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Abstract—We design the optimal transmission strategy which
maximizes the average achievable data rate of the multiple-input
single-output system which adopts short-packet communications.
In this system, the NA-antenna access point (AP) transmits to
the single-antenna user with finite blocklength T after estimating
the AP-user channel via downlink training and uplink feedback.
For this system, we determine the optimal allocation of the finite
resource (e.g., the total transmit power and a finite number of
symbol periods) for downlink training, uplink feedback, and data
transmission to maximize the average data rate. Specifically,
we derive an approximate closed-form lower bound on the
average data rate, an explicit result for the optimal number
of symbol periods for downlink training, an easy-to-implement
method to find the optimal number of symbol periods for
uplink feedback, and a simple expression for the optimal power
allocation between data transmission and downlink training.
By using numerical results, we demonstrate the effectiveness
of our analytical solutions and examine the impact of system
parameters, e.g., NA and T , on the optimal strategy.

Index Terms—Channel training, feedback overhead, short-
packet communications, power allocation.

I. INTRODUCTION

Ultra-reliable and low-latency communication (URLLC) has
been envisaged as the enabling paradigm to support the real-
time communications with stringent requirements on latency
and reliability. The realization of URLLC will bring transfor-
mational applications, e.g., smart manufacturing, autonomous
networked vehicles, and remote surgery, to the human society.
Notably, these applications typically require a target block
error rate (BLER) less than 10−5 within a latency bound of
1 ms [1]. Such strictly low latency and low BLER impose an
unprecedented restriction on the size of packets. Fortunately,
short packets have been recognized as the typical forms
of traffic generated in URLLC. For example, in industrial
manufacturing and control systems, measurements and control
commands are of small size (e.g., 10 to 20 bytes) [2]. There-
fore, the theoretical investigation of the performance achieved
by short-packet communications is of pivotal importance to
realize URLLC in the near future.

There are unique challenges brought by short-packet com-
munications. It has been pointed out that in the finite block-
length regime, the traditional performance metrics, e.g., Shan-
non capacity and outage capacity, provide inaccurate estimates
on the maximum achievable rate [3], [4]. Indeed, the Shannon
capacity is independent of BLERs while the outage capacity
fails to capture the rate penalty caused by channel estimation

This work was supported by the Australian Research Council under
Discovery Project Grant DP180104062.

C. Li and N. Yang are with the Research School of Electrical, Energy and
Materials Engineering, The Australian National University, Canberra, ACT
2600, Australia (Emails: {chunhui.li, nan.yang}@anu.edu.au).

S. Yan is with the School of Engineering, Macquarie University, North
Ryde, NSW 2109, Australia (Email: shihao.yan@mq.edu.au).

overhead. By recognizing this, [3] investigated the maximum
channel coding rate achievable at given finite blocklength and
error probability. Specifically, the maximum achievable rate in
the finite blocklength regime is tightly approximated as

R ≈ C (γ)−
√
V (γ)/TQ−1 (ε) , (1)

where T is the blocklength, ε is the BLER, γ is the signal-
to-noise ratio (SNR), C (γ) = log2 (1 + γ) is the Shannon
capacity, V (γ) = (log2 e)

2 (
1 − 1/(1 + γ)2

)
is the channel

dispersion, and Q−1 (·) is the inverse Q-function.
Very recently, the benefits of short-packet communications

have been examined for emerging wireless mechanisms, such
as non-orthogonal multiple access [5], cooperative relaying
[6], cooperative IoT networks [7], [8], wireless energy transfer
[9], and radio resource management [10]. In practical com-
munication systems, the wise resource allocation for channel
estimation overhead plays a significant role in determining
the transmission performance. Traditionally, the impact of
channel estimation overhead has been studied in the asymp-
totic scenario with infinite blocklength (e.g., see [11], [12]).
However, there have been only a few studies (e.g., [4]) that
investigated the impact of channel estimation overhead for
finite blocklength. While [4]–[6], [9]–[12] stand on their own
merits, the design of short-packet communications with limited
channel estimation overhead is still recognized as an open
research issue.

In this paper, we design the optimal power and symbol
period allocation to maximize the average data rate of the
downlink in a multiple-input single-output (MISO) system
which uses short-packet communications. In the system with
finite blocklength T , the NA-antenna access point (AP) esti-
mates the downlink channel with the aid of downlink training
and uplink feedback, and then performs data transmission. We
derive an approximate closed-form expression for the lower
bound on the average data rate taking into account T , based
on which we determine the optimal symbol periods allocated
to downlink training, uplink feedback, and data transmission,
as well as the optimal power allocation between downlink
training and data transmission.

II. SYSTEM MODEL

We consider a MISO communication system where an NA-
antenna access point (AP) transmits small packets to a single-
antenna user. We denote hd as the 1 × NA channel vector
from the AP to the user, the entries of which are subject
to independent quasi-static Rayleigh fading. Therefore, the
entries of hd are independent and identically distributed (i.i.d.)
circularly symmetric complex Gaussian random variables with
zero mean and unit variance, i.e., hd ∼ CN (0, INA). We
assume that the entries of hd remain constant during one
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fading block. We also assume that the total duration of each
fading block consists of T symbol periods (i.e., T channel
uses), including Tt symbol periods used for downlink training,
Tf symbol periods used for uplink feedback, and Td sym-
bol periods used for data transmission. Therefore, we have
Tt + Tf + Td = T . By considering the finite blocklength
regime, we assume that T is relatively small such that the
approximation in (1) is tight. According to [3] and [4], the
approximation in (1) is tight even when T is as low as 100. We
denote Pt and Pd as the transmit power per channel use at the
AP for downlink training and data transmission, respectively.
We further denote P as the average transmit power per channel
use at the AP. Here, an average power constraint is considered
over a fading block [12], i.e., PtTt+PdTd ≤ PT . Additionally,
we assume that the user and the AP have the knowledge about
the statistical information of hd.

We assume that the channel estimation in the considered
MISO system is performed as follows: First, the AP sends
pilot sequences to the user for estimating hd, referred to as
downlink training. Second, the user feeds back the estimate
to the AP, referred to as uplink feedback. We next formulate
downlink training and uplink feedback in the following.

1) Downlink Training: When the AP sends pilot sequences
in Tt symbol periods, the received signal vector at the user is
given by yd =

√
ΛhdSd+nd, where Λ , PtTt/NA, Sd is the

NA × Tt pilot sequence matrix transmitted by the AP which
satisfies SdS

†
d = INA , and nd is the 1 × Tt additive white

Gaussian noise (AWGN) vector at the user with i.i.d entries,
each of which follows the complex Gaussian distribution with
zero mean and variance σ2.

By adopting the MMSE estimator based on the known Sd,
the user obtains the estimate of hd as ĥd =

√
Λ

Λ+σ2 ydS
†
d. As per

the property of MMSE, the channel estimation error, given by
êd = hd − ĥd, is independent of the realizations of estimated
channel [13]. We also note that êd and ĥd have i.i.d. entries.
Specifically, each entry of êd follows the complex Gaussian
distribution with zero mean and variance σ2

êd
while each entry

of ĥd follows the complex Gaussian distribution with zero
mean and variance σ2

ĥd
, where σ2

êd
= σ2/

(
Λ + σ2

)
and σ2

ĥd
=

Λ/
(
Λ + σ2

)
. We assume that Tt ≥ NA is ensured in the

MISO system to obtain a reliable estimate of hd.
2) Uplink Feedback: After downlink training, the user

captures the channel direction information (CDI) given by
h̃ = ĥd/‖ĥd‖. Then, the user quantizes the CDI by selecting
the best quantization vector from the pre-shared codebook and
conveys its index back to the AP over a feedback channel with
zero propagation delay. Here, the propagation delay means
the physical transmission duration from the AP to the user,
which is formulated as the ratio between the transmission
distance and the speed of light. Typically, the communication
distance in URLLC is less than a few kilometers. Therefore,
the propagation delay in the order of µs can be negligible
[14]. Here, the codebook C is an NA × 2B matrix, i.e,
C = {w1,w2, · · · ,w2B}, where wi refers to the NA × 1
channel vector and i ∈

{
1, 2, · · · , 2B

}
. We clarify that the

relationship between Tf and B is B = Tf log2M , where
M is the modulation order. The codebook is assumed to be

designed offline and known to both the AP and the user.
Given the codebook C, the user chooses the quantization
vector that maximizes the SNR as the best quantization vector,
i.e., wopt = argmax1≤i≤2B

∣∣h̃wi

∣∣2. The user then feeds
back the index of selected quantization vector to the AP.
After obtaining the CDI, i.e., h̃, through downlink training
and uplink feedback, the AP sets the NA × 1 normalized
beamforming vector as wopt to transmit to the user. The
transmitted signal x is written as x = woptu, where u is the
information signal transmitted from the AP to the user. The
received signal at the user in one symbol period is given by

y =
√
Pdhdx + n =

√
Pdĥdwoptu+ nd. (2)

We consider the worst-case scenario for the decoding pro-
cess at the user where nd =

√
Pdêdwoptu + n in (2) is

approximated as a Gaussian random variable with the variance
σ2
nd

. Under this consideration, the SNR at the user is given by

γ =
∣∣ĥdwopt

∣∣2Pd/σ2
nd

= ρe
∥∥h̄d∥∥2

cos2
(
∠(h̃,wopt)

)
, (3)

where σ2
nd

= Pdσ
2
êd

+ σ2 with σ2
êd

= NAσ
2

TtPt+NAσ2 ,
ρe = Pd

(
1− σ2

êd

)
/σ2

nd
, h̄d , ĥd/σĥd is the normal-

ized channel vector with the standard deviation σĥd , and
cos2

(
∠(h̃,wopt)

)
=
∣∣h̃wopt

∣∣2.

III. PERFORMANCE OPTIMIZATION

In this section, we perform the optimization of the symbol
periods used for downlink training and uplink feedback, i.e., Tt
and Tf , as well as the transmit power allocated to data trans-
mission and channel training, aiming to maximize the average
data rate under the average transmit power constraint. To this
end, we denote η as the power allocation coefficient such that
η and 1−η are the fraction of total transmit power allocated to
data transmission and channel training, respectively. Thus, we
have ρdTd = ηρT and ρtTt = (1− η)ρT , where ρd = Pd/σ

2,
ρt = Pt/σ

2, and ρ = P/σ2.

A. Lower Bound on Average Data Rate

We first derive a lower bound on the average data rate in
the context of short-packet communications. Considering nd
in (2) as a Gaussian random variable, a lower bound on the
average data rate with limited channel estimation overhead for
short-packet communications is

R = τE
[
C(γ)−

√
V (γ)/TQ−1(ε)

]
, (4)

where τ = 1− (Tt + Tf ) /T and E [·] denotes the expectation
operation with respect to the channel gain. It is worth mention-
ing that (4) emphasizes the effects of the channel training and
feedback overheads [15] for a given decoding error probability.
We note that the average data rate is different from the average
throughput (1 − ε)R defined in [8], where the throughput is
averaged over different decoding error probabilities. In this
work, we set the decoding error probability as a constraint
that can satisfy the reliability requirement. In addition, (4)
only focuses on the rate which is used to transmit data. That
is why it is named as the average data rate, but not the
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Φ (ρ̃e, NA) =
e

1
ρ̃e

ln 2 Γ (NA) ρ̃NAe

NA−1∑
i=0

(
NA − 1

i

)
(−1)NA−1−iG3,0

2,3

(
−i,−i

0,−1− i,−1− i

∣∣∣∣ 1

ρ̃e

)
. (6)

Ψ (ρ̃e, NA, T ) =

√
2π

T

Q−1(ε)

ln 2 Γ (NA)
e−(NA−1)(NA − 1)NA−

1
2

√
1− (1 + ρ̃e (NA − 1))

−2
. (7)

average throughput. In the following theorem, we derive an
approximate closed-form expression for this lower bound.

Theorem 1: The approximate closed-form expression for the
lower bound on the average data rate with limited channel
estimation overhead is derived as

R ≈ τ [Φ (ρ̃e, NA)−Ψ (ρ̃e, NA, T )] , (5)

where ρ̃e = µρe, µ = 1− (1− 1
NA

)2
− B
NA−1 , and Φ (ρ̃e, NA)

and Ψ (ρ̃e, NA, T ) are given by (6) and (7), respectively, on
the top of the next page, with G3,0

2,3 (·|·) being the Meijer G-
function [16, Eq. (9.301)]. It is worth mentioning that the
results in [17] cannot be directly used in this work, since
this work considers a different system model from [17].
Specifically, in this work the AP (i.e., the transmitter) obtains
the channel state information (CSI) by performing downlink
channel training and asking the user to feed back the index
of the quantization vector in terms of the channel direction
information. Differently, in [17] the transmitter obtains the CSI
based on the channel reciprocity between uplink and downlink.

Proof: With the aid of the Jensen’s inequality and the
approximation of quantization errors given in [18], the average
data rate in (4) can be approximated as

R ≈τE~

[
C (ρ̃e~)−

√
V (ρ̃e~)Q−1 (ε)/

√
T
]
, (8)

where, ~ =
∥∥h̄d∥∥2

. Then we obtain (5) by following the
procedure similar to [17, Appendix A].

B. Formulating and Solving Optimization Problem

We now formulate and solve the optimization problem of
our interest. First, we re-express the approximated expression
for R given in (5) as R (Tt, Tf , η), i.e., a function of Tt, Tf ,
and η. Then, we formulate the joint optimization of Tt, Tf ,
and η to maximize R (Tt, Tf , η) under the average transmit
power constraint as

max
Tt,Tf ,η

R (Tt, Tf , η) (9a)

s.t. ρtTt + ρdTd ≤ ρT. (9b)

Considering the practical scenario and the accuracy of (1),
we only focus on the case where Tt ≥ NA and Td > NA.
For given codebook, the beamforming vector given in (2)
is optimal for the above optimization problem. Motivated by
the results in [12], we derive the optimal value of Tt which
maximizes R (Tt, Tf , η) for given ρT , denoted by T ∗t , in the
following theorem.

Theorem 2: The optimal Tt that maximizes R (Tt, Tf , η) for
given ρT in the case of Tt ≥ NA and Td > NA is derived as

T ∗t = NA. (10)

We note that the optimal Tt is the same as the number
of transmit antennas NA, which physically means that the
channels associated with all transmit antennas can be estimated
during the channel training phase.

Proof: The first derivative of R (Tt, Tf , η), given in (8),
with respect to Td is derived as

∂R (Tt, Tf , η)

∂Td
=

1

T
E~

[
log2 (1 + ω)−

α1

√
ω (2 + ω)

1 + ω

]

+
1

T
E~

[
α1α2ω

(1 + ω)
2
√
ω (2 + ω)

− α2ω

(1 + ω) ln 2

]
,

where ~ =
∥∥h̄d∥∥2

, ω = ρ̃e~, α1 = Q−1(ε)/(
√
T ln 2), and

α2 = Td
Td−NA

(
1−

√
NA(NA+ρT )
Td(Td+ρT )

)
. We find that α1 < 1

and α2 < 1 due to Td > NA. Then, we need to show
that Ω (ω) = log2 (1 + ω) −

√
ω(2+ω)

1+ω − ω
(1+ω) ln 2 ≥ 0 for

all ω ≥ ω0, where ω0 is the solution to Ω (ω) = 0. We
find that Ω (ω) = 0 at ω = ω0 and its first derivative

dΩ (ω)/dω =

(
ω

ln 2 −
1√

ω(2+ω)

)
1

(1+ω)2 > 0 for all ω ≥ ω0.

We also find that dΩ (ω) /dω is a monotonically increasing
function of ω for all ω ≥ ω0, where the value of ω0 is
relatively small compared to the required value of SNR in
URLLC scenarios (e.g., the SNR > 10 dB [14], [19], [20]).
Therefore, we conclude that the optimal value of Tt is the
minimum value of Tt for given ρT in the case of Tt ≥ NA and
Td > NA. This is due to the fact that (4) is a monotonically
increasing function of Td and keeping the minimum value of
Tt maximizes R (Tt, Tf , η) for given Tf .

Based on Theorem 2, it is clear that T ∗t is independent of
η and Tf . Thus, the objective function in (9) is rewritten as

max
Tf ,η

R (T ∗t , Tf , η) (11a)

s.t. ρtT ∗t + ρdTd ≤ ρT. (11b)

To solve (11), we first determine the optimal η which max-
imizes R (T ∗t , Tf , η) for given Tf with T ∗t = NA, denoted
by η∗. Then we perform a one-dimensional search to find the
optimal Tf based on the obtained η∗ and T ∗t . We note that
the equality in (11b) is always guaranteed due to the fact that
a larger Td always leads to a higher R. This also indicates
that we only need to determine the optimal values of η and
Tf to find the optimal value of Td as T ∗d = T −T ∗t −T ∗f . We
next present the details for solving (11) with T ∗t = NA using
a two-step approach.

Step 1: Find the optimal η for given Tf .
We note that R in (4) is a monotonically increasing function

of γ when R is positive. Also, the expectation in (4) is relevant
to channel realizations but independent of ρ̃e. That is, the
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Fig. 1. The average data rate R versus transmit SNR for different feedback
symbol period Tf with T = 200, NA = 4 and ε = 10−6.

maximum average data rate is achieved by maximizing ρ̃e for
given Tt and Tf . Based on (3), the effective SNR is given by

ρ̃e =
µPd

(
1− σ2

êd

)
Pdσ2

êd
+ σ2

=
µρTη(1− η)

(Td −NA) (ν − η)
, (12)

where µ is defined below (5) and ν = ρT+NA
ρT (1−NA/Td) .

By taking the second derivative of ρ̃e with respect to η,
we find that ∂2ρ̃e

∂η2 = µρT2ν(ν−1)

(Td−NA)(η−ν)3
< 0, which confirms that

ρ̃e is a concave function of η. As such, η∗ can be found by
numerically solving for ∂ρ̃e/∂η = 0, which gives

η∗ = ν −
√
ν2 − ν. (13)

Step 2: Find the optimal Tf .
We note that η∗ given in (13) is a function of T and Td (or

equivalently, Tt + Tf ), which is independent of the individual
value of Tt or Tf . Since the optimal value of Tt is obtained,
we can efficiently perform a one-dimensional numerical search
to find the optimal Tf .

Overall, we first simplify the optimization problem by using
T ∗t = NA. Then, we maximize R over η for given Tf with
T ∗t . After this, we find the optimal Tf , i.e., T ∗f , by using one-
dimensional search. The complexity of our proposed method
for solving (11) is low. Specifically, T ∗t can be obtained
directly when NA and T are determined. Based on this, for
given Tf , we can obtain η∗ according to (13). Finally, we
perform a one-dimensional numerical search to find T ∗f within
a finite range given by Tf ∈ [T−NA, T ]. Hence, when system
parameters are determined, the optimization problem can be
solved efficiently using our derived results. The effectiveness
of our approach will be validated in Section IV.

IV. NUMERICAL RESULTS

Throughout this section, we consider the use of binary phase
shift keying (BPSK) modulation for the feedback from the user
to the AP such that Tf = B.

In Fig. 1, we demonstrate the accuracy of our derived
closed-form expression for the lower bound on the data rate.
The simulated and theoretical results are obtained from (4)
and (5), respectively. The simulated points are averaged over

Fig. 2. The optimal feedback symbol period T ∗
f and the optimal power

allocation coefficient η∗ versus T with ρ = 10 dB and ε = 10−9.

10,000 channel realizations, and the quantization codebook
is generated based on the design criterion in [21]. In Fig.
1, we observe that the theoretical results precisely match the
simulated ones during the whole SNR range, and the accuracy
slightly increase when feedback symbol period increases. The
observations imply that the quantization approximation has a
almost negligible impact on the average data rate. Therefore,
the closed-form expression derived in (5) serves as an accurate
result for the average data rate with limited channel training
and feedback under the consideration of the finite blocklength.

In Fig. 2(a), we plot the optimal symbol period for uplink
feedback, T ∗f , versus T for different number of antennas at
the AP, i.e., NA = 4, 6, and 8. In this figure, we first
observe that T ∗f increases as T increases. This observation
is not surprising since more channel uses are allocated for
downlink training and uplink feedback when T is larger. Also,
we observe that T ∗f decreases as NA decreases. This is due
to the fact that decreasing NA reduces the required channel
uses for downlink training and uplink feedback. In Fig. 2(b),
we plot the optimal power allocation coefficient, η∗, versus
T for NA = 4, 6, and 8. In this figure, we first confirm that
the simulated curves exactly match the approximated values,
demonstrating the correctness of our result derived in (13).
We also observe that η∗ increases as T increases. This is due
to the fact that ρd remains stable and the ratio between Td
and T increases as T increases. Finally, we observe that η∗

decreases as NA increases. This is due to the fact that the
number of channel uses for downlink training, Tt, increases
with NA, which reduces Td.

In Fig. 3, we plot the transmit SNR for downlink training
and data transmission versus T for different values of NA, i.e.,
NA = 10, 15, and 20. Here, we recall that ρd = Pd/σ

2 and
ρt = Pt/σ

2. In this figure, we first observe that ρt gradually
increases and ρd slightly decreases and tends to be constant
as T increases. However, we confirm that ρtT ∗t decreases
and ρdTd increases as T increases. This implies that the
transmit power allocated to downlink training decreases while
the transmit power allocated to data transmission increases
when T is larger. We also observe that ρt increases as NA
decreases. We further observe that ρd slightly decreases as NA
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Fig. 3. The transmit SNR for downlink training and data transmission versus
T for different NA with ρ = 10 dB and ε = 10−9.

Fig. 4. The average data rate R versus transmit SNR for different values of
ε and T with optimal η∗ and NA = 4.

decreases for small T but approaches almost the same value
for large T . This observation can be explained by the fact that
smaller NA reduces the required T ∗t but leads to a negligible
increase in Td. This results in an increase in ρt and a minor
reduction in ρd in order to guarantee ρtTt + ρdTd = ρT .

Fig. 4 plots the lower bound on the data rate versus the
transmit SNR for different values of ε and T . The curves are
obtained from (5) with the optimal power allocation coefficient
η∗. In this figure, we first observe that, for given T , the data
rate decreases when the decoding error probability ε increases.
It implies that the more strict requirement for reliability leads
to a larger rate loss. Moreover, for the same ε, the data rate
increases when the blocklength T increases as expected. We
also find that the difference in data rates with different values
of ε becomes negligible when T increases.

V. CONCLUSION

In this paper, we investigated the optimal resource allocation
to maximize the average data rate in the MISO system
which adopts short-packet communications. We proved that
the optimal number of symbol periods allocated to downlink
training is equal to the number of transmit antennas at the

AP. We also derived the optimal power allocation between
downlink training and data transmission at the AP in closed
form. Our outcomes provide a guideline to assist the URLLC
designers with the fundamental problem of transmit power and
symbol period allocation to guarantee the advantage of short-
packet communications in practice.
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