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Abstract: This paper considers the estimation of dynamic threshold regression models with fixed
effects using short panel data. We examine a two-step method, where the threshold parameter is
estimated nonparametrically at the N-rate and the remaining parameters are estimated by GMM
at the

√
N-rate. We provide simulation results that illustrate advantages of the new method in

comparison with pure GMM estimation. The simulations also highlight the importance of the choice
of instruments in GMM estimation.
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1. Introduction

Threshold regression models allow for shifts in economic relationships when the threshold
variable crosses the threshold parameter. This paper combines two recent econometric advances in
estimating threshold regression models with endogeneity using short panel data sets.

Seo and Shin (2016) extended GMM estimation techniques for linear dynamic panel data models to
threshold panel data models where both the regressors and the threshold variable may be endogenous.
Their setup includes certain nonlinear dynamic panel data models such as the self-exciting threshold
autoregressive (SETAR) model. We refer to this estimator as the pure GMM estimator. It has the usual
properties, including

√
N-consistency and asymptotic normality, where N denotes the sample size.

Yu and Phillips (2018) considered the estimation of threshold regression models with endogenous
regressors and threshold variable using i.i.d. data. They developed a (nonparametric) integrated
difference kernel (IDK) estimator of the threshold parameter. They showed that the IDK estimator is
N-consistent. Other parameters in the model can be estimated at the usual

√
N-rate by GMM, taking the

estimated threshold parameter as given. The distribution of the IDK estimator is nonstandard.
In this paper, we explain how the ideas of Yu and Phillips (2018) can be adapted to the panel

data context with fixed effects to obtain an N-consistent estimator of the threshold parameter.
Following Yu and Phillips, we estimate the threshold parameter using the IDK techniques and
then the remaining parameters using standard GMM techniques, taking the estimated threshold
parameter as given. The improvement in asymptotic efficiency of the threshold estimator spills over
to the GMM estimators of the remaining parameters, since there is effectively one less parameter
to estimate. The panel data context is different from the single structural equation with a single
threshold variable considered by Yu and Phillips (2018). First, to avoid making assumptions about
the fixed effects, we begin by eliminating them. This results in T − 2 first-differenced structural
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equations, and each equation involves two threshold variables, where T denotes the number of
time periods. Second, to combine all the information available, we construct two estimators for
each equation and then compute their overall average. The final step is to compute GMM estimates
for the remaining parameters. Asymptotic theory for the IDK+GMM combination was provided
by Yu and Phillips (2018) and no additional theoretical results are needed here.

We report results from a simulation study to illustrate advantages of the IDK+GMM combination
over pure GMM estimation. The simulations confirm that the IDK+GMM estimator tend to have much
smaller root mean square errors (RMSE) than the pure GMM estimator. For example, when N is equal
to 800 the RMSE is 320% to 4630% higher for the pure GMM estimator of the threshold parameter.
This reflects the fact that the IDK estimator is N-consistent while the pure GMM estimator is only√

N-consistent.
We also investigated the importance of the choice of instruments. Even for estimating linear

dynamic panel data models, the question of which moments to match remains largely unresolved
(e.g., Ahn and Schmidt 1995; Arellano 2016). Seo and Shin (2016) and Yu and Phillips (2018) offered
different ad hoc suggestions for threshold models. Our simulations show that large reductions in
RMSE are available by adding nonlinear transformations of lagged outcomes to the standard set of
instruments. For example, the RSME in the baseline case is 100% to 730% higher than the RSME for an
estimator that adds a constant and two percentile indicators of lagged outcomes as instruments.

2. The SETAR Panel Data Model

For conciseness, we focus on the self-exciting threshold autoregressive (SETAR) model which is
widely used in the time series literature (e.g., Tong and Lim 1980; Teräsvirta et al. 2011). In the panel
data terminology, the right-hand side variables in the SETAR model are predetermined rather than
endogenous. Our results are easily extended to the case of endogenous regressors and an endogenous
threshold variable, as we briefly discuss in the concluding remarks. For i = 1, . . . , N individuals and
t = 1, . . . , T times, let yit be a scalar observed random variable. The observations are assumed to be
independent across individuals, but not across time. The basic SETAR panel data model is

yit = yit−1α∗1 + 1(yit−1 > γ∗)yit−1α∗2 + 1(yit−1 > γ∗)α∗3 + uit,

uit = ci + vit,
t = 2, . . . , T, (1)

where ci is a time-invariant individual-specific unobserved random variable, and vit is a time- and
individual-specific unobserved random variable. The overall constant term is subsumed into ci as
usual. The lowercase Greek letters denote unknown parameters, and superscripts ∗ indicate “true”
values. The threshold parameter is γ∗. For simplicity, define ξ = (γ, α1, α2, α3). The parameter space
consists of all ξ ∈ R4. Assume that all random variables have finite means and variances and that

E(vit|ci, yi1, . . . , yit−1) = 0, t = 2, . . . , T. (2)

An additional smoothness assumption will be introduced in Section 4. Some authors assume
α∗3 = 0 from the outset (e.g., Hansen 1999; González et al. 2017). In the time series and cross-section
literatures α∗3 is estimated (e.g., Tong and Lim 1980; Tong 2011; Seo and Shin 2016; Yu and Phillips 2018).

3. GMM Estimator

We begin with the pure GMM estimator. Assumption (2) implies that for any function f :
R×R4 → R we have

E( f (yis, ξ)vit) = 0, ∀ξ ∈ R4, s = 1, . . . , t− 1, t = 2, . . . , T. (3)

Assumption (2) therefore implies an abundance of moment restrictions that can be used to estimate
the unknown parameters.
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Suppose a finite set has been selected and stacked in a M-vector, say pis(ξ). For example,
pis(ξ) = yis, pis(ξ) = (yis, yis1(yis>γ))′, or pis(ξ) = (yis, y2

is, y3
is)
′. Holtz-Eakin et al. (1988) and

Arellano and Bond (1991) proposed a set of linear moment restrictions on the second moments of the
data for the linear dynamic panel data model (α∗2 = 0, α∗3 = 0, and pis(ξ) = yis). Generalising their set
to the present context gives

E(pis(ξ)∆uit) = 0, ∀ξ ∈ R4, s = 1, . . . , t− 2, t = 3, . . . , T. (4)

Crepon et al. (1997), Andrews and Lu (2001), Han and Kim (2014) and Gørgens et al. (2016)
pointed out that there are also useful restrictions on the first moments of the data; namely

E(∆uit) = 0, t = 3, . . . , T. (5)

In addition, Ahn and Schmidt (1995) analysed the quadratic restrictions on the second moments
of the data

E(uiT∆uit) = 0, t = 3, . . . , T − 1. (6)

Note ∆uit and uiT are defined using the true parameter values and expectations are taken using
the true parameter values.

Define yi = (yi1, . . . , yiT)
′ and let g(yi, ξ) be a vector of random variables such that the stacked

moment restrictions can be written as E[g(yi, ξ∗)] = 0. A necessary condition for the chosen moment
restrictions to identify ξ∗ is that E[g(yi, ξ)] = 0 if and only if ξ = ξ∗. A GMM estimator of ξ∗ is defined
as the global minimiser, ξ̂, of the GMM objective function,

Q̂(ξ) =

[
N−1

N

∑
i=1

g(xi, ξ)

]′
Ŵ
[

N−1
N

∑
i=1

g(xi, ξ)

]
, (7)

where Ŵ is a given weight matrix. The objective function attains its minimum on an interval of γ values.
The ambiguity can be resolved by defining γ̂ as the midpoint (e.g., Yu 2015). Note that in general,
the weight matrix Ŵ may also be a function of the unknown parameters ξ (e.g., Hansen et al. 1996).

Despite nondifferentiability of the objective function with respect to γ, the asymptotic distribution
of the GMM estimator is typically normal. Define the matrices G = DξE[g(xi, ξ∗)] and Ω =

E(g(yi, ξ∗)g(yi, ξ∗)′), where Dξ denotes the partial derivative. Seo and Shin (2016) proved that if
Ŵ →p Ω−1, G′Ω−1G is nonsingular, and other technical regularity conditions are satisfied, then

√
N(ξ̂ − ξ∗)→d N(0, (G′Ω−1G)−1). (8)

In particular, the GMM estimator is
√

N-consistent.

4. IDK Estimator

In this section we explain how the ideas of Yu and Phillips (2018) can be adapted to the panel data
context with fixed effects to obtain an N-consistent estimator of the threshold parameter. We begin
with eliminating the fixed effects by first-differencing the structural equation. Then we construct two
estimators of the threshold parameter for each of the resulting T− 2 equations. Finally, we obtain an
overall estimator by taking the simple average of the basic estimators.

After first-differencing the structural Equation (1) and taking the conditional expectation, we get

E(∆yit|yit−2, yit−1) = ∆yit−1α∗1 + 1(yit−1 > γ∗)(yit−1α∗2 + α∗3)

− 1(yit−2 > γ∗)(yit−2α∗2 + α∗3) + E(∆vit|yit−2, yit−1), t = 3, . . . , T. (9)

Because the indicator functions are discontinuous, the conditional expectation is discontinuous
when yit−1 or yit−2 equals γ∗. If the conditional expectation is smooth everywhere else, then these
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discontinuities identify γ∗. The idea of the IDK estimator is to exploit the discontinuities for estimating
γ∗. To rule out discontinuities occurring elsewhere, in addition to (2) assume that

E(∆vit|yit−2 = a, yit−1 = b) is continuous in (a, b), t = 3, . . . , T. (10)

To show that the discontinuities identify γ∗, let γ− and γ+ indicate limits from the left and from
the right, and define the functions At and Bt as the difference between the left and right limits of the
conditional expectation function when yit−1 and yit−2 is near γ∗; that is,

At(y, γ) = E(∆yit|yit−2 = y, yit−1 = γ+)− E(∆yit|yit−2 = y, yit−1 = γ−), t = 3, . . . , T, (11)

and

Bt(γ, y) = E(∆yit|yit−2 = γ−, yit−1 = y)− E(∆yit|yit−2 = γ+, yit−1 = y), t = 3, . . . , T. (12)

Using assumption (10), we then have

At(y, γ) = Bt(γ, y) = {1(γ+ > γ∗)− 1(γ− > γ∗)}(γ∗α∗2 + α∗3)

=

{
0 if γ 6= γ∗,

γ∗α∗2 + α∗3 if γ = γ∗,
t = 3, . . . , T. (13)

It follows that γ∗ = arg maxγ At(y, γ)2 and γ∗ = arg maxγ Bt(y, γ)2 for all y ∈ R. Furthermore,
γ∗α∗2 + α∗3 6= 0 is a necessary condition for (13) to uniquely identify γ∗.

While it is possible to base estimation of γ∗ on At(y, ·) or Bt(·, y) with a fixed value of y, such
an estimator will not have good properties. To achieve N-consistency, our estimators of γ∗ are based
on density-weighted averages of At and Bt. Let rt denote the joint density of (yit−2, yit−1) and let pt

denote the marginal density of yit. Define the objective function RA
t by

RA
t (γ) = E

[
At(yit−2, γ)2rt(yit−2, γ)2] = ∫ ∞

−∞
At(y, γ)2rt(y, γ)2 pt−2(y) dy, t = 3, . . . , T, (14)

and the objective function RB
t by

RB
t (γ) = E

[
Bt(γ, yit−1)

2rt(γ, yit−1)
2] = ∫ ∞

−∞
Bt(γ, y)2rt(γ, y)2 pt−1(y) dy, t = 3, . . . , T. (15)

The discontinuity points of RA
t and RB

t are the same as those of At(y, ·) and Bt(·, y) provided
certain technical regularity conditions hold, including that rt is continuous and bounded away from 0
in an open neighbourhood where yit−2 = γ∗ or yit−1 = γ∗. That is, we generally have that γ∗ =

arg maxγ RA
t (γ) and γ∗ = arg maxγ RB

t (γ).
We define “basic” IDK estimators as the arg max of each of the sample analogues of RA

t and RB
t

for t = 3, . . . , T. The estimators of RA
t and RB

t are implemented using generalised kernels. Let k be a
univariate kernel function with support [−1, 1], and let h denote the bandwidth. To keep the notation
simple, we use the same bandwidth everywhere. Then estimator of RA

t and RB
t are

R̂A
t (γ) =

1
N

N

∑
i=1

(
1

N − 1

N

∑
j=1
j 6=i

∆yjtKh(yjt−2 − yit−2)k+h (yjt−1 − γ)

− 1
N − 1

N

∑
j=1
j 6=i

∆yjtKh(yjt−2 − yit−2)k−h (yjt−1 − γ)

)2

, t = 3, . . . , T, (16)
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and

R̂B
t (γ) =

1
N

N

∑
i=1

(
1

N − 1

N

∑
j=1
j 6=i

∆yjtKh(yjt−1 − yit−1)k−h (yjt−2 − γ)

− 1
N − 1

N

∑
j=1
j 6=i

∆yjtKh(yjt−1 − yit−1)k+h (yjt−2 − γ)

)2

, t = 3, . . . , T, (17)

where

Kh(a) =
1
h

k
(

a
h

)
, (18)

k−h (a) =
1(−1 < a

h < 0) 1
h k( a

h )∫ 0
−1 k(v) dv

, (19)

k+h (a) =
1(0 < a

h < 1) 1
h k( a

h )∫ 1
0 k(v) dv

. (20)

Define the estimators γ̂A
t = arg maxγ R̂A

t (γ) and γ̂B
t = arg maxγ R̂B

t (γ) for t = 3, . . . , T. Finally,
we construct an overall estimator γ̂ by taking the average of all γ̂A

t and γ̂B
t .

Having estimated γ∗, the α∗s can be estimated in a second step at the
√

N-rate by GMM as
described in Section 3 after redefining ξ = (α1, α2, α3). Since γ̂ converges at the N-rate, the asymptotic
distribution is the same as if γ∗ is known.

The setup here differs somewhat from that of Yu and Phillips (2018), who considered a single
structural equation with a single threshold variable. Here we have T − 2 first-differenced structural
equations, and each equation involves two threshold variables. The latter means that it is necessary to
condition on both yit−2 and yit−1 in (9), and gives rise to the two distinct estimators based on At and
Bt, respectively.

Yu and Phillips (2018) proved that the basic IDK estimator is N-consistent under certain technical
regularity conditions. The asymptotic distribution is nonstandard. Their results apply directly to each
of our basic estimators, γ̂A

t and γ̂B
t for t = 3, . . . , T. Taking the overall average does not affect the

N-consistency and reduces the variance. Yu and Phillips (2018) did not provide standard errors in their
empirical illustration. Arguably, we are interested in making inferences about the regression function
in most empirical applications, not about individual parameters, and the former is dominated by the
variance of α̂s, while the variance of γ̂ is negligible in comparison. Inference methods for the threshold
parameter are developed by Liao et al. (2018).

5. Simulation Results

To illustrate the advantage of the IDK+GMM estimator over pure GMM and to investigate the
importance of the choice of instruments, we conducted a small simulation study for one of the designs
used by Seo and Shin (2016). The DGP is defined in the table note. For simplicity, all results for the
GMM estimators presented here are one-step estimators using the optimal weight matrix.

Panel A of Table 1 shows our baseline results which use only the untransformed lagged outcome
variables as instruments, as suggested by Seo and Shin (2016). The RMSE for the pure GMM estimator
are monotonically decreasing at rates suggesting

√
N-consistency, as expected. The RMSE for the

IDK+GMM estimator are much lower, especially for γ, and the convergence rates are compatible with
N-consistency for γ and

√
N-consistency for the αs.

Given the disparate convergence rates we expect the RMSE ratio of pure GMM to the IDK+GMM
combination for γ to diverge, while the RMSE ratios for the αs should converge to finite limit values
corresponding to the ratio of the asymptotic variances of the respective GMM estimators. The numbers
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shown in the right-most four columns in Table 1 are compatible with these expectations. In panel A,
when N = 800, the efficiency gain for γ is huge, more than a factor of 27. The gains for the αs are also
large, with RMSE for pure GMM more than twice the RMSE for the IDK+GMM estimator.

Table 1. Simulation results.

N RMSE Pure GMM RMSE IDK+GMM Pure/IDK

γ α1 α2 α3 γ α1 α2 α3 γ α1 α2 α3

(A) Instruments: yis

50 0.47 0.30 0.57 1.45 0.07 0.24 0.33 0.58 6.6 1.3 1.8 2.5
100 0.39 0.26 0.48 1.10 0.04 0.19 0.27 0.47 9.0 1.3 1.8 2.3
200 0.36 0.23 0.44 1.09 0.03 0.15 0.21 0.38 14.1 1.6 2.1 2.8
400 0.31 0.20 0.38 0.85 0.01 0.11 0.16 0.30 21.1 1.8 2.4 2.9
800 0.22 0.17 0.30 0.47 0.01 0.08 0.12 0.23 27.6 2.1 2.6 2.1

(B) Instruments: constant, yis

50 0.37 0.25 0.45 1.11 0.07 0.21 0.28 0.54 5.3 1.2 1.6 2.0
100 0.31 0.21 0.36 0.77 0.04 0.17 0.23 0.45 7.2 1.2 1.6 1.7
200 0.28 0.19 0.35 0.81 0.03 0.13 0.17 0.37 10.9 1.4 2.0 2.2
400 0.24 0.16 0.30 0.55 0.01 0.10 0.13 0.29 16.4 1.6 2.4 1.9
800 0.18 0.13 0.25 0.47 0.01 0.07 0.09 0.22 22.4 1.9 2.7 2.1

(C) Instruments: constant, yis, yis1(yis>γ̂)

50 0.56 0.37 0.70 1.95 0.07 0.15 0.17 0.46 7.9 2.5 4.2 4.2
100 0.52 0.34 0.61 1.72 0.04 0.12 0.12 0.38 12.3 2.8 5.2 4.6
200 0.50 0.29 0.56 1.63 0.03 0.10 0.08 0.31 19.2 3.0 7.1 5.2
400 0.42 0.26 0.47 1.24 0.01 0.08 0.05 0.25 28.8 3.3 9.0 4.9
800 0.38 0.23 0.44 1.10 0.01 0.06 0.03 0.20 47.3 4.0 12.5 5.6

(D) Instruments: constant, yis, y2
is, y3

is

50 0.15 0.14 0.21 0.40 0.07 0.13 0.17 0.33 2.2 1.1 1.2 1.2
100 0.09 0.10 0.14 0.24 0.04 0.09 0.12 0.23 2.2 1.1 1.2 1.0
200 0.06 0.07 0.10 0.16 0.03 0.06 0.08 0.16 2.4 1.1 1.3 1.0
400 0.05 0.05 0.07 0.12 0.01 0.04 0.05 0.11 3.1 1.2 1.4 1.0
800 0.04 0.04 0.06 0.08 0.01 0.03 0.04 0.08 4.6 1.3 1.6 1.0

(E) Instruments: constant, yis, yis1(yis>y0.33), yis1(yis>y0.67)

50 0.06 0.13 0.16 0.26 0.07 0.12 0.16 0.28 0.9 1.0 1.0 0.9
100 0.05 0.09 0.12 0.19 0.04 0.08 0.11 0.19 1.1 1.1 1.1 1.0
200 0.04 0.07 0.10 0.14 0.03 0.06 0.07 0.14 1.7 1.2 1.3 1.0
400 0.04 0.06 0.07 0.11 0.01 0.04 0.05 0.10 2.5 1.3 1.5 1.0
800 0.03 0.05 0.06 0.08 0.01 0.03 0.03 0.07 4.2 1.5 1.9 1.1

(F) Ratio of panel A over panel E

50 7.62 2.42 3.48 5.51 2.01 2.01 2.04
100 8.01 2.82 3.88 5.74 2.29 2.42 2.41
200 8.15 3.21 4.61 7.56 2.46 2.81 2.72
400 8.31 3.54 5.05 7.89 2.58 3.09 2.89
800 6.60 3.68 4.75 6.01 2.71 3.41 3.17

RMSE: root mean square error; s = 1, . . . , t− 2; yb: percentile b of yit. The DGP is γ∗ = 0, α∗1 = −0.5, α∗2 = 1.2,
α∗3 = −2.5, ci = 0.7, vit ∼ Normal(0, 1), and yi,−30 ∼ Normal(0, 1). The estimations use data for 1 ≤ t ≤ 10.
All experiments have 5000 simulated samples. The bandwidths are 6.5 times the standard deviation of regressors.

In the remainder of Table 1 we consider different sets of instruments. Panel B shows big reductions
in RMSE for the pure GMM estimator when a constant term is also used as an instrument. Han and Kim
(2014) and Gørgens et al. (2016) found similar improvements for the linear model. The improvements
are relatively less for the IDK+GMM estimator.

Since the structural equation is nonlinear, one might expect that nonlinear transformations of
lagged outcomes could be useful instruments. Based on the suggestion by Yu and Phillips (2018),
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we added yis1(yis>γ̂) to the set of instruments. Panel C in Table 1 shows that this does not improve
the RMSE for the pure GMM estimator. On the contrary, the estimation noise in the instruments
adds significantly to the RMSE. The results are more promising for the IDK+GMM estimator,
where substantial reductions in RMSE are observed.

In panel D, we have added quadratic and cubic transformations of the lagged dependent variable,
and in panel E we have added threshold functions where the threshold depends on percentiles of the
data rather than the structural parameter. As shown in panel F, when N = 800 the RMSE for the pure
GMM estimator drops by factors of 3.6–6.6, while the RMSE for the IDK+GMM estimator drops by
factors of 2.7–3.4.

6. Concluding Remarks

This paper has shown how the ideas of Yu and Phillips (2018) can be adapted to the panel data
context with fixed effects. Theoretically, the advantage of the IDK+GMM combination is that the
estimator of the threshold parameter is N-consistent, while the pure GMM estimator converges only at
the
√

N-rate. In simulation exercises, we confirmed that the IDK+GMM combination offers a huge
practical advantage over pure GMM estimation, even when the former is implemented relatively
simply. We also investigated the importance of the choice of instruments and showed that adding fixed
nonlinear transformations of the lagged dependent variable can be highly effective when estimating
nonlinear equations.

We have focused on the SETAR model in this paper. A more general threshold regression panel
data model is

yit = x′itα
∗
1 + 1(qit > γ∗)x′itα

∗
2 + 1(qit > γ∗)α∗3 + uit,

uit = ci + vit,
t = 1, . . . , T, (21)

where xit is a vector of possibly endogenous variables, qit is a possibly endogenous scalar variable,
and α∗1 , α∗2 and α∗3 are conformable parameter vectors. It is straightforward to construct an IDK+GMM
estimator analog to the SETAR case, and similar efficiency gains are available.

The IDK estimator we have described utilises discontinuities in the conditional expectation
function given in (9). It will fail if γ∗α∗2 + α∗3 = 0, because then (9) is continuous. However, in this case
the partial derivatives of (9) may be discontinuous at yit−2 = γ∗ or yit−1 = γ∗, so IDK estimation is
still possible (e.g., Yu and Phillips 2018; Porter and Yu 2015).

If it is known that E(ci|yit−1 = y) is a smooth function of y, then we can construct an estimator of
γ∗ directly based on Equation (1), without first-differencing and without assumption (10). Since an
extra time period is available for estimation and since we only need to smooth in one dimension (yit−1)
instead of two (yit−1, yit−2) when defining Rt, this estimator is expected to be more efficient.

For simplicity, we have constructed an overall estimator by taking a simple average of multiple
estimators based on separate equations. It is a topic for future research to investigate how best to
combine the information. One could consider weighted averages or, instead of averaging separate
estimators, one could base an estimator on a (weighted) average over the objective functions. Which is
better may depend on e.g., the time pattern of Var(vit).

Finally, to illustrate the advantage of the IDK+GMM estimator over the pure GMM estimator,
our simulations focused on the design considered by Seo and Shin (2016). To further investigate the
properties of the IDK+GMM estimator in future research, it would be interesting to consider simulation
designs where endogeneity is more severe (e.g., ci is correlated with yi1) and where the number of time
periods is smaller (i.e., T is small). Also, in practice the optimal weight matrix is not known, and it
would be useful to compare two-step estimation of the weight matrix and continuous updating (e.g.,
Hansen et al. 1996).
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