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Abstract

We study the approach to obtaining least squares solutions to systems of linear algebraic equations over networks by using
distributed algorithms. Each node has access to one of the linear equations and holds a dynamic state. The aim for the node
states is to reach a consensus as a least squares solution of the linear equations by exchanging their states with neighbors over
an underlying interaction graph. A continuous-time distributed least squares solver over networks is developed in the form
of the famous Arrow-Hurwicz-Uzawa flow. A necessary and sufficient condition is established on the graph Laplacian for the
continuous-time distributed algorithm to give the least squares solution in the limit, with an exponentially fast convergence rate.
The feasibility of different fundamental graphs is discussed including path graph, random graph, etc. Moreover, a discrete-time
distributed algorithm is developed by Euler’s method, converging exponentially to the least squares solution at the node states
with suitable step size and graph conditions.
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1 Introduction

Linear algebraic equations are foundational for various
computation tasks arising from practical engineering
problems. In recent years much interest has developed
in finding out how to solve linear equations using
multiple processing units or over a network. Major
efforts have been made in the development of parallel
or distributed algorithms as linear-equation solvers. On
the one hand one aims at faster algorithms in view of
the intuition that multiple processing units working
in parallel under smart arrangements might provide
significant improvements in computation efficiency.
On the other hand various distributed systems induce
structure constraints, e.g., one node holds one equation
and it cannot or does not want to share the exact
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equation with other nodes, a constraint which excludes
the feasibility of classical centralized algorithms.

Parallel algorithms for linear equations have been
developed in the spirit of high-performance computing,
e.g., the Jacobi method (Margaris et al. (2014)), the
Kaczmarz method (Kaczmarz. (1937)) and the parallel
algorithms for LU-decomposition in sparse linear
systems (Stappen et al. (1993), Saad et al. (1999)).
In these algorithms, the state of each node can give an
entry of the solution to a linear equation after a suitably
long running time.

Meanwhile, discrete and continuous-time algorithms for
linear equations known to have a unique solution are also
established from the point of view of distributed control
and optimization. A variety of distributed algorithms
are presented, among which discrete-time algorithms
are given by (Mou et al. (2013, 2015), Liu et al. (2013),
Lu et al. (2009)) and continuous-time algorithms are
presented in (Anderson et al. (2016), Shi et al. (2017)).
In these network distributed algorithms, compared
with the development in parallel computing, each node
state asymptotically converges to the solution to the
linear equation. Such developments on network linear
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equations are closely related to, and sometimes even
special cases of, the study of distributed optimization
methods on nonlinear models (Tsitsiklis et al. (1986),
Nedic et al. (2009, 2010), Gharesifard et al. (2014),
Jakoveti et al. (2014)), due to the natural connection
between solving equations and optimizing objective
functions.

Most of the existing work for parallel and distributed
algorithms assumes that the linear equations have
exact solutions (Margaris et al. (2014), Kaczmarz.
(1937), Mou et al. (2013, 2015), Liu et al. (2013),
Lu et al. (2009), Anderson et al. (2016)), or can
only produce least square solutions in the approximate
sense or for limited graph structures (Shi et al. (2017),
Wang et al. (2012)). Although one can obtain the
least squares solution by expanding an unsolvable
linear equation and applying the algorithms mentioned
above, strong requirements apply on network structure,
communication performance and local storage (Mou
et al. (2015)). Few results have been obtained on direct
exact distributed least squares solvers for network
linear equations. In this paper, inspired by the method
of applying differential equations to obtain the saddle
point of an optimization problem (Kose. (1956), Arrow
et al. (1958)), we present distributed continuous and
discrete-time algorithms that can compute the least
squares solution to a linear equation over a network.
Though the proposed algorithm is noted to be similar
to the algorithm of Wang-Elia/Gharesifard-Cortés
(Gharesifard et al. (2014), Wang et al. (2010)), we
illustrate that it has an advantage in communication
cost and the analysis in this paper is a complementary
content of their work. The contributions of our work are
summarized as follows.

• By recognizing the least squares problem as a
constrained optimization problem over a network,
a continuous-time flow is presented in the form
of the classical Arrow-Hurwicz-Uzawa flow (Arrow
et al. (1958)), for which we establish necessary and
sufficient conditions for the flow to yield convergence.
• Generic feasibility of linear equations and networks

are studied, for the purpose of investigating the
applicability of the proposed algorithm.
• By Euler’s method, a discrete-time algorithm is

presented and the properties of its convergence are
also specified and proved.

A preliminary version of the current work was presented
at the IFAC Congress in 2017 (Liu et al. (2017)). The
paper begins by the formulating the network linear
equations in Section 2, in addition to explaining the
relation between the Arrow-Hurwicz-Uzawa flow and the
proposed flow. In Section 3, a necessary and sufficient
condition for the continuous-time flow to converge to
the least squares solution is established. In Section
4, a discrete-time algorithm is obtained by Euler’s
method and the necessary and sufficient conditions for

its convergence conditions are established. Finally the
conclusion is given in Section 5.

2 Problem Definition

2.1 Linear Equation

Consider the following linear algebraic equation with
unknown y ∈ Rm:

z = Hy (1)

and where z ∈ RN and H ∈ RN×m are known. Denote
the column space of a matrix M by colsp(M). If
z ∈ colsp(H), then the equation (1) always has (one or
many) exact solutions. If z /∈ colsp(H), the least squares
solution is defined by the solution of the following
optimization problem:

min
y∈Rm

‖z−Hy‖2. (2)

It is well known that if rank(H) = m, then (2) yields a
unique solution y∗ = (H>H)−1H>z.

2.2 Network

Denote

H =


h>1
...

h>N

 , z =


z1
...

zN

 .
We can rewrite (1) as

h>i y = zi, i = 1, . . . , N.

Let G = (V, E) be a constant, undirected and connected
graph with the set of nodes V = {1, 2, . . . , N} and the set
of edges E ⊂

{
{i, j} : i 6= j ∈ V

}
. Each node i holds the

equation h>i y = zi and also holds a vector xi(t) ∈ Rm
that varies as a function of time t. Note that xi(t) will
turn out to be part of the state of node i at time t. LetNi
be the set of neighbor nodes that are connected to node
i, i.e., Ni = {j : {i, j} ∈ E}. Define a diagonal matrix
D = diag(|N1|, |N2|, . . . , |NN |) and an incidence matrix
A of the graph G by [A]ij = 1 if {i, j} ∈ E and [A]ij = 0
otherwise. Then L = D−A is the Laplacian of graph G.

2.3 Distributed Flows

Consider a cost function U : Rm × · · · × Rm → R

U(x1, . . . ,xN ) =
1

2

N∑
i=1

|h>i xi − zi|2. (3)

Let x(t) = [x>1 (t) . . . x>N (t)]> and introduce v(t) =
[v>1 (t) . . . v>N (t)]> with vi(t) ∈ Rm for i = 1, . . . , N .
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The vector vi(t) is also held by node i, and the
2m-dimensional vector [xi(t)

> vi(t)
>]> represents the

state of node i. Evidently, the least squares optimization
problem (2) is equivalent to

min
x

U(x)

s.t. (L⊗ Im)x = 0
(4)

We consider the following differential equations
describing a network flow:

ẋ = −(L⊗ Im)v −∇U(x)

v̇ = (L⊗ Im)x,
(5)

with initial values x(0) = x0 ∈ RNm,v(0) = v0 ∈ RNm.

Note that∇U = H̃x−zH is Lipschitz continuous where
H̃ = diag(h1h

>
1 , . . . ,hNh>N ), zH = [z1h

>
1 . . . zNh>N ]>.

In the flow (5), the state variable [x>i (t) v>i (t)]> of node
i obeys the evolution

ẋi(t) = −
∑
j∈Ni

(vi(t)− vj(t))

− (hih
>
i xi(t)− zihi)

v̇i(t) =
∑
j∈Ni

(xi(t)− xj(t)).

(6)

Therefore, besides the equation h>i y = zi that node
i possesses, it only needs to communicate with its
neighbors to obtain their states in order to implement
(5). The flow (5) is distributed in this sense.

2.4 Discussions

2.4.1 Relation to A-H-U Flow

Consider a constrained optimization problem as

min
x

f(x)

s.t. Fx = b
(7)

where f : Rn → R is a differentiable function, F ∈ Rm×n
and b ∈ Rm. The well-known Arrow-Hurwicz-Uzawa
(A-H-U) flow introduced in Arrow et al. (1958) provides
under appropriate conditions a continuous-time solver
defined by

ẋ = −∇f(x)− F>v

v̇ = Fx− b.
(8)

Convergence properties of (8) are studied in many works,
e.g., Arrow et al. (1958), Wang et al. (2011), Holding
et al. (2014), Cherukuri et al. (2017). In particular, if
f is strictly convex and F has full row rank, then (see
Arrow et al. (1958)Wang et al. (2011)) along the flow
(8), x(t) will converge to the unique minimizer of (7)
and v(t) will converge to a Lagrangian multiplier of (7).

As one can see, the flow (5) is a form of the A-H-U flow
(8) with the cost function f being the given U and the
constraint Fx = b given by (L ⊗ Im)x = 0. However,
the Laplacian L is not a full-rank matrix. Therefore,
the sufficiency results and analysis for the A-H-U flow
established in Wang et al. (2011) cannot be applied
directly to the flow (5).

2.4.2 Relation to Wang-Elia/Gharesifard-Cortés
Flows

In Wang et al. (2010) and Gharesifard et al. (2014),
a distributed algorithm that can solve (4) was proposed
as following:

ẋi(t) = −α
∑
j∈Ni

(xi(t)− xj(t))

−
∑
j∈Ni

(vi(t)− vj(t))− (hih
>
i xi(t)− zihi)

v̇i(t) =
∑
j∈Ni

(xi(t)− xj(t)).

(9)

where α is a positive number. With fixed interaction
graph and suitable choice of α, the flow (9) is a least
squares solver for (1) even for balanced directed networks
(Theorem 5.4, Gharesifard et al. (2014)). In Figure 1,

(a) Algorithm (5) (b) Algorithm (9)

Fig. 1. The way that two neighbor nodes communicate for
(a) the proposed flow (5), (b) Wang-Elia/Gharesifard-Cortés
flow (9).

we show the way that two neighbor nodes i and j share
their states under the assumption that the dynamics
of xi(t) and vi(t) are computed by two individual
processors. It can be seen that under the flow (5),
external information transmission occurs only between
xi(t) and vj(t), xj(t) and vi(t). However, information
transmission occurs additionally between xi(t) and
xj(t) under flow (9). Therefore, communication cost is
reduced with (5). Moreover, it is also useful to establish
a clear understanding of the convergence conditions
of the system (5) under general conditions, which are
currently missing in the literature.

3 Continuous Flow

3.1 Convergence Result

In the following, we provide necessary and sufficient
condition for (5) to yield convergence.
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Theorem 1 Assume that N > m and rank(H) = m.
Let y∗ = (H>H)−1H>z be the unique least squares
solution of (1). Define SL as the set of all complex
eigenvectors of L and for α ∈ SL with α[i] denoting the
i-th entry,

Iα := {i : α[i] 6= 0, α =
[
α[1] α[2] . . . α[N ]

]>}.
(i) If span(hi : i ∈ Iα) = Rm for all α ∈ SL, then

along (5)

lim
t→∞

xi(t) = y∗, i = 1, . . . , N

lim
t→∞

vi(t) = v∗i , i = 1, . . . , N

where [v∗1 . . . v∗N ]> is a Lagrange multiplier
associated with the optimization problem (4).
Moreover, the convergence rates of both xi(t) and
vi(t) are exponential.

(ii) If there exists α ∈ SL such that dim(span(hi : i ∈
Iα)) < m, then there exist trajectories of x(t) along
(5) which are oscillatory.

PROOF. Recall ∇U(x) = H̃x − zH. Suppose there
exists an equilibrium (x∗,v∗) of (5), i.e.

0 = −(L⊗ Im)v∗ − H̃x∗ + zH
0 = (L⊗ Im)x∗.

(10)

It is worth noting that (10) specifies exactly the
Karush-Kuhn-Tucker conditions on (x∗,v∗) for the
optimization problem (4) (Bertsekas. (1999)). Since
U is a convex function and the constraints in (4) are
equalities, Slater’s condition holds (Boyd et al. (2004)).
Therefore x∗ is an optimal solution to (4) and any
optimal solution of (4) must have the form 1⊗y∗. Since
y∗ is unique, x∗ is also unique. Note however that v∗ is
not necessarily unique. Define the variables x̂ = x− x∗,
v̂ = v − v∗. Then

˙̂x = −(L⊗ Im)v̂ − H̃x̂

˙̂v = (L⊗ Im)x̂.
(11)

Denote û(t) = [x̂(t)> v̂(t)>]> and

M =

[
−H̃ −L⊗ Im

L⊗ Im 0

]
. (12)

Then (11) is a linear system with the form ˙̂u = Mû.
Consider the following Lyapunov function:

V (x̂, v̂) =
1

2
‖û‖2 =

1

2
(‖x̂‖2 + ‖v̂‖2).

Since

V̇ = −x̂>(L⊗ Im)v̂ − x̂>H̃x + v̂>(L⊗ Im)x̂

= −x̂>H̃x̂ ≤ 0,
(13)

û(t) is bounded for any finite initial values x̂(0), v̂(0),
namely û(0). Therefore, we conclude:

C1. <(λ) ≤ 0 for all λ ∈ σ(M).

C2. If <(λ) = 0, then λ has equal algebraic and
geometric multiplicity.

(i). Suppose span(hi : i ∈ Iα) = Rm for all α ∈ SL. We
proceed to prove the convergence of x̂(t) and v̂(t). The
proof contains two steps.

Step 1. We prove M does not have a purely imaginary
eigenvalue using a contradiction argument. Suppose λ =
ır 6= 0 where r ∈ R is an eigenvalue of M with a
corresponding eigenvector β = [β>a β>b ] ∈ C2Nm, where
βa ∈ CNm, βb ∈ CNm. Let û(0) = β. Then

û(t) = eMtû(0) = eırtû(0).

Therefore, ‖û(t)‖2 = ‖û(0)‖2 for all t.

On the other hand, according to (13),

d

dt
(
1

2
‖û(t)‖2) = −eı2rtβ>a H̃βa.

Consequently, there must hold H̃βa = 0. Next, based on
Mβ = ırβ, we know

−(L⊗ Im)βb = ırβa
(L⊗ Im)βa = ırβb.

(14)

Since β 6= 0, neither of βa nor βb can be zero. By simple
calculation, we have

(L⊗ Im)2βa = r2βa

(L⊗ Im)2βb = r2βb,
(15)

i.e., βa and βb are both eigenvectors of (L ⊗ Im)2

corresponding to r2. From (15), we know

(L2 ⊗ Im)βa = r2βa.

Based on the properties for eigenvectors of the Kronecker
product of two matrices (Theorem 13.12 Laud. (2005)),
we know there exist (r2,αa) and ηa such that L2αa =
r2αa and βa = αa ⊗ ηa with αa ∈ CN and ηa ∈ Cm.
It is trivial that if L2αa = r2αa, Lαa = |r|αa, i.e.,
αa is an eigenvector of L corresponding to eigenvalue

|r|. Denote βa =
[
βa[1]

>
. . .βa[N ]

>]>
,βa[i] ∈ Cm and
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ηa =
[
ηa[1]> . . .ηa[N ]>

]>
,ηa[i] ∈ C with i = 1, . . . , N .

It is evident that βa[i] = αa[i]ηa if i ∈ Iαa and βa[i] = 0
otherwise. Then noting that

H̃βa =


αa[1]h1h

>
1 ηa

...

αa[N ]hNh>Nηa

 = 0,

we get αa[i]hih
>
i ηa = 0 for i = 1, 2, . . . , N , which

implies that

h>i ηa = 0, i ∈ Iαa . (16)

Because span(hi : i ∈ Iαa
) = Rm, there must hold

ηa = 0. In turn, βa must be zero, leading to βb = 0
with (14). Therefore M does not have purely imaginary
eigenvalues. Based on C1, C2 and the fact that M
has no purely imaginary eigenvalue, it follows that
x̂(t) and v̂(t) converge. Furthermore, by the basic
property of linear time-invariant systems, x̂(t) and v̂(t)
exponentially converge, implying that x(t) and v(t)
exponentially converge.

Step 2. In this step, we establish the limits of x̂(t) and
v̂(t) by studying the zero eigenspace of M, thereby
obtaining the convergence property for x(t) and v(t).
Suppose δ = [δ>a δ>b ]> is one of the eigenvectors of M
corresponding to zero eigenvalue with δ ∈ R2Nm and
δa, δb ∈ RNm, i.e., Mδ = 0. Consider a solution û(t) of
(11) with û(0) = δ. We see from the derivative of the
Lyapunov function and Mδ = 0 that

H̃δa = (L⊗ Im)δa = (L⊗ Im)δb = 0.

Then there exist ηa ∈ Rm and ηb ∈ Rm such that δa =
1⊗ηa and δb = 1⊗ηb. Since H̃δa = 0 and rank(H̃) = m,
δa = 0, i.e., δ must be in the form δ = [0 δ>b ]> with δb =
1⊗ηb. Note that the algebraic and geometric multiplicity
of the zero eigenvalue of M is m. Now we decompose M
into its Jordan canonical form M = TJT−1:

T = [δ1 δ2 · · · δm · · · ],
T−1 = [δ′1 δ′2 · · · δ′m · · · ]>,

where δi and δ′>i with i = 1, 2, . . . ,m are mutually
orthogonal right and left eigenvectors respectively of M
all corresponding to zero eigenvalues and all with the
form of δi = [0 δ>ib]

> and δ′>i = [0 δ′>ib ]. Then

lim
t→∞

û(t) =

m∑
i=1

δiδ
′>
i û(0),

which implies that

lim
t→∞

x̂(t) = 0,

lim
t→∞

v̂(t) =

m∑
i=1

δibδ
′>
ib v̂(0).

Thus we can conclude that x(t) converges to x∗ = 1⊗y∗

while v(t) converges to a constant associated with the
initial value v(0), which completes the proof of (i).

(ii). Suppose there exists αa ∈ SL with Lαa = rαa such
that dim(span(hi : i ∈ Iαa)) < m. Then there must
exist ηa 6= 0 satisfying that

h>i ηa = 0, i ∈ Iαa

Let β = [β>a β>b ]> with βa = αa ⊗ ηa and βb =
(L⊗Im)βa

ır . It is easy to check that

Mβ =

[
−H̃ −L⊗ Im

L⊗ Im 0

][
βa

βb

]
= ır

[
βa

βb

]
. (17)

Therefore, M has a purely imaginary eigenvalue. Hence,
x(t) and v(t) are oscillatory for generic initial conditions.

We have now completed the proof of Theorem 1.

3.2 Feasibilities

The verification of the convergence condition in Theorem
1 is noted to be difficult, especially in a distributed
manner. Now we discuss the feasibility of graphs and
linear equations to show that the convergence condition
verification is unlikely to be a major concern.

3.2.1 Weighted Laplacian

An N -node weighted undirected graph Gw = (V, E , w)
is defined by associating G = (V, E) with a function
w : E → R+. Introduce [Aw]ij = w({i, j}) if {i, j} ∈ E
and [Aw]ij = 0 otherwise. Then its weighted Laplacian
is given by

Lw = diag(

N∑
j=1

[Aw]1j , . . . ,

N∑
j=1

[Aw]Nj)−Aw.

Let SLw
be the set of all complex eigenvectors of Lw. For

αw ∈ SLw
, we define

Iαw
= {i : αw[i] 6= 0, αw = [αw[1] . . . αw[N ]]>}.

Evidently, if we replace L with Lw in (5), Theorem 1
continues to hold for SLw

and Iαw
. For a graph that
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does not satisfy the convergence condition in Theorem
1, there may exist weighted graphs with the same
topology on which (5) yields convergent flows. This
adds flexibility to guarantee convergence with a given
network structure.

3.2.2 Generic Feasibility of H

Proposition 2 Let L be the Laplacian of a graph G
with |Iα| ≥ m for all α ∈ SL. Then the convergence
condition of Theorem 1, viz. span(hi : i ∈ Iα) = Rm,
is satisfied for generic H ∈ RN×m, i.e., there does not
exist an open nonempty subset in RN×m of H, for which
the convergence condition in Theorem 1 is not satisfied.

PROOF. Let

Hi1,...,im =


h>i1
...

h>im

 , 1 ≤ i1 < · · · < im ≤ N.

Introduce

W =
⋃

i1,...,im:
1≤i1<···<im≤N

Wi1,...,im

where

Wi1,...,im = {H ∈ RN×m : det(Hi1,...,im) = 0}.

It can be noted that W is the set of H for which the
convergence condition in Theorem 1 is not satisfied.
Since Wi1,...,im 6= RN×m, by identity theorem for
holomorphic functions (Ablowitz et al. (2003)),
Wi1,...,im does not contain a nonempty open subset of
RN×m, i.e.,W does not contain a nonempty open subset
of RN×m. This completes the proof.

3.2.3 Graph Feasibility

Theorem 1 shows that the larger min
α∈SL

|Iα| is, the easier

that convergence is met. Now we investigate min
α∈SL

|Iα|
on several fundamental graphs and random graphs.

[Path Graph] It is known from Fuhrmann et al. (2015)
that all the eigenvalues of its Laplacian L are distinct
with eigenvectors in the set of SL = {αk : αk[v] =

cos( (k−1)(2v−1)π
2N ), v = 1, . . . , N ; k = 1, . . . , N}. We

discuss two cases:

(i) Let N = 2l, l = 2, 3, 4, . . . . Then it is obvious that
there do not exist v and k such that αk[v] = 0.
Therefore, |Iα| = N for all α.

(ii) Let N = 3l, l = 1, 2, 3, . . . . Then any αk ∈ SL
contains at most l zero entries. Therefore,
min
α∈SL

|Iα| = 2
3N .

[Ring Graph] We know from Fuhrmann et al. (2015)
that if N is odd, then zero is the only eigenvalue of
multiplicity one with eigenvector α1 = [1 1 . . . 1]>,
while all the other eigenvalues have multiplicity two with
a basis of two orthogonal eigenvectors

1

cos( 2kπ
N )

...

cos( 2(N−1)kπ
N )

 ,


0

sin( 2kπ
N )

...

sin( 2(N−1)kπ
N )

 (18)

with k = 1, . . . , N − 1. If N is even, then zero and
the largest eigenvalue are the only two eigenvalues of
multiplicity one with eigenvectors [1 1 . . . 1]> and [1 −
1 1 . . . 1]> respectively, while all the other eigenvalues
have multiplicity two with a basis of two orthogonal
eigenvectors with the same form (18) and k = 1, . . . , N−
1, k 6= N

2 . Note that the eigenspaces of k = p and k = q
are the same if and only if p+ q = N and 1 ≤ p, q ≤ N .

(i) If N is a prime number, then any α ∈ SL contains
at most one zero entry. Therefore, min

α∈SL
|Iα| = N−

1.
(ii) IfN = 3l, l = 1, 2, 3, . . . , then anyα ∈ SL contains

at most l zero entries. Therefore, min
α∈SL

|Iα| = 2
3N .

(iii) If N = 2l, l = 3, 4, . . . , then any α ∈ SL contains
at most 2l−1 zero entries. Therefore, min

α∈SL
|Iα| =

1
2N .

[Star Graph] We know that its Laplacian has an
eigenvalue zero of multiplicity one with eigenvector
α1 = [1 . . . 1]>, an eigenvalue N of multiplicity
one with eigenvector αN = [1 − N 1 . . . 1]> and
eigenvalue one with multiplicity N − 2 and a set
of associated eigenvectors {αk : 1>αk = 0, αk 6=
p[1−N 1 . . . 1]>, p ∈ R; k = 2, 3, . . . , N −1}. Thus αk
has at mostN−2 zero entries. Therefore, min

α∈SL
|Iα| = 2.

[Complete Graph] It is known from Cvetković et al.
(1980) that its Laplacian has an eigenvalue zero of
multiplicity one with eigenvector α1 = [1 . . . 1]>

and eigenvalue N with multiplicity N − 1 and a set
of associated eigenvectors {αk : 1>αk = 0; k =
2, 3, . . . , N}. Then it can be concluded that αk has at
most N − 2 zero entries. Therefore, min

α∈SL
|Iα| = 2.

[Random Graph] Consider random graphs with
n = 100, 200, 300 nodes generated by letting every
possible edge occur independently with probability
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p = 0.2, 0.5, 0.8, respectively. For each p and each n, we
do 104 experiments and find out the value of min

α∈SL
|Iα|

for each experiment. Let |Iα,ave| denote the average
of min

α∈SL
|Iα| for these 104 experiments. The calculated

result is presented in the following table.

|Iα,ave| n = 100 n = 200 n = 300

p = 0.2 95.33 189.84 283.02

p = 0.5 95.52 190.58 284.83

p = 0.8 95.34 189.86 282.85

[Randomly Weighted Graph] Consider a 4-node
complete weighted graph with uniformly distributed
edge weights over [0, 1]. We draw 107 samples and
the numerical results show the graph Laplacian has a
99.84% chance of satisfying min

αw∈SL
|Iαw

| = 4.

For star and complete graphs, there holds that
min
α∈SL

|Iα| = 2. This means that as long as m > 2,

the sufficient convergence condition in Theorem 1 will
not hold. However, the feasibility of non-converging
unweighted graphs can be improved by introducing
additional edge weights as seen from the random weight
graph example.

On the other hand, for path and ring graphs, there holds
min
α∈SL

|Iα| ≈ O(N), and for random graphs with edge

occurrence probability p = 0.2, 0.5, 0.8, |Iα,ave| ≈ 19
20N .

Therefore, ifN � m, it is relatively easy for the sufficient
condition in Theorem 1 to hold.

4 Discrete-time Algorithm

In this section, we investigate the discrete-time analog
of the flow (5). We index time as k = 0, 1, 2, . . . and
propose the following algorithm:

xi(k + 1) = xi(k)− ε
∑
j∈Ni

(vi(k)− vj(k))

− ε(hih>i xi(k)− zihi)
vi(k + 1) = vi(k) + ε

∑
j∈Ni

(xi(k)− xj(k)).

(19)

Note that (19) is an Euler approximation of (5).
According to the proof of Theorem 1, (5) does not
guarantee the convergence of x(t) and v(t). Therefore,
it cannot be directly concluded that the solution to (19)
will converge to the same consensus as (5). Recall that
y∗ is the unique least squares solution of (1) and M is
as defined in (12). Then the following result holds.

Theorem 3 Suppose span(hi : α[i] 6= 0) = Rm for all

the eigenvectors α =
[
α[1] . . . α[N ]

]> ∈ CN of L. Then
there exists a positive constant ε∗ such that

(i) If 0 < ε < ε∗, then along (19) we have

lim
k→∞

xi(k) = y∗, i = 1, . . . , N

which converge exponentially for all i. In this case
v(k) converges to a constant.

(ii) If ε > ε∗, then along (19) there exist initial
values x(0) and v(0) under which [x(k)> v(k)>]>

diverges.

Define σ∗(M) ⊂ σ(M) by σ∗(M) := {λ ∈ σ(M) :

<(λ) 6= 0}. Then ε∗ = min
λ∈σ∗(M)

[
− 2<(λ)
|λ|2

]
.

The proof of Theorem 3 is analogous to the proof of
Theorem 1 with the method of analyzing the asymptotic
stability of a discrete-time linear system equivalent to
(19). It can be shown that there exists ε∗ > 0 such that
(19) is a asymptotic stable linear system if 0 < ε < ε∗,
and is an unstable system if ε > ε∗. When ε = ε∗,
of course I + ε∗M might have complex eigenvalues on
the unit circle, leading to the possibility of periodic
trajectories for [x(k)> v(k)>]>. From Theorem 3, a
small enough ε would always guarantee convergence but
possibly at a low rate. It can be easily proved that the
fastest convergence is given by

ε̄ = argmax
0<ε<ε∗

{
max

λ∈σ∗(M)
|1 + ελ|

}
.

Inspired by Theorem 1. (ii), we have the following result.

Theorem 4 If there exists α ∈ SL such that

dim(span(hi : α[i] 6= 0)) < m,

then for any ε > 0, there always exist trajectories x(k)
for the algorithm (19) that diverge as k tends to infinity.

The proof of Theorem 4 can be achieved by showing that
matrix I+εM has eigenvalues with modulus larger than
one, making (19) an unstable linear system. It can be
seen from Theorem 3 and Theorem 4 that apart from
the dimensionality condition also given in Theorem 1,
the calculation of ε∗ depends on both the Laplacian L
and matrix H.

5 Conclusions

We studied the problem of obtaining the least squares
solution to a linear algebraic equation using distributed
algorithms. Each node has the information of one
scalar linear equation and holds a dynamic state. Two
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distributed algorithms in continuous time and discrete
time respectively were developed as least squares
solvers for linear equations. Under certain conditions,
all node states can reach a consensus, which gives the
least square solution, by exchanging information with
neighbors over a network. To show the possibility of
employing the proposed algorithms, the feasibility of
linear equations and fundamental graphs was discussed.
Future directions currently being contemplated include
studying the method of verifying the convergence
condition in a distributed manner, analyzing the
robustness, finding out the approach to distributed
computation of the residual vector, which can be of
practical interest and modifying the underlying cost
function or adding constraints on it to reflect objectives
such as outlier suppression.
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