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Abstract

Stochastic differential equations (SDEs), including time-homogeneous Itô diffusion processes,
play an essential role in modelling phenomena in various fields, including physics, biology
and finance. The parameters of the stochastic model are usually unknown in reality. Statistical
inference on the unknown parameters of an Itô diffusion process has continued to attract in-
creasing attention in the last decades. Because in general, the maximum likelihood estimation
is not directly applicable to the Itô diffusion process, sue to the transition density usually not
being available in closed form, an approximation to the transition density is developed. We
aim to formulate a skew-normal approximation method motivated by the fact that the well-
known Gaussian approximation method [Kessler, 1997] is inadequate in a skewed situation.

The solution of an SDE, also known as the numerical method for solving the SDE, is crucial to
model various phenomena. We built a simulation scheme of the two commonly used numerical
methods for a general Itô diffusion process across various grid widths in R. In addition to the
numerical method simulation scheme, we extended the existing parameter estimation scheme
[Lu et al., 2021] to the skew-normal method, and can be applied to a general Itô diffusion
process.

In the practical implementation of our parameter estimation scheme, we applied the Gaussian
approximation method and the skew-normal approximation method to estimate the parameters
of two commonly used interest rate models, the Cox–Ingersoll–Ross model and the Vasicek
model, for a 3-year Australian government bond yield data set. The accuracy is verified by
simulating the sample paths of the estimated models using the numerical method simulation
scheme for the general Itô diffusion processes. The Vasicek model is demonstrated to exhibit
a better performance as a model for the bond yield data under parametric bootstrap hypothesis
testing.
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1 Introduction

A stochastic differential equation (SDE) incorporates one or more random elements in the

form of a stochastic process. SDEs, particularly diffusion processes, are widely used in diverse

fields, including physics, biology and mathematical finance. However, all the models consist

of unknown parameters that need to be estimated from existing observations. Consider a 1-

dimensional Itô diffusion process with the form:

dX(t) = a(X(t), σ) dt+ b(X(t), θ) dW (t), X(0) = x0; (1.1)

where W is the standard Brownian motion, a and b are real-valued functions. The parameter

estimation for (θ, σ) is vital in practice, but also difficult since the maximum likelihood esti-

mation is not directly applicable to the process X in (1.1), which leads to unknown transition

density and likelihood function.

This estimation problem has been studied by many researchers in the past decades and im-

provements of the approximation method have been of interest. Dacunha-Castelle and Florens-

Zmirou [1986] and Prakasa Rao [1983] demonstrated the existence of asymptotically normal

and consistent maximum likelihood estimators under certain conditions. However, they ap-

plied a direct likelihood estimation on the true likelihood, which is not practicable for compu-

tation. Another method that many researchers has considered is the approximation to the like-

lihood function. Aı̈t-Sahalia [2002] provided the closed-form approximations using Hermite
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polynomials, which tended to converge to the true likelihood function. A Gaussian approxi-

mation to the transition density was considered by Kessler [1997] based on previous results

and assumptions, for instance, [Dacunha-Castelle and Florens-Zmirou, 1986]. The Gaussian

distribution is a symmetric distribution, which is less efficient in the case of skewness. This

inspired us to consider another distribution of approximation to the transition density that cap-

tures skewness in the process. The skew-normal (SN) distribution is analysed and the scheme

of SN approximation to the transition density is constructed.

Another interesting feature is the solution of SDEs, which is widely studied as it is essential

to model various phenomena. Most SDEs do not have an explicit analytical solution, and

the development of numerical methods for solving SDEs is crucial in practice. A widely

used approach is the simulation of the sample paths of discrete-time approximations. The

commonly used numerical methods are the Euler-Maruyama method [Maruyama, 1955] and

the Milstein method [Milstein, 1975]. We will provide an elementary review and focus on

approximating accuracy and comparison between the two common numerical methods across

various grid widths.

A number of computation packages in R have been developed for the simulation and parame-

ter estimation of SDEs using different methods, for instance, the sde package with the sde.sim

function [Iacus, 2009], the yuima project package [Brouste et al., 2014], and the Sim.DiffProc

package [Guidoum and Boukhetala, 2020] with the fitsde function. However, there is no pack-

age available for direct approximation of the transition density, and we develop the parameter

estimation scheme based on the numerical experiments by Lu et al. [2021]. the parameter

estimation algorithm is modified so that it can be applied to a process with an unknown dis-

tribution. The second (partial) derivatives (Hessian matrix) of the estimated parameters are

derived using fminunc function in MATLAB. The existing functions for the simulation of

SDEs are created for specific SDE models using the Euler method and the Milstein method.

We build up the numerical method simulation algorithm for general Itô diffusion processes.

2
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Diffusion processes play an important role in mathematical finance, particularly with respect

to some dynamics of the financial assets, such as asset prices and interest rates. To transfer our

theoretical analysis to practical applications, we aim to model certain phenomena with a one-

dimensional Itô diffusion process using the parameter estimation scheme and the numerical

method algorithm presented in this paper. Specifically, we are interested in modelling a 3-year

Australian government bond yield using 5-year data set (24/03/2014 to 25/03/2019). Two

commonly used models for interest rates, the Vasicek model and the Cox–Ingersoll–Ross

(CIR) model, are considered in the data analysis. We then compare the goodness of fit of

these two models.

In the remainder of this chapter, we will state the background of stochastic differential equa-

tions, especially the applications in finance, in Section 1.1. Section 1.2 outlines the structure

of this thesis.

1.1 Background

Stochastic differential equations, in particular, time-homogeneous Itô diffusion processes, are

important in a wide variety of application areas, particularly when random effects play a sig-

nificant role. Its effect in modelling different phenomena has been applied to various fields,

including finance ([Merton, 1973], [Merton, 1975] and [Shreve, 2004]), physics [Papanico-

laou, 1995] and biology [Fogelson, 1984]. Specifically, in the financial area, SDEs are crucial

for modelling various financial quantities, such as derivative prices and risk measures. Sta-

tistical inference for the unknown parameters of the diffusion process in (1.1) is crucial in

all fields. Many studies have contributed to the conditions and restrictions on the likelihood

estimation, such as [Dacunha-Castelle and Florens-Zmirou, 1986] and [Yoshida, 1992]. Some

other important researchers contributed to this estimation problem, such as [Genon-Catalot,
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1990], [Ozaki, 1992], [Yoshida, 1992], [Kessler, 1997], [Shoji and Ozaki, 1998], [Ait-Sahalia,

2001], [Aı̈t-Sahalia, 2002], and Sørensen [2012]. The improvement of the estimation methods

is still of great interest.

SDEs can be the basis of future marketing models, where stochastic modelling and quantitative

analysis are valuable tools for commercial and economic events. Numerical methods for the

solutions of SDEs are required for these purposes. Two commonly used numerical methods

are the Euler-Maruyama method [Maruyama, 1955] and the Milstein method [Milstein, 1975].

A simulation algorithm constructed from these numerical methods can be tailored to fit into

general Itô diffusion processes with various discretisation steps. Therefore, it can be helpful

to evaluate and model a real data application.

Black and Scholes [1973] and Merton [1973] introduced the price modelling of risky assets

using stochastic calculus, and subsequently, the mathematical finance field incorporating the

applied probability theory emerged. An important example in financial mathematics is the

geometric Brownian motion (GBM), acting as the dynamics of the price of a stock in the

Black–Scholes options pricing model. Though GBM acts as one of the most widely used

models of stock price behaviour, it has certain drawbacks, such as the constant volatility and

continuous paths. Several alternative models have been developed to cater for realistic fi-

nancial needs, for instance the Merton’s mixed jump-diffusion model [Merton, 1976], the

variance-gamma model [Madan et al., 1998] and the exponentially weighted moving average

model (EWMA) [Engle, 1982]. Other financial metrics, such as interest rate and volatility,

have also attracted research interests. The Vasicek model [Vasicek, 1977] is a well-known

interest rate model in finance, which captures the mean reversion feature of the interest rate.

A drawback of the Vasicek model is that it allows a negative interest rate. This is fixed in

many other models, such as the CIR model [Cox et al., 1985] and the Black–Karasinski model

[Black and Karasinski, 1991]. Real application problems using the CIR model and the Vasicek

model incorporating the numerical method and parameter estimation scheme from applied fi-
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nance standpoint are of interest to us.

1.2 Thesis Outline

The specific objectives of this thesis include:

1. to develop an algorithm for simulating the solutions to an Itô diffusion process.

2. to estimate the parameter (vector) for SDE models.

3. to use SDE models to investigate a real data application.

The next chapter introduces the numerical solutions of SDEs by reviewing the studies in [Kloe-

den and Platen, 1992] and [Øksendal, 2003]. In particular, we introduce the SDE and time-

homogeneous Itô diffusion process, as well as some general properties of SDEs, including the

Itô stochastic integral and Itô’s lemma. Then, we formulate a method to solve the SDE, which

is a discrete-time approximation of sample paths on a fine grid. Two commonly used numer-

ical methods, the Euler-Maruyama method and the Milstein method, are introduced and we

build the simulation scheme of the solutions of the general Itô diffusion process using these

two methods in R and compare their accuracy on various grid widths.

Chapter 3 focuses on the estimation of the parameters of 1-dimensional time-homogeneous

Itô diffusion processes. A general method in statistical inference is the use of the maxi-

mum likelihood estimation. The difficulty of this approach is that the transition density is

unknown for most diffusion processes. We define the likelihood estimation equation with

some assumptions, including the Markov property and ergodicity. Then, we show and ver-

ify a higher-order Itô-Taylor stochastic expansion result and review some previous literature

results, particularly a Gaussian approximation method introduced by Kessler [1997]. We con-

sider the skew-normal approximation to the transition density based on previous analyses and

assumptions; this takes into account the skewness of the process. Finally, the parameter es-
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timation scheme is constructed in MATLAB based on the programming result in [Lu et al.,

2021], and the skew-normal method and the Kessler method are compared using the median

absolute difference and root mean square error (RMSE).

In Chapter 4, we focus on a real data application and fit a proper model using the parameter

estimation scheme developed in Chapter 3. Our interest is in a 3-year Australian government

bond yield data set from 24/03/2014 to 25/03/2019, and we fit the data to both the Vasicek

model and the CIR model. The two estimated models are compared by simulating some sam-

ple paths using the simulation scheme developed in Chapter 2. Then, we conduct a parametric

bootstrap hypothesis test to select the best model from these two models.

Finally, Chapter 5 presents a summary of our derivations and results, as well as some recom-

mendations for further research.

6



2 Review of stochastic calculus

This chapter provides a brief review of stochastic calculus concepts needed for our analysis. In

the first four sections, we review stochastic differential equations and Itô diffusion processes,

as well as the stochastic Itô integral and Itô formula. Some definitions from [Øksendal, 2003]

and [Kloeden and Platen, 1992] are presented and proved. Then, we introduce two basic inter-

est rate models taking the form of stochastic differential equations, which will be continually

revisited for the rest of this paper. In Section 2.6, we introduce the numerical method for

SDEs. Specifically, we provide a derivation of the Itô-Taylor stochastic expansion result as

referenced from [Kloeden and Platen, 1992]. Two commonly used numerical methods, the

Euler-Maruyama method [Maruyama, 1955] and the Milstein method [Milstein, 1975] are in-

troduced. Consequently, we construct a simulation scheme in R based on these two numerical

methods for a general Itô diffusion process. Finally, we compare the performance of the two

methods on various grid widths.

2.1 Stochastic Differential Equations

In this section, we formally introduce the stochastic differential equations and give definitions

to 1-dimensional Itô diffusion process.

Two distinct types of differential equations can be generated by adding random terms into a

7



deterministic differential equation. One type is obtained when an ordinary differential equa-

tion has a random initial value, X(0). This type of process has the sample paths that are

differentiable functions if the original model is sufficiently smooth. This process is called a

random differential equation:

dX(t)

dt
= a(t,X(t)), t ≥ 0, X(0) = X0; (2.1)

whereX(t) is a stochastic process with a random initial conditionX0, and a(.) is a real valued

function satisfied certain conditions that will be defined later.

Another type is known as a stochastic differential equation (SDE), which has one or more

terms that are stochastic processes. We consider processes of the form

X(t) = X(0) +

∫ t

0

a(s,X(s))ds+

∫ t

0

b(s,X(s)) dW (s), (2.2)

with a given initial value X(0) = x0. A short-hand form of (2.2) can be written as the SDE:

dX(t) = a(t,X(t)) dt+ b(t,X(t)) dW (t). (2.3)

The randomness of the stochastic differential equation is introduced via a noise term, W =

(W (t), t ≥ 0), which denotes a standard Brownian motion. The coefficient a(t,X(t)) is a

drift term and b(t,X(t)) is a diffusion term, and the formal definitions are given later on.

The randomness of the first type of differential equation (2.1) is extrinsic to the dynamics

of the process, in which the only randomness is introduced by the initial value X(0). The

extrinsic here indicates that once the initial point X(0) = X0 is known, the solution of the

differential equation is determined. In other words, the behaviour of process (X(t), t ≥ 0) is

then deterministic. However, the randomness of the SDE (2.2) is intrinsic to the dynamics in

the sense that the random term W (t) in the differential equation gives rise to the randomness

8



included in any solution of SDEs. Unlike random differential equations with inherit differen-

tiability, the solutions of SDEs driven by Brownian motion generally do not have differentiable

sample paths.

The one-dimensional time-homogeneous Itô diffusion process is a solution to a specific type

of SDE, where its drift and diffusion terms depend only on the processX , but not on a specific

time t. First, we define the standard Brownian motion (SBM) and introduce some of its nice

features.

Definition 2.1 (1-dimensional Standard Brownian Motion). A standard Brownian motion

(or a standard Wiener process) is a stochastic process (W (t), t ≥ 0), defined on a common

probability space (Ω, (Ft)t≥0,P) with the following properties:

(1) W (0) = 0.

(2) W has stationary and independent increments: the term independent increments means

that for every t > 0, the future increments W (t+ u)−W (u), u ≥ 0, are independent

of the past values W (s), s ≤ t; the term stationary increments means that for any 0 <

u, t <∞, the distribution of the increment W (t+ u)−W (u) has the same distribution

as W (t)−W (0) = W (t).

(3) W has Gaussian increments: W (t+ u)−W (u) is normally distributed with mean of 0

and variance of u, thus W (t+ u)−W (u) ∼ N (0, t).

(4) W has continuous paths: W (t) is continuous in t.

Definition 2.2 (Time-homogeneous Itô Diffusion). Let W (t) be a 1-dimensional standard

Brownian motion on the probability space (Ω, (Ft)t≥0,P), defined in Definition 2.1. The

σ-field Ft is generated by W (s) for s ≤ t. Then a 1-dimensional time-homogeneous Itô

9



diffusion process X(t) = (X(t, ω), t ≥ 0) on (Ω, (Ft)t≥0,P) takes the form

X(t) = X(0) +

∫ t

0

a (X(s)) ds+

∫ t

0

b (X(s)) dW (s), (2.4)

where the given initial condition X(0) = x0, a(X(t)) and b(X(t)) are the drift and diffusion

terms, respectively, and a : R → R, b : R → R, satisfying the usual Lipschitz continuity

condition:

|a(x)− a(y)|+ |b(x)− b(y)| ≤ C|x− y|, all x, y ∈ R; (2.5)

for some constant C. Here, ω ∈ Ω is an element of the sample space. All random variables

under consideration may be thought of as functions of ω, and when convenient we shall make

the dependence on ω explicit.

The drift and diffusion terms in (2.4) depend only on the state of the process, X(t), which in-

dicates the time-homogeneous property of the diffusion process. In other words, the transition

densities depend on the time differences rather than the exact values of time. This property

will be revisited in Chapter 3 when we discuss the likelihood function. Equation (2.4) has a

short-hand differential form given as

dX(t) = a(X(t)) dt+ b(X(t)) dW (t). (2.6)

An important example of SDEs is the geometric Brownian motion (GBM), which can be

solved explicitly.

Example 2.3 (Geometric Brownian Motion). The processX(t) is called a Geometric Brow-

nian Motion if it satisfies the following SDE:

dX(t) = aX(t) dt+ bX(t) dW (t), (2.7)
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where a and b are constants, W is the SBM (Definition 2.1).

The equation (2.7) can be solved explicitly:

X(t) = X(0) e(a− 1
2
b2) t+bW (t),

where X(0) = x0 is taken to be independent of (W (t), t ≥ 0).

However, most SDEs do not have an explicit solution formula and numerical methods are

needed to approximate the solutions.

2.2 Itô Stochastic Integral

The standard Brownian motion W (t) is almost surely nowhere differentiable with respect to

time (proved by Kloeden and Platen [1992, Chapter. 2, Section. 4]); therefore, calculating the

integral with respect to W (t) requires another type of integration procedure known as the Itô

integral. Øksendal [2003] provided the detailed conditions and a rigorous proof of the Itô

integral, and we refer to some basic definitions to construct the Itô integral.

Definition 2.4 (Elementary Functions). A function φ on probability space (Ω, (Ft)t≥0,P)

from the class of measurable functions is said to be elementary if it satisfies

φ(t, ω) =
m∑
i=1

gi(ω) I[ti,ti+1)(t), (2.8)

where I is the indicator function, for i = 1, 2, · · ·m, and each function gi depends only on the

information up to time ti, in other words, gi is Fti measurable.

Lemma 2.5 (Øksendal [2003], Lemma 3.1.5 , the Itô Isometry).
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If φ(t, ω) is bounded and elementary then

E

[(∫ T

S

φ(t, ω) dW (t, ω)

)2
]

= E

[∫ T

S

φ(t, ω)2dt

]
, (2.9)

where W (t, ω) is a standard Brownian motion on probability space (Ω, (Ft)t≥0,P), defined in

Definition 2.1 .

Proof of Lemma 2.5. First, from equation (2.8), we can evaluate

φ(t, ω)2 =
m∑
i=1

(gi(ω))2 (I[ti,ti+1)(t)
)2

=
m∑
i=1

(gi(ω))2 I[ti,ti+1)(t). (2.10)

Then, we prove the equality in (2.9) from the left hand side:

E

[(∫ T

S

φ(t, ω) dW (t, ω)

)2
]

=E

( m∑
i=1

gi(ω)
[
W (ti+1, ω)−W (ti, ω)

])2
 (given equation (2.10))

=E

[
m∑

i,j=1

gi(ω) gj(ω) ∆̃W (i) ∆̃W (j)

]
(∆̃W (i) = W (ti+1, ω)−W (ti, ω))

=
m∑

i,j=1

E
[
gi(ω)gj(ω)∆̃W (i)∆̃W (j)

]
(Fubini’s theorem). (2.11)

We evaluate the equation (2.11) by dividing the summation with respect to the relationship of

sizes between i and j.

First recall that the increment of SBM ∆̃W (i) is normally distributed:

∆̃W (i) = W (ti+1, ω)−W (ti, ω) ∼ N(0, ∆̃ti), (2.12)
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where ∆̃ti = ti+1 − ti, when i < j, the terms gi(ω)gj(ω)∆̃W (i) and ∆̃W (j) in (2.11) are

independent. So the expectation term equals zero in this case. Similar logic, when i > j, gives

that the terms gi(ω)gj(ω)∆̃W (j) and ∆̃W (i) are independent, and again the expectation term

equals zero. Thus, we only need to focus on the case i = j of (2.11).

Given Definition 2.1, the increment of SBM ∆̃W (i) possesses independent increments, and

hence it depends only on the information at ∆̃ti = ti+1− ti and independent of the past values

W (ti). Moreover, from Definition 2.4, the function gi depends only on the information up

to time ti. Therefore, we show that ∆̃Wi and gi are independent. Consequently, continue on

equation (2.11), equation (2.9) is evaluated as follows:

E

[(∫ T

S

φ(t, ω) dW (t, ω)

)2
]

=
m∑
i=1

E
[
gi(ω)2(∆̃W (i))2

]
=

m∑
i=1

E
[
gi(ω)2

]
∆̃ti

(
E
[(

∆̃W (i)
)2]

= V ar
(
∆̃W (i)

)
= ∆̃ti

)
=E

[∫ T

S

φ(t, ω)2dt

]
(Fubini’s theorem and equation (2.10)).

Given the property of Itô isometry, we can extend the definition of the Itô integral of an ele-

mentary function φ to a function f(t, ω), which is Ft measurable, and satisfies

E

[∫ T

s

f(t, ω)2dt

]
<∞. (2.13)

Other assumptions related to the measure space of f are defined in [Øksendal, 2003, Defini-

tion. 3.1.4]. We will now introduce an Itô integral for a general function f :

Definition 2.6 (Øksendal [2003], Definition 3.1.6, the Itô Integral).
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For a function f over a time interval [S, T ], we define the Itô integral :

I(f)(ω) =

∫ T

t

f(s, ω) dW (s, ω) (2.14)

= lim
n→∞

∫ T

t

φn(s, ω) dW (s, ω), (2.15)

where {φn} is a sequence of elementary functions such that as n→∞,

E

[∫ T

S

(f(t, ω)− φn(t, ω))2 dt

]
→ 0. (2.16)

Remark 2.7.

1. The existence of a sequence of elementary functions {φn} satisfying Definition 2.4 and

(2.16) is proved by Øksendal [2003].

2. The existence of the limit in (2.14) as an element of L2 is guaranteed by the Itô isometry

(Lemma 2.5), where elements in L2 are the limits of the sequences {φn} such that
∞∑
n=1

|φn|2 <∞.

2.3 Ito’s Lemma

In the previous section, we introduced the Itô stochastic integral and its definition. However,

analogous to the classical calculus, which uses other techniques such as the chain rule to

evaluate the integral rather than the general definition, we also need additional results to handle

the stochastic integrals. An Itô’s Lemma (or Itô formula) is the stochastic version of the chain

rule.

Theorem 2.8 (1-dimensional Itô Formula). Let W (t, ω) be the 1-dimensional standard

Brownian motion on probability space (Ω, (Ft)t≥0,P) (Definition 2.1). X(t, ω) is a 1-
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dimensional stochastic process on (Ω, (Ft)t≥0,P) taking the form

X(t, ω) = X(0, ω) +

∫ t

0

a(s, ω) ds+

∫ t

0

b(s, ω) dW (s, ω). (2.17)

Consider F (t, x) = g(t, x) for 0 ≤ t ≤ T where g is a twice continuously differentiable

function on [0,∞)× R. Let a := a(t, ω) and b := b(t, ω), then we have

dF =

(
∂

∂t
g(t,X(t, ω)) + a

∂

∂x
g(t,X(t, ω)) +

1

2
b2 ∂2

∂x2
g(t,X(t, ω))

)
dt

+ b
∂

∂x
g(t,X(t, ω)) dW (t, ω), (2.18)

where
∂

∂t
,
∂

∂x
and

∂2

∂x2
are partial derivatives.

The proof of Theorem 2.8 is provided in [Kloeden and Platen, 1992, Theorem. 3.3.2]. We will

show an example of the use of the Itô formula to solve an Itô integral.

Example 2.9. Let W (t) be the standard Brownian motion with W (0) = 0, then

∫ t

0

W (s) dW (s) =
1

2
W (t)2 − 1

2
t. (2.19)

Proof of Example 2.9. Let F (t, x) = g(t, x) = x2 and apply Itô formula on F (t, x) for

x = W (t). Then, given the SDE equation (2.3), the drift and diffusion terms in our case

are a
(
t,W (t)

)
= 0 and b

(
t,W (t)

)
= 1, and hence, we apply equation (2.18) and obtain

dF = dx2 = dW (t)2 = dt+ 2W (t) dW (t), (2.20)

or equivalently,

W (t)2 = t+ 2

∫ t

0

W (s) dW (s). (2.21)
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Therefore, we evaluate the Itô integral

∫ t

0

W (s) dW (s) =
1

2
W (t)2 − 1

2
t.

2.4 Infinitesimal Generator

In this section, we introduce a second order partial differential operator L of an Itô diffusion

process X(t), known as the generator of the process X(t). A general definition of generator

L of a n-dimensional Itô diffusion process is given in [Øksendal, 2003]. We will focus on a

1-dimensional Itô diffusion process and define the generator as follows:

Definition 2.10 (Øksendal [2003], Definition 7.3.1, the Infinitesimal Generator). LetX(t)

be an Itô diffusion process in R taking the form in equation (2.4). The infinitesimal generator

L of the process X(t) is,

Lf(x) = lim
t↓ 0

Ex[f(X(t))]− f(x)

t
; x ∈ R, (2.22)

where f is a set of functions for which the limit exists at x for all x ∈ R.

We will show a more applicable result of the generator L for a 1-dimensional Itô diffusion

process, and the version for a n-dimensional Itô diffusion is derived in [Øksendal, 2003].

Definition 2.11 (Øksendal [2003], Theorem 7.3.3, Generator of Itô diffusion). Assume an

Itô diffusion process X(t), defined in (2.4), for a twice continuously differentiable function f

for which the limit exists at all x ∈ R, then the infinitesimal generator L is given by

Lf(x) := a(x) ∂xf(x) +
1

2
b(x)2 ∂2

xf(x), (2.23)

where ∂x := ∂
∂x

and ∂2
x := ∂2

∂x2
are partial derivatives.
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Suppose f is a function with k continuous derivatives, that is f ∈ Ck. The kth iterate of L is

calculated as:

Lk(f) = L(Lk−1f) and L0(f) = 1, (2.24)

where 1 is the identity function.

2.5 Some Stochastic Differential Equation Models

Many models derived from stochastic differential equations are widely used in physics and

financial fields. In this section, we introduce two models (the Vasicek model and the Cox-

Ingersoll-Ross model) that satisfy the 1-dimensional Itô diffusion process (2.6):

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), (2.25)

where W (t) is the standard Brownian motion. Both models are well-known interest rate mod-

els and have inherently good properties in modelling financial quantities of interests.

2.5.1 Vasicek Model

The Vasicek model [Vasicek, 1977] specifies that the interest rate r(t) follows the stochastic

differential equation

dr(t) = θ(µ− r(t)) dt+ σ dW (t), (2.26)

where W (t) is the standard Brownian motion, r(0) = r0, and θ, µ, σ, r0 are positive constants.

The drift term θ(µ− r(t)) allows the interest rate process to exhibit mean reversion property,

which is an essential characteristic of real interest rates in the financial market. The parameter

µ is the long term mean and θ is the speed of mean reversion. The diffusion term σ represents
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the instantaneous volatility of the interest rate.

The limitation of the Vasicek model is that it allows the interest rate to be negative, and this

problem is addressed in the Cox-Ingersoll-Ross model.

2.5.2 Cox-Ingersoll-Ross (CIR) Model

The Cox-Ingersoll-Ross model was first introduced by Cox et al. [1985] as an extension to

the Vasicek model. It specifies that the instantaneous interest rate r(t) follows the stochastic

differential equation:

dr(t) = θ(µ− r(t)) dt+ σ
√
r(t) dW (t), (2.27)

where W (t) is the standard Brownian motion, r(0) = r0, and θ, µ, σ, r0 are positive constants.

The drift term of the CIR model is exactly the same with the Vasicek model, which means the

CIR model also has an inherently mean reversion property with a long run mean µ and speed of

mean reversion θ. The diffusion term σ
√
r(t) guarantees the interest rate to be non-negative,

which eliminates the main drawback of the Vasicek model.

2.6 Numerical Methods for SDEs

An effective way to approximate the solution of a SDE is to approximate sample paths of

discrete-time approximations on a fine grid. In this procedure, a discrete-time difference equa-

tion is analysed in place of the continuous-time differential equation. This requires step by step

generation of approximated values of the sample paths of a process at each discretisation time,

which can be realised with the Itô-Taylor stochastic expansion. Furthermore, we introduced
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two widely used numerical methods, the Euler-Maruyama method [Maruyama, 1955] and the

Milstein method [Milstein, 1975], differing in the number of expansion terms. We analysed

the accuracy of these two numerical methods by developing the corresponding simulation

schemes on general Itô diffusion processes across various discretisation steps.

2.6.1 Itô-Taylor Stochastic Expansion

The deterministic Taylor formula provides a method to approximate a sufficiently smooth

function in a neighbourhood of a given point to any desired order of accuracy. Similar to

the deterministic Taylor formula that acts as a helpful tool in evaluating ordinary calculus,

the Itô-Taylor stochastic expansion is universally used in stochastic calculus, which was first

introduced in [Wagner and Platen, 1978]. The truncated Itô-Taylor stochastic expansion after

specific orders can be used to create a discrete-time Taylor approximation.

Our analysis is restricted to a 1-dimensional Itô diffusion process X(t) introduced in Defini-

tion 2.2 and satisfying

dX(t) = a(X(t)) dt+ b(X(t)) dW (t), (2.28)

where the solution X(t) exists if a(X(t)) and b(X(t)) are sufficiently smooth real-valued

functions satisfying a linear growth bound.

The Itô-Taylor stochastic expansion allows a twice continuously differentiable function F to

be expanded about F (X(t)) in terms of multiple stochastic integrals weighted by some coef-

ficients evaluated at X(t0). Because our analysis is restricted to a 1-dimensional Itô diffusion

process, F (t, x) depends only on x with F (t, x) = F (x). The coefficients are constructed

from the drift and diffusion components of the Itô diffusion process after some specified or-

ders of these terms.

19



Theorem 2.12 (Kloeden and Platen [1992], Chapter 5.1, Itô-Taylor Stochastic Expan-

sion). Suppose X(t) is the process defined in equation (2.28) and b′(x) = ∂
∂x
b(x). The Itô-

Taylor stochastic expansion with a time discretization, 0 = t0 < t1 < · · · < tN = T on a time

interval [0, T ] is:

X(ti+1) =X(ti) + a(X(ti)) ∆ + b(X(ti)) ∆̃W (i)

+
1

2
b(X(ti)) b

′(X(ti)) [(∆̃W (i))2 −∆] + R̃, (2.29)

where equidistant time step ∆ = ti+1−ti , ∆̃W (i) = W (ti+1)−W (ti) for i = 0, 1, 2, ...., N−

1 , a given initial value X(t0) = X(0) = x0, and R̃ is the remaining term defined as:

R̃ =

∫ ti+1

ti

∫ s

ti

L1a(X(z)) dz ds+

∫ ti+1

ti

∫ s

ti

b(X(z))
∂

∂x
a(X(z)) dW (z) ds

+

∫ ti+1

ti

∫ s

ti

L1b(X(z)) dz dW (s) +

∫ ti+1

ti

∫ s

ti

∫ z

t0

L1b(X(u))b′(X(u)) du dW (z) dW (s)

+

∫ ti+1

ti

∫ s

ti

∫ z

t0

b(X(u))(b′(X(u)))2 dW (u) dW (z) dW (s), (2.30)

where L is the operator function defined in Definition 2.11.

Remark 2.13. The Itô-Taylor stochastic expansion formula shown above is for the 1-D time-

homogeneous Itô diffusion process. The expansion formula for a general SDE is shown and

proved in [Kloeden and Platen, 1992, Section. 5].

We first define some notations and provide some general results. Then we prove Theorem

2.12.

Notation 2.14.

1. Suppose F is a twice continuous differentiable function, so F ∈ C2.

2. Given the computational formula of the infinitesimal generator in Definition 2.11,
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L1F (x) is:

L1F (x) = a(x)
∂

∂x
F (x) +

1

2
b(x)2 ∂

2

∂x2
F (x). (2.31)

3.
∫ ti+1

ti
dt = ti+1 − ti = ∆̃ti.

4.
∫ t
t0
dW (s) =

N−1∑
i=0

(W (ti+1)−W (ti)) = W (t)−W (t0), for any points

t0 ≤ · · · ≤ ti ≤ ti+1 ≤ · · · ≤ tN = t, and ∆̃W (i) = W (ti+1)−W (ti).

Lemma 2.15. The double Itô integral is evaluated as

∫ ti+1

ti

∫ s

ti

dW (z)dW (s) =
1

2

(
(∆̃W (i))2 − ∆̃ti

)
. (2.32)

Proof of Lemma 2.15. Evaluate the double Itô integral from the inside to outside and realize

that the first integral is a definite integral:

∫ ti+1

ti

∫ s

ti

dW (z) dW (s)

=

∫ ti+1

ti

[W (s)−W (ti)] dW (s)

=

∫ ti+1

ti

W (s) dW (s)−W (ti)

∫ ti+1

ti

dW (s)

=
1

2
W (ti+1)2 − 1

2
ti+1 − (

1

2
W (ti)

2 − 1

2
ti) (given Example 2.9)

−W (ti)[W (ti+1)−W (ti)]

=
1

2
(W (ti+1)−W (ti))

2 − 1

2
(ti+1 − ti)

=
1

2

(
(∆̃W (i))2 − ∆̃ti

)
. (given notations defined in Notation 2.14)

Proof of Theorem 2.12. To generate the Itô-Taylor stochastic expansion, we first apply the Itô

formula (2.18) on a SDE taken an integral form (2.4). For a twice continuously differentiable
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function F (X(t)), we obtain:

F (X(t)) = F (X(t0)) +

∫ t

t0

(
a(X(s))

∂

∂x
F (X(s)) +

1

2
b2(X(s))

∂2

∂x2
F (X(s))

)
ds

+

∫ t

t0

b(X(s))
∂

∂x
F (X(s)) dW (s)

= F (X(t0)) +

∫ t

t0

L1F (X(s)) ds+

∫ t

t0

b(X(s))
∂

∂x
F (X(s)) dW (s),

(2.33)

for s ∈ [t0, t], and applying the definition of operators L1F (x) in (2.31).

We then apply Itô formula to equation (2.33) and approximate the SDE by truncating the

higher-order multiple integrals, representing by the remaining term of the Itô-Taylor stochastic

expansion. Then given equation (2.33), let F1(x) = x,F2(x) = a(x),F3(x) = b(x), where

F1, F2 and F3 are twice continuous differentiable functions, we obtain



F1(X(t)) = X(t) = X(t0) +

∫ t

t0

a(X(s)) ds+

∫ t

t0

b(X(s)) dW (s) (2.34)

F2(X(t)) = a(X(t)) = a(X(t0)) +

∫ t

t0

L1a(X(s)) ds+

∫ t

t0

b(X(s))
∂

∂x
a(X(s)) dW (s) (2.35)

F3(X(t)) = b(X(t)) = b(X(t0)) +

∫ t

t0

L1b(X(s)) ds+

∫ t

t0

b(X(s))
∂

∂x
b(X(s)) dW (s). (2.36)

Subsequently, we can write out the second equality in (2.34), and then substitute a(X(s)) and

b(X(s)) by equations (2.35) and (2.36), which generates

X(t) = X(t0) +

∫ t

t0

a(X(s)) ds+

∫ t

t0

b(X(s)) dW (s)

= X(t0) +

∫ t

t0

(
a(X(t0)) +

∫ s

t0

L1a(X(z)) dz +

∫ s

t0

b(X(z))
∂

∂x
a(X(z)) dW (z)

)
ds

+

∫ t

t0

(
b(X(t0)) +

∫ s

t0

L1b(X(z)) dz +

∫ s

t0

b(X(z))
∂

∂x
b(X(z)) dW (z)

)
dW (s).

(2.37)
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Next, we collect the double integral terms with a remaining termR and obtain:

X(t) = X(t0) + a(X(t0))

∫ t

t0

ds+ b(X(t0))

∫ t

t0

dW (s) +R, (2.38)

where the remainder is:

R =

∫ t

t0

∫ s

t0

L1a(X(z)) dzds+

∫ t

t0

∫ s

t0

b(X(z))
∂

∂x
a(X(z)) dW (z)ds

+

∫ t

t0

∫ s

t0

L1b(X(z)) dzdW (s) +

∫ t

t0

∫ s

t0

b(X(z))
∂

∂x
b(X(z)) dW (z) dW (s).

We can expand the last double integral term in R further by applying Itô formula (2.18) with

F (x) = b(x) ∂
∂x
b(x) = b(x)b′(x). The result presented below is the Itô-Taylor stochastic

expansion for the SDE (2.28), with the remainder R̃ that consists of higher-order stochastic

integrals:

X(t) =X(t0) + a(X(t0))

∫ t

t0

ds+ b(X(t0))

∫ t

t0

dW (s)

+ b(X(t0))b′(X(t0))

∫ t

t0

∫ s

t0

dW (z) dW (s) + R̃, (2.39)

where the new remainder term R̃ is

R̃ =

∫ t

t0

∫ s

t0

L1a(X(z)) dzds+

∫ t

t0

∫ s

t0

b(X(z))
∂

∂x
a(X(z)) dW (z)ds

+

∫ t

t0

∫ s

t0

L1b(X(z)) dzdW (s) +

∫ t

t0

∫ s

t0

∫ z

t0

L1b(X(u))b′(X(u))du dW (z) dW (s)

+

∫ t

t0

∫ s

t0

∫ z

t0

b(X(u))(b′(X(u)))2dW (u) dW (z) dW (s). (2.40)

The construction of a numerical method for a SDE, in other words, the discrete-time Itô-Taylor

approximation, requires the evaluation of the integral terms in equation (2.39). Assuming

equidistant step size ∆̃ti = ti+1−ti and ∆̃W (i) = W (ti+1)−W (ti) for all i = 0, 1, · · · , N−1,
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we can rewrite the expansion (2.39) as

X(ti+1) =X(ti) + a(X(ti)) ∆̃ti + b(X(ti)) ∆̃W (i)

+
1

2
b(X(ti)) b

′(X(ti)) [(∆̃W (i))2 − ∆̃ti] + R̃, (2.41)

where the last double Itô integral in (2.39) is solved in Lemma 2.15 and R̃ is defined in (2.40)

with X(t0) = x0.

2.6.2 Euler-Maruyama Method

The Euler-Maruyama method [Maruyama, 1955] is one of the simplest numerical methods for

SDEs. It is obtained when the Itô-Taylor approximation (2.41) is truncated after the first order

terms:

X(ti+1) = X(ti) + a(X(ti)) ∆̃ti + b(X(ti)) ∆̃W (i), (2.42)

where ∆̃ti = ti+1− ti , ∆̃W (i) = W (ti+1)−W (ti) for i = 0, 1, 2, ...., N−1 and X(t0) = x0.

2.6.3 Milstein Method

The Milstein method [Milstein, 1975] keeps the second order terms of the Itô-Taylor approxi-

mation (2.41) and is constructed as:

X(ti+1) =X(ti) + a(X(ti)) ∆̃ti + b(X(ti)) ∆̃W (i)

+
1

2
b(X(ti)) b

′(X(ti)) [(∆̃W (i))2 − ∆̃ti], (2.43)

where ∆̃ti = ti+1− ti, ∆̃W (i) = W (ti+1)−W (ti) for i = 0, 1, 2, ...., N − 1 and X(t0) = x0.
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2.6.4 Simulations of SDEs by Euler-Maruyama and Milstein Methods

As discussed at the beginning of Section 2.6, numerical methods to approximate the solu-

tions of stochastic differential equations are required since the solutions of most SDEs are not

available in explicit form. This thesis aims to generate approximations to a realistic financial

process that cannot be solved explicitly. Simulations for general Itô diffusion processes (2.6)

using the Euler-Maruyama method (2.42) and the Milstein method (2.43) will be conducted

in R and compared across various grid widths.

The simulation algorithm is constructed for general one-dimensional Itô diffusion processes.

Both the Euler method and the Milstein method will be used in the simulation scheme, and

comparisons between the two methods are analysed on various grid widths.

Algorithm Construction:

1. Gold standard simulation: the simulation from the Milstein method with grid width 10−7

(N = 107).

Target simulations: simulations with the grid width set as 10−6, 10−5, 10−4 and 10−3 for

both the Euler and the Milstein methods.

2. Generate N independent noise terms separately, ∆̃W (i), where ∆̃W (i) ∼ N (0, ∆̃ti)

independently, for i = 0, 1, 2, ...., N − 1, so that the randomness introduced to the two

methods are same.

3. Proposed stochastic model: the Cox-Ingersoll-Ross model (Section 2.5.2) for a process

R(t):

dR(t) = θ(µ−R(t)) dt+ σ
√
R(t) dW (t), (2.44)

where R(0) = 1, T = 1, (θ, µ, σ) = (3, 2, 2) and N = {103, 104, 105, 106, 107}.
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The approximation form using the Euler method is

R(ti+1) = R(ti) + 3× (2−R(ti)) ∆̃ti + 2×
√
R(ti) ∆̃W (i), (2.45)

and using the Milstein method is:

R(ti+1) = R(ti) + 3× (2−R(ti)) ∆̃ti + 2
√
R(ti) ∆̃W (i) + [(∆̃W (i))2 − ∆̃ti].

(2.46)

4. Accuracy check: L1 distance: |R(tN) − r(tN)|, where R(tN) represents the gold stan-

dard simulation using the Milstein method at time T with grid width 10−7 and r(tN)

is any target simulation obtained by either the Euler method or the Milstein method at

time T for various grid widths (from 10−6 to 10−3).

Table 2.1 provides the L1 distance analysis for the Euler method and the Milstein method

across different grid widths from a single simulation of the CIR model.

L1 Distance for a single simulation

Grid width 10−6 10−5 10−4 10−3

Euler-Maruyama 0.00280 0.02975 0.03198 0.03773

Milstein 0.00193 0.02870 0.02277 0.02384

Table 2.1: L1 Distance for one sample path discretised on various scales using the Euler-
Maruyama method and the Milstein method on the CIR model with R(0) = 1, T = 1 and
parameters (θ, µ, σ) = (3, 2, 2).

Discussion of Table 2.1:

1. From Table 2.1, an overall declining trend of the L1 distance as the grid width increases

can be observed for both the Euler method and the Milstein method. Because all the target
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simulations are compared against the gold standard simulation, which we assume is the most

accurate simulation, this general trend indicates that a smaller grid width will lead to higher

simulation accuracy.

2. Comparing the results of the Euler and the Milstein methods, it is clear that the Milstein

method provides smaller error, thus higher accuracy compared to the Euler method across all

grid widths. This is because the Milstein method includes an additional second-order term

from the Itô-Taylor stochastic expansion compared to the Euler method.

The first 500 observations of the simulation sample are plotted for various grid widths to

compare the accuracy of the Euler method and the Milstein method.

Discussion of Figure 2.1:

1. All four plots in Figure 2.1 show the comparison among the three simulation methods for

the CIR process with parameters (θ, µ, σ) = (3, 2, 2), R(0) = 1 and T = 1. The three simula-

tion methods include the gold standard simulation using the Milstein method with grid width

10−7 (green lines), the target simulation using the Milstein method with grid width varying

from 10−3 to 10−6 (red lines) and the target simulation using the Euler method with grid width

the same as the Milstein target (blue lines). Because the Milstein method is more accurate

than the Euler method, theoretically, we should expect that the plots of coarse scales (10−3 or

10−4) show a relatively large difference between the Euler and Milstein simulations than the

finer scales (10−5 or 10−6).

2. From the top two plots of Figure 2.1, we can easily distinguish between the red lines

(Milstein) and blue lines (Euler), which verifies our previous supposition. Bottom two plots

compare the same simulation methods but with a change of the grid width to 10−5 and 10−6

respectively. The green and blue lines are easily seen, while the red lines are hardly visible,

especially when the grid width decreases to 10−6. The result is verified to be consistent via
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swapping the colour of the Euler and the Milstein methods, from which we can rule out the

probability due to the colour allocation effect.

Conclusion:

Summarising the error analysis shown in the table and the plots, we conclude that the Milstein

method provides a more accurate approximation to the ”gold standard” than the Euler method,

particularly when the grid width is relatively large. As the grid width becomes smaller, the

difference between the Euler method and the Milstein method diminishes.
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Figure 2.1: Sample path comparison plots of the first 500 observations of one simulation across various grid widths: (top-left):
10−3, (top-right): 10−4, (bottom-left): 10−5, (bottom-right): 10−6. The model parameters are (θ, µ, σ) = (3, 2, 2), R(0) = 1 and
T = 1.
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3 Parameter Estimation of 1-D Itô Diffusion Process

In Chapter 2, we introduced the stochastic differential equation and some of its properties. We

also derived the numerical method of diffusion processes using the Itô-Taylor stochastic ex-

pansion. This chapter focuses on the parameter estimation of time-homogeneous Itô diffusion

processes with the Markov property.

Consider a one-dimensional Itô diffusion process X(t) (Definition 2.2) on the interval [0, T ],

which is the solution to the stochastic differential equation

dX(t) = a(X(t), θ) dt+ b(X(t), σ) dW (t), X0 = x0; (3.1)

where W (t) is the SBM (Definition 2.1), θ and σ are unknown parameters, and a(x, θ) and

b(x, σ) are the drift and diffusion coefficients defined on R × R+. From now on, the first

argument of a and b is the state variable and the second argument is an unknown parameter.

The existence of a unique solution of (3.1) is guaranteed by letting a(x, θ) and b(x, σ) be

continuously differentiable functions with respect to x.

A discretised trajectory (X(tni ), 0 ≤ i ≤ n) with equidistant step

∆n = tni+1 − tni (3.2)

is considered under discrete-time observations, where for each n, [0, T ] is divided into n equal
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sub intervals, 0 = tn0 ≤ tn1 ≤ · · · ≤ tnn−1 ≤ tnn = Tn. For notational convenience, we shall

often drop the subscript n in ∆n and Tn and drop the superscript in tni . We are interested in

estimating the unknown parameter vector α = (σᵀ, θᵀ)ᵀ.

A general method in statistical inference is using the likelihood function and maximum like-

lihood estimation. The difficulty of this approach is that the transition density is unknown for

most stochastic processes. Many authors have contributed to the development of approaches to

this estimation problem. Dacunha-Castelle and Florens-Zmirou [1986] provided a discussion

that in ergodic case, the maximum likelihood estimator (vector) α̂MLE of the process (3.1)

is consistent and asymptotically Gaussian under certain conditions. However, they proposed

the exact discretisation of the transition density, which is not a practical method. A popular

method conducted by many researchers ([Yoshida, 1992], [Kessler, 1997], [Shoji and Ozaki,

1998]) is to consider an approximation method to the transition density.

The aim of this chapter is to introduce and extend the parameter estimation scheme of 1-D Itô

diffusion processes using approximation to the transition density methods. First, we review

the likelihood function of Markov processes and present some necessary assumptions of the

parameter estimation scheme. Then, we present and prove the higher-order Itô-Taylor expan-

sion result reported in [Florens-Zmirou, 1989]. Some previous works, including the Gaussian

approximation to the transition density [Kessler, 1997], are then revised. Most importantly,

a new approximation method that uses the skew-normal density to approximate the transition

density is introduced to handle the skewness in the process. Finally, the parameter estima-

tion scheme is built in MATLAB and some approximation analyses for the Gaussian (Kessler)

method and the skew-normal (SN) method are provided.
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3.1 Likelihood approximation

3.1.1 Markov Property

First, we introduce some good properties of the diffusion process to assist the parameter es-

timation analysis. Kloeden and Platen [1992] introduced the Markov property of diffusion

processes in a conditional probability format. We give the definition of the conditional proba-

bility of the diffusion process X(t).

Definition 3.1. Suppose the diffusion process X = (X(t), t ≥ 0) defined in (3.1) tak-

ing continuous values in R has a joint density function pX(t0),··· ,X(ti)

(
x0, x1, · · · , xi

)
for

i = 0, 1, 2 · · · . Then let X be bounded Borel subsets B ∈ B(R), define its conditional

probability as

P
(
X(ti+1) ∈ B|X(t0) = x0, X(t1) = x1, · · · , X(ti) = xi

)
=

∫
B
pX(t0),··· ,X(ti),X(ti+1)

(
x0, x1, · · · , xi, y

)
dy∫∞

−∞ pX(t0),··· ,X(ti),X(ti+1)

(
x0, x1, · · · , xi, y

)
dy
, (3.3)

for all 0 ≤ t0 ≤ t1 · · · ≤ ti ≤ ti+1, and all x1, x2, · · · , xi+1 ∈ R, i = 0, 1, 2 · · · , and assuming

the denominator is nonzero.

Theorem 3.2 (Markov Property, Kloeden and Platen [1992], Chapter 1 (6.17)).

For a diffusion process X(t) possessing the Markov property, the future value X(ti+1)

only depends on the present value X(ti) and is not influenced by the past values

X(0), X(1), X(2), · · · , X(ti−1). This is reflected in the formula

P
(
X(ti+1) ∈ B|X(t0) = x0, X(t1) = x1, · · · , X(ti) = xi

)
= P

(
X(ti+1) ∈ B|X(ti) = xi

)
, (3.4)

32



for all Borel subsets B ∈ B(R), all 0 ≤ t0 ≤ t1 ≤ · · · ≤ ti+1 and all x1, x2, · · · , xi ∈ R,

i = 0, 1, 2 · · · .

The diffusion process X(t) (3.1) with the Markov property is also called a Markov

process. Given Definition 3.1 and Theorem 3.2, the corresponding transition density

pX(ti+1)

(
x|X(ti) = xi

)
is

P
(
X(ti+1) ∈ B|X(ti) = xi

)
=

∫
B

pX(ti+1)

(
x|X(ti) = xi

)
dx,

for all Borel subsets B ∈ B(R).

Given above definitions, we can decompose the joint density function into the product of

transition densities. Denote the density of X(ti) as pX(ti)(xi), then the joint density of X(t0)

and X(t1) is

pX(t0),X(t1)

(
x0, x1

)
= pX(t0)(x0)pX(t1)

(
x1|X(t0) = x0

)
,

for 0 ≤ t0 ≤ t1. Consequently, we obtain the joint density for x0, x1, · · · , xn using iteration

pX(t0),··· ,X(tn)

(
x0, x1, · · · , xn

)
= pX(t0)(x0)

n∏
i=1

pX(ti)

(
xi|X(ti−1) = xi−1

)
, (3.5)

for 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn.

3.1.2 Other Assumptions

The Markov property of diffusion processes performs a vital role in likelihood estimation;

however, to build up the parameter estimation scheme, several additional assumptions need

to be made, including a time-homogeneous Itô diffusion process with a stationary probability

distribution, and hence the ergodic property.
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When the Itô diffusion process was defined in Chapter 2, we briefly introduced an important

feature, time-homogeneity, which indicates that the transition densities of the processX(t) are

dependent on the time difference ti − ti−1 only. We will state this property using the notation

defined in the last section, that is

P
(
X(ti+1) ∈ B|X(ti) = x

)
= P

(
X(ti+1 − ti) ∈ B|X(0) = x

)
, (3.6)

for any 0 ≤ t0 ≤ · · · ≤ ti ≤ ti+1, x ∈ R, and any Borel subsets B ∈ B(R).

Equation (3.6) shows that the transition probability has no relationship with the specific val-

ues ti−1 or ti. Thus the Itô diffusion process is time-homogeneous. A formal proof of

time-homogeneous property using the weak uniqueness of the solutions of SDEs is shown

in [Øksendal, 2003, Definition. 7.1.1].

The assumption of time-homogeneity alone is not enough since this does not guarantee a

stationary stochastic process. Gobet [2002] presents conditions under which there exists a

unique stationary probability density p̄X(ti)(xi) for a stationary diffusion process X(t), such

that

p̄X(ti)(xi) =

∫ ∞
−∞

pX(ti)

(
xi|X(ti−1) = xi−1

)
p̄X(ti−1)(xi−1) dxi−1, (3.7)

for all x1, · · · , xi−1, xi ∈ R. This leads to a nice property called ergodicity, that connects the

long run time average of the realisations and the spatial average of the stationary distribution.

Definition 3.3 (Ergodic Property). For a bounded measurable function g(.) : R → R and

p̄X(x) is the stationary probability density defined in (3.7), a diffusion process X(t) possesses

the ergodic property if

lim
T→∞

1

T

∫ T

0

g(X(t))dt =

∫ ∞
−∞

g(x) p̄X(x) dx, almost surely; (3.8)

that is, the limit of time average of its realisations exists and equals the spatial average with
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respect to the stationary probability density.

The logic behind the ergodicity is the Law of Large Numbers, which will not be discussed

here. Kloeden and Platen [1992] provided some detailed discussions on the ergodic property

of discrete-time Markov chains. In this setting, the ergodicity condition guarantees a unique

stationary probability density and thus a consistent estimator (vector), which are crucial prop-

erties in likelihood analysis.

3.1.3 Likelihood of Markov Processes

This section demonstrates the scheme of maximum likelihood estimation for the parameters

of diffusion processes. Under the assumption of the Markov property of the diffusion process

X(t) (Theorem 3.2), we define the likelihood function based on the parameter vector α as a

product of transition densities:

Ln(α) =
n∏
i=1

pX(ti)(xi|X(ti−1) = xi−1;α), (3.9)

where pX(ti)(xi|X(ti−1) = xi−1;α) is the transition density of X given X(ti−1) = xi−1. The

log-likelihood function with respect to the parameter vector α is then given by

ln(α) = logLn(α) =
n∑
i=1

log
{
pX(ti)(xi|X(ti−1) = xi−1;α)

}
. (3.10)

The score function is the first partial derivatives of the log-likelihood function with respect

to the parameter vector α. When the transition density is differentiable, the score (vector)

function is

Un(α) = ∂α logLn(α) =
n∑
i=1

∂α log
{
pX(ti)(xi|X(ti−1) = xi−1;α)

}
, (3.11)
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where ∂α := ∂
∂α

is the vector of partial derivatives.

The maximum likelihood estimators are found by settingUn(α) = 0. In general, the maximum

likelihood estimation is an efficient technique for estimating unknown parameters. However,

the transition density of the SDE is generally unknown. Therefore, an approximation to the

likelihood function, and thus, the transition density, is required for maximum likelihood esti-

mation.

3.2 High-order Itô-Taylor Expansion

To perform parameter estimation of the diffusion process with the maximum likelihood esti-

mation method, we are interested in a practical method to approximate the transition densities.

Dacunha-Castelle and Florens-Zmirou [1986] proposed an exact expression for the transition

density, which is not practical for numerical calculation. However, they provided a valuable

expansion result to approximate relevant characteristics of the diffusion process. They also

proved consistency and the asymptotically Gaussian limit distribution of maximum likelihood

estimators of the process defined in (3.1) as ∆n → 0 and Tn = n∆n → ∞, where ∆n is the

equidistant time discretisation defined in (3.2) and n is number of observations. From now

on, the analysis is on equidistant time discretisation and we will let ∆n interchangeable with

∆. Moreover, the time interval Tn is not fixed and we allow the interchange between Tn and

T . The high-order Itô-Taylor expansion result is introduced in this section, and some results

of the Gaussian approximation to the distribution of the maximum likelihood estimators are

discussed in the next section (Section 3.3).

First, we introduce some notation based on the Itô diffusion process X(t) defined in (3.1).

Notation 3.4.

1. α = (σᵀ, θᵀ)ᵀ and c(x, σ) := b2(x, σ).
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2. f : R→ R: a 2(s+ 1)-times continuously differential function.

3. For 0 ≤ i ≤ n, tni = i∆n, where the equidistant step is assumed and ∆n is interchange-

able with ∆ and the superscript n in tni is allowed to be dropped.

4. θ0, σ0 and α0 are the population values of θ, σ and α.

5. Lαf is the infinitesimal generator based on parameter (vector) α defined in Definition

2.11. For simplicity, we will use Lf := Lαf in most cases. The kth iterate of L is

defined in equation (2.24).

In Chapter 2, we provided a simple version of the Itô-Taylor expansion (Theorem 2.12). A

general Itô-Taylor expansion formula under a diffusion process X(t) is given as

f(X(t)) =
s∑
j=0

∆j
n

j!
Lsf(X(t0))

+

∫ t

t0

∫ u1

t0

· · ·
∫ us

t0

Ls+1f(X(us+1))dus+1 · · · du1, (3.12)

for s ∈ [t0, t]. The Itô-Taylor expansion formula is important in numerical analysis and a mod-

ified form of the expansion is now considered, which is written in a conditional expectation

form, conditioning on the σ-field Fni := σ(X(s), s ≤ tni ) introduced by Dacunha-Castelle

and Florens-Zmirou [1986].

Lemma 3.5 (Dacunha-Castelle and Florens-Zmirou [1986], Lemma 4). For every function

f ∈ C2(s+1) and the diffusion process X(t) in the form

dX(t) = a(X(t), θ) dt+ b(X(t), σ) dW (t), (3.13)

where α = (θ, σ) is unknown parameter vector and W (t) is the SBM (Definition 2.1), we

37



define the higher-order Itô-Taylor expansion

Eα0 [f(X(ti))|Fni−1] =
s∑
j=0

∆j
n

j!
Ljα0

f(X(ti−1))

+

∫ ∆n

0

∫ u1

0

· · ·
∫ us

0

Eα0 [Ls+1
α0

f(X(ti−1 + us+1)|Fni−1)]dus+1 · · · du1,

(3.14)

where α0 is population value of α.

This result is used in many papers, but neither Dacunha-Castelle and Florens-Zmirou [1986]

nor the subsequent literature has provided a proof of this expansion. We prove the expansion

result using Dynkin’s formula and induction on s.

Proof of Lemma 3.5. We first introduce Dynkin’s formula and some lemmas, which will be

helpful for the following induction proof procedure.

Theorem 3.6 (Dynkin’s Formula, Øksendal [2003], Theorem 7.4.1). For every function

f ∈ C2, τ is a stopping time, where E[τ ] <∞. Then

E[f(X(τ))|X(0) = x] = f(x) + E

[∫ τ

0

Lf(X(s)) ds

∣∣∣∣X(0) = x

]
. (3.15)

Remark 3.7. Though Dynkin’s formula is stated for stopping times, we will only need it for

a fixed time.

Lemma 3.8 (Change the order of conditional expectation and integral). Suppose X(u) is

a measurable function on probability space (Ω,F ,P), given two assumptions:

1.

−∞ < a < b <∞, (3.16)
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2.

sup
u∈[a,b]

E|X(u)| <∞, (3.17)

then ∫ b

a

E[X(u)|F ]du = E

[∫ b

a

X(u)du
∣∣∣F] . (3.18)

A rigorous proof is shown in [Schilling, 2017, Theorem. 27.17]. We provide a proof sketch of

Lemma 3.8.

Proof of Lemma 3.8. Using conditional version of Fubini’s theorem given by [Schilling,

2017], which holds under conditions (3.16) and (3.17), we have

∫ b

a

E[X(u)|F ]du = E

[∫ b

a

X(u)du
∣∣∣F] . (3.19)

Therefore, (3.18) holds.

Lemma 3.9. Let I(.) be the indicator function. The multiple integral is evaluated as

∫ ∆n

0

∫ u1

0

· · ·
∫ uk

0

I (0 ≤ uk+1 ≤ uk · · · ≤ u1 ≤ ∆n) duk+1duk · · · du1

=
∆k+1
n

(k + 1)!
, (3.20)

where ∆n is defined in Notation 3.4.

Proof of Lemma 3.9. We first introduce an induction step:

∫ u1

0

· · ·
∫ uk

0

I (0 ≤ uk+1 ≤ uk · · · ≤ u1) duk+1 · · · du2

=
uk1
k!
. (3.21)
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Elementary calculation shows that (3.21) holds for k = 1 and k = 2. Consequently, we can

evaluate the multiple integral in (3.20) as

∫ ∆n

0

∫ u1

0

· · ·
∫ uk

0

I (0 ≤ uk+1 ≤ uk · · · ≤ u1 ≤ ∆n) duk+1duk · · · du1

=

∫ ∆n

0

[∫ u1

0

· · ·
∫ uk

0

I (0 ≤ uk+1 ≤ uk · · · ≤ u1) duk+1 · · · du2

]
du1

=

∫ ∆n

0

uk1
k!

du1 (by induction step (3.21))

=
∆k+1
n

(k + 1)!
.

Remark 3.10. The multiple integral is calculated from inside to outside in this paper, which

is opposite to the way Dacunha-Castelle and Florens-Zmirou [1986] did.

Given the above definitions and results, we provide the specific proof of equation (3.14) by

induction on s.

Base step : Show that the statement holds for the smallest natural number when s = 0:

Eα0 [f(X(ti))|Fni−1] =
s=0∑
j=0

∆j
n

j!
Ljα0

f(X(ti−1))

+

∫ ∆n

0

Eα0

[
Ls+1
α0

f(X(ti−1 + u1))

∣∣∣∣Fni−1

]
du1 (3.22)

= f(X(ti−1)) + Eα0

[∫ ∆n

0

Lα0f(X(ti−1 + u1))du1

∣∣∣∣Fni−1

]
. (3.23)

The change of integral and conditional expectation from (3.22) to (3.23) is justified in Lemma

3.8. Because the last equality (3.23) satisfies Theorem 3.6, the base step is verified to be

correct.

Induction step: Show that for any s ≥ 0, if Eα0 [f(X(ti))|Fni−1] holds for s = k, then

Eα0 [f(X(ti))|Fni−1] for s = k + 1 also holds.
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First, we calculate the expansion in (3.14) for s = k:

Eα0 [f(X(ti))|Fni−1] =
s=k∑
j=0

∆j
n

j!
Ljα0

f(X(ti−1))

+

∫ ∆n

0

∫ u1

0

· · ·
∫ uk

0

Eα0

[
Lk+1
α0

f(X(ti−1 + uk+1))
∣∣∣Fni−1

]
duk+1 · · · du1.

(3.24)

If we apply Theorem 3.6 on the expectation part of (3.24), it can be rewritten as

Eα0 [f(X(ti))|Fni−1] =
s=k∑
j=0

∆j
n

j!
Ljα0

f(X(ti−1))

+

∫ ∆n

0

∫ u1

0

· · ·
∫ uk

0

{
Lk+1
α0

f(X(ti−1))

+ Eα0

[∫ uk+1

0

Lk+2
α0

f(X(ti−1 + uk+2))duk+2

∣∣∣∣Fni−1

]}
duk+1 · · · du1.

(3.25)

By Lemma 3.9, the first term in the multiple integral in (3.25) is

∫ ∆n

0

∫ u1

0

· · ·
∫ uk

0

Lk+1
α0

f(X(ti−1)) duk+1 · · · du1 =
∆k+1
n

(k + 1)!
L(k+1)
α0

f(X(ti−1)). (3.26)

Then, apply Lemma 3.8 on the expectation term in the multiple integral of (3.25) and combine

with (3.26), we can expand Eα0 [f(X(ti))|Fni−1] in (3.25) to the case s = k + 1:

Eα0 [f(X(ti))|Fni−1] =
s=k+1∑
j=0

∆j
n

j!
Ljα0

f(X(ti−1))

+

∫ ∆n

0

∫ u1

0

· · ·
∫ uk+1

0

Eα

[
Lk+2
α0

f(Xti−1
+ uk+2)

∣∣∣Fni−1

]
duk+2 · · · du1.

(3.27)

Consequently, the statement when s = k + 1 is also true from the induction.
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We have proved that both the base step and the inductive step are true. By mathematical

induction, the statement (3.14) holds for every natural number s and the proof is completed.

To assist in further analysis, equation (3.14) is split into two parts:

Eα[f(X(ti))|Fni−1] = ms(∆n, f(X(ti−1));α) +Rs+1(∆n, x;α), (3.28)

where we define based on the information of α

ms(∆n, f(X(ti−1));α) :=
s∑
j=0

∆j
n

j!
Ljαf(X(ti−1)) (3.29)

and

Rs+1(∆n, x;α) :=

∫ ∆n

0

∫ u1

0

· · ·
∫ us

0

Eα

[
Ls+1
α f(X(ti−1 + us+1))

∣∣∣Fni−1

]
dus+1 · · · du1.

3.3 Parameter Estimation with Gaussian Approximation to

the transition density

In this chapter, we describe a Gaussian approximation to the transition density due to Kessler

[1997]. The Gaussian approximation to the transition density has been analysed in many stud-

ies, since the increment of standard Brownian motion is Gaussian distributed with mean of 0

and variance of the time increment ∆n (Definition 2.1). It is intuitive to expect that the diffu-

sion processX(t) (3.1) driven by the standard Brownian motionW (t) is well approximated by

the Gaussian characteristic. Dacunha-Castelle and Florens-Zmirou [1986] proved that under

certain conditions, the maximum likelihood estimators of the diffusion process X(t) are con-
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sistent and asymptotically Gaussian distributed at the limit, ∆n → 0 and Tn = n∆n → ∞.

Kessler [1997] developed a method of the Gaussian approximation to the transition density

based the work done in previous studies ([Dacunha-Castelle and Florens-Zmirou, 1986] and

[Florens-Zmirou, 1989]). Kessler’s contribution, which will be described in this section, is to

provide higher-order approximations to the conditional mean and conditional variance in the

Gaussian approximation.

First, an approximation to the likelihood function is required for maximum likelihood estima-

tion of an Itô diffusion process. Florens-Zmirou [1989] considered the asymptotically exact

scheme based on the higher-order Itô-Taylor expansion result presented in Lemma 3.5 for a

Itô diffusion process Y (t) taking the form in (3.1) with drift term a(y, θ) and diffusion term

b(y, σ) = σ:

Y (ti) = Y (ti−1) + a(Y (ti−1), θ)∆n + σ∆̃W (i), Y (t0) = Y0; (3.30)

with equidistant time discretisation ∆n and increment of standard Brownian motion ∆̃W (i) =

W (ti)−W (ti−1). This is also known as the Euler-Maruyama method (Section 2.6.2). Florens-

Zmirou [1989] proved that under certain conditions, as ∆n → 0, n∆n →∞, the process Y (t)

possesses ergodicity and the maximum likelihood estimator (vector) α̂MLE is consistently

Gaussian distributed. Moreover, as n∆3
n → 0, the derived estimators are asymptotically effi-

cient. The likelihood function of the process Y (t) can be used to construct the score function

(3.11) and maximum likelihood estimators α̂MLE .

Given that Y (t) holds for ergodicity and generates consistent and asymptotically Gaussian

estimators, Kessler [1997] constructed a likelihood function of X(t) in place of Y (t) (3.30)

using the Gaussian approximation to the transition density. Instead of assuming a constant

diffusion term σ, Kessler [1997] considered the general Itô diffusion process (3.1) with the

43



diffusion term b(x, σ). Specifically, the exact scheme in (3.30) is modified to be

X(ti) = X(ti−1) + a(X(ti−1), θ) ∆n + b(X(ti−1), σ) ∆̃W (i), X(t0) = X(0). (3.31)

The increments (X(ti)−X(ti−1)) → N (a(X(ti−1), θ)∆n, b(X(ti−1), σ)2∆n) as ∆n → 0

and n∆n →∞, for i = 1, 2, · · · , n. Then, the Gaussian transition density is expressed as:

pX(ti)(xi|X(ti−1) = xi−1;α) =
1√

2πb(xi−1, σ)2∆n

exp

{
−
(
(xi − xi−1)− a(xi−1, θ)∆n

)2

2b(xi−1, σ)2∆n

}
,

(3.32)

where the parameter vector α = (θᵀ, σᵀ)ᵀ.

Given the formula (3.10), the log-likelihood function of (X(ti))0≤i≤n is:

ln(α) = −1

2

n∑
i=1

((
xi − xi−1 − a(xi−1, θ)∆n

)2

b(xi−1, σ)2∆n

+ n log
(
2π b(xi−1, σ)2∆n

))
. (3.33)

To approximate the log-likelihood function (3.33), it is natural to consider the first and sec-

ond conditional moments. Kessler [1997] approximated the moments using the Itô-Taylor

expansion formula (3.28) introduced in the last section. We start the demonstration of the

approximation procedure by giving some definitions and results.

Definition 3.11. Define the moment generating function of a random variable X

MX(t) := E[etX ], (3.34)

then the nth non-central moment of X is

µ′n = E[Xn] = M
(n)
X (0), (3.35)
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and the nth central moment of X is

µn = E[(X − E[X])n]. (3.36)

Given the Gaussian property of increments demonstrated in (3.32), Kessler [1997] approxi-

mated the transition density by matching its mean and variance with the first raw moment of

X(ti−1)

µ′1(α, xi−1) ' xi−1 + a(xi−1, θ)∆n, (3.37)

and the second central moment of X(ti−1)

µ2(α, xi−1) ' b(xi−1, σ)2∆n. (3.38)

In other words, this leads to an approximation of the mean and variance of the transition

density using the mean and variance of Gaussian distribution:


µ′1(α, xi−1) = Eα[xi|X(ti−1) = xi−1]

µ2(α, xi−1) = Eα[(xi − µ′1(α, xi−1))2|X(ti−1) = xi−1]

. (3.39)

Consequently, the transition density is approximated using the density of

N (µ′1(α, xi−1), µ2(α, xi−1)). The resulting log-likelihood function of Gaussian approx-

imation is

ln(α) = −1

2

n∑
i=1

(
(xi − µ′1(α, xi−1))2

µ2(α, xi−1)
+ n log(2πµ2(α, xi−1))

)
. (3.40)

The maximum likelihood estimation α̂MLE is obtained by differentiating (3.40) with respect

to the parameter vector α = (θᵀ, σᵀ)ᵀ and equating the score (vector) function to zero.
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3.4 Parameter Estimation Scheme with Skewness

In the previous section, we introduced the Gaussian scheme of parameter estimation (the

Kessler method). However, the Gaussian distribution is known to be a symmetric distribu-

tion about 0, which means it is expected to be insufficient in handling the skewed case. We are

interested in constructing a skew-normal approximation to the transition density based on the

previous analysis in order to overcome the limitation of the Kessler method. The conditions

introduced in the Kessler method to ensure consistent and asymptotically efficient estimators

are also assumed in this section, which includes ∆n → 0, n∆n →∞ and n∆3
n → 0.

3.4.1 Skew-Normal Distribution

This section introduces the skew-normal (SN) distribution first proposed in [Azzalini, 1985].

We also highlight the general features and some properties of the skew-normal distribution.

Definition 3.12 (Standard Normal PDF and CDF). Denote φ(z) by the standard normal

probability density function

φ(z) =
e−z

2/2

√
2π

, (3.41)

where z ∈ R, and the cumulative density function, Φ(z), by

Φ(z) =

∫ z

−∞
φ(t) dt. (3.42)

We now introduce a remarkable result from [Azzalini, 1985], which is essential for the con-

struction of the SN distribution.

Lemma 3.13 (Azzalini [1985], Lemma 1). Let h be a density function symmetric about 0,

and G be an absolutely continuous distribution function such that its first derivative G′ is
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symmetric about 0. Then,

2G(λy)h(y) (3.43)

is a density function for −∞ < y <∞ and λ ∈ R.

The proof of Lemma 3.13 is provided in [Azzalini, 1985]. The author used this result to

directly construct the skew-normal distribution.

Definition 3.14 (Skew-normal Distribution). A random variable Z following the skew-

normal distribution has the density function:

fZ(z; γ) = 2φ(z)Φ(γz), (−∞ < z <∞); (3.44)

with asymmetry parameter γ ∈ R.

A negative γ will cause the density (3.44) to have more weight on negative z, which indicates

a negative skewness, whereas a positive γ indicates a positively skewed density. It follows

easily from (3.44) that when γ = 0, the SN distribution turns out to be a Gaussian distribution.

The distribution function of skew-normal distribution is

FZ(z; γ) = 2

∫ z

−∞
φ(t)Φ(γt) dt = 2

∫ z

−∞

∫ γt

−∞
φ(t)φ(u) du dt. (3.45)

Our main target is to find the moments and cumulants of SN distribution and use them to

construct an approximation to the transition density. The even moments of Z following SN

distribution are equal to the even moments of standard normal distribution [Azzalini, 1985].

The moment generating function (mgf) of SN distribution is also derived in [Azzalini, 1985]:

M(t) = 2et
2/2Φ(δt), (3.46)
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where δ = γ√
1+γ2

and et2/2 is the mgf of the standard normal distribution.

Consequently, we calculate the first three non-central moments of Z using the formula (3.35)

and (3.46): 
E[Z] =

√
2
π
δ

E[Z2] = 1

E[Z3] =
√

2
π
(3δ − δ3)

. (3.47)

In the next section, we will develop the general scheme for approximations to the transition

density using the first three cumulants of the distribution.

3.4.2 Scheme of Transition Density Approximation

In this section, we construct the estimation scheme using the first three cumulants and the

higher-order Itô-Taylor expansion result in (3.29). The reason we include the first three cu-

mulants rather than the first three moments is a matter of computational convenience. The

standardised skewness of a distribution is used later to quantify skewness.

First, we will give the definitions of the cumulant generating function and the cumulants.

Definition 3.15 (Cumulant Generating Function). Denote K(t) as the cumulant generating

function, which is the natural logarithm of the moment generating function (3.34):

K(t) = logM(t). (3.48)

The cumulants κr are the coefficients in a power series expansion of the cumulant generating

function (3.48):

K(t) =
∞∑
r=1

κr
tr

r!
= κ1t+ κ2

t2

2!
+ κ3

t3

3!
+ · · · . (3.49)
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The rth cumulant can be obtained by differentiating expansion (3.49) r times and setting

t = 0 :

κr = K(r)(0). (3.50)

Next, we will define some notation.

Notation 3.16.

1. κ1, κ2, κ3 are the first three cumulants, and are calculated using (3.50).

2. µ′1, µ
′
2, µ

′
3 are the first three raw (non-central) moments, defined in equation (3.35).

3. µ1, µ2, µ3 are the first three central moments, defined in equation (3.36).

4. The standardised skewness of a distribution is defined as κ3

κ
3/2
2

.

Given the relationship between the moment generating function and the cumulant generating

function (3.48), the first three cumulants can be expressed as functions of moments:


κ1 = µ′1

κ2 = µ′2 − µ′1
2 = µ2

κ3 = µ′3 − 2µ′1µ
′
2 + 2µ′1

3 = µ3

, (3.51)

where κ2 and κ3 are equal to the second and third central moments, respectively.

Similar to the Kessler method (3.3), we aim to approximate the transition density using the

density of a distribution that allows skewness. Specifically, the first three cumulants of the
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distribution are required. The key idea is demonstrated as follows:


κ1(α, x) = Eα[X(ti)|X(ti−1) = x]

κ2(α, x) = Eα[(X(ti)− κ1(α, x))2|X(ti−1) = x]

κ3(α, x) = Eα[(X(ti)− κ1(α, x))3|X(ti−1) = x]

, (3.52)

where κr(α, x) is the conditional rth cumulant of X(ti) given X(ti−1) = x.

The closed form for the moments function is generally not available because the transition

density of the diffusion process X(t) is unknown. We apply the expansion result (3.28) to

evaluate the first three cumulants. Specifically, the remaining term is omitted and only the

summation term ms(∆, f(x);α), defined in equation (3.29), is employed, where ∆ is inter-

changeable with ∆n. All the terms in the expansion of size O(∆3) are neglected.

To demonstrate the approximation procedure for the Itô diffusion process (3.1), we start by

defining some notation.

Notation 3.17.

1. a := a(x, θ), c := c(x, σ) = b(x, σ)2.

2. a′ := ∂
∂x
a ; c′ := ∂

∂x
c ; a′′ := ∂2

∂x2
a ; c′′ := ∂2

∂x2
c ; ∂x := ∂

∂x
; ∂2

x := ∂2

∂x2
.

3. Define fj(x) = xj , where fj(x) is twice continuously differentiable function for j =

{1, 2, 3}.

4. mj,s := ms(∆, fj(x);α), m2
j,s := (mj,s)

2, where ms(.) is the power expansion series

defined in equation (3.29). We assume s = 2 since the terms of size O(∆3) are ne-

glected.

5. Lf(x) := Lαf(x), the infinitesimal generator defined in Definition 2.11.
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Lemma 3.18 (Moment Estimation). Apply the formula (3.29) on mj,s , where j = {1, 2, 3}

and s = 2, to obtain the approximation to the first three non-central moments:

for the first moment,


m1,2 = x+ ∆a+ 1

2
∆2(aa′ + 1

2
ca′′) +O(∆3)

m2
1,2 = x2 + 2∆ax+ ∆2(a2 + aa′x+ 1

2
a′′cx) +O(∆3)

; (3.53)

for the second moment,

m2,2 =x2 + ∆(2bx+ c)

+
1

2
∆2(2bb′x+ b′′cx+ 2b2 + bc′ + 2b′c+

cc′′

2
) +O(∆3); (3.54)

and for the third moment,

m3,2 =x3 + 3∆(bx2 + cx)

+
1

2
∆2(3bb′x2 + 6b2x+ 3bc′x+ 6bc+

3

2
b′′cx2 + 6b′cx+

3

2
cc′′x) +O(∆3). (3.55)

Proof of Lemma 3.18. The logic underlying the calculation of the first three moments is the

same, so we only demonstrate the calculations for the first moment. First, we find L0f(x),

L1f(x) and L2f(x) for a general function f(x).

The infinitesimal generator L0f(x) is calculated using the formula (2.24) defined in Definition

2.11

L0f(x) = f(x). (3.56)

The first iterate of operator L1f(x) is obtained by applying formula (2.23)

L1f(x) = a ∂xf(x) +
c

2
∂2
xf(x), (3.57)
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where c := c(x) = b(x)2. The second iterate of operator L2f(x) is

L2f(x) = L
(
L1(f(x)

)
= a ∂x

(
L1f(x)

)
+
c

2
∂2
x

(
L1f(x)

)
= a ∂x

(
a ∂xf(x) +

c

2
∂2
xf(x)

)
+
c

2
∂2
x

(
a ∂xf(x) +

c

2
∂2
xf(x)

)
= a

(
a′ ∂xf(x) + a ∂2

xf(x) +
c′

2
∂2
xf(x) +

c

2
∂3
xf(x)

)
+
c

2

(
a′′ ∂xf(x) + a′ ∂2

xf(x) + a′ ∂2
xf(x) + a ∂3

xf(x)

+
c′′

2
∂2
xf(x) +

c′

2
∂3
xf(x) +

c′

2
∂3
xf(x) +

c

2
∂4
xf(x)

)
. (3.58)

In the last equality of equation (3.58), the derivatives of a and c depend on the diffusion process

X(t). The first and second derivatives of f(x) are required. However, the terms of size O(∆3)

will be ignored. Now, we evaluate those quantities.

When f(x) = f1(x) = x, the first and second derivatives of f1(x) is

∂xf1(x) = 1; ∂2
xf1(x) = 0.

Then we find L0f1(x), L1f1(x) and L2f1(x) using formulas (3.56), (3.57) and (3.58), respec-

tively 
L0f1(x) = x

L1f1(x) = a

L2f1(x) = aa′ + 1
2
a′′c

. (3.59)

Therefore, we estimate the first non-central moment of f(x) = f1(x) = x using the formula

52



(3.29):

m1,2 =
s=2∑
j=0

∆j

j!
Ljf1(x) +O(∆3)

= L0f1(x) + ∆L1f1(x) +
1

2
∆2L2f1(x) +O(∆3)

= x+ ∆a+
1

2
∆2(aa′ +

1

2
ca′′) +O(∆3). (3.60)

Proof for the first moment is completed. The same logic applies to the second and third non-

central moments.

Given the estimations of the non-central moments mj,s, j = {1, 2, 3}, s = 2 (Lemma 3.18),

we estimate the cumulants using the relationship between cumulants and moments (3.51).

Lemma 3.19 provides the result of the estimation scheme for the first three cumulants.

Lemma 3.19. The first three cumulants approximations are


κ1 = x+ ∆a+ ∆2

2
(aa′ + 1

2
ca′′) +O(∆3)

κ2 = ∆c+ ∆2(ac
′

2
+ a′c+ cc′′

4
) +O(∆3)

κ3 = 3
2
∆2cc′ +O(∆3)

. (3.61)

Proof of lemma 3.19. In lemma 3.18, we define mj,s, j = {1, 2, 3} as approximations to non-

central moments. The definition of µ′j (3.35) indicates mj,s ' µ′j , and hence, we can generate

the relationship between κj and mj,s for j = {1, 2, 3} given the relationship (3.51)


κ1 ' m1,2

κ2 ' m2,2 −m2
1,2

κ3 ' m3,2 − 2m1,2m2,2 + 2m3
1,2

.
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Replacing mj,s with the approximation results in Lemma 3.18 and after some cancellations,

we obtain the result in Lemma 3.19.

In the next two sections, we will present some proposed distributions (skew-normal distribu-

tion in Section 3.4.3 and gamma distribution in Section 3.4.4) to approximate the transition

density using the estimated cumulants of the distribution. Subsequently, maximum likelihood

estimation is performed.

3.4.3 Skew-normal Approximation to Transition Density

The skew-normal distribution generalised from the normal distribution to allow for non-zero

skewness is proposed in this study as an approximation method to the transition density. We

have already introduced the essential information and some properties of the SN distribution

in Section 3.4.1. One good feature of SN distribution is its strict inclusion of the normal at

γ = 0. If the standardised third cumulant of the skew normal approaches 0 then the skew

normal distribution approaches the normal distribution and, consequently, when the transition

density has a small standardised third cumulant then the skew normal-based and normal based

approximations can be expected to give similar results. We can then use the characteristic

results (Section 3.4.1) provided earlier to perform the approximation procedure to transition

density with SN distribution.

SN distribution overcomes the drawback in gamma distribution (see Section 3.4.4), which

gives limited coverage of only the positive skewness portion. SN distribution can cover both

the negative and positive skewness without a limiting case at the Gaussian (γ = 0). Moreover,

it is reasonable to expect that, in the limit as the sampling interval ∆ goes to 0 and n∆ goes

to infinity, the first-order asymptotic properties of the two methods will be the same, because

the standardised third cumulant of the transition density goes to 0 as ∆ goes to 0; see formula
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(3.61). The first three raw moments of SN distribution are already calculated in (3.47), hence,

we can calculate the cumulants of SN given the relationship between moments and cumulants

(3.51).

In this study, we consider a linear transformation of the skew-normal random variable X =

µ+ σZ(σ > 0) with density function

fX(x) =
2

σ
φ

(
x− µ
σ

)
Φ

(
γ
x− µ
σ

)
, (3.62)

introduced by Azzalini [1985]. We can calculate the first three cumulants of the transformed

SN random variable X using the density function of Z in Definition 3.14 and equation (3.62).

The results are presented in Lemma 3.20.

Lemma 3.20 (Cumulants of a Transformed SN Random Variable). Given equation (3.47),

for a random variable Z that follows the skew-normal distribution, the first three cumulants

are 
κ1,z = E[Z] =

√
2
π
δ

κ2,z = E[(Z − E[Z])2] = V ar[Z] = 1− 2
π
δ2

κ3,z = E[(Z − E[Z])3] =
√

2
π
( 4
π
− 1)δ3

, (3.63)

where κi,z is the ith cumulant of an SN random variable Z. Then, for a transformed SN

random variable X = µ+ σZ, σ > 0, the first three cumulants are as follows:


κ1 = µ+

√
2
π
δσ

κ2 = σ2(1− 2
π
δ2)

κ3 =
√

2
π
δ3σ3( 4

π
− 1)

, (3.64)

where κi is the ith cumulant of the transformed SN random variable X .
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Next, we interpret the three parameters (µ, σ2, γ) of X in terms of the first three cumulants,

and hence, we can build the SN approximation to the transition density, given the density

function of a transformed SN random variable (3.62).

Lemma 3.21. Given the results in Lemma 3.20, parameters of the transformed SN distribution

are estimated as 

µ = κ1 −
√

2
π

(
κ3√

2
π

( 4
π
−1)

) 1
3

σ2 =
(
κ3

2−π
2

) 2
3 + κ2

δ =
{( κ3√

2
π ( 4

π−1)

) 2
3

(
κ3

2−π2

) 2
3

+κ2

} 1
2

. (3.65)

Suppose the diffusion process X(t) is of the form in (3.1) with parameter vector α, then, the

transition density approximation based on the skew-normal distribution is

pX(ti)(xi|X(ti−1) = xi−1;α) =
2

σ
φ

(
xi−1 − µ

σ

)
Φ

(
γ
xi−1 − µ

σ

)
, (3.66)

where µ, σ2 and δ are estimated with first three cumulants in (3.65), γ =
√

δ2

1−δ2 when κ3 > 0

and γ = −
√

δ2

1−δ2 when κ3 < 0.

Finally, we approximate the log-likelihood function using Lemma 3.21:

ln(α) = logLn(α) =
n∑
i=1

log
{
pX(ti)(xi|X(ti−1) = xi−1;α)

}
, (3.67)

and evaluate the maximum likelihood estimators α̂MLE .

3.4.4 Gamma Approximation to Transition Density

An alternative to use the SN approximation to the transition density would be to use a gamma

approximation to deal with skewness. Consider a random variable X , where X − c for a con-
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stant c follows the gamma distribution, with shape and scale parameters α and β respectively,

where x > 0, α > 0, β > 0. Then let a random variable Y = (X − c) ∼ Gam(α, β), the

probability density function of Y is

f(y;α, β) =
βα

Γ(α)
yα−1e−βy, (3.68)

where y ∈ [0,∞) and the cumulative density function is

F (y;α, β) =

∫ y

0

f(t;α, β) dt. (3.69)

We are interested in the first three moments of X given Y = (X − c) ∼ Gam(α, β). The re-

sults are shown in the following lemma using the transformation method of random variables.

Lemma 3.22. For Y = (X−c) ∼ Gam(α, β), the relationship between the first three central

moments of X and Y are


E[X] = E[Y ] + c

E[(X − E[X])2] = E[(Y − E[Y ])2]

E[(X − E[X])3] = E[(Y − E[Y ])3]

. (3.70)

If we denote κi as the ith cumulant of X , then, we obtain the first three cumulants given the

general cumulants results of gamma distribution and Lemma 3.22:

κ1 =
α

β
+ c; κ2 =

α

β2
; κ3 =

2α

β3
. (3.71)

Consequently, given the previous approximation results for the first three cumulants (Lemma
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3.19) and equation (3.71), we can solve for the unknown parameters α, β and c


α =

4κ32
κ23

β = 2κ2
κ3

c = κ1 − 2κ22
κ3

.

Although the estimations of the cumulants are achieved, there is a limitation of gamma dis-

tribution, that it covers the positive skewness portion only. To estimate the full range of the

skewness, we need to introduce the negative gamma distribution to account for the negative

skewness and the Gaussian distribution when the skewness goes to zero. This leads to an

obvious difficulty in the parameter estimation process.

3.5 Parameter Estimation Computation Scheme

This section presents a computation scheme for the maximum likelihood estimator θ̂MLE =

(θ1, θ2, θ3) using the approximation to the transition density method introduced in the previous

sections. The programming application is modified based on the simulation performed in

MATLAB in [Lu et al., 2021]. The skew-normal approximation method proposed in this study

is represented by SN. We also compare the SN result with that of the method of Kessler [1997]

using the Gaussian approximation method, which is denoted by Kessler. The approximation

of transition density is up to the order of ∆2.

3.5.1 Assumptions and Models

The first model we select for this simulation analysis is the Cox-Ingersoll-Ross (CIR) model,

introduced in Section 2.5.2. The CIR model has three parameters θ = (θ1, θ2, θ3), and we
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define the CIR model for an Itô diffusion process X(t) as follows:

Model 1 : dX(t) = θ1(θ2 −X(t)) dt+ θ3

√
X(t) dW (t), (3.72)

where W (t) is the standard Brownian motion.

The potential advantage of the skew-normal approximation is the ability to deal with standard-

ised skewness ( κ3

κ
3/2
2

). When κ3 6= 0, the process exhibits either positive (κ3 > 0) or negative

(κ3 < 0) skewness. Given the cumulant approximation formula derived in Lemma 3.19 and

truncating the terms after O(∆2), κ3 of the CIR model is approximated as

κ3 '
3

2
∆2 θ4

3 x, (3.73)

given equation (3.61) that κ3 = 3
2
∆2cc′ + O(∆3), and cc′ = θ4

3x for a realisation point x . It

is clear that the skewness of the CIR model depends on the discretisation step ∆, the diffusion

coefficient θ3 and the value of x, which are not allowed to be negative in the CIR model. And

the skewness closes to zero as the discretisation step ∆ decreases.

To further analyse the skewness (both positive and negative), we introduce another model:

Model 2 : dX(t) = θ1(θ2 −X(t)) dt+

(
1 +

θ3

2
sin (X(t))

)
dW (t). (3.74)

After introducing sin (X(t)) into the diffusion coefficient, the approximated value of the third

cumulant becomes

κ3 '
3

2
∆2

(
θ2

3

4
sin (2x) + θ3 cos (x)

)(
θ2

3

2
cos (2x)− θ3 sin (x)

)
, (3.75)

which may be positive or negative. Moreover, the smaller the discretisation step (∆), the skew-

ness is closer to 0. The sign of γ, the asymmetry parameter of the skew-normal distribution
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defined in equation (3.66), is set according to the sign of κ3 in each discretisation.

We use the Milstein approximation method (Section 2.6.3) to simulate the sample paths of

the two models. Unlike the CIR model, which is known to have a non-central χ2 transition

density, the transition density of Model 2 (3.74) is unknown; therefore, a numerical simulation

method is necessary to generate realisations of the process.

To visualise the performance of the maximum likelihood estimators, we examine the accuracy

of approximations using two criteria: median absolute difference and root mean square error

(RMSE). For both the Kessler and the SN methods, we compare the maximum likelihood

estimators θ̂MLE and the true parameter vector θ0 that is used to generate the simulations.

The maximum likelihood estimation scheme is performed using the functions fminsearch and

fminunc in MATLAB. Both functions are optimisation procedures performed using the Nelder-

Mead method, where the latter can be used to calculate the Hessian matrix when the variance

estimation is needed. Each method (SN and Kessler) is assessed for various discretisation

steps ∆. The observation window is unchanged as the value of ∆ is varied. The observation

window is fixed at 20, and the values of the discretisation step ∆ considered here are 0.02,

0.01, 0.004 and 0.002. Therefore, the corresponding sample size N is varied across 1000,

2000, 5000 and 10000. There are 500 Monte-Carlo runs for all simulations.

A limitation of the SN method is that the standardised skewness is restricted to the interval

(−0.995, 0.995) as reported by Azzalini [1985]. In case there are some extreme skewness

that moves out of this bound, we have modified the program to manually set the standardised

skewness within the bound when it jumps outside the range.
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3.5.2 Numerical results

As mentioned earlier, two parameters (median absolute difference and root mean square error

(RMSE)) are calculated as the criteria to examine the errors of the estimated estimators. We are

interested in examining the change in the accuracy of the approximation as the discretisation

varies. In addition, we compare the approximation accuracy of the SN method and the Kessler

method across the various discretisation scales. Specifically, we want to determine whether

the two methods provide a significant difference in accuracy when there is skewness, either

positive or negative. The average of the standardised skewness at each discretisation point is

calculated as a reference.

Table 3.1 and Table 3.2 present the performances of various estimators using the Kessler

method and the SN method for two models with a fixed observation window of 20, vary-

ing discretisation steps ∆ and number of observations n. Two types of errors are calculated:

the mean square error and the root mean square error. The standardised skewness at each

discretisation point for each simulation i = 1, · · · , 500 is calculated using formula κ3

κ
3/2
2

and is

denoted as ρ3,i. The average standardised skewness of one simulation is ρ̄3,i = 1
N

∑
ρ3,i, thus

the average of 500 simulations is ¯̄ρ3 = 1
500

∑500
i=1 ρ̄3,i.

Key findings:

It can be observed from the results of Model 1 (the CIR model) with parameters θ̂0 = (2, 0.3, 1)

presented in Table 3.1 that as the discretisation decreases, the trends of accuracy growth are not

the same for the three parameters. θ1 and θ2 show no clear reduction in error estimations when

∆ decreases from 0.02 to 0.002, whereas a significant reduction in the errors of θ3 is realized.

A similar result is also observed in Table 3.2 for Model 2 with parameters θ̂0 = (0.5, 2, 3.5).

This suggests that the diffusion coefficient, which measures the instantaneous volatility of

the diffusion process X , is more accurately estimated when the discretisation is sufficiently
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small. This is reasonable since X varies in a continuous scale in reality; as the discretisation

step becomes sufficiently small (∆ → 0), the discretised observations become closer to the

realisations in the continuous case. Consequently, variability in the process is better observed

and leads to a smaller error. On the other hand, the drift coefficients estimate the long term

properties of X and exhibit the mean-reversion; therefore, decreasing the discretisation step

has no significant influence on the estimation accuracy of θ1 and θ2.

Further discussions:

1. From Table 3.1, the Kessler method and the SN method have almost the same approxima-

tion accuracy, especially when the discretisation step is small. The small skewness observed

verifies that the SN distribution is approximately Gaussian distributed when the skewness is

close to 0. The results of Model 2 in Table 3.2 are essentially the same. Though negative stan-

dardised skewness are observed at various discretisation steps, they are all small values close

to zero. Therefore, as the discretisation decreases, the Kessler method and the SN method

generate almost the same accuracy.

2. The approximated transition densities of the two models with different discretisation steps

are plotted in Figure 3.1 and Figure 3.2 on top (∆ = 0.02) and bottom (∆ = 0.01). For the

CIR model shown in Figure 3.1, the green line shows the density using the exact maximum

likelihood estimation calculated given that the true transition density of the CIR process fol-

lows the non-central χ2 distribution. From the top plot, it can be observed that when the exact

transition density is positively skewed, both the Kessler and the SN methods are unable to

exhibit the skewness. Given the formula of κ3 (3.73), we expect that the skewness of the CIR

model is close to zero as the discretisation decreases. In the bottom plot, the distribution is

closer to normal, and the discrepancies between the Kessler, SN and true transition density are

smaller, suggesting a higher accuracy. In Figure 3.2, the exact transition density is unknown

for Model 2. The SN method exhibits a negatively skewed density compared with the Kessler
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method in the top plot. In the bottom plot, similar to the CIR model, the distribution is closer

to normal for both Kessler and SN. The discrepancy between Kessler and SN is minuscule,

because κ3 of Model 2 (3.75) also depends on ∆. The skew-normal tends to Gaussian as the

discretisation (∆) decreases and κ3 closes to 0.

Conclusion:

Parameters are more accurately estimated as the discretisation decreases. In addition, the

diffusion coefficients are more prone to changes in the discretisation step, providing a much

higher accuracy at a small ∆. The SN method does not outperform the Kessler method nor

the other way around. One reason is that the skewness are all close to zero in our analysis,

making it difficult to verify the performance under skewed cases. Second, the values of the

parameters also have substantial impacts.
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∆ 0.02 0.01 0.004 0.002

N 1000 2000 5000 10000

¯̄ρ3 0.5282 0.3780 0.2442 0.1807

θ Kessler SN Kessler SN Kessler SN Kessler SN

θ1

median |θ̂ − θ0| 0.3451 0.3412 0.3300 0.3305 0.3426 0.3415 0.3293 0.3293

RMS |θ̂ − θ0| 0.6354 0.6432 0.5666 0.5705 0.5367 0.5383 0.5593 0.5605

θ2

median |θ̂ − θ0| 0.0406 0.0398 0.0334 0.0334 0.0456 0.0457 0.0427 0.0426

RMS |θ̂ − θ0| 0.0592 0.0582 0.0625 0.0615 0.0647 0.0643 0.0585 0.0584

θ3

median |θ̂ − θ0| 0.0180 0.0185 0.0104 0.0104 0.0078 0.0078 0.0053 0.0053

RMS |θ̂ − θ0| 0.0287 0.0289 0.0175 0.0175 0.0106 0.0106 0.0079 0.0079

Table 3.1: Error analysis of approximated estimators specified in Section 3.5.1 for the CIR model (Model 1 (3.72)) with parameters
θ0 = (2, 0.3, 1) and x0 = 1. θ̂ is the MLE using the proposed approximation method and applying on simulated sample paths, θ0 is
the true value of parameters used for simulating sample paths. ∆ is the discretisation step and N is the number of observations. ¯̄ρ3

represents the average of the mean standardised skewness at each discretisation point of 500 Monte-Carlo runs.
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∆ 0.02 0.01 0.004 0.002

N 1000 2000 5000 10000

¯̄ρ3 -0.0907 -0.0660 -0.0423 -0.0313

θ Kessler SN Kessler SN Kessler SN Kessler SN

θ1

median |θ̂ − θ0| 0.0833 0.0786 0.0785 0.0729 0.0769 0.0760 0.0839 0.0820

RMS |θ̂ − θ0| 0.3553 0.3681 0.3100 0.3111 0.2722 0.2728 0.3528 0.3548

θ2

median |θ̂ − θ0| 0.2730 0.2717 0.2621 0.2617 0.2485 0.2469 0.2686 0.2677

RMS |θ̂ − θ0| 0.4766 0.4813 0.4466 0.4481 0.4235 0.4239 0.4863 0.4867

θ3

median |θ̂ − θ0| 0.1008 0.0996 0.0551 0.0552 0.0275 0.0274 0.0197 0.0197

RMS |θ̂ − θ0| 0.1353 0.1340 0.0820 0.0818 0.0432 0.0432 0.0293 0.0293

Table 3.2: Error analysis of approximated estimators specified in Section 3.5.1 for Model 2 (3.74) with parameters θ0 = (0.5, 2, 3.5)
and x0 = 0.6. Other details are the same with Table 3.1.
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Figure 3.1: Approximations of the transition density specified in Section 3.5.1 of Model 1
(3.72). The model parameters are θ0 = (2, 0.3, 1), x0 = 1, (Top) ∆ = 0.02, (Bottom) ∆ =
0.01.
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Figure 3.2: Approximations of the transition density specified in Section 3.5.1 of Model 2
(3.74). The model parameters are θ0 = (0.5, 2, 3.5), x0 = 0.6, (Top) ∆ = 0.02, (Bottom) ∆ =
0.01.
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4 Real Data Application

In the previous chapter, we introduced the maximum likelihood estimation scheme using ap-

proximations to the transition density. We discussed two different approximation methods in

detail (SN method and Kessler method). In this chapter, we are interested in applying the pa-

rameter estimation procedure for Itô diffusion processes on a real data application, and hence,

fitting a proper model with real data.

The data set used in this chapter is the daily yields (percent per annum) on the Australian

government bond with 3 years maturity for the period 24/03/2014 to 05/04/2019 with 1261

observations (including the initial value) retrieved from Reserve Bank of Australia1.

For this analysis, we focus on two models, the Vasicek model and the Cox-Ingersoll-Ross

(CIR) model, introduced in Section 2.5.1 and Section 2.5.2. Both models exhibit mean-

reverting features. It is of interest to estimate the parameters of the proposed two models.

We have developed the parameter estimation scheme for the CIR model in Section 3.5, and

the scheme for the Vasicek model is essentially the same, with a modification on the diffusion

term. The two models for the interest rate r(t) are expressed as

Vasicek Model : dr(t) = θ1(θ2 − r(t)) dt+ θ3 dW (t), (4.1)

Cox-Ingersoll-Ross Model : dr(t) = θ1(θ2 − r(t)) dt+ θ3

√
r(t) dW (t), (4.2)

1data source: https://www.rba.gov.au/statistics/tables/xls/f02d.xls?v=2021-04-07-13-07-43
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where parameter vector θ = (θ1, θ2, θ3) and W (t) is the standard Brownian motion.

First, we perform a general time series analysis on bond yield data in Section 4.1. In partic-

ular, we discuss the mean reversion property of the time series. A mean-reverting stochastic

process is adopted as the primary assumption of the data. Then, in Section 4.2, we apply

the parameter estimation scheme on the two mean-reverting models (the Vasicek model (4.3)

and the CIR model (4.4)) using the optimisation function in MATLAB introduced in Chapter

3. Furthermore, we are interested in analysing the performance of the two models with the

estimated parameters θ̂. This is performed by simulating some sample paths generated using

the numerical method simulation algorithm introduced in section 2.6. The Milstein method is

used as the numerical method to achieve higher accuracy. There are 500 Monte-Carlo runs to

generate 500 simulation paths. The average value of 500 Monte-Carlo runs is compared to the

true data. To further examine the performance, we also investigate two types of confidence

intervals: the one standard deviation from the mean of the 500 sample paths and the maximum

and minimum values of the 500 sample paths at each time point.

Finally, in Section 4.3, we compare two estimated models using the parametric bootstrap

hypothesis testing. This relies on the simulation-based calculation of the p-values, which

is a technically important method when the distribution of the test statistic is unknown

(non-parametric bootstrap hypothesis testing) or there exists a dubious approximate distri-

bution (parametric bootstrap hypothesis testing). Previous studies ([Young, 1986], [Beran,

1988], [Hall, 1988], [Hall and Wilson, 1991]) suggested some guidelines for bootstrap hy-

pothesis testing. The effectiveness of the bootstrap was demonstrated in [Efron and Tibshirani,

1994] and [Davison and Hinkley, 1997]. We conduct two bootstrap hypothesis tests with sim-

ilar structures but reverse the null hypothesis. One test hypothesizes that the Vasicek model is

correct, and we fit the simulated sample paths from both models into the Vasicek model with

the estimated parameters θ̂. Then, we calculate the maximum likelihood estimations using

the optimisation function for each simulation and the true data. P-value is calculated as the
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proportion of bootstrap samples with more extreme cases than the null hypothesis; in other

words, the proportion of the test statistics of samples that are greater than the observed test

statistic. The second test assumes that the CIR model is correct, and the rest of the test is a

reverse of the role of data related to the Vasicek model and the CIR model. In the end, we

analyse the approximation power of the final model through a simulation study of the accuracy

of the constructed confidence intervals.

4.1 Daily Yield of 3-year Government Bond Data

We start by analysing some basic performances of the 3-year maturity Australian government

bond yield data. The daily yield time series r(t) across the investigation period (24/03/2014

to 05/04/2019) is shown in Figure 4.1. A bear run is observed from the beginning of the

analysis period from approximately 3% in early 2014 to a low of 1.5% in early 2015, and

subsequently, the trend fluctuates roughly between 1.5% to 2%. Debelle [2015] suspects that

a global contributor of this yield decline is the global growth prospect; however, the change

of the expectation for global growth over the medium term has not varied a lot. Another

explanation may lie in the reduced supply of government bonds. Apart from the global factors,

the declining trend of Australian government bond yield is also influenced by some domestic

factors, including the February reduction in the cash rate target and consequently repricing of

market expectations for future monetary policy.

The mean reversion is an essential characteristic of the interest rate. Unlike other financial

prices, interest rates cannot rise or drop infinitely. They are forced to drop from very high

levels since the economic activity would be hampered in that case. Similarly, it is not common

to have extreme negative interest rates for a long time. Thus, interest rates tend to show mean-

reverting in the long run and move in a limited range.
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Figure 4.1: Time Series plot of daily yield of 3-year government bond data for the period
24/03/2014 to 05/04/2019. A significant decrease of bond yield is visualised from the begin-
ning of 2014 to the beginning of 2015.

We test the mean reversion property using the Augmented Dickey-Fuller (ADF) Test, inspired

by Chan [2013]. We use the ur.df function in R and specify that the test starts from lag 1. This

is because the AR(1) auto-regressive feature in the discretised version of the relevant SDE is

the reason for the mean-reverting feature in the stochastic models [Radkov, 2010].

The null hypothesis is that the process is mean-reverting is not rejected in the given time

series. The ADF statistic obtained by the 3-year bond yield data is -2.6014. The fifth and

tenth percentiles are -2.86 and -2.57. This means that the test fails to reject the null hypothesis

at the 0.05 significance level, but the test rejects the null hypothesis at the 0.1 significance

level. It seems reasonable to treat the 3-year bond yield data as mean-reverting.

Given the above analysis, we investigate the bond yield data using two mean-reverting models:

Vasicek and CIR. The daily bond yield data is collected for calendar days in a year, excluding

the weekends and public holidays. For simplicity, we denote the time discretisation as ∆ = 1
252
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given the general financial days in a year of 252 days.

4.2 Parameter Estimation

In this section, we estimate the parameters of the proposed models (the Vasicek model and the

CIR model) using the parameter estimation computation scheme developed in Section 3.5. We

also compare and evaluate the performance and goodness of fit of the two estimated models.

First, some modifications are made based on the parameter estimation scheme presented in

Section 3.5 to tailor the algorithm to our application. The scheme for the Vasicek model is

of the same logic as the parameter estimation scheme for the CIR model that we previously

developed, but with a modification of the diffusion term. Now we present some general as-

sumptions and modifications for the estimation scheme:

1. Define the time discretisation step ∆ = 1
252

and let the initial value be the first value of

the true data r0 = 3.045.

2. Guarantee the consistency of the estimated parameters: to obviate the error due to the

initial value selection and ensure that the choice of the initial value does not affect the

final optimisation result, we run the algorithm 5000 times with various initial parameter

values and verify the consistency of the estimated parameters.

3. Use both the Kessler (Gaussian) method and the skew-normal method introduced in

Section 3.5 to approximate the parameters and compare the results.

4. The value of κ3 of the CIR model was derived by equation (3.73) in Section 3.5, whereas

κ3 of the Vasicek model is 0 calculated by the cumulants approximation formula de-

rived in equation (3.61) with a truncation of the terms after O(∆2). The average of
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the skewness at each discretisation point is calculated for both models, denoted as

ρ̄3 = 1
N

∑
κ3

κ
3/2
2

.

The estimated parameters for the Vasicek model and the CIR model are listed in Table 4.1 and

Table 4.2. The estimations are verified to be consistent based on the 5000 optimisation results

with various initial parameter values θ0. The estimation results of the Kessler method and the

SN method are exactly the same for the Vasicek model, whereas some distinctions between

the two methods are detected for the CIR model.

Estimated Parameters for the Vasicek model (MLE)

Method θ1 θ2 θ3 ρ̄3

Kessler (Gaussian) 2.02197 1.88665 0.56865 0

Skew-normal (SN) 2.02197 1.88665 0.56865 0

Table 4.1: Estimated parameters and skewness for the Vasicek model using the Kessler method
and the skew-normal method, respectively. ρ̄3 is the average of the skewness at each discreti-
sation point of the Vasicek model.

Estimated Parameters for the CIR model (MLE)

Method θ1 θ2 θ3 ρ̄3

Kessler (Gaussian) 2.21824 1.89988 0.40457 0.06721

Skew-normal (SN) 2.21834 1.89973 0.40457 0.06721

Table 4.2: Estimated parameters and skewness for the CIR model using the Kessler method
and the skew-normal method, respectively. ρ̄3 is the average of the skewness at each discreti-
sation point of the CIR model.

Discussion on Table 4.1 and Table 4.2:
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1. From Table 4.1, exactly the same parameter estimations from the two methods are expected

for the Vasicek model. In Chapter 3, we introduce that when the skewness is 0, the skew-

normal distribution is actually Gaussian distribution. The same parameter estimation result

from the two methods for the Vasicek model verifies this conclusion.

2. From Table 4.2, few differences are observed between the two models, given a small pos-

itive standardized skewness 0.06721. Specifically, the estimations of diffusion coefficients θ3

are exactly the same, whereas the differences are found in drift coefficients. This corresponds

to our previous analysis, that the diffusion coefficient tend to be more consistent compared

with the drift terms. Overall, the two estimations are consistent, and we will select the skew

normal estimated parameters for the further analysis. The estimated models are shown below:

Vasicek Model : dr(t) = 2.02197(1.88665− r(t)) dt+ 0.56865 dW (t), (4.3)

CIR Model : dr(t) = 2.21834(1.89973− r(t)) dt+ 0.40457
√
r(t) dW (t). (4.4)

Given the estimated parameters θ̂ for the two models, it is worth analysing the goodness of

fit of the estimated models by comparing them with the true data set. Since both the Vasicek

model and the CIR model are the Itô diffusion process introduced in Chapter 2, we simulate

the fitted models using the numerical methods and compare the simulated sample paths with

true data. The numerical method of approximating the diffusion process scheme presented

in Section 2.6 is modified and applied to the estimated models. A brief procedure for this

simulation for the CIR model and the Vasicek model is as follows:

1. Simulate the estimated models n = 500 times with the same initial value r0 = 3.045,

but different white noise terms ∆̃W for each simulation.

2. The total number of observations in each simulation: N = 1260, excluding the initial
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value r0.

3. Choose a numerical method: the Euler-Maruyama method and the Milstein method

perform equally well when a finer scale is used. When the scale becomes coarse, the

Milstein method performs better (Section 2.6). Given ∆ = 1
252

and the operating times

do not vary significantly in the two methods, we chose the Milstein method to simulate

the sample paths.

4. Goodness of fit: generate and plot three types of evaluation criteria based on the simu-

lated sample paths from the two models:

(a) Average of 500 sample paths at each discretisation points (Mean).

(b) Confidence interval with 1 standard deviation from the mean (CI of 1SD).

(c) Confidence interval with the maximum and minimum values among 500 simula-

tions at each discretisation step (CI of Maxmin).

The plots of the three assessing criteria and the true yield data for the CIR model and the

Vasicek model are shown in Figure 4.2. Next, we present some discussions on the simulation

results.

Discussion on Figure 4.2:

Both plots in Figure 4.2 show that the overall trends of the true data (green line) are tracked

closely by the average of the simulated processes (red line). Both red lines approach around

1.9% as time goes by, which demonstrates the mean-reverting properties of the Vasicek model

and the CIR model. In the long run, the future trajectories of r(t) evolves around the mean

level θ2 (1.88665 for Vasicek and 1.89973 for CIR). The CI of 1SD (blue lines) include the

true data most of the time, with some exceptions at extremely fluctuating intervals (mid-2014

and mid-2016). The CI of Maxmin of each discretisation point contains almost the full range
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of true data. The Vasicek model generally provides a lower prediction bound compared with

the CIR model. Overall, both models show good tracking of the true data, and hence, the

goodness of fits are adequate. We are still interested in comparing the two models to select

the best model for real data application. We then perform a parametric bootstrap hypothesis

testing based on the two sets of simulated sample paths of the two models, as presented in

Section 4.3.
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Figure 4.2: (left) Comparison between the true data and simulations of sample paths, using the Vasicek model with parameters
θ̂ = (2.02197, 1.88665, 0.56865) and (right) comparison between the true data and simulations of sample paths, using the CIR model
with parameters θ̂ = (2.21834, 1.89973, 0.40457). The sample paths are all simulated with r0 = 3.045 and ∆ = 1

252
.
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4.3 Parametric Bootstrap Hypothesis Testing

In this section, we aim to decide whether it is better to use the Vasicek model or the Cox-

Ingersoll-Ross model for the bond yield application. In particular, we conduct parametric

bootstrap hypothesis testing for non-nested models to determine whether one model provides

a better fit than the other.

Bootstrap hypothesis testing is different from traditional hypothesis testing, because it is usu-

ally simulation-based rather than based on exact or asymptotic distribution theory. Simulation-

generated p-values are essential tools in data analysis. Efron and Tibshirani [1994] and Davi-

son and Hinkley [1997] analysed the effectiveness of bootstrap both theoretically and numer-

ically. Hall and Wilson [1991] provided two guidelines for the bootstrap hypothesis testing

building on previous literature, such as [Young, 1986] and [Beran, 1988]. The first guideline

states a preference to a re-sampling method that reflects the null hypothesis, even if the data

might be drawn from a population that fails to satisfy the null hypothesis. Thus, it has the

effect of increasing power. The second guideline states that the bootstrap hypothesis testing

should focus on methods recognised as possessing good characteristics for confidence interval

construction problems. This second guideline is closely related to the level error reduction and

the accuracy of the test. There are two versions of bootstrap hypothesis testing: parametric

and non-parametric. With the former, simulation is from a parametric distribution, while in

the latter simulation is from the sample. In both cases, simulation should be conducted un-

der the null hypothesis. Ventura [2010] summarised some practical procedures of parametric

bootstrap hypothesis testing.

To perform bootstrap hypothesis testing, we use the simulated 500 samples paths of the es-

timated Vasicek model and the estimated CIR model in Section 4.2. This leads to the con-

struction of parametric bootstrap samples, since we are simulating from the known estimated
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models. Therefore, we build up the scheme of parametric bootstrap hypothesis testing using

the simulated bootstrap samples and the true data, using the log-likelihood ratio as the test

statistic.

Assume the null hypothesis that the Vasicek model is correct, to be tested against the alter-

native hypothesis that the CIR model is correct. The intuition under this test is: given the

true performance of the two models, how extreme the CIR model outperforms the Vasicek

model in bootstrap samples. First, we calculate the maximised log-likelihoods of the true data

fitted under the estimated Vasicek model and the estimated CIR model. The re-sample used

in this test is the 500 bootstrap samples generated from the estimated Vasicek model, as we

believe the true model is the Vasicek model. We then evaluate the maximised log-likelihoods

of the bootstrap samples fitted under the Vasicek model and the CIR model separately. Con-

sequently, we can compare the ratio of the maximised log-likelihoods of the Vasicek and CIR

models from each bootstrap sample with the ratio from the true data.

The test procedure is as following:

1. Null hypothesis H0: the Vasicek model is correct.

Alternative hypothesis HA: the CIR model is correct.

2. Calculate test statistics: maximum log-likelihood ratio Λ.

For each bootstrap simulated sample under H0 (the Vasicek model is correct), i =

1, 2, · · · , 500, calculate:

li(V ): maximised log-likelihood fitted by the Vasicek model;

li(C): maximised log-likelihood fitted by the CIR model;

Λi = li(C)− li(V ): maximum log-likelihood ratio of bootstrap sample i.

Given the real data, calculate:

l0(V ): maximised log-likelihood fitted by the Vasicek model;
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l0(C): maximised log-likelihood fitted by the CIR model;

Λ0 = l0(C)− l0(V ): maximum log-likelihood ratio of real data (observed test statistic).

3. Calculate the p-value:

Calculate i∗, the number of bootstrap samples, such that Λi > Λ0. Then the p-value is

p =
Number of bootstraps such that {Λi > Λ0}
(Total number of bootstrap samples + 1)

=
i∗

501
. (4.5)

4. Draw conclusions: use the significance level α = 5%, when p > α, there is no evidence

to reject the null hypothesis, and we should conclude that the Vasicek model is correct.

On the contrary, when p < α, there is strong evidence to reject the null hypothesis and

in favour of the CIR model.

The procedure is based on the null hypothesis that the Vasicek model is true. Since the pro-

cedure is not symmetric with respect to the Vasicek model and the CIR model, we repeat the

procedure under the null hypothesis that the CIR model is correct. In the latter case, we use

the sample paths simulated from the estimated CIR model to conduct the bootstrap hypothesis

testing. The test statistic in this case is calculated by subtracting the maximised log-likelihoods

fitted in the Vasicek model from the maximised log-likelihoods fitted in the CIR model.

The calculation procedure is completed in R and MATLAB. We first extract the simulated

bootstrap sample paths from two estimated models generated in R in Section 4.2. Then we

evaluate li(V ) and li(C) for i = 0, 1, · · · , 500 using the optimisation algorithm built in MAT-

LAB. Based on those bootstrap samples, we construct two parametric bootstrap hypothesis

tests with different null hypothesis: the Vasicek null hypothesis in the former case and the

CIR null hypothesis in the latter case. The observed test statistic Λ0 and test statistic of each

simulation Λi are evaluated, and hence, the p-value is calculated based on the number of boot-

strap samples i∗, such that Λi > Λ0. The results are shown in Table 4.3:
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Parametric bootstrap hypothesis tests

H0 Vasicek model is correct CIR model is correct

l0(V ) 2410.090249 2410.090249

l0(C) 2399.909485 2399.909485

Λ0 -10.18076408 10.18076408

i∗ =
∑
i

{Λi > Λ0} 331 0

Bootstrap sample size 500 500

p 0.662 0

Table 4.3: Construction and calculation of the parametric bootstrap hypothesis testing, where
the second and third columns show results of the former hypothesis test given the Vasicek
model with parameters θ̂ = (2.02197, 1.88665, 0.56865) and latter hypothesis test given the
CIR model with parameters θ̂ = (2.21834, 1.89973, 0.40457), respectively.

Discussions of Table 4.3:

The maximised log-likelihoods of the true data (l0(V ), l0(C)) are fixed in the two tests; how-

ever, the observed test statistics Λ0 are opposite values of each other, since we reverse H0

and HA in the two tests. We are interested in the simulation-generated p-values, which are

calculated as follows for the two tests :

p = Pr(Λi > −10.1808|Vasicek model is true) (4.6)

and

p = Pr(Λi > 10.1808|CIR model is true). (4.7)

The p-value indicates the probability of observing Λi > Λ0 given that H0 is true. We observe

331 samples with the larger log-likelihood ratios compared with the log-likelihood ratio of
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the real data if we assume that the Vasicek model is true, and no sample is found to have a

larger log-likelihood ratio compared with the log-likelihood ratio of the real data if the CIR

model is assumed to be correct. This gives p-values of 0.662 and 0, respectively. For the

former hypothesis test, the p-value of 0.662 is far greater than the significance level α = 5%,

so we fail to reject H0. The latter test has a p-value of 0, which is significantly smaller than

5% and suggests that we have strong confidence to reject the null hypothesis. Therefore, both

hypothesis tests lead to the conclusion: the Vasicek model is better than the CIR model, and

we should choose the Vasicek model as the model to approximate the bond yield data.

To better visualise the result, the densities of test statistics Λi (i = 1, 2, · · · , 500), calculated

from 500 bootstrap samples, are plotted in Figure 4.3 and Figure 4.4. Some analysis proce-

dures are inspired by [Ventura, 2010].

Discussion of Figure 4.3 and Figure 4.4:

These two figures are density plots of Λi of the two hypothesis tests when H0 is true. They

are actually the parametric bootstrap null distributions of the test statistics under H0, which

assumes either the Vasicek model is correct or the CIR model is correct. The red vertical lines

represent the observed test statistics Λ0. The area under the density curve to the right of Λ0 is

calculated as p-value. Moreover, it is evident that p = 66.2% and p = 0 for two hypothesis

tests, respectively, which lead to the same conclusion at 5% significance level. We conclude

that the Vasicek model is superior to the CIR model with this data set.
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Figure 4.3: Density plot of the Monte-Carlo test statistics of parametric bootstrap samples
where the null hypothesis is that the Vasicek model is true. The parameters of the estimated
models from the original data set are θ̂ = (2.02197, 1.88665, 0.56865), r0 = 3.045 and ∆ =
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Figure 4.4: Density plot of the Monte-Carlo test statistics of parametric bootstrap samples
where the null hypothesis is that the CIR model is true. The parameters of the estimated
models from the original data set are θ̂ = (2.21834, 1.89973, 0.40457), r0 = 3.045 and ∆ =

1
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We now look into the approximate confidence interval test of the Vasicek model applying the

Empirical Rule in statistics. Since the parametric bootstrap hypothesis testing suggests that

the Vasicek model is correct, we expect p̂, the probability that the estimated true parameters

lie within two standard deviations from the mean of the bootstrap estimated parameters is

around 95%. In our case, it is expected to exhibit approximately 25 bootstrap samples (out

of 500) that fail to include the true parameter estimations into their two standard deviations

bounds. p̂ is calculated based on the approximated true coverage from the bootstrap samples,

and thus, a 95% confidence interval of this probability given its variance p̂(1−p̂)
500

is obtained.

It is crucial to make sure all values are calculated under the Vasicek model, which means

all the bootstrap samples are simulated from the Vasicek model and then are fitted into the

Vasicek model in the parameter estimation scheme. The variance of each bootstrap sample is

calculated from the Hessian matrix of the maximum likelihood estimation using the fminunc

function in MATLAB.

One issue with this test is, given N = 1260 observations in the original data set and the 500

bootstrap samples, the estimated parameters may not be sufficiently converged, which leads

to a less accurate approximation. In other words, this suggests that the first-order asymptotic

approximations need quite a large sample size before they attain good accuracy. And this

phenomenon is more likely to be found in the drift terms, which represent the long term mean

level. Recall the parameter estimation result in Table 3.1 and Table 3.2 in Section 3.5.2. When

the sampling window is fixed, and the sampling interval is decreasing, the consistency of the

drift terms is hardly achieved, in contrast to the significant improvement in the diffusion terms.

This is because the drift terms are the parameters representing long term mean level behaviour,

and they are less prone to instantaneous change. To analyse the asymptotic behaviour of the

three parameters, we extend the number of observations to N ′ = 5000 and keep the sampling

interval at ∆ = 1
252

when simulating from the proposed Vasicek model.

Table 4.4 and Table 4.5 show the results of the confidence interval tests based on the bootstrap
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samples with N = 1260 and N ′ = 5000 observations, respectively.

Discussion of Table 4.4 and Table 4.5

In table 4.4, less than 95% of the bootstrap samples manage to include the true parameters, es-

pecially θ2 that only covers the true value with a probability 85.4%. This result is undesirable,

but under our expectation. The relatively small sample size (N = 1260) and the fixed discreti-

sation step ∆ leads to a short observation window, which is not sufficient for the convergence

of the estimated parameters.

A much more accurate approximation result is obtained by increasing the number of obser-

vations to N ′ = 5000 and fixing the sampling interval at ∆ = 1
252

, which leads to a larger

sampling window. In table 4.5, p̂ of the three parameters are close to the 95% bar, which sug-

gests an increasing approximation accuracy as the sample size and sampling window increase.

A dramatic increase in the approximation accuracy is visualised in θ2, from 85.4% to 92%.

This coincides with the previous analysis, that the approximation accuracy of the drift terms

is more prone to the sample size and sampling window, rather than the sampling interval. The

coverage of the diffusion parameter θ3 also improves, from 90.8% to 94%. This indicates that

the performance of the diffusion term is not only influenced by the sampling interval (likewise

in Section 3.5.2), but also the sample size and sampling window.

Overall, the approximate confidence interval tests show an adequate estimation performance

of the Vasicek model, in particular when the sample size and sampling window are large. This

suggests that when using these approximate confidence intervals, some caution is required.

We visualise that for smaller sample sizes, there tends to be under coverage and less accurate

approximation result. In order to achieve the asymptotic approximation, the sample size needs

to be quite large.
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Confidence Interval Test (N = 1260)

θ θ1 θ2 θ3

Counts of the true parameter outside the

boundary of 500 bootstrap

36 72 45

Probability of the true parameter within

the estimated bootstrap bound (p̂)

92.6% 85.4% 90.8%

CI of the probability(
p̂− 1.96

√
p̂(1−p̂)

500
, p̂+ 1.96

√
p̂(1−p̂)

500

) (90.3%,94.9%) (82.3%,88.5%) (88.3%,93.3%)

Table 4.4: Simulated confidence intervals for the probability that the true parameters lie within
two standard deviations from the mean of the bootstrap estimated parameters, tested under
500 bootstrap samples with N = 1260 observations from the Vasicek model with parameters
θ̂ = (2.02197, 1.88665, 0.56865) .

Confidence Interval Test (N ′ = 5000)

θ θ1 θ2 θ3

Counts of the true parameter outside the

boundary of 500 bootstrap

28 39 29

Probability of the true parameter within

the estimated bootstrap bound (p̂)

94.2% 92.0% 94.0%

CI of the probability(
p̂− 1.96

√
p̂(1−p̂)

500
, p̂+ 1.96

√
p̂(1−p̂)

500

) (92.2%,96.3%) (89.6%,94.4%) (91.9%,96.1%)

Table 4.5: Simulated confidence intervals for the probability that the true parameters lie within
two standard deviations from the mean of the bootstrap estimated parameters, tested under
500 bootstrap samples with N ′ = 5000 observations from the Vasicek model with parameters
θ̂ = (2.02197, 1.88665, 0.56865).
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5 Summary, Conclusions and Future Research

This thesis proposes a new skew-normal approximation method for estimating parameters

in SDE models, and develops a parameter estimation computation scheme and a numerical

method simulation algorithm for general Itô diffusion processes, which has been applied to an

interest rate application involves real data. Parameter estimation methods and the numerical

methods to solutions of Itô diffusion processes are important because SDE models are widely

used in modelling random quantities in finance and physics. The proposed skew-normal pa-

rameter estimation method achieved good estimates of the parameters, comparable to those

of the Kessler method, at a small skewness. The estimation of the diffusion coefficient is

also shown to be more accurate in the parameter estimation scheme as the discretisation be-

comes smaller. We also develop a simulation algorithm for the solution of general Itô diffusion

processes and analysed the accuracy of two numerical methods across various grid widths. Fi-

nally, we modelled a 3-year Australian government bond yield data with the Vasicek model

and the Cox-Ingersoll-Ross model using the parameter estimation algorithm and achieved

some good model fitting results.

Section 5.1 presents the main contributions of this thesis. Then, in Section 5.2, we describe

some possible future research ideas.
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5.1 Main Contributions

It is not feasible in general to use exact maximum likelihood estimation to estimate the pa-

rameters of an Itô diffusion process because the transition density is unknown for most SDEs.

We develop a skew-normal approximation method which extends the Gaussian approximation

method [Kessler, 1997] by accommodating skewness. We modify the parameter estimation

scheme proposed by Lu et al. [2021] for both the Kessler method and the SN method, and

examine the accuracy of the estimated parameters. The accuracy of the diffusion coefficient is

shown to be more prone to the changes in the discretisation step than the drift coefficients. We

also build a simulation algorithm using the Euler method and the Milstein method under the

general Itô diffusion processes. Further, we compare the accuracy of the two methods across

various grid widths, where a preference to the Milstein method is generalised when the grid

width is relatively large. Finally, we fit a proper model of a 3-year Australian government

bond yield data using the parameter estimation scheme and the numerical method simula-

tion scheme. The goodness of fit is verified by some visualisations and parametric bootstrap

hypothesis testing.

5.2 Future Analysis

This thesis can be generalised in several ways. For the simulation scheme of numerical meth-

ods, one may enforce a boundary to the scheme to limit the value of realisations, e.g. if

the process is non-negative, as is the case with CIR. Then, by specifying a certain stochastic

model, this can be applied to some financial applications, such as the down-out option or the

up-out option.

One may also consider an in-depth analysis of the skew-normal approximation to the transition
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density for the parameter estimation. Specifically, the performance of the SN distribution

compared with the Gaussian distribution for cases with a large skewness.

Furthermore, because the CIR model and Vasicek model both fit the bond yield data well

(although the Vasicek model has been demonstrated to be better), one may be interested in

fitting other interest rate models to this data set to compare the performance. Other parameter

estimation methods can also be attempted, such as the methods introduced in [Aı̈t-Sahalia,

2002] and [Shoji and Ozaki, 1998] to verify whether these methods can achieve a better fitting

of the data.
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