality. This is a problem, as
this observation appears to violate the EUR. This indicates
that our live evaluation of the bound H freq

low (Pδp) might be
higher than the true conditional min-entropy, which would
compromise security.

We will investigate and explain this bias in the next
subsection and find solutions in Sec. IV.

B. Bias of the frequentist estimator

We see in Figs. 2(a) and 2(b) that there is a discrepancy
between the theoretical bound H th

low(Pδp), H th
min(Qδq) cal-

culated for a Gaussian state, and the experimental data.
To analyze this, we run a simulation by sampling a pure
Gaussian distribution for different sample sizes n. Each
simulation is repeated 1000 times. As shown in Figs. 3(a)
and 3(b), we find that the frequentist estimators H freq

low (Pδp)

and H freq
min (Qδq) are both biased. The means of the frequen-

tist estimators do not match the true values H th
low(Pδp) and

H th
min(Qδq). This leads to an apparent violation of the EUR,

as H freq
low (Pδp) is positively biased, while H freq

min (Qδq) is nega-
tively biased. This bias becomes smaller as the sample size
increases. It is significant in Figs. 2(a) and 2(b), where the

entropies are estimated with only 16 000 samples. But even
for very large sample sizes this problem might be present;
it depends on the source state considered, as we show in
Appendix D. Moreover, if Eve’s state is maximally cor-
related with ours, then any overestimation of the bound
will compromise the security of the random numbers. One
may try to correct this by using a different estimator for the
max-entropy.

IV. OTHER ESTIMATORS FOR THE ENTROPY
BOUND

Having learned that the frequentist estimator can be
biased, in this section we investigate and compare three
different estimators. These estimators come with their own
natural confidence intervals that we can set.

A. Bayesian estimators

Another class of possible estimators for Hmax are the
Bayesian estimators. To calculate a Bayesian estimator of
an unknown parameter, one has to specify a prior proba-
bility density. This represents our initial belief about the
distribution of the unknown parameter. Here we analyze
two estimators for Hmax based on two different priors. The
first is an uninformative prior which makes no assumption
about the underlying probability distribution. The sec-
ond assumes the worst-case scenario by choosing a prior
peaked around the uniform probability. Deciding which
prior to use is a matter of the experimentalist’s degree of
paranoia. We note that using Bayesian estimators brings
with it the additional advantage of having the posterior
estimate as a natural confidence interval.

(a) (b)

Check-quadrature variance (SNU) Check-quadrature variance (SNU)

FIG. 3. (a) Simulation of the frequentist estimator of the entropy bound for a pure Gaussian state. We set δq = 0.015 560 7, which
is the mean value of δq for the squeezed-state runs, and run the simulation for different sample sizes. The dashed line shows the
theoretical value of Hlow, which gives a lower bound on the conditional min-entropy. Because of the finite sample size, this estimator
is positively biased, which may lead to erroneously extracting more keys than are secure. (b) Simulation of the frequentist estimator of
the unconditional min-entropy with the same parameters. Because of the finite sample size, this estimator is negatively biased, which
leads to instances where H freq

min < H freq
low .
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Check-quadrature variance (SNU)

FIG. 4. Simulation of the uniform-prior Bayesian estimator for
the entropy bound of a pure Gaussian state with the same param-
eters as in Fig. 3. The estimator is negatively biased, which does
not compromise security.

1. Bayesian estimator for max-entropy with a completely
uninformative prior

The indirect Bayesian estimator with a completely unin-
formative uniform prior was developed in Refs. [60] and
[61] and proposed for source-device-independent QRNGs
in Ref. [29]. It is given by

H UP
max(�n) = 2 log2

(
�(n + m)

�
(
n + m + 1

2

)
m∑

k=1

�
(
nk + 3

2

)

�(nk + 1)

)
.

(14)

Using this estimator in a simulation for a Gaussian state
under our experimental conditions, we find that it has a
negative bias, which does not lead to a violation of the
EUR (see Fig. 4). If one can check that the distribution is
Gaussian, it is then justifiable to use this Bayesian estima-
tor. In fact, one can go a step further and remove the bias
from the estimator. Otherwise, this negative bias will lead
to a severe underestimation of the secure bit rate. But, a
priori, the distribution might not be Gaussian, and the bias
will then depend on the distribution and on experimental
conditions such as the bin size. We show in Appendix D
that in some extreme cases this bias can still be positive.

2. Bayesian estimator for max-entropy with a prior
peaked around the uniform distribution

The Bayesian estimator depends on the chosen prior.
The natural choice of prior is the Dirichlet distribution,
since this is the conjugate prior to the multinomial dis-
tribution. The Dirichlet distribution with concentration
parameter �α is given by

D [�p; �α] = �
(∑m

k=1 αk
)

∏m
k=1 �(αk)

m∏
k=1

p
αk−1
k ,

where pk = p(pk). In order to prevent an underestimation
of Hmax, it is prudent to assume the worst-case scenario
by choosing a prior that is sharply peaked around the
uniform distribution. This is because the uniform distribu-
tion is the distribution with the maximum possible Hmax.
We subsequently adjust our belief when presented with
the measured data. Such a prior can be constructed by
choosing αk = K for all k:

π(�p) = D [�p; K
]

(15)

= �(mK)

�(K)m (p1 · · · pm)K−1. (16)

Here K characterizes the peakedness of the prior distri-
bution. A large value of K corresponds to a distribution
peaked around the uniform distribution, while K = 0 cor-
responds to the frequentist estimator. The Bayes poste-
rior estimator given the measurement outcomes �n is the
Dirichlet distribution with parameters �α = �n + K [62],

f (�p|�n) = D [�p; �n + K
]

. (17)

From this posterior distribution, we can arrive at a
Bayesian estimator for Hmax. Alternatively, an indirect
estimator for Hmax, which we denote by H PP

max, can be
obtained by substituting the Bayesian posterior mean for
the probabilities �p,

pPP
k = E [pk|�n] (18)

= nk + K
n + m K

, (19)

into Eq. (7). As we shall see in Sec. IV C, with a large K ,
this estimator tends to be very conservative.

B. Extremal variance-based estimator

Another way to estimate Hmax is by estimating the vari-
ance of the distribution. Instead of estimating Hmax(Pδp)

from the sampled distribution, we can try to bound it. We
first estimate VP, the variance of Pδp , with the unbiased
estimator VP = 1/(n − 1)

∑n
k=1(pk − p̄)2. We can then

find the distribution that maximizes Hmax for this given
variance. This is similar to the method used in Ref. [30]
for bounding the Shannon entropy [63,64].

We show in Appendix C that, given a variance Vp , the
corresponding extremal distribution is given by

p(pk) = C
1

[
1 + (pk/s)2]2 , (20)

where

C =
⎛
⎝∑

j

1
[
1 + (pk/s)2]2

⎞
⎠

−1

(21)
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is a normalization constant,

s =
√

1 − γ VP

γ
, (22)

and γ is the solution to the equation

∑
k

p2
k − VP[

1 + γ (p2
k − VP)

]2 = 0. (23)

This distribution is a discretized Student’s t-distribution
with 3 degrees of freedom. Although Eq. (23) does not
have a closed-form solution for γ , one may calculate a
solution numerically. We can then calculate the extremal
variance-based (EVB) estimator H EVB

max (VP). This is the
extremal max-entropy consistent with the variance VP.
From this, we get an estimate for H EVB

low from Eq. (9). This
is plotted in Fig. 5 for a Gaussian state with parameters
similar to those in our experiment.

Under these conditions, we see that the EVB estima-
tor shows no bias, and the mean value does not change
with the sample size. Moreover, by construction, the mean
of the EVB estimator for H EVB

low is always smaller than
H th

low(Pδp). Unlike the frequentist estimators, the EVB esti-
mator does not overestimate H th

low. However, because the
EVB estimator uses only the variance instead of the whole
distribution, it does not converge to H th

low even when the
sample size is large. It only converges to H th

low if the
check-quadrature distribution happens to be the discretized
Student’s t-distribution [Eq. (20)].

Check-quadrature variance (SNU)

FIG. 5. Extremal variance-based estimator H EVB
low obtained by

estimating the variance of the check quadrature. The shaded area
shows 5 standard deviations. This estimator shows no bias. The
dashed lines show the theoretical bound for a Gaussian distribu-
tion. The estimator is lower because the extremal distribution for
the EVB estimator assumes a discretized Student’s t-distribution
[Eq. (20)]. For sample sizes above 1000, the variance of this esti-
mator becomes small enough that the probability of a single-shot
estimation being above H th

low becomes negligible.

We note that here the theoretical H th
low(Pδp) and simu-

lations are computed for Gaussian states. The results for
the bias will differ for other input states, and in some cases
the EVB estimator can still be positively biased. Indeed,
even though the variance estimator is unbiased, the max-
entropy is a concave function of the variance. This means
that it has a negative bias. This is illustrated in Appendix D.
However, we can get a confidence interval for the variance
from the sampled data, and from this we can arrive at a
confident estimate for the max-entropy.

C. Comparison of performance of the different
estimators

A comparison of how the different estimators perform
with increasing sample size for a vacuum-state input is
shown in Fig. 6. The frequentist estimator has a positive
bias, leading to an overestimation of the secure random-
ness rate, which can compromise the security of the ran-
dom numbers. In contrast, the EVB estimator and both
Bayes estimators have a negative bias, which leads to an
underestimation of the secure randomness rate. Of all the
estimators, the Bayesian peaked-prior estimator is the most
conservative; it will significantly underestimate the bound
even for large sample sizes.

Finally, we note that even with an unbiased estimator
for Hmax, one should not take its mean value as a point
estimate. Doing so will lead to a 50% probability of overes-
timating Hmax. Instead, one should obtain a point estimate
based on its confidence interval and a required failure rate.

F

UP PP

S

FIG. 6. Simulations of Hlow for a vacuum state with finite sam-
ple size for various estimators. We compare four estimators: the
frequentist estimator, the Bayesian estimator with a uniform prior
(UP), the Bayesian estimator with a peaked prior (PP), and the
EVB estimator. For the Bayesian estimator with a peaked prior,
K is set to 100 [see Eq. (15)]. Each simulation is repeated 100
times to obtain the mean and standard deviation of the estima-
tor. The error bars show 5 standard deviations. We also plot the
theoretical value of Hlow.
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V. CONCLUSION AND OUTLOOK

We demonstrate a real-time SI QRNG incorporat-
ing measurement-basis switching and hashing using a
squeezed state of light as a source of entropy. The only
assumption required about the source is an energy bound.
The protocol is validated on different thermal states. In
the real-time demonstration, the sample size is limited by
finite computational resources. A valuable lesson learned
from this demonstration is that due to finite-size effects,
the frequentist estimator can lead to an underestimation
of the max-entropy due to its biased nature. This can
lead to an underestimation of the adversary’s knowl-
edge about the measured data. To mitigate this potential
problem, we propose three different ways of estimating
the max-entropy. Which of these estimators the experi-
menter picks will depend on the experimenter’s level of
paranoia.

We note that this estimation problem does not arise
with a trusted-source QRNG, where a confidence interval
for the entropy estimator can be calculated from knowl-
edge of the source. Nor does it appear in asymptotic CV
quantum-key-distribution protocols, where the measured
distribution can be assumed to be Gaussian due to the
optimality of Gaussian attacks [65,66]. For Gaussian dis-
tributions, it is then easy to construct a confidence interval
for the max-entropy. However, in a source-independent
protocol, we see that a Gaussian distribution is not the
best that the adversary can use. Hence, assuming a Gaus-
sian distribution might lead to an underestimation of her
knowledge.

In our experimental demonstration, the bit rate is lim-
ited by three main factors: first, the slow real-time hashing
of the raw bits, which is done on a desktop computer;
second, the mechanical beam blocking in the check mea-
surement; and third, the limited squeezing bandwidth. The
first limitation can be circumvented using fast hashing
codes [17,57] on graphics cards or field-programmable
gate arrays (FPGA). We foresee that implementing the
hashing on an FPGA would allow us to reach the GHz
regime [67]. The second limitation is less stringent, since
the beam blocking happens only during the check measure-
ment. In our setup, the check measurement is performed
with a 10% probability, and the data measurement is not
limited by the slow mechanical beam blocks. Further-
more, one may use faster nonmechanical ways to block
the beam, for example by using acoustic-optical modu-
lators to deflect the beams. The third limitation in this
experiment is the squeezing bandwidth, which is imposed
by the bandwidth of the OPA squeezing cavity. Hence,
using a squeezed-state source may limit the bit rate through
bandwidth limitation more than it improves it through the
higher security rate. This limitation can be circumvented
by using a single-pass OPA, which would offer squeezing
over much larger bandwidths [68].
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APPENDIX A: GLOSSARY OF NOTATION

Q̂ Random-data quadrature, from which random num-
bers are extracted.

P̂ Check quadrature, used to estimate the secure ran-
domness.{

Q̂k
δq

}
POVM corresponding to the discretized mea-

surement of Q̂.{
P̂k

δp

}
POVM corresponding to the discretized mea-

surement of P̂.
δq, δp Precision, in shot-noise units, of the discretized

Q̂ and P̂ measurements.
m Number of bins in the discrete quadrature measure-

ment. Set to 212 = 4096 in our experiment.
Hmin(Qδq) Min-entropy of Qδq, given by Eq. (5). This

quantity gives the amount of secure random numbers if we
trust the source of entropy.

Hmin(Qδq|E) Min-entropy of Qδq conditioned on E,
given by Eq. (4). This quantity gives the amount of secure
random numbers if we do not trust the source of entropy.

Hlow(Pδp) Bound on Hmin(Qδq|E), given by Eq. (9).
This allows us to bound the secure randomness when we
do not trust the source, without having to do a full tomog-
raphy of the input state. It depends solely on measurements
of the check quadrature P̂ and precision δq, δp .

Hmax(Pδp) Max-entropy of Pδp , given by Eq. (7).
Required for calculating Hlow(Pδp); see the entropic uncer-
tainty relation, Eq. (9).

c(δq, δp) Constant term appearing in the entropic
uncertainty relation. Defined by Eq. (8). Quantifies the
incompatibility of

{
Q̂k

δq

}
and

{
P̂k

δp

}
.

n Number of samples acquired in each measurement
cycle. One cycle can be either a check or a random-data
measurement. Set to 16 000 in the experiment.

H freq
min (�n) Frequentist estimator for the unconditional

min-entropy based on measurement outcome �n, given by
Eq. (10).

H freq
max(�n) Frequentist estimator for the max-entropy

based on measurement outcome �n, given by Eq. (11)
H freq

low (�n) Frequentist estimator for the bound Hlow(Pδp).
Calculated from Eq. (9) using the values of H freq

max(�n) and
c(δq, δp).
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H th
min(Qδq) Theoretical value of the unconditional min-

entropy for a Gaussian-state input. Calculated using Eqs.
(5) and (12).

H th
low(Pδp) Theoretical value of the bound Hlow(Pδp) for

a Gaussian-state input. Calculated using Eqs. (9), (7), and
(12).

H sim
min(Pδp) Simulated value of the unconditional min-

entropy. Obtained by numerically sampling a Gaussian
distribution n times and using Eq. (10).

H sim
low (Pδp) Simulated value of the bound Hlow(Pδp).

Obtained by numerically sampling a Gaussian distribution
n times and using Eqs. (9) and (11).

APPENDIX B: FLOW CHART OF THE
PROTOCOL

A flow chart of the protocol for measurement and
random-number extraction is shown in Fig. 7.

APPENDIX C: EXTREMAL DISTRIBUTION FOR
MAX-ENTROPY WITH A FIXED VARIANCE

Suppose we experimentally observe a discrete distri-
bution with a finite support. From the variance of this
distribution, we can upper-bound its entropy. To do this,
we derive the probability distribution that maximizes the
entropy for a fixed variance. We note that the entropy does
not depend on the labels of the bins; to have a tighter
bound, we can rearrange the bins to minimize the variance.

Here we derive the probability distribution that max-
imizes the max-entropy for a fixed variance in a finite-
support setting. We want to find the extremal distribution
P = {pk} that maximizes the max-entropy

Hmax(�p) = 2 log2

∑
k

√
pk (C1)

over the finite support xk = k δx for integer values k ∈
[−m, m] subject to the normalization constraint

∑
k pk = 1

and the fixed-variance condition

∑
k

pkx2
k −

(∑
k

pkxk

)2

= V. (C2)

We first show that the extremal distribution must be sym-
metric, with pk = p−k. From an arbitrary distribution Q =
{qk}, we can construct a symmetrized distribution P =
{pk} with

pk = qk + q−k

2
.

This distribution has a smaller variance, var(P) ≤ var(Q),
but a higher max-entropy, Hmax(P) ≥ Hmax(Q). The first
statement holds due to 〈Q〉2 = 〈P〉2 and 〈Q〉2 ≥ 〈P〉2 =
0. The second statement follows from the concavity of the

FIG. 7. Flow chart of
the measurement and
random-number-extraction
protocol. First, the amount
of secure randomness is
evaluated in the check
step. The random-data
step follows, where data
are measured and random
numbers are extracted.
This last step is repeated
until the protocol randomly
switches back to the check
step, to reevaluate the
secure randomness of the
source.
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entropy function:

Hmax(P) = 2 log2

∑
k

√
pk

= 2 log2

∑
k

√
qk + q−k

2

≥ 2 log2

∑
k

(
1
2
√

qk + 1
2
√

q−k

)

= Hmax(Q).

Hence, the extremal distribution is symmetric and has zero
mean.

To find the extremal distribution P , we write the
Lagrangian as

L(P , α, γ ) = 2 log2

∑
k

√
pk

+ α

ln 2

(
1 −

∑
k

pk

)
+ γ

ln 2

(
V −

∑
k

pkx2
k

)
.

L attains a stationary point when

∂L
∂pk

= 0

⇒ 1√
pk

1∑
j
√pj

− α − γ x2
k = 0

⇒ 1√
pk

= (α + γ x2
k

)∑
j

√
pj .

Multiplying both sides by pk and summing over k, we
obtain the relation

α + γ V = 1.

This, together with the constraint ∂L/∂α = 0, allows us to
write

pk = 1/
[
1 + γ (x2

k − V)
]2

∑
j

{
1/
[
1 + γ (x2

j − V)
]2
} .

We recognize this as a discretized version of the nonstan-
dardized Student’s t-distribution with 3 degrees of freedom

Bayesian with uniform prior

Bayesian with peaked prior

Bayesian with uniform prior

Bayesian with peaked prior

Bayesian with uniform prior

Bayesian with peaked prior

FIG. 8. Comparison of estimators for Hmax on three probability distributions with just nine bins. A negative bias in Hmax translates
to a positive bias in Hlow. For the Bayesian estimator with a peaked prior, K is set to 100.
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and standard deviation s,

S3(x; s) = 2

πs
(
1 + x2/s2

)2 .

When δq → 0 and m δq → ∞, we retrieve the contin-
uous limit, γ → 1

2 and s2 → V. This is consistent with
the known result that the Student’s t-distribution is the
extremal continuous distribution for Hmax [69].

A necessary condition for the Lagrange multiplier γ is
obtained from the constraint ∂L/∂γ = 0, which gives an
implicit equation

∑
k

x2
k[

1 + γ (x2
k − V)

]2 =
∑

j

V[
1 + γ (x2

j − V)
]2

⇒
∑

k

x2
k − V[

1 + γ (x2
k − V)

]2 = 0.

Numerically, we see that there can be more than one real
solution for γ . The extremal Hmax is given by the solution
that is closest to zero.

APPENDIX D: EXAMPLE OF SMALL NUMBER
OF BINS

In this Appendix, we show that in extreme cases, when
the number of bins is very small, when the number of sam-
ples is very small, or when the input state saturates the
extreme bins, some of the estimators for Hmax proposed
in the main text may still be negatively biased, which leads
to a positive bias in Hlow. To illustrate this, we consider
three different distributions with only nine bins, as shown
in Fig. 8. The only estimator that shows no negative bias is
the peaked-prior Bayes estimator.
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A.2 Gaussian unitaries
Here we give the proof of relations (2.34). In creation/annihilation space the BM decom-
position reads:

E = UΛEV† (A.1)
F = UΛFVT (A.2)

In quadrature space it reads:

S = O1

(
K 0
0 K−1

)
O2 (A.3)

Where S is related to E and F via:

S = W
(

E F
F∗ E∗

)
W−1 (A.4)

With W =
(

1 1
−i i

)
and W−1 = 1

2

(
1 i
1 −i

)
.

We want to find the relation between O1, O2, K and U, V, ΛE , ΛF .
First let use explicitly calculate S in terms of E, F, we find:

S = 1
2

(
E∗ + E + F∗ + F −i(E∗ −E) + i(F∗ − F)

i(E∗ −E) + i(F∗ − F) E∗ + E− (F∗ + F)

)
(A.5)

=
(

Re(E) + Re(F) Im(F)− Im(E)
Im(E) + Im(F) Re(E)− Re(F)

)
(A.6)

Let us define XU/V and YU/V as the real and imaginary part of U/V. From the BM
decomposition we get:

E = (XU + iYU )ΛE(XV + iYV )† (A.7)
= (XUΛEXT

V + YUΛEYT
V ) + i(−XUΛEYT

V + YUΛEXT
V ) (A.8)

F = (XU + iYU )ΛF (XV + iYV )T (A.9)
= (XUΛFXT

V −YUΛFYT
V ) + i(XUΛFYT

V + YUΛFXT
V ) (A.10)

So that S can now be written:

S =
(

XU (ΛE + ΛF )XT
V + YU (ΛE −ΛF )YT

V XU (ΛE + ΛF )YT
V −YU (ΛE −ΛF )XT

V

−XU (ΛE −ΛF )YT
V + YU (ΛE + ΛF )XT

V XU (ΛE −ΛF )XT
V + YU (ΛE + ΛF )YT

V

)
(A.11)

Let us write O1 and O2 from Eq. A.3 as:

O1 =
(

X1 Y1
−Y1 X1

)
(A.12)

O2 =
(

X2 Y2
−Y2 X2

)
(A.13)



We can then develop:

S = O1

(
K 0
0 K−1

)
O2 (A.14)

=
(

X1KX2 −Y1K−1Y2 X1KY2 + Y1K−1X2
−Y1KX2 −X1K−1Y2 −Y1KY2 + X1K−1X2

)
(A.15)

This expression can be identified with Eq. A.11 if we set:

K = ΛE + ΛF (A.16)
K−1 = ΛE −ΛF (A.17)

and

X1 = XU (A.18)
Y1 = −YU (A.19)
X2 = XT

V (A.20)
Y2 = YT

V (A.21)

In other words:

O1 =
(

Re(U) − Im(U)
Im(U) Re(U)

)
(A.22)

O2 =
(

Re(V) − Im(V)
Im(V) Re(V)

)T
(A.23)

Table A.1 shows the common Gaussian unitaries and their properties.



Tr
an

sf
or
m
at
io
n
Ĥ
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A.3 Fourier transform definition and useful properties

Throughout this thesis we will use the following definitions of the 1D-Fourier transform
and its inverse:

f̃(ω) := F [f ](ω) =
∫
R

dt√
2π
f(t)eiωt (A.24)

f(t) := F−1[f̃ ](t) =
∫
R

dω√
2π
f̃(ω)e−iωt (A.25)

With these convention the Fourier transform is unitary. Note the sign in the exponential
is opposite to the most standard convention, this is to be consistent with the definition of
the analytical field of chapter 1 in which the positive frequency components oscillate with
a e−iωt factor.

Useful properties of the Fourier transform are given in Table A.2.

f real ⇒ f̃(−ω) = f̃(ω)∗
F [f(t− t0)](ω) = eiωt0 f̃(ω)

F−1[f̃(ω − ω0)](t) = e−iω0tf(t)
F [f(t)e−iω0t](ω) = f̃(ω − ω0)
F−1[f̃(ω)e−iωt0 ](t) = f(t+ t0)
F [f × g] = 1√

2πF [f ]⊗F [g]
F [f ⊗ g] =

√
2πF [f ]×F [g]

Table A.2 – Fourier transform properties.

Fourier transforms of commonly used functions and distributions are given in table A.3

F [e−αt2 ](ω) = 1√
2αe
− ω2

4α2 with Re{α} > 0
F [ΠT (t)](ω) = T√

2π sinc(ωT2 )
F [1](ω) =

√
2πδ(ω)

F [e−iω0t](ω) =
√

2πδ(ω − ω0)
F [IIIT (t)](ω) =

√
2π
T IIIΩ= 2π

T
(ω)

Table A.3 – Common Fourier transforms.

A.4 Derivation of the non linear interaction equation from
Maxwell’s equations

Given an electric charge density ρ(r, t) (in C m−3) and an electric current density j(r, t)
(in A m−3), the electric vector field E(r, t) (in V m−1) and the magnetic pseudo-vector
field B(r, t) (in T or kg s−2 A−1) are governed by Maxwell’s equations, which read (in the



Si units convention):

∇ ·E = ρ

ε0
Gauss electric (A.26)

∇ ·B = 0 Gauss magnetic (A.27)

∇×E = −∂B
∂t

Maxwell-Faraday (A.28)

∇×B = µ0(j + ε0
∂E
∂t

) Maxwell-Ampère (A.29)

where the two constant ε0 (in F m−1 or C2 N−1 m−2) and µ0 (in H m−1 or N A−2) are
respectively, the permittivity/dielectric constant and the permeability/magnetic constant
of vacuum. They are linked to the speed of light in vacuum by c = 1√

ε0µ0
. These equations

are sometimes referred to as the microscopic Maxwell’s equations because they relate
fundamental microscopic quantities.

Inside matter, on the other end, Maxwell’s equations can be modified to describe meso-
scopic quantities. The fields and charge/current densities are then described as mesoscopic
averages. This allows to neglect the inhomogeneities at the atom level, to have a more
bulk description of a material. The effects of bound charges and current densities ρb and
jb are considered separately from the free ones ρf and jf . The mesoscopic displacement
field D and magnetising field H include the effect of bound charges and currents:

D(r, t) = ε0E(r, t) + P(r, t) (A.30)

H(r, t) = 1
µ0

B(r, t)−M(r, t) (A.31)

where P and M are the electric and magnetic polarisation field induced by bound charges
and currents:

∇ ·P = −ρb (A.32)

∇×M = jb −
∂P
∂t

(A.33)

With these quantities Maxwell’s equation read:

∇ ·D = ρf (A.34)
∇ ·B = 0 (A.35)

∇×E = −∂B
∂t

(A.36)

∇×H = jf + ∂D
∂t

(A.37)

Let us now consider a homogeneous dielectric material, by definition it’s an insulating
material which means it contains no free charges or current ρf = 0 and jf = 0. It has also
no magnetisation M = 0 so B = µ0H. Let us now take the curl of equation A.36 and use
the identity ∇×∇×A =∇(∇ ·A)−∇2A. We get

∇(∇ ·E)−∇2E = −∂∇×B
∂t

(A.38)



Where we have swapped the two linear operator, curl and time derivative in the second
member. Substituting Eq. A.37 and A.30 we now get:

− 1
ε0
∇(∇ ·P)−∇2E = −µ0

∂2D

∂t2
(A.39)

Now using eq A.32 and A.30 we obtain:

− 1
ε0
∇(−ρb)−∇2E = −µ0(ε0

∂2E

∂t2
+ ∂2P

∂t2
) (A.40)

The first term vanishes because the media is homogeneous so ρb does not depend on the
position r. We therefore obtain the equation:

∇2E− 1
c2
∂2E

∂t2
= 1
ε0c2

∂2P

∂t2
(A.41)

A.5 Units, normalization and discretization
This section deals with making sure our units are coherent so that the proper SHG effi-
ciencies ηSHG coupling factor χ gain g are obtained in chapter 6. This is relevant to obtain
a properly scaled S0 and allow us to obtain the absolute values of squeezing for a given
pump power as well as the pump threshold. Moreover, it is important when taking into
account intra-cavity dispersion effect, in order to have the right scaling between U0 and
S0. An electric field is defined in units of V m−1 so we can write the electric field as follow:

E(+)(ρ, t) = E0s(t)u(ρ)eiω0t (A.42)

Where s(t) is a (unitless) function giving the temporal envelope of E(+)(ρ, t), u(t) is a
(unitless) function giving the transverse spatial shape of E(+)(ρ, t) and E0 is the field
amplitude in V m−1. Here we will consider s(t) to be a train of pulse, so we will introduce
τ the effective temporal width of E(+)(ρ, t) defined as

τ =
∫
pulse

|s(t)|2 dt (A.43)

for a Gaussian envelope of temporal width ∆t (intensity standard deviation) we therefore
have τ =

√
2π∆t. And S the typical area of E(+)(ρ, t) defined as

S =
∫
R2
u(ρ)2 d2ρ (A.44)

for a Gaussian beam of waist w we therefore have S = πw2

2 .
Let’s derive how we can recover the field amplitude E0 from variables we know (beam

power, repetition rate etc.) The field intensity is usually defined as the average of the
Poynting vector (average being taken over a time long compared to an optical cycle), it
can then be determined from the analytical field as

I(r, t) = 2ncε0
∥∥∥E(+)(r, t)

∥∥∥2
(A.45)

The power can be defined by integrating the intensity over transverse coordinates:

P (z, t) =
∫
R2
I(r, t) d2r (A.46)



The energy in one pulse of light is then

Upulse =
∫
pulse

P (t) dt (A.47)

So using Eqs. A.43 and A.44 we get

Upulse = 2ncε0E2
0

∫
pulse

|s(t)|2 dt
∫
R2
|u(ρ)|2 d2ρ (A.48)

= 2ncε0E2
0Sτ (A.49)

For a frequency comb laser with a repetition rate frep, the average power is given by the
energy in a single pulse times the number of pulses per second:

P0 = Upulsefrep (A.50)

So that we have finally

E0 =
√

P0
2nε0cSτfrep

(A.51)

In the following we will develop E(+)(ρ, t) as an infinite train of Gaussian pulses with
repetition rate frep = 1

Trep
:

E(+)(ρ, t) = E0s(t)u(ρ)e−iω0t (A.52)

s(t) =
+∞∑

k=−∞
e−

(t−kTrep)2

4∆t2 (A.53)

In the expression of S0 we have the pump field Ep in the Fourier domain.

E(+)
p (ω) = F [E(+)

p (ρ = 0, t)](ω) :=
∫
R

dt√
2π

E(+)
p (t)eiωt (A.54)

= E0

+∞∑
k=−∞

F [s(t)× e−iω0t] (A.55)

= E0

+∞∑
k=−∞

1√
2π

F [e−( t−kTrep)2

4∆t2 ]⊗F [eiω0t] (A.56)

And

F [e−
(t−kTrep)2

4∆t2 ] =
√

2∆te−∆t2ω2
eikTrepω (A.57)

F [e−iω0t] =
√

2πδ(ω − ω0) (A.58)

So that

E(+)
p (ω) = E0

√
2∆te−∆t2(ω−ω0)2

+∞∑
k=−∞

eikTrep(ω−ω0) (A.59)

= Epe
− (ω−ω0)2

4∆ω2 III1(ω − ω0
ωrep

) (A.60)

with Ep = E0
√

2∆t = 1√
π
E0τ .
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Sujet :

Optimization of the pump spectral shape in a parametric down
conversion process to generate multimode entangled states.

Résumé : Dans cette thèse, nous utilisons un oscillateur paramétrique optique pompé en mode
synchrone par un peigne de fréquence optique afin de créer des états intriqués fortement mul-
timodes. Un tel montage expérimental bénéficie d’une grande ajustabilité. En changeant le
spectre de la pompe grâce à un façonneur d’impulsion, nous pouvons modeler les propriétés de
l’état quantique généré. Avec des algorithmes d’apprentissage machine, nous trouvons les formes
spectrales optimales pour créer certains états quantiques aux propriétés désirables. Ces formes
sont ensuite implémentées dans l’expérience et les états quantiques produits sont mesurés avec
une détection homodyne multiple résolue en fréquence.

Mots clés : Optique quantique, variables continues, intrication, états comprimés, multi-
mode, états Gaussiens, peigne de fréquences optiques, laser ultrarapide, laser femtoseconde,
canevas quantiques, apprentissage automatique, conversion parametrique descendante, oscilla-
teur parametrique optique, façonnage d’impulsion, optimisation spectrale

Subject : Optimisation of the pump spectral shape in a parametric
down conversion process

to generate multimode entangled states.

Abstract: In this thesis, we use an optical parametric oscillator pumped synchronously (SPOPO)
with an optical frequency comb (OFC) to generate large entangled states. One of the advantages
of this set-up is its tunability. By changing the spectrum of the pump with a pulse shaper, we can
tailor the properties of the generated quantum state. In this work, we focus on the optimisation
of the pump spectral shape to generate specific states. Using simulations based on Machine
Learning Algorithms (MLA), we find optimal pump profile for typical target states. We then
implement those shapes and measure the resulting quantum states using a multipixel homodyne
detection.

Keywords : Quantum optics, continuous variables, entanglement, squeezed states, multimode,
Gaussian states, optical frequency comb, ultra-fast laser, femtosecond laser, cluster state, ma-
chine learning, parametric down conversion, optical parametric oscillator, pulse shaping, spectral
optimisation
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