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Abstract: This paper compares two approaches to analyzing longitudinal discrete-time binary
outcomes. Dynamic binary response models focus on state occupancy and typically specify low-order
Markovian state dependence. Multi-spell duration models focus on transitions between states
and typically allow for state-specific duration dependence. We show that the former implicitly
impose strong and testable restrictions on the transition probabilities. In a case study of poverty
transitions, we show that these restrictions are severely rejected against the more flexible multi-spell
duration models.
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1. Introduction

This paper is about modeling discrete-time two-state panel data, where outcomes indicate which
of two states an individual is occupying in each period, and where transitions between states occur
between periods. Often individuals’ outcomes are characterized by a degree of persistence, and an
important part of the analysis is to discover the extent to which persistence is due to heterogeneity
across individuals or to true state dependence (e.g., Heckman 1978, 1981c; Heckman and Borjas 1980).
Analysis of such data is central to many empirical studies in economics and other social sciences.1

There are two conceptually distinct approaches to analyzing such two-state panel data in the
literature. First, dynamic binary response (DBR) approaches focus on the probability of occupying
one of the two states in each period, and usually assume Markovian state dependence, in which the
current period’s occupancy depends on the occupancy of previous periods. In contrast, multi-spell
duration (MSD) approaches focus on the probability of a transition between states occurring in each
period, and usually assume current spell duration dependence (or semi-Markovian state dependence),
in which the transition probability depends on the elapsed duration in the current state.

This paper compares the DBR and MSD approaches. In the first part of the paper, we present
prototype DBR and MSD models and discuss the relationship between them. The DBR models
are simpler and more restrictive than the MSD models, involving fewer equations and parameters,
and require less data and information about past outcomes. We show that typical DBR models embody

1 Typical topics include employment (e.g., Heckman 1981a; Hyslop 1999), unemployment (e.g., Arulampalam et al. 2000),
poverty (e.g., Stevens 1999; Cappellari and Jenkins 2004), welfare dependency (e.g., Bane and Ellwood 1983), health
(e.g., Halliday 2008), and peace and conflict between national states (e.g., Beck and Katz 1997; Beck et al. 2001).
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strong restrictions on the corresponding probabilities of transitioning between states (the hazard rates).
First, they restrict the effects of observed and unobserved heterogeneity to have the same magnitude
but opposite signs on the implied transition probabilities. Second, rth order DBR models restrict the
implied transition probabilities to be constant after r periods into a spell. In fact, first and second-order
DBR models are special cases of a particularly simple MSD model, where duration dependence is
limited to one or two periods.

In the second part of the paper, we use an empirical case study to illustrate the two approaches.
We analyze data from the US Panel Study of Income Dynamics (PSID) on individual poverty
experiences, previously analyzed by Stevens (1999) using an MSD approach. We fit a range of
DBR and MSD model specifications. The estimation results show MSD models dominate the more
restrictive DBR models on several dimensions. In particular, the patterns of state dependence in these
data are more complicated than allowed for in simple DBR models, and the restriction of opposite
effects of heterogeneity on poverty entry and exit is also strongly rejected. Consequently, the MSD
models provide better within-sample predictions than do the DBR models. Consistent with recent
literature (e.g., Bhuller et al. 2017), we conclude that the standard dynamic binary response model is
unacceptably restrictive in this context.

In practice, simple first- or at most second-order DBR models are far more widely used than MSD
models. Our theoretical and empirical results suggest that data analysis can benefit from considering
less restrictive models and, in particular, from considering the implications of model specifications on
both probabilities of occupying a particular state and probabilities of transitioning between states.

To the best of our knowledge, the relationship between the DBR and MSD models has not been
formally recognized, and very few studies have discussed the implications of the DBR models for
transition probabilities and spell durations. Cappellari et al. (2007) compared a duration and a Markov
model for employment transitions, and Bhuller et al. (2017) analyzed the adequacy of first-order
dynamic binary response models against more general models that allow for duration and occurrence
dependence. Gørgens and Hyslop (2018) showed that the DBR and MSD approaches are equivalent
in a nonparametric context, and that nonparametric DBR models of order r ≤ 2 are nested within a
simple MSD model. Among other things, this implies that either model can be used to estimate both
probabilities of occupying a state and probabilities of transitioning between states. The present paper
complements that analysis by showing that the equivalence and the nesting property carries over to
commonly used parametric model specifications, and by documenting that the DBR restrictions are
rejected in an empirical case study.

The paper is organized as follows. Section 2 introduces the two approaches and present
prototypical DBR and MSD models. Section 3 presents the empirical analysis. The paper concludes
with a discussion in Section 4.

2. Modeling Discrete-Time Two-State Panel Data

In this section we provide context for our analysis, present prototype DBR and MSD models,
and discuss how they are related.

2.1. Context, Data, and Likelihood

Our interest in this paper is processes that are well represented in discrete time. In a typical
application, time is divided into periods of equal length, an individual occupies one of two states during
each period, and transitions between states occur between periods. This framework is particularly
well suited for studies where a time scale is determined by convention or by law. For example,
in some countries receiving welfare is determined on a weekly or monthly basis. The framework is
also applicable when an outcome indicates the state an individual is occupying at a point in time
and transitions take place during the period between these observations, provided it is reasonable
to assume that at most one transition takes place in each period and that the precise timing of the
transition within this period can be ignored. The framework is not suitable for data where an outcome
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indicates state occupancy at a point in time and multiple transitions are likely between the observation
times. For example, an analysis of employment status at the time of an annual interview must deal
with unobserved transitions between interviews.

The data available for analysis are indicators of state occupancy, indicators of transition between
states, and covariates for N individuals observed over T periods. We assume the sample is an
independent random sample from a given population. The indicators of the state occupied by
individual i at time t are denoted Yit with Yit ∈ {0, 1}. The indicators of whether or not individual i
makes a transition between times t− 1 and t are denoted Cit with Cit ∈ {0, 1}. The covariates for
individual i at time t are denoted Xit with Xit ∈ Rdim(x). The covariate time reference is for modeling
purposes, and Xit may include contemporaneous values, lags and leads, of underlying variables.
Let Hit = (Yi1 . . . , Yit) denote the outcome history up to time t. Lower case letters with a subscript i
represent observed values of the corresponding upper case random variables.

For simplicity, we assume the data constitute a balanced panel, and the data for each individual
are both left- and right-censored. For identification and estimation purposes, we also assume that the
data censoring is independent of the underlying process.

Following the literature (e.g., Heckman and Singer 1984), we allow for unobserved heterogeneity
in the form of random effects in the equations which make up the DBR and MSD models discussed
below. Let Vi denote a random vector representing unobserved heterogeneity for individual i.
We assume that Vi has a discrete distribution with support {ν1, . . . , νK} and probability distribution
π1, . . . , πK with ∑K

k=1 πk = 1. Each νk is a vector with as many element as there are equations in
the model.

As mentioned, the DBR approach focuses on the probabilities of occupying one of the states in
each period given previous history while the MSD approach focuses on the probabilities of making a
transition between states in each period. For convenience, define

θ I
k(xi1) = P(Yi1 = 1|Xi1 = xi1, Vi = νk), (1)

θY
k (hit−1, xit) = P(Yit = 1|Hit−1 = hit−1, Xit = xit, Vi = νk), t = 2, . . . , T, (2)

θC
k (hit−1, xit) = P(Cit = 1|Hit−1 = hit−1, Xit = xit, Vi = νk), t = 2, . . . , T. (3)

Assuming independent sampling and independent censoring, the conditional likelihood function
for the outcome data given covariates has the form

LW =
N

∏
i=1

{ K

∑
k=1

πk

[
θ I

k(xi1, νk)
yi1 [1− θ I

k(xi1, νk)]
1−yi1 ×

T

∏
t=2

θW
k (hit−1, xit)

wit [1− θW
k (hit−1, xit)]

1−wit

]}
, (4)

where W ∈ (Y, C), and (θW
k , wit) is either (θY

k , yit) or (θC
k , cit). Typical modeling involves

parameterizing the probabilities and estimating the unknown parameters by maximizing this
likelihood function.

Gørgens and Hyslop (2018) showed that the DBR and MSD approaches are equivalent in a
nonparametric context. In particular, one can transform data on state occupancy, (Yi1, Yi2, . . . , Yit),
to data on transitions between states, (Yi1, Ci2, . . . , Cit), and vice versa, and one can transform
probabilities of state occupancy, θY

k , to probabilities of transition between states, θC
k , and vice versa.

In the present paper, we show that prototype parametric DBR and MSD models are also equivalent
(barring initial conditions and left-censoring as explained later).
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2.2. Prototype DBR Models

The DBR approach assumes that the probabilities of being in a given state depend on the history
only through the r most recent outcomes (Markovian state dependence of order r). Formally, for r ≥ 1
it is assumed that

θY
k (hit−1, xit) = P(Yit = 1|Yit−r = yit−r, . . . , Yit−1 = yit−1, Xit = xit, Vi = νk), t = r + 1, . . . , T, (5)

where (yit−r, . . . , yit−1) are the r-most recent outcomes in hit−1. Equation (5) is the DBR model’s
main equation of interest, which we refer to as the “structural” equation. The simplest and most
common DBR model used empirically adopts r = 1, although r = 2 is sometimes used in cases of
either higher-frequency and/or longer-period data (e.g., Chay et al. 1999; Card and Hyslop 2005, 2009;
Andrén and Andrén 2013).

Equation (5) does not restrict the probability distribution for the initial r outcomes, (Yi1, . . . , Yir),
referred to as the “initial conditions” of the process. When the data are left-censored, there is little
interest in the probabilities associated with the initial conditions, but it is important they are dealt
with unless they can be considered to be exogenous. Adapting the ideas of Heckman (1981b), we shall
model the initial conditions using r “approximate reduced form” equations.

In the empirical case study in Section 3 we consider models with r = 1 and r = 2, labeled DBR1
and DBR2 respectively. The DBR1 model has two equations:

θ I
k(xi1) = G(νk1 + β′1xi1), (6)

θY
k (hit−1, xit) = G(νk2 + β′2xit + γ2yit−1), t = 2, . . . , T, (7)

where G denotes the logistic function.
In the DBR2 model we allow second-order Markovian state dependence. This model extends the

first-order model to include two equations for the first two outcomes, while the structural equation
includes two lags of the outcome variable as well as their interaction term. Thus, the DBR2 model has
three equations:

θ I
k(xi1) = G(νk1 + β′1xi1), (8)

θY
k (hi1, xi2) = G(νk2 + β′2xi2 + γ2yi1), (9)

θY
k (hit−1, xit) = G(νk3 + β′3xit + γ31yit−1 + γ32yit−2 + γ33yit−1yit−2), t = 3, . . . , T. (10)

The prototype DRB models can be generalized. In addition to allowing for higher-order state
dependence, several authors have pointed out the possibility of interacting covariates with the lagged
outcome variables (e.g., Heckman 1981c; Barmby 1998; Beck et al. 2001). Such an extension leads to a
intermediate specification between the prototypical DBR and MSD models, discussed in Section 2.4
and in the case study in Section 3.

2.3. Prototype MSD Models

The MSD approach assumes that the probabilities of a transition between states depends only
on the state currently occupied and the elapsed time spent in the current state (duration dependence,
or semi-Markovian state dependence). Let Fi denote the time of the first observed transition for
individual i, with Fi > T if no transitions are observed. Also, let Dit denote the observed elapsed
time in the spell observed in period t: Di1 = 1 for the left-censored spells, and DiFi = 1 when
Fi ≤ T. Then the prototype MSD model assumes that the transition probabilities for the “fresh”
(i.e., non-left-censored) spells that begin during the observation period satisfy

θC
k (hit−1, xit) = P(Cit = 1|Yit−1 = yit−1, Dit−1 = dit−1, Xit = xit, Vi = νk), t = fi + 1, . . . , T. (11)
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Conditioning on Yit−1 = yit−1 captures first-order Markovian state dependence, and conditioning
on Dit−1 = dit−1 captures duration dependence. We refer to (11) as the MSD model’s “structural”
equation of interest.

In practice, the usefulness of assumption (11) will depend on the number of transitions observed
within the observation period. In applications with substantial persistence in state occupancy and
few transitions, there may be relatively few fresh-spell observations for which Equation (11) applies.
This is alleviated if the effect of elapsed duration becomes constant after some time. For this purpose,
we consider the additional assumption that the effect of elapsed duration is constant after m periods
within the spell. (For example, if m = 1, the transition probabilities are constant throughout each spell.)
To write this compactly, define Dm

it = min(Dit, m). Then, for m ≥ 1,

θC
k (hit−1, xit) = P(Cit = 1|Yit−1 = yit−1, Dm

it−1 = dm
it−1, Xit = xit, Vi = νk), t = min( fi, m) + 1, . . . , T. (12)

The main advantage of assumption (12) is that only parameters for times 1, . . . , m depend on
unobserved outcome variables. In other words, Equation (12) implies that all data after the earlier
of the first observed transition at fi or time m contribute to identifying and estimating the structural
parameters of interest.

Neither (11) nor (12) restrict the probabilities of making a transition out of the left-censored
initial spells,

θC
k (hit−1, xit), t = 1, . . . , min( fi, m). (13)

As in the DBR case, these are typically nuisance parameters, and again we use Heckman’s (1981b)
ideas in modeling them. A fully flexible specification of the approximate reduced form would involve
separate equations for each probability in (13). Depending on the extent of left-censoring, this may be
prohibitive in practice. We adopt a more parsimonious approach and specify three equations for the
probability of the initial outcome, and the initial spell transitions from each state.

In the empirical study in Section 3 we consider two models which both assume (11) and (12),
and capture duration dependence through a flexible specification with separate parameters for the
first m potential transition times in each state (m = 6). The first model, MSD1, uses all the data
available but does not fully exploit Assumption (12). Specifically, the duration dependence is assumed
to be constant after duration m, but this restriction is not imposed across the structural equations
and probabilities for left-censored spells. This model has five equations: a reduced form equation for
the initial state, two reduced-form equations for modeling transitions from the initial spells, and two
structural equations for modeling the transitions from the fresh spells. The model specification (for
m > 1) is

θ I
k(xi1) = G(νk1 + β′1xi1), (14)

θC
k (hit−1, xit) = G(νk2 + β′2xit + ∑m

j=2 λ2j 1(dm
it−1 ≥ j)), yi1 = 0, t = 2, . . . , min( fi, m), (15)

θC
k (hit−1, xit) = G(νk3 + β′3xit + ∑m

j=2 λ3j 1(dm
it−1 ≥ j)), yi1 = 1, t = 2, . . . , min( fi, m), (16)

θC
k (hit−1, xit) = G(νk4 + β′4xit + ∑m

j=2 λ4j 1(dm
it−1 ≥ j)), yit−1 = 0, t = min( fi, m) + 1, . . . , T, (17)

θC
k (hit−1, xit) = G(νk5 + β′5xit + ∑m

j=2 λ5j 1(dm
it−1 ≥ j)), yit−1 = 1, t = min( fi, m) + 1, . . . , T. (18)

The second model, MSD2, utilizes assumption (12) together with a second implication, namely
that we can ignore observed transitions in the first m periods, and still obtain consistent estimates of
the structural equation parameters of interest. This may entail some loss of precision in estimating the
structural parameters, but simplifies modeling the nuisance parameters. Specifically, for dit−1 ≥ m we
restrict Equations (15) and (17) to be the same and Equations (16) and (18) to be the same. Furthermore,
we ignore the likelihood contributions for the first m− 1 time periods. This allows us to estimate a
three-equation model, which represent the approximate reduced form specification for the probability
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distribution of the state at time m, and the two transition probabilities out of the state-specific spells.
The MSD2 model specification (for m > 1) is

θC
k (him−1, xim) = G(νk1 + β′1xim), (19)

θC
k (hit−1, xit) = G(νk2 + β′2xit + ∑m

j=2 λ2j 1(dm
it−1 ≥ j)), yit−1 = 0, t = m + 1, . . . , T, (20)

θC
k (hit−1, xit) = G(νk3 + β′3xit + ∑m

j=2 λ3j 1(dm
it−1 ≥ j)), yit−1 = 1, t = m + 1, . . . , T. (21)

The prototype MSD models can be generalized, for example, by allowing occurrence
dependence (i.e., the effects of the number of previous transitions), and/or lagged duration
dependence (i.e., completed durations of previous spells) (e.g., Heckman and Borjas 1980;
Doiron and Gørgens 2008). In practice, the higher data demands mean that estimation of such models
may only be feasible when the data are non-left-censored for all individuals.

2.4. The Relationship between DBR and MSD Models

As mentioned, the data representations for occupancies and transitions are equivalent.
The probabilities for state occupancy and for transitions between states are also equivalent in a
nonparametric context. Furthermore, Gørgens and Hyslop (2018) also showed that the Markov
assumption (5) with r = 1 or r = 2 implies the semi-Markov assumption (11). That is, the low-order
DBR model is a special case of the MSD model in nonparametric setting.

The prototype parametric models differ in the details of how they deal with initial conditions
and left-censoring. However, in this section we show that both the DBR1 and the DBR2 structural
equations are special cases of the structural MSD1/MSD2 equations. That is, the nesting property
survives typical parameterizations.

To see this for the DBR1 model, note that by symmetry of the logistic function the DBR1
Equation (7) implies

θC
k (hit−1, xit) =

{
G(νk2 + β′2xit) if yit−1 = 0,

G(−νk2 − β′2xit − γ2) if yit−1 = 1,
t = 2, . . . , T, (22)

whereas the MSD1 equations can be written (the MSD2 model is similar)

θC
k (hit−1, xit) =

{
G(νk4 + β′4xit + ∑m

j=2 λ4j 1(dm
it−1 ≥ j)) if yit−1 = 0,

G(νk5 + β′5xit + ∑m
j=2 λ5j 1(dm

it−1 ≥ j)) if yit−1 = 1,
t = m + 1, . . . , T. (23)

Matching coefficients shows that the DBR1 model arises as a special case of the MSD1 models when
there is no duration dependence (m = 1), and the effects of observed and unobserved heterogeneity
are opposite in the two transition probabilities. Specifically, the restrictions are λ4j = 0 and λ5j = 0
for j = 2, . . . , m; β4 + β5 = 0; and νk4 − ν14 + νk5 − ν15 = 0 for k = 2, . . . , K. Under these
restrictions, the state dependence parameter in the DBR1 model can be recovered from γ2 = −ν14− ν15,
with νk2 = νk4.

To show that the DBR2 model is also a special case, note that the DBR2 structural
Equation (10) implies

θC
k (hit−1, xit) =


G(νk3 + β′3xit + γ32) if yit−1 = 0, yit−2 = 1,

G(νk3 + β′3xit) if yit−1 = 0, yit−2 = 0,

G(−νk3 − β′3xit − γ31) if yit−1 = 1, yit−2 = 0,

G(−νk3 − β′3xit − γ31 − γ32 − γ33) if yit−1 = 1, yit−2 = 1,

t = 3, . . . , T. (24)
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Notice that unequal values of yit−1 and yit−2 means that the spell has lasted exactly one period
at time t, while equal values means that the spell has lasted two or more periods. Since dm

it−1 ≥ 2 if
and only if yit−1 = yit−2, the MSD1 structural equations for m ≥ 2 can be re-written (the MSD2 model
is similar)

θC
k (hit−1, xit) =

{
G(νk4 + β′4xit + λ42(1− yit−2) + ∑m

j=3 λ4j 1(dm
it−1 ≥ j)) if yit−1 = 0,

G(νk5 + β′5xit + λ52yit−2 + ∑m
j=3 λ5j 1(dm

it−1 ≥ j)) if yit−1 = 1,

t = m + 1, . . . , T. (25)

Matching coefficients shows that the DBR2 model arises as a special case when there is no duration
dependence after one period (m = 2), and the effects of observed and unobserved heterogeneity are
opposite in the two transition probabilities. Specifically, the restrictions are λ4j = 0 and λ5j = 0 for
j = 3, . . . , m; β4 + β5 = 0; and νk4 − ν14 + νk5 − ν15 = 0 for k = 2, . . . , K. Under there restrictions,
the state dependence parameters in the DBR1 model can be recovered from γ31 = −ν14 − ν15 − λ42,
γ32 = −λ42, and γ33 = λ42 − λ52, with νk3 = νk4 + λ42.

Higher-order DBR models are generally not nested within the MSD framework. However, it is
easy to show that a rth-order DBR model has transition probabilities that are constant after r periods
in a spell. Moreover, prototype DBR models implicitly assume that the effects of covariates and
unobserved heterogeneity on the probability of being in state 1 at time t are the same whether or not
the individual is in state 0 or state 1 at time t− 1. In other words, the effects on the entry and exit
transition probabilities have the same magnitude but opposite signs. From the perspective of duration
analysis, the restrictions on the transition probabilities embodied in typical DBR models appear strong.

Several authors working with DBR models have considered the possibility of interacting the
covariates with the lagged occupancy indicator (e.g., Heckman 1981c; Barmby 1998; Beck et al. 2001;
Card and Hyslop 2009; Browning and Carro 2010; Cappellari and Jenkins 2014). Although the intent
was to allow for heterogeneity in state dependence rather than a specific consideration of transition
probabilities, Equation (25) shows that the extension to permit β4 6= −β5 is an intermediate case with
the restrictions on duration dependence and the effects of unobserved heterogeneity maintained.

The nesting of DBR1 and DBR2 models within the MSD model means that it is possible to test the
former against the latter using a simple Wald statistic. Obviously, it is also possible to test intermediate
models against the MSD model to investigate separately the validity of the restrictions on duration
dependence and on the heterogeneity effects. In the case study below, we investigate whether rejection
of the DBR models is mainly due to inadequate modeling of duration dependence or to restricting the
heterogeneity effects to be opposite by estimating and testing a hierarchy of model specifications.

3. Case Study

We now apply each of the methods discussed above to an analysis of poverty persistence,
previously analyzed using multi-spell duration models by Stevens (1999). Our focus here is to estimate
and compare the DBR and MSD models, rather than to replicate or critique Stevens’ original analysis.
So, for example, we select a different analytical extract from the data provided to us than that used
by Stevens.

3.1. Data

Our analytical sample consists of a balanced panel of 5248 individuals over the 20 years 1970–89
from the Panel Study of Income Dynamics (PSID).2 Each individual’s poverty status is determined by

2 The data we use come from the PSID survey years 1970–89, with the income and poverty observations corresponding to
calendar years 1969–88. Years mentioned in the text refer to survey years. We use a balanced panel in order to abstract from
attrition issues that may differentially affect the estimation methods.
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whether their family’s annual income is below or above a needs threshold which depends on family
size and composition, so that all individuals in a family have the same poverty status in that year.3

The main sample selection criteria we apply is that all individuals experience at least one year in
poverty over the extended period 1968–89, and are observed and have no missing outcome or covariate
information over the analysis period 1970–89.4 The covariates include dummy variables for age groups
0–5, 6–17, 18–24, and 55+, and dummy variables for whether the household head is female and/or
black. The sample characteristics are summarized in Table 1.

Table 1. Descriptive statistics.

Mean (Standard Error)

Person-years

Aged 0–5 0.025 (0.0005)
Aged 6–17 0.225 (0.001)

Aged 18–24 0.204 (0.001)
Aged 25–54 0.420 (0.002)
Aged 55+ 0.126 (0.001)

Female head 0.336 (0.001)
Black head 0.582 (0.002)
Poor (yit) 0.353 (0.001)

Transition (cit) 0.177 (0.001)
No. person-years 104,960

Persons

Transitions 3.35 (0.032)
No. persons 5248

Spells

Duration of all spells 4.59 (0.033)
Duration of initial spells 7.11 (0.084)
Duration of fresh spells 3.84 (0.032)

No. spells 22,849

Notes: No adjustments for censoring.

3.2. Estimation Results

We present the estimates of the DBR and MSD models in Tables 2 and 3. Table 2 contains estimates
for the first- and second-order DBR models with two discrete points of unobserved heterogeneity,
DBR1 and DBR2. Similarly, Table 3 contains the estimates for two MSD models with two random effects
mass points: a five-equation model, MSD1, estimated using the full sample; and a three-equation
model, MSD2, which exploits the assumption of constant transition probabilities after 6 years to
estimate common equations for initial and fresh spells, excluding the first five years of initial spells.
As the data do not constitute a random sample, we report robust standard errors with clustering at the
level of the households originally selected for the survey. Note that, although the initial state equation
is the same in each model, since each model is jointly estimated as a system of different equations,
the initial state equation parameter estimates will vary across the models.

The MSD models relax restrictions implied by the DBR models in two important respects. First,
the DBR model specifications imply that covariate coefficients should be equal in magnitude and
opposite in sign in the entry and exit equations. In contrast, although the covariate coefficients are
predominantly positive in the entry equation and negative in the exit equation (in line with the DBR

3 See Stevens (1999) for more details of this and other data issues.
4 This criteria is used as a proxy to identify the poverty at-risk population, and follows Stevens (1999).
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estimates), we find that there are some exceptions with the signs of the young and old age coefficients.
In addition, there are also substantial differences in magnitudes of the coefficients in these equations.

Table 2. Dynamic binary response model estimates.

DBR1 DBR2

IC Strl IC1 IC2 Strl

Variables

yit−1 2.191 (0.040) 2.426 (0.147) 1.859 (0.051)
yit−2 0.942 (0.050)

yit−1yit−2 0.039 (0.075)
Aged 0–5 0.253 (0.104) 0.549 (0.093) 0.218 (0.100) 0.163 (0.136) 0.328 (0.104)

Aged 6–17 0.601 (0.075) 0.560 (0.043) 0.558 (0.073) 0.165 (0.077) 0.449 (0.037)
Aged 18–24 0.397 (0.113) 0.186 (0.030) 0.349 (0.111) −0.13 (0.126) 0.109 (0.029)
Aged 55+ −0.131 (0.172) 0.272 (0.048) −0.105 (0.170) −0.236 (0.180) 0.288 (0.043)

Female Head 1.076 (0.139) 0.935 (0.047) 1.085(0.138) 0.744 (0.156) 0.874 (0.045)
Black Head 1.429 (0.145) 0.620 (0.055) 1.48 (0.144) 0.855 (0.155) 0.527 (0.048)

Random effects (mass points and probabilities)

ν1 −2.178 (0.157) −3.186 (0.057) −2.121 (0.163) −2.686 (0.178) −3.206 (0.057)
ν2 −0.654 (0.150) −1.604 (0.073) −0.767 (0.155) −1.607 (0.171) −1.926 (0.076)
π1 0.638 (0.023) 0.640 (0.032)

Statistics

No. persons 5248 5248
No. years 20 20
Log QL −45,060.2 −44,110.7

Notes: yit indicates poverty in year t; IC: initial conditions equation; Strl: structural equation; Log QL:
logarithm of quasi-likelihood value. Standard errors in parentheses (clustered at the original 1968 household
level).

Table 3. Multi-spell duration model estimates.

MSD1 MSD2

Initial Initial Spells Fresh Spells Initial Fresh Spells

State Entry Exit Entry Exit State Entry Exit

Variables

1(dit ≥ 2) −0.070 −0.425 −0.507 −0.562 −0.509 −0.544
(0.161) (0.168) (0.070) (0.068) (0.075) (0.069)

1(dit ≥ 3) −0.490 0.234 −0.365 −0.188 −0.373 −0.163
(0.185) (0.191) (0.093) (0.094) (0.096) (0.097)

1(dit ≥ 4) 0.007 −0.046 −0.186 −0.290 −0.228 −0.321
(0.192) (0.202) (0.115) (0.119) (0.114) (0.120)

1(dit ≥ 5) 0.003 −0.028 −0.051 −0.169 −0.068 −0.258
(0.209) (0.236) (0.130) (0.142) (0.117) (0.135)

1(dit ≥ 6) 0.257 −0.051 −0.309 −0.056 0.029 −0.055
(0.162) (0.203) (0.113) (0.136) (0.091) (0.114)

Aged 0–5 0.156 0.332 −0.068 −0.340 −0.049 0.036 −0.206 −1.124
(0.100) (0.121) (0.120) (0.200) (0.226) (0.168) (0.429) (0.646)

Aged 6–17 0.512 −0.098 −0.440 0.511 −0.188 0.497 0.431 −0.272
(.071) (.063) (.061) (.059) (.057) (.069) (.053) (.055)

Aged 18–24 0.314 0.513 0.401 0.111 0.169 0.073 0.310 0.197
(0.111) (0.060) (0.067) (0.044) (0.044) (0.100) (0.040) (0.040)

Aged 55+ −0.078 0.047 −0.289 0.366 −0.287 0.150 0.327 −0.289
(0.170) (0.080) (0.157) (0.061) (0.060) (0.153) (0.052) (0.060)
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Table 3. Cont.

MSD1 MSD2

Initial Initial Spells Fresh Spells Initial Fresh Spells

State Entry Exit Entry Exit State Entry Exit

Female Head 1.086 0.906 −0.732 0.881 −0.817 1.195 0.838 −0.802
(0.140) (0.087) (0.121) (0.067) (0.065) (0.135) (0.058) (0.066)

Black Head 1.529 0.246 −0.871 0.713 −0.498 1.379 0.407 −0.493
(0.142) (0.084) (0.118) (0.072) (0.063) (0.144) (0.059) (0.063)

Random effects (mass points and probabilities)

ν1 −2.148 −2.403 0.332 −2.610 1.161 −2.592 −2.154 1.003
(0.181) (0.126) (0.193) (0.102) (0.094) (0.179) (0.099) (0.109)

ν2 −0.901 −1.678 −0.615 −1.143 0.121 −1.180 −0.870 0.029
(0.147) (0.134) (0.147) (0.093) (0.076) (0.180) (0.130) (0.088)

π1 0.590 0.677
(0.042) (0.049)

Statistics

No. persons 5248 5248
No. years 20 16
Log QL −43,444.5 −34,621.8

Notes: dit indicates elapsed duration in current spell at the end of year t; Entry: structural equation for
entering poverty; Exit: structural equation for exiting poverty; Log QL: logarithm of quasi-likelihood value.
Standard errors in parentheses (clustered at the original 1968 household level).

Second, the order of state dependence in DBR models implies that the impact on the probability
of a transition occurring should be zero for spell-durations longer than that order. That the estimates
of the elapsed-duration variables in both the entry and exit equations are statistically significant up to
6-plus years, strongly rejects both the first- and second-order state dependence specifications in the
estimated DBR models. Also, all of the coefficients are negative, which implies that the probability of
a transition either into or out of poverty occurring declines with the duration of the spell. However,
the coefficient magnitudes vary across the entry and exit equations.

This suggests, perhaps not surprisingly, that the MSD model provides a substantially better fit to
the data than the DBR models. This is true in terms of the overall fit of the model; and also in terms of
the more specific heterogeneity and duration-dependence restrictions implied by the DBR models.

To explore the respective contributions of relaxing the DBR models’ strict state dependence
and heterogeneity restrictions, we estimated a variety of model specifications that vary between the
extremes of the DBR1 model (A) and the unrestricted MSD1 model (G). The intermediate model
specifications are as follows: model (B) relaxes the heterogeneity restriction on both the covariates
and unobserved heterogeneity in the DBR1 model; model (C) is the DRB2 model which relaxes the
first-order Markov assumption, but imposes the entry and exit heterogeneity restrictions; model (D)
relaxes the heterogeneity restrictions in the DBR2 model; and models (E) and (F) allow for further
duration dependence (m = 6), with and without the heterogeneity effect restrictions in the entry and
exit equations. Assumption (12) is fully imposed in these models; that is, for t ≥ m the transition
probabilities out of the left-censored initial spells are modeled by the structural equations.5

The results are summarized in Table 4, including Wald tests of the hypotheses associated with the
various sets of restrictions. Each of the hypotheses is severely rejected, implying both the Markovian
state dependence and the heterogeneity restrictions on entry and exit are rejected against the MSD

5 Models (F) and (G) are conceptually the same, except that assumption (12) is not fully exploited in model (G), and the
initial spells continue to be modeled separately from the structural spells even after m periods. Because model (G) does not
nest the other specifications, a Wald test is not possible; however, the improvement in the log quasi-likelihood value from
model (F) to (G) is huge, suggesting assumption (12) is also problematic.
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alternatives in all cases. The most significant gain appears to be associated with relaxing the first-order
Markov assumption to allow second-order effects.

Table 4. Differences between the DBR1 and MSD1 models.

Model Duration p Dependence Heterogeneity Log QL No. Parms H0/HA Wald Statistic df

A (DBR1) 1 Opposite −45,060.2 18
B 1 Flexible −44,968.7 25 A / B 118.6 7

C (DBR2) 2 Opposite −44,110.7 29 A / C 817.5 11
D 2 Flexible −44,003.7 43 C / D 167.2 14
E 6 Opposite −43,832.9 45 C / E 184.9 16
F 6 Flexible −43,709.2 59 E / F 199.8 14

G (MSD1) 6 Flexible −43,444.5 61

Notes: p: constant hazard rates from period p; Log QL: logarithm of quasi-likelihood value; No. parms:
number of parameters; df: degrees of freedom; Opposite: parameters in entry and exit equations have opposite
signs. For all models K = 2 and N = 104, 960.

3.3. In Sample Prediction

We also compare in-sample predictions of the estimated DBR and MSD models against actual
outcome, using alternative measures. Table 5 uses two-way frequency tables to summarize the number
of years individuals are poor and the number of transitions in- and out-of poverty they experience;
while the frequency distributions of the number of spells individuals experience is summarized in
Table 6, and the average durations of those spells in Table 7.

The first panel of Table 5 summarizes the actual poverty experience of individuals over the
20 year observation period. This shows substantial variation in poverty experience in the sample
around the 7.06 year average: about 5 percent of the sample had no spells of poverty, and 18 percent
had a single year poor, while at the other extreme, 3 percent of individuals were always in poverty,
and the remaining three-quarters experienced between 2 and 19 years of poverty. Similarly, there was
substantial heterogeneity in poverty transitions around the 3.35 average, with 8 percent of individuals
experiencing no transitions, while over 40 percent had at least 4 transitions.

The next three panels in Table 5 present analogous summaries of the predictions from the first-
and second-order DBR models, and the MSD1 model respectively. Each model closely predicts
both the average incidence of poverty (between 7.00 and 7.03 years), and the average number of
transitions (between 3.36 and 3.41 transitions). However, they each overpredict the frequency of
zero transitions, and underpredict the frequencies of 1 and 2 transitions, and also underpredict the
frequency of persistent poverty (more the 15 years). The prediction errors are lower for the MSD model
than the DBR models (and for the DBR2 compared to DBR1), consistent with the estimation results
discussed above.

We have constructed Pearson goodness-of-fit statistics for each of the models based on the tables
of actual and predicted frequencies in Table 5.6 The relative magnitudes of these statistics are consistent
with the MSD1 model fitting substantially better than the two DBR models (and the DBR2 model fits
better than the DBR1 model). However, the value of MSD1 model’s goodness-of-fit statistic (98.9 with
23 degrees of freedom) suggests that it also does not provide an adequate statistical fit to the data
using conventional significance levels.

6 These statistics are intended for indicative purposes, as their distribution is unclear, and using critical values from a
chi-square distribution with “df” degrees of freedom is likely to result in a conservative test (under-rejection). For models
estimated by maximizing the complete likelihood function, Chernoff and Lehmann (1954) and Moore (1977) among others
show that the critical value is somewhere between chi-squares with q and q− l degrees of freedom, where q is the number
of free terms in the test statistic and l is the number of estimated parameters. Andrews (1988) extends this to non-dynamic
models estimated by maximizing the conditional likelihood function given covariates. However, these results do not apply
to dynamic models estimated by maximizing a quasi-likelihood function using clustered samples. For convenience, we
report the “maximum degrees of freedom” (i.e., q).
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Table 5. Predictions of years in poverty and transitions.

No. No. Transitions
Years Poor 0 1 2 3 4+ Even 5+ Odd Total

Actual data

0 255 0 0 0 0 0 255
1 0 201 735 0 0 0 936

2–5 0 232 315 291 526 168 1532
6–10 0 88 68 209 325 322 1012

11–15 0 55 38 95 299 290 777
16–19 0 88 155 92 190 62 587

20 149 0 0 0 0 0 149
Total 404 664 1311 687 1340 842 5248

DBR1 predictions

0 473.2 0 0 0 0 0 473.2
1 0 123.3 388.6 0 0 0 511.8

2–5 0 131.4 320.1 369.0 580.0 205.1 1605.5
6–10 0 31.0 62.4 194.6 475.5 458.6 1221.9

11–15 0 23.0 53.7 131.8 365.8 274.0 848.2
16–19 0 49.9 179.2 79.1 172.2 37.4 517.7

20 69.9 0 0 0 0 0 69.9
Total 543.0 358.5 1003.8 774.4 1593.4 975.0 5248.0

GOF = 973.5 (23df)

DBR2 predictions

0 527.5 0 0 0 0 0 527.5
1 0 113.8 440.7 0 0 0 554.5

2–5 0 166.8 228.2 334.0 588.0 212.9 1529.9
6–10 0 68.0 84.0 208.0 406.1 402.6 1168.6

11–15 0 44.4 72.8 136.4 315.5 265.0 834.1
16–19 0 58.6 179.1 76.7 179.6 45.1 539.0

20 94.6 0 0 0 0 0 94.6
Total 622.1 451.5 1004.7 755.0 1489.1 925.6 5248.0

GOF = 613.6 (23df)

MSD1 predictions

0 336.4 0 0 0 0 0 336.4
1 0 156.4 625.0 0 0 0 781.4

2–5 0 217.0 318.9 306.5 582.9 167.3 1592.5
6–10 0 105.2 73.4 187.8 341.6 350.5 1058.4

11–15 0 68.5 54.4 121.5 288.2 262.0 794.5
16–19 0 67.6 175.0 75.2 188.1 43.1 548.9

20 136.1 0 0 0 0 0 136.1
Total 472.5 614.5 1246.6 690.9 1400.8 822.8 5248.0

GOF = 98.9 (23df)

Notes: GOF: Pearson goodness of fit statistic; df: degrees of freedom. Poverty rates and incidence rates can be
computed by taking the number of years in poverty and the number of transitions and divide by the number
of years under observation.

Table 6 summarizes the actual and predicted frequency distributions of the number of distinct
poor and non-poor spells experienced over the observation period.7 Consistent with overpredicting
zero-transitions, both models overpredict the frequency of single spells and underpredict the
frequencies of 2 and 3 poverty spells, especially for individuals whose initial state is not-poor.

7 We exclude the DBR2 model, and show just the DBR1 and MSD1 model predictions here, as the DBR model predictions are
comparatively similar.
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The Pearson goodness-of-fit statistics for these predictions again indicate the MSD model provides
substantially better fit to this characterization of the data than the DBR model.

Finally, Table 7 summarizes the average durations of the actual and predicted spells for the DBR1
and MSD1 models. The averages of the MSD1 model predictions are again closer to the actual spell
average durations than those of the DBR1 model.

Table 6. Predictions of spells by initial state.

No. Spells

Actual Data DBR1 Predictions MSD1 Predictions

Initial State Initial State Initial State

Not Poor Poor Not Poor Poor Not Poor Poor

1 255 149 473.2 69.9 336.4 136.1
2 159 505 99.2 259.3 132.7 481.8
3 1089 222 739.0 264.8 989.7 257.0
4 214 473 230.4 544.0 203.0 487.9
5 455 271 600.0 370.8 518.5 265.3
6 129 398 211.2 458.3 158.7 323.3
7 219 155 261.8 225.5 227.4 175.4
8 81 139 84.4 174.2 79.3 155.6
9 119 73 60.9 61.1 81.8 79.5
10 31 47 14.9 28.5 31.9 51.0
11 21 16 6.2 6.2 21.2 22.2
12 6 10 1.2 2.5 8.2 11.7
13 7 3 0.5 0.5 3.5 4.8
14 0 1 0.0 0.0 1.1 1.9
15 0 1 0.0 0.0 0.4 0.8
16 0 0 0.0 0.0 0.1 0.2
17 0 0 0.0 0.0 0.0 0.1

Total 2785 2463 2782.7 2465.4 2793.7 2454.3
GOF 564.6 481.9 66.1 32.6
(df) (11) (11) (11) (11)

Notes: GOF: Pearson goodness-of-fit statistic conditional on the initial state, with cells 12–17 combined; df:
degrees of freedom.

Table 7. Predictions of spell type and poverty status.

Actual Data DBR1 prd MSD1 prd

Initial Fresh Initial Fresh Initial Fresh

Spells Spells Spells Spells Spells Spells

Status: not poor

Avg spell duration 8.23 4.85 8.43 4.70 8.10 4.92
No. spells 2785 9277 2783 9510 2794 9266

Status: Poor

Avg spell duration 5.86 2.72 4.48 2.96 5.88 2.67
No. spells 2463 8324 2465 8684 2454 8368

Notes: Prd: predictions; avg: average.

3.4. Out of Sample Prediction

Finally, to gauge whether policy recommendations are sensitive to the model specification,
we examine the results of a simple simulation exercise using the DBR1 and MSD1 models. In this
exercise, we consider a hypothetical policy intervention that moves each person out of poverty in a
year, and use each model to simulate their subsequent poverty experience and transitions over the
following decade. The intervention date is randomly selected within each person’s years in poverty,
or the first year for the 5 percent of the sample who don’t experience poverty over the observation
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period. Each person’s covariates correspond to their characteristics in the intervention year, which are
held constant except for subsequent aging.

Table 8 summarizes the results of this exercise. The first row contains the full-sample summary,
and subsequent rows summarize various demographic subsamples. The first two columns show
the actual first-year exit rates from non-poor (i.e., transitions back into poverty) for all fresh spells,
and the person-average respectively.8 The next two columns show the exit rates associated with the
simulations of each of the DBR1 and MSD1 models. The DBR1 model is lower than the person-average
exit rate, while the MSD1 model is higher by about the same amount. Both the actual and simulated
exit rates vary across subsamples, generally with the DBR1 model lower and the MSD1 model higher
than the sample average.9

Table 8. Results from policy intervention simulation.

Sample
First-Year Exit Rate No. Years Poor No. Transitions

from Non-Poor Next Decade Next Decade

Data: a Spells Data: b Persons DBR1 MSD1 DBR1 MSD1 DBR1 MSD1

All 0.34 0.25 0.21 0.30 3.19 2.38 1.82 2.86
Female head 0.40 0.28 0.30 0.41 4.58 3.00 2.16 4.01
Black head 0.38 0.30 0.25 0.36 3.91 2.79 2.01 3.52
Aged 0–5 0.24 0.19 0.24 0.20 3.81 2.32 1.99 2.83

Aged 6–17 0.37 0.24 0.26 0.37 3.86 2.79 2.00 3.35
Aged 18–24 0.29 0.24 0.20 0.29 3.07 2.31 1.80 2.71
Aged 25–54 0.34 0.25 0.16 0.25 2.72 2.12 1.69 2.52
Aged 55+ 0.39 0.31 0.20 0.32 3.37 2.50 1.86 3.19

Notes: The policy intervention is to move each person out of poverty in a year (randomly selected within their
poverty years); for the (255) people who have no poverty spell, they are selected in the first year. The first-year
exit rate is calculated as the fraction who re-enter poverty immediately after the first year. a Average across all
(9277) new non-poor spells; b average (person-average first-year exit rate) across all (4993) persons who have
a new non-poor spell.

In the next pair of columns, we present the average number of years poor over the 10 year
simulation time frame predicted by the models, and in the final pair of columns we present the average
number of transitions predicted by each model. Perhaps surprisingly given the higher first-year exit
rate back into poverty, the MSD1 model predicts about 25 percent lower poverty experience over the
following 10 years than the DBR1 model (2.4 versus 3.2 years) on average, explained by over 50 percent
more transitions (2.9 versus 1.8). Again, the relative differences in the models’ predictions are broadly
similar across the various subsamples.

The results from this simple experiment indicate that the policy predictions provided by the
alternative models are different. In particular, the DBR1 model predicts substantially smaller long-term
benefits of the intervention than does the MSD1 model. Given the MSD1 model’s generally superior
fit, the policy implications of the DBR1 model may be misleading.

4. Concluding Remarks

There are two main approaches to modeling longitudinal discrete-time binary outcomes in the
literature, each emphasizing different aspects of the persistence properties of the data. The DBR
approach focuses on Markovian state dependence and usually restricts the effects of observed and
unobserved heterogeneity on the probability of transitioning into and out of a state to have the
same magnitude but opposite signs. The MSD approach focuses on duration dependence as well

8 The latter is the average person-average, which gives equal weight to each person who has a fresh spell.
9 There are exceptions across the age subsamples, and the MSD1 predicted rate is close to the actual for three of the five age

groups. Note that because of differences in the outcome history and covariate values at the exit times, the models are not
designed to fit the sample averages.
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as Markovian state dependence and allows the transition probabilities to vary flexibly. Generally,
DBR models are tightly specified and parsimonious, while MSD models are comparatively flexible and
more demanding. In this paper we formally show that typical (first and second order) DBR models
are nested within an MSD model specification, so that the two approaches should not be viewed
as separate.

The case study analysis of poverty experiences demonstrates the two approaches. We conclude
that the estimated MSD models fit the data far better than the first- and second-order DBR models,
with each of the DBR model restrictions being severely rejected. Given that the MSD models are
more flexibly specified than the parsimonious DBR models, it is perhaps not surprising that the log
quasi-likelihood values are much higher for MSD models and that the DBR models are formally
rejected in statistical tests. However, this conclusion also holds in terms of the model predictions:
the MSD model’s within-sample predictions were substantially better than the predictions from the
DBR model. Finally, we showed that the choice of model specification also matters for deriving policy
implications from the fitted models. These findings underscore the potential limitations of the popular
DBR model approach in this case. Of course the DBR model may be sufficient in some empirical
situations, but the results here emphasize the importance of considering more flexible alternatives.

While all commonly used DBR model specifications are special cases of a relatively simple MSD
model specification, it is of course possible to consider more general specifications. As mentioned,
phenomena such as occurrence dependence and lagged duration dependence may be important in
practice. Furthermore, it is straightforward to allow for covariate effects to vary with elapsed time
spent in the current state. Lastly, the influence of unobserved heterogeneity can be extended by
allowing for random coefficients more generally.
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