
FACH: Fast Algorithm for Detecting Cohesive Hierarchies of
Communities in Large Networks

Mojtaba Rezvani

Australian National University

Canberra, ACT 2601, Australia

mojtaba.rezvani@anu.edu.au

Qing Wang

Australian National University

Canberra, ACT 2601, Australia

qing.wang@anu.edu.au

Weifa Liang

Australian National University

Canberra, ACT 2601, Australia

wliang@cs.anu.edu.au

ABSTRACT
Vertices in a real-world social network can be grouped into densely

connected communities that are sparsely connected to other groups.

Moreover, these communities can be partitioned into successively

more cohesive communities. Despite an ever-growing pile of re-

search on hierarchical community detection, existing methods suf-

fer from either inefficiency or inappropriate modeling. Yet, some

cut-based approaches have shown to be effective in finding commu-

nities without hierarchies. In this paper, we study the hierarchical

community detection problem in large networks and show that it

is NP-hard. We then propose an efficient algorithm based on edge-

cuts to identify the hierarchy of communities. Since communities

at lower levels of the hierarchy are denser than the higher levels,

we leverage a fast network sparsification technique to enhance the

running time of the algorithm. We further propose a randomized

approximation algorithm for information centrality of networks.

We finally evaluate the performance of the proposed algorithms by

conducting extensive experiments using real datasets. Our experi-

mental results show that the proposed algorithms are promising

and outperform the state-of-the-art algorithms by several orders of

magnitude.

KEYWORDS
Hierarchical community detection; large-scale networks

ACM Reference Format:
Mojtaba Rezvani, Qing Wang, and Weifa Liang. 2018. FACH: Fast Algorithm

for Detecting Cohesive Hierarchies of Communities in Large Networks. In

WSDM 2018: WSDM 2018: The Eleventh ACM International Conference on

Web Search and Data Mining , February 5–9, 2018, Marina Del Rey, CA, USA,

Jennifer B. Sartor, Theo D’Hondt, and Wolfgang De Meuter (Eds.). ACM,

New York, NY, USA, Article 4, 9 pages. https://doi.org/10.1145/3159652.

3159704

1 INTRODUCTION
It is well-known that communities in a network often exhibit a hier-

archical structure [9, 23, 27, 28]. For instance, metabolic networks

of organisms can be decomposed into highly connected communi-

ties, where communities form a hierarchy in which communities at

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00

https://doi.org/10.1145/3159652.3159704

In
fo

rm
a
ti
o
n
 C

e
n
tr

a
lit

y

V1

V2

V3

V4

V5

V6

2

4

6

8

Level of the hierarchical tree
1 2 3 4

V1

V2

V3

V4

V5

V6

V4

V5

V6

V3

V2

V1

Figure 1: A hierarchical structure of communities in Ama-
zon, where from the root to its leaves connections within
communities become denser and the values of their infor-
mation centrality increase.

lower levels of the hierarchy are more cohesive, and vertices within

those communities are closer to each other [23]. Researchers in a

collaboration network can be grouped into communities based on

their research areas, from general areas such as computer science to

more specific ones such as database and data mining, where infor-

mation circulates more quickly among them. Therefore, small and

cohesive communities are nested into larger and less cohesive com-

munities in a hierarchical manner. Despite the importance of the

hierarchical community detection, existing approaches have their

limitations. For example, they fail to reveal a cohesive hierarchical

structure among communities, or they suffer from inefficiency in

large-scale networks. In order to capture cohesiveness, existing

approaches for flat community detection, such as k-truss [5] and
k-core [3], can be adjusted to detect a hierarchical structure among

communities. For instance, one can identify a hierarchy of commu-

nities by starting with k = 1 and increasing the value of k to obtain

more cohesive communities at the lower levels of the hierarchy.

Fig. 1 shows a hierarchical structure of communities detected in

a real-world network Amazon, where k-core and k-truss both fail

to detect the hierarchical structure of communities. It can be seen

that for k < 4, the whole network is in a single k-core community,

while k-truss is unable to detect any community for k > 4 or k < 3.

Traditionally, hierarchical community detection methods find

hierarchies by removing/merging edges and vertices of a network

one by one, which can be very time consuming. For example, Gir-

van and Newman [11, 20] suggested starting with a given network

as a community and partitioning the network by removing edges

in decreasing order of their betweenness centrality. Similarly, For-

tunato et al. [10] advocated to remove edges in order of impact of

their removal on the information centrality (mean distance) of a

network. Newman [19] proposed an approach, where communities

are merged if the modularity of the resulting community can be

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

486

https://doi.org/10.1145/3159652.3159704
https://doi.org/10.1145/3159652.3159704
https://doi.org/10.1145/3159652.3159704

WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA Mojtaba Rezvani, Qing Wang, and Weifa Liang

increased, starting from vertices. However, repeatedly calculating

modularity, difference in modularity, betweenness and information

centralities in a large network is computationally infeasible.

To address the aforementioned issues, we study the problem of

hierarchical community detection based on the intuitive cohesive-

ness among communities in a hierarchy, where communities at

lower levels of a cohesive hierarchy are more densely connected

with each other. We define the notion of cohesive hierarchy that is a

rooted tree of communities, where communities at the k-th level of

the hierarchy are connected to each other through weak cuts with

no larger than k edges. For example in Fig. 1, communities at the

second level (V1,V2 andV3∪ ...∪V6) are connected to each other by

two edges, and communities at the third level (V3 andV4 ∪V5 ∪V6)
are connected to each other by 3 edges. As we move towards the

leaves of this hierarchy, the connectivity becomes stronger and

communities become more densely connected.

We propose an efficient, yet scalable cut-based algorithm for

detecting a cohesive hierarchy in a large-scale network. However,

finding cuts in a network with hundreds of millions of edges is a

painstaking task. Particularly at high levels of a hierarchy, when

the network has not been broken into smaller subgraphs, finding

cuts in the network is a challenge. Based upon this intuition, we

optimize the cut detection algorithm by sparsifying the network in

early iterations. Specifically, when finding communities at the k-th
level of a cohesive hierarchy, we remove unnecessary edges that

are not part of any edge-cut with size k . Therefore, when detecting

communities at top levels of the hierarchy, the number of edges is

significantly reduced, i.e. at most min{m, (k + 1) (n − 1)} at level k ,
where n andm are the number of edges and vertices.

One of the key ingredients of the proposed cohesive hierarchical

community structure is the information centrality of communities,

which is increased from communities at one level to communities at

a lower level of the hierarchy. However, the information centrality

can be calculated in time O (nm), which is unrealistic in real-world

networks. Moreover, the diameter in real-world networks is usually

small, as they exhibit a small-world characteristic. Therefore, we

propose a randomized approximation algorithm for calculating the

information centrality whose error is no larger than a fraction ϵ of

the network diameter, with high probability (at least 1 − 1

n), while

it runs in time Θ(m logn/ϵ2), where n and m are the number of

vertices and the number of edges, respectively.

Our contributions in this paper are as follows,

• We first formalize the problem of cohesive hierarchical com-

munity detection, where the granularity of a community is

measured using information centrality, and prove the NP-

hardness of this problem.

• We then develop an efficient algorithm for the hierarchical

community detection problem and enhance the algorithm

by incorporating a fast sparsification for efficiently finding

less granular levels of the hierarchy.

• We devise a randomized algorithm for approximating the

information centrality of a network with a guaranteed ap-

proximation ratio.

• We finally evaluate the effectiveness and efficiency of our

proposed algorithms by quantitatively analysing their per-

formance using five real-world datasets.

The rest of this paper is organized as follows. Section 2 intro-

duces preliminaries and Section 3 introduces the problem definition.

Section 4 presents two novel algorithms for the hierarchical com-

munity detection problem and Section 5 presents an approximation

algorithm for information centrality. Section 6 discusses the experi-

mental results, which compare the performance of our proposed

algorithms against the benchmark algorithms. Section 7 provides a

literature review, and Section 8 concludes the paper.

2 PRELIMINARIES
A network can be modeled as an undirected connected graph G =
(V ,E), whereV is the set of vertices representing individuals and E
is the set of edges representing relationships between individuals.

Let n = |V | andm = |E |. The degree of a vertex v is the number of

edges incident to it, denoted by deд(v). Two paths in G are called

edge-disjoint if they do not share any edges. The number of edge-

disjoint paths between two vertices u and v is the edge-connectivity

between them, denoted by λ(u,v). Two vertices u and v are said

to be k-edge-connected if λ(u,v) ≥ k . An edge-cut between two

subsets V1 and V2 in G, denoted as E[V1,V2], is the set of edges in
G such that their removal will disconnect V1 and V2. For brevity,
we simply write E[V1], whenever V1 = V2. Given a subset V ′ of V ,
G[V ′] = (V ′,E[V ′]) is the induced subgraph of G by V ′.

Traditionally, communities are perceived as subsets of vertices

of a graph G that the number of edges among them (density of

connections) is large. Following this perception, it is possible to

find hierarchical communities by recursively increasing the density

threshold, and consequently finding denser communities. In this pa-

per, we take the relationships among communities into account for

finding hierarchical communities of a network, while previous stud-

ies only focused on the relationships among vertices. Specifically,

we here represent the hierarchy of communities as a rooted tree

of subsets of vertices in G. Given two partitions P = {V1, · · · ,V |P | }
and P ′ = {V ′

1
, · · · ,V |P ′ | } of V , we say that P has a higher hierar-

chical order than P ′, denoted by P ≻ P ′, if for every set V ′i ∈ P ′

there is a strict superset Vj ∈ P that includes V ′i , i.e. V
′
i ⊂ Vj . How-

ever, the density of connections among communities is not uniform

across different levels of a cohesive hierarchy. In fact, density of

connections among communities becomes larger at lower levels

of a cohesive hierarchy. Therefore, we say that P has a higher hi-

erarchical order at degree k compared to P ′, denoted by P ≻k P ′,
if for every set V ′i ∈ P ′ there is a set Vj ∈ P such that V ′i ⊂ Vj
and for every set V ′j ∈ P

′
, E[V ′i ,V

′
j] ≤ k . A sequence of partitions

of V , e.g. P = ⟨P1, · · · ,P |P |⟩ is said to be a hierarchy, if Pi−1 ≻ Pi
(1 < i ≤ |P|). We refer to P ′ = ⟨P ′

1
, · · · ,P ′

|P′ |
⟩ as a cohesive hier-

archy if P ′i−1 ≻i P ′i (1 < i ≤ |P ′ |). We note that every cohesive

hierarchy is a hierarchy, but a hierarchy is not necessarily cohesive.

Given a hierarchy P, we refer to P |P | the lowest level of hierarchy
and we refer to P1 as the root of the hierarchy. For every partition

Pi ∈ P, we say that Pj ∈ P is at a lower level if j > i .

Example 2.1. Let us consider the network illustrated in Fig. 1,

whereV is the set of vertices of the network andVi is the set of ver-
tices in a subgraphGi (1 ≤ i ≤ 6). We show that P = ⟨P1,P2,P3,P4⟩
is a cohesive hierarchy, where P1 = {V }, P2 = {V1,V2,V3 ∪V4 ∪V5 ∪
V6}, P3 = {V1,V2,V3,V4 ∪V5 ∪V6}, and P4 = {V1,V2,V3,V4,V5,V6}. It
can be seen that P1 ≻2 P2, since vertices inV1,V2 andV3∪V4∪V5∪V6

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

487

FACH: Fast Algorithm for Detecting Cohesive Hierarchies of Communities WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA

are connected to each other by at most 2 edges. Furthermore,

P2 ≻3 P3, since V3 is connected to V4 ∪V5 ∪V6 by at most 3 edges.

Also P3 ≻4 P4, asV4,V5 andV6 are connected to their siblings by at

most 4 edges, which means that P4 = {V1,V2,V3,V4,V5,V6}. As a re-
sult, P = ⟨P1,P2,P3,P4⟩ is a cohesive hierarchy. It is also noted that
a cohesive hierarchy such as P results in a decomposition tree that

is illustrated in Fig. 2, where siblings at level k of the decomposition

tree are connected to each other by at most k edges.

V
V1 V2 V3∪V4∪V5∪V6
V1 V2 V4∪V5∪V6V3
V1 V2 V3 V4 V5 V6

P1

P2

P3

P4

Figure 2: The cohesive hierarchy of the network in Fig. 1

The distance between two vertices u and v in a graphG , denoted
by dGuv , is the length of the shortest path between them. We have

dGvv = 0 for any vertexv ∈ V . The diameter ofG is the length of the

longest shortest path between any pair of vertices inG , denoted by

∆. The information centrality ofG , denoted by D (G), is the inverse
of mean distance between every pair of vertices u and v [10], i.e.,

D (G) =
n(n − 1)∑

v ∈V

∑
u ∈V

dGuv
. (1)

The measure in Eq. (1) has been widely adopted for modeling infor-

mation centrality in many networks [10, 24].

3 PROBLEM DEFINITION
In this section, we formally define the problem of hierarchical

community detection, based on information centrality.

Definition 3.1 (HCDP). Given a network G, the hierarchical com-

munity detection problem is to find a cohesive hierarchy P of com-

munities, where the sum of information centralities of the sub-

graphs induced by all partitions in P is maximized, i.e.

maximize

∑
Pi ∈P

∑
V ′∈Pi \Pi−1

D
(
G[V ′]

)
. (2)

The flat community detection is a special case of this hierarchical

community detection problem, when |P | = 1. In the following, we

show that the hierarchical community detection problem is NP-

hard by a reduction from the maximum clique problem to its special

case, i.e. the flat community detection problem. We first define the

decision version of the flat community detection problem.

Definition 3.2 (CDP Decision). Given a network G = (V ,E), a
rational number ϵ > 0 and a positive integer k , the community

detection decision problem is to determine whether there is a subset

V ′ of vertices with size k , whose information centrality is no less

than ϵ , i.e. D (G[V ′]) ≥ ϵ .

The following lemma shows that the CDP Decision problem is

NP-hard, using a reduction from the MaximumClique problem.

Lemma 3.3. CDP Decision problem is NP-Complete.

Proof. We first show that CDP Decision is in NP. Given a

certificate of CDP Decision, which consists of a network G, and a

set of vertices V ′ ⊆ V with |V ′ | = k , we can use all-pairs shortest

paths algorithm [6] to determine if D (G[V ′]) ≥ ϵ , in polynomial

time. Thus, CDP Decision is in NP.

We now show that CDP Decision is NP-hard by a reduction

from the MaximumClique problem. Note that a subset of vertices

V ′ form a clique in G, if and only if the information centrality of

the induced subgraphG[V ′] is 1, i.e. D (G[V ′]) = 1. Therefore, it is

implied that the MaximumClique problem is a special case of CDP

Decision, where ϵ = 1. Thus, given a network G and a positive

integer k , one can decide the existence of a clique of the given size

k by solving the CDP Decision. □

4 COHESIVE HIERARCHICAL COMMUNITY
DETECTION

In this section, we propose two efficient, yet scalable algorithms for

the cohesive hierarchical community detection problem: (i) CHD

which is a basic cut-based algorithm to iteratively partition the

network into densely connected communities, and (ii) FACH which

is an optimized cut-based algorithm that relies on a sparsification

technique to find sparse communities at high levels of a hierarchy.

4.1 The basic algorithm (CHD)
The CHD algorithm proceeds iteratively to identify a cohesive

hierarchy P from a given network G. In each iteration, it finds

one level of the hierarchy by creating a partition of each subset

of vertices at its parent level. In iteration k , the algorithm finds a

partition Pk by decomposing subsets of vertices in Pk−1 into several
subsets, where k is 1 initially, and incremented in each iteration.

Let P be a detected cohesive hierarchy of communities in net-

work G, which is initialized by ∅ and let Pk be the k-th level of

hierarchy P. We assume that P0 consists of all vertices as a com-

munity. Let k be the size of cuts detected by CHD in iteration k ,
which is initialized to 1 in the first iteration. In iteration k of the

algorithm, for every set of vertices V ′ in Pk−1, which is currently a

leaf in P, an induced subgraph G ′ = G[V ′] is constructed. Then a

multi-cut of size no larger than k is detected inG ′ using the follow-
ing procedure, called MAS-Decompose, and the result of removing

this cut from G ′ is stored in another subgraph G ′′. The procedure
MAS-Decompose [2] decomposes the subgraphG ′ into several con-
nected components in G ′′, such that each connected component

in G ′′ is connected to other vertices by at most k edges. The CHD

algorithm then calculates the information centrality of G ′ andG ′′,
and if the information centrality of G ′′ is no less than that of the

initial subgraph G ′, it adds vertices in connected components of

G ′′ to the k-th level of the hierarchy, i.e. Pk . Otherwise, the initial
set of vertices V ′ is added to Pk . The CHD algorithm increments k
and constructs levels of the hierarchy, until for all V ′ ∈ Pk−1, the
algorithm cannot find a multi-cut of size k in G ′ that can increase

the information centrality of G ′′. The detailed description of steps

is given by Algorithm 1.

The rest is to show the time complexity of Algorithm 1 as follows.

Theorem 4.1. Given a network G = (V ,E), the algorithm CHD

delivers a feasible solution for the hierarchical community detection

problem in time O (n2m + n3 log(n)).

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

488

WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA Mojtaba Rezvani, Qing Wang, and Weifa Liang

Algorithm 1 CHD(G)

Input: G = (V ,E)
Output: A cohesive hierarchy P

1: P ← ∅; /* Initialize the cohesive hierarchy */

2: k ← 0;

3: Pk ← {V }; /* Pk is the value of k-th level of the hierarchy */

4: Pk−1 ← ∅;
5: while (D (Pk) − D (Pk−1) > 0) do
6: k ← k + 1; /* Increment the value of k for this iteration */

7: Pk ← ∅;
8: for each V ′ ∈ Pk−1 do
9: G ′ ← G[V ′];
10: G ′′ ← MAS-Decompose(G ′,k); /* G ′′ is a graph cre-

ated by removing the edges in the multi-cut of size k found by

MAS from G ′ */
11: if D (G ′) ≤ D (G ′′) then
12: Add connected components of G ′′ to Pk ;
13: else
14: Pk ← Pk ∪ {V

′};

15: P ← {Pk };
return P;

Proof. The CHD algorithm proceeds iteratively. Within each it-

eration, for every subgraphG[V ′] (V ′ ∈ Pk−1), a MAS-Decompose

is applied in time O (nm + n2 log(n)), and the calculation of infor-

mation centrality takes O (nm) time.

Therefore, the time complexity of MAS-Decompose is dominant

at each iteration of the CHD algorithm. It is also noted that the

hierarchy P has at most n leaves, as the number of subgraphs is no

larger than the number of vertices in the network (due to the Pigeon-

hole principle). Therefore, MAS-Decompose is called atmostn times

in each iteration of the CHD algorithm. However, in each iteration

of the CHD algorithm, MAS-Decompose is run on partitions of

the actual graph. Let n′ and m′ be the number of vertices and

edges in the induced subgraph by each leaf V ′, i.e. G[V ′]. It is
then implied that

∑
V ′∈Pk−1 n

′m′ ≤ nm as

∑
V ′∈Pk−1 n

′ ≤ n and∑
V ′∈Pk−1 m

′ ≤ m. This means that the overall time complexity of

each iteration is no larger than O (nm + n2 log(n)). Since the edge-
connectivity of a network is at most n − 1, the time complexity of

the CHD algorithm is O (n2m + n3 log(n)). □

4.2 The FACH algorithm
We here propose an algorithm, called FACH, that can reduce the

number of edges fromm in iteration k to min{m, (k + 1) (n − 1)},
where n andm are the number of vertices and edges in a network.

In the following, we describe the construction of a sparse network

Gi = (V ,Ei) (1 ≤ i ≤ m) from G = (V ,E) which is noticeably

smaller than G, while it can be used to find minimum cuts of G.

Lemma 4.2. [18] Given a networkG = (V ,E) and an integer k > 0,

let F1 = (V ,E1) be a spanning forest in G and Fi = (V ,Ei) be a
spanning forest in G \ E1 ∪ E2 · · · Ei−1 (1 < i ≤ k − 1). For any two
vertices s ∈ V and t ∈ V , if they are k-edge-connected inG , then they

must be k-edge-connected in Gk = F1 ∪ · · · ∪ Fk .

Lemma 4.2 states that in the second iteration, where k = 2, we

can find a cut with size k in a network with at most 3(n − 1) edges,

instead of the entire network withm edges. Similarly, in iteration

k of the algorithm, a cut of size k can be found in a network with

min((k + 1) (n − 1),m) edges.
Motivated by Lemma 4.2, we propose the FACH algorithm that

runs significantly faster than the CHD algorithm by starting from

a sparse network and gradually increasing the network size as a

factor of k . Specifically, in iteration k of this algorithm, the MAS-

Decompose is run on a subgraph of the initial network with at

most min{(k + 1) (n − 1),m} edges. In other words, the network

size in the first iteration is no larger than 2(n − 1). In the second

iteration, the network size is no larger than 3(n−1) and in iteration

k , the network size is no larger than (k + 1) (n − 1). Let Gk be

the network in iteration k , on which the MAS-Decompose is run.

The FACH algorithm starts with G0 = MSF (G), where MSF (G)
is the minimum spanning forest of the network G. The algorithm
then constructs Gk by adding the minimum spanning forest of the

residual network G \Gk−1 to Gk−1.

Let P be a cohesive hierarchy, which is initially empty. The

algorithm iteratively increments the value of k and finds Pk , the
partition representing the k-th level of the cohesive hierarchy P,

until the information centrality of Pk cannot be increased. Let P0 =
{V }. In iteration k , the FACH algorithm finds a minimum spanning

forest Fk and form G \Gk−1, where Gk−1 is the union of spanning

forests found in iterations 1 to k − 1. For each community V ′ ∈
Pk−1, the FACH algorithm creates an induced subgraphGk [V

′
] and

finds a multi-cut in it using the MAS-Decompose procedure. If the

removal of the multi-cut can increase the information centrality,

the FACH algorithm applies the cut; otherwise, it proceeds to the

next community in Pk−1. The detailed steps of the FACH algorithm

is given in Algorithm 2.

Algorithm 2 FACH(G)

Input: G = (V ,E)
Output: A cohesive hierarchy P

1: P ← ∅; /* Initialize the cohesive hierarchy */

2: k ← 0;

3: Gk ← MSF (G); /* Find a Minimum Spanning Forest of G */

4: Pk ← {V }; /* Pk is the k-th level of the hierarchy */

5: Pk−1 ← ∅;
6: while (D (Pk) − D (Pk−1) > 0) do
7: k ← k + 1; /* Increment the value of k for this iteration */

8: /* Find a Minimum Spanning Forest of G \Gk−1 */

9: Fk ← MSF (G \Gk−1);
10: Gk ← Fk ∪Gk−1;

11: Pk ← ∅;
12: for each V ′ ∈ Pk−1 do
13: G ′ ← Gk [V

′
];

14: G ′′ ← MAS-Decompose(G ′,k);
15: if D (G ′) ≤ D (G ′′) then
16: Add connected components of G ′′ to Pk ;
17: else
18: Pk ← Pk ∪ {V

′};

19: P ← {Pk };
return P;

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

489

FACH: Fast Algorithm for Detecting Cohesive Hierarchies of Communities WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA

(a) k = 0 (b) k = 1

V1

V2V2

V1

(c) k = 2

V1

V2

V3V3

V2

V1

(d) k = 3

V1

V2

V3

V4

V5

V6

V4

V5

V6

V3

V2

V1

(e) k = 4

Figure 3: A running example of the FACH algorithm with the sparsification technique.

Example 4.3. Fig. 3 illustrates a running example of the FACH

algorithm, in which network is sparsified in early iterations for

finding cohesive communities. In Fig. 3b, it can be seen that in the

first iteration, the edge-cuts are found in a network that has only

81 = 43 + 38 edges, which is sparser than the original network that

has 124 edges. The number of edges is increased to 105 = 77 + 28

and 113 = 102 + 11 in the third and fourth iterations, respectively.

We now provide the time complexity of the FACH algorithm.

Theorem 4.4. Given a network G = (V ,E), there is an algorithm

for the hierarchical community detection problem, i.e. the FACH

algorithm, which delivers a feasible solution in time O (nm).

Proof. The FACH algorithm consists of several iterations, where

in iterationk , the union of spanning forests for levels 1 tok−1, i.e.Gi
is constructed and for every induced subgraph Gi [V

′
] (V ′ ∈ Pk−1),

a MAS-Decompose is applied, and the value of the information

centrality is calculated in O (nm) time.

The time complexity of the MAS-Decompose is O (nm + n2) and
the time complexity of information centrality estimation is O (nm).
Since the network is connectedm ≥ n − 1, the time complexity of

the FACH algorithm is O (nm). □

5 APPROXIMATING INFORMATION
CENTRALITY

To efficiently detect a cohesive hierarchy of communities in a large-

scale network, one challenge is to calculate the value of information

centrality. One straightforward way to calculate the information

centrality is to discover all-pairs shortest paths, which is very time-

consuming or even infeasible for real-world networks. Thus, we

devise a simple, yet scalable algorithm for approximating the infor-

mation centrality in polylogarithmic time.

We here build on top of the results obtained by Eppstein et

al. [8] and devise a randomized algorithm, Algorithm 3, that finds

the information centrality of a network using a small number of

randomly selected vertices from the network. The algorithm first

selects a set S (|S | = s) of vertices from V , uniformly at random. It

then runs the single-source shortest path algorithm (BFS), starting

from each randomly selected vertex in S . Finally, it estimates the

value of information centrality of the network using the following

equation,

ˆD (G) =
s · (n − 1)∑

u ∈S

∑
v ∈V

dGuv
. (3)

Algorithm 3 describes an overal view of the approximation algo-

rithm for information centrality in a given network.

Algorithm 3 Estimated information centrality

Input: G = (V ,E), s

Output: ˆD (G)
1: Let S be a set of s vertices selected uniformly at random;

2: for each vertex u ∈ S do
3: Calculate shortest paths dGuv from u to all v ∈ V ;

4: for each vertex v ∈ V do
5: Ĉ (v) ←

∑
u ∈S d

G
uv ;

6:
ˆD (G) ← s · (n − 1)/

∑
v ∈V Ĉ (v);

return ˆD (G);

5.1 Theoretical analysis
We now analyse the approximation algorithm for information cen-

trality. We first review the Hoeffding lemma [14] as follows.

Lemma 5.1 (Hoeffding [14]). If x1,x2, · · · ,xn are independent

variables, such that variable xi (1 ≤ i ≤ n) is bounded by ai and bi ,
and µ = E[

∑
xi/n] is the expected mean, then for ξ > 0,

Pr

{
|

∑n
i=1 xi

n
− µ | ≥ ξ

}
≤ 2e−2n

2ξ 2/
∑n
i=1 (bi−ai)

2

. (4)

Due to the small-world characteristic of complex networks [30],

the diameter in such networks is usually small. Therefore, we show

that the error of Algorithm 3 for approximating the information

centrality of networks is no larger than ϵ∆ with a high probability,

where ∆ is the diameter of network and ϵ is a given approximation

ratio.

Theorem 5.2. Given a networkG = (V ,E), and a set S of randomly

selected vertices with sizeΘ(log(n)/ϵ2), Algorithm 3 approximates the

reciprocal of information centrality such that |1/ ˆD (G) − 1/D (G) | ≤
ϵ∆, with high probability of at least 1 − 1/n.

Proof. Recall that Algorithm 3 chooses s = |S | random samples

from vertices and the approximated value of information centrality

is

ˆD (G) =
s · (n − 1)∑

u ∈S

∑
v ∈V

dGuv
=

s · n · (n − 1)

n ·
∑
u ∈S

∑
v ∈V

dGuv
. (5)

It is noted that the expected reciprocal of estimation, i.e. 1/ ˆD (G),
is the reciprocal of actual information centrality, i.e. 1/D (G). Thus,

in Hoeffding lemma, considering xi =
n
∑
v∈V dGiv

n (n−1) , we can safely

assume that µ = 1/D (G), ai = 0 and bi = n∆/(n−1). Therefore, the
probability that the difference between the reciprocal estimated in-

formation centrality 1/ ˆD (G) and the actual reciprocal information

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

490

WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA Mojtaba Rezvani, Qing Wang, and Weifa Liang

Table 1: Real datasets with their characteristics.
Dataset # vertices # edges # communities ∆

Facebook 4,039 88,234 308 8

Amazon 334,863 925,872 14,529 44

DBLP 317,080 1,049,866 7,556 21

LiveJournal 3,997,962 34,681,189 12,115 17

Orkut 3,072,441 117,185,083 9,120 9

centrality 1/D (G) being more than ξ is

Pr

{
|

1

ˆD (G)
−

1

D (G)
| ≥ ξ

}
≤ 2e−2s

2ξ 2/s (n∆n−1)
2

.

Considering the error being a small fraction of the diameter of G,

i.e. ξ = ϵ∆ ≪ ∆, and using s =
logn
ϵ 2 random samples, it can be seen

that the probability of error is bounded above by 1/n. Therefore,
the approximation error of Algorithm 3 is smaller than ϵ∆ with a

high probability of at least (n − 1)/n. □

The following theorem shows that the time complexity of the

FACH algorithm with the proposed randomized approximation

algorithm can be reduced to O (n2).

Theorem 5.3. Given a network G = (V ,E), wherem = cn with

constant c , the FACH algorithm delivers a feasible solution for the

hierarchical community detection problem (HCDP), in time O (n2).

Proof. The FACH algorithm proceeds iteratively, where in iter-

ation k , the union of spanning forests for levels 1 to k − 1, i.e. Gi
is constructed and for every induced subgraph Gi [V

′
] (V ′ ∈ Pk−1),

a MAS-Decompose is applied, and the value of the information

centrality is calculated, using Algorithm 3.

Asmentioned above, the time complexity of theMAS-Decompose

isO (nm+n2) and the time complexity of information centrality esti-

mation isO (m logn+n log2 n). It can be seen that MAS-Decompose

dominates the time-complexities of each iteration of the FACH algo-

rithm. In iteration k , the network size is k (n − 1). Since the number

of edges in real-world social networks is usually a constant factor of

the number of vertices, i.e.m = cn, for a constant c , the hierarchies
P will have at most a constant number k ≤ c of levels. Therefore,
the overall time complexity of the FACH algorithm is O (n2). □

6 EXPERIMENTAL RESULTS
In this section, we discuss the performance of the proposed algo-

rithms, i.e. CHD and FACH, on several real datasets by comparing

against several state-of-the-art algorithms. We first describe the

experimental settings and then evaluate the performance of the

proposed algorithms in detecting the hierarchical structure of com-

munities. We finally investigate the performance of the CHD and

FACH algorithms in finding different levels of a hierarchy.

6.1 Experimental settings
We introduce the benchmark algorithms, datasets and measures

that were adopted for evaluating the proposed algorithms.

Benchmark algorithms.We compare the performance of the pro-

posed algorithms, i.e. CHD and FACH, with the following state-of-the-

art algorithms for hierarchical community detection: LinkCluster [1],
CNM [4], InfoMap [26], and OSLOM [16].

Datasets. We used five real datasets that are publicly available
1
,

and have been widely used in the literature [32]: (1) Facebook is a

subgraph of the social network facebook, where communities are

groups of members identified by surveyed users, (2) Amazon is a

network inwhich vertices are products and there is an edge between

two vertices i and j if product i is frequently co-purchased with

product j . Products in each category are considered as ground-truth

communities, (3) DBLP is a collaboration network of researchers,

where communities are defined as journals and conferences, (4)

LiveJournal is a friendship network of users in the LiveJournal

website. Users can create groups, and these groups are considered as

the ground-truth communities. (5) Orkut is the friendship network

of Orkut members. Communities in this network are groups created

by users, where users can join each group.

Evaluation measures. Measuring the quality of detected commu-

nities is challenging, as different metrics lead to different interpreta-

tions of communities. We employ F -measure that is widely-adopted

in the literature [12, 31–34] for quantifying the accuracy of detected

communities. Let C∗ be the set of ground-truth communities and

let C be a detected community. The F -measure of C compared to

C∗ ∈ C∗ is defined as follows,

Fk (C) = max

C∗∈C∗
{
(k + 1) · p (C,C∗) · r (C,C∗)

k · p (C,C∗) + r (C,C∗)
}, (6)

where p (C,C∗) = |C ∩C∗ |/|C | and r (C,C∗) = |C ∩C∗ |/|C∗ | are the
precision and recall, respectively. To calculate the accuracy of a flat

community detection algorithm, one may calculate the average of

F1 and F2-measures for all detected communities [12, 31–34]. How-

ever, the situation is different for hierarchical community detection

algorithms, as communities detected at each level of a hierarchy

have different characteristics and can be interpreted differently.

One general rule in hierarchical community detection is that com-

munities at the lower levels are smaller, more connected and more

cohesive than the ones at the higher levels. Therefore, we suggest a

weighting method in calculating the F -measure of communities at

different levels of a hierarchy, which provides us with the ability to

put more weight on communities at lower levels. Specifically, we

incorporate a weight αi , called the weight of level i , into F -measure

of communities at level i of a hierarchy. Given a detected hierarchy

P = {P1, · · · ,P |P | }, we define the F -measure of P as follows,

Fk (P) =
∑

1≤i≤ |P |

1

|P |

∑
C ∈Pi

αi
Fk (C)

|Pi |
, (7)

where αi =
i∑

1≤j≤ |P | j
.

Notice that the term αi is called the weight of level i , which is

used to emphasize on the accuracy of communities at the lower

levels of the hierarchy. Although there are an infinite number of

ways to define the weights αi , we use a simple intuitive definition

that makes both empirical and analytical sense.

All our experiments were run on a desktop computer with an

Intel(R) Core(TM) i7-3770 CPU (3.40GHz) and 32GB of RAM.

1
http://snap.stanford.edu/data/index.html

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

491

FACH: Fast Algorithm for Detecting Cohesive Hierarchies of Communities WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA

F1-measure F2-measure
0

20

40

P
er
ce
n
t
(%

)

(a) Facebook

F1-measure F2-measure
0

20

40

60

80

P
er
ce
n
t
(%

)

(b) Amazon

F1-measure F2-measure
0

10

20

30

P
er
ce
n
t
(%

)

(c) DBLP

F1-measure F2-measure
0

10

20

30

P
er
ce
n
t
(%

)

(d) LiveJournal

F1-measure F2-measure
0

20

40

P
er
ce
n
t
(%

)

CHD FACH

LinkCluster CNM

InfoMap OSLOM

(e) Orkut

Figure 4: F1 and F2-measures of the hierarchical community detection algorithms.

6.2 Accuracy and efficiency
We study the accuracy and efficiency of our proposed algorithms

CHD and FACH in hierarchical community detection by calculating

the F -measures of communities found in each network and com-

paring them against the benchmark algorithms.

Fig. 4 shows the accuracy of different hierarchical community

detection algorithms in terms of F1 and F2-measures. It can be seen

in Fig. 4a that algorithms CHD and FACH outperform the benchmark

algorithms by nearly 1% in F1-measure for dataset Facebook. Fig. 4a

also shows that algorithm CHD outperforms all other algorithms

by at least 5% in F2-measure using dataset Facebook. In Fig. 4b, it

can be seen that the F1 measures of algorithms CHD and FACH are at
least 10% higher than the other algorithms in the benchmark using

dataset Amazon. Similarly, F2-measures for both CHD and FACH in
this dataset are at least 5% higher than all other algorithms for

dataset Amazon. Fig 4c plots the results for dataset DBLP, where it

can be observed that both F1 and F2-measures of algorithm CHD is at
least 20% higher than all other benchmark algorithms. However, the

accuracy of algorithm FACH is slightly less than that of algorithm

CHD for dataset DBLP. Fig. 4d presents the results for dataset Live-

Journal and Fig. 4e presents the results for dataset Orkut, where due

to the large size of the datasets only algorithms CHD and FACH ter-
minated. It is noted that we waited for 150 hours for all algorithms

to terminate, but only CHD and FACH found the results. Yet, the ac-

curacy of the results is reasonable (above 20% for both datasets

LiveJournal and Orkut). It is noted in Fig. 4 that the performance

of algorithm CHD is better than that of algorithm FACH in datasets

LiveJournal and Orkut. The reason is that algorithm CHD spends

more time in finding edge-cuts in the networks.

Fig. 5 depicts the running times of different hierarchical com-

munity detection algorithms. Although dataset Facebook is small,

Fig. 5 shows that the running time of algorithms CHD and FACH is
only a fraction of all other benchmark algorithms. In Fig. 5, for

dataset Amazon, the running time of algorithm CHD is at most 1/50

of that of all benchmark algorithms, and the running time of al-

gorithm FACH is only 80% of the running time of algorithm CHD.
Similarly, for dataset DBLP, the running time of algorithm CHD is at
most 1/75 of the running time of benchmark algorithms, and the

running time of algorithm FACH is only 60% of the running time of

algorithm CHD. However, for datasets LiveJournal and Orkut, only
algorithms CHD and �FACH terminated within 150 hours, and their

running time was less than 30 minutes for such a large datasets.

Fig. 5 illustrates that the running time of algorithm FACH is less

than that of algorithm CHD, because of the sparsification technique.

However, for dataset Orkut, both algorithms CHD and FACH have

Facebook Amazon DBLP LiveJournal Orkut

101

103

105

R
u
n
n
in
g
ti
m
e
(S
ec
o
n
d
s)

CHD FACH LinkCluster
CNM InfoMap OSLOM

Figure 5: Running times of hierarchical community detec-
tion algorithms, where bars with parallel lines indicate that
the corresponding algorithmdid not terminate in 150 hours.

similar running times, because these algorithms discovers more

levels of the hierarchy.

6.3 Hierarchies: level by level
Fig. 6 illustrates the values of F1-measure, F2-measure, information

centrality and running times for the communities at each level of

hierarchies detected by algorithms CHD and FACH. Fig. 6a shows that
for dataset facebook, the value of F1-measure increases as we move

towards the lower levels of a hierarchy using algorithms CHD and
FACH, with minor fluctuations. However, it can be seen in Fig. 6f

that the value of F2-measure has a sudden drop at level 5 of the

hierarchy, which indicates that the communities beyond level 5

of the hierarchy are too fine. In Fig. 6b, the values of F1-measure

of communities detected by algorithm CHD for dataset Amazon

are increasing, as we move towards lower levels of hierarchy of

communities. While there are some fluctuations in F1-measure

for dataset Amazon, the values are stable at the last two levels of

hierarchy, i.e. levels 5 and 6. It is noted that the number of levels of

the hierarchy for dataset Amazon is 6. Similarly, Fig. 6c shows that

for dataset DBLP, the values of F1-measure and F2-measure have

an increasing trend as we move towards the bottom of a hierarchy.

Fig. 6k-6o present the values of information centrality for com-

munities at different levels of a hierarchy. Fig. 6k shows that for

dataset facebook, the value of information centrality by algorithm

CHD has a sudden increase and it stabilizes after that. However, in

the same figure, the value of information centrality has a slower

increase using algorithm FACH. It is noted in Fig. 6l that as the algo-

rithm iterates, it finds more levels of the hierarchy and increases

the values of the information centrality of communities, for dataset

Amazon. Similarly for dataset DBLP, Fig. 6m shows that the informa-

tion centrality of the detected communities is strictly increasing. In

Fig. 6n, for dataset LiveJournal, the value of information centrality

is increasing, as we move downwards in the hierarchy.

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

492

WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA Mojtaba Rezvani, Qing Wang, and Weifa Liang

0 5 10 15 20

20

30

40

Level of the hierarchical tree

F
1
-m

ea
su
re

(%
)

CHD
FACH

(a) Facebook

1 2 3 4 5 6

20

40

60

80

Level of the hierarchical tree

F
1
-m

ea
su
re

(%
)

CHD
FACH

(b) Amazon

0 5 10 15 20 25 30 35

10

20

30

Level of the hierarchical tree

F
1
-m

ea
su
re

(%
)

CHD
FACH

(c) DBLP

0 20 40 60 80 100 120 140 160

0

10

20

30

Level of the hierarchical tree

F
1
-m

ea
su
re

(%
)

CHD
FACH

(d) LiveJournal

0 2 4 6 8 10 12 14 16

0

10

20

30

40

Level of the hierarchical tree

F
1
-m

ea
su
re

(%
)

CHD
FACH

(e) Orkut

0 5 10 15 20

30

40

50

Level of the hierarchical tree

F
2
-m

ea
su
re

(%
)

CHD
FACH

(f) Facebook

1 2 3 4 5 6

20

40

60

80

Level of the hierarchical tree

F
2
-m

ea
su
re

(%
)

CHD
FACH

(g) Amazon

0 5 10 15 20 25 30 35

10

15

20

25

30

35

Level of the hierarchical tree

F
2
-m

ea
su
re

(%
)

CHD
FACH

(h) DBLP

0 20 40 60 80 100 120 140 160

0

10

20

30

Level of the hierarchical tree

F
2
-m

ea
su
re

(%
)

CHD
FACH

(i) LiveJournal

0 2 4 6 8 10 12 14 16

0

10

20

30

40

50

Level of the hierarchical tree

F
2
-m

ea
su
re

(%
)

CHD
FACH

(j) Orkut

0 5 10 15 20

0

10

20

30

40

Level of the hierarchical tree

In
fo
rm

at
io
n
C
en
tr
al
it
y

CHD
FACH

(k) Facebook

1 2 3 4 5 6

2,000

4,000

6,000

8,000

Level of the hierarchical tree

In
fo
rm

at
io
n
C
en
tr
al
it
y

CHD
FACH

(l) Amazon

0 10 20 30 40

2,000

4,000

6,000

8,000

Level of the hierarchical tree

In
fo
rm

at
io
n
C
en
tr
al
it
y

CHD
FACH

(m) DBLP

0 20 40 60 80 100 120 140 160

0

2E+3

4E+3

6E+3

8E+3

1E+4

Level of the hierarchical tree

In
fo
rm

at
io
n
C
en
tr
al
it
y

CHD
FACH

(n) LiveJournal

0 2 4 6 8 10 12 14 16

0

500

1,000

1,500

2,000

Level of the hierarchical tree

In
fo
rm

at
io
n
C
en
tr
al
it
y

CHD
FACH

(o) Orkut

0 5 10 15 20
0

.01

.02

.03

.04

Level of the hierarchical tree

R
u
n
n
in
g
T
im

e
(s
ec
) CHD

FACH

(p) Facebook

1 2 3 4 5 6

0

1

2

3

Level of the hierarchical tree

R
u
n
n
in
g
T
im

e
(s
ec
) CHD

FACH

(q) Amazon

0 5 10 15 20 25 30 35

0

1

2

3

Level of the hierarchical tree

R
u
n
n
in
g
T
im

e
(s
ec
) CHD

FACH

(r) DBLP

0 20 40 60 80 100 120 140 160

0

50

100

Level of the hierarchical tree

R
u
n
n
in
g
T
im

e
(s
ec
) CHD

FACH

(s) LiveJournal

0 2 4 6 8 10 12 14 16

100

200

300

400

500

Level of the hierarchical tree

R
u
n
n
in
g
T
im

e
(s
ec
) CHD

FACH

(t) Orkut

Figure 6: Running times for each level of hierarchies detected by algorithms CHD and FACH

Fig. 6p-6t plot the amounts of time that algorithms CHD and FACH
need for detecting each level of a hierarchy in different datasets.

Fig. 6p shows that the running time of algorithm CHD is mainly

dominated by its early iterations, where k is small. However, the

running time of the algorithm FACH is almost stable with minor

fluctuations across different levels of the hierarchy, which is due to

the fast sparsification in algorithm FACH. It can be seen in Fig. 6q

that for dataset Amazon, the running time of algorithm CHD drops

significantly, as the algorithmmoves to lower levels of the hierarchy.

The reason behind is that algorithm CHD breaks the network into

smaller and smaller subgraphs at each level and therefore, the

time spent for detecting lower levels of a hierarchy is much less

than that of the higher one. Fig. 6r shows the running times of

algorithm CHD for different levels of the hierarchy in dataset DBLP,

from which it can be seen that the running time significantly drops.

Similarly, Fig. 6s shows that for dataset LiveJournal, the running

time drops, as we move downwards the hierarchy of communities.

However algorithm FACH spends significantly less amount of time

in both early and late iterations, resulting in a faster outcome. In

Fig. 6t, while the running time of algorithm CHD is dominated by its

early iterations, algorithm FACH performs very fast in those early

iterations. The conclusion from Fig. 6p-6t is that algorithm CHD is
promising in hierarchical community detection, but algorithm FACH
is much more efficient, particularly in early iterations.

7 RELATEDWORKS
Existing methods on hierarchical community detection can be

categorized into two categories: top-down and bottom-up [28] ap-

proaches. While top-down approaches start with a given network

and partition it into denser communities, bottom-up ones start with

seeds, and expand those seeds gradually by merging themwith each

other. We here review the most influential works in each category.

Top-down approaches.Newman et al. [11, 20] proposed partition-

ing a network into communities by removing the edges in the order

of their betweenness centralities. In order to reduce the running

time of betweenness centrality calculations in [11, 20], Radicchi

et al. [22] proposed to remove edges that disconnect the network,

thereby, reducing the network size for the next rounds of between-

ness centrality calculations. Radicchi et al. [22] also suggested re-

placing the betweenness centrality with the edge-clustering coef-

ficient, which can be calculated faster. However, calculating the

edge-coefficient clustering value is still very time consuming to be

calculated repeatedly in a large network. Similarly, Fortunato et

al. [10] used the information centrality of a network as a measure

for removing edges at each iteration. Fortunato et al. [10] proposed

to remove the edges, whose removal can result in the maximum de-

crease in the information centrality of network, where calculating

the information centrality in a large-scale network is impractical.

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

493

FACH: Fast Algorithm for Detecting Cohesive Hierarchies of Communities WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA

Bottom-up approaches. Newman [19] proposed a bottom-up ap-

proach for hierarchical community detection, where communities

are merged, if the modularity of the resulting community can be

increased, starting from vertices as seeds. In an attempt to improve

the efficiency of this algorithm [19], Clauset et al. [4] proposed

several optimization techniques, which is yet unable to scale to net-

works with millions of vertices. Expansion of every single vertex

in a network can be very time consuming and it can result in many

redundant communities, therefore in LFM [15] only a randomly

selected set of vertices are expanded until the value of modularity is

locally maximal. Similarly, Sales-Pardo et al [27] considered a set of

local maxima communities according to modularity fitness metric.

However, the modularity used in [15], [19] and [27] does not allow

single vertices to be a community. Haveman et al. [13] modified the

fitness function to allow a single vertex to be a community. Many

researchers [7, 17, 21, 29] have attempted to use small subsets of ver-

tices as seeds. For example, in the works EAGLE [29] and COCD [7]

it was proposed to start with small cliques as seeds and merge two

communities with the maximum similarity into one, where the

similarity between two communities is proportional to the number

of edges between them. However, cliques are a very strict condition

for real-world communities. Lancichinetti et al. [16] presented the

algorithm OSLOM, which uses an estimated statistical significance

of a community as a fitness metric and locally optimizes the sta-

tistical significance of communities. Rosvall et al. [26] proposed a

method called Informap, which is a generalization of their flow-

based clustering method [25] to uncover hierarchical communities.

Ahn et al. [1], proposed a different approach called link clustering,

where edges are partitioned via hierarchical clustering.

8 CONCLUSIONS
In this paper, we studied the hierarchical community detection

problem. We formally defined the problem of hierarchical commu-

nity detection, as finding a rooted tree of communities where each

community is a subset of its parent in the tree, and the information

centrality of communities is no less than that of their parent in the

hierarchical tree. We showed that the problem of finding hierarchi-

cal communities is NP-hard and devised an efficient and scalable

heuristic algorithms for this problem.We further incorporated a fast

sparsification method to reduce the network size for finding global

cuts. We also proposed a fast randomized algorithm to estimate

the value of information centrality in large-scale networks. We

finally validate the effectiveness of our proposed algorithms using

extensive experiments over five large-scale real-world datasets.

9 ACKNOWLEDGEMENT
This work is supported by the grant of Australian Research Council

Discovery Project No. DP120102627.

REFERENCES
[1] Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. 2010. Link communities

reveal multiscale complexity in networks. Nature 466, 7307 (2010), 761–764.

[2] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang.

2013. Efficiently computing k-edge connected components via graph decomposi-

tion. In SIGMOD’13. 205–216.

[3] James Cheng, Yiping Ke, Shumo Chu, and M Tamer Özsu. 2011. Efficient core

decomposition in massive networks. In ICDE. 51–62.

[4] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. 2004. Finding commu-

nity structure in very large networks. Physical review E 70, 6 (2004), 066111.

[5] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.

National Security Agency Technical Report (2008), 16.

[6] Thomas H.. Cormen, Charles Eric Leiserson, Ronald L Rivest, and Clifford Stein.

2001. Introduction to algorithms. Vol. 6. MIT press Cambridge.

[7] Nan Du, Bai Wang, and Bin Wu. 2008. Overlapping community structure detec-

tion in networks. In CIKM’08. 1371–1372.

[8] David Eppstein and Joseph Wang. 2001. Fast approximation of centrality. In Proc.

of SODA’01. 228–229.

[9] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3

(2010), 75–174.

[10] Santo Fortunato, Vito Latora, and Massimo Marchiori. 2004. Method to find

community structures based on information centrality. Physical review E 70, 5

(2004), 056104.

[11] Michelle Girvan and Mark EJ Newman. 2002. Community structure in social and

biological networks. PNAS’02 99, 12 (2002), 7821–7826.

[12] Prem K Gopalan and David M Blei. 2013. Efficient discovery of overlapping

communities in massive networks. PNAS’13 110, 36 (2013), 14534–14539.

[13] Frank Havemann, Michael Heinz, Alexander Struck, and Jochen Gläser. 2011.

Identification of overlapping communities and their hierarchy by locally calcu-

lating community-changing resolution levels. Journal of Statistical Mechanics:

Theory and Experiment 2011, 01 (2011), P01023.

[14] Wassily Hoeffding. 1963. Probability inequalities for sums of bounded random

variables. Journal of the American statistical association 58, 301 (1963), 13–30.

[15] Andrea Lancichinetti, Santo Fortunato, and János Kertész. 2009. Detecting the

overlapping and hierarchical community structure in complex networks. New

Journal of Physics 11, 3 (2009), 033015.

[16] Andrea Lancichinetti, Filippo Radicchi, José J Ramasco, and Santo Fortunato.

2011. Finding statistically significant communities in networks. PloS one 6, 4

(2011), e18961.

[17] Conrad Lee, Fergal Reid, Aaron McDaid, and Neil Hurley. 2010. Detecting highly

overlapping community structure by greedy clique expansion. SNA/KDD’10

(2010), 33–42.

[18] Hiroshi Nagamochi and Toshihide Ibaraki. 1992. Computing edge-connectivity

in multigraphs and capacitated graphs. SIAM Journal on Discrete Mathematics 5,

1 (1992), 54–66.

[19] Mark EJ Newman. 2004. Fast algorithm for detecting community structure in

networks. Physical review E 69, 6 (2004), 066133.

[20] Mark EJ Newman and Michelle Girvan. 2003. Mixing patterns and community

structure in networks. In Statistical mechanics of complex networks. Springer,

66–87.

[21] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. 2005. Uncovering

the overlapping community structure of complex networks in nature and society.

Nature 435, 7043 (2005), 814–818.

[22] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and

Domenico Parisi. 2004. Defining and identifying communities in networks.

PNAS’04 101, 9 (2004), 2658–2663.

[23] Erzsébet Ravasz, Anna Lisa Somera, Dale A Mongru, Zoltán N Oltvai, and A-L

Barabási. 2002. Hierarchical organization of modularity in metabolic networks.

Science 297, 5586 (2002), 1551–1555.

[24] Mojtaba Rezvani, Weifa Liang, Wenzheng Xu, and Chengfei Liu. 2015. Identifying

top-k structural hole spanners in large-scale social networks. In CIKM’15. 263–

272.

[25] Martin Rosvall and Carl T Bergstrom. 2008. Maps of random walks on complex

networks reveal community structure. PNAS’08 105, 4 (2008), 1118–1123.

[26] Martin Rosvall and Carl T Bergstrom. 2011. Multilevel compression of random

walks on networks reveals hierarchical organization in large integrated systems.

PloS one 6, 4 (2011), e18209.

[27] Marta Sales-Pardo, Roger Guimera, André A Moreira, and Luís A Nunes Amaral.

2007. Extracting the hierarchical organization of complex systems. PNAS’07 104,

39 (2007), 15224–15229.

[28] Satu Elisa Schaeffer. 2007. Graph clustering. Computer science review 1, 1 (2007),

27–64.

[29] Huawei Shen, Xueqi Cheng, Kai Cai, and Mao-Bin Hu. 2009. Detect overlap-

ping and hierarchical community structure in networks. Physica A: Statistical

Mechanics and its Applications 388, 8 (2009), 1706–1712.

[30] Duncan JWatts and Steven H Strogatz. 1998. Collective dynamics of ‘small-world’

networks. nature 393, 6684 (1998), 440–442.

[31] Joyce Jiyoung Whang, David F Gleich, and Inderjit S Dhillon. 2013. Overlapping

community detection using seed set expansion. In CIKM’13. 2099–2108.

[32] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. 2013. Overlapping commu-

nity detection in networks: The state-of-the-art and comparative study. Comput.

Surveys 45, 4 (2013), 43.

[33] Jaewon Yang and Jure Leskovec. 2013. Overlapping community detection at scale:

a nonnegative matrix factorization approach. InWSDM’13. ACM, 587–596.

[34] Ying Zhao, George Karypis, and Usama Fayyad. 2005. Hierarchical clustering

algorithms for document datasets. Data mining and knowledge discovery 10, 2

(2005), 141–168.

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

494

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem definition
	4 Cohesive hierarchical community detection
	4.1 The basic algorithm (CHD)
	4.2 The FACH algorithm

	5 Approximating information centrality
	5.1 Theoretical analysis

	6 Experimental results
	6.1 Experimental settings
	6.2 Accuracy and efficiency
	6.3 Hierarchies: level by level

	7 Related works
	8 Conclusions
	9 Acknowledgement
	References

