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Abstract
The vast majority of the ∼ 4000 exoplanets known of today have only been detected
through indirect techniques, providing a limited amount of information on their physical
properties and dynamical environment. On the other hand, direct techniques can provide
astrometric, photometric, and spectroscopic information required to study the formation
and evolution of exoplanets. However, such direct observations are challenging due to the
high contrast between an exoplanet and its parent star, as well as their small apparent
separation. Interferometric techniques at infrared wavelengths are able to overcome the
limitation in terms of angular resolution, but are still limited in contrast at small angular
separations. A further increase in contrast is necessary to make the bulk of young giant
exoplanets, orbiting their parent star at Solar System scales, accessible to interferometry
in general.

Here, we focus on improving our understanding of and mitigating the systematic
errors which limit the sensitivity of interferometric observations. With the kernel phase
technique, we survey nearby and young stars for sub-stellar companions. We develop
a data reduction pipeline capable of reconstructing saturated PSFs, centering them
with sub-pixel accuracy and extracting their Fourier plane observables including cor-
relations. These correlations are then used, together with a calibration strategy based
on principal component analysis, to improve the sensitivity to faint companions. In
archival VLT/NACO data, we detect eight low-mass stellar companions, five of which
were previously unknown, and two have angular separations of ∼ 0.8–1.2 λ/D (i.e.,
∼ 80–110 mas). Furthermore, we achieve typical 5–σ contrast limits of ∼ 6 mag at
separations of 0.2 arcsec and ∼ 8 mag at separations of 0.5 arcsec for a Keck/NIRC2
survey of 55 single class I and class II stars in Taurus. These results clearly demonstrate
that the kernel phase technique is now capable of detecting young giant exoplanets in
the nearest star-forming regions.

We further utilize this technique to obtain mid-infrared photometry of the famous
T Tauri triple system, including its southern binary T Tau Sa/Sb at an apparent sepa-
ration of only ∼ 0.2 λ/D. Our observations reveal a recent decrease in the mid-infrared
brightness of T Tau Sb of ∼ 2 mag. We suspect that it has moved along its orbit behind
the southern circumbinary disk and now suffers from increased dust extinction. With
the demonstration of the improved contrast and the unprecedented angular resolution
in the mid-infrared, the kernel phase technique is a promising method for exoplanet
imaging with the James Webb Space Telescope and the Extremely Large Telescopes.

We finally extend our study to long-baseline interferometry by extracting the corre-
lations present in VLTI/GRAVITY data. The GRAVITY instrument has recently been
used to spectroscopically characterize exoplanets in the near-infrared. We develop an
analytical model to describe the correlations and show that the faint source detection
limits of GRAVITY improve by a factor of ∼ 2 when accounting for them in the model
fitting process. Exoplanet science with GRAVITY is still in its infancy and our technical
improvements will help to increase its scientific return. Moreover, future instruments
such as GRAVITY+, SCIFY, or LIFE will greatly benefit from a complete treatment of
the systematic errors.
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Chapter 1

Introduction

The first part of the Introduction (Section 1.1) focuses on the advancements in
the field of exoplanets over the last quarter of a century, starting with radial
velocity observations of the first exoplanets, continuing with exoplanet demo-
graphics inferred from transit observations, and finally motivating direct detec-
tion techniques for studying exoplanet formation and evolution. The second part
of the Introduction (Section 1.2) gives a brief historical summary of long-baseline,
aperture masking, and kernel phase interferometry and introduces the mathemat-
ical framework of Fourier plane imaging in the context of these three techniques.
While these techniques are capable of detecting only the largest exoplanets today,
they remain especially relevant for studying exoplanet formation and evolution
as instrumentation improves over the next decades.
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1.1 A brief history of exoplanets

1.1.1 Preamble

When Galileo Galilei pointed his novel telescope at the night sky for the first
time in 1609 (e.g., Drake, 1990), only five planets (apart from the Earth) were
known to humankind: Mercury, Venus, Mars, Jupiter, and Saturn. These five
planets are all visible from the Earth with the naked human eye, which made
them observable even before the invention of the telescope. They stand out from
the background stars because of their apparent brightness and fast motion on the
sky and played an important role in ancient mythology and astronomy.

Using his novel telescope, in 1610, Galilei discovered the four largest moons
of Jupiter (e.g., Drake, 1978), depicting the first proof that celestial objects orbit
a body different than the Earth and causing significant tension with the me-
dieval geocentrism. Only two years later, he also observed the ice giant Neptune,
noticing its high proper motion, although not realizing that it was another So-
lar System planet (e.g., Drake & Kowal, 1980). Nevertheless, Galilei’s telescope
heralded a new era for observational astronomy, with many more Solar System
objects such as Vesta, Juno, Ceres, Pallas, Uranus, and Pluto being discovered
in the 19th and 20th centuries. Many of these newly discovered celestial objects
were initially claimed to be planets, but with detection limits pushing toward
smaller bodies astronomers began to wonder about the definition of a planet and
a set of minimal requirements that an object had to fulfill in order to be called
a planet. This debate carried on for about three centuries, until Pluto was re-
classified as a minor (dwarf) planet by the International Astronomical Union in
2006, since it has not sufficiently cleared its orbit from other small bodies1.

By that time, the first extrasolar planets (or exoplanets) had already been
known for more than a decade (Wolszczan & Frail, 1992; Mayor & Queloz, 1995).
In 1995, Michel Mayor and Didier Queloz concluded the existence of a giant planet
on a short orbit of only ∼ 4 days around the main-sequence star 51 Pegasi from
its periodically occurring blue- and redshifts (Mayor & Queloz, 1995), a discovery
for which they were awarded the Nobel Prize in physics in 20192. Within only 15
years, the number of known exoplanets has now grown to ∼ 44003, thanks to huge
efforts with radial velocity and transit surveys, first and foremost NASA’s Kepler
mission. Flared up again is the debate about which objects shall be classified as
planets, especially at the boundary between gas giants and brown dwarfs subject
to thermonuclear deuterium fusion, as well as in environments that substantially
differ from that of our own Earth, such as the planets orbiting a millisecond
pulsar discovered by Wolszczan & Frail (1992).

1https://www.iau.org/news/pressreleases/detail/iau0603/
2https://www.nobelprize.org/prizes/physics/2019/summary/
3https://exoplanetarchive.ipac.caltech.edu/, retrieved on 25 May 2021

https://www.iau.org/news/pressreleases/detail/iau0603/
https://www.nobelprize.org/prizes/physics/2019/summary/
https://exoplanetarchive.ipac.caltech.edu/
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1.1.2 Exoplanet demographics

The first confirmed detection of an exoplanet was the discovery of a multi-planet
system of two super-Earths orbiting the millisecond pulsar PSR1257+12 (Wol-
szczan & Frail, 1992). Such pulsars are extremely stable rotators and therefore
emit pulses on timescales of milliseconds with extremely stable delay times. In
the pulse arrival times of PSR1257+12, Wolszczan & Frail (1992) could detect
a residual variation caused by two planetary-mass companions of Mp sin(i) =
3.4 M⊕ and 2.8 M⊕, where i is the system inclination. Only in 1995, Mayor
& Queloz (1995) detected the first planetary-mass companion around a main-
sequence star, 51 Pegasi b. Unlike the super-Earths orbiting the millisecond
pulsar PSR1257+12, 51 Pegasi b was found to be a hot Jupiter orbiting its host
star with an extremely short period of only 4.23 d. After these two exceptional
and unexpected discoveries, for about 15 years the number of known exoplanets
grew by only a few tens per year. The vast majority of these exoplanets were
found with the radial velocity technique (e.g., Fischer et al., 2014), similar to
observing the blue- and redshifts of 51 Pegasi, and most of them were, just like
51 Pegasi b, hot Jupiters, that is giant planets on very short orbits. The first ex-
oplanet discovered with another technique was OGLE-TR-56 b, whose existence
was inferred from periodically occurring dimming events of its host star caused
by the planet occulting part of the star on its orbit around it (Konacki et al.,
2003). This technique is now known as the transit technique and has proven
the most fruitful way of discovering exoplanets to date thanks to NASA’s Kepler
mission which launched in 2010 and began to monitor about 200,000 stars for
such periodic dimming events (Borucki et al., 2010). For this to happen, the or-
bital plane of the exoplanet needs to be aligned with our line of sight, a scenario
which is geometrically unlikely. By continuously monitoring such a huge sam-
ple of stars though, the Kepler mission could still detect thousands of dimming
events and revolutionized the field of exoplanet science by providing, for the first
time, robust statistics on the occurrence rate of exoplanets as a function of their
size and orbital period (e.g., Fressin et al., 2013; Dressing & Charbonneau, 2013,
2015; Burke et al., 2015).

Kepler has shown that planets are ubiquitous. Recent estimates predict an
occurrence rate of at least 2.57 planets per solar-type star (Kopparapu et al.,
2018), with even higher numbers for M-dwarfs (Dressing & Charbonneau, 2015).
These estimates are limited to planets with a radius between 0.5–6 Earth radii
and an orbital period between 0.5–500 days, so there likely are even more planets
outside this parameter space. Although Kepler ’s completeness decreases strongly
with decreasing planet size and increasing distance to the parent star (e.g., Fressin
et al., 2013), it has been possible to constrain the frequency of Earth-like planets
in the habitable zone of their parent star to η⊕ = 12.6+9.5

−5.5% (Bryson et al., 2020),
based on the η⊕ definition from Kopparapu et al. (2018). This is a significant
achievement on the way to constraining the frequency of life in our Galaxy, as it
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Figure 1.1: Planet occurrence rate as a function of planet size inferred from
Kepler data. The uncertainties are increasing with decreasing planet size, and
the inferred occurrence rate becomes unreliable for planets smaller than∼ 1 Earth
radius (grey histogram). The distribution shows a clear dip around ∼ 1.75 Earth
radii, depicting the so-called evaporation valley. Adapted from Fulton et al.
(2017).

leads us one step further toward understanding the existential Drake equation

N = Rfpη⊕flfifcL, (1.1)

where N is the number of civilizations in our Galaxy with which communication
is possible, R is the average star-formation rate in our Galaxy, fp is the fraction
of stars that harbour planets, fl is the fraction of habitable planets that develop
life, fi is the fraction of developed life that becomes intelligent, fc is the fraction
of intelligent life that develops suitable communication technologies, and L is the
average life time of such a civilization (Burchell, 2006). Furthermore, the planet
occurrence rate inferred from Kepler enable planning future space missions and
estimating their expected exoplanet yield (Stark et al., 2014, 2015; Kopparapu
et al., 2018; Kammerer & Quanz, 2018).

The planet occurrence rate inferred from Kepler enables another important
conclusion: our own Solar System is not a common planetary system. Figure 1.1
shows the number of planets (with orbital period < 100 days) per star as a
function of the planet size (Fulton et al., 2017), revealing a significant deficit of
planets around 1.75 Earth radii (REarth). There is a large population of super-
Earths (∼ 1.25–1.75 REarth) to the left of the gap and another large population
of sub-Neptunes (∼ 1.75–4 REarth) to the right of the gap, being the most abun-
dant types of planets in our Galaxy. The transition between the two types is
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characterized by the critical core mass required to sustain a thick envelope of H2

and He gas (Rogers, 2015). While super-Earths have a thin atmosphere and are
predominantly made up of iron and silicates, sub-Neptunes have a thick atmo-
sphere which contributes significantly to their mass (Lopez & Rice, 2018). At the
transition (∼ 1.75 REarth), a small change in atmosphere mass results in a large
change in radius, and radiation from the parent star can quickly evaporate an
envelope of H2 and He gas. Interestingly, there is no super-Earth or sub-Neptune
in our own Solar System, which might point to an uncommon formation scenario.

1.1.3 Transit and radial velocity techniques

Transit and radial velocity observations are ideal to probe short orbital periods.
This is because the geometrical transit probability P of an exoplanet with radius
Rp on an orbit with semi-major axis a, eccentricity e and argument of periapsis
ω in front of its parent star with radius R? is

P = 0.0045
(au
a

)(R? +Rp

R�

)(
1 + e cos(π/2− ω)

1− e2

)
(1.2)

(Fischer et al., 2014), which decreases with increasing semi-major axis a. Simi-
larly, the radial velocity semi-amplitude K caused by an exoplanet with massMp
on an orbit with semi-major axis a, eccentricity e and inclination i on its parent
star with mass M? is

K =
8.95 cm s−1

√
1− e2

Mp sin i

MEarth

(
M? +Mp

M�

)−1/2 ( a
au

)−1/2
(1.3)

(Fischer et al., 2014), which decreases with increasing period P . While transit
observations alone only reveal the size and orbital period of an exoplanet and
radial velocity observations alone only reveal its minimum mass Mp sin i and
orbital period, in combination they provide information on the density of an exo-
planet, since the inclination i can be assumed to be small if a transit occurs. This
enables studying the bulk composition and interiors of exoplanets (e.g., Marcy
et al., 2014; Weiss & Marcy, 2014). However, as will be shown in Section 1.1.6,
planet formation in protoplanetary disks is believed to take place beyond the
snow line (i.e., the distance to the parent star where water vapor solidifies into
ice). Planets found at smaller orbital separations are believed to have migrated
inward (e.g., Morbidelli & Raymond, 2016). Therefore, planet formation is best
studied with techniques that are sensitive to planets beyond a few astronomi-
cal units from their parent star, such as microlensing and direct imaging (e.g.,
Bowler, 2016).
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Figure 1.2: Discovery space of the Kepler transit and the Roman (here called
by its former name WFIRST) microlensing surveys in the planet mass vs. semi-
major axis plane. The red dots show exoplanets detected by Kepler, the black
dots show exoplanets detected by other techniques, and the blue dots show sim-
ulated microlensing detections from Roman. The Solar System planets as well
as the Moon, Ganymede, and Titan are shown at the semi-major axes of their
parent bodies. Adapted from Penny et al. (2019).

1.1.4 Microlensing techniques

General relativity predicts that light can be gravitationally bound. When two
stars come close to each other on the sky (apparent distance of ∼ 1 mas), the
light from the background star can be microlensed by the foreground star. If the
background star is slightly offset from the foreground star, the light of the former
is usually distorted into two images which appear close to the Einstein radius

θE =
√
κMLπrel, (1.4)

where κ = 8.14 mas M−1
� , ML is the lens mass in solar masses, and πrel =

(1 au/DL) − (1 au/DS) with DL and DS being the lens and source distance
in kpc. These two images are usually too close to each other to be resolved,
although Dong et al. (2019) recently obtained the first resolved microlensing
images with VLTI/GRAVITY. Even when unresolved, microlensing events can
be observed as a change in the source brightness over time, as the stars approach
each other on the sky and separate again. If the foreground star hosts a planet at
an angular separation similar to that of the lensed images of the background star
(i.e., similar to the Einstein radius), this can lead to an observable perturbation
of the microlensing light curve (e.g., Fischer et al., 2014).
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Microlensing events can reveal the mass and angular separation of an exo-
planet (if the lens mass and the Einstein radius can be inferred), but the geomet-
ric microlensing probability makes such events rare in the Solar neighborhood.
Instead, microlensing planets are usually too far away to be followed-up and char-
acterized with other detection techniques. Nevertheless, microlensing will play
an important role in mapping out the planet distribution between ∼ 1–10 au and
down to the Earth-mass regime with the Roman Space Telescope (Penny et al.,
2019). This will bridge the gap in the planet population between transit/radial
velocity and direct imaging techniques (cf. Figure 1.2) and provide a crucial
test for the true occurrence of these planets which is currently inferred from the
extrapolation of the known planet population (e.g., Fernandes et al., 2019).

1.1.5 Direct imaging techniques

Direct imaging observations have proven successful in exploring the outer regions
of planetary systems and finding young gas giants at large orbital separations
(e.g., Bowler, 2016). The technique aims at resolving an exoplanet from its parent
star, at contrasts down to ∼ 12–15 magnitudes achieved at angular separations of
0.4–0.5 arcsec (e.g., with VLT/SPHERE, Langlois et al., 2021). Conducting such
observations with dedicated instruments from the ground has only been possible
through the development of extreme adaptive optics systems (e.g., SPHERE,
GPI, SCExAO, Beuzit et al., 2019; Macintosh et al., 2014; Currie et al., 2017)
and advanced observing and post-processing techniques that effectively remove
the stellar PSF (e.g., ADI, PCA, Marois et al., 2006; Soummer et al., 2012;
Amara & Quanz, 2012). Figure 1.3 shows the famous HR 8799 system with
its four gas giants, one of the early discoveries of high-contrast imaging (Marois
et al., 2008, 2010). Direct imaging is ideal to study the brightness, color, orbital
motion, and atmospheric composition of the planets, and in combination with
evolutionary models can constrain their mass, age, and formation entropy (e.g.,
Spiegel & Burrows, 2012; Mordasini, 2013). Moreover, it enables observations of
the dynamical interaction between young planets and the protoplanetary disks in
which they are born (e.g., PDS 70, Keppler et al., 2018). As such, direct imaging
is vital to study planet formation and evolution.

In the past decade, there have been huge efforts to find young gas giants
around nearby moving group stars. The advantage of targeting young stars is that
their young planets should glow bright in the near-infrared compared to older ones
due to their remaining formation heat (e.g., Spiegel & Burrows, 2012). Thousands
of hours of telescope time were devoted to performing high-contrast imaging
surveys of hundreds of young stars, but the overall detection rate turned out to
be low. The conclusion suggests itself: wide-separation (10–100 au) gas giants (5–
13 MJupiter) are intrinsically rare, with an overall occurrence rate of∼ 5% (Nielsen
et al., 2019; Vigan et al., 2020). Brown dwarf companions (13–80 MJupiter) in
the same semi-major axis range seem to be even more rare (∼ 1%). This is in
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Figure 1.3: Multi-epoch Keck images of the HR 8799 planetary system processed
with point-spread function (PSF) subtraction and angular differential imaging
techniques. Four young and self-luminous gas giants are detected (b, c, d, and
e), orbiting their parent star roughly co-planar and face-on. The parent star is
located in the center, hidden behind a coronagraph and surrounded by residual
speckle noise from the PSF subtraction. Adapted from Marois et al. (2010).

agreement with the gas giant occurrence rate inferred from radial velocity data,
which suggests a peak in the giant planet distribution around the snow line (∼ 2–
5 au around a young Sun-like star, Mulders et al., 2015) with a decline to a few
percent further out (see Figure 1.4, Fernandes et al., 2019). Furthermore, most
giant planets are believed to form via core accretion (see Section 1.1.6) and are
thus only detectable at their youngest ages (< 5 Myr) with current instruments
(Wallace & Ireland, 2019). Such young objects can only be found in the nearest
star-forming regions, which are located at distances of more than 100 pc (de
Zeeuw et al., 1999; Rizzuto et al., 2011), where physical separations of 5 au
correspond to angular separations of 50 mas. This gives current direct imaging
surveys on eight-meter telescopes a hard time finding young giant planets, since
they are limited by residual speckles from the PSF subtraction or occultation by
coronagraphs inward of ∼ 100–200 mas. Higher angular resolution techniques
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Figure 1.4: Giant planet occurrence rate as a function of orbital period inferred
from radial velocity data. The red points are the data and the blue lines are
randomly drawn samples from the posterior distribution of the broken power-law
used to fit the data. The inferred occurrence rate suggests a peak around ∼ 2–
3 au, close to where the snow line of a young Sun-like star is located. Adapted
from Fernandes et al. (2019).

are thus required to probe smaller orbital separations, where giant planets are
more common, and to detect a sizeable sample of such objects for studying giant
planet formation on a statistically relevant scale.

The present time marks an exciting period in which the planet populations
from radial velocity and direct imaging begin to overlap (see Figure 1.5). As
radial velocity surveys become longer and direct imaging systems become more
stable, both techniques now detect planets at orbital separations of tens of astro-
nomical units. An important step forward was the recent direct confirmation of
β Pic c, a planet discovered through radial velocity observations (Lagrange et al.,
2019), with long-baseline interferometry (VLTI/GRAVITY, Nowak et al., 2020).
Together with a reliable mass estimate from radial velocity data, direct imaging
enables the identification of a formation scenario for β Pic c. However, young
and nearby field stars, such as β Pic, are rare (Zuckerman & Song, 2004) and to
study giant planet formation on a statistically relevant sample, it is inevitable to
aim for the nearest star-forming regions. Kernel phase and long-baseline interfer-
ometry both provide the means to access Solar System scales (∼ 5 au) in these
regions, where young Jupiter analogs and the tip of the giant planet distribution
are located.
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Figure 1.5: Population of known exoplanets in the mass vs. period plane, color-
coded by detection technique. While transit and radial velocity are sensitive
to objects at small separations (/ 10 au), direct imaging detects companions at
large separations (' 10 au). However, the parameter spaces accessible with radial
velocity and direct imaging are beginning to overlap significantly. Retrieved from
the NASA Exoplanet Archive on 20 May 2021.

1.1.6 Giant planet formation

When stars form via gravitational collapse of a cloud made of gas and dust, the
circumstellar matter settles into an accretion disk. Such circumstellar disks re-
main after the star-formation process and have been directly observed around
T Tauri and Herbig Ae/Be stars, for example with ALMA (e.g., ALMA Partner-
ship et al., 2015). They are believed to be the birthplaces of planets, hence also
referred to as protoplanetary disks, and while spurious clumpy features have been
detected in several such disks (e.g., Kraus & Ireland, 2012; Quanz et al., 2013;
Biller et al., 2014), the PDS 70 system marks the only unambiguous proof of gi-
ant planets observed during formation in a protoplanetary disk to date (Keppler
et al., 2018; Haffert et al., 2019). Understanding the formation and evolution of
giant planets is a fundamental goal of modern astrophysics and of particular im-
portance for planetary systems as a whole. Giant planets accrete large amounts
of matter from the protoplanetary disk and can open gaps in the disk’s radial
dust distribution which form barriers for radial dust drift, limiting the amount of
material available for the formation of smaller planets closer in (e.g., Rice et al.,
2006). Moreover, they gravitationally interact with potential other planets in
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the system causing orbital resonances and migration (e.g., D’Angelo & Marzari,
2012). Likewise, Jupiter and Saturn are believed to have played an important
role for the formation and evolution of the Solar System, and have predominantly
dictated its present-day architecture (Morbidelli et al., 2007).

There are two distinct channels for giant planet formation which are widely
accepted in the community: (i) the core accretion model (Pollack et al., 1996) and
(ii) the gravitational instability model (Boss, 2001). In the core accretion model,
rocky planetary cores form through incremental growth from millimeter-sized
dust particles to kilometer-sized planetesimals, which finally grow into gas giants
by runaway gas accretion. In the gravitational instability model, giant planets
form through gravitational collapse of an over-density in the protoplanetary disk.
The two models make different predictions about the planets’ specific entropy
after formation, and therefore about their luminosity as a function of age and
mass. This will be discussed in detail in the following Section (Section 1.1.7).
Overall, it has been estimated that roughly 90% of the known planets formed via
core accretion, whereas only 10% emerged from gravitational instability (Matsuo
et al., 2007). However, it is worth to point out that recent work has discovered
many more planets (e.g., Hsu et al., 2019) and that high-contrast imaging surveys
such as SHINE (Vigan et al., 2020) and GPIES (Nielsen et al., 2019) have found a
smaller than expected number of planets at wide separations (where gravitational
instability is more efficient), indicating that an even higher fraction might have
formed via core accretion.

Core accretion

In the core accretion model, giant planets are believed to form via concurrent
accretion of dust and gas from the protoplanetary disk (Pollack et al., 1996). The
vertical motion of small dust particles in the protoplanetary disk is dominated
by friction and can be described as

z(t) ≈ z(0)e−Ω2τt, (1.5)

where z(t) is the vertical dust distribution, Ω is the angular velocity of the gas,
and τ is the stopping time of the gas particles (D’Angelo et al., 2010). Equa-
tion 1.5 describes an exponential decay with half life (Ω2τ)−1 ≈ (10−3ρdustRdust)

−1,
where ρdust is the density of the dust particles and Rdust is their size. Hence,
millions of orbital periods would be required for micron-sized dust particles at
a separation of ∼ 5 au from a Sun-like star to settle toward the disk mid-plane.
Therefore, micron-sized dust particles must first grow to centimeter-sized ices,
which can only happen beyond the snow line (∼ 2–5 au around a young Sun-
like star Mulders et al., 2015) where solidification of gas into ices is possible.
This is why planet migration toward the host star is believed to be an impor-
tant mechanism for the many close-in super-Earth, ice giant, and gas giant ex-
oplanets detected by transit and radial velocity observations (e.g., Terquem &
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Figure 1.6: Core growth time to a core mass of 10 Earth masses as a function of
separation from the host star for different accretion scenarios. Pebble accretion
predicts significantly faster core growth than the accretion of larger fragments
or planetesimals. Shown by dashed red hatching is the average protoplanetary
disk lifetime as an upper limit to the core growth (106–107 years). Adapted from
Lambrechts & Johansen (2012).

Papaloizou, 2007; Izidoro et al., 2017). Kilometer-sized planetesimals then form
from the centimeter-sized ices in a process that is still poorly understood. The
streaming instability theory (Youdin & Goodman, 2005) predicts the formation
of over-densities, which could trigger planetesimal formation, only by drag forces
between the gas and the dust component of the rotating protoplanetary disk
and gives one possible explanation. A protoplanetary core can then form from
the kilometer-sized planetesimals via collisional interactions, which predict a core
growth rate of

dM

dt
= πR2ΩΣFg, (1.6)

where R is the radius of the protoplanetary core, Ω is now the angular velocity of
the protoplanetary core around the host star, Σ is the surface density of the solid
material in the disk, and Fg = (Reffective/R)2 with Reffective being the radius out
to which the protoplanetary core can gravitationally attract other planetesimals
(D’Angelo et al., 2010). Since Ω ∝ a−3/2 for a Keplerian orbit and Σ ∝ a−3/2

according to the phenomenological model of Hayashi (1981), core growth happens
faster, the closer the core is orbiting its host star. Thus, Uranus and Neptune
presumably had significantly lower core growth rates dM/dt than Jupiter and
Saturn. Another approach to the formation of a protoplanetary core comes from
the pebble accretion theory. Lambrechts & Johansen (2012) showed that a core of
a few hundreds of kilometers in size can grow rapidly by accreting pebbles, which
are intermediate-sized particles bound by drag forces to the gas component of the
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disk, that also experience the drag from the core enabling kinetic energy transfer
and binding to it. This theory predicts an up to four orders of magnitude faster
core growth rate if compared to the planetesimal collision theory (Figure 1.6).

Once the vicinity of a protoplanetary core is cleared of planetesimals, its core
growth is terminated, and the final core mass can be written as

Mfinal ≈

√
(16πa2Σ)3

3M?
, (1.7)

whereM? is the mass of the host star (D’Angelo et al., 2010). The core of a planet
like Jupiter (a = 5.2 au, Σ = 10 g cm−2) should have a mass of ∼ 11 MEarth.
Gas accretion onto the protoplanetary core can in principle begin much before
its feeding zone is cleared of planetesimals, as soon as the escape velocity of the
protoplanetary core exceeds the thermal velocity of the gas, which is equivalent
to

M >

√
M3
?

a3ρdust

H3

a3
(1.8)

and can be as small as 0.01 MEarth at a distance of a few astronomical units from
a Sun-like star. Here, H represents the vertical scale-height of the disk (D’Angelo
et al., 2010). In the beginning, though, the gas accretion rate is much slower than
the accretion rate of planetesimals because the gaseous envelope becomes opti-
cally thick relatively fast, which leads to a pressure gradient preventing further gas
from the disk to fall inward. A long phase of slow contraction follows, dominated
by the opacity of the envelope and still uncertain in its duration (∼ 1–6 Myr).
Finally, once the protoplanetary core reaches a critical mass (∼ 32 MEarth for the
formation of Jupiter), the gas pressure of the envelope can no longer sustain the
inward gravitational pull and the protoplanet begins to rapidly accrete gas from
the disk (runaway gas accretion). Its growth rate dM/dt is then given by

dM

dt
≈ ΩΣ

H
R3
effective (1.9)

(D’Angelo et al., 2010), and the timescale for doubling its mass can be as short
as 100 orbital periods when the protoplanet/star mass ratioM/M? reaches 10−4.
Tidal interactions with the protoplanetary disk, however, lead to the formation
of a disk gap. The timescale for the formation of such gaps is

Ωτgap ≈ π
M2
?∆a5

M2a5
, (1.10)

where ∆a is equal to the larger of either the Hill sphere radius RHill or the vertical
scale-height of the disk H (D’Angelo et al., 2010). This timescale is usually as
small as a few tens of orbital periods. Therefore, the phase of runaway gas
accretion is terminated relatively fast.
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Giant planet formation via core accretion and subsequent runaway gas accre-
tion is critically limited to the life time of the gaseous component of the proto-
planetary disk. The closer a planet forms to the snow line, the faster can its core
reach the critical mass for runaway gas accretion and grow into a gas giant. This
naturally explains the decreasing sizes of Jupiter, Saturn, Uranus, and Neptune,
the gas and ice giants in our own Solar System.

Gravitational instability

In the gravitational instability model, giant planets form via gravitational frag-
mentation of the protoplanetary disk into clumps. The disk pressure p in radial
direction can be expressed as density waves δp ∝ exp(iωt), where

ω2 = κ2 − 4π2GΣ

λ
+

4π2c2
s

λ2
. (1.11)

Here, κ is the oscillating frequency of a perturbed disk particle (κ = Ω for a
Keplerian disk), G is the gravitational constant, λ is the radial wavelength of the
perturbation, and cs is the speed of sound in the disk (D’Angelo et al., 2010).
Perturbations are oscillating waves as long as ω2 ≥ 0, but grow exponentially as
soon as ω2 < 0. A range of unstable wavelengths occurs if

Q =
csκ

πGΣ
< 1, (1.12)

where Q is called the Toomre instability parameter and the circumstellar disk
becomes unstable if it is either cool enough (small c) or massive enough (large
Σ). This simplification holds for axisymmetric perturbations only, but numerical
simulations have shown that non-axisymmetric perturbations like spiral waves
become unstable if Q < 1.5–2 already, so that spiral arms are usually the first
observable feature arising from a fragmenting protoplanetary disk. If the disk
temperature T ∝ a−1/2 (e.g., for an optically thin disk) and the oscillating fre-
quency κ ≈ Ω ∝ a−3/2 depend on the separation to the host star a, the Toomre
instability parameter is proportional to

Q ∝ T 1/2Ω

Σ
∝ a−7/4

Σ
. (1.13)

Therefore, if the surface density Σ ∝ a−s with s < 7/4 and the radial extent of
the disk is large enough, Q becomes less than the critical value of 1–2 at some
point.

The emerging spiral waves must then fragment into clumps to form giant
planets (see Figure 1.7), but in order to do so, gravitational potential energy
needs to be radiated away from the over-densities. Otherwise, the sound speed c
and therefore the Toomre instability parameter Q ∝ c increases above the critical
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Figure 1.7: Gas surface density of a snapshot of a simulation of a gravitationally
unstable protoplanetary disk leading to the formation of multiple protoplanetary
cores at separations of ∼ 100–200 au. All cores show accretion driven by spiral
arms or filaments. Adapted from Boley (2009).

limit and the over-densities stop growing. Numerical simulations predict that

τcooling
τrotation

∼ 1–2 (1.14)

is required for fragmentation to occur, where τcooling is the cooling timescale of the
over-densities and τrotation is their rotation timescale around the host star. At the
orbital separation of Jupiter around a Sun-like star τcooling/τrotation ∼ 104 � 1–2,
hence planets cannot form via gravitational instability on such orbital scales.
However, numerical simulations predict that outward of ∼ 100 au, gravitational
instability can efficiently form giant planets with typical masses of a few Jupiter
masses (Boley, 2009).

1.1.7 Post-formation entropy and evolutionary tracks

The fundamentally different formation mechanisms underlying gravitational in-
stability and core accretion predict different post-formation specific entropies for
giant planets (e.g., Spiegel & Burrows, 2012). This means that for a given age
and mass, the two mechanisms predict different planet luminosities, which offers
the possibility to observationally distinguish between them.
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Figure 1.8: Post-formation specific entropy as a function of planet mass for giant
planets formed via gravitational instability (HS, red line) and core accretion
featuring different core masses (other lines). Depending on the core mass, a
range of intermediate values for the post-formation specific entropy between hot
and cold accretion is permitted, called the warm accretion regime. Adapted from
Mordasini (2013).

Formation via gravitational instability is usually referred to as hot accretion,
since the post-formation specific entropy is rather high and increases with increas-
ing planet mass. This is the case since with increasing planet mass, an increasing
amount of gravitational potential energy is converted to thermal energy during
formation and stored in the planet. Formation via core accretion, however, is
usually referred to as cold accretion and predicts a decrease in post-formation
specific entropy with increasing planet mass. This is the case since with increas-
ing planet mass, thermal energy is radiated away in stronger accretion shocks
(Marley et al., 2007). While the original core accretion models assumed effi-
cient accretion shocks, Marleau & Cumming (2014) have shown that more re-
alistic dissipative accretion shocks predict an intermediate regime between hot
and cold accretion, referred to as warm accretion. Figure 1.8 shows that in the
core accretion scenario, the post-formation specific entropy strongly depends on
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Figure 1.9: Evolutionary tracks for giant planets of different masses formed via
hot (red lines) and cold (blue lines) accretion. Cold accretion predicts fainter
objects for a given age and mass, but the difference to hot start objects decreases
quickly with age. Hence, young objects need to be considered to be able to
distinguish between different formation mechanisms. Adapted from Spiegel &
Burrows (2012).

the core mass, and while hot accretion predicts post-formation specific entropies
of ∼ 11–13.5 kB/baryon, cold and warm accretion predict values ranging from
8 kB/baryon for less massive cores to 11.5 kB/baryon for more massive cores.

Many of the early discoveries of direct imaging are young giant planets on
large orbital separations (' 40 au), such as HR 8799 b/c (Marois et al., 2008)
and Fomalhaut b (Kalas et al., 2008). Traditionally, these objects were asso-
ciated with hot accretion via gravitational instability, and evolutionary tracks
(see Figure 1.9) could be used to infer their mass based on their luminosity and
age. While the luminosity of a young giant planet is a good proxy for its post-
formation specific entropy if coupled with an age estimate, the existence of the
intermediate warm accretion regime makes it difficult to draw definitive conclu-
sions on the formation mechanism. Moreover, estimating the age of giant planets
is notoriously difficult itself and affected by large systematic uncertainties (e.g.,
Bowler, 2016). Especially for giant planets on smaller orbital separations, which
could not have formed via gravitational instability at their present position, warm
start core accretion represents a viable alternative to hot start gravitational in-
stability, which furthermore does not invoke inward migration. Recent direct
observations of the giant planets β Pic b and c combined with mass estimates
from radial velocity data suggest good agreement with warm start core accretion
models (Nowak et al., 2020), at least for β Pic c. At the youngest ages, the
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picture is further complicated by the likely presence of circumplanetary accretion
disks (e.g., Shabram & Boley, 2013). Even the disks around fainter core accretion
planets can become considerably bright during the runaway gas accretion phase
(Zhu, 2015; Wallace & Ireland, 2019), lowering the contrast between an accreting
giant planet and its host star to ∼ 10−3.

While direct imaging of a single giant planet can only put loose constraints
on its formation, a larger, statistically relevant sample of young giant planets
(e.g., Bowler et al., 2020) or other means to distinguish between the different
formation channels have to be consulted. For example, Öberg et al. (2011) have
shown that the C/O abundance ratio in the atmosphere of a giant planet depends
on its formation location relative to the water and carbon-monoxide icelines of
the protoplanetary disk. A stellar C/O abundance ratio points to rapid gas ac-
cretion beyond the CO iceline while a sub-stellar C/O abundance ratio suggests
formation via either gravitational instability or gas and planetesimal accretion,
followed by planetesimal enrichment interior to the CO iceline. The C/O abun-
dance ratio of stars is difficult to determine (e.g., Asplund, 2005), but the C/O
abundance ratio of the directly-imaged giant planet β Pic b could recently be
measured via medium-resolution K-band spectroscopy with GRAVITY (Gravity
Collaboration et al., 2020). The sub-solar C/O abundance ratio of β Pic b is
difficult to explain with hot start gravitational instability, since the mass of ac-
creted ices from the disk would be too small to lower the C/O abundance ratio
significantly. Therefore, warm start core accretion somewhere between the water
and carbon-dioxide icelines seems more likely. As mentioned before, the ability
of GRAVITY to observe exoplanets at unprecedented angular resolutions gives
direct access to giant planets predicted from radial velocity observations, such as
β Pic c (Lagrange et al., 2019; Nowak et al., 2020). Luminosity and age combined
with an independent mass measurement from radial velocity data provide a di-
rect constraint on the formation channel, at least at the youngest ages where the
evolutionary tracks for hot, warm, and cold accretion are significantly different.
As shown in Section 1.1.2, angular resolution is the key for studying giant planet
formation, and long-baseline optical interferometry with GRAVITY is leading
the field already.
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1.2 Fourier plane techniques

On a first glance, optical interferometers and single-dish telescopes appear very
different. From the image formation point of view, they are very similar, though,
which becomes clear when considering them in Fourier space. For a single-dish
telescope, the observed image I(~α), where ~α are the sky coordinates, can be
obtained by convolution of the object intensity distribution (OID) O(~α) with the
point-spread function (PSF) M(~α) of the telescope, that is

I(~α) = O(~α) ∗M(~α) (1.15)

(Ireland, 2016). For an unresolved star in the center of the field-of-view (FOV)
for example, the OID is O(~α) = δ(~0), and additional point sources can be added
with more delta functions. In the Fourier domain, convolution simplifies to mul-
tiplication and

Ĩ(~u) = Õ(~u)× M̃(~u), (1.16)

where the tilde denotes the Fourier transform and ~u are the spatial frequencies
(Ireland, 2016). Since the PSF is the square modulus of the Fourier transform of
the telescope pupil P (~u), that is

M(~α) = |P̃ (~u)|2, (1.17)

the image Fourier transform can also be written as

Ĩ(~u) = Õ(~u)× (P ∗ P )(~u) (1.18)

according to the Wiener–Khinchin theorem (Wiener, 1930). Hence, the optical
transfer function (OTF) T (~u) of a telescope is given by the autocorrelation of its
pupil P (~u) (see Figure 1.10). According to the van Cittert-Zernike theorem, the
Fourier transform of the OID Õ(~u) of a distant, incoherent source is equal to its
complex visibility, that is

Õ(~u) =

∫
I(~α)e−ik~u·~αd~α = V (~u), (1.19)

where k = 2π/λ, λ is the observing wavelength, and ~u is the distance of the two
points in the pupil plane between which the spatial coherence is measured (van
Cittert, 1934; Zernike, 1938). Therefore, V (~u) is also called the mutual spatial
coherence function. As explained in Section 1.2.1, an interferometer measures
this mutual spatial coherence function for the baselines between its individual
telescopes. Considering Equation 1.18, it becomes clear that both optical in-
terferometers and single-dish telescopes measure V (~u), spatially filtered by the
autocorrelation of their pupil.

Given that both optical interferometers and single-dish telescopes measure
the same quantity, the model fitting and image reconstruction process becomes



CHAPTER 1 20

Figure 1.10: Diagram visualizing the Wiener–Khinchin or autocorrelation the-
orem. The point-spread function (PSF) is the square modulus of the Fourier
transform (E) of the pupil (P), and can also be written as the Fourier transform
of the optical transfer function (OTF), which is itself the autocorrelation of the
pupil (P).

very similar in the Fourier plane. However, one major caveat of long-baseline
interferometry is the sparse spatial frequency sampling which limits the image
reconstruction capabilities significantly. For the model fitting purposes, the com-
plex visibility is usually normalized by the total flux (e.g., Berger, 2003). More-
over, the complex visibility, as a Fourier transform, is linear. Hence, a complex
object composed of a linear combination of simpler components can be described
by the linear combination of the components’ complex visibilities. If the com-
plex visibility V (~u) of the observed astronomical source can be parametrized, for
example

V (~u) =
1 + fe−2πi~α·~u/λ

1 + f
(1.20)

in the case of two point-sources with flux ratio 0 < f < 1 and separated on
the sky by ~α (such as an unresolved star orbited by an exoplanet), model fitting
can be performed to the complex visibility measured by an interferometer or
measured in the Fourier transform of an image of a single-dish telescope. If the
source geometry is more complex or not known a priori, image reconstruction can
be performed, for example with a maximum entropy method (Ireland, 2013).

In real observations, however, the measured complex visibility is affected by
errors from atmospheric turbulence and the telescope optics themselves. This
is where Fourier plane techniques can play on their real advantages over image
plane techniques. In the Fourier plane, robust and unbiased estimators of the
squared visibility amplitudes

|V |2 (1.21)

and the closure phases over telescope triplets

∠V1V2V3 (1.22)

can be formed, where ∠ denotes the phase of a complex number and the closure
phases are independent of pupil plane phase piston noise (e.g., Monnier, 2003).
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These estimators can then be calibrated using observations of a well-known point-
source, obtained close in time to the observations of the science target in order to
minimize quasi-static aberrations. As such, Fourier plane techniques have been
used for high-angular resolution astronomy, not only with long-baseline optical
interferometry, but also due to the superior PSF calibration capabilites of single-
dish speckle, aperture masking, and kernel phase interferometry.

1.2.1 Long-baseline interferometry

The classical (Rayleigh) diffraction-limit of a telescope is defined as the first
minimum (i.e., dark fringe) of its PSF, which is located at an angular separation
of

θmin ≈ 1.22
λ

D
(1.23)

for a circular aperture with diameter D (e.g., Monnier, 2003). With the same
definition, the diffraction-limit of a two-aperture interferometer is

θmin =
λ

2B
, (1.24)

where B is the distance between the two apertures (e.g., Monnier, 2003). In 1868,
Fizeau proposed that a simple two-slit interferometer could be used to measure
the size of astronomical objects (Fizeau, 1868). This idea was successfully demon-
strated in 1891, when Michelson measured the angular diameters of the Galilean
moons of Jupiter (Michelson, 1891). In 1921, Michelson and Pease went one step
further and measured the angular diameter of a distant star (α Ori, Michelson
& Pease, 1921). Only a decade later, Jansky (1933) discovered the first radio
signals coming from space and the field of radio astronomy was born. At radio
wavelengths (as opposed to at optical wavelengths), signals could be recorded
electronically which made the combination of signals from multiple telescopes
much easier. Moreover, at the longer wavelengths in the radio regime, single-dish
antennas were strongly limited in angular resolution, so that Ryle & Vonberg
(1948) constructed the first Michelson-type radio interferometer to observe dis-
crete radio sources in the galaxy (Ryle & Hewish, 1950). It was not until the
1960s and 70s, when the importance of optical interferometry for measuring stel-
lar diameters was strengthened, when a technique called intensity interferometry
(Hanbury Brown, 1956) was developed and successfully demonstrated with base-
lines of up to 188 m with the Narrabri Intensity Interferometer (Hanbury Brown
et al., 1967). Intensity interferometry is limited to small bandwidths, though, and
therefore of limited scientific use, which pushed the development of direct beam
combination techniques. The Narrabri Intensity Interferometer for instance had
a limiting magnitude of ∼ 2.5 mag and the achievable signal-to-noise was sig-
nificantly worse than that achieved by amplitude interferometry (Tuthill, 2014).
Nevertheless, modern high-energy astronomy is re-discovering the technique of in-
tensity interferoemtry for the Cherenkov Telescope Array (Dravins et al., 2013).
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The first direct beam combination was accomplished by Labeyrie (1975), and
only a few years later Shao & Staelin (1980) could demonstrate fringe tracking
on a prototype of the Mark III interferometer. These accomplishments paved the
way for modern phase-referencing interferometry, which aims to preserve both
the amplitude and the phase of the complex visibility in order to enable image
synthesis. Today, multiple optical interferometers are spread over the world, most
notably CHARA (ten Brummelaar et al., 2005), the Large Binocular Telescope
Interferometer (LBTI, Hinz et al., 2012), and the Very Large Telescope Interfer-
ometer (VLTI, Bedding et al., 1994). They still enable cutting-edge science at
high angular resolution, for example at the center of our galaxy (Gravity Collab-
oration et al., 2018) and in exoplanetary systems (Gravity Collaboration et al.,
2019). In the meantime, new interferometric observing techniques such as nulling
(Bracewell & MacPhie, 1979) and kernel-nulling (Martinache & Ireland, 2018) in-
terferometry have been developed. A nulling instrument is already in operation
at the LBTI (Defrère et al., 2015) and future instruments are being planned for
the VLTI (Defrère et al., 2018) and for the characterization of Earth-like exoplan-
ets from space (Lawson, 2001; Leger & Herbst, 2007; Quanz et al., 2021). Nulling
interferometry is useful for high-contrast imaging applications since it achieves
high attenuation of a central bright source at very small inner working angles
(Guyon et al., 2013). Finally, we note that nulling of a central bright source can
also be achieved by inserting a vortex phase mask into the beam of a single-dish
telescope and coupling the light into a single-mode fiber, which will then reject
photons coming from the bright on-axis source, but transmit photons coming
from a faint off-axis source (Ruane et al., 2019). This technique is promising for
the spectroscopic characterization of close-in exoplanets (0.5–2 λ/D) with the
ELTs.

In Section 1.2, it was shown that the complex visibility

V (~u) =

∫
I(~α)e−ik~u·~αd~α (1.25)

is the quantity which is measured by an interferometer. This can be seen when
considering a distant point-source observed by a two-telescope interferometer. For
simplicity, we use the semi-classical and scalar wave approximation (i.e., only a
single polarization) for quantum mechanics here. The plane waves incident on
the two telescopes can be described by

φ1 ∝ exp(ik~x1 · ~α) exp(−iωt), (1.26)
φ2 ∝ exp(ik~x2 · ~α) exp(−iωt), (1.27)

where ~x2 − ~x1 = ~u is the baseline of the interferometer and ω is the angular
frequency of the wave, which is in the THz range for optical and infrared light.
The resulting interference pattern is obtained by adding the two plane waves,
that is

φ = φ1 + φ2 ∝ (1 + exp(−ik~u · ~α)) exp(−iωt), (1.28)
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whose intensity
I = φφ̄ ∝ 2 (1 + cos(k~u · ~α)) (1.29)

is recorded by the interferometer, where the bar denotes complex conjugation.
For an arbitrary source, one obtains

I(~α) =

∫
I(~α′)d~α′ (1 + Re (V (~u) exp(−ik~u · ~α))) , (1.30)

so that

V (~u) =

∫
I(~α′)e−ik~u·~α

′
d~α′∫

I(~α′)d~α′
(1.31)

is the normalized complex visibility function spatially filtered through the two-
telescope interferometer.

Considering again the binary model (Equation 1.20), it can be shown that

VIS2bin ∝ 1 + f, (1.32)
T3bin ∝ f, (1.33)

for small relative companion fluxes f � 1, where VIS2bin and T3bin are the
squared visibility amplitudes and the closure phases of the binary model, re-
spectively (e.g., Kammerer et al., 2020). A faint companion is thus a small
perturbation in the squared visibility amplitudes and closure phases, and the
dynamic range of an interferometer is the smallest relative companion flux f
at which this perturbation can be detected. In order to distinguish a small
perturbation from noise and correctly determine its statistical significance, the
consideration of the observable covariances (i.e., the correlated errors) instead of
only the observable standard deviations (as it is done frequently in the commu-
nity) is necessary, as will be shown in Chapter 5. Long-baseline interferometry
with GRAVITY will then be used to characterize the reddest known sub-stellar
companion HD 206893 B in Chapter 6.

1.2.2 Aperture masking interferometry

One caveat of long-baseline optical interferometry is the sparse uv-plane (or
Fourier plane) coverage, which complicates the image reconstruction process. A
technique that achieves relatively dense Fourier plane coverage while still exploit-
ing the superior calibration capabilities of interferometric observables is aperture
masking interferometry. This technique was first applied in the late 1990s (Bald-
win et al., 1986; Baldwin & Warner, 1987), and eventually brought to the 10 m
Keck I telescope by Tuthill et al. (2000b). The basic idea of aperture masking
interferometry is to transform a single-dish telescope into a multi-aperture inter-
ferometer by placing a mask with several holes (subapertures) into the telescope’s
pupil plane (see upper panel of Figure 1.11). Each hole acts as an individual
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aperture, so that the mask creates interference fringes on the detector (see mid-
dle panel of Figure 1.11). The spatial Fourier transform of these interference
fringes yields the observed complex visibility V (~u), filtered by the spatial fre-
quencies permitted through the aperture mask. This can be seen in the power
spectrum of the observed image (see lower panel of Figure 1.11). As shown in
Section 1.2, the spatial frequencies permitted through the mask can be obtained
by computing the mask’s autocorrelation.

An important characteristic of an aperture mask is that it is non-redundant.
This means that each baseline connecting two subapertures appears only once, so
that each spatial frequency in the Fourier plane can be uniquely associated with
the complex visibility measured between two subapertures in the pupil plane.
Since the subapertures are finite in size, the sampling of the subapertures is
essentially limited by the desire to obtain a dense, but non-redundant Fourier
plane coverage. Non-redundancy is crucial because in the presence of atmospheric
turbulence, different realizations of the same baseline in the pupil plane will have
the same spatial frequency in the Fourier plane, but with different phase offsets,
hence blurring the measured complex visibility and preventing an unambiguous
phase measurement. If non-redundancy is given, though, then closure phases
between aperture triplets can be formed. As in long-baseline interferometry, these
closure phases are independent of pupil plane phase piston noise (e.g., Ireland,
2016).

Aperture masking interferometry is ideal to perform high-angular resolution
imaging of bright targets, using closure phases in order to recover asymmetries in
the source. Tuthill et al. (2000b) achieved a dynamic range better than 200:1 and
used aperture masking interferometry to image dust nebula, envelopes, and disks
around luminous stars (Tuthill et al., 2000a, 2001, 2002, 2006; Tuthill & Lloyd,
2007; Tuthill et al., 2008) using the Keck telescope. Similar to long-baseline inter-
ferometry, the technique could also be used to study stellar diameters (e.g., Ire-
land, 2002). Slightly later, Kraus & Ireland (2012) were able to detect point-like
features at angular separations of only ∼ 70–100 mas in the LkCa 15 transition
disk, which they interpreted as signs for on-going planet formation. While Sallum
et al. (2015) presented further aperture masking interferometry observations of
the LkCa 15 system and detected Hα emission from these features with the Mag-
ellan adaptive optics system, it also became clear that high-angular resolution
imaging is required to study planet formation in the nearest star-forming regions.
Located at distances more than ∼ 100 pc (de Zeeuw et al., 1999; Rizzuto et al.,
2011), the tip of the giant planet distribution is at angular separations less than
∼ 100 mas (Fernandes et al., 2019). Probing this parameter space among a large
sample of young stars is required in order to detect a statistically relevant sample
of young giant planets in the process of formation (Wallace & Ireland, 2019).
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Figure 1.11: Pupil plane representation of the aperture mask at the Keck I tele-
scope used by Tuthill et al. (2000b) and consisting of 21 individual subapertures
(top). Interference fringes (i.e., PSF) created by the aperture mask on the de-
tector (middle). Power spectrum of the PSF, showing the 210 unique spatial
frequencies permitted through the aperture mask or, in other words, the mask’s
autocorrelation (bottom).

1.2.3 Kernel phase interferometry

Ireland (2013) has shown that the dynamic range of aperture masking interferom-
etry is essentially limited by higher-order phase errors. Therefore, since aperture
masks block ∼ 80–90% of the light, they are only suitable for high-contrast imag-
ing around bright targets. A technique that enables studying fainter objects was
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developed by Martinache (2010), who realized that under very good observing
conditions (i.e., high Strehl), the phase information in the pupil plane is preserved
and could be measured in the image Fourier transform (i.e., the Fourier plane),
that is

φ = R−1 ·A · ϕ+ φOID +O(ϕ3), (1.34)

where the full telescope pupil is discretized onto a dense grid of subapertures
represented by the matrix A, whose baselines have redundancies represented by
the matrix R, ϕ is the pupil plane phase, and φOID is the phase intrinsic to the
observed source, that is the visibility phase of the object intensity distribution
(Martinache, 2010). Moreover, if the higher-order pupil plane phase terms O(ϕ3)
are small, then multiplication of Equation 1.34 with the kernel K of R−1 · A
yields the kernel phase

θ = K · φ = K ·R−1 ·A · ϕ︸ ︷︷ ︸
=0

+K · φOID = θOID (1.35)

(Martinache, 2010). Such conditions are usually satisfied either from space or
from the ground behind an (extreme) adaptive optics system. It has been noted
that kernel phase is a generalization of closure phase to arbitrary pupil geometries
(Ireland, 2016). While aperture masks are traditionally designed to be non-
redundant, full pupil kernel phase interferometry results in a highly redundant
Fourier plane. The technique is purely post-processing and can be applied to any
full pupil images, and achieves superior PSF calibration capabilities by projecting
the Fourier plane phase into a subspace (i.e., the kernel K of R−1 ·A) which is
free of pupil plane phase noise to second order (Ireland, 2013).

Martinache (2010) applied kernel phase interferometry to Hubble Space Tele-
scope (HST) data and demonstrated high-precision astrometry of a 10:1 contrast
binary star at a small angular separation (∼ 90 mas), below the classical diffrac-
tion limit of the HST. The stable PSF of a space-based facility such as the HST
is ideal for kernel phase observations calibrated by subtracting the kernel phase
of a point-source reference from that of the science target. Pope et al. (2013)
achieved the detection of five new brown dwarf companions, also in archival
HST/NICMOS data. The first attempt to use kernel phase on a ground-based
telescope was also made by Pope et al. (2016), who performed a benchmark ex-
periment on the Palomar 200-inch telescope in order to compare kernel phase
with aperture masking interferometry, PSF fitting, and bispectral analysis. They
found that kernel phase interferometry, if combined with an adaptive optics sys-
tem under good observing conditions, is a more efficient alternative to aperture
masking interferometry, and opens up a new parameter space to be explored in
high-resolution imaging of faint companions and circumstellar environments. To
make kernel phase interferometry competitive for the detection of young giant
planets from the ground, the technique will be refined with more sophisticated
calibration strategies in Chapter 2 and observations at high-contrasts will be
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demonstrated in Chapter 3. The first application of kernel phase interferometry
to mid-infrared data will be demonstrated in Chapter 4.
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Preamble

In Chapter 1, it was discussed that the kernel phase technique has predominantly been
used with space-based facilities before. In this chapter, it will be our goal to make this
technique competitive for the detection of young giant exoplanets with ground-based
facilities. Therefore, we will develop several improvements on the post-processing side
and demonstrate these on an archival VLT/NACO data set of 38 nearby field stars.
Firstly, looking at an archival data set is still interesting since we are going to explore
a parameter space close to and below the classical diffraction-limit which has not been
investigated before. Secondly, this large number of targets observed with a similar
instrument setup enables us to perform self-calibration among the sample. In the end
of this chapter, we will discuss our achieved detection limits in the context of directly
imaging planetary-mass companions.

Abstract

Directly imaging exoplanets is challenging because quasi-static phase aberrations in the
pupil plane (speckles) can mimic the signal of a companion at small angular separations.
Kernel phase, which is a generalization of closure phase (known from sparse aperture
masking), is independent of pupil plane phase noise to second order and allows for a
robust calibration of full pupil, extreme adaptive optics observations. We applied kernel
phase combined with a principal component based calibration process to a suitable but
not optimal, high cadence, pupil stabilized L’ band (3.8 µm) data set from the ESO
archive. We detect eight low-mass companions, five of which were previously unknown,
and two have angular separations of ∼ 0.8–1.2 λ/D (i.e. ∼ 80–110 mas), demonstrating
that kernel phase achieves a resolution below the classical diffraction limit of a tele-
scope. While we reach a 5σ contrast limit of ∼ 1/100 at such angular separations, we
demonstrate that an optimized observing strategy with more diversity of PSF references
(e.g. star-hopping sequences) would have led to a better calibration and even better
performance. As such, kernel phase is a promising technique for achieving the best pos-
sible resolution with future space-based telescopes (e.g. JWST), which are limited by
the mirror size rather than atmospheric turbulence, and with a dedicated calibration
process also for extreme adaptive optics facilities from the ground.
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2.1 Introduction

Direct imaging is vital for studying the outer regions of extrasolar systems which
are inaccessible to transit observations and can only be revealed by decades-
long, time consuming radial velocity surveys (e.g. Fischer et al., 2014). It has
proven particularly successful in probing our understanding of the formation of
gas giant planets (e.g. D’Angelo et al., 2010), being able to estimate their mass
from their luminosity and age (e.g. Spiegel & Burrows, 2012) and resolve their
orbit. Although the majority of detected companion candidates are arguably
consistent with being emission or scattering from disk material (e.g. LkCa 15,
Kraus & Ireland 2012, HD 100546, Quanz et al. 2013, HD 169142, Biller et al.
2014), the recent example of PDS 70 (Keppler et al., 2018) demonstrates that
direct imaging of wide-separation but still solar-system scale planets is possible
at relatively moderate contrasts in the vicinity of young stars. This is spurring
an ongoing discussion about the nature of planet formation and the commonness
of gas giant planets with large orbital distances (e.g. Bowler & Nielsen, 2018).

However, direct imaging operates at the resolution and sensitivity limit of
the most powerful instruments today (e.g. Pepe et al., 2014), placing demanding
requirements on the observing and the post-processing techniques which are used
to uncover faint companions at high contrasts (e.g. angular differential imaging,
Marois et al. 2006, point spread function subtraction, Lafrenière et al. 2007b,
principal component analysis, Amara & Quanz 2012, Soummer et al. 2012). De-
tecting exoplanets from the ground using these techniques has only been made
possible by the recent development of extreme adaptive optics systems (e.g. Milli
et al., 2016) and is mainly limited by non-common path aberrations which are
not sensed by the wavefront control system (e.g. Sauvage et al., 2007). These
aberrations manifest themselves as quasi-static speckles on the detector images
which can mimic the signal of a companion and place a strong constraint on
the achievable contrast at small angular separations (e.g. Fitzgerald & Graham,
2006). Hence, directly imaging and studying the formation of gas giant plan-
ets on solar-system scales has been extremely challenging so far (e.g. Bowler,
2016) because the nearest star forming regions lie & 100 pc away (e.g. Loinard
et al., 2007) where such orbital distances correspond to angular separations of
only . 200 mas.

In this paper, we explore the capabilities of the kernel phase technique (Mar-
tinache, 2010) for high-contrast imaging at the diffraction limit from the ground.
This post-processing technique can be seen as refinement of sparse aperture mask-
ing and the closure phase technique (Tuthill et al., 2000b). By probing only cer-
tain linear combinations of the phase of the Fourier transformed detector images,
kernel phase and sparse aperture masking allow for a robust calibration of the
time-varying optical transfer function of the system and a significant mitigation
of quasi-static speckles and achieve an angular resolution of . 50 mas in the
near-infrared (i.e. the L’ band, Cheetham et al., 2016). This gives access to
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objects on solar-system scales in the nearest star forming regions (i.e. projected
separations of ∼ 40 mas for a Jupiter analog in the Scorpius Centaurus OB asso-
ciation, Preibisch & Mamajek 2008) and has proven successful in directly imaging
young exoplanets/disk features (e.g. Kraus & Ireland, 2012). The caveat of sparse
aperture masking is that the mask blocks & 85 % of the light (for VLT/NACO,
Tuthill et al., 2010) and therefore significantly decreases the sensitivity and hence
the contrast limit of the observations for relatively faint targets. However, kernel
phase uses the light collected by the entire pupil and should perform better in the
high Strehl regime and the bright limit (e.g. Pope et al., 2016; Sallum & Skemer,
2019).

For sparse aperture masking, a mask is placed at the Lyot stop of an instru-
ment in order to split the primary mirror into a discrete interferometric array
of real sub-apertures (e.g. Readhead et al., 1988). In the Fourier transform of
the detector image (hereafter referred to as Fourier plane), these sub-apertures
map onto their auto-correlation (i.e. their spatial frequencies, Ireland 2016). The
phase φ of each spatial frequency can be extracted and linearly combined in a way
such that the resulting closure phase θ = K · φ is independent of the pupil plane
(or instrumental) phase ϕ to second order (i.e. terms of first and second order
in ϕ are vanishing), where the matrix K encodes this special linear combination
(e.g. Ireland, 2016). For observations from the ground, the pupil plane phase ϕ
is affected by noise from atmospheric seeing and non-common path aberrations
which ultimately cause quasi-static speckles. Being more robust with respect
to these systematic effects, sparse aperture masking achieves a superior angular
resolution.

For full pupil kernel phase imaging, there is no mask and the entire primary
mirror is discretized into an interferometric array of virtual sub-apertures. Ac-
cording to Martinache (2010), it is then convenient to define a transfer matrix A
which maps the baselines between each pair of virtual sub-apertures onto their
corresponding spatial frequency. In the high Strehl regime, where the pupil plane
phase ϕ can be linearized, we obtain the relationship

φ = R−1 ·A · ϕ+ φobj +O(ϕ3), (2.1)

where R is a diagonal matrix encoding the redundancy of the spatial frequencies
(i.e. the baselines of the interferometric array) and φobj is the phase intrinsic to
the observed object. Multiplication with the left kernel K of R−1 ·A yields

θ = K · φ (2.2)

= K ·R−1 ·A︸ ︷︷ ︸
=0

·ϕ+K · φobj +O(ϕ3) (2.3)

= θobj +O(ϕ3)︸ ︷︷ ︸
≈0

, (2.4)

hence the kernel θ of the measured Fourier plane phase φ directly represents the
kernel θobj of the phase intrinsic to the observed object φobj, at least in the high
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Strehl regime (where O(ϕ3) is negligible). This is why frame selection based on
the Strehl ratio is essential. Note that the kernel phase is a generalization of the
closure phase to the case of redundant apertures.

For observations from space, which do not suffer from atmospheric seeing,
kernel phase has proven to be successful in resolving close companions at the
diffraction limit (Martinache, 2010; Pope et al., 2013). It is our goal to determine
if, under good observing conditions, kernel phase also is a competitive alternative
to sparse aperture masking from the ground.

2.2 Methods

2.2.1 Data reduction

A basic direct imaging data reduction (such as dark, flat, background subtraction
and bad pixel correction) is also essential for the kernel phase technique (e.g.
Sallum & Eisner, 2017). For this purpose, we developed our own data reduction
pipeline1 which can be fed the raw data with their associated raw calibrators from
the VLT/NACO archive2. Our data reduction pipeline performs the following
steps which are described in more detail in the following sections:

1. Linearize the raw frames.

2. Compute master darks and their bad pixel maps.

3. Compute master flats and their bad pixel maps.

4. Flag saturated pixels.

5. Apply dark, flat, background and bad pixel corrections.

6. Perform a dither subtraction.

7. Reconstruct saturated pixels.

8. Select frames with sufficient Strehl ratio.

In principle, the standard NACO pipeline3 would be adequate for the dark, flat,
and sky subtraction steps, but additional steps like detector linearization and
bad pixel correction in the Fourier plane are not performed. However, these
additional steps are crucial to avoid corruption of the image Fourier phase and
therefore critical to our data analysis methods.

1https://github.com/kammerje/PyConica
2http://archive.eso.org/wdb/wdb/eso/naco/form
3https://www.eso.org/sci/facilities/paranal/decommissioned/naco/doc/

VLT-MAN-ESO-14200-4038_v0.pdf

https://github.com/kammerje/PyConica
http://archive.eso.org/wdb/wdb/eso/naco/form
https://www.eso.org/sci/facilities/paranal/decommissioned/naco/doc/VLT-MAN-ESO-14200-4038_v0.pdf
https://www.eso.org/sci/facilities/paranal/decommissioned/naco/doc/VLT-MAN-ESO-14200-4038_v0.pdf
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Figure 2.1: Left panel: median pixel count in dependence of the integration
time t for uncorrelated high well depth mode from the detector monitoring (blue
curve) and the linear (orange curve) and cubic (green curve) polynomials f(t)
and g(t) which we fit to it. Right panel: correction curve (blue) f(g) and the
cubic polynomial h (orange curve) which we fit to it and use for linearizing all
pixels with measured counts between 8500 and 16000. In both panels, the solid
red lines mark the end of the linear regime and the saturation threshold. Note
that very low (i.e. negative) pixel counts occur due to the use of a narrow-band
filter (∆λ = 0.018 µm) for the detector monitoring, whereas the L’ science frames
are taken with a wide-band filter (∆λ = 0.62 µm).

Detector linearization correction

Like most photon counting devices, NACO’s infrared detector CONICA suffers
from a non-linear response when the pixel counts approach the saturation thresh-
old (16400 counts for uncorrelated high well depth mode4 according to the NACO
Quality Control and Data Processing5, with a more conservative 16000 counts
used in our analysis). As kernel phase is an interferometric technique for which
the fringes are coded spatially on the detector, it is very important to characterize
the pixel to pixel response. Moreover, many of the data cubes which we analyze
in Section 2.3 feature saturated point spread functions (PSFs) which we want to
correct for non-linearity before reconstructing their core (cf. Section 2.2.1).

In order to compute the detector linearization correction we download all
frames of type “FLAT, LAMP, DETCHECK” and uncorrelated high well depth
mode from 2016 March 23 and 2016 September 24 (which are closest in time to
the observation of the earliest and the latest data cube which we analyze) from
the VLT/NACO archive. We sort them by integration time and compute the
median pixel count over all frames for each individual integration time (masking
out the broken stripes in the lower left quadrant of CONICA). Then, we plot the

4This is the standard imaging mode in the L’ band (3.8 µm) and all data cubes which we
analyze have been taken in this mode.

5https://www.eso.org/observing/dfo/quality/NACO/qc/detmon_qc1.html

https://www.eso.org/observing/dfo/quality/NACO/qc/detmon_qc1.html
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median pixel count in dependence of the integration time t, fit a linear polyno-
mial f(t) to all data points with less than 8500 counts (end of the linear regime
for uncorrelated high well depth mode) and a cubic polynomial g(t) to all data
points with less than 16000 counts (saturation threshold, cf. left panel of Fig-
ure 2.1). We linearize the detector using a continuously differentiable piecewise
polynomial approach h to the correction curve f(g) with a linear function up to
8500 counts and a cubic polynomial between 8500 and 16000 counts (cf. right
panel of Figure 2.1).

Master darks and master flats

For each observation block (OB) we compute master darks from the associated
dark frames as the median of all dark frames with a unique set of size and exposure
time. Then we compute a bad pixel map for each master dark based on the frame
by frame median and variance of each pixel’s count. Therefore, we first compute
two frames:

1. The absolute difference between the master dark and the median filtered
master dark.

2. The absolute of the median subtracted variance dark.

Then, we identify bad pixels in each of these frames based on their difference
to the median of these frames. For frame (i) we classify pixels which are above
10 times the median as bad, for frame (ii) pixels which are above 75 times the
median. Note that these thresholds were identified empirically. From the median
subtracted dark frames, we estimate the readout noise as the mean over each
frame’s pixel count standard deviation.

We proceed similar for the flat frames, but also group them by filter as well
as size and exposure time, subtract a master dark with matching properties (i.e.
similar size and exposure time) from each master flat and normalize it by its
median pixel count. For the flat frames, thresholds of 7.5 times the median for
frame (i) and 10 times the median for frame (ii) were applied.

Saturated pixels

The data cubes which we analyze in Section 2.3 consist of 100 frames of 0.2 s
exposure. For each data cube, we reject the first frame (which we find to con-
sistently suffer from a bias), so that there are 99 frames left. Note that NACO
appends the median of all 100 frames at the end of each data cube which is also
rejected here. Before proceeding, we also flag the saturated pixels in each frame
which are all pixels with more than h(16000) counts.



CHAPTER 2 35

1 20 39 58 77 96
size [pixel]

1

20

39

58

77

96
si

ze
 [p

ix
el

]

1 20 39 58 77 96
size [pixel]

1

20

39

58

77

96

si
ze

 [p
ix

el
]

Figure 2.2: Left panel: median frame of a data cube of HIP 47425 after dark, flat
and a simple background subtraction. The pixel counts are scaled by an arcsinh
stretch so that both the PSF and the background are visible in the image. Right
panel: same median frame after performing the dither subtraction described in
Section 2.2.1. This second step is essential to remove residual systematic noise
from the detector which can be seen as grid-like structure in the left panel. Note
that the two panels have the same color scale.

Dark, flat, background and bad pixel correction

We clean each frame of a data cube individually by subtracting a master dark
with matching properties (i.e. similar size and exposure time), dividing it by a
master flat with matching properties (i.e. similar size, exposure time and filter),
correcting bad pixels (which are bad pixels from the master dark or the master
flat) with a median filter of size five pixels and performing a simple background
subtraction by subtracting the median pixel count of the frame from each pixel.
The average fraction of bad pixels is 0.28%. A typical result is shown in the left
panel of Figure 2.2, where residual systematic noise (mainly from the detector)
is still clearly visible.

Dither subtraction

In order to mitigate the residual systematic noise from the detector and the sky
background we perform a dither subtraction. After cleaning all data cubes within
one OB, we find for each data cube (which we will here call data cube A) the data
cube B with the target furthest away (on the detector) and subtract its median
frame from each frame of data cube A. The new bad and saturated pixel maps
are then the logical sums of those from both involved data cubes. After this step
the residual noise appears like Gaussian random noise as is shown in the right
panel of Figure 2.2.
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Figure 2.3: Left panel: mean over a horizontal and a vertical cross-section through
the center of the median frame shown in the right panel of Figure 2.2. Right panel:
same cross-section, but after reconstructing bad and saturated pixels as described
in Section 2.2.1. The dashed black line marks the maximum of the cross-section
in the left panel in order to illustrate the reconstruction of the peak in the PSF
core.

Our typical performance is a pixel count standard deviation of ∼ 36 = 4.4 +
(158/s · 0.2 s) outside of 10 λ/D from the center of the PSF in 0.2 s exposure,
where 4.4 is the detector readout noise, λ is the observing wavelength (3.8 µm for
the L’ band) and D is the diameter of the primary mirror (8.2 m for the VLT).

Reconstruction of saturated pixels

Our reconstruction of saturated pixels is based on an algorithm described in
Section 2.5 of Ireland (2013). This technique also identifies and corrects residual
bad pixels, with no more than 10 additional bad pixels corrected in a typical
frame. First, we crop all frames to a size of 96 by 96 pixels (∼ 2.6 arcsec2)
centered on the target. Then, we correct bad and saturated pixels for each
frame separately by minimizing the Fourier plane power |fZ | outside the region
of support Z permitted by the pupil geometry. LetBZ be the matrix which maps
the bad and saturated pixel values x onto the Fourier plane domain Z, then

fZ = BZ · b+ εZ , (2.5)

where b are the corrections to the bad and saturated pixel values x (i.e. the
corrected pixel values are x − b) and εZ is remaining Fourier plane noise. We
solve for b using the Moore-Penrose pseudo-inverse of BZ , i.e.

b = B+
Z · fZ = (B∗Z ·BZ)−1 ·B∗Z · fZ . (2.6)

Since a broad-band filter was used for the observations, but we use a monochro-
matic central filter wavelength in our analysis and also blur the edge of the pupil
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Figure 2.4: Left panels: Fourier plane phase of the median frame shown in the
right panel of Figure 2.2 (top). The phase is flat in the center, but the cutoff
spatial frequency is smaller than the region of support permitted by the pupil
geometry (magenta circle). Median Fourier plane phase at the spatial frequencies
of our pupil model (bottom). Right panels: same as in the left panels, but after
reconstructing bad and saturated pixels as described in Section 2.2.1. In both
upper panels, the magenta line traces out the spatial frequencies of our pupil
model (from left to right) in order to illustrate how the patterns observed in the
lower panels are obtained.
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through the use of a windowing function, we use a sightly larger pupil diame-
ter to define this region Z of 10 m here. In fact, the only important thing for
recovering the Fourier plane phase is that the Fourier plane power outside the
region of support permitted by the pupil geometry is minimized, so using a larger
pupil diameter just assures this in case of low quality data and is a conservative
choice, especially in the case of our data which is far from the Nyquist sampling
criterion.

Sometimes, the remaining Fourier plane noise εZ can be significant, which is
why we repeat the entire correction process up to 15 times for each frame. After
each iteration, we look for remaining bad pixels by:

1. Computing the Fourier transform of the corrected frame from the previous
iteration.

2. Windowing this frame by the Fourier domain Z.

3. Computing the inverse Fourier transform of this frame.

4. Identifying remaining bad pixels in this frame based on their difference to
the median filtered frame.

If no remaining bad pixels are identified, we terminate the iteration.

A cross-section of a saturated PSF before and after performing the recon-
struction is shown in Figure 2.3. Obviously, this reconstruction cannot reveal
any structure or companions hidden behind saturated pixels, but it allows us to
perform our kernel phase analysis on saturated data cubes which would otherwise
suffer from high Fourier plane phase noise (cf. Figure 2.4). Please note that a
method from the class of least squares spectral analysis techniques (i.e. image
plane fringe fitting) may be more robust in dealing with bad pixels, but would
require the simultaneous fitting of all Fourier plane phases and amplitudes and
is therefore beyond the scope of this paper, although it is a promising approach
for future work.

Frame selection

As explained in the Introduction, a high Strehl ratio is essential for the kernel
phase technique in order for the mathematical framework (i.e. the linearization
of the Fourier plane phase, cf. Equation 2.1) to be valid. Therefore, we select
frames with sufficient Strehl ratio based on their peak pixel count. For each data
cube, we first compute the median peak count of the 10% best frames. Then, we
reject all frames with a peak count below 75% of this value. Using this dynamic
threshold is better than simply rejecting a fixed fraction of the frames (e.g. Law
et al., 2006) because it can correctly account for a sudden drop in the Strehl
ratio like shown in Figure 2.5. Note that we consider the peak pixel count after
performing the PSF reconstruction (cf Section 2.2.1) here.
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Figure 2.5: Peak count for all 99 frames of a data cube of HIP 116258. The hori-
zontal red line marks the rejection threshold computed according to Section 2.2.1.
Around frame 70 the observing conditions suddenly become worse and a clear
drop in the peak count can be observed.

2.2.2 Kernel phase extraction

VLT pupil model

In order to extract the kernel phase from VLT/NACO data we first need to
construct a model for the VLT pupil (i.e. split the primary mirror into an inter-
ferometric array of virtual sub-apertures). We sample 140 virtual sub-apertures
on a square grid with a pupil plane spacing of 0.6 m, which is approximately
half the Nyquist sampling of λ/α ≈ 0.3 m, where λ = 3.8 µm is the observing
wavelength and α = 2.610 arcsec is the image size (96 pixels). Our VLT pupil
model is shown in the left panel of Figure 2.6 and based on an 8.2 m primary
mirror with a 1.2 m central obscuration. Another advantage of kernel phase over
sparse aperture masking is the dense Fourier plane coverage which is shown in
the right panel of Figure 2.6.

XARA

The extraction of the Fourier plane phase and the computation of the kernel
phase relies on a python package called XARA6 (eXtreme Angular Resolution
Astronomy, Martinache, 2010, 2013). XARA has been designed to process data
produced by multiple instruments assuming that the images comply to the ker-
nel phase analysis requirements of proper sampling, high-Strehl (boosted by our
frame selection procedure described in Section 2.2.1), and non-saturation (re-
stored by the procedure described in Section 2.2.1). The discrete achromatic
representation of the VLT aperture (i.e. our pupil model) is used by XARA to

6https://github.com/fmartinache/xara

https://github.com/fmartinache/xara
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Figure 2.6: Left panel: our VLT pupil model consisting of 140 virtual sub-
apertures sampled on a square grid with a pupil plane spacing of 0.6 m. The
cyan circles show the size of the primary mirror and the central obscuration.
Right panel: Fourier plane coverage of the same pupil model. The magenta circle
shows the region of support permitted by the pupil geometry in the left panel.
Since the Fourier transform is symmetric we only use the phase measured in one
half-plane. Note that only these Fourier plane positions within 7.0 m from the
origin (i.e. these which do not suffer from low power, cf. Section 2.2.2) are shown.

compute the phase transfer matrix A and the associated left kernel operator K
via a singular value decomposition of A.

With the added knowledge of the detector pixel scale and the observing wave-
length, the discrete model is scaled so that the Fourier plane phase at the expected
(u, v) coordinates can be extracted by a discrete Fourier transform. For the small
aberration hypothesis to remain valid, the data must be properly centered prior
to the Fourier transform. Failure to do so will leave a residual Fourier plane
phase ramp that can wrap and lead to meaningless kernel phases (cf. left panels
of Figure 2.7). XARA offers several centering algorithms. It is crucial to care-
fully choose from the available options depending on the requirements coming
from the data. For our extensive ground-based data set for example, we find that
minimizing directly the Fourier plane phase which is extracted by XARA using
a least squares optimization routine is most robust and the offered sub-pixel re-
centering is very valuable (cf. right panels of Figure 2.7) due to an increased level
of pupil plane phase noise from the atmosphere and the bright background (if
compared to space-borne data). We have therefore used this centering algorithm
for the entire NACO data presented in this work.

Moreover, virtual baselines near the outer edge of the Fourier coverage suffer
from low power as they are only supported by very few baselines, i.e. have small
redundancy. The phase measured for these baselines is systematically noisier and
needs to be excluded from the model to prevent the noise to propagate into the
estimation of all kernel phases. This can be achieved using the baseline filtering
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Figure 2.7: Left panels: Fourier plane phase of the median frame of a data cube
of TYC 6849 1795 1 (resolved and bright binary) after imperfect re-centering of
the frames (top). The phase is flat in the center, but there is an overall phase
ramp from bottom to top caused by the resolved and bright companion. Median
Fourier plane phase at the spatial frequencies of our pupil model (bottom). Right
panels: same as in the left panels, but after proper re-centering of the frames.
The residual Fourier plane phase is of considerably reduced amplitude and can
be properly assembled to form meaningful kernel phases. The magenta circles
and lines represent the same as in Figure 2.4.
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Figure 2.8: Measured mean kernel phase θ̄ over all data cubes of HIP 47425
(typical calibrator) and TYC 6849 1795 1 (resolved and bright binary) as well as
of its best fit binary model θbin = K · φbin (cf. Section 2.2.4). Data and model
agree very well, so that the green curve overlaps with the orange curve. Note
that we normalize each kernel phase by the norm of its corresponding row of
K and that the raw binary parameters reported here are not corrected for the
windowing. The lower panel shows the residuals between the TYC 6849 1795 1
data and the best fit binary model.

option implemented in XARA. In our case, baselines of length greater than 7.0 m
and the corresponding rows of A are eliminated prior to the computation of K.
Some of the theoretically available kernel phases are lost but the remaining kernel
phases can nevertheless be used just like for the complete model.

Finally, to limit the impact of readout noise in regions of the image where little
signal is present, frames are windowed by a super-Gaussian (g(r) = exp−(r/r0)4)
with a radius r0 = 25 pixels, effectively limiting our field of view to ∼ 1000 mas.
Note that Section 2.3.4 will further comment on the effect of this window and
how it can affect contrast estimates for detections at large separations.

Kernel phase uncertainties

For estimating the uncertainties, we compute the kernel phase covariance Σθ for
each frame d from its photon count variance Σd = g · w2 · (d + b) in units of



CHAPTER 2 43

(photo-electrons)2, where g is the detector gain (g = 9.8 for uncorrelated high
well depth mode), w is the super-Gaussian window, d is the cleaned and re-
centered frame and b is its background (from the simple background subtraction,
cf. Section 2.2.1). Therefore, we first need to find a linear operatorB which maps
each frame g ·w · d in units of photo-electrons to its kernel phase θ. The linear
discrete Fourier transform F and the kernel K of the pupil model R−1 ·A are
already linear operators, and the Fourier plane phase φ(z) (of a complex number
z) can be approximated as Im(z)/|z| for small angles. Hence, we compute

B = K · Im(F )

|F · g ·w · d|
. (2.7)

Note that B · g ·w ·d would be a small-angle approximation for the kernel phase.
This approximation remains valid as long as arctan(φ) ≈ φ, which holds for
φ < 0.5 rad which is the case for all of our data, including the resolved and
bright binary shown in Figure 2.7. Then, we obtain an estimate for the kernel
phase covariance by propagating the photon count variance according to

Σθ = B ·Σd ·BT . (2.8)

Now, we have a kernel phase θ and a kernel phase covariance Σθ for each
frame. In order to save computation time for the model fitting (cf. Section 2.2.4)
we compute a weighted mean θ̄ of the kernel phase for each data cube. Therefore,
we first compute the average kernel phase covariance Σ̄θ over all frames di of a
data cube via

Σ̄θ =

(∑
i

Σ−1
θ,i

)−1

, (2.9)

and then the weighted mean θ̄ of the kernel phase (cf. Figure 2.8) via

θ̄ = Σ̄θ ·
∑
i

Σ−1
θ,i · θi. (2.10)

For the rest of this paper, we omit the bar for better readability, i.e.

θ̄ → θ, (2.11)
Σ̄θ → Σθ. (2.12)

Note that this kernel phase covariance model includes the contribution of shot
noise only. Any residual calibration errors not taken into account in the following
section are therefore expected to increase the reduced χ2 of any model fitting,
potentially to much more than 1.0 in the case of high signal-to-noise data with
highly imperfect calibration.
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2.2.3 Kernel phase calibration

Under perfect conditions the closure phase of a point-symmetric source, such
as an unresolved star, is zero (e.g. Monnier, 2007). The same holds for the
kernel phase, which is a generalization of the closure phase (e.g. Ireland, 2016).
Practically however, one is limited by systematic errors caused by third order
phase residuals (e.g. Ireland, 2013) and even point-symmetric sources have non-
zero kernel phase.

For this reason, calibration is of fundamental importance when analyzing
interferometric measurables (like closure or kernel phase). The systematic errors
are expected to be quasi-static (e.g. Ireland, 2013), i.e. slowly varying with time,
and caused by mechanical or thermal drifts of the instrument on timescales of
minutes to hours (e.g. Martinez et al., 2013). Hence, the kernel phase of a well-
known point source measured close in time to that of the science target can serve
as a calibrator. The simplest calibration technique would be to subtract the
kernel phase of a well-known point source from that of the science target. This
technique was for example used successfully in Martinache (2010), but here we
want to go beyond this approach.

We use principal component analysis in the framework of a Karhunen-Loève
decomposition (Soummer et al., 2012; Pueyo, 2016) in order to subtract the
statistically most significant phase residuals of the calibrator kernel phase from
that of the science target. Note that the following technique is new, but very
similar to the POISE observables in Ireland (2013). We start by computing the
covariance matrix ERR of the kernel phase θcal,i of all calibrator data cubes i via

ERR,(i,j) = θTcal,i · θcal,j . (2.13)

Then, we compute an eigendecomposition of this matrix in order to obtain its
sorted (in descending order) eigenvalues wk and eigenvectors vk. Finally, we
compute the Karhunen-Loève transform Z of shape (number of kernel phases,
number of calibrator data cubes) via

Z(n,k) =
1
√
wk

∑
p

vpk · θ
n
cal,p, (2.14)

where vpk is the p-th component of the k-th eigenvector of ERR and θncal,p is the
n-th kernel phase of the p-th calibrator data cube.

From the Karhunen-Loève transform Z we obtain a projection matrix P via

P = I −Z ′ ·Z ′T , (2.15)

where I is the identity matrix and Z ′ is obtained from the first Kklip columns
of Z. Kklip is an integer representing the order of the correction, i.e. how many
eigencomponents of the calibrator kernel phase should be corrected for. The pro-
jection matrix P is of shape (number of kernel phases, number of kernel phases),
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but it has Kklip zero eigenvalues by construction. In order to properly represent
the dimensions we compute another eigendecomposition of P and obtain a new
projection matrix P ′, whose columns are those eigenvectors of P which corre-
spond to non-zero eigenvalues. The projection matrix P ′ is of shape (number of
“good” kernel phases, number of kernel phases), where “good” means statistically
independent of systematic errors, and can be used to project the measured kernel
phase θ and its covariance Σθ into a sub-space of dimension (number of “good”
kernel phases), which is more robust with respect to quasi-static errors, via

θ′ = P ′ · θ, (2.16)

Σ′θ = P ′ ·Σθ · P ′T . (2.17)

For the rest of this paper, we omit the prime for better readability, i.e.

θ′ → θ, (2.18)
Σ′θ → Σθ. (2.19)

2.2.4 Model fitting

From Equations 2.2–2.4 it becomes clear that the measured kernel phase θ directly
represents the kernel phase intrinsic to the observed object θobj. Hence, we can
infer information about the spatial structure of the observed object by fitting
models for θobj = K · φobj to θ.

Binary model

In order to search for companion candidates we use the binary model

rbin · eiφbin = 1 + c · exp

(
−2πi ·

(
∆RA · u

λ
+

∆DEC · v
λ

))
, (2.20)

where c is the contrast ratio between secondary and primary, u and v are the
coordinates of the sampled Fourier plane positions (i.e. the spatial frequencies of
the pupil model), λ is the observing wavelength and

∆RA = −ρ · sin(ϑ− ϑ0), (2.21)
∆DEC = ρ · cos(ϑ− ϑ0), (2.22)

where ρ is the angular separation between primary and secondary, ϑ is the po-
sition angle of the secondary with respect to the primary and ϑ0 is the detector
position angle during the observation. Figure 2.8 shows the best fit binary model
for the measured kernel phase of TYC 6849 1795 1 (resolved and bright binary).
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Uncertainties from photon noise

Using the kernel phase covariance Σθ estimated from photon noise according to
Section 2.2.2 we compute the best fit contrast cfit and its uncertainty σcfit for
the binary model θbin = K · φbin on each position of a discrete 500 × 500 mas
square grid with spacing 13.595 mas (which is half the detector pixel scale of
CONICA). In some cases, where we suspect a companion candidate at a larger
angular separation, we also extend the grid to 1000× 1000 mas.

In the high-contrast regime (where c � 1), the phase φbin is approximately
proportional to the contrast c of the binary model, so is its kernel phase θbin
(because K is a linear operator). Hence, the χ2 of the binary model χ2

bin can be
approximated as

χ2
bin = (Θ− c ·Θbin,ref)

T ·Σ−1
Θ · (Θ− c ·Θbin,ref), (2.23)

where Θ and Θbin,ref are vertical stacks of the kernel phase θi and the reference
binary model θbin,ref,i of each data cube i and Σ−1

Θ is a block-diagonal matrix
whose diagonal elements are the inverse kernel phase covariances Σ−1

θ,i of each
data cube i, i.e.

Θ =

θ1

θ2

...

 , Σ−1
Θ =

Σ−1
θ,1 0 · · ·
0 Σ−1

θ,2 · · ·
...

...
. . .

 . (2.24)

The reference binary model θbin,ref is the binary model θbin evaluated for and
normalized by a reference contrast cref = 0.001, i.e.

θbin,ref =
θbin(c = cref)

cref
. (2.25)

Finally, we obtain the log-likelihood lnL for the binary model θbin as

lnL = −1

2
χ2
bin. (2.26)

The best fit contrast cfit for the binary model θbin is then obtained by maxi-
mizing lnL for each grid position, i.e.

∂

∂c
lnL

∣∣∣∣
cfit

= 0, (2.27)

⇒ cfit =
ΘT

bin,ref ·Σ
−1
Θ ·Θ

ΘT
bin,ref ·Σ

−1
Θ ·Θbin,ref

, (2.28)

and its uncertainty is the square root of its variance, i.e.

σcfit =
1√

ΘT
bin,ref ·Σ

−1
Θ ·Θbin,ref

. (2.29)
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Finally, the detection significance based on photon noise SNRph is computed for
each grid position as

SNRph =
cfit
σph

=
cfit

σcfit ·
√
χ2
r,bin,min

, (2.30)

where we scale the uncertainty of the best fit contrast σcfit by the square root
of the minimal reduced χ2 of the binary model of the entire grid (χ2

r,bin,min).
Assuming that kernel phase is proportional to contrast, this is equivalent to
scaling the kernel phase covariance Σθ so that the minimal reduced χ2 is 1.0.
This step is necessary because kernel phase is still affected by third (or higher)
order pupil plane phase noise (cf. Equations 2.2–2.4), so that the uncertainties
from photon noise σcfit significantly underestimate the true errors. Note that
there can be various sources of higher order phase noise such as temporal phase
errors from uncorrected atmospheric turbulence, flat-field calibration errors, and
photon, background, and readout noise (e.g. Ireland, 2013), but studying those
in detail is beyond the scope of this paper.

The final parameters pfit for the best fit binary model are then obtained from a
least squares search which maximizes the log-likelihood lnL of the binary model
under varying angular separation, position angle and contrast simultaneously.
For the least squares search, we use the grid position with the maximal log-
likelihood as prior and restrict the search box for the angular separation ρ to
50 mas ≤ ρ ≤ 1000 mas.

The uncertainties of the best fit parameters σpfit follow from the likelihood
function L for Gaussian errors (which are applicable to high confidence detec-
tions)

lnL(p|x) = −1

2
χ2
bin (2.31)

= −1

2
(Θ−Θbin(p))T ·Σ−1

Θ · (Θ−Θbin(p)), (2.32)

where p represents the three-dimensional parameter space of angular separation,
position angle and contrast. Differentiating twice and neglecting terms containing
second order derivatives of a single parameter yields

H(i,j) =
∂2

∂pi∂pj
lnL(p|x) (2.33)

≈ ∂Θbin(p)

∂pi
·Σ−1

Θ ·
∂Θbin(p)

∂pj
(2.34)

= −(J ·Σ−1
Θ · J

T )(i,j), (2.35)

where J and H are the Jacobian and the Hessian matrix of the binary model
Θbin. Hence, the covariance matrix of the model parameters Σp can be obtained
via

Σp = (−H)−1 = (J ·Σ−1
Θ · J

T )−1, (2.36)
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Figure 2.9: Left panel: mean of the azimuthal average cRMS of the RMS best fit
contrast cfit of all non-detections of OB 2 (cf. column “Det” of Table 2.1) before
(solid blue curve) and after (dashed blue curve) subtracting the best fit binary
model from the measured kernel phase. The dotted black curve represents the
correction factor for the relative contrast of the residual speckle noise fspeckle.
Right panel: same as in the left panel, but for HIP 50156 (close binary). The
empirical 1σ detection limit which we use for our analysis (solid green curve) is
obtained by multiplying the azimuthal average csubRMS of the RMS best fit contrast
csubfit after subtracting the best fit binary model from the measured kernel phase
(dashed orange curve) with the correction factor fspeckle.

and the uncertainties of the model parameters for the best fit binary model σpfit
are

σpfit =
√

diag(Σpfit). (2.37)

We also compute the correlation of the best fit model parameters as

corr =
Σpfit

σTpfit · σpfit
, (2.38)

where ·· denotes element-wise division.

Empirical uncertainties

Using only the uncertainties from photon noise, it is still difficult to distinguish
between residual speckle noise (i.e. third order phase noise in the pupil plane)
and real detections at small angular separations. This is the case because the
data set which we analyze in Section 2.3 is very limited in terms of diversity of
calibrator PSFs. For this reason, we use an empirical approach as the primary
method to determine whether a detection is real or not.

First, we split our targets into candidate detections and calibrators based on
their detection significance from photon noise SNRph (cf. Section 2.3.2). For
each of the calibrators, we then compute two contrast curves:
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1. The azimuthal average cRMS of the root mean square (RMS) best fit con-
trast cfit.

2. The azimuthal average csubRMS of the RMS best fit contrast csubfit after sub-
tracting the best fit binary model θbin from the measured kernel phase θ.

Here, the assumption is that the calibrators are single stars, so that the ratio of
the two RMS contrast curves computed above, i.e.

fspeckle(ρ) =
cRMS(ρ)

csubRMS(ρ)
, (2.39)

is a correction factor for the relative contrast of the residual speckle noise. This
is illustrated in the left panel of Figure 2.9.

For each of the candidate detections, we only compute the azimuthal average
csubRMS of the RMS best fit contrast csubfit after subtracting the best fit binary
model θbin (which might or might not be a real detection) from the measured
kernel phase θ. Then, we multiply this RMS contrast curve with the mean of the
relative speckle contrast fspeckle of all calibrators, i.e.

σemp(ρ) = f̄speckle(ρ) · csubRMS(ρ), (2.40)

where the bar denotes the mean, in order to obtain an empirical contrast uncer-
tainty σemp as a function of the angular separation ρ for each candidate detection
(cf. right panel of Figure 2.9). We classify a candidate detection as real if its
empirical detection significance SNRemp is above the 5σ threshold, i.e.

SNRemp =
cfit
σemp

> 5. (2.41)

Furthermore, we obtain empirically motivated uncertainties on the best fit
parameters pfit by multiplying the uncertainties from photon noise σpfit with the
ratio ferr of the empirical contrast uncertainty σemp to the contrast uncertainty
from photon noise σph (at the position of the best fit binary model θbin).

The kernel phase analysis tools described in Sections 2.2.2, 2.2.3 and 2.2.4 are
available on GitHub7. We put a strong focus on applicability to other instruments
and an exchangeable kernel phase fits file format.

2.3 Results and discussion

2.3.1 Target list

We test our methods on an archival data set because the kernel phase technique is
optimized for detecting companions at much smaller angular separations to their

7https://github.com/kammerje/PyKernel

https://github.com/kammerje/PyKernel


CHAPTER 2 50

host star than conventional high-contrast imaging techniques (such as ADI and
reference star differential imaging, i.e. RDI). Hence, the parameter space that
we are looking at is still unexplored. We search the VLT/NACO archive for L’
band RDI surveys and decide to analyze program 097.C-0972(A), PI J. Girard,
due to a large number of observed targets and therefore potential calibrators. A
target list together with our detections is reported in Table 2.1.

2.3.2 Detected companion candidates

Before we search the targets in Table 2.1 for close companion candidates, we
perform a basic vetting procedure by visually inspecting the cleaned data for wide
companion candidates (cf. Section 2.3.2). In the field of view, which is limited
to ∼ 1 arcsec due to the windowing, we find six wide companion candidates (cf.
upper section of Table 2.2). Three of them are already known and we classify our
detections as confirmed, whereas the other three have not been reported before
and therefore are new detections. Note that we correct the contrast of the wide
companion candidates for the windowing (cf. Section 2.3.4).

After detecting and subtracting off the signal induced by the wide companion
candidates, we use the kernel phase technique in order to search for closer and
fainter objects (cf. Section 2.3.2). We find two companion candidates with an
empirical detection significance above the 5σ threshold, i.e. SNRcan

emp > 5 (cf.
lower section of Table 2.2). One of them is already known and we classify our
detection as confirmed, whereas the other one has not been reported before and
therefore is a new detection. For HIP 13008 we note that the empirical detection
significance is 9.4σ when using only HIP 116384 as calibrator, but only 1.9σ when
using HIP 12925 due to high residuals and a very large ferr correction. There-
fore, HIP 12925 seems to be a bad calibrator and we do not report any best fit
parameters for HIP 13008 due to a lack of credibility. Follow-up observations
are required to confirm the true nature of this object. Also note that OBs 6–11
contain only one or two targets and are not analyzed with the kernel phase tech-
nique because the diversity of kernel phase amongst calibrators is essential for
our empirical detection method. As there are systematic differences between the
individual nights in the measured kernel phase, for this paper we are only analyz-
ing OBs which contain at least two PSF calibrators (observed in the same night).
Although this choice was made for simplicity and it might be possible to calibrate
targets over longer timescales, this adds significant additional complexity which
is beyond the scope of this paper.

From the targets for which we detect neither a wide nor a close companion
candidate, we compute a contrast curve (i.e. the detection limit as a function of
the angular separation) for the kernel phase technique (cf. Section 2.3.3).
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Wide companion candidates

The wide companion candidates reported in the upper section of Table 2.2 are
all detected by visually inspecting the cleaned data. When we find a companion
candidate, we use a grid search followed by a least squares search in order to find
its best fit binary model θbin for the measured kernel phase θ. Then, we compute
the empirical detection significance SNRvis

emp for the best fit binary model θbin (cf.
right panels of Figures 2.10 and 2.11). This is achieved using a simplification of
the empirical detection method (cf. Section 2.2.4). Since the wide companion
candidates all have a sufficiently large angular separation (i.e. & 200 mas) and are
sufficiently bright (otherwise we could not detect them by eye), we can skip the
use of any calibrators and compute the empirical detection significance SNRvis

emp
as the best fit contrast cfit divided by the azimuthal average csubRMS of the RMS best
fit contrast csubfit after subtracting the best fit binary model θbin from the measured
kernel phase θ. Note that we do not use any Karhunen-Loève calibration for this
step either, i.e. θ′ = θ (cf. Section 2.2.3).

Before we search for closer and fainter objects, we subtract the signal induced
by the wide companion candidates from the measured kernel phase, i.e.

θ → θ − θbin, (2.42)

so that the measured kernel phase of all targets is free of wide detections. The
detected wide companion candidates are shown in the left panels of Figures 2.10
and 2.11 and are described in more detail in the following paragraphs.

HIP 36985 B, TYC 7401 2446 1 B, TYC 5835 0469 1 B. These ob-
jects are new companion candidates which were not reported before. They have
L’ band contrasts of 2.619 ± 0.005mag, 1.318 ± 0.004mag and 2.399 ± 0.003mag

respectively, and therefore are candidates for stellar mass companions.
TYC 6849 1795 1 B. This object was already detected in 2005 by Galicher et al.
(2016) at an angular separation of ∼ 220 mas, a position angle of ∼ 201 deg and a
H band contrast of ∼ 1.6mag. We find a L’ band contrast of 1.450±0.004mag and
an angular separation (223.5± 0.4 mas) and a position angle (203.29± 0.05 deg)
which are in agreement with Galicher et al. (2016), i.e. we can confirm the bound
nature of the object.
HIP 116231 B. This object was already detected in 2004 by Schöller et al. (2010)
at an angular separation of 641±4 mas, a position angle of 240.2±0.6 deg and a
K band contrast of 2.75± 0.01mag. We find a L’ band contrast of 4.43± 0.02mag,
a slightly larger angular separation of 874.6 ± 0.8 mas and a slightly different
position angle of 254.70±0.05 deg, but (allowing for orbital motion) we can con-
firm the bound nature of the object. Note that there is a huge disagreement in
the contrast, but a brief look at the raw data from Schöller et al. (2010) shows a
significant PSF halo and confirms our result of ∼ 4mag.
HIP 116384 C. This object was first detected in 2002 by Martín (2003) who
found HIP 116384 (GJ 900) to be a triple system with a 510±10 mas (HIP 116384 B,
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Figure 2.10: Left panels: median frame of a cleaned data cube of the targets
for which we detect a wide companion candidate. The magenta star indicates
the position of the host star and the magenta circle indicates the position of the
companion candidate, obtained from a least squares fit of the binary model θbin
to the measured kernel phase θ. Note that the color scale is logarithmic, reaching
from 1e+1.5 to 1e+3.5 pixel counts. Right panels: map of the empirical detection
significance SNRvis

emp (cf. Section 2.3.2) for the same targets as in the left panels.
The number in the lower left corner of each panel reports the empirical detection
significance at the position of the best fit binary model θbin (note that this is not
necessarily the position with the highest detection significance) and the dashed
cyan circle indicates the 99% threshold of the super-Gaussian window (i.e. the
brightness of objects outside this circle is decreased by more than 1% by the
windowing).
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Figure 2.11: Figure 2.10 continued.
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∆K = 1.61± 0.03mag) and a 760± 10 mas (HIP 116384 C, ∆K = 2.38± 0.04mag)
component. Lafrenière et al. (2007a) resolved the system again in 2004 and 2005,
finding HIP 116384 B at an angular separation of 611± 2 mas and 673± 2 mas
respectively, and HIP 116384 C at an angular separation of 733 ± 2 mas and
722 ± 2 mas respectively. In the cleaned data, we only find HIP 116384 C at
a slightly larger angular separation of 842.90 ± 0.07 mas, but a position angle
(346.614 ± 0.004 deg) and a L’ band contrast (2.688 ± 0.001mag) which are in
agreement with Martín (2003) and Lafrenière et al. (2007a), so that we can con-
firm the bound nature of the object. Looking at the raw data, we also find
HIP 116384 B (which is the brighter of the two companions), noticing that it has
moved to an angular separation of ∼ 1200 mas being too far away in order to be
visible in our cleaned data (due to the windowing).

Close companion candidates

The close companion candidates reported in the lower section of Table 2.2 are
all detected only by the kernel phase technique. For each target in Table 2.1,
we use a grid search followed by a least squares search in order to find the best
fit binary model θbin for the measured kernel phase θ. Then, we compute the
detection significance from photon noise SNRph (cf. Section 2.2.4) at the position
of the best fit binary model θbin from the least squares search. For this step, we
always use all other targets which were observed in the same OB as calibrators for
the Karhunen-Loève calibration, fixing Kklip = 48. Knowing that the majority
of VLT/NACO targets do not have any close companions, we then classify the
∼ 1/3 of the targets with the highest SNRph in each OB as candidate detections
(cf. column “Can” of Table 2.1) for the next step and the remaining targets as
calibrators.

For the next step, we compute the empirical detection significance SNRcan
emp

(cf. Section 2.2.4) for each of the candidate detections from the previous step.
For this step, we always use all remaining targets which were classified as cal-
ibrators in the previous step for the Karhunen-Loève calibration, again fixing
Kklip = 4. If the empirical detection significance is above the 5σ threshold, i.e.
SNRcan

emp > 5, we classify the candidate detection as real. If not, we add the
candidate detection to the list of calibrators and redo the computation of the
empirical detection significance (this time with one calibrator more than before).
We repeat this process until all candidate detections are real. The detected close
companion candidates are shown in Figure 2.12 and are described in more detail
in the following paragraphs. Please note that we report the correlation of the

8For simplicity, we fix Kklip = 4 for all targets and regardless of the number of calibrators.
Various testing has shown that subtracting off the four statistically most significant eigencom-
ponents of the kernel phase of the calibrators mostly yields the smallest amount of significant
detections, i.e. calibrates the data best. A more rigorous investigation of this relationship is
foreseen for a future publication.
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Figure 2.12: Map of the empirical detection significance SNRcan
emp for the targets

for which we detect a close companion candidate. The cyan star indicates the
position of the host star and the solid cyan circle indicates the position of the
companion candidate, obtained from a least squares fit of the binary model θbin
to the measured kernel phase θ. The number in the lower left corner of each
panel reports the empirical detection significance at the position of the best fit
binary model θbin and the dashed cyan circle indicates the 99% threshold of the
super-Gaussian window (like in Figure 2.10).
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Figure 2.13: Left panel: 5σ empirical contrast limit, i.e. RMS contrast curve
cRMS(ρ) multiplied by 5, for all non-detections (cf. column “Det” of Table 2.1).
Shown are the mean, the best and the worst contrast limit. Right panel: value
of the super-Gaussian windowing function depending on the angular separation.
The brightness of companions outside of ∼ 200 mas is decreased significantly.
We use this curve to recover the true contrast of the detected wide (visual)
companions (cf. upper section of Table 2.2). For reference, their position on this
curve is indicated by the circles.

best fit parameters in Appendix 2.4 and present model-data correlation plots in
Appendix 2.4.

HIP 50156 B. This object was already detected in 2011 by Bowler et al.
(2015) at an angular separation of ∼ 90 mas and a K band contrast of ∼ 1.8mag.
Just nine month later, Brandt et al. (2014) cannot resolve this companion and
report an upper limit of ∼ 20 mas for its angular separation. We find HIP 50156 B
at an angular separation of 77.3± 0.8 mas and an L’ band contrast of ∼ 1.91±
0.03mag, confirming the detection and notable orbital motion.
HIP 37918 B. This object is a new companion candidate which was not reported
before. It has a L’ band contrast of ∼ 3.29±0.05mag, and therefore is a candidate
for a stellar mass companion. Furthermore, HIP 37918 (M ≈ 0.98 M�) is known
to have a ∼ 23.1 arcsec companion of almost equal mass (HIP 37923, M ≈
0.95 M�, Desidera et al. 2006). Together with our companion candidate, this
would make the system triple.

2.3.3 Detection limits

In Section 2.2.4, we present our empirical approach to find meaningful detection
limits for the data analyzed in this paper. Based on this approach, we compute
the contrast limit of the kernel phase technique as a function of the angular
separation as the azimuthal mean of the RMS best fit contrast cRMS of all targets
for which we do not detect any companions with the kernel phase technique
(i.e. all non-detections, cf. column “Det” of Table 2.1). Note that we already
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subtracted off the signal induced by the wide companion candidates. The mean,
the best and the worst contrast limit are shown in the left panel of Figure 2.13.

At the small angular separations which are inaccessible by classical high-
contrast imaging techniques (i.e. within ∼ 200 mas in the L’ band), the kernel
phase technique achieves contrast limits of ∼ 1e−2. This is not yet deep enough
to detect companions in the planetary-mass regime, which would start between
1e−3 and 1e−4 for young (∼ 10 Myr) gas giants (e.g. Bowler, 2016). However,
our closest detections prove that the resolution which is required to resolve solar-
system scales in the nearest star forming regions can be achieved with the kernel
phase technique. At larger angular separations, our best contrast limit is com-
parable with the limits achieved by RDI (e.g. Cantalloube et al., 2015). The
large spread in the contrast limit comes from the fact that the amplitude of the
background noise is nearly the same for all data cubes, whereas the peak value
of the PSF varies heavily due to the PSF reconstruction (cf. Section 2.2.1).

2.3.4 Windowing correction

As mentioned in Section 2.2.2, we window all frames by a super-Gaussian (with
a FWHM of 1240 mas) in order to minimize edge effects when computing their
Fourier transform. Due to this windowing, the brightness of companions at an-
gular separations & 215 mas deviates by more than 1% from the true value. In
order to correct for this effect, we again assume that kernel phase is proportional
to contrast in the high-contrast regime, so that we can obtain the true contrast
of a companion by dividing its measured contrast (i.e. the best fit contrast from
the binary model) by the value of the super-Gaussian windowing function. We
are aware that this method has its limits, as each PSF has a spatial extent on
the detector and assuming that the entire PSF is multiplied by the same value
is an over-simplification of the problem. Nevertheless, this method agrees fairly
well with the contrasts which we measure in the cleaned fits files and we use
it to correct the contrast of all wide companion candidates (cf. right panel of
Figure 2.13). We add an additional contrast correction error in quadrature based
on injection-recovery tests to companions wider than 500 mas to account for
limitations in this technique.

2.4 Conclusions

We use the kernel phase technique in order to search for close companions at the
diffraction limit in an archival VLT/NACO RDI L’ band data set. Therefore, we
develop our own data reduction pipeline for VLT/NACO data, which performs
a basic dark, flat, bad pixel and background (i.e. dither) subtraction, but also
reconstructs saturated PSFs in order to reduce their Fourier plane noise. Fur-
thermore, we select frames with sufficiently high Strehl ratio, which is essential
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for the kernel phase technique as it relies on a linearization of the Fourier plane
phase. Then, we use XARA for extracting the kernel phase and improve its
re-centering algorithm in the case of resolved and bright companions. Further-
more, we apply a principal component analysis based calibration to the data (i.e.
Karhunen-Loève decomposition, Soummer et al., 2012) and develop a suite of
analytic model fitting algorithms in order to search for point source companions
with the kernel phase technique9.

For the archival data set which we analyze in Section 2.3, we find that our
kernel phase covariance model (which only takes into account shot noise) is not
sufficient and significantly underestimates the true errors. This is still the case af-
ter calibrating the data, because the diversity of calibrator PSFs is not sufficient.
Hence, we develop an empirical method for estimating the relative contrast of the
residual speckle noise and finding meaningful detection limits for the data. With
this empirical approach, we detect six wide companion candidates by visually
inspecting the cleaned data and two close (∼ 80–110 mas) companion candidates
which are detected only by the kernel phase technique. All eight companion can-
didates lie in the stellar-mass regime and five of them were previously unknown.

In order to reach the planetary-mass regime, a better library of calibrator
PSFs is required. Therefore, it is extremely important that the targets and their
calibrators are observed as close in time as possible. This becomes very clear
from the archival data set which we analyze, where there are in fact multiple cal-
ibrators observed in one night, but not close enough in time, so that the kernel
phase calibration does not reduce the quasi-static errors satisfyingly. In order
to make better use of our principal component analysis based calibration, we
propose star-hopping sequences of ∼ 6 targets, and to revisit each target at least
twice. As we have shown with the NACO data analyzed in this paper, timescales
of hours between the observations of the science and calibrator targets are too
long to capture the temporal evolution of quasi-static phase errors. Instead,
those observations should be spread over timescales of minutes only (for example
slewing to a different target every six minutes with Keck/NIRC2 star-hopping,
cf. Chapter 3). Star-hopping is an observing strategy for which the instrument
(and in particular the AO system) acquisition is only performed once at the be-
ginning of each sequence. Then, one slews (“hops”) from target to target without
interrupting the AO system. Furthermore, we aim to examine more extensive
Keck data sets where we are hopeful that the significant investment of telescope
resources gives adequate calibrator diversity to characterize the systematic errors
and possibly use Bayesian Monte-Carlo techniques.

In this paper, we have shown that kernel phase is able to achieve a resolution
below the classical diffraction limit of a telescope under good observing condi-
tions (i.e. sufficiently high Strehl ratio). This is of particular interest for future
space-based observatories, such as the JWST, as it gives access to an exciting

9https://github.com/kammerje/PyKernel

https://github.com/kammerje/PyKernel
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parameter space which could otherwise not be explored due to the limited mirror
size (and therefore resolution). Space-based telescopes do not suffer from atmo-
spheric turbulence, what makes the calibration much less challenging than for
the ground-based VLT/NACO data (e.g. Martinache, 2010). Nevertheless, with
an optimized observing strategy, kernel phase is also a competitive high-contrast
imaging technique from the ground.

The application of kernel phase is of course not limited to imaging telescopes.
One concept which aims to push the kernel phase technique towards higher con-
trasts is the VIKiNG instrument (Martinache & Ireland, 2018), which proposes
kernel phase nulling interferometry with the VLTI. By combining kernel phase
with a high-contrast booster (i.e. a nulling interferometer) it would allow for
self-calibrating the observables and achieving a better robustness with respect to
residual wavefront errors. This would in turn also be an option to reduce the
demanding stability requirements on space-based nulling interferometers, such as
the LIFE concept (Kammerer & Quanz, 2018; Quanz et al., 2018), which aims
to detect dozens of Earth-like exoplanets in the solar neighborhood.
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Appendix 1: parameter correlation
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Figure 2.14: For the targets for which we detect a close companion candidate (i.e.
HIP 50156, top and HIP 37918, bottom) we report the correlation of the best fit
parameters using a corner plot from Foreman-Mackey (2016). Here, we use an
MCMC technique (emcee, Foreman-Mackey et al., 2013) with six random walkers
initialized at the best fit position and a temperature of f2

err in order to find the
best fit parameters including their correlated uncertainties by maximizing the
log-likelihood lnL of the binary model.



CHAPTER 2 63

Appendix 2: correlation plots
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Figure 2.15: Correlation of the measured kernel phase and the best fit binary
model kernel phase for the targets for which we detect a close companion candi-
date in blue. The presented errorbars are computed based on photon noise (cf.
Section 2.2.2) and scaled up by ferr according to our empirical uncertainties (cf.
Section 2.2.4). The orange line indicates the identity which would represent per-
fect agreement between measured and model kernel phase. Similar to Figure 2.8
we normalize each kernel phase by the norm of its corresponding row of P ′ ·K
since we are dealing with calibrated kernel phase here.
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Preamble

In Chapter 2, we presented a first approach to use the kernel phase technique for search-
ing for faint companions among a larger sample of stars from the ground. As we have
seen, the achieved detection limits were not sufficient for the detection of planetary-mass
companions, though. One reason for this was a non-ideal observing strategy which lead
to each individual target being affected by slightly different systematic errors at the
small spatial scales that we are interested in. In this chapter, we will use the kernel
phase technique on a sample of 55 young (/ 2 Myr) stars in the Taurus star-forming
region, observed with a more ideal strategy known as “star-hopping”. As will be shown,
the extreme youth of these targets and the improvement of the detection limits due to
the more ideal observing strategy will enable the detection of planetary-mass compan-
ions, and we will use our non-detections to derive upper limits on the frequency of giant
planets as a function of mass and orbital separation.

Abstract

Direct imaging in the infrared at the diffraction limit of large telescopes is a unique
probe of the properties of young planetary systems. We survey 55 single class I and
class II stars in Taurus in the L’ filter using natural and laser guide star adaptive optics
and the near-infrared camera (NIRC2) of the Keck II telescope, in order to search for
planetary-mass companions. We use both reference star differential imaging and kernel
phase techniques, achieving typical 5-sigma contrasts of ∼6 magnitudes at separations
of 0.2” and ∼8 magnitudes beyond 0.5”. Although we do not detect any new faint
companions, we constrain the frequency of wide separation massive planets, such as HR
8799 analogues. We find that, assuming hot-start models and a planet distribution with
power-law mass and semi-major axis indices of -0.5 and -1, respectively, less than 20%
of our target stars host planets with masses >2MJ at separations >10 au.
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3.1 Introduction

Direct imaging of exoplanets is an important method to study planetary systems
and gain insight into formation scenarios. Most directly imaged exoplanets have
been found in young star systems when the planets are still hot and emit in the
infrared (e.g. HR 8799 (Marois et al., 2008)) while some have been found in
the process of formation (Keppler et al., 2018). Most directly imaged planets
are at wide separations (> 20 au) from their host stars but models of planet
distributions (Fernandes et al., 2019) indicate that these systems are rare. Giant
planets such as Jupiter are likely to form by core accretion which occurs closer
to the star (∼ 5 au.)

The Taurus Molecular Cloud (TMC) is ideal for studying planet formation
due to its relative proximity (∼ 140 pc) and numerous young stars (< 2Myr)
(Torres et al., 2009). Many of these young stars have prominent disc structures
(ALMA Partnership et al., 2015; Huang et al., 2020), which may be indicative of
planet formation. A planet in the process of formation will radiate in the near-
infrared. In an optically thick disc, the planet will be hidden at these wavelengths.
However, a giant planet (∼ 0.5MJ and above) is expected to clear a gap in the
disc (Crida & Morbidelli, 2007). Many of the discs in our sample have gaps
present in their dust distribution, as indicated by ALMA surveys (Long et al.,
2018) and, although their origin is still hotly debated, one possibility is giant
planet formation.

The circumstellar discs in the TMC have been extensively studied over the
years in terms of their mass (Andrews & Williams, 2005; Andrews et al., 2013),
structure and distribution, as have the discs in other nearby star-forming regions
such as Upper Scorpius and Ophiuchus (Carpenter et al., 2014; Van Der Plas
et al., 2016; Kuruwita et al., 2018). Surveys have also been conducted to detect
planets in these star-forming regions (Tanner et al., 2007; Metchev & Hillen-
brand, 2009) and some have found potentially planet-mass companions at wide
separations (e.g., DH Tau b; Itoh et al. (2005)) as well as a close companion to
CI Tau using radial velocity (Johns-Krull et al., 2016). However, these surveys
were unable to achieve the necessary sensitivity for planetary-mass companions
on solar-system scales. Kraus et al. (2011) managed to detect new brown dwarf
companions at small separations and achieved a mass sensitivity of ∼ 20MJ. In
part of this earlier work, emission with total luminosity comparable to a forming
planet was discovered around LkCa 15 (Kraus & Ireland, 2012), although the
complex transitional (or “pre-transitional”) nature of this disc has meant that a
physically motivated radiative transfer model could not be made at the time.
A scattering origin for the emission was, however, strongly suggested by further
observations with Sphere and ZIMPOL (Thalmann et al., 2015).

The purpose of our study is to search for giant planets around young stars in
the TMC still accreting from their discs, and determine dominant mechanisms for
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planet formation. This study is unique because, for the first time, we attempted
to probe the inner regions of these systems in search of solar-system analogues, at
a time where the significant presence of disc gas means that planetary luminosities
would be highest. As the TMC is the nearest star-forming region of its size
(Güdel et al., 2007) and the projected separation of any planets decreases with
the distance, it is the most favourable region for resolving the peak of the giant
planet distribution at physical separations of < 10 au. Using planet distributions
from Cumming et al. (2008) and later by Fernandes et al. (2019), it is clear that
even at this close distance, the majority of planets are inside the ∼20-30 au limits
of a typical coronagraph.

When planets form, they heat up and radiate in infrared wavelengths and are
at their brightest during runaway accretion. After formation, the planets continue
to radiate for some time and should still be self luminous after millions of years
as shown by the HR 8799 and β-Pictoris systems (Marois et al., 2008; Lagrange
et al., 2010). The evolution of planet luminosity is an important factor in this
work as it determines our detection capability. However, many details of the
accretion luminosity remain uncertain. The luminosity of a circum-planetary disc
is dependant on the accretion rate as well as the mass and radius of the planet,
and whether and where the circum-planetary disc is truncated (Zhu, 2015). The
post-accretion luminosity of hot-start planets (i.e., planets which do not lose
entropy in an accretion shock) has been modelled for some time as applied to
brown dwarfs (e.g. Baraffe et al., 2003). "Cold" start models, where all accretion
shock luminosity is radiated away, can have very different initial luminosities,
especially for massive planets (e.g. Marley et al., 2007), although detailed shock
models considering radiative transfer and reasonable accretion rates have recently
shown that "warm" start models are much more realistic (Marleau et al., 2019).
Additionally, models of post-shock gas has shown a zone of stability with intial
entropies around 10–11 kB/baryon, termed “stalling” accretion (Berardo et al.,
2017).

Planets cool and fade as they age but the cooling time is very dependent on
the mass and internal entropy of the planet, with high-entropy low-mass planets
cooling the fastest, and e.g. a 5MJ planet cooling at 0.5 kB/baryon/Myr from an
initial internal entropy of 1.5 kB/baryon (Spiegel & Burrows, 2012). Irrespective
of these uncertainties in post-formation luminosity evolution, the best time to
directly image exoplanets is shortly after their formation, when they are at their
highest luminosity. The canonically young age of the TMC provides a perfect
environment in which to search for these planets.

In Section 3.2 we describe our survey sample of 55 stars in the TMC using
the Near Infrared Camera (NIRC2) on the Keck II telescope in 2015 and 2016. In
Section 3.3 we describe our observation, data reduction and small angle analysis
methods. In Section 3.4 we expand our analysis to wider separations and identify
companions. Section 3.5 combines our methods for all separations to place limits
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on the frequency of wide planets. Our conclusions are presented in Section 3.6.

3.2 Survey sample

In choosing our sample of stars in the TMC, we decided to only select single stars,
which we define as stars with no known stellar companion within 1”. The reason
for this is firstly, that multiple star systems can cause issues with adaptive optics
but also for reasons of simplicity. The data reduction and analysis is simplified
if there is only one bright central star to consider and there is less theoretical
complexity regarding models of planet formation. We note that at the distance
of the TMC, which is ∼ 140 pc (Torres et al., 2009), an angular separation of
1” corresponds to a physical separation of ∼ 140 au. As shown by Kraus et al.
(2016), stellar companions at such wide separations do not significantly impact
the planet population and formation. An exception to this is V410 Tau (Ghez
et al., 1997), which we use to ensure we are correctly oriented and to verify
our data processing pipelines. Note that we include close (/1 au) spectroscopic
binaries in our sample if they meet all other criteria, as we argue wide companions
in these systems are likely to be unaffected by the dynamics of the close orbit.
Two known systems are in our sample: DQ Tau (Mathieu et al., 1997) and UZ
Tau A (Prato et al., 2002).

We primarily consider class II targets because, at this stage in stellar evolu-
tion, circum-stellar discs have been observed to have very low mass, between 0.2%
and 0.6% of the host-star mass (Andrews et al., 2013). This indicates, if there
is planet formation, the most massive planets will have already formed by this
phase. We also consider class I objects such as HL Tau, which has a circumstellar
disc containing notable gaps and rings, which may be indicative of planet forma-
tion (Brogan et al., 2015). Our targets were taken from Kraus et al. (2011). We
selected targets based on their J-K magnitude colours and only selected targets
with J-K<4 and K magnitude <10 which can be used as a guide for the approx-
imate L’ magnitude. We also made a cut on the spectral type, excluding targets
listed as later than M3 in Kraus et al. (2011). This cutoff was chosen to include
the relatively abundant low-mass stars in the TMC while cutting-out stars that
would be too faint for AO observations and too low in mass to expect giant plan-
ets. We note that recent studies have produced updated spectral types. The
spectral types shown in Table 3.1 are taken from Herczeg & Hillenbrand (2014)
and include one star which is now believed to be later than M3.

All of our targets were observed with an L’ filter with the exception of RY
Tau, AB Aur, UX Tau and SU Aur. These stars were observed with a PAH
filter as they are too bright for the method described in Section 3.3.3 to work
properly. Our targets are mapped out in Figure 3.1 and shown on an H-R di-
agram in Figure 3.2. The map in Figure 3.1 also includes the distances taken
from Gaia and a map of dust reddening from Schlafly et al. (2014). The H-R
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Figure 3.1: Positions of our targets superimposed on the dust reddening map
from Schlafly et al. (2014). The squares represent the bright targets imaged with
the PAH filter and circles are all other targets.

diagram in Figure 3.2 plots the absolute magnitude in the J-band (corrected for
extinction using models from Fitzpatrick & Massa (2007)) against effective tem-
perature. The effective temperature was calculated using spectral types from
Herczeg & Hillenbrand (2014). Isochrones and isomass curves are shown using
models from Baraffe et al. (2015). Note that several of our targets below 5000 K
are under-luminous and appear older than 10Myr (cf. Figure 3.2). This is due
to local reddening, determined from the measured colors being inconsistent with
the spectral type, which is not taken into account and should not be regarded as
the actual age of the star.

As shown in Figure 3.1, most of our targets are in the main region of the TMC
at distances of 130–150 pc. There are some outliers, most notably DQ Tau and
DR Tau at distances of ∼190 pc, and separated from the main group. The stellar
properties for all of our targets are presented in Table 3.1. The temperature was
converted to mass using the evolutionary tracks from Baraffe et al. (2015).

3.3 Observations and image analysis

3.3.1 Observations

Our observations were made using the NIRC2 camera of the Keck II telescope
on 27, 28 November, 5 December 2015 and 7,8,9 November 2016. As the focus of
these observations was to search for close companions, we used the 512x512 sub-
array mode in order to minimise overheads - noting that the readout time would
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Figure 3.2: H-R diagram of our targets plotting J-band magnitude against ef-
fective temperature. As in Figure 3.1, The squares represent the bright targets
imaged with the PAH filter and circles are all other targets. MWC 480 and AB
Aur are A-type stars and are the only stars in our sample hotter than 5000K,
and hence they appear as outliers.

have often decreased our duty cycle by a factor of ∼ 2 had we used the full array 1.

In order to account for irregularities in the telescope PSF, at least 2 posi-
tion angles were required for each object. Weather permitting, every object was
observed in 4 observing blocks: 2 in the first half of the night and 2 in the sec-
ond half. Where possible we avoided the highest elevations where azimuth slew
rates are high and telescope vibrations can affect observations. Based on past
experience with Keck, our objects were divided into groups of 4 and observed
in the following sequence: A,B,C,D, A,B,C,D which gave us 2 observations of
4 objects. The members of the group are determined by their proximity to each
other. This sequence is then repeated in the second half of the night. Each obser-
vation consisted of a number of frames (usually 6) with average exposure times of
30 s, which is composed of a small integration time multiplied by an appropriate
number of co-adds (snapshots that make up the final image), which also varies
depending on the brightness of the target. A summary of our observations is
shown in Table 3.2.

3.3.2 Data reduction

Starting with our raw 512×512 pixel images, we first subtracted the master dark
frame for the night and divided by the flat frame. For each observing block,

1https://www2.keck.hawaii.edu/inst/nirc2/ObserversManual.html



CHAPTER 3 72
T
ab

le
3.
2:

D
et
ai
ls

of
ob

se
rv
at
io
n
s.
T
in

t
re
fe
rs

to
th
e
in
te
gr
at
io
n
ti
m
e
fo
r
ea
ch

co
-a
d
d
.
T
h
is

is
m
u
lt
ip
li
ed

b
y
th
e
n
u
m
b
er

of
co
-a
d
d
s
to

ge
t
th
e
ex
p
os
u
re

ti
m
e
fo
r
ea
ch

fr
am

e.
T
h
e
#

of
v
is
it
s
co
lu
m
n
gi
ve
s
th
e
n
u
m
b
er

of
ob

se
rv
in
g
b
lo
ck
s
ta
ke
n
fo
r
th
at

ob
je
ct

ea
ch

n
ig
h
t.

T
h
e
n
u
m
b
er

of
va
lu
es

in
th
is

co
lu
m
n
is

th
e
n
u
m
b
er

of
ob

se
rv
in
g
n
ig
h
ts
.
T
h
e
#

of
fr
am

es
co
lu
m
n

sh
ow

s
th
e
n
u
m
b
er

of
fr
am

es
fo
r
ea
ch

ob
se
rv
in
g
b
lo
ck

in
th
e
or
d
er

th
ey

w
er
e
ta
ke
n
.
F
or

ex
am

p
le
,
IR

A
S
04

10
8+

29
10

w
as

ob
se
rv
ed

on
on

ly
on

e
n
ig
h
t
an

d
v
is
it
ed

4
ti
m
es

w
it
h
6
fr
am

es
in

ea
ch

b
lo
ck
.
F
M

T
au

w
as

ob
se
rv
ed

on
2
n
ig
h
ts

w
it
h
3
v
is
it
s
on

th
e
fi
rs
t
n
ig
h
t,

an
d
1
on

th
e
se
co
n
d
.
T
h
e
b
lo
ck
s
ta
ke
n
on

th
e
fi
rs
t
n
ig
h
t
h
ad

12
,
12

an
d
6
fr
am

es
,
w
h
il
e
th
e
b
lo
ck

ta
ke
n
on

th
e
se
co
n
d
n
ig
h
t
h
ad

6.

N
am

e
O
b
s.

D
at
e

T
in

t
(s
)

C
oa

d
d
s

E
x
p
os
u
re

T
im

e
(s
)

#
V
is
it
s

#
F
ra
m
es

IR
A
S
04

10
8+

29
10

20
16

-1
1-
09

0.
4

80
32

4
6,
6,
6,
6

F
M

T
au

20
15

-1
1-
27

,2
01

5 -
11

-2
8

0.
3

10
0

30
3,
1

12
,1
2,
6,
6

C
W

T
au

20
16

-1
1-
07

0.
2

16
0

32
4

6,
7,
6,
6

F
P

T
au

20
16

-1
1-
07

,2
01

6 -
11

-0
9

0.
1

32
0

32
4,
1

6,
6,
6,
6,
6

C
X

T
au

20
16

-1
1-
07

,2
01

6 -
11

-0
9

0.
4

80
32

5,
1

6,
6,
6,
6,
6,
6

2M
A
S
S
J0

41
54

27
8+

29
09

59
7

20
16

-1
1-
09

0.
4

80
32

4
7,
6,
6,
6

C
Y

T
au

20
15

-1
1-
27

,2
01

5 -
11

-2
8

0.
3

10
0

30
3,
2

12
,1
2,
6,
6,
6

V
40

9
T
au

20
16

-1
1-
09

0.
4

80
32

4
7,
6,
6,
6

V
41

0
T
au

20
15

-1
1-
28

,2
01

6 -
11

-0
7

0.
2

16
0

32
1,
1

16
,6

B
P

T
au

20
15

-1
1-
27

,2
01

5 -
11

-2
8

0.
15

20
0

30
3,
1

12
,1
2,
6,
5

V
83

6
T
au

20
15

-1
1-
27

,2
01

5 -
11

-2
8

0.
3

10
0

30
4,
1

6,
6,
6,
6,
6

IR
A
S
04

18
7+

19
27

20
16

-1
1-
08

0.
4

80
32

4
6,
10

,8
,6

D
E

T
au

20
15

-1
1-
27

,2
01

5 -
11

-2
8,
20

15
-1
2-
05

0.
3

10
0

30
2,
2,
2

6,
8,
6,
6,
8,
6

R
Y

T
au

20
15

-1
1-
27

,2
01

5 -
11

-2
8

1.
0

30
30

1,
4

12
,7
,6
,6
,6

2M
A
S
S
J0

42
21

67
5+

26
54

57
0

20
16

-1
1-
08

0.
4

80
32

4
9,
6,
6,
6

F
T

T
au

20
16

-1
1-
09

0.
4

80
32

4
6,
6,
6,
6

IP
T
au

20
15

-1
1-
27

,2
01

5 -
11

-2
8,
20

15
-1
2-
05

0.
3

10
0

30
3,
1,
1

12
,1
2,
6,
10

,6
D
G

T
au

20
15

-1
1-
27

,2
01

5 -
11

-2
8,
20

15
-1
2-
05

0.
15

20
0

30
2,
1,
3

6,
6,
6,
15

,4
,6

D
H

T
au

20
16

-1
1-
08

0.
4

80
32

4
6,
11

,6
,6

IQ
T
au

20
15

-1
1-
27

,2
01

5-
11

-2
8

0.
15

20
0

30
3,
1

12
,1
2,
6,
6

U
X

T
au

20
15

-1
1-
28

1.
0

30
30

5
10

,6
,6
,6
,6

D
K

T
au

20
15

-1
1-
27

,2
01

5-
11

-2
8,
20

15
-1
2-
05

,2
01

6-
11

-0
8

0.
15

20
0

30
2,
2,
2,
4

6,
8,
6,
6,
6,
8,
6,
6,
6,
6

IR
A
S
04

27
8+

22
53

20
16

-1
1-
08

0.
05

3
60

0
31

1
7

JH
56

20
15

-1
1-
27

,2
01

5-
11

-2
8

0.
3

10
0

30
3,
1

12
,1
2,
6,
6

L
k
H
a
35

8
20

16
-1
1-
08

,2
01

6-
11

-0
9

0.
4

80
32

4,
1

6,
4,
6,
6,
6

H
L
T
au

20
16

-1
1-
07

,2
01

6-
11

-0
9

0.
1

32
0

32
5,
1

6,
6,
6,
6,
14

,6
H
K

T
au

20
15

-1
1-
27

,2
01

6-
11

-0
9

0.
3

10
0

30
1,
3

9,
8,
6,
6

2M
A
S
S
J0

43
21

54
0+

24
28

59
7

20
16

-1
1-
07

,2
01

6-
11

-0
9

0.
2

16
0

32
2,
2

6,
10

,6
,6

F
Y

T
au

20
16

-1
1-
08

,2
01

6-
11

-0
9

0.
4

80
32

3,
1

6,
6,
6,
6

F
Z
T
au

20
16

-1
1-
07

0.
1

32
0

32
4

5,
6,
4,
6

U
Z
T
au

A
20

16
-1
1-
09

0.
1

32
0

32
2

6,
6

G
I
T
au

20
15

-1
1-
27

,2
01

5 -
11

-2
8,
20

15
-1
2-
05

0.
15

20
0

30
3,
1,
2

12
,1
2,
6,
6,
6,
4

D
L
T
au

20
15

-1
1-
27

,2
01

5 -
11

-2
8,
20

15
-1
2-
05

0.
15

20
0

30
2,
2,
1

6,
6,
6,
6,
6

H
N

T
au

A
20

16
-1
1-
08

,2
01

6 -
11

-0
9

0.
4

80
32

3,
1

6,
6,
6,
6

D
M

T
au

20
15

-1
1-
27

,2
01

5-
11

-2
8

0.
3

10
0

30
2,
3

6,
6,
12

,1
2,
12

C
I
T
au

20
15

-1
1-
27

,2
01

5-
11

-2
8

0.
15

20
0

30
3,
1

12
,1
2,
6,
6

IT
T
au

20
15

-1
1-
28

0.
2

16
0

32
4

6,
6,
6,
6

A
A

T
au

20
15

-1
1-
27

,2
01

6-
11

-0
9

0.
4

80
32

1,
4

12
,9
,6
,5
,4

D
N

T
au

20
15

-1
1-
28

,2
01

6-
11

-0
9

0.
2

16
0

32
3,
1

6,
6,
6,
6

2M
A
S
S
J0

43
54

09
3+

24
11

08
7

20
16

-1
1-
08

,2
01

6-
11

-0
9

0.
4

80
32

3,
1

6,
6,
6,
6

H
P

T
au

20
15

-1
1-
27

,2
01

5-
11

-2
8,
20

15
-1
2-
05

0.
15

20
0

30
3,
1,
2

12
,1
2,
6,
6,
6,
10

D
O

T
au

20
16

-1
1-
07

,2
01

6-
11

-0
8

0.
2

16
0

32
4,
1

6,
6,
10

,6
,6

L
k
C
a
15

20
15

-1
1-
27

,2
01

5 -
11

-2
8,
20

16
-1
1-
08

0.
3

10
0

30
3,
2,
4

12
,1
2,
6,
6,
6,
6,
6,
6,
6

JH
22
3

20
16

-1
1-
07

,2
01

6 -
11

-0
8,
20

16
-1
1-
09

0.
4

80
32

2,
2,
2

6,
6,
9,
6,
6,
6

G
O

T
au

20
16

-1
1-
07

,2
01

6 -
11

-0
8,
20

16
-1
1-
09

0.
4

80
32

2,
1,
1

6,
6,
6,
6

D
Q

T
au

20
15

-1
1-
27

,2
01

5 -
11

-2
8

0.
15

20
0

30
3,
2

12
,8
,6
,1
0,
8

D
R

T
au

20
15

-1
1-
27

,2
01

6 -
11

-0
9

0.
15

20
0

30
2,
3

12
,6
,6
,6
,6

D
S
T
au

20
15

-1
1-
27

,2
01

5 -
11

-2
8

0.
3

10
0

30
3,
1

6,
6,
6,
6

G
M

A
u
r

20
15

-1
1-
27

,2
01

5 -
11

-2
8,
20

16
-1
1-
08

0.
3

10
0

30
4,
2,
1

6,
6,
6,
6,
12

,1
2,
6

A
B

A
u
r

20
15

-1
1-
28

0.
2

16
0

32
4

6,
6,
6,
6

S
U

A
u
r

20
15

-1
1-
28

1.
0

30
30

5
6,
6,
6,
6,
6

M
W
C

48
0

20
16

-1
1-
07

,2
01

6-
11

-0
9

0.
05

3
60

0
31

4,
3

6,
6,
6,
6,
6,
6,
6

2M
A
S
S
J0

50
52

28
6+

25
31

31
2

20
16

-1
1-
08

,2
01

6-
11

-0
9

0.
4

80
32

2,
2

8,
6,
6,
6

R
W

A
u
r
A

20
16

-1
1-
07

,2
01

6-
11

-0
9

1.
0

30
30

3,
4

8,
6,
5,
6,
6,
6,
6

V
81

9
T
au

20
15

-1
1-
27

,2
01

5-
11

-2
8

0.
3

10
0

30
3,
1

12
,1
2,
6,
6



CHAPTER 3 73

the target was observed in two different dither positions. Half the images had
the target in the top left quarter and the other half had it in the bottom right
corner. This allowed us to calculate an approximate sky background for each
image. First, each image was cropped to a size of 192×192 pixels (1.92”×1.92”)
which was centred on the star by calculating the peak of the image after applying
a median filter and performing a simple pixel roll. The corresponding area from
the other dither position served as the sky background which was then subtracted
from the cropped image.

Any “bad” pixels were fixed using the algorithm from Ireland (2013). Once
identified, these pixels were set to the corresponding value in the median filtered
image. In addition to bad pixels identified in the dark and flat field imates, we
also corrected with the same algorithm pixels near saturation which were defined
as any with counts greater than 17500× the number of coadds for that image.
The threshold of 17500 was chosen empirically to produce final PSF-subtracted
images with the lowest residuals. Pixels above this threshold were treated as bad
pixels. Once all images had been “cleaned” in this way, they were stored in a
data cube containing all images for a particular observing block. The analysis
was then performed on these cleaned images.

3.3.3 Image analysis using PSF subtraction

Our first method of image analysis is a form of reference star differential imaging
(RDI) which focuses on simply removing the effect of the central star in order
to look for planets. To achieve this, we first went back to the basics of how an
image is created. When the telescope’s optical system is applied, we assumed the
signal from a planet will look the same as a star but reduced by a contrast ratio.
In other words, the star was represented by a PSF given by the properties of the
optical system and the planet was represented by the same PSF but scaled by
a contrast ratio and shifted by the planet’s relative position. In 1-D, this image
function is given by

i(x) = p(x) + cp(x− x0), (3.1)

where p is the PSF representing a single star, c is the contrast ratio between a
planet and the star and x is a spatial variable with the star at x = 0 and the
planet at x = x0. The first step in our analysis is the subtraction of the PSF.

For our PSF, we simply used the (cleaned) image of another star, which
was taken at a similar time to our target. Another possible approach would
be principal component analysis (PCA) in which the PSF is taken from a lin-
ear combination of stellar images. The number of components in the analysis
is optimised, which has shown promising results in reducing background noise
and finding planets (Meshkat et al., 2013; Hunziker et al., 2018). An extreme
approach would be to create a linear combination using all our images. We have
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tried this approach as well as an optimisation and found that there was no signif-
icant improvement in our signal-to-noise ratio, so we do not report on this here.
Instead, we have opted for the opposite extreme, in which we only use 1 image
that is selected by optimisation. Due to fewer degrees of freedom, this approach
also subtracts a smaller fraction of the flux of a real companion than PCA.

Our targets are observed in blocks, typically consisting of 6 images each.
Every target image is matched with the image of another star, which plays the
role of our PSF. The PSF image for each target image was chosen from a selection
of nearby observing blocks. For a given target image, we have a set of potential
PSFs pn. For each of these, we calculate the sum of the square of the differences
given by

Σn =
∑
ij

(tij − fnpn,ij)2 , (3.2)

where t is the target image, pn is the image of another star, which we use as the
PSF, and i and j are pixel indices. The scaling factor fn was chosen such that
the target and PSF had the same maximum value so when they are subtracted,
the central star cancels out. For a given PSF this is given by

fn =
max(t)

max(pn)
. (3.3)

This is calculated for all possible PSF images pn in our sample, simply based on
photon count. Whichever produces the smallest value of Σn is chosen as our PSF.
When this PSF is chosen, we then calculate the difference between the target and
the PSF that has been multiplied by the scaling factor fn. Following on from
Equation 3.1, the difference is represented in 1-D by

d(x) = i(x)− p(x) = cp(x− x0). (3.4)

We can then calculate a smooth contrast ratio as a function of position by cross-
correlating the difference function with the PSF. This is then divided by the PSF
cross-correlated with itself in order to normalise the contrast ratio. The contrast
ratio as a function of position is given by

c(x0) =
(d ? p)(x0)

(p ? p)(x0)
, (3.5)

where ? denotes the cross-correlation operator given by

(d ? p)(x0) =

∞∫
−∞

d(x) p(x+ x0) dx. (3.6)

When we apply this method to the image of one of our targets, this produces a
map of the contrast ratio between any features and the central star. An example
is shown in Figure 3.3 with an image of AA Tau. This star was chosen simply
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Figure 3.3: Example showing a reduced image of AA Tau (left), the difference
after an image of HK Tau is subtracted (centre) and the contrast ratio map of AA
Tau (right). When the contrast ratio is negative, this is due to positive features
in the subtracted image. The bright feature in the middle of the contrast map
is due to offsets in the position of the target and PSF central star. At wider
separations, we can use this method to search for companions. While there are
no obvious features in this example, the contrast values show that we should be
able to detect companions more than 0.002 the brightness of the star.

because its properties are close to the average of our sample. For the PSF, we
used an image of HK Tau which, as shown in Table 3.2, was taken on the same
night.

This process is repeated for all images of the target, and the contrast maps
are averaged. By taking the average contrast about an annulus of fixed radius,
we then produce a 1-D plot of the contrast limit against separation.

3.3.4 Kernel phase data reduction

Complementary to the PSF subtraction (cf., Section 3.3.3) we use the kernel
phase technique in order to search for companions close to the host star, inside of
500 mas. This analysis begins with the same 192 x 192 pixel cleaned data cubes
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described in Section 3.3.3.

The kernel phase technique finds a special linear combination of the Fourier
phase φ (i.e., the phase of the Fourier transform of the image) which is indepen-
dent of pupil plane phase ϕ (phase aberrations in the telescope pupil which cause
quasi-static speckles) to second order, similar to closure phase in non-redundant
masking, but for full pupil images (i.e., highly redundant apertures). Let A be
the baseline-mapping matrix introduced by Martinache (2010), which maps the
sub-apertures in the pupil plane (cf., left panel of Figure 3.4) to their correspond-
ing Fourier plane baselines (cf., right panel of Figure 3.4), then the Fourier phase
φ observed through the telescope is

φ = R−1 ·A · ϕ+ φobj +O(ϕ3), (3.7)

where R encodes the redundancy of the Fourier plane baselines and φobj is the
phase intrinsic to the observed astronomical object (which is the quantity that
we would like to measure). This problem is significantly simplified by multiplying
Equation 3.7 with the kernel K of R−1 ·A, i.e.,

θ = K · φ = K ·R−1 ·A︸ ︷︷ ︸
=0

·ϕ+K · φobj +O(ϕ3), (3.8)

so that the kernel phase observed through the telescope θ is directly equal to the
kernel phase intrinsic to the observed object θobj = K · φobj (except for higher
order noise terms).

The kernel phase technique was first used by Martinache (2010) who demon-
strated the detection of a 10:1 companion at 0.5 λ/D in HST/NICMOS data,
clearly showing the improved speckle calibration capabilities with respect to im-
age plane data reduction techniques. More recently, Pope et al. (2016) applied
kernel phase to ground-based observations of αOph with the 5.1 m Hale Telescope
and showed that it outperforms PSF fitting and bispectral analysis under appro-
priate conditions (i.e., high Strehl). Kammerer et al. (2019) further developed the
technique including a principal component calibration based on Karhunen-Loève
decomposition (Soummer et al., 2012) for the subtraction of the residual kernel
phase signal measured on calibrator stars and detected eight (candidate) low-
mass stellar companions (five of which were previously unknown) in an archival
VLT/NACO data set, one of which is separated by only 0.8 λ/D.

Here, we use the same kernel phase data reduction pipeline as Kammerer
et al. (2019), with slight modifications and improvements explained below.

Kernel phase extraction

For extracting the kernel phase from the images we use the Python library
XARA2. XARA windows the cleaned images with a super-Gaussian mask, applies

2https://github.com/fmartinache/xara

https://github.com/fmartinache/xara
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Figure 3.4: Keck pupil model consisting of 105 individual sub-apertures (left
panel) and its Fourier plane coverage with 205 distinct baselines (right panel)
resulting in 100 individual kernel phases. The shading in the right panel shows the
redundancy (multiplicity) of the baselines with dark representing low redundancy
and bright representing high redundancy. Note that the right panel is the auto-
correlation of the left panel (cf., Section 2.1 of Martinache, 2010).

a linear discrete Fourier transform to them and performs a sub-pixel re-centring
directly in the complex visibility space afterwards. Then, the Fourier phase φ of
the images is extracted and multiplied by the kernel K of the transfer matrix
R−1 ·A of our Keck pupil model (Figure 3.4) yielding the kernel phase θ of the
images (cf., Section 2.1 of Martinache, 2010).

For the super-Gaussian mask we use a radius of 50 pixels (i.e., 500 mas) or
a FWHM of 100 pixels. Our Keck pupil model consists of three individual sub-
apertures per hexagonal Keck primary mirror segment in order to be sensitive
to the tip-tilt orientation of each segment. Those sub-apertures that are behind
the central obscuration from the secondary mirror are simply ignored. The sub-
apertures are distributed uniformly in the plane of the primary mirror with a
spacing of bmin = 0.9 m resulting in a field of view of λ/bmin ≈ 865 mas and
a maximum baseline of bmax = 9.5 m, yielding a resolution of ∼ λ/(2bmax) ≈
40 mas. However, since the super-Gaussian mask has a radius of only 500 mas,
we restrict our search for companions (with the kernel phase technique) to angular
separations of 40 mas ≤ ρ ≤ 500 mas.

Kernel phase frame selection

Before we feed the kernel phase extracted from the images into our calibration and
model fitting pipeline (cf., Section 3.3.4 and 3.3.4), we perform a frame selection
based on the sum of the squared kernel phase of each image, i.e.,

SOSK =
∑
i

|θ2
i |. (3.9)
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The distribution of SOSK as a function of time is not smooth. In fact, it shows
high steps when the observing conditions and thus the adaptive optics correction
suddenly become worse. Hence, from each night, we only keep the 50% best
images in the set of potential calibrators and the 75% best images in the set of
potential targets, where best means smallest SOSK. This is motivated by the
fact that a point-symmetric source (e.g., a single star) has zero Fourier phase φ
and therefore zero kernel phase θ. Hence, a single star with a faint companion
should still have a small kernel phase signal and images with a high kernel phase
signal can usually be attributed to bad seeing conditions where the kernel phase
technique is not valid (due to too much higher-order phase noise). Note that an
unknown companion around one of our calibrators would have a small impact
only, since we are averaging over a large number of calibrators and do not de-
rotate them before we subtract them from the science target, so that the averaging
is destructive in case of pupil-stabilised observations.

Kernel phase calibration

Similar to observations with an interferometer, we have to calibrate the kernel
phase of our targets by subtracting the kernel phase of calibrators. This is done
using the Karhunen-Loève projection described in Section 2.3 of Kammerer et al.
(2019). We perform the Karhunen-Loève calibration separately for each night
since we found this to yield a smaller reduced χ2 than calibrating data from
multiple nights together. The reason for this is likely that the quasi-static phase
aberrations (for which we try to compensate with our calibration) are only stable
over timescales of minutes to hours.

From the 75% best images of each night, we select one object as a target and
all images of different objects from the 50% best images of the same night as
calibrators. Then, we subtract the first four Karhunen-Loève components from
the kernel phase of the target θ and its uncertainties Σθ, i.e.,

θ′ = P ′ · θ, (3.10)

Σ′θ = P ′ ·Σθ · P ′T , (3.11)

where Σθ and P ′ are obtained as described in Sections 2.2.3 and 2.3 of Kammerer
et al. (2019).

Kernel phase model fitting

After calibrating the kernel phase, we fit the binary model

θ′bin = P ′ ·K · arg

(
1 + c exp

(
−2πi

(
∆RAu

λ
+

∆DECv

λ

)))
, (3.12)
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where 0 ≤ c ≤ 1 is the companion contrast, ∆RA and ∆DEC are the on-sky
separation of the companion, u and v are the Fourier coordinates of the pupil
model and λ = 3.776µm is the observing wavelength, using a grid search and
a least-squares routine as described in Section 2.4 of Kammerer et al. (2019) to
it. We fit to all images of the same target simultaneously, also when a target
was observed during multiple nights. Using the uncertainties Σ′θ derived from
the photon noise of the images this yields a RA-DEC map of best-fit companion
contrasts cfit and their uncertainties σcfit whose ratio is the photon noise-based
signal-to-noise ratio SNRph. The grid position with the smallest reduced χ2

(obtained from a least-squares routine) is our best-fit companion.

Empirical kernel phase detection limits

If the uncertainties Σθ derived from the photon noise would describe the under-
lying errors correctly (i.e., if all other errors would be negligible) we could simply
classify those best-fit companions whose SNRph > 5 as significant detections.
However, although readout noise and dark current are negligible for our dataset,
there is a lot of higher-order phase noise, which leads to a high SNRph and false
detections for all of our targets (cf., column “SNRph” of Table 3.3). Note that
the kernel phase is independent of pupil plane phase noise only to second order
and higher-order phase noise might be introduced by atmospheric turbulence or
imperfect telescope optics.

Hence, an empirical method is necessary to derive robust detection limits. We
classify the 1/3 of the targets with the highest SNRscaled as candidate detections
and the rest of the targets as calibrators (cf., columns “Can?” and “Cal?” of
Table 3.3). Here, SNRscaled is the photon noise-based SNR scaled by the K-band
magnitude of the object, i.e.,

SNRscaled = SNRph

√
1

10−(K−Kmed)/2.5
, (3.13)

where Kmed is the median K-band magnitude of our targets. This scaling is
motivated by the fact that the brighter objects have higher photon noise-based
SNRs due to smaller uncertainties, but similar quasi-static errors. Then, we
repeat the Karhunen-Loève calibration (only allowing images of objects in the
list of calibrators to be selected as calibrators) and the model fitting. Afterwards,
we compute an empirical detection limit σemp and an empirical signal-to-noise
ratio,

SNRemp =
cfit
σemp

(3.14)

for each of the candidate detections as described in Section 2.4.3 of Kammerer
et al. (2019) and classify a candidate detection as significant, if SNRemp > 5. Note
that this empirical detection limit is based on azimuthally averaging the contrast
maps cfit and therefore is primarily sensitive to point-like emission. Detecting
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Figure 3.5: The 5σ contrast limit for AA Tau (solid curve) and CX Tau (dashed
curve) as a function of separation from the star. This shows, for example, at
a separation of 0.3” from AA Tau, the PSF subtraction method cannot detect
anything less than 1/100 the brightness of the star but kernel phase can achieve
limits of 1/300 the brightness of the star.

extended structure (such as discs) would require a more sophisticated approach,
yielding higher sensitivities.

3.3.5 Comparison of both methods

The 1D contrast plot (given for each separation by averaging around an annulus
of fixed radius) is shown for both the PSF subtraction and kernel phase methods
at the 5σ level for 2 stars: AA Tau and CX Tau in Figure 3.5. As theoretically
expected, Figure 3.5 demonstrates that the kernel phase method outperforms the
PSF subtraction method over its effective range of ∼0.5” and the latter method
is only useful at wider separations. This was the case for all of our targets. Our
contrast limits for both methods indicate that we cannot detect objects fainter
than ∼1/2000 the brightness of the star even at separations of 0.5”, which is
insufficient for the detection of core-accreting giant planets (Wallace & Ireland,
2019).

3.3.6 Significant features from kernel phase analysis

The kernel phase analysis revealed several features, of which we define those with
an empirical SNRemp > 5 as significant detections. This criterion was only met
by V410 Tau, which has a known brown dwarf companion (Ghez et al., 1997).
We detect this known companion with both of our methods (cf., Figure 3.6). The
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Table 3.3: Results of our kernel phase analysis when classifying the 1/3 most significant detec-
tions based on SNRscaled as candidate detections (“Can?”) and the rest as calibrators (“Cal?”)
for the empirical detection method. Candidate detections with an empirical detection signif-
icance SNRemp > 5 are classified as significant detections (“Det?”). K-band magnitudes are
taken from SIMBAD.

Name SNRph SNRscaled Can? Cal? SNRemp Det?
IRAS 04108+2910 25.6 46.9 N Y – N
FM Tau 23.5 32.8 N Y – N
CW Tau 112.8 74.1 N Y – N
FP Tau 23.9 35.0 N Y – N
CX Tau 25.5 36.3 N Y – N
2MASS J04154278+2909597 13.4 24.9 N Y – N
CY Tau 25.2 32.5 N Y – N
V409 Tau 21.3 33.6 N Y – N
V410 Tau 450.3 372.4 Y N 122.7 Y
BP Tau 36.5 31.7 N Y – N
V836 Tau 23.6 30.4 N Y – N
IRAS 04187+1927 131.8 130.5 Y N 4.2 N
DE Tau 144.4 129.2 Y N 2.0 N
2MASS J04221675+2654570 25.0 39.1 N Y – N
FT Tau 33.3 43.0 N Y – N
IP Tau 26.4 30.4 N Y – N
DG Tau 1097.7 677.0 Y N 3.5 N
DH Tau 28.3 30.2 N Y – N
IQ Tau 42.2 37.4 N Y – N
DK Tau 434.7 281.3 Y N 1.8 N
JH 56 10.5 14.8 N Y – N
LkHa 358 52.9 112.8 Y N 2.1 N
HL Tau 433.7 324.3 Y N 4.9 N
HK Tau 38.1 49.1 N Y – N
2MASS J04321540+2428597 85.9 88.2 N Y – N
FY Tau 66.8 67.2 N Y – N
FZ Tau 194.3 141.1 Y N 2.6 N
UZ Tau A 318.8 231.9 Y N 1.4
GI Tau 43.2 40.2 N Y – N
DL Tau 66.9 64.5 N Y – N
HN Tau A 80.4 94.2 N Y – N
DM Tau 11.6 23.0 N Y – N
CI Tau 89.6 79.9 N Y – N
IT Tau 37.6 34.6 N Y – N
AA Tau 175.2 175.6 Y N 2.3 N
DN Tau 46.5 45.9 N Y – N
2MASS J04354093+2411087 80.1 94.9 Y N 1.6 N
HP Tau 79.0 65.2 N Y – N
DO Tau 181.2 129.0 Y N 3.2 N
LkCa 15 117.2 124.0 Y N 3.1 N
JH 223 15.2 29.7 N Y – N
GO Tau 19.4 35.2 N Y – N
DQ Tau AB 58.9 57.3 N Y – N
DR Tau 272.8 159.3 Y N 1.4 N
DS Tau 40.2 40.1 N Y – N
GM Aur 39.6 44.2 N Y – N
MWC 480 1244.7 391.0 Y N 1.6 N
2MASS J05052286+2531312 13.0 54.8 N Y – N
RW Aur A 571.5 357.0 Y N 3.6
V819 Tau 17.1 20.4 N Y – N
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Name Sep. (mas) Pos. Ang. (◦) Contrast
V410 Tau B 332.2± 0.2 144.11± 0.05 0.0542± 0.0004

Table 3.4: Properties of the companion to V410 Tau with uncertainties from the
kernel phase analysis.
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Figure 3.6: Contrast map of V410 Tau using PSF subtraction (left panel) and
kernel phase detection map (right panel). The host star is in the middle of the
images and is removed by both methods. The companion is clearly visible to
the south-east and consistently detected with both methods. In the kernel phase
detection map, V410 Tau B’s position is highlighted with a cyan circle and there
is a residual halo around it which is caused by the limited Fourier coverage and
model redundancies and disappears after subtracting the kernel phase signal of
V410 Tau B from the data.

kernel-phase technique yields very precise constraints on its position and contrast,
obtained from an MCMC fit (cf., Figure 3.7), and its best-fit parameters are listed
in Table 3.4.

Note that, as shown in Table 3.3, HL Tau has a feature with SNRemp = 4.9
so only just falls short of our detection threshold. We believe this to be a feature
of HL Tau’s large protoplanetary disc (ALMA Partnership et al., 2015) and not
a companion.

3.4 Wide separation analysis

Due to a focus on efficient observations at small angles (see Section 3.3.1), these
data were mostly taken in a sub-array readout mode, limiting the field of view.
We further extended our analysis to wider angles which were not covered by
the 192 x 192 pixel cleaned images and analysis shown in Section 3.3.3. At
these separations beyond ∼0.8", point spread function features were almost non-
existent so we could use a more conventional image analysis with a simplified
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Figure 3.7: Corner plot (Foreman-Mackey, 2016) for an MCMC initialized around
the best fit-position for the companion of V410 Tau. The three fitted parameters
are the angular separation ρ, the position angle θ and the contrast c. The MCMC
is computed from the kernel phase using emcee (Foreman-Mackey et al., 2013)
with six random walkers initialized around the best-fit position and a temperature
of f2

err = (σemp/σph)2 = 13.4 ≈ χ2
red, in order to find the best-fit parameters

including their correlated uncertainties by maximizing the log-likelihood of the
binary model (cf. Kammerer et al., 2019).
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point-spread function model.

To clean these full images, our image reduction simply consisted of dividing
by a master flat and correcting bad pixels. The master flat was created from all
dithered observations for a night, using pixels significantly away from detected
objects. Companions were searched for over an (ρ, θ) grid in polar sky coordinates
by performing aperture photometry with a simplified Gaussian PSF model, as
described below. This truncated PSF model enabled searching for companions
closer to the image edge.

For each tested grid point, including the central star (i.e. separation ρ of 0),
we found a least squares solution to the flux F of a model:

dk = B + Fgk, (3.15)

where dk is the data for pixel k over a 16 x 16 pixel grid, gk is a normalised
Gaussian function with width matched to the observed PSF and B the back-
ground. This least-squares flux solution for F is simply given by:

F =
Σk(gk − Σgk/N)dk
Σk(gk − Σgk/N)gk

, (3.16)

where N = 256, the total number of pixels. The uncertainty in pixels k was
simply estimated by the root mean square residuals of the fit, and the uncertainty
in F obtained by standard error propagation assuming independent background-
limited uncertainties for all pixels. These fluxes were converted to contrasts by
dividing by the fitted flux at a separation of 0, and these (ρ, θ) contrast maps
averaged together with inverse variance weighting. Finally, uncertainties were
corrected at each radius ρ to ensure that the median absolute deviation of the
residuals at every radius matched that of a unit Gaussian.

By highlighting features with significance greater than 7σ and removing those
that can be explained by the few residual speckles, we are able to determine the
approximate positions of companions to our targets. The contrast and position
of each companion is calculated by fitting to the original reduced images. We are
able to detect significant companions for 9 of our objects, the properties of which
are listed in Table 3.5.

The companion of DH Tau is the only substellar-mass companion we are able
to detect and our contrast is consistent with other studies such as Kraus et al.
(2013). We also find a high-contrast companion to HK Tau. The fitted contrast
maps for DH Tau and HK Tau are shown in Figure 3.8.

Despite the high contrast of the companion to HK Tau, previous studies
have concluded that it is a stellar-mass companion of similar spectral type to the
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Table 3.5: Properties of fitted companions

Name Separation (”) Position Angle (◦) Contrast (∆m) # Observations
2MASS J04354093 2.11 175.0 1.98±0.01 1
2MASS J05052286 2.35 59.8 2.24±0.01 2
DH Tau 2.35 139.0 5.75±0.02 1
DK Tau 2.39 119.5 1.81±0.01 4
HK Tau 2.25 169.9 5.27±0.02 1
IRAS 04278+2253 1.29 95.9±0.6 2.00±0.02 1
IT Tau 2.43 225.8 1.64±0.01 1
JH 223 2.15 342.2 2.40±0.01 3
RW Aur A 1.49 254.6±0.1 2.42±0.01 2

202
 RA (")

2

1

0

1

2

 D
ec

 ("
)

0.001

0.002

0.003

0.004

0.005

C
on

tra
st

(a) Fitted Contrast Map of DH Tau

202
 RA (")

2

1

0

1

2

 D
ec

 ("
)

0.001

0.002

0.003

0.004

0.005

0.006

0.007

C
on

tra
st

(b) Fitted Contrast Map of HK Tau

Figure 3.8: Contrast Maps of DH Tau and HK Tau with the companions circled.
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Figure 3.9: 5σ contrast curves for all targets including contrast and separation of
detected companions. Each line is our contrast limit for a particular target and
the markers show detected companions. The red circle indicates the companion to
HK Tau. The red vertical line separates the parameter spaces where kernel-phase
and PSF subtraction were applied.

primary and is obscured by an edge-on circumstellar disc (Stapelfeldt et al., 1998).
This circumstellar disc is represented by the elongated shape of the companion.
Although we did not detect any additional brown dwarf mass companions to
our targets, we now have a more complete picture of our contrast limits at wide
separations. These contrast limits are listed in Table 3.6. Figure 3.9 shows
the contrast curves for all targets with the detected companions indicated. The
companion to HK Tau is marked with a red circle and other companions are
marked with blue squares.

Assuming an age of 1Myr for our planets, which is conservative as they may
still be forming in a Class II disc, we converted the contrast into a mass limit using
models from Spiegel & Burrows (2012). For this conversion we need to assume
an appropriate internal entropy for our planets. As mentioned previously, planet
luminosity and internal entropy is highly uncertain but recent models suggest few
Jupiter mass planets have initial entropy no less than ∼10–11 kB/baryon (e.g.
Mordasini, 2013; Berardo et al., 2017; Marleau et al., 2019). The hot-start and
cold-start entropy curves take the form of a ‘tuning fork’ with hot-start entropy
increasing with mass and cold-start entropy decreasing with mass (Marley et al.,
2007). However, since hot-start models are expected to be more likely for high-
mass planets due to the difficulty in radiating away the accretion luminosity for
all but the lowest accretion rates, a reasonable assumption is that the average
entropy is fairly constant at somewhere around 10–11 kB/baryon across the 1–
10MJ range. To keep our model simple, we assume a single value of initial internal
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Table 3.6: Contrast limits for our targets using all three methods.

Contrast Limit (∆m)
Name 0.1” 0.3” 0.5” 0.7” 1” 1.5” 2”
IRAS 04108+2910 5.09 6.03 6.79 6.52 7.40 7.66 7.13
FM Tau 5.49 6.64 7.10 6.85 7.87 7.85 7.67
CW Tau 4.94 7.14 8.41 6.58 9.24 9.82 9.87
FP Tau 5.54 7.06 8.04 7.26 7.93 7.65 7.57
CX Tau 5.84 6.55 8.31 8.06 8.15 7.85 7.64
2MASS J04154278+2909597 5.68 6.02 7.01 6.40 6.35 6.79 6.35
CY Tau 5.29 7.25 8.14 7.57 8.45 7.92 7.25
V409 Tau 5.60 6.78 7.63 7.13 7.68 7.96 7.45
V410 Tau 4.88 3.54 5.60 7.03 5.75 6.53 4.96
BP Tau 5.54 7.51 8.49 7.89 9.43 9.00 8.82
V836 Tau 5.00 6.59 7.43 7.12 8.05 7.98 7.86
IRAS 04187+1927 4.68 6.42 7.84 7.82 8.31 8.82 9.06
DE Tau 4.67 6.70 7.96 7.59 9.02 9.13 8.98
RY Tau 6.01 8.07 9.69 10.10 8.27 9.19 9.47
2MASS J04221675+2654570 5.59 6.39 7.61 7.50 8.39 8.76 8.20
FT Tau 5.61 6.36 7.41 7.20 8.28 8.64 8.17
IP Tau 6.29 7.09 8.16 6.90 7.51 7.27 7.37
DG Tau 3.91 6.26 7.11 6.84 8.30 7.39 9.80
DH Tau 6.05 6.15 7.93 7.62 8.57 8.06 8.47
IQ Tau 6.57 6.49 8.08 7.83 8.89 8.94 8.77
UX Tau 6.34 8.25 8.73 8.99 6.55 6.39 5.97
DK Tau 5.05 6.24 7.71 7.72 8.69 9.11 9.13
IRAS 04278+2253 3.29 4.33 5.13 5.45 6.62 7.43 8.73
JH 56 6.56 7.15 7.64 6.80 7.81 7.73 7.42
LkHa 358 3.92 5.59 6.61 6.94 8.39 7.39 7.58
HL Tau 4.90 6.16 7.37 7.26 8.47 10.36 10.43
HK Tau 5.21 6.57 7.66 7.47 7.29 7.36 7.13
2MASS J04321540+2428597 5.10 6.59 7.56 7.53 8.75 9.60 9.38
FY Tau 5.44 6.77 7.71 8.14 8.92 8.81 8.87
FZ Tau 5.18 6.37 7.23 7.59 9.31 10.15 9.71
UZ Tau A 3.99 5.89 7.01 7.08 9.21 9.62 9.01
GI Tau 5.48 7.23 8.30 7.39 7.41 7.50 8.51
DL Tau 5.20 7.12 8.18 8.04 9.29 9.51 9.21
HN Tau A 5.07 6.47 7.37 7.79 8.70 9.07 8.92
DM Tau 5.51 6.27 6.95 6.85 7.23 7.17 6.83
CI Tau 5.71 7.24 8.05 8.40 9.02 9.36 9.17
IT Tau 4.39 6.15 7.55 7.61 8.64 8.70 8.50
AA Tau 4.99 6.01 7.25 7.33 8.51 8.42 8.16
DN Tau 6.90 7.22 8.05 7.27 9.19 8.99 8.64
2MASS J04354093+2411087 5.21 6.13 6.87 7.63 8.91 9.07 7.51
HP Tau 5.17 6.28 7.89 7.20 6.66 6.11 5.38
DO Tau 4.86 6.05 7.88 7.34 8.62 9.36 9.70
LkCa 15 4.82 6.00 7.54 8.34 7.38 7.36 7.82
JH 223 6.11 6.92 7.36 7.16 7.44 7.10 6.71
GO Tau 5.48 6.81 7.29 6.81 7.53 7.35 7.16
DQ Tau 5.55 7.30 8.04 8.57 9.07 9.18 8.63
DR Tau 4.82 6.32 7.57 7.96 9.14 10.30 10.09
DS Tau 6.12 6.71 7.78 7.52 8.76 8.91 8.84
GM Aur 5.27 6.99 8.25 7.62 8.37 8.07 8.09
AB Aur 6.40 8.58 9.40 9.86 7.75 9.83 9.26
SU Aur 5.72 7.95 9.25 9.75 8.73 8.16 8.09
MWC 480 4.76 6.13 6.81 7.34 8.86 10.34 10.52
2MASS J05052286+2531312 5.00 6.04 6.53 6.59 6.63 6.49 6.84
RW Aur A 4.55 5.92 7.02 7.10 9.06 5.23 10.32
V819 Tau 6.07 7.08 7.92 7.63 8.42 8.36 7.97
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entropy, regardless of mass. Analysis of directly imaged planets indicates β-Pic b,
at the high-mass end of the planet distribution, formed with a minimum entropy
of ∼10.5 kB/baryon (Marleau & Cumming, 2014). We have decided to use this
value to calculate mass limits as it is also close to the average initial entropy of
a 1MJ planet according to Spiegel & Burrows (2012) and can be applied to a
wide temperature range of 500–1500K (Berardo et al., 2017). Using this entropy,
we calculate planet magnitude as a function of mass and age using Spiegel &
Burrows (2012), and thus convert contrast ratio to mass.

Using the stellar masses shown in Table 3.1, this mass limit was also converted
to a mass ratio. This is shown for all targets in Figure 3.10. As shown in
Figures 3.9 and 3.10, the companion to DH Tau is close to the faintest we were
able to detect. Note while the companion to HK Tau is included (shown with
a red circle,) the circumstellar disc reduces its brightness and its true mass is
in the stellar-mass regime (e.g. Jensen & Akeson, 2014), much higher than that
shown in Figure 3.10. The top panel of Figure 3.10 shows that we are able
to detect planetary-mass companions (<13MJ) for most of our targets at wide
separations (>100 au). The lack of new brown dwarf detections from our data
implies these companions are rare at wide separations, providing evidence of
the “brown dwarf desert” described by Marcy & Butler (2000) and Grether &
Lineweaver (2006). The lack of planetary-mass detections allows us to constrain
the maximum frequency of hot-start planets in the TMC.

3.5 The frequency of wide separation massive planets

3.5.1 Total probability of planet detection

Despite our lack of planet detections, Figure 3.10 shows that our limits are suf-
ficient for the detection of young planetary-mass companions for many of our
targets. This opens up the possibility of detecting wide systems analogous to
HR 8799. Combining the contrast limits for all of our targets, we can determine
the likelihood of detecting a planet as a function of mass and semi-major axis. We
apply the same method as Figure 3.10 with an age of 1Myr and initial entropy of
10.5 kB/baryon to convert magnitude to mass using models from Spiegel & Bur-
rows (2012). Using Monte-Carlo sampling, we randomise the system inclination
and planet positions to get a more comprehensive view of our capabilities. This
is shown in Figure 3.11. The HR 8799 planets are shown, as well as the 13MJ

planet-mass threshold.

3.5.2 Comparison with HR 8799 analogues

The result in Figure 3.11 shows that, averaged over all targets, we have a greater
than 80% probability of detecting >10MJ planets at separations beyond 100 au.
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Figure 3.10: Mass and mass ratio limits for all targets. The companion to HK
Tau is again represented by a red circle as the actual mass is assumed to be
higher than shown here. The x-axis on the top shows the angular separation in
arcseconds, obtained from the projected separation in au at an average distance
of 140 pc for Taurus.
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Figure 3.11: Probability of planet detection as a function of mass and semi-major
axis for a planet age of 1Myr and initial internal entropy of 10.5 kB/baryon. The
HR 8799 planets and the planet-mass threshold of 13MJ are also shown.

However, even at the lower mass and separations of an HR 8799 analogue, we
still have a ∼20% chance of detecting this system at an age of 1Myr with an
initial internal entropy of 10.5 kB/baryon. Applying the luminosity curves from
Spiegel & Burrows (2012) to our HR 8799 analogue, we determine the probability
of detecting these planets at ages of 0–3Myr. Our detection probability of the
4 planets around HR 8799 is shown in Figure 3.12.

The curves in Figure 3.12 demonstrate how the planets around HR 8799 cool
and fade over time. When the planets are newly formed, we have a greater than
40% chance of detecting HR 8799 b and c analogues. At an age of 3Myr, we only
have a 30% chance of detecting these planets.

The stars in our sample are believed to have an age of∼2–3Myr, which implies
any planets around our targets are not much older than ∼1Myr. Since no planets
were detected in our sample, we can make a statement on the maximum frequency
of wide and massive systems.

3.5.3 Planet frequency

We use the same method from Vigan et al. (2012) to calculate the maximum
planet frequency in a given range. This method assumes the likelihood of the
data d for a given frequency f is given by

L({di} |f) =

N∏
i

(1− fpi)1−di(fpi)
di , (3.17)
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Figure 3.12: Detection probability of HR 8799 analogues (averaged over all tar-
gets) versus age of the planets. An age of 0 corresponds to the moment the
planets stop accreting.

where N is the number of targets, in our case 55, di is 0 if no planets are detected
and 1 if at least 1 planet is detected. The probability pi is the probability of
detecting planets in a given range assuming an appropriate planet distribution.
We assume a power-law distribution in mass and semi-major axis such that

dNplanets

dlnMdlna
= CMαaβ. (3.18)

We obtain the posterior distribution from Bayes’ theorem:

p(f | {di}) =
L({di} |f)p(f)

1∫
0

L({di} |f)p(f)df

, (3.19)

where p(f) is the priori probability density of the frequency f which we set to
a uniform value of 1. For a given confidence level, the maximum frequency is
obtained using

Confidence =

fmax∫
fmin

p(f | {di})df. (3.20)

We set fmin to 0 and rearrange to find fmax. This value was calculated over a
semi-major axis range of 10–500 au, the same as Figure 3.11, and a mass range of
2–13MJ. Since we did not detect any planets in this range, all of our values of di
will be 0. To obtain our probabilities pi, we try several values for the mass and
semi-major axis power-law indices while keeping the range constant at [2,13]MJ

and [10,500] au. The planet age is again set to be 1Myr and the initial internal
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Figure 3.13: Maximum planet frequency for mass 2–13MJ and semi-major axis
10–500 au at 90% confidence with differing mass and semi-major axis power-law
indices (α and β respectively.)

entropy is 10.5 kB/baryon. The maximum frequency at a 90% confidence level is
shown in Figure 3.13.

As shown in Figure 3.13, the maximum frequency is better constrained at
higher power-law indices but these are considered unlikely power-law indices at
this mass and semi-major axis range. The symmetric power law given by Fer-
nandes et al. (2019) has a mass index of α = −0.45 and a semi-major axis index
of β = −0.95. The study from Bowler & Nielsen (2018) has α = −0.65 and
β = −0.85. Our result shows that less than ∼30% of stars have a planet in this
mass and semi-major axis range if we assume one of these power-law distributions.

Assuming a power-law distribution in which α = −0.5 and β = −1, we also
calculate the dependence of planet frequency on mass and semi-major axis. This
is shown in Figure 3.14 over a mass range of 2–13MJ and semi-major axis range
of 10–500 au at a 90% confidence level. The planets around HR 8799 are also
marked.

The result from Figure 3.14 confirms that massive planets at wide separations
are very rare, occurring around less than 10% of stars. Planets with the mass
and semi-major axis similar to HR 8799 b, c and d are expected to occur around
less than 20% of stars, while analogues to HR 8799 e may be more common, but
we cannot draw a strong conclusion from our results regarding this aspect.
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Figure 3.14: Maximum planet frequency assuming a power law with α = −0.5
and β = −1 at 90% confidence. The white points show the planets around
HR 8799.

3.6 Summary and conclusions

In this work, we have conducted a high-contrast imaging survey of the Taurus
molecular cloud with the aim of finding any massive young planets and planets
in the process of forming. Using the PSF subtraction technique, we achieved
sensitivity to planetary-mass companions outward of ∼ 500 mas. In addition, we
applied the kernel-phase method to increase the sensitivity at small separations
< 500 mas and inward of ∼ 70 au, but our limits remain insufficient for the
detection of young solar-system analogues. For non-accreting planets, our detec-
tion limits were similar to Kraus et al. (2011) at 20 au (∼15MJ median mass
limit), but a factor of 10 deeper in mass at 150 au (∼3MJ median mass limit).
Our probabilities of planet detection as a function of mass and semi-major axis
are broadly comparable to the result from SHINE, the SPHERE infrared survey
(Vigan et al., 2020) which used a larger sample of targets.

The continued lack of new brown dwarf companions at wide separations is
further evidence of the so-called “brown dwarf desert” described by Marcy &
Butler (2000) and Grether & Lineweaver (2006) extending to separations beyond
that probed by radial velocity surveys. We were able to detect several known
wide companions, including the roughly planetary-mass companion DH Tau b
and the circumstellar disc around the companion to HK Tau.

We determined that, if the HR 8799 planets were placed in the TMC at the
appropriate age, we could have detected analogues to HR 8799 b, c, and d around
more than 15% of our targets at an age of 1Myr. Assuming a similar power law
to Fernandes et al. (2019), we find that planets with the mass or semi-major axis



CHAPTER 3 94

of HR 8799 b, c, and d occur around less than 20% of stars. Generalising this
to planets from 2–13MJ at separations 10–500 au, we found that, assuming the
same power law, the planet frequency in this mass and semi-major axis range is
less than 30% at a 90% confidence level. Future instruments such as VIKiNG
on VLTI and METIS on the E-ELT will be required to improve on our detection
limits, to more precisely constrain planet frequency.
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Preamble

In this chapter, we move away from the very high contrast regime toward the very high
angular resolution regime. We will remain in the Taurus star-forming region and study
the famous T Tauri triple star system. The kernel phase technique, combined with
the very high Strehl delivered by the VLT/VISIR-NEAR experiment, will enable us to
obtain photometry of all three components of the T Tauri system, including its southern
binary at a separation of ∼ 0.2–0.3 λ/D. We will use this photometry, together with
data from the literature, to learn more about the multiple misaligned circumstellar and
circumbinary disks in the T Tauri system. Furthermore, this work depicts the first use
of the kernel phase technique in the mid-infrared.

Abstract

T Tauri has long been the prototypical young pre-main-sequence star. However, with
increasing resolution and sensitivity, T Tauri has now been decomposed into a triple
system with a complex disk and outflow geometry. We aim to measure the brightness of
all three components of the T Tauri system (T Tau N, T Tau Sa, and T Tau Sb) in the
mid-infrared in order to obtain photometry around the ∼ 9.7 µm silicate feature. This
allows us to study their variability and to investigate the distribution of dust and the
geometry of circumstellar and circumbinary disks in this complex system. We observe
the T Tauri system with the Very Large Telescope (VLT)/VISIR-NEAR instrument,
performing diffraction-limited imaging in the mid-infrared. With kernel phase inter-
ferometry post-processing of the data, and using the astrometric positions of all three
components from VLT/SPHERE, we measure the three components’ individual bright-
nesses (including the southern binary at an angular separation down to ∼ 0.2 λ/D) and
obtain their photometry. In order to validate our methods, we simulate and recover
mock data of the T Tauri system using the observed reference point-spread function of
HD 27639. We find that T Tau N is rather stable and shows weak silicate emission,
while T Tau Sa is highly variable and shows prominent silicate absorption. T Tau Sb
became significantly fainter compared to data from 2004 and 2006, suggesting increased
extinction by dust. The precision of our photometry is limited by systematic errors in
kernel phase interferometry, which is consistent with previous studies using this tech-
nique. Our results confirm the complex scenario of misaligned disks in the T Tauri
system that had been observed previously, and they are in agreement with the recently
observed dimming of T Tau Sb in the near-infrared. Our mid-infrared photometry sup-
ports the interpretation that T Tau Sb has moved behind the dense region of the Sa-Sb
circumbinary disk on its tight orbit around Sa, therefore suffering increased extinction.
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4.1 Introduction

T Tauri (T Tau) is the historical prototype of a young and accreting low-mass
star. As such, it has provided astronomers with many surprise discoveries over the
past decades. While T Tau was initially believed to be a single star surrounded by
a circumstellar disk (CSD), from which it accretes matter, Dyck et al. (1982) used
near-infrared speckle interferometry to show that it is in fact a binary composed
of an optically bright northern component (T Tau N) and an optically faint
southern component (T Tau S). It was suspected that the optical faintness of T
Tau S is caused by extinction from circumstellar material that hides the southern
component behind gas and dust. Indeed, Ghez et al. (1991) found T Tau S to
be variable at all near-infrared to mid-infrared wavelengths and concluded that
its spectral energy distribution (SED) must be dominated by variable accretion
from a CSD. Five years later, the detection of perpendicular jets expelled from T
Tau N and S supported the theory that T Tau is composed of not one, but two
young and accreting stars (Herbst et al., 1996).

When Koresko (2000) observed T Tau S with the Keck Near-IR Camera
(NIRC) using speckle interferometry, they found that it is itself a tight binary
consisting of T Tau Sa and T Tau Sb, and the detection of significant orbital mo-
tion of T Tau Sa around Sb by Duchêne et al. (2002) implied a high mass ratio
between the two southern components. Their medium-resolution spectroscopy
further revealed that T Tau Sa has a featureless spectrum and that Sb is an
embedded M-type classical T Tauri star (CTTS), suggesting that both southern
components are surrounded by dense material. Later, Kasper et al. (2002) and
Duchêne et al. (2005) found the CSD of T Tau Sa to be oriented edge-on and
attributed the strong optical extinction of ∼ 15 mag around the southern com-
ponents to circumbinary material (e.g., an Sa-Sb circumbinary disk). Duchêne
et al. (2006) identified T Tau Sa to be the most massive component of the triple
system, most likely a young Herbig Ae star, from orbital monitoring.

Around 2005, the triple system was first resolved in the N-band by two teams.
Ratzka et al. (2009) used the Very Large Telescope Interferometer (VLTI) MID-
infrared Interferometric instrument (MIDI) to observe T Tau in November 2004.
They found that the silicate band at 9.7 µm is seen in absorption around both
southern components, which confirmed a high extinction by Sa-Sb circumbinary
material. Moreover, they resolved a small edge-on disk around T Tau Sa, roughly
oriented from north to south. Skemer et al. (2008) used the Multiple Mirror Tele-
scope (MMT) deformable secondary mirror for adaptive optics-assisted imaging
in the mid-infrared in November 2006. The high Strehl ratio and the good point-
spread function (PSF) stability allowed them to resolve the southern binary at
one-third of the classical diffraction limit of a telescope. Their data allowed them
to conclude that the material producing the strong silicate absorption toward
T Tau S is entirely in front of Sa. Later, van Boekel et al. (2010) measured a
very rapid flux increase at 12.8 µm of the unresolved T Tau S binary over just
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four days, which they attributed to an increased accretion rate. Slower variations
could still be well produced by variable extinction, and the most likely scenario
is a combination of both processes.

Through orbital monitoring with the Very Large Telescope (VLT) Spectro-
Polarimetric High-contrast Exoplanet Research instrument (SPHERE), Köhler
et al. (2016) were able to precisely measure the orbits of all three components of
the T Tau system, as well as their masses. They found the masses of T Tau Sa
and Sb to be ∼ 2.12 M� and ∼ 0.53 M�, respectively, using a mass of ∼ 1.83–
2.14 M� for T Tau N (Loinard et al., 2007). Recent near-infrared polarimetry
suggests an Sa-Sb circumbinary disk (CBD) with a size of ∼ 150 mas and a
position angle of ∼ 30 deg (Yang et al., 2018). This would imply that T Tau Sb
is currently moving along its orbit around Sa through the Sa-Sb CBD plane and
should therefore suffer noticeable extinction for the first time since its discovery.
Indeed, T Tau Sb has recently been dimming in the near-infrared (Schaefer et al.,
2020), and Köhler & Kubiak (2020) proposed that this dimming is caused by Sb
passing through the Sa-Sb CBD plane, based on the J–K-band photometry of
the system.

In this paper, we present new mid-infrared (∼ 10 µm) photometry of all three
components of the T Tau system obtained with the VLT Imager and Spectrom-
eter for mid-IR-New Earths in the Alpha Centauri Region instrument (VISIR-
NEAR) using kernel phase interferometry. Our observations were conducted in
December 2019 when the southern binary was separated by only ∼ 64 mas, which
corresponds to ∼ 0.2 λ/D at the longest observed wavelengths. Our data allow
us to study the brightness of the individual components on and off the 9.7 µm
silicate feature as well as their variability. The silicate feature is interesting since
it contains information about the nature of the circumstellar dust and about the
orientation and geometry of the CSDs in this ever-fascinating system.

4.2 Observations

We observed T Tau with the VISIR-NEAR instrument of the European Southern
Observatory’s (ESO) VLT at the summit of Cerro Paranal in Chile. VISIR-
NEAR is mounted on the Cassegrain focus of Unit Telescope 4 (UT4) and consists
of the VISIR instrument (Lagage et al., 2004) plus the NEAR upgrade (Käufl
et al., 2018), which enables mid-infrared imaging with extreme adaptive optics.
Our observations are part of the VISIR-NEAR science demonstration program
60.A-9107(E), PI M. Kasper, and are summarized in Table 4.1.

We acquired data for both T Tau and a PSF reference (HD 27639) in pupil-
tracking mode, at wavelengths of 8.98 µm (filter name ARIII), 9.81 µm (SIV_1),
10.71 µm (SIV_2), and 12.80 µm (NEII). The sky offset between T Tau and
the PSF reference is ∼ 1.3 deg, and the difference in average airmass is ∼ 0.04.
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Table 4.1: Observing log for program 60.A-9107(E). All data were taken on December 16, 2019. Reported are the
number of exposures per chopping position (NDIT), the exposure time (DIT), the number of chopping cycles (Nchop),
the chopping frequency (νchop), the number of frames after averaging (Navg), and the number of good frames (Ngood).

Start time (UT) Object Filter λ [µm] NDIT DIT [ms] Nchop νchop [Hz] Navg Ngood
02:01:24 T Tau NEII 12.80 8 25 66 2.222 10 10
02:08:18 T Tau SIV_1 9.81 9 22 75 2.273 12 6
02:16:51 T Tau SIV_2 10.71 9 22 75 2.273 12 12
02:25:28 T Tau ARIII 8.98 6 80 40 0.893 15 7
03:05:48 HD27639 NEII 12.80 8 25 66 2.222 4 3
03:08:58 HD27639 SIV_1 9.81 9 22 75 2.273 4 2
03:12:26 HD27639 SIV_2 10.71 9 22 75 2.273 8 6
03:28:05 HD27639 ARIII 8.98 6 80 40 0.893 4 2

Atmospheric turbulence was removed almost entirely by the adaptive optics fa-
cility (AOF, Ströbele et al., 2006) of UT4, leaving quasi-static aberrations (such
as chromatic aberrations of the filters) as the dominant systematic error. These
errors can be identified and calibrated by our kernel phase analysis.

4.3 Data reduction

At the time of our observations, the southern binary of the T Tau triple sys-
tem was separated by ∼ 64 mas, which is equivalent to 0.28, 0.26, 0.24, and
0.20 λ/D in the ARIII, SIV_1, SIV_2, and NEII filters, respectively. Such small
separations are very challenging for high-resolution single-dish imaging. Since
VISIR-NEAR is mounted at the UT4, which also hosts the AOF, the instru-
ment achieves extremely high Strehl ratios in the mid-infrared. This makes our
data set ideal for an analysis with the kernel phase technique, which models a
single-dish telescope as an interferometer during the post-processing of the im-
ages. The kernel phase technique relies on a linear relationship between the pupil
plane phase and the Fourier phase of the images, possible only in the high-Strehl
regime. With the known astrometry of the T Tau triple system from observa-
tions at shorter wavelengths, we can use the kernel phase technique to obtain its
photometry in the mid-infrared.

4.3.1 Kernel phase technique

The kernel phase technique was developed by Martinache (2010), who was able
to achieve an angular resolution of ∼ 0.6 λ/D on the known low-contrast binary
GJ 164 with the Near-Infrared Camera and Multi-Object Spectrometer (NIC-
MOS) on the Hubble Space Telescope (HST). Later, Pope et al. (2013) used
the technique to detect brown dwarf companions, also with HST/NICMOS, and
Pope et al. (2016) and Sallum & Skemer (2019) showed that kernel phase should
outperform sparse aperture masking under appropriate seeing conditions long-
ward of ∼ 3 µm from the ground given the reduced sensitivity to sky background
noise. Recently, Kammerer et al. (2019) used the kernel phase technique to detect
eight stellar companions in an archival VLT/Nasmyth Adaptive Optics System
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(NAOS) near-infrared imager and spectrograph (NACO) high-contrast imaging
survey, two of which are below the classical diffraction limit at angular separations
of ∼ 0.8 and ∼ 1.2 λ/D.

The kernel phase technique achieves its high resolution by making use of the
superior calibration capabilities of the Fourier plane phase (i.e., the phase of the
Fourier transform of the image) in the high-Strehl regime. Here, one can linearize
the expression of the Fourier plane phase φ as a function of the pupil plane phase
ϕ, that is,

φ(ϕ) = R−1 ·A · ϕ+ φobj +O(ϕ3), (4.1)

where A is the matrix of a linear map between a pair of pupil plane positions and
their corresponding spatial frequency, R is a diagonal matrix encoding the redun-
dancy of the spatial frequencies, and φobj is the Fourier plane phase of the object
intensity distribution (i.e., of the astronomical source). The first step was to
model the single-dish telescope as an interferometer by discretizing the telescope
pupil onto a grid of so-called subapertures in order to find a simple representation
of matrix A, and our VISIR-NEAR pupil model is shown in Figure 4.1. In the
high-Strehl regime, the higher order pupil plane phase noise O(ϕ3) is negligible
and one can multiply Equation 4.1 with the kernel K of R−1 ·A to obtain the
kernel phase θ, namely,

θ = K · φ = K ·R−1 ·A · ϕ︸ ︷︷ ︸
=0

+K · φobj +O(ϕ3) ≈ θobj. (4.2)

This is a very powerful finding as it means that, to the second order, the kernel
phase measured in the image is directly equivalent to the kernel phase of the
astronomical source.

4.3.2 Basic cleaning

Table 4.1 shows an observing log for program 60.A-9107(E). Each chopping cycle
consists of two chopping positions, at each of which NDIT exposures are saved
and averaged into a single frame by the instrument control software. Then,
for each of the Nchop chopping cycles, we subtracted the two frames from the
different chopping positions from each other in order to remove the mid-infrared
background and averaged that over the Nchop background-subtracted frames;
doing so, we obtained one cleaned frame for each of the Navg observations. We
note that we also nodded along the chopping axis during the observations but
performed no nodding subtraction here for the sake of simplicity.

Next, we found the brightest PSF in the field-of-view (FOV) by looking for
the brightest pixel in the median filtered (3 pixel) frame and cropped the frames
to a size of 128 × 128 pixels around the brightest PSF, which corresponds to an
FOV of 5.792 arcsec2. A more sophisticated sub-pixel re-centering is performed
at a later stage (see Section 4.3.3).
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The detector position angle of each frame was computed as the arithmetic
mean of the “POSANG” and “POSANG END” fits header keywords. This ap-
proximation is feasible since the observing times are short and the field rotation
per fits file is only on the order of 0.25 deg. Unfortunately, the detector position
angle computed from the fits header keywords does not represent the true position
angle of the detector. There is an additional rotation offset ϑ that we determined
from VISIR-NEAR data of the nearby and well-known binary system α Centauri.
With the known astrometry of this binary system, we obtain a rotation offset of
ϑ = 94.02± 0.10 deg and a pixel scale of 45.25± 0.10 mas. The detector position
angle and the rotation offset were both measured clockwise (i.e., west of north),
while the position angle of the companions was measured counterclockwise (i.e.,
east of north), in accordance with the standard convention.

4.3.3 Kernel phase extraction and calibration

To extract the kernel phase from the cleaned frames, we used the XARA1 package
(Martinache, 2010, 2013). XARA requires a discrete pupil model of the VISIR-
NEAR instrument in order to compute the kernel matrix K. Figure 4.1 shows
the VLT Cassegrain pupil (left-hand panel), our discrete pupil model consisting
of 224 subapertures placed on a grid with a spacing of 0.5 m (middle panel), and
the Fourier plane coverage of our discrete pupil model (right-hand panel). The
use of subapertures with a continuous transmission between 0 and 1 (referred
to as gray apertures) helps to significantly minimize residual calibration errors
(Martinache et al., 2020). We note that the pupil is rotated by 81.8 deg clockwise
(west of north, see Figure 4.1) with respect to the detector and we aligned the
grid of subapertures with the pupil in order to obtain a symmetric pupil model
and reduce calibration errors (see Martinache et al., 2020). We determined this
rotation from VISIR-NEAR data of α Centauri, which feature bright diffraction
artifacts from the secondary mirror (M2) support spiders.

XARA first masks the cleaned frames with an exponential windowing function
m (sometimes called super-Gaussian),

m(x, y) = exp

−(√(x− x0)2 + (y − y0)2

r

)4
, (4.3)

with a radius r of 50 pixels (∼ 2.263 arcsec) in order to minimize edge effects
during the Fourier transform, where x and y are the x- and y-coordinates of
the frame and x0 = 64 and y0 = 64 are the coordinates of the center of the
frame. This is equivalent to a Gaussian smoothing in the Fourier plane, and
a value of 50 pixels is large enough to not interfere with the spatial frequencies
measured by the VLT. It then extracts the Fourier plane phase φ from the cleaned

1https://github.com/fmartinache/xara/

https://github.com/fmartinache/xara/
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Figure 4.1: VISIR-NEAR pupil model discretized onto a grid of subapertures for
the kernel phase analysis. Left: VLT Cassegrain pupil with an extended central
obscuration due to the M3 baffle and four thin M2 support struts (“spiders”),
rotated by 81.8 deg clockwise. Middle: Our discrete pupil model consisting of
224 subapertures, spanning 310 distinct baselines with 88 kernel phases. Right:
Fourier plane coverage of our discrete pupil model.

(dither-subtracted) frames using a discrete Fourier transform at the uv-positions
corresponding to the subapertures of our pupil model. Finally, it performs sub-
pixel re-centering in the complex visibility space by multiplying the Fourier phase
φ with a wedge function and computes the kernel phase θ = K · φ. This wedge
function is determined by computing the photocenter of the brightest PSF on an
iteratively shrinking window.

Furthermore, we estimated the kernel phase covariance Σθ based on the pixel-
to-pixel background variance in the cleaned frames. Therefore, we applied the
basis transform

Σθ = B ·Σd ·BT , (4.4)

where
B = K · Im(F )

|F · d · g ·m|
(4.5)

and Σd is the variance frame (see Kammerer et al., 2019). Here, we obtain the
variance frame directly from the frame itself, namely,

Σd = var(d · g) ·m2, (4.6)

where d is the frame itself and g is the gain in photoelectrons per detector count.
We note that we masked out the center of the frame with a circular aperture of
80 pixels (3.620 arcsec) in diameter in order to avoid confusion from the PSF of
T Tau.

Before continuing with the calibration and the model fitting, we made a frame
selection based on the absolute Fourier phase |φ|. We rejected any frame whose
absolute Fourier phase |φ| exceeds 90 deg on at least one of the 310 baselines, that
is to say, vectors connecting two subapertures (see Figure 4.2). This threshold is
chosen empirically and to be sufficiently high so that frames with a high-Strehl
PSF of T Tau are kept (we note that T Tau is a low-contrast triple system and
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Figure 4.2: Frame selection criterion used to reject bad frames that are not suit-
able for a kernel phase analysis. Left: Fourier phase φ as a function of baseline for
an example frame taken with the SIV_1 filter that passes our selection criterion
(|φ| < 90 deg). Right: Same, but for an example frame that does not pass our
selection criterion due to seeing-driven aberrations.

therefore has a nonzero Fourier phase) but that frames suffering seeing-driven
aberrations are rejected. For frames whose absolute Fourier phase |φ| exceeds 90
deg, higher order pupil plane phase errors are large and would add significant
systematic errors. The number of good frames Ngood obtained for T Tau and the
PSF reference for each filter can be found in Table 4.1. The number of rejected
frames can be obtained as the difference between Navg and Ngood.

In order to calibrate the kernel phase, we subtracted the average of the kernel
phase measured on the calibrator from the kernel phase measured on the science
target (see e.g., Martinache, 2010). The corresponding kernel phase covariance
then writes as

Σθ = Σθ,sci +
1

N2
good

Ngood∑
n=1

Σθ,cal,n. (4.7)

4.3.4 Model fitting

With the kernel phase θ and its covariance Σθ, we can perform model fitting
based on likelihood maximization or χ2 minimization. For this, we used a model
of N point sources,

θmod = K · arg

(
N∑
n=1

ξncn exp

(
−2πi

(
∆RA,nu

λ
+

∆DEC,nv

λ

)))
, (4.8)

where ξn is the relative flux of the n-th component (normalized to the total flux),
cn is the complex visibility of the n-th component, ∆RA,n and ∆DEC,n are the sky
offset of the n-th component from the center of the frame, u and v are the Fourier
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u- and v-coordinates of our pupil model, and λ is the observing wavelength. In
case of unresolved point sources (such as is the case for our observations), the
complex visibility cn = 1.

The N-band flux of both T Tau Sa and Sb is entirely dominated by emission
from their CSDs. Both CSDs are tidally truncated by the binary’s orbit, which
has a semi-major axis of ∼ 12.5 au and an eccentricity of ∼ 0.55 (Schaefer et al.,
2020). For such orbital parameters, Artymowicz & Lubow (1994) predict a ratio
of the disk truncation radius to the semimajor axes that would be on the order of
∼ 0.25 (= 3.1 au) for T Tau Sa and ∼ 0.15 (= 1.9 au) for Sb. This corresponds
to angular sizes of 21 mas and 13 mas, respectively, for the CSDs of T Tau Sa and
Sb and is significantly smaller than the diffraction limit at our shortest observing
wavelength of ∼ 230 mas. In addition, the CSDs get warmer and brighter toward
the inner disk rim, with radii of a few tenths of an au (/ 3 mas). Therefore, we
can safely assume that T Tau Sa and Sb are spatially unresolved in our data.

In the following, we used a more intuitive representation fn of the relative
flux of the individual components by normalizing it to the flux of the brightest
component so that f1 = 1 and fn>1 ≤ 1. The ξn are related to the fn according
to

ξn =
fn∑N
n=1 fn

. (4.9)

If we are in the high-contrast regime (ξn>1 � 0.5) and only fit for two com-
ponents, the model can be simplified by linearization (Kammerer et al., 2019)
and by putting the brighter component into the center of the frame (∆RA,1 =
∆DEC,1 = 0). Then, we can solve analytically for the relative companion flux,

ξ2 =
θTref ·Σ

−1
θ · θ

θTref ·Σ
−1
θ · θref

, (4.10)

on an RA-DEC grid, where θref is the binary model (Equation 4.8 for N = 2)
evaluated on an RA-DEC grid and for a small relative reference flux ξ2,ref � 0.5
(see Kammerer et al., 2019). We note that with the T Tau system, we are not
in the high-contrast regime where this simplification holds. Nevertheless, such a
grid search allows us to find a good first guess for the relative companion flux
and its position, which we can then use as an initial position for a least-squares
or a Markov chain Monte Carlo (MCMC) algorithm. Such algorithms directly
minimize the χ2 of the model, that is,

χ2 = RT ·Σ−1
θ ·R, (4.11)

where R = θ− θmod is the residual kernel phase signal between the data and the
model, so that no linearization is necessary.
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4.4 Results and analysis

Our goal is to determine the flux of T Tau Sa and Sb relative to T Tau N in all
four filters. Therefore, we first performed a binary model fit in order to find the
combined flux of T Tau S (i.e., T Tau Sa and Sb) relative to T Tau N. Then, we
performed a triple model fit using half of the combined relative flux of T Tau S as
initial values for the fluxes of T Tau Sa and Sb relative to T Tau N (making the
simple assumption that T Tau Sa and Sb are equally bright; the least-squares or
MCMC algorithm will then find the true flux ratio). We note that for the NEII
filter we proceeded slightly differently since T Tau S, and not T Tau N, is the
brightest component (see Section 4.4.3). Finally, we created mock data with a
range of different fluxes for T Tau Sa and Sb relative to T Tau N and repeated
the triple model fits in order to demonstrate that our kernel phase model fitting
technique correctly reproduces the mock data.

4.4.1 Binary model fits

Figure 4.3 shows the results of our binary model fits to the T Tau system, with
both position and flux left as free parameters, yielding a combined flux of T
Tau S relative to T Tau N of 0.546 ± 0.015 (ARIII), 0.270 ± 0.064 (SIV_1),
0.464± 0.051 (SIV_2), and 1.217± 0.047 (NEII). The position uncertainties are
on the order of ∼ 10 mas, constrained by the astrometric precision of the kernel
phase technique; the best fit position varies slightly from filter to filter, also due to
the changing flux ratio between T Tau Sa and Sb, which shifts the photocenter of
the combined southern component. We note that the NEII data are centered on
T Tau S, which is the brighter component at 12.80 µm. This already reveals some
differences compared to the values reported by Skemer et al. (2008), who found
the combined southern component to be brighter than the northern component
at 8.7 µm (∼ ARIII). At 10.55 µm (∼ SIV_2), our result of a flux ratio of
0.464± 0.051 between the southern and the northern component is more similar
to the value of ∼ 0.57 reported by Skemer et al. (2008), and we find the combined
southern component to only be brighter than the northern component at the
longest wavelength (12.80 µm).

Since T Tau N is fainter than T Tau S at 12.80 µm (NEII), the kernel phase
analysis is slightly more complicated. Therefore, we only report on the analysis
of the ARIII, SIV_1, and SIV_2 data in the following and treat the NEII data
separately in Section 4.4.3. Furthermore, the reduced χ2 of our binary model fits
is larger than one, meaning that we are underestimating the errors. This is in
agreement with previous studies that have shown that the kernel phase technique
is dominated by systematic errors, usually yielding a reduced χ2 between ∼ 1–10
(Martinache et al., 2020; Laugier et al., 2020; Kammerer et al., 2019; Ireland,
2013).
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Figure 4.3: De-rotated and co-added VISIR-NEAR images of the T Tau triple
system and the two-component fit (left-hand column, red circles) and the cor-
responding maps of the reduced χ2 (right-hand column) in the ARIII, SIV_1,
SIV_2, and NEII filters (from top to bottom). In the right-hand panels, the red
circle highlights the best fit position for the companion (here, the companion is
assumed to be the combined PSF of T Tau Sa and Sb). The relative flux f2,
the angular separation ρ2 [mas], and the position angle φ2 [deg] of the best fit
are printed in the left-hand panels, and its reduced χ2 is printed in the right-
hand panels. We note that the NEII data are centered on T Tau S, which is the
brighter component at 12.80 µm.
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4.4.2 Triple model fits

For the triple model fits, we used the known offsets of T Tau Sa and Sb relative
to T Tau N, which are (-648.1 mas N, -188.5 mas E) for T Tau Sa and (-595.6
mas N, -151.4 mas E) for T Tau Sb. We obtained these values from extrapolating
the orbits of the T Tau system from Köhler et al. (2016), which were obtained
from VLT/SPHERE astrometry, for the date of our observations. Their accuracy
is ∼ 1 mas.

Figure 4.4 shows the results of our triple model fits to the T Tau system, with
only the fluxes of T Tau Sa and Sb relative to T Tau N left as free parameters. We
did both a simple minimization based on a Broyden–Fletcher–Goldfarb–Shanno
least-squares algorithm (left-hand panels) and an MCMC fit using emcee2 (Foreman-
Mackey et al., 2013, right-hand panels). In both cases, we used half of the com-
bined relative flux of T Tau S as initial values for the fluxes of T Tau Sa and Sb
relative to T Tau N. Moreover, we restricted the search space to 0 ≤ f2,3 ≤ 1
and normalized the log-likelihood function minimized with the MCMC algorithm
by a temperature equal to the reduced χ2 of the best fit triple model (see the
left-hand panels of Figure 4.4) in order to artificially inflate the uncertainties.
As can be seen in the corner plots, there is a strong anti-correlation between the
relative fluxes of T Tau Sa and Sb caused by the fact that their combined flux is
constrained by the data. Furthermore, T Tau Sb is fainter than T Tau Sa in all
three filters, which is similar to the results from Skemer et al. (2008), and it is
consistent with providing zero flux at 9.81 µm.

Since we estimated the accuracy of the fixed VISIR-NEAR position angle
offset ϑ determined from α Centauri data to be ∼ 0.10 deg, we repeated the
MCMC fit with ϑ and the fluxes of T Tau Sa and Sb relative to T Tau N as
free parameters, simultaneously for the ARIII, SIV_1, and SIV_2 data (see
Figure 4.5). This approach allows us to explore the entire parameter space and
to assess the errors originating from the uncertainty in the position angle offset ϑ.
The results are similar to when the position angle offset ϑ is fixed and each filter
is fitted separately, with similar uncertainties, suggesting that the uncertainty
in the position angle offset ϑ does not significantly limit our precision. We note
that the best fit position angle offset ϑfit = 94.07 ± 0.02 is consistent with our
assumption of ϑprior = 94.02± 0.10 that is based on α Centauri data.

Finally, we repeated the simultaneous triple model fits while varying the po-
sition offsets of T Tau Sa and Sb by ±1 mas in order to empirically estimate
the errors originating from the ∼ 1 mas uncertainty in these offsets. Again, we
find similar results within the uncertainties, suggesting that the uncertainty in
the position offsets of T Tau Sa and Sb does not significantly limit our precision
either.

2https://github.com/dfm/emcee

https://github.com/dfm/emcee


CHAPTER 4 108

20001000010002000
E <-- RA [mas]

2000

1000

0

1000

2000

DE
C 

[m
as

] -
->

 N

0

2

4

6

8

Counts 0.25

f2 = 0.53471+0.00300
0.00285

0.5
25

0.5
30

0.5
35

0.5
40

f2

0.0
08

0.0
12

0.0
16

0.0
20

f 3

0.0
08

0.0
12

0.0
16

0.0
20

f3

f3 = 0.01346+0.00255
0.00269

20001000010002000
E <-- RA [mas]

2000

1000

0

1000

2000

DE
C 

[m
as

] -
->

 N

0

1

2

3

4

5

Counts 0.25

f2 = 0.26552+0.00415
0.00544

0.2
4

0.2
5

0.2
6

0.2
7

f2

0.0
1

0.0
2

0.0
3

0.0
4

f 3

0.0
1

0.0
2

0.0
3

0.0
4

f3

f3 = 0.00558+0.00655
0.00404

20001000010002000
E <-- RA [mas]

2000

1000

0

1000

2000

DE
C 

[m
as

] -
->

 N

0

1

2

3

4

5

6

7

8

Counts 0.25

f2 = 0.40598+0.00341
0.00307

0.3
95

0.4
00

0.4
05

0.4
10

0.4
15

f2

0.0
48

0.0
56

0.0
64

0.0
72

f 3

0.0
48

0.0
56

0.0
64

0.0
72

f3

f3 = 0.06337+0.00404
0.00425

Figure 4.4: De-rotated and co-added VISIR-NEAR images of the T Tau triple
system and the three-component fit (left-hand column, red circles) and the cor-
responding MCMC corner plots (Foreman-Mackey, 2016, right-hand column) in
the ARIII, SIV_1, and SIV_2 filters (from top to bottom).
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Figure 4.5: Corner plot (Foreman-Mackey, 2016) of an MCMC fit of the kernel
phase triple model with the rotation offset φ and the relative fluxes of T Tau Sa
(f2) and Sb (f3) as free parameters, simultaneously for the ARIII, SIV_1, and
SIV_2 data.
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Figure 4.6: Same as Figure 4.4 but for the NEII filter and with the relative fluxes
of T Tauri N (f2) and Sb (f3) as free parameters.

4.4.3 NEII data

In the NEII data, at 12.80 µm, the southern binary of the T Tau triple system
is separated by only 0.2 λ/D. Moreover, it is brighter than T Tau N, so we had
to center the frames on T Tau S before extracting the kernel phase (only if the
brightest PSF is in the center of the frames can we avoid the Fourier phase φ
wrapping around ±π and leading to discontinuities and a corrupt kernel phase
θ).

In order to perfectly center the frames on T Tau Sa, we first used XARA’s sub-
pixel re-centering routine to center the frames on T Tau N. We then computed
the exact shift that we have to apply to the frames in order to put T Tau Sa
into the center. This is possible because we know its (∆RA,∆DEC) offset from
VLT/SPHERE astrometry. Directly centering on T Tau Sa is impossible since
its PSF is unresolved with the PSF of T Tau Sb; as such, XARA’s re-centering
routine would only find the combined photometric center of T Tau Sa and Sb.
Then, we proceeded similarly to how we treated the ARIII, SIV_1, and SIV_2
data and fit the kernel phase binary and triple models to the data. However, for
the triple model fits, the offsets of T Tau N and Sb relative to the center of the
frames (i.e., T Tau Sa) are now (648.1 mas N, 188.5 mas E) and (52.5 mas N,
37.1 mas E).

Our triple model fit results are shown in Figure 4.6. We note that there is now
a positive correlation between the relative fluxes of T Tau N and Sb since they
are both measured relative to the same PSF of T Tau Sa and are well resolved
from each other.
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4.4.4 Mock data

In order to validate our approach, we created mock data of the T Tau system and
tried to recover it using our kernel phase model fitting techniques. Therefore, we
used the calibrator HD 27639 as a reference PSF. Then, we shifted, normalized,
and co-added this reference PSF so that it models the three components of the T
Tau system. For each filter, we modeled one system with the observed flux ratios
and three more systems with T Tau Sa/Sb flux ratios of 0.5/0.5, 0.75/0.25, and
0.9/0.1 (T Tau Sa/Sb flux ratios of 1/0.5, 1/0.25, and 1/0.1 for the NEII filter).
In all scenarios, the combined flux of T Tau Sa and Sb relative to T Tau N (the
flux of T Tau N for the NEII filter) is equal to the value that we obtained from
the binary model fit (see Figure 4.3). We applied the kernel phase technique to
the mock data in exactly the same fashion as we did to the real data (e.g., a
different re-centering method for the ARIII, SIV_1, and SIV_2 data compared
to the NEII data). We note that since we created the mock data by shifting,
normalizing, and co-adding real data of HD 27639, it features realistic random
and systematic noise components with values similar to that of the science target.

Table 4.3 reports the simulated and recovered relative fluxes for all scenarios
and the ARIII, SIV_1, SIV_2, and NEII filters. The initial values for f2 and f3

were always set to half of the combined flux of T Tau S relative to T Tau N. We
note that for the NEII filter, the relative flux of T Tau Sa is fixed to one and we
are fitting for the relative fluxes of T Tau N and Sb.

In most cases, the recovered relative fluxes are consistent with the simulated
ones within two sigma, and in all cases within three sigma. Given that the fits
with mock data do not account for systematic errors and that our covariance
model underestimates the uncertainties (see Section 4.4.1), differences of two to
three sigma are expected. This leads us to the conclusion that the photometry
obtained from our kernel phase model fitting techniques is reliable down to angu-
lar separations of ∼ 0.2 λ/D (that is the angular separation of T Tau Sa and Sb
at the longest wavelength in the NEII filter). However, it is also clear that our
techniques are limited by systematic errors, and not the uncertainty in the fixed
position angle offset ϑ or the (∆RA,∆DEC) offset of T Tau Sa and Sb relative
to T Tau N obtained from VLT/SPHERE astrometry. This can be concluded
from the relatively large discrepancies between the simulated and recovered fluxes
when compared to the uncertainties predicted by the MCMC fit, which accounts
for the largest statistical noise (photon noise). Hence, we empirically estimated
the uncertainties of the relative fluxes from the observed differences between the
simulated and recovered values for the mock data (see Table 4.2). We adapted
a conservative uncertainty of σemp = 0.02 for the ARIII, SIV_1, and SIV_2
filters, given that all observed differences fall within this range, and a slightly
larger uncertainty of σemp = 0.03 for the NEII filter, given the slightly larger ob-
served differences due to the longer wavelength and the different data reduction
approach.
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Table 4.2: Best fit relative fluxes of the T Tau system from an MCMC fit of the
kernel phase triple model to the VISIR-NEAR data. We also report an empirical
uncertainty (σemp) for the relative fluxes (see Section 4.4.4) as well as the final
photometry of T Tau N, Sa, and Sb in all filters.

Filter λ [µm] Star Rel. flux σemp Flux [Jy]
ARIII 8.98 N 1.000 0 8.12± 0.13

ARIII 8.98 Sa 0.535+0.003
−0.003 0.02 4.34± 0.11

ARIII 8.98 Sb 0.013+0.003
−0.003 0.02 0.10± 0.08

SIV_1 9.81 N 1.000 0 9.81± 0.16

SIV_1 9.81 Sa 0.266+0.004
−0.005 0.02 2.68± 0.07

SIV_1 9.81 Sb 0.006+0.007
−0.004 0.02 0.02± 0.05

SIV_2 10.71 N 1.000 0 10.04± 0.19

SIV_2 10.71 Sa 0.406+0.003
−0.003 0.02 4.05± 0.13

SIV_2 10.71 Sb 0.063+0.004
−0.004 0.02 0.66± 0.10

NEII 12.80 N 0.905+0.009
−0.010 0.03 9.63± 0.43

NEII 12.80 Sa 1.000 0 10.64± 0.42

NEII 12.80 Sb 0.116+0.012
−0.012 0.03 1.23± 0.32

4.4.5 Photometry

The final photometry of T Tau N, Sa, and Sb was computed from the kernel phase
relative fluxes and the PSF photometry with an aperture of 70 pixels in diameter
on the cleaned frames of T Tau and HD 27639 (the calibrator). HD 27639 is
part of the VISIR3 photometric standards list, from which we adapted fluxes
of 14.9 ± 0.3 Jy (ARIII), 13.1 ± 0.3 Jy (SIV_1), 11.3 ± 0.3 Jy (SIV_2), and
8.7±0.3 Jy (NEII) with conservative uncertainties. Our final photometry for the
T Tau system, using the results from Figures 4.4 and 4.6 for the relative fluxes,
is reported in Table 4.2 and shown in Figure 4.7.

4.5 Discussion

Figure 4.7 shows the photometry of T Tau N, Sa, and Sb in the mid-infrared over
a period of ∼15 years. All three components were resolved with VLTI/MIDI
interferometry in November 2004 (Ratzka et al., 2009), with the MMT Mid-
IR Array Camera 4 (MIRAC4) using high-contrast imaging in November 2006
(Skemer et al., 2008), and VLT/VISIR-NEAR kernel phase interferometry (this
work) in December 2019.

The SED of T Tau N is quite stable over time, within the uncertainties, and
3http://www.eso.org/sci/facilities/paranal/instruments/visir/tools/zerop_

cohen_Jy.txt

http://www.eso.org/sci/facilities/paranal/instruments/visir/tools/zerop_cohen_Jy.txt
http://www.eso.org/sci/facilities/paranal/instruments/visir/tools/zerop_cohen_Jy.txt
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Figure 4.7: Photometry of T Tau N (blue curves), Sa (orange curves), and Sb
(green curves) from ∼ 8–13 µm. There are VISIR-NEAR data from December
2019 (solid curves, this work), MMT data from November 2006 (dashed curves,
Skemer et al., 2008), and MIDI data from November 2004 (dotted curves, Ratzka
et al., 2009).

confirms the consistent photometry typically obtained from this star. We also
confirm the detection of weak silicate emission (Ghez et al., 1991; Ratzka et al.,
2009), which suggests the presence of a face-on CSD around T Tau N. Detailed
modeling of this CSD performed by Ratzka et al. (2009) constrained the disk
inclination to . 30 deg, which is consistent with recent sub-mm observations
with ALMA yielding a disk inclination of 28.3 ± 0.2 deg (Manara et al., 2019).
Instead, the SED of T Tau Sa varies by up to a factor of four over the N-band, with
our measurement falling approximately in between the values reported by Skemer
et al. (2008) and Ratzka et al. (2009) at the shorter wavelengths. However, our
12.8 µm flux falls significantly below the N-band fluxes measured in October 1990
(17.1± 2.3 Jy) and February 2008 (12.1–16.7 Jy) by Ghez et al. (1991) and van
Boekel et al. (2010), respectively. So, while T Tau Sa is currently rather bright in
the near-infrared (Schaefer et al., 2020) when compared to the 2004–2006 period,
its N-band brightness is average at best. This is the well-known "bluer when
brighter" behavior typical for extinction, but it is also consistent with variable
accretion from a small edge-on CSD around T Tau Sa (van Boekel et al., 2010).
Variability in the ∼ 9.7 µm silicate feature has also been observed for other
strongly accreting CTTSs, such as CW Tau, DG Tau, and XZ Tau (Leisenring
et al., 2007).

For T Tau Sa, we also detect the silicate absorption feature known to exist
in the 10 µm spectral region around the southern component (Ghez et al., 1991).
This feature was later shown to arise from extinction toward T Tau Sa and Sb,
but with a greater optical depth toward Sa (Ratzka et al., 2009). As pointed
out by these authors, this difference in extinction must have been rather local
given the small projected separation between T Tau Sa and Sb of ∼ 0.1 arcsec or
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Figure 4.8: Schematic of the T Tau S binary system with its circumbinary disk.
The observed positions of T Tau Sb are shown by blue dots whose size indicates
the observed near-infrared brightness of the companion. CM indicates the center
of mass of the T Tau S binary, which is close to the position of the more massive
component T Tau Sa. The yellow and orange ellipses with an inclination of 60 deg
and a position angle of 30 deg show the thin extended and the dense inner part
of the circumbinary disk. Adapted from Köhler & Kubiak (2020).

∼ 15 au, and they attributed it to silicate absorption caused by the outer parts
of T Tau Sa’s CSD. However, van Boekel et al. (2010) showed that Sa’s tidally
truncated small disk should be warm enough even in its outer parts to produce
silicate emission, including when seen edge-on. Therefore, additional extinction
caused by, for example, the southern CBD is necessary to explain the SED of T
Tau Sa.

In contrast to T Tau Sa, our data show a significant dimming of T Tau Sb
when compared to the 2004–2006 period. The effect is most prominent around
the silicate feature, where Sb has been dimming by at least a factor of five or
∼ 2 mag (see Figure 4.7). This is consistent with the current K-band dimming
of ∼ 2–2.5 mag observed over the same period (Schaefer et al., 2020) and enables
us to infer an upper limit on the dust size by considering standard dust models
(see e.g., Kruegel & Siebenmorgen, 1994) with a size distribution of n(a) ∼ a−3.5

(Mathis et al., 1977), which predict a bell-shaped silicate feature with a maximum
near 9.7 µm. For these, the larger the maximum grain size to cut the power-law
distribution is set, the wider and shallower the silicate feature becomes. For a
maximum grain size well below 1 µm, which is typical for interstellar dust not
processed in the dense inner regions of CSDs, the dust opacity around 10 µm
would be similar to that in the K-band, and therefore the extinction would also
be similar.
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Köhler & Kubiak (2020) proposed that T Tau Sb has now moved along its or-
bit around Sa through the southern CBD and consequently suffers increased dust
extinction. The Sa-Sb CBD is aligned roughly north to south, with an inclination
of ∼ 60 deg and a position angle of ∼ 30 deg (cf. Figure 4.8). Therefore, T Tau
Sb was located behind the dense inner region of the Sa-Sb CBD, which extents
out to ∼ 150 mas (Yang et al., 2018) from the center of mass (∼ T Tau Sa),
at the time of our observations. Our photometry thus serves as evidence for in-
creased dust extinction toward T Tau Sb caused by its orbital motion through the
southern CBD and confirms the scenario proposed by Köhler & Kubiak (2020).
Another possible explanation would be a cloud of dust entering the observing
beam in front of T Tau Sb. Such a clumpy structure would be motivated by the
strong outflows and turbulence observed in the T Tau system (e.g., Kasper et al.,
2016). However, since T Tau Sb was already observed to be faint by Koresko
(2000) in data from 1997 (when it was on the opposite side of T Tau Sa; see
Figure 1 of Köhler & Kubiak, 2020), it seems more likely that the Sa-Sb CBD is
responsible for its dimming.

Comparing our mid-infrared photometry from December 2019 to that from
November 2006 and 2004, we see the silicate absorption variability of T Tau Sb
that was introduced by its passage through the southern CBD, but we do not
claim variability of T Tau Sa’s silicate feature. We note that van Boekel et al.
(2010) measured variability at 12.8 µm (i.e., not in the silicate feature) of the
unresolved T Tau S binary over just a few days and attributed this to variable
accretion, where UV emission is reprocessed by the disk and shows up in the mid-
infrared. These authors also modeled T Tau Sa’s truncated CSD and found that
they cannot reproduce silicate absorption by the CSD alone (instead, Sa’s small
and warm CSD always shows silicate in emission) and that foreground extinction
by cold dust (e.g., by the CBD) is therefore needed.

4.6 Conclusions

In this paper, we measure the brightness of all three components of the iconic
T Tau system in the mid-infrared, around ∼ 10 µm, in order to perform pho-
tometry and study the variability caused by its dynamic and dusty environment.
We confirm weak silicate emission around T Tau N, indicating a face-on CSD,
and strong silicate absorption around T Tau Sa, consistent with extinction by
southern circumbinary material (e.g., van Boekel et al., 2010). For T Tau Sb,
we observe a dimming over the entire ∼ 8–13 µm spectral range when compared
to data from 2004 and 2006, which is in agreement with recent dimming in the
near-infrared (K-band) observed by Schaefer et al. (2020).

The dimming of T Tau Sb observed over a wide spectral range (near- to
mid-infrared) is consistent with Sb having moved behind the dense inner region
of the Sa-Sb CBD, resulting in increased dust extinction. Therefore, we can
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confirm the scenario proposed by Köhler & Kubiak (2020) and the Sa-Sb CBD
geometry derived by Yang et al. (2018), which, together with previous works
(e.g., Duchêne et al., 2002; Skemer et al., 2008; Ratzka et al., 2009), strengthen
the evidence for a significant misalignment between the CBD and the T Tau Sa
CSD. Most surprisingly, these disks are also misaligned with the orbit of T Tau
Sb around Sa and T Tau Sb’s non-edge-on disk, regardless of their small physical
separation of ∼ 15 au. At such small separations, tidal forces should align them
within short timescales (Ratzka et al., 2009), challenging star-formation models
and suggesting that multiple star formation can be turbulent (e.g., Whitworth,
2001; Jensen et al., 2004).

At angular separations down to ∼ 0.2 λ/D, we use kernel phase interfer-
ometry (Martinache, 2010) together with the known positions of T Tau N, Sa,
and Sb (Köhler et al., 2016) to robustly determine their brightnesses. We vali-
date our methods by simulating and recovering mock data of the T Tau triple
system using the observed PSF reference. We find that kernel phase interferome-
try, applied to high-Strehl images in the mid-infrared, is a powerful technique to
achieve the highest possible angular resolution with single-dish telescopes. The
adaptive optics-corrected VISIR-NEAR instrument provides a unique opportu-
nity to perform such observations from the ground, while kernel phase will also
find increased application in space-based observations with the James Webb Space
Telescope (e.g., Ceau et al., 2019).
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Preamble

In the previous three chapters, we have used the kernel phase technique for high-contrast,
high-angular resolution imaging from the ground. We have learned that this interfer-
ometric technique is affected by large systematic errors, and we have tried to mitigate
these by estimating the correlated errors and developing a principle component-based
self-calibration approach for example. In this chapter, we will transfer the study of
the correlated errors to long-baseline optical interferometry. With the same goal of
improving the faint-source detection limits, we will model the correlated errors of the
VLTI/GRAVITY instrument. We will then show that our error correlation model im-
proves the detection limits by a factor of ∼ 2, and that commonly used detection criteria
based on χ2 statistics become significantly more robust (i.e., yield significantly fewer false
positive detections) when accounting for the correlated errors.

Abstract

Interferometric observables are strongly correlated, yet it is common practice to ignore
these correlations in the data analysis process. We develop an empirical model for
the correlations present in Very Large Telescope Interferometer GRAVITY data and
show that properly accounting for them yields fainter detection limits and increases
the reliability of potential detections. We extracted the correlations of the (squared)
visibility amplitudes and the closure phases directly from intermediate products of the
GRAVITY data reduction pipeline and fitted our empirical models to them. Then, we
performed model fitting and companion injection and recovery tests with both simulated
and real GRAVITY data, which are affected by correlated noise, and compared the
results when ignoring the correlations and when properly accounting for them with our
empirical models. When accounting for the correlations, the faint source detection limits
improve by a factor of up to ∼ 2 at angular separations > 20 mas. For commonly used
detection criteria based on χ2 statistics, this mostly results in claimed detections being
more reliable. Ignoring the correlations present in interferometric data is a dangerous
assumption which might lead to a large number of false detections. The commonly used
detection criteria (e.g. in the model fitting pipeline CANDID) are only reliable when
properly accounting for the correlations; furthermore, instrument teams should work on
providing full covariance matrices instead of statistically independent error bars as part
of the official data reduction pipelines.
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5.1 Introduction

With the first detection and characterisation of an exoplanet by the Very Large
Telescope Interferometer (VLTI) instrument GRAVITY (HR 8799 e, Gravity Col-
laboration et al., 2019), infrared interferometry has proven to be a powerful tech-
nique for high-contrast imaging at high angular resolution. Although initially
designed for observations of the galactic centre (Bartko et al., 2009), GRAVITY’s
dual-feed mode combined with the recently installed integrated optics beam com-
biner (Perraut et al., 2018) enable spectroscopy and micro-arcsecond astrometry
of exoplanets with a wide range of angular separations (Gravity Collaboration
et al., 2019).

More recently, Gravity Collaboration et al. (2020) have used GRAVITY ob-
servations of β Pic b in order to derive reliable estimates for the mass and the
C/O ratio of the young giant planet using forward modelling and free retrieval of
its atmosphere. In the future, infrared interferometry will be a promising oppor-
tunity for studying giant planet formation (e.g. with Hi-5, Defrère et al., 2018)
and potentially even characterising terrestrial exoplanets from space (e.g. with a
formation-flying nulling interferometer, Léger et al., 1996; Mennesson & Mariotti,
1997; Kammerer & Quanz, 2018; Quanz et al., 2018, 2019). However, significant
improvements are required on the technical side (e.g. kernel nulling, Martinache
& Ireland, 2018), in addition to on the data reduction side in order to achieve
these ambitious goals.

Because they use the dual-feed mode of GRAVITY, the aforementioned ob-
servations are not conducted anywhere close to the diffraction limit of the in-
terferometer, but rather the diffraction limit of a single telescope. Detecting a
companion within the interferometer’s diffraction limit (a few λ/bmax), where λ
is the observing wavelength and bmax is the longest baseline of the interferometer,
is limited by systematic errors. While such systematic errors that are introduced
by instrumental and atmospheric effects have been studied intensively (e.g. im-
perfect fibre coupling, Kotani et al. 2003; instrument vibrations, Le Bouquin
et al. 2011; differential atmospheric piston; Colavita 1999), correlations are also
introduced by the data reduction and the calibration. For instance, a systematic
error might be introduced similarly to all complex visibilities measured on the
science target if the instrumental transfer function obtained from the calibrator
target is affected by unknown variability (Perrin, 2003) and if the closure phases
measured over telescope triplets of closing triangles are not mathematically in-
dependent (Monnier, 2007). Nevertheless, most data reduction pipelines (e.g.
the PIONIER data reduction pipeline, Le Bouquin et al. 2011; the GRAVITY
data reduction pipeline, Lapeyrere et al. 2014) and model fitting routines (e.g.
LITpro1, Tallon-Bosc et al. 2008; CANDID2, Gallenne et al. 2015) assume sta-

1https://www.jmmc.fr/english/tools/data-analysis/litpro
2https://ascl.net/1505.030

https://www.jmmc.fr/english/tools/data-analysis/litpro
https://ascl.net/1505.030
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tistically independent observables. However, in order to robustly detect faint
companions, or place upper limits on their brightness, a solid understanding and
description of the systematic errors is inevitable.

While Lachaume et al. (2019) proposed to use the bootstrapping method (i.e.
sampling with replacement, Efron & Tibshirani, 1986) in order to obtain the
multivariate probability density function of the squared visibility amplitudes and
the closure phases, Gravity Collaboration et al. (2020) extracted the covariances
of the complex visibilities directly from the data. Although the bootstrapping
method is computationally expensive, it enables estimating the systematic er-
rors not only between the different spectral channels, baselines and triangles, but
also between different observations. This enables accounting for correlations in-
troduced by sky rotation or the calibration method, but is only applicable at a
higher level when the structure of the observing sequence is known.

In this paper, we follow a similar approach to Gravity Collaboration et al.
(2020) by extracting the correlations between the squared visibility amplitudes
and the closure phases directly from the data. Then, we develop an empirical
model for these correlations which can be fitted to the correlations extracted from
single GRAVITY pipeline products, even if only a small number of measurements
is available. This enables the attainment of a systematic error estimate for every
GRAVITY data set and could ultimately be included in the GRAVITY data
reduction pipeline (Lapeyrere et al., 2014).

5.2 Methods

In Section 5.2.1 we show how we extract the correlations from individual GRAV-
ITY pipeline products and describe their nature. In Section 5.2.2 we introduce
our empirical model for these correlations and in Section 5.2.4 we present the
model fitting routines with the aid of which we show the improvements that
come from using our empirical correlation model. The Python code that we
developed in the scope of this paper is publicly available on GitHub (https:
//github.com/kammerje/InterCorr).

5.2.1 Correlations extracted from GRAVITY data

In order to extract the correlations between the different spectral channels, base-
lines and triangles from GRAVITY data we use the P2VM-reduced files from the
GRAVITY data reduction pipeline. These files are intermediate pipeline prod-
ucts which contain the individual measurements (detector read-outs) before they
are averaged together. Having access to the individual measurements enables ex-
tracting the correlations from the (complex) coherent flux VISmbλ which is stored
in the P2VM-reduced file as a data cube of shapeM ×B×Λ, where m = 1..M is

https://github.com/kammerje/InterCorr
https://github.com/kammerje/InterCorr
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the number of individual measurements, b = 1..B is the number of baselines and
λ = 1..Λ is the number of spectral channels. From the coherent flux, we compute
the squared visibility amplitudes

VIS2mbλ =
|VISmbλ|2

F1F2mbλ
, (5.1)

where F1F2mbλ is the product of the total fluxes, and the closure phases

T3mtλ = K · ∠VISmbλ, (5.2)

where t = 1..T is the number of triangles, K is a stack of M matrices k which
encode how the four unique triangles can be formed from the six unique baselines
of the VLTI, that is

k =


1 −1 0 1 0 0
1 0 −1 0 1 0
0 1 −1 0 0 1
0 0 0 1 −1 1

 , (5.3)

and ∠ denotes the argument of a complex number (i.e. the phase).

Then, we compute the sample covariance of the squared visibility amplitudes
and the closure phases according to

(ΣX)ij =
1

M − 1

M∑
m=1

(Xmi − X̄i)(Xmj − X̄j), (5.4)

where X is VIS2/T3 and i and j run over 1..BΛ/1..TΛ so that we obtain covari-
ance matrices of shape (BΛ) × (BΛ)/(TΛ) × (TΛ) that contain the covariances
between the different spectral channels and baselines/triangles. X̄ denotes the
mean of X over the individual measurements, that is

X̄i =
1

M

M∑
m=1

Xmi. (5.5)

The correlations between the VIS2 and the T3 then follow by dividing the co-
variances by the standard deviation σi =

√
Σii of the corresponding observables,

that is
(CX)ij =

(ΣX)ij
(σX)i(σX)j

. (5.6)

The diagonal of the covariance matrix Σ equals the square of the standard devi-
ation and that the diagonal of the correlation matrix C equals one by definition.

For developing an empirical correlation model we use data taken with GRAV-
ITY (Gravity Collaboration et al., 2017) at the Very Large Telescope Interfer-
ometer (VLTI) during technical time (programme 60.A-9801(U)). GRAVITY op-
erates in the K-band (2.0–2.4 µm) and combines the light from either the four
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Unit Telescopes (UTs) or the four Auxiliary Telescopes (ATs) of the VLTI in
order to perform interferometric imaging and astrometry by phase referencing3.
The data used here was taken with the four UTs on the object HD 82383 (ζ Ant
B) in single-field medium resolution (R = λ/∆λ ≈ 500) mode. This object is
relatively bright (K-band magnitude of 6.698, cf. SIMBAD4), hence the short
integration time of 0.85 ms for the fringe tracker and 1 s for the science camera.
It has a companion at an angular separation of ∼ 8 arcsec (cf. WDS5) which is
well beyond the interferometric field-of-view. By choosing a bright target with
a short exposure time we make sure that there is a sufficient number of frames
to compute the sample covariance (cf. Equation 5.4). The short exposure time
of the fringe tracker (much less than the atmospheric coherence time t0, which
is typically ∼ 20 ms in the K-band, Kellerer & Tokovinin, 2007) and spatially
filtered nature of the GRAVITY beam combiner means that the fringe tracker
data is less affected by systematic errors than many other beam combiners. We
extract the correlations from a single P2VM-reduced file (GRAVI.2019-03-29T02-
01-37.193_singlecalp2vmred.fits) in order to demonstrate the direct applicability
of our method to the GRAVITY data reduction pipeline. Correlations extracted
from other P2VM-reduced files of the same program can be found in the Ap-
pendix (Figure 5.8).

Figure 5.1 shows the correlations of the VIS2 (left panel) and the T3 (right
panel) for the GRAVITY fringe tracker. There are six different baselines and
four different triangles with five spectral channels each, so 30 observables for the
VIS2 and 20 observables for the T3 in total. Correlations within the same base-
line/triangle are highlighted with red squares and correlations between baselines
having a telescope in common are highlighted with orange squares.

The most dominant correlations of the VIS2 are between different spectral
channels within the same baseline, with neighbouring spectral channels being
affected most strongly. We suspect that these correlations are predominantly of
both atmospheric or instrumental origin, since all five spectral channels follow
the same optical path through the atmosphere and up to the dispersive element
behind the beam combiner and before the science camera. Also, the five spec-
tral channels do not correspond to individual pixels on the detector of the fringe
tracker. In fact, the wavelengths of the five spectral channels lie somewhere be-
tween the wavelengths corresponding to the pixels on the detector of the fringe
tracker, so that the values recorded by two neighbouring pixels on the detector
need to be interpolated in order to find the values for the five spectral channels
of the fringe tracker. This could explain the strong correlations between neigh-
bouring spectral channels (one pixel above or below the diagonal) observed for
the VIS2, but also for the T3. Furthermore, there are significant correlations
between baselines having a telescope in common. Their strength is roughly half

3https://www.eso.org/sci/facilities/paranal/instruments/gravity.html
4http://simbad.u-strasbg.fr/simbad/
5http://www.astro.gsu.edu/wds/

https://www.eso.org/sci/facilities/paranal/instruments/gravity.html
http://simbad.u-strasbg.fr/simbad/
http://www.astro.gsu.edu/wds/
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Figure 5.1: Correlations of the VIS2 (left panel) and the T3 (right panel) for the
GRAVITY fringe tracker, extracted from a single P2VM-reduced file. The axes
run over the different baselines/triangles, with each individual baseline/triangle
comprising five spectral channels. Correlations within the same baseline/triangle
are highlighted with red squares and correlations between baselines having a
telescope in common are highlighted with orange squares. We note that the cor-
relations are computed from 46592 individual measurements. Below each panel,
the variance of the data and the names of the telescopes forming each base-
line/triangle are shown.
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the strength of the correlations within the same baseline, which makes sense if
the correlations are introduced by atmospheric or instrumental effects and af-
fect each of the four individual beams of the interferometer separately. Also,
baselines having no telescope in common are essentially uncorrelated. Hence, we
conclude that most of the correlations of the VIS2 are caused by atmospheric or
instrumental effects.

For the T3, we observe similar correlations between neighbouring spectral
channels as for the VIS2. This makes sense since the closure phases are built
from a linear combination (encoded in the matrix k) of the phase of the complex
visibilities, whose absolute square are the squared visibility amplitudes. More-
over, there are significant correlations of ∼ ±1/3 between the same spectral
channels on different triangles. These are caused by the fact that each set of two
different triangles has exactly one of their three baselines in common, that is each
column of the matrix k has exactly two non-zero entries. If the common baseline
is shared between the different triangles in parallel direction (i.e. the two entries
in the corresponding column of the matrix k have the same sign), the correlation
is +1/3, otherwise it is −1/3. This structure with the side-diagonals being ±1/3
can also be explained by assuming uncorrelated visibility phases (i.e. a diagonal
correlation matrix

C∠VIS =


1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1

 (5.7)

of shape B × Λ for the visibility phases) and performing a basis transform

CT3 = T ·C∠VIS · T T , (5.8)

where T represents a matrix of shape (TΛ) × (BΛ) which maps the vector of
visibility phases to the vector of closure phases and can be trivially obtained
from the matrix k. Also, the observed correlations between neighbouring spectral
channels on different triangles (pixels next to the side-diagonals) are naturally
explained by this basis transform given the correlations of the VIS2 observed
between neighbouring spectral channels on the same baseline.

Figure 5.2 shows the correlations of the VIS2 (left panel) and the T3 (right
panel) for the GRAVITY science camera. There are six different baselines and
four different triangles with 210 spectral channels each, so 1260 observables for
the VIS2 and 840 observables for the T3 in total.

Due to the much smaller number of individual measurements if compared
to the fringe tracker the correlations of the science camera are more dominated
by noise. Nevertheless, we observe strong positive correlations between different
spectral channels within the same baseline (i.e. inside the red squares) and signif-
icant positive correlations between baselines having a telescope in common (i.e.
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Figure 5.2: Same as Figure 5.1, but for the GRAVITY science camera. Each
individual baseline/triangle comprises 210 spectral channels. We note that the
correlations are computed from 32 individual measurements.

inside the orange squares) for the VIS2, similar to the correlations observed for
the fringe tracker. Although the atmospheric turbulence and the optical elements
(i.e. mirrors, delay lines, optical fibres, beam combiner) seen by the science cam-
era are similar to those seen by the fringe tracker, the exposure time of the science
camera is much longer than both the atmospheric coherence time t0 and the fringe
tracker inverse 3 dB bandwidth (Lacour et al., 2019), which means that the VIS2
correlations are expected to be decreased by a term proportional to the square of
the fringe tracking error and the closure phase random errors are expected to be
proportional to the cube of the fringe tracking error (Ireland, 2013). Therefore,
since there still are significant correlations for the science camera, they must be
introduced by the (correlated) fringe tracker, forwarding the correlations shown
in Figure 5.1 to the science camera. For the T3, we again observe significant
correlations of ∼ ±1/3 between the same spectral channels on different trian-
gles. On top of this, there are also weak positive correlations between different
spectral channels on the same triangle (i.e. inside the red squares) and between
different spectral channels on different triangles whose sign depends on whether
the corresponding triangles share a baseline in parallel or anti-parallel direction.
Again, these correlations are naturally explained by the basis transform T given
the correlations observed for the VIS2 of the science camera.

5.2.2 Empirical model for the correlations

An empirical VIS2/T3 sample covariance with fewer frames than the product of
the number of baselines/triangles and spectral channels is necessarily singular. It
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takes a number of frames much greater than this to estimate a sample covariance
matrix with a condition number approaching that of the true sample covariance.
For this reason, we choose to develop an analytic model for the covariance matrix
Σ of the VIS2 and the T3. This model can then be fitted to the (potentially
under-conditioned) covariance extracted from an arbitrary GRAVITY data set
and can be used for model fitting based on log-likelihood maximisation. Most
model fitting routines (e.g. LITpro, Tallon-Bosc et al. 2008; CANDID, Gallenne
et al. 2015) are based on χ2 minimisation, which is equivalent to log-likelihood
maximisation, where

χ2 = RT ·Σ−1 ·R (5.9)

and R = D −M is the residual between data and model (cf. Section 5.2.4).

Our approach is to model the correlation matrices CVIS2 of the VIS2 and
CT3 of the T3 which have the relatively simple structure observed in Figures 5.1
and 5.2. Moreover, the observed structure of the correlations is consistent for
different data sets with different exposure times (1 s with the UTs for programme
60.A-9801(U) and 10 s with the ATs for programme 0101.C-0907(B), cf. also
Figures 5.8 and 5.9). Then, we compute

Σij = Cijσiσj , (5.10)

where σ denotes the standard deviation of the data which can be obtained from
the VIS2ERR and the T3PHIERR columns of the OIFITS files for example. We
note that these standard deviations are used to build diagonal covariance ma-
trices in LITpro and CANDID which assume uncorrelated data only. Of course,
assuming uncorrelated data is a simplification and we discuss the problems that
arise from this in Section 5.3.2.

A very important point is that Equation 5.10 only holds if the errors on
the VIS2 (σVIS2) and the T3 (σT3) are reliably estimated by the GRAVITY
data reduction pipeline. The pipeline manual6 explains that the uncertainties
are computed by bootstrapping over ∼ 10 independent samples, so that the
final error on the mean measurement is estimated from the observed statistics
at a slightly higher temporal frequency. There is no re-scaling or accounting
for systematics in this process. In case there are less than five frames available,
Monte-Carlo realisations of the theoretical photon and detector noise are added
to the samples, which leads to less realistic uncertainties. However, our data
sets consist of 32 frames exposures for programme 60.A-9801(U) and 20 frames
exposures for programme 0101.C-0907(B), respectively. While we understand
that the use of the pipeline uncertainties is a limitation and that an incorrect
noise model can reduce the detection sensitivity or yield false positives (cf. e.g.
Section 3 of Delisle et al., 2020), we also note that investigating and quantifying
the credibility of these uncertainties is beyond the scope of this work.

6http://www.eso.org/sci/software/pipelines/index.html#pipelines_table

http://www.eso.org/sci/software/pipelines/index.html#pipelines_table
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Our models for the correlation matrices equal one on the diagonal according to
the definition of a correlation matrix (cf. Equation 5.6, that is every observable is
100% correlated with itself) and have one free parameter which can be determined
by fitting the model to the correlations extracted from the P2VM-reduced files.
For the correlation matrix of the VIS2 CVIS2, the free parameter x represents
the correlations between spectral channels within the same baseline and between
baselines having a telescope in common. There are correlations of x between
different spectral channels within the same baseline, correlations of x/2 between
baselines having a telescope in common, and no correlations between baselines
having no telescope in common (cf. left panel of Figure 5.2), that is

CVIS2 =



X1 X2 · · · · · · · · · X2 0

X2
. . .

. . . . .
.

. .
.
X2

...
. . .

. . . X2 0 . .
. ...

... X2
. . . X2

...
... . .

.
0 X2

. . .
. . .

...

X2 . .
.

. .
. . . .

. . . X2

0 X2 · · · · · · · · · X2 X1


, (5.11)

X1 =


1 x · · · x

x
. . .

. . .
...

...
. . .

. . . x
x · · · x 1

 , (5.12)

X2 =

x/2 · · · x/2
...

. . .
...

x/2 · · · x/2

 . (5.13)

The correlation matrix is a block matrix consisting of B ×B blocks, where each
individual block is a Λ × Λ matrix. For the correlation matrix of the T3 CT3,
the free parameter y represents the correlations between spectral channels within
the same triangle. Moreover, as illustrated by the basis transform T , this natu-
rally leads to correlations of ±1/3 between the same spectral channel of different
triangles and ±y/3 between different spectral channels of different triangles (cf.
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right panel of Figure 5.2), that is

CT3 =


Y1 Y2 · · · Y2

Y2
. . .

. . .
...

...
. . .

. . . Y2

Y2 · · · Y2 Y1

 , (5.14)

Y1 =


1 y · · · y

y
. . .

. . .
...

...
. . .

. . . y
y · · · y 1

 , (5.15)

Y2 =


±1/3 ±y/3 · · · ±y/3

±y/3
. . .

. . .
...

...
. . .

. . . ±y/3
±y/3 · · · ±y/3 ±1/3

 . (5.16)

The correlation matrix is a block matrix consisting of T × T blocks, where each
individual block is a Λ × Λ matrix. The sign is positive if the two triangles
share a baseline in parallel direction and negative if they share a baseline in anti-
parallel direction. We note that this correlation model only traces intra-frame
correlations, i.e., correlations occurring between different observables of the same
data frame. Time-dependent effects such as detector persistence or correlations
introduced by calibration errors cannot be represented in this model.

We fit the previously described model to the correlations of the VIS2 and the
T3 which we extracted from the single P2VM-redcued file of GRAVITY intro-
duced in Section 5.2.1. Figure 5.3 shows the extracted and the model correlations
(top panels) and the extracted and the model covariances (bottom panels) for
the VIS2. The free parameter x takes a value of ∼ 3.2e−1. Figure 5.4 shows the
same for the T3 and the free parameter y takes a value of ∼ 7.4e−2.

5.2.3 Simulated and real data

In order to demonstrate the improvement that comes from taking into account the
correlations between the data we perform companion injection and recovery tests
with simulated and real data. Therefore, we use GRAVITY data of ζ Ant B
from the technical time programme 60.A-9801(U) and of HIP 78183 from the
normal programme 0101.C-0907(B), PI M. J. Ireland, listed in Table 5.1. Both
objects were observed in single-field medium resolution mode, but the former one
with the four UTs and the latter one with the four ATs (medium configuration
D0-G2-J3-K0).
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Figure 5.3: Correlations of the VIS2 for the GRAVITY science camera, extracted
from a single P2VM-reduced file (upper left panel) and our one-parameter model
fitted to them (upper right panel). The bottom panels show the correspond-
ing covariances obtained by multiplying the correlation Cij with the product of
the standard deviations σiσj . Correlations/covariances within the same baseline
are highlighted with red squares and correlations/covariances between baselines
having a telescope in common are highlighted with orange squares.
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Figure 5.4: Same as Figure 5.3, but showing the correlations/covariances of the
T3 and our one-parameter model fitted to them for the GRAVITY science camera.
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From the file GRAVI.2019-03-29T02-01-37.193_singlecalp2vmred.fits we have
already extracted the covariances and correlations and fitted our empirical models
to them (cf. Section 5.2.2). For the companion injection and recovery tests with
simulated data, we simply use these models and the uv-tracks u and v of the files
belonging to programme 60.A-9801(U) listed in Table 5.1 in order to obtain a
realistic uv-coverage over ∼ 20 min (cf. Figure 5.5). We simulate the complex
visibility of a uniform disc with an unresolved companion according to

VISbin =
VISud + f exp

(
−2πi

(
∆RAu
λ + ∆DECv

λ

))
1 + f

, (5.17)

VISud =
2J1(πθb)

πθb
, (5.18)

where 0 ≤ f ≤ 1 is the relative flux of the companion, ∆RA and ∆DEC are the
on-sky separation in the direction of the celestial north and the celestial east
between the companion and its host star, λ is the observing wavelength, J1 is the
first order Bessel function of first kind, θ is the angular diameter of the uniform
disc and b =

√
u2 + v2 is the distance between the two telescopes observing the

object. The squared visibility amplitudes and the closure phases follow according
to

VIS2bin = |VISbin|2, (5.19)
T3bin = k · ∠VISbin. (5.20)

Then, we add correlated noise to the VIS2bin and the T3bin by drawing from a
multivariate normal distribution with covariance ΣVIS2,fit and ΣT3,fit, which we
obtain from our correlation model CVIS2,fit and CT3,fit (cf. Section 5.2.2) and
assuming a standard deviation of σVIS2 = 0.01 and σT3 = 1 deg, which is repre-
sentative of the typical uncertainties obtained for on-sky GRAVITY observations
(Gravity Collaboration et al., 2017).

For the companion injection and recovery tests with real data, we extract the
correlations of the visibility amplitudes VISAMP (instead of the squared visi-
bility amplitudes VIS2) and the closure phases T3 from the P2VM-reduced files
belonging to programme 0101.C-0907(B) listed in Table 5.1, fit our empirical
models to them and compute the covariances using Equation 5.10 and the errors
from the corresponding final GRAVITY pipeline products (the “singlesciviscali-
brated” files). Using the VISAMP instead of the VIS2 can yield better results
in some cases where the normalisation of the VIS2 is not done properly by the
GRAVITY data reduction pipeline. From the final GRAVITY pipeline products,
we also extract the VISAMP and the T3 and inject an unresolved companion
according to

VISAMPinj = VISAMP · |VISbin|, (5.21)
T3inj = T3 + k · ∠VISbin, (5.22)
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where we set VISud to one. The VISAMP are simply the square root of the VIS2,
so that our correlation model and fitting routines can be equivalently applied in
the high SNR regime.

5.2.4 Model fitting

We search for faint companions in the data by fitting the model for a uniform
disc with an unresolved companion (cf. Equation 5.17) to it. We maximise the
log-likelihood of the model by minimising its χ2 in order to find the best fit
parameters pfit of the model, that is

pfit = argminp(χ
2) = argminp(R

T ·Σ−1 ·R), (5.23)

whereR = D−M is the residual between data and model and p = (f,∆RA,∆DEC, θ)
is the four-dimensional parameter vector of the model.

In order to find the global minimum of the χ2 within a given range of com-
panion separations, we first find a prior for the uniform disc diameter θ0 by fitting
the corresponding model (cf. Equation 5.18) to the data. The estimated angular
diameters of our two targets are ∼ 0.08 mas for ζ Ant B and ∼ 0.14 mas for
HIP 78183 and they therefore appear essentially unresolved in the GRAVITY
observations. Then, we perform a set of minimisations with priors on a ∆RA-
∆DEC grid, the uniform disc diameter θ0, and a small relative flux f0 = 1e−3.
This is necessary since the χ2 hyper-surface is bumpy (i.e. has many local ex-
trema) if projected onto the ∆RA-∆DEC surface and the BFGS algorithm which
is used to minimise the χ2 converges on local minima. The bumpiness is a result
of the sparse uv-coverage of a long-baseline optical interferometer which causes
the sensitivity to vary substantially over the FOV.

The above method relies on the covariance matrix Σ being invertible. This
is not the case for a sample covariance that is estimated from a small number of
frames, which is usually singular, and is the reason why we develop an empirical
covariance model. However, our empirical model for the covariances of the clo-
sure phases is also singular, since the fourth triangle can be written as a linear
combination of the other three. There are multiple solutions to this problem, and
for simplicity we decide to completely ignore the data recorded on the fourth tri-
angle since it theoretically is redundant anyway7. There are more sophisticated
methods to keep the data recorded on the fourth triangle, such as the “jackknife”
method (i.e. averaging over four model fits using data recorded on different sets
of three triangles), projection into a sub-space that preserves the information in
the covariance matrix (Blackburn et al., 2020), and the approach from Kulkarni
(1989) which is adding a small numerical value ε � 1 to the diagonal of the

7In practice, this is not the case since the data is affected by different errors originating from
different optical paths through the instrument and different detector noise.
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covariances of the closure phases, that is

ΣT3,invertible = ΣT3,fit + ε · id, (5.24)

where id is the identity matrix, so that the covariance matrix becomes numerically
invertible.

Finally, in order to determine the statistical significance of a detected com-
panion, we compute the probability that the binary model is preferred over the
uniform disc model according to

P = 1− CDFNdof

(
Ndofχ

2
red,ud

χ2
red,bin

)
, (5.25)

where CDFNdof is the χ2 cumulative distribution function with Ndof degrees of
freedom, χ2

red,ud is the reduced χ2 of the best fit uniform disc model and χ2
red,bin

is the reduced χ2 of the best fit binary model (cf. Gallenne et al., 2015).

If the host star is essentially unresolved (i.e. θbλ� 1) and the companion is
at high contrast (i.e. f � 1) one can linearise the VIS2bin and the T3bin as a
function of the relative flux of the companion f according to

VIS2bin ∝ 1 + f, (5.26)
T3bin ∝ f. (5.27)

A more detailed derivation of this relationship can be found in Appendix 5.4. Let
D be the data, Mref a reference binary model which is normalised to the relative
flux of the companion fref, and Σ the covariances between the data, that is

D =

(
VIS2− 1

T3

)
, (5.28)

Mref =

(
(VIS2bin,ref − 1)/fref

T3bin,ref/fref

)
, (5.29)

Σ =

(
ΣVIS2 0

0 ΣT3

)
, (5.30)

where VIS2bin,ref and T3bin,ref are the binary model VIS2 and T3 evaluated at
a reference relative flux fref = 1e−3. Then, the best fit relative flux ffit and its
uncertainty σffit follow according to

ffit =
MT

ref ·Σ−1 ·D
MT

ref ·Σ−1 ·Mref
, (5.31)

σffit =
1√

MT
ref ·Σ−1 ·Mref

, (5.32)
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(cf. Le Bouquin & Absil, 2012; Kammerer et al., 2019). Equation 5.31 can be
computed on a ∆RA-∆DEC grid, and the best fit parameters pfit follow from the
grid position which minimises

χ2
red =

χ2

Ndof
=
RT ·Σ−1 ·R

Ndof
, (5.33)

where Ndof is the number of the degrees of freedom. This grid search technique
is commonly used in order to find the global minimum of the (f,∆RA,∆DEC, θ)
parameter space and its corresponding χ2

red (e.g. Absil et al., 2011; Gallenne et al.,
2015). However, the statistical structure of the grid is complex due to redundancy
and periodicity in sensitivity originating from the very limited uv-coverage of a
sparse interferometer such as the VLTI (cf. Figure 5.5). Therefore, the detection
significance is derived using Equation 5.25 which yields the probability that the
binary model is preferred over the uniform disc model (without any companion).

5.3 Results

We evaluate the impact of our full covariance model by performing model fitting
and companion injection and recovery tests with both simulated and real GRAV-
ITY data. In Section 5.3.1, we simulate data without any astronomical object,
that is correlated noise only, and use model fitting to determine the fundamental
detection limits when assuming uncorrelated data (i.e. a diagonal covariance)
and correlated data (i.e. our full covariance model). In Sections 5.3.2 and 5.3.3
we inject companions with different relative fluxes and separations into simu-
lated and real GRAVITY data and try to recover them, again assuming both
uncorrelated and correlated data.

5.3.1 Model fitting to correlated noise

In order to compare the fundamental detection limits when assuming uncorre-
lated and correlated data, we simulate 100 GRAVITY data sets of an unresolved
host star without any companion (i.e. θ = f = 0 in Equation 5.17) affected by
realistic correlated noise (ΣVIS2,fit and ΣT3,fit, cf. Section 5.2.3). Then, we use
Equation 5.31 in order to compute the best fit relative flux ffit on a ∆RA-∆DEC
grid for each of the 100 simulated data sets, first assuming uncorrelated data (i.e.
a diagonal covariance diag(ΣVIS2,fit) and diag(ΣT3,fit)) and then assuming corre-
lated data (i.e. our full covariance model) in Equation 5.31. Since no companion
was injected into the data, the best fit flux ratios of these grids represent the
fundamental contrast floor. Any companion with a higher contrast (i.e. smaller
flux) would not be distinguishable from the noise. By computing an azimuthal
average of these grids, we obtain a fundamental 1–σ contrast curve (i.e. best fit
relative flux vs. angular separation curve).



CHAPTER 5 137

0 10 20 30 40 50
Angular separation [mas]

10 4

10 3

Co
nt

ra
st

 fl
oo

r
uncorrelated errors
correlated errors
ratio

0

2

4

6

8

10
Ratio

Simulated data

0 10 20 30 40 50
Angular separation [mas]

10 2

10 1

Co
nt

ra
st

 fl
oo

r

uncorrelated errors
correlated errors
ratio

0

2

4

6

8

10

Ratio

Real data

Figure 5.6: Left panel: contrast curve (i.e. azimuthal average of the best fit
relative flux) for simulated data of an unresolved host star without any companion
affected by correlated errors, computed with model fitting assuming uncorrelated
data (blue curve) and correlated data (orange curve). Both curves show the mean
contrast curve over 100 simulated data sets and the shaded region highlights
its standard deviation. The dashed black line shows the ratio of the blue and
the orange curve, representing the improvement (i.e. the factor by which the
detection limits improve) when using our correlated error model instead of the
classical uncorrelated one. Right panel: same, but for the real GRAVITY data
introduced in Section 5.2.3.



CHAPTER 5 138

The mean of the 100 azimuthal averages obtained for each of these two sce-
narios (model fitting assuming uncorrelated data in blue and correlated data
in orange) is shown in the left panel of Figure 5.6. The contrast floor remains
roughly constant at a contrast of ∼ 6e−4 outward of an angular separation of
∼ 5 mas for the scenario assuming uncorrelated data. This is because at a con-
trast of ∼ 6e−4 one is dominated by the systematic (i.e. the correlated) errors.
However, for the scenario assuming correlated data, the fundamental 1–σ de-
tection limit continues to decrease with increasing angular separation. At an
angular separation of ∼ 10 mas it is already a factor of four better than the limit
assuming uncorrelated data (cf. dashed black curve). We note that such a be-
haviour has already been observed by Ireland (2013) for orthogonal kernel phases
and statistically independent kernel phases, which are obtained by projecting the
orthogonal kernel phases into an eigenspace with zero covariances. Its reason
is that at small angular separations, the detection limits rely on the average of
the VIS2 and the T3 over the spectral channels, while with increasing angular
separations the VIS2 and T3 vary within the spectral bands and the impact of
the correlations is growing. A flat uncorrelated contrast curve (as a function of
angular separation) is further consistent with previous works on interferometric
observables assuming uncorrelated data (e.g. Absil et al., 2011; Gallenne et al.,
2015).

Furthermore, when using our full covariance model, the contrast floor is also
more stable for different representations of the noise (highlighted by the shaded
regions in the left panel of Figure 5.6 which show the standard deviation of
the contrast curves over the 100 simulated data sets) meaning that the derived
detection limits can be regarded more robust (i.e. independent of the exact
representation of the noise which is a random component). Hence, if an observer
is only working with a small number of data sets, they will still be able to derive
universally valid detection limits.

The right panel of Figure 5.6 shows the same plot, but for model fitting to
the real GRAVITY data consisting of the three files belonging to programme
0101.C-0907(B) listed in Table 5.1. Since there is only one real GRAVITY data
set we cannot compute or show any standard deviation. The plot looks similar,
except for the fundamental detection limits being about two orders of magnitude
worse and the ratio between the two scenarios being a lot smaller due to much
weaker correlations being present in the real data if compared to the simulated
data (cf. Figure 5.8).

5.3.2 Injection and recovery tests (simulated data)

As a next step, we perform companion injection and recovery tests with simu-
lated data, in order to compare the empirical detection limits when assuming
uncorrelated and correlated data. Therefore, we simulate GRAVITY data sets
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(affected by correlated noise) of a 1 mas uniform disc (the host star) and inject
companions with a range of relative fluxes and at different positions around the
host star, that is

f ∈ [10−4, 10−3.75, 10−3.5, ..., 10−1.5], (5.34)
∆RA ∈ [−30,−25,−20, ..., 30] mas, (5.35)

∆DEC ∈ [−30,−25,−20, ..., 30] mas, (5.36)

using Equation 5.17. Then, we perform model fitting with priors on a ∆RA-∆DEC
grid in order to find the global minimum of the χ2 (cf. Equation 5.23). We note
that this method is similar to how CANDID searches for companions for example.
Similar to before (cf. Section 5.3.1), we perform the model fitting once assuming
uncorrelated data (i.e. a diagonal covariance diag(ΣVIS2,fit) and diag(ΣT3,fit))
and once assuming correlated data (i.e. our full covariance model). We classify an
injected companion as recovered if the best fit relative flux ffit differs by no more
than 10% from the injected one finj and the best fit position (∆RA,fit,∆DEC,fit)
differs by no more than one resolution element of the interferometer from the
injected one (∆RA,inj,∆DEC,inj), that is

|ffit − finj|/finj < 0.1, (5.37)√
(∆RA,fit −∆RA,inj)2 + (∆DEC,fit −∆DEC,inj)2 <

λmean

2bmax
, (5.38)

where λmean is the mean of the observed wavelength range (∼ 2.2 µm for GRAV-
ITY) and bmax is the longest baseline of the interferometer (∼ 130 m for obser-
vations with the VLTI UTs). The allowed 10% flux difference is motivated by
observations of Gallenne et al. (2015) who noted that wavelength smearing effects
(for which we do not account in our injection and recovery tests) can easily cause
systematic errors of ∼ 10% on the measured flux ratio and the allowed spatial
offset is motivated by the angular resolution of the interferometer.

The left panel of Figure 5.7 shows the fraction of recovered companions as
a function of the relative flux of the companion for model fitting assuming un-
correlated data (blue points) and correlated data (orange points). These values
are summed over all positions around the host star with 5 mas ≤ ρ ≤ 45 mas,
where ρ =

√
∆2

RA,inj + ∆2
DEC,inj is the angular separation, so to avoid any signif-

icant influence from the 1 mas uniform disc (the host star). Although one of the
findings in this paper is that the contrast curve is not flat outward a few λ/bmax
when accounting for the data correlations (cf. Figure 5.6), it is still a reasonable
simplification to sum over positions with different angular separations.

The overplotted blue and orange curves are logistic growth functions

g(x) =
L

1 + e−k(x−x0)
, (5.39)
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Figure 5.7: Left panel: fraction of correctly recovered companions as a function of
the relative flux of the injected companion from injection and recovery tests with
simulated GRAVITY data (cf. Section 5.3.2), assuming uncorrelated data (blue
points) and correlated data (orange points) for the model fitting. The blue and
the orange curves are logistic growth functions fitted to the data points. Right
panel: same, but from injection and recovery tests with real GRAVITY data (cf.
Section 5.3.3).
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fitted to the data points (in log-space), where L = 1 is the upper growth barrier,
k is the logistic growth rate and x0 is the midpoint. The fact that the orange
curve is shifted towards the left compared to the blue curve means that the
detection limits are fainter when assuming correlated data instead of uncorrelated
data. This could be expected since the data is affected by correlated noise and
correctly accounting for these correlations in the model fitting should lead to
fainter detection limits. For any given fraction of detections (i.e. any point on
the y-axis), the ratio of the contrasts (i.e. the x-values) of the blue and the
orange curve gives the improvement that comes from our full covariance model
over the conventional diagonal covariance model. This ratio varies between ∼ 3
and ∼ 4, depending on the fraction of detections, with an average value of ∼ 3.5.
This means that the detection limits improve by a factor of ∼ 3.5 when assuming
correlated data instead of uncorrelated data.

In order to check the validity of our detection criterion (cf. Equation 5.25)
we count the number of companions in different categories, which we represent
in a confusion matrix

ζ =

(
# of true positives # of false negatives
# of false positives # of true negatives

)
, (5.40)

where positive/negative refers to a detection being classified as significant/insignificant
according to our detection criterion. Hence, in an ideal world, there would only
be true positives or true negatives and ζ would be a diagonal matrix. Obviously,
this is not the case in the real world where the data is affected by noise. If we
choose an optimistic detection criterion (e.g. the significance needs to be above
1–σ) there will be many false positives (i.e. many detections that are classified
as significant, but which are no true companions) and if we choose a pessimistic
detection criterion (e.g. the significance needs to be above 5–σ) there will be
many false negatives (i.e. many detections that are classified as insignificant, but
which are true companions).

The confusion matrices from our companion injection and recovery tests for
a 3–σ detection criterion are

ζdiag =

(
674 3
517 654

)
, (5.41)

ζfull =

(
826 213
12 797

)
, (5.42)

for assuming uncorrelated data (ζdiag) and correlated data (ζfull). In the former
case, there is a large fraction of false detections being classified as significant
(517/1171 ≈ 44%), whereas in the latter case this fraction (12/809 ≈ 1%) is
roughly consistent with a 3–σ result. We note that these false positive detections
are often many resolution elements away from the position of the injected com-
panion and can either be attributed to pure correlated noise, or to ghosts caused
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by the sparse uv-coverage of the interferometric array and the resulting periodic-
ity in the interferometric PSF (which can be seen in Figure 5.10). If correlations
are not accounted for, the best fit detection can easily jump from the position
of the injected companion to another peak in the detection map that is caused
by model redundancies. The number of true detections is higher when assuming
correlated data (1039 = 826+213) than when assuming uncorrelated data (677 =
674+3) because the detection limits are fainter, and although the number of false
negatives (i.e. true companions being classified as insignificant) is a lot higher,
the number of true positives is still higher when assuming correlated data. In
summary, when using our full covariance model there are less detections above 3–
σ significance than when using the conventional diagonal covariance model (838
= 826+12 vs. 1191 = 674+517), but the number of true positives (i.e. true com-
panions being classified as significant) is still higher and significant detections are
much more reliable since there are almost no false positives. Accounting for the
correlations is therefore clearly preferred over ignoring them.

Before proceeding to the injection and recovery tests with real data we also
assess the robustness of our correlation model with respect to errors in the model
parameters x and y. Therefore, we repeat the injection and recovery tests with
wrong correlation and covariance matrices where x and y are only 50% and 25%
of their true values respectively. We find that the number of false positives or
false negatives increases slightly, but not significantly. This was expected since
the detection of asymmetric structure (such as a companion) is governed by the
T3 whose correlations are dominated by the correlations of ±1/3 originating from
shared baselines among different triangles. For scenarios where the VIS2 have
a larger impact on the model (e.g. measuring stellar diameters) we expect that
errors in the model parameters, especially x, have a more significant impact.

5.3.3 Injection and recovery tests (real data)

In the previous Section it is obvious that our full covariance model would outper-
form the conventional diagonal covariance model, since we simulated data affected
by correlated noise. Therefore, the crucial next step is to validate our methods
with real GRAVITY data sets. For this purpose, we extract the correlations of
the VISAMP and the T3 from the files belonging to programme 0101.C-0907(B)
listed in Table 5.1, fit our empirical models to them and use the VISAMP and
the T3 data from the corresponding final GRAVITY pipeline products as noise
model.

Since the real data is affected by bright speckles arising from an imperfect
calibration, for which our correlation model does not account, we subtract the
theoretical VISAMP and T3 of the best fit companion from the data before
performing the injection and recovery tests. This also helps us to enter the
medium-contrast regime (ffit / 10%) where the linearisation of the binary model
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(cf. Appendix 5.4) holds. The parameters of the subtracted best fit companion
are

psub = (f,∆RA,∆DEC, θ) = (0.0383, 0.20,−5.46, 0), (5.43)

and the corresponding detection map is shown in Figure 5.10. The parameters
were obtained assuming correlated errors. An extension of our correlation model
to inter-observation correlations, for instance arising from the calibration process,
is left for future work.

Then, we compute the covariances from the correlations, the VISAMPERR,
and the T3ERR from the final GRAVITY pipeline products using Equation 5.10
and inject companions with

f ∈ [10−3, 10−2.75, 10−2.5, ..., 10−0.5], (5.44)
∆RA ∈ [−30,−25,−20, ..., 30] mas, (5.45)

∆DEC ∈ [−30,−25,−20, ..., 30] mas, (5.46)

using Equations 5.21 and 5.22. In order to obtain empirical detection limits when
assuming uncorrelated and correlated data, we then repeat the model fitting
described in the previous Section.

The fraction of correctly recovered companions as a function of the relative
flux of the companion for both scenarios (uncorrelated noise: blue points and
correlated noise: orange points) is shown in the right panel of Figure 5.7, again
overplotted with logistic growth functions fitted to the data points (cf. Sec-
tion 5.3.2). The plot looks similar to the one from the injection and recovery
tests with simulated data and confirms the applicability of our full covariance
model to real GRAVITY data. Of course, the empirical detection limits are
about one to two orders of magnitude worse and the improvement that comes
from our full covariance model (i.e. the lateral shift of the orange curve with
respect to the blue curve) is only a factor of ∼ 2 (consistent with the right panel
of Figure 5.6 which also shows an improvement by a factor of ∼ 2) due to weaker
correlations being present in the data used for the injection and recovery tests
with real data. In summary, our full covariance model still brings a singificant
improvement over the convential diagonal covariance model.

5.4 Conclusions

Correlated noise is placing fundamental detection limits on interferometric data.
From on-sky VLTI/GRAVITY data, we extract and illustrate the correlations
present in the data and develop an empirical model in order to describe them.
This empirical model is sufficiently simple for it to be fitted to the correlations
extracted from a single GRAVITY data product and could therefore be directly
integrated into the GRAVITY data reduction pipeline and made available to the
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community as part of the OIFITS 2 file (which has a well-defined standard for
providing covariance matrices, Duvert et al., 2017).

Then, we evaluate the impact of our full covariance model by performing
model fitting and companion injection and recovery tests with both simulated
and real GRAVITY data. Our methods are based on χ2 = RT · Σ−1 · R min-
imisation, where we compare the scenarios assuming uncorrelated data (i.e. a
diagonal covariance matrix diag(Σ)) and correlated data (i.e. a full covariance
matrix Σ following from our empirical correlation model). We show that account-
ing for the correlations that we find to be present in GRAVITY data could yield
to an improvement in the detection limits by a factor of up to ∼ 3.5 over ignoring
them. Moreover, the obtained detection limits (and therefore also potential de-
tections) can be regarded more robust in the former case. We also highlight the
problems which arise from ignoring the correlations, as it is done in model fit-
ting pipelines such as LITpro (Tallon-Bosc et al., 2008) and CANDID (Gallenne
et al., 2015) so far, and discuss that conventional detection criteria based on χ2

statistics are strongly biased towards false positives (i.e. detections that are no
true companions).

The empirical correlation model presented in this paper is a simple one-
parameter model derived from GRAVITY data, but is arguably also applicable
(with small modifications) to other instruments such as VLTI/PIONIER for ex-
ample. It only treats the correlations between the different observables, but not
yet between different frames or targets (such as the science and the calibrator
target). We choose this approach in order to enable a simple implementation into
existing data reduction and model fitting pipelines. Especially with the increasing
availability of computing power, the use of full covariance matrices for describing
the correlated noise in interferometric data should become a standard. Collabo-
rations around future instruments should provide estimated data covariances as
part of the official data reduction pipelines.

In the future, we aim to compare our empirical correlation model with the
data covariances derived from bootstrapping (e.g. Lachaume et al., 2019) and
extend our model in order to account for correlations between different frames
and targets. Finally, we will re-analyse several marginal detections of compan-
ions around Cepheid stars from Gallenne et al. (2013, 2014, 2015) by properly
accounting for the correlated noise.
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Appendix 1: collection of correlations

Figure 5.8: Same as Figure 5.2, but extracted from three other P2VM-
reduced files from programme 60.A-9801(U). From top to bottom:
GRAVI.2019-03-29T01-46-28.155_singlecalp2vmred.fits, GRAVI.2019-
03-29T01-57-13.182_singlecalp2vmred.fits, GRAVI.2019-03-29T01-59-
31.188_singlecalp2vmred.fits.
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Figure 5.9: Same as Figure 5.2, but showing the correlations of
the VISAMP instead of the VIS2, extracted from the three P2VM-
reduced files used for the injection and recovery tests with real data
in Section 5.3.3 (programme 0101.C-0907(B)). From top to bottom:
GRAVI.2018-04-18T08-08-19.739_singlescip2vmred.fits, GRAVI.2018-
04-18T08-12-10.749_singlescip2vmred.fits, GRAVI.2018-04-18T08-20-
04.769_singlescip2vmred.fits.
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Appendix 2: linearised model

If the host star is essentially unresolved (i.e. θbλ � 1) and the companion is
at high contrast (i.e. f � 1) one can linearise the VIS2bin and the T3bin as a
function of the relative flux of the companion.

Consider the complex visibility of the binary model VISbin in the case where
θ → 0⇔ VISud → 1 and f � 1, then the VIS2 of this model is

|VISbin|2 ≈
1

(1 + f)2

[
(1 + f cos(x))2 + f2 sin2(x)

]
(5.47)

=
1

(1 + f)2

[
1 + 2f cos(x) + f2

]
(5.48)

=
(
1− 2f +O(f2)

) [
1 + 2f cos(x) + f2

]
(5.49)

= 1 + 2f cos(x)− 2f + f2 − 4f2 cos(x) +O(f3) (5.50)

= 1 + f (2 cos(x)− 2) +O(f2) (5.51)

and the phase (or argument) of this model (and therefore any linear combination
of phases such as the T3) is

∠VISbin = arctan
ImVISbin
ReVISbin

(5.52)

≈ ImVISbin
ReVISbin

(5.53)

=
−f sin(x)

1 + f cos(x)
(5.54)

≈ f− sin(x)

1
(5.55)

for x = −2πi(∆RAu/λ+ ∆DECv/λ). Hence, in the high-contrast regime, one has
VIS2bin ∝ 1 + f and T3bin ∝ f .
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Appendix 3: detection map for real data
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Figure 5.10: Detection map for the GRAVITY data used for the injection and
recovery tests in Section 5.3.3. The host star is located in the centre of the
map and the cyan circle highlights the position of the best fit companion. Its
parameters and reduced chi-squared are shown at the top and the bottom of the
map. North is up and east is left.
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Preamble

Finally, in this chapter, we use long-baseline interferometery with VLTI/GRAVITY to
characterize the orbit and the atmosphere of the directly-imaged sub-stellar companion
HD 206893 B. We will study the alignment of its orbit with respect to the debris disk
of the system and reconcile its extremely red near-infrared spectrum with atmospheric
models for giant planets and brown dwarfs, by including additional extinction caused by
high-altitude dust clouds made of enstatite grains. Although the observations presented
in this chapter were obtained using GRAVITY’s dual feed mode and are therefore not
directly affected by the systematic errors at small angular separations discussed in Chap-
ter 5, they benefit from a similar empirical treatment of the correlated errors introduced
by Gravity Collaboration et al. (2020). Moreover, this study of HD 206893 B together
with previous works on the HR 8799 (Gravity Collaboration et al., 2019), the β Pic
(Gravity Collaboration et al., 2020; Nowak et al., 2020), and the PDS 70 (Wang et al.,
2021) systems demonstrate the capability of long-baseline interferometry to detect and
characterize exoplanets in the near-infrared. With the unprecedented angular resolu-
tion achieved by GRAVITY, an exoplanet detected with the radial velocity technique
could be followed-up with direct observations for the first time (Nowak et al., 2020).
This marks an important step toward closing the gap in the observed planet population
between indirect and direct detection techniques. While we have seen in Chapters 2
and 3 that the kernel-phase technique struggles to reach contrasts in the planetary-mass
regime with current 8 m-class telescopes, even around young stars, optical long-baseline
(nulling) interferometry will be a key technique to study planet formation in the nearest
star-forming regions (Defrère et al., 2018; Wallace & Ireland, 2019).

Abstract

Near-infrared interferometry has become a powerful tool to study the orbital and at-
mospheric parameters of sub-stellar companions. We aim to reveal the nature of the
reddest known sub-stellar companion HD 206893 B by studying its near-infrared color
and spectral morphology and by investigating its orbital motion on the sky. We fit atmo-
spheric models for giant planets and brown dwarfs to the observed SPHERE, GPI, and
GRAVITY spectra of HD 206893 B. In order to recover the unusual spectral features
of this companion, first and foremost its extremely red near-infrared color, we include
additional extinction by high altitude dust clouds made of enstatite grains in our at-
mospheric model fits. Moreover, we infer the orbital parameters of HD 206893 B by
combining the ∼ 100 µas-precision astrometry from GRAVITY with data available in
the literature. The extremely red color and the very shallow 1.4 µm water absorption
feature of HD 206893 B can be fit well with our adapted atmospheric models. However,
not all of these models can reconcile the morphology of the H and K-band peaks observed
with GPI and GRAVITY. By comparison with AMES-Cond evolutionary tracks we find
that only some atmospheric models predict physically plausible objects. Altogether, our
analysis suggests an age of ∼ 3–300 Myr and a mass of ∼ 5–30 MJup for HD 206893 B,
consistent with previous estimates, but extending the parameter space to younger and
lower-mass objects. The GRAVITY astrometry prefers an eccentric (e ∼ 0.3) orbit
which is slightly misaligned with the debris disk of the system by ∼ 6 deg. While the
age and mass inferred for HD 206893 B are affected by large uncertainties, we argue that



CHAPTER 6 152

a planetary nature has to be considered for this directly-imaged sub-stellar companion,
especially in light of the previous mass estimate of 10+5

−4 MJup from radial velocity data
and the possible Argus moving group membership of the system. Further spectroscopic
or photometric observations at higher signal-to-noise are required to learn more about
the composition and dust cloud properties of HD 206893 B.
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6.1 Introduction

While the population of known exoplanets has been growing into the four-thou-
sands in the last decade1, the sample of directly imaged sub-stellar companions
remains small (e.g., Bowler, 2016). Besides transit spectroscopy, which is limited
to giant planets on short orbits, it are the directly-imaged giant planets whose
atmospheric properties and composition can be directly studied through broad-
band imaging and low-resolution spectroscopy (e.g., Biller & Bonnefoy, 2018).
Together with evolutionary tracks and atmospheric models, this enables inferring
their effective temperature, radius, surface gravity, age, and mass and to draw
conclusions on their formation history and subsequent evolution (e.g., Bowler,
2016; Biller & Bonnefoy, 2018). Moreover, astrometric measurements from direct
imaging enable deriving the orbital parameters of sub-stellar companions and
studying the dynamical interactions with their environment (e.g., Kley & Nelson,
2012).

Recently, Gravity Collaboration et al. (2019) and Gravity Collaboration et al.
(2020) used long-baseline interferometry to perform medium-resolution (R ∼ 500)
K-band spectroscopy of exoplanets. They could demonstrate astrometric mea-
surements with a precision ∼ 10 times better than what has been possible before,
and constrain the atmospheric C/O ratio of the gas giant β Pic b. This, together
with a chemical abundance framework of its protoplanetary disk based on Öberg
et al. (2011), enabled them to infer a formation by core-accretion (Pollack et al.,
1996) between the water and carbon-dioxide icelines. Furthermore, Nowak et al.
(2020) could directly detect β Pic c, another gas giant in the same system origi-
nally discovered with the radial velocity technique (Lagrange et al., 2019). They
showed that the precise mass estimate from the radial velocity data together
with the K-band spectrum favors a formation by warm start core accretion (e.g.,
Mordasini, 2013) for β Pic c. In this regard, infrared interferometry significantly
advances the field of planet formation and evolution by enabling direct observa-
tions of exoplanets discovered with the radial velocity technique for the first time
ever.

Here, we present Very Large Telescope Interferometer (VLTI)/GRAVITY K-
band spectroscopy of the directly imaged sub-stellar companion HD 206893 B.
Located in a debris disk system (Milli et al., 2017; Marino et al., 2020) at a
distance of 40.8 pc (Gaia Collaboration, 2018), astronomers are puzzled by the
nature of this companion due to its unusually red near-infrared color. Delorme
et al. (2017) found that an additional K-band extinction of ∼ 0.5 mag is required
to match the spectrum of HD 206893 B with those of other dusty, low-gravity
or young brown dwarfs. Furthermore, Delorme et al. (2017) and Ward-Duong
et al. (2021) showed that its extremely red color together with its very shallow
1.4 µm water absorption feature are challenging to fit with currently available at-

1http://exoplanet.eu/

http://exoplanet.eu/
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Table 6.1: Observing log. NEXP, NDIT, and DIT denote the number of exposures, the number of detector integrations
per exposure, and the detector integration time, respectively, and τ0 denotes the atmospheric coherence time.

Date UT time NEXP/NDIT/DIT Airmass τ0 Seeing
Start End HD 206893 B HD 206893 A

2019-07-17 08:52:56 09:56:06 5/12/60 s 6/64/1 s 1.17–1.54 1.5–2.2 ms 1.11–1.71′′

2019-08-13 03:21:16 04:21:09 5/12/60 s 7/64/1 s 1.03–1.12 3.2–4.9 ms 0.80–1.00′′

Table 6.2: Relative astrometry of HD 206893 B. The covariance matrix can be
obtained using σ2

∆RA and σ2
∆Dec on the diagonal, and ρσ∆RAσ∆Dec off-diagonal.

MJD ∆RA ∆Dec σ∆RA σ∆Dec ρ
(days) (mas) (mas) (mas) (mas) –

58681.396 130.73 198.10 0.04 0.06 -0.58
58708.165 127.03 199.27 0.09 0.13 -0.88

mospheric models without an additional extra-photospheric source of extinction.
While Delorme et al. (2017) argue for HD 206893 B being an extremely dusty
15–30 MJup L-dwarf, consistent with their age estimate of 50–700 Myr for the
host star, Ward-Duong et al. (2021) note that its H and K-band spectra suggest
a lower gravity and younger object. Together with the high infrared excess of the
disk and a possible Argus moving group membership of the host star (member-
ship probability ∼ 61%, Ward-Duong et al., 2021), there is a consistent scenario
for HD 206893 B being a young (< 50 Myr) gas giant planet. This scenario is
also supported by the dynamical mass estimate of 10+5

−4 MJup from Grandjean
et al. (2019) based on radial velocity data of the system.

We aim to further constrain the nature of HD 206893 B. From the GRAVITY
data, we extract its astrometry with a precision of ∼ 100 µas and a medium-
resolution (R ∼ 500) K-band contrast spectrum, that we convert to a spec-
trum of HD 206893 B with a model spectrum of its host star (cf. Section 6.2).
Then, we improve the constraints on the orbital parameters of HD 206893 B
(cf. Section 6.3) and perform atmospheric model fitting, with and without ad-
ditional extra-photospheric extinction by high-altitude dust clouds made of en-
statite grains (cf. Section 6.4.1). Moreover, we check for consistency between
our best fit atmospheric models and evolutionary tracks (cf. Section 6.4.2). Fi-
nally, we discuss our findings in the context of previous works on this system (cf.
Section 6.5).

6.2 Observations and data reduction

We obtained two epochs of medium-resolution (R ∼ 500) GRAVITY data (Grav-
ity Collaboration et al., 2017) of HD 206893 A and B combining the light of
the four Unit Telescopes (UTs) at the VLTI. The observing log is presented in
Table 6.1. The atmospheric conditions varied between average (atmospheric co-
herence time τ0 = 5 ms) and below average (τ0 ≈ 1.5 ms) because both epochs
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Table 6.3: Stellar parameters and 2MASS and WISE photometry of HD 206893 A
from the literature.

Parameter Unit Value Source
Teff K 6500± 100 D17
log g – 4.45± 0.15 D17

[Fe/H] dex 0.04± 0.02 D17
R R� 1.26± 0.02 D17
π mas 24.51± 0.06 G18

J2MASS mag 5.869± 0.023 S06
H2MASS mag 5.687± 0.034 S06
Ks2MASS mag 5.593± 0.021 S06
W1WISE mag 5.573± 0.176 W10
W2WISE mag 5.452± 0.052 W10
W3WISE mag 5.629± 0.015 W10
W4WISE mag 5.481± 0.043 W10
Notes. D17 = Delorme et al. (2017), G18

= Gaia Collaboration (2018), S06
= Skrutskie et al. (2006), W10 =
Wright et al. (2010).

Figure 6.1: BT-NextGen model spectrum of HD 206893 A, scaled to fit the shown
2MASS and WISE photometry. The top panel shows the transmission curves
corresponding to each photometric data point and the bottom panel shows the
residuals between the photometry and the model spectrum. The 2MASS filters
do also include the atmospheric transmission.
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of data were obtained as bad weather backup targets for the AGN large program
(PI E. Sturm, program ID 1103.B-0626).

From the GRAVITY data, we extract the coherent flux following the standard
recipe of the official ESO data reduction pipeline (Lapeyrere et al., 2014). During
this first step, the pipeline computes the coherent flux observed on the host star
and the companion. However, the coherent flux observed on the faint companion
is still contaminated by the halo of the bright host star. This contamination is
removed using a Python package developed by our team2. The individual steps of
this package are outlined in Appendix A of Gravity Collaboration et al. (2020) and
its output is the decontaminated ratio of the coherent flux between the companion
and the host star. In short, the package models the complex visibility observed
on the planet as the sum of wavelength-dependent stellar leakage and the planet
visibility expressed in terms of the stellar visibility and the planet-to-star contrast
spectrum C(λ). Then, assuming a model contrast spectrum, a log-likelihood map
in ∆RA and ∆DEC is computed to find the best fit planet position. Given this
position, the contrast spectrum is then obtained by inverting the projection of the
source visibility onto the array baselines. For just one baseline and DIT, this is
an underdetermined set of equations, but the projection matrix changes for each
baseline and DIT enabling re-construction of the full contrast spectrum. The
model contrast spectrum is then updated with the measured one and the entire
process is repeated until the solution for the contrast spectrum has sufficiently
converged.

The astrometry for each epoch of data is obtained from the phase of the
ratio of the coherent flux and presented in Table 6.2. The uncertainties are
estimated from the scatter of the astrometric values obtained independently for
each individual exposure. The typical precision is ∼ 100 µas, which is well beyond
the theoretical limit of 16.5 µas determined by Lacour et al. (2014). This can
be attributed to low and high frequency phase errors present in our data and
introduced by instrumental and atmospheric aberrations (Gravity Collaboration
et al., 2021). The precision of our astrometry is therefore, in principle, not limited
by systematic errors. Furthermore, due to the asymmetry of the uv-plane, we
use the correlation coefficient ρ to properly describe the confidence intervals and
the correlations between the right ascension and the declination offset.

Finally, a spectrum of the companion for each epoch is obtained from the
amplitude of the ratio of the coherent flux. Before, though, this ratio is corrected
for the visibility of the host star which is modelled as a uniform disk of 0.079 mas
diameter (Chelli et al., 2016). Then, it is multiplied by a model spectrum of the
host star, which is obtained by interpolating the BT-NextGen stellar model grid
(Allard et al., 2012) for the stellar parameters presented in Table 6.3. Before, the
model spectrum is scaled to match the stellar photometry presented in Table 6.3,
yielding a scaling factor of ∼ 1.17. The 2MASS and WISE photometry are

2Python package available on GitHub upon request.
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Table 6.4: Orbital parameters inferred for HD 206893 B. The posterior states
the 68% confidence interval around the median. N (µ, σ) denotes a normal dis-
tribution with mean µ and standard deviation σ. Scenario 1 is constrained by
the data only and scenario 2 has an additional constraint on coplanarity with the
debris disk.

Parameter Prior Posterior1 Posterior2

a (au) LogUniform(1, 100) 9.26+1.82
−0.90 11.37+1.09

−0.75

e Uniform(0, 1) 0.29+0.06
−0.12 0.13+0.05

−0.03

i (deg) Sine(0, 180)1 154+12
−10 –

N (140, 3)2 – 142+2
−3

ω (deg) Uniform(0, 360) 126+86
−47 71+35

−25

Ω (deg) Uniform(0, 180)1 55+48
−29 –

N (61, 4)2 – 60+3
−3

τ Uniform(0, 1) 0.58+0.09
−0.21 0.32+0.11

−0.09

π (mas) N (24.51, 0.06)(a) 24.50+0.06
−0.06 24.51+0.06

−0.06

Mtot (M�) N (1.32, 0.02)(b) 1.32+0.02
−0.02 1.32+0.02

−0.02

Notes. (a) Gaia Collaboration (2018), (b) Delorme
et al. (2017).

sufficient to constrain the stellar spectrum over the GRAVITY wavelength range
(see Figure 6.1). This yields a spectrum of HD 206893 B for each epoch whose
combination is shown in Figure 6.3.

6.3 Orbit fitting

From the interferometric observations with GRAVITY we obtain two new astro-
metric data points with an unprecedented precision of ∼ 100 µas for HD 206893 B
(see Table 6.2). Together with astrometric data from the literature (see Ta-
ble 6.7), we estimate the orbital parameters of HD 206893 B with orbitize!3

(Blunt et al., 2020), which infers the posterior distribution of the orbital pa-
rameters through Markov Chain Monte Carlo (MCMC) sampling with ptemcee4

(Foreman-Mackey et al., 2013; Vousden et al., 2016). We initialize the sampler
with 20 temperatures, 500 walkers, and 50000 steps per walker. By visual in-
spection of the walker chains, we assess convergence and reject the first 40000
steps before computing the posterior distribution from each walker at the low-
est temperature. We note that we deploy the priors presented in Table 6.4 for
the orbital parameters. These priors are chosen very conservatively in order to
not constrain the posterior. The posterior distribution of the orbital parameters
and the inferred orbital solutions together with the NACO, SPHERE, GPI, and

3https://github.com/sblunt/orbitize
4https://github.com/willvousden/ptemcee

https://github.com/sblunt/orbitize
https://github.com/willvousden/ptemcee
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Figure 6.2: Posterior distribution of the orbital parameters (top) and orbital
solutions together with the NACO, SPHERE, GPI, and GRAVITY astrometry
(bottom) of HD 206893 B. In the top panel, the values state the 68% confidence
intervals around the median. In the bottom panel, the black star highlights the
position of HD 206893 A and all error bars show the 3–σ confidence intervals.
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GRAVITY astrometry are shown in Figure 6.2.

In general, the GRAVITY astrometry is consistent with those from NACO,
SPHERE, and GPI and our orbital solutions are consistent with those from
Grandjean et al. (2019) and Ward-Duong et al. (2021). Both of them obtained
a double-peaked semi-major axis distribution and an anti-correlation between
semi-major axis a and eccentricity e. However, adding the GRAVITY astrom-
etry disfavors small eccentricities e ∼ 0 and removes the second peak in the
semi-major axis distribution. Instead, a smaller semi-major axis of ∼ 8.3 au
and a higher eccentricity of ∼ 0.35 are preferred. Nevertheless, the inclination
i is similar to that obtained by Grandjean et al. (2019) and Ward-Duong et al.
(2021) with a value of ∼ 145 deg. The mutual inclination im between the debris
disk of the system reported by Milli et al. (2017) and Marino et al. (2020) and
HD 206893 B is

im = arccos (cos(i) cos(id) + sin(i) sin(id) cos(Ω− Ωd)) , (6.1)

where id = 140 ± 3 deg and Ωd = 61 ± 4 deg (Marino et al., 2020). For our
maximum likelihood orbital parameters we find im ∼ 6 deg, which means that the
debris disk and the companion are roughly (but not perfectly) aligned. We note
that we used priors between 0 and 180 deg for the longitude of the ascending node
Ω to enforce the debris disk and the companion orbiting in the same direction.
However, the direction of rotation of the debris disk is unconstrained and there
is a 180 deg ambiguity in the mutual inclination im between the debris disk and
the companion (Heintz, 1978). Therefore, they might as well orbit in opposite
directions.

Interestingly, Marino et al. (2020) found that if they enforce coplanarity be-
tween the debris disk and the companion, this would lead to the other one of the
degenerate solutions being preferred, namely a larger semi-major axis of∼ 11.4 au
and a smaller eccentricity of ∼ 0.14. To verify their findings, we ran another fit
with Gaussian priors of 140 ± 3 deg for the inclination i and 61 ± 4 deg for the
longitude of the ascending node Ω. The results are shown in Figure 6.8 and
confirm the findings of Marino et al. (2020), even when adding the GRAVITY
astrometry. Therefore, depending on whether coplanarity with the debris disk is
assumed or not, degenerate orbital solutions are obtained for HD 206893 B.

6.4 Spectral analysis

Apart from the two astrometric data points, we also obtain two K-band contrast
spectra at a resolution of R ∼ 500, one for each epoch of GRAVITY data. These
spectra measure the contrast between HD 206893 B and its host star, and with the
help of a model spectrum of the host star we obtain the spectra of HD 206893 B
as described in Section 6.2. The two spectra for the two different epochs are
consistent with each other and we combine them into a single final spectrum,
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Figure 6.3: Combined GRAVITY K-band spectrum of HD 206893 B together
with the SPHERE Y–H-band spectrum from Delorme et al. (2017) and the GPI
J, H, K1, and K2-band spectra from Ward-Duong et al. (2021). The shaded
regions highlight the 1–σ confidence intervals. For reference, absorption bands of
water and carbon monoxide are indicated.

Table 6.5: Prior boundaries for the atmospheric model grids used in this work.
The boundaries for the effective temperature and the radius were chosen based
on previous works on HD 206893 B, while those for the other parameters exploit
the maximum allowed range.

Model Teff log g [Fe/H] C/O R
(K) (dex) (RJup)

BT-Settl-CIFIST 1000–2000 2.5–5.5 – – 0.8–6.0
DRIFT-PHOENIX 1000–2000 3.0–5.5 -0.6–0.3 – 0.8–6.0

Exo-REM 1000–2000 3.5–4.5 -0.5–0.5 0.3–0.75 0.8–6.0

accounting for the covariances, shown in Figure 6.3 together with the SPHERE
spectrum from Delorme et al. (2017) and the GPI spectra from Ward-Duong
et al. (2021). In Section 6.4.1, we use these spectra for atmospheric model fitting
of HD 206893 B. To constrain the fits between 3.5–5 µm, we supplement the
spectra with photometry of HD 206893 B from the literature (see Table 6.8).

6.4.1 Atmospheric model fitting

By combining the GRAVITY spectrum with SPHERE and GPI spectra and pho-
tometry available in the literature, we reach a broad spectral coverage from ∼ 1–
5 µm. This spectral region contains absorption bands of water, carbon-monoxide,
and methane and is broad enough to estimate the effective temperature, the ra-
dius, and the surface gravity of an object. We estimate these parameters for
HD 206893 B by fitting its spectra and photometry with atmospheric model
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grids using species5 (Stolker et al., 2020). There is a variety of atmospheric
model grids for giant planets and brown dwarfs, all of them being slightly differ-
ent in terms of underlying physics and complexity. However, all of them assume
radiative-convective equilibrium to calculate the temperature structure of the
atmosphere self-consistently. Here, we use three different grids: the BT-Settl-
CIFIST grid (Baraffe et al., 2015), the DRIFT-PHOENIX grid (Helling et al.,
2008) (which includes metallicity as an additional free parameter), and the Exo-
REM grid (Baudino et al., 2015; Charnay et al., 2018) (which includes both
metallicity and C/O ratio as additional free parameters). All three grids include
photospheric absorption by dust clouds, but with different approaches to calcu-
late the cloud densities, grain size distributions and compositions. We bin the
grids to the spectral resolution of the respective instrument and use the spectra
and filter curves to calculate the synthetic photometry and filter-weighted aver-
age flux, respectively. For all grid parameters, we deploy uniform priors whose
boundaries are presented in Table 6.5. Our atmospheric model fits account for
the covariances in the GRAVITY spectrum according to Greco & Brandt (2016).
While fits to the GRAVITY and the SPHERE spectra alone show good photo-
metric agreement between the two, there seems to be a significant offset between
the GPI H-band and the SPHERE spectrum, which may indicate a systematic
error in the absolute flux calibration. Given that the SPHERE spectrum agrees
well with the GPI J-band spectrum, we decided to fit a separate scaling param-
eter to each of the GPI spectra while keeping the GRAVITY and the SPHERE
spectra fixed in order to preserve the extremely red color of HD 206893 B. Then,
we infer the posterior distribution of the model parameters with nested sampling
using PyMultiNest6 (Buchner et al., 2014; Feroz et al., 2009, 2019).

The extreme redness of HD 206893 B has been tried to be explained with
extinction by local dust, either extra-photospheric or in the form of a circum-
planetary disk by Milli et al. (2017), Delorme et al. (2017), and Ward-Duong
et al. (2021). Other possibilities like reddening by interstellar dust or extinction
by the debris disk could be mostly ruled out. Ward-Duong et al. (2021) could not
find any significant interstellar extinction toward the host star based on its pho-
tometry, and we can confirm this finding by visual inspection of stellar Ca-lines
in high-resolution spectra of HD 206893 A (A.-M. Lagrange, private communi-
cation). It is highly unlikely that there is an interstellar dust cloud which is
only obscuring HD 206893 B, but not its host star separated by only ∼ 250 mas.
Moreover, the debris disk of the system would need to be unrealistically opti-
cally thick (τ ∼ 1.7) to explain the observed reddening, even if viewed edge-on
(Ward-Duong et al., 2021). Therefore, extinction by local dust is the most plau-
sible explanation for the extremely red color of HD 206893 B, and we include
additional extinction caused by high-altitude dust clouds made of crystalline en-
statite (MgSiO3) grains in our atmospheric model fits. Since Ward-Duong et al.

5https://github.com/tomasstolker/species
6https://github.com/JohannesBuchner/PyMultiNest

https://github.com/tomasstolker/species
https://github.com/JohannesBuchner/PyMultiNest
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(2021) mention that common dust species such as forsterite, enstatite, corundum,
and iron predict similar extinction curves for grain sizes between 0.1–1 µm, we
decided to only consider enstatite grains for simplicity here. The enstatite grains
are described by a log-normal size distribution

n(a) ∝ exp

(
(a− amean)2

σ2
a

)
(6.2)

where a is the grain size, amean is the geometric mean grain size, and σa is
the grain size geometric standard deviation (which is dimensionless, Ackerman
& Marley, 2001). A log-uniform prior between 0.1–10 µm is used for amean
and a uniform prior between 1.1–10 is used for σa. Smaller grains would grow
by condensation within timescales of less than a second and are therefore not
considered (Charnay et al., 2018). Then, we compute the extinction cross-section
σext(amean, σa) using PyMieScatt7 (Sumlin et al., 2018) and scale the observed
flux Fobs to the de-reddened flux

Fder = Fobs exp

(
AV
2.5

σext
σext,V

)
, (6.3)

where AV is the extinction in the Bessel V-band, another free parameter with a
uniform prior between 0–5 mag, and σext,V is the extinction cross-section aver-
aged over the Bessel V-band. In total, our enstatite dust model has three free
parameters (amean, σa, and AV ) which are inferred along with the parameters of
the atmospheric model grids.

Table 6.6 summarizes the atmospheric parameters obtained for HD 206893 B
based on the three different atmospheric model grids without (“plain”) and with
(“dusty”) additional extinction caused by high-altitude dust clouds made of en-
statite grains. The inferred effective temperatures are very similar to those ob-
tained by Delorme et al. (2017) and Ward-Duong et al. (2021), but the surface
gravities confirm the trend observed by Ward-Duong et al. (2021), namely that
the H and K-band spectra prefer lower surface gravities than those obtained by
Delorme et al. (2017) for the SPHERE spectrum at shorter wavelengths. Over-
all, the parameters inferred from the plain models are spread over a wider range
of parameter space than those inferred from the dusty models. Moreover, all
dusty models fit the observed data better than the plain models since they have
smaller χ2

red. This is not completely surprising given that the dusty models have
three more free parameters for describing the additional extinction than the plain
models. Most noticeably, for both the plain and the dusty models the DRIFT-
PHOENIX (DP) grid predicts a significantly higher surface gravity and mass for
HD 206893 B than the BT-Settl-CIFIST (BT) and the Exo-REM (ER) grids.
However, while the DP grid yields the best fit (i.e., the smallest χ2

red) for the
plain models, it yields the worst fit (i.e., the highest χ2

red) for the dusty models.
7https://github.com/bsumlin/PyMieScatt

https://github.com/bsumlin/PyMieScatt
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Figure 6.4: Atmospheric models fitted to the observed spectra and photometry
of HD 206893 B shown in the background. Dark red lines show the best fit dusty
models including additional extinction caused by high-altitude dust clouds made
of enstatite grains and light red lines show the exact same models before adding
the extinction. BT = BT-Settl-CIFIST, DP = DRIFT-PHOENIX, and ER =
Exo-REM.

Another striking difference between the DP grid and the BT and ER grids
are the extinction parameters that they predict for the dusty models. While the
BT and ER grids consistently prefer small grains with a geometric mean size of ∼
0.33–0.34 µm and a geometric standard deviation of ∼ 1.30–1.34 (cf. Figure 6.5),
the DP grid prefers large grains with a geometric mean size of ∼ 2.29 µm and a
geometric standard deviation of ∼ 1.17. This is a difference in geometric mean
grain size of almost an order of magnitude. Figure 6.4 shows the best fit model
spectra for the dusty models in dark red together with the NACO, SPHERE, GPI,
and GRAVITY spectra and photometry of HD 206893 B. It is noteworthy that
there are significant differences between the BT and ER grids and the DP grid
regarding the depth of the 1.4 µm water absorption feature and the morphology
of the H-band and K-band peaks. Moreover, they deviate significantly at longer
wavelengths (> 2.5 µm). There, the available NACO photometry is not precise
enough to set meaningful constraints on the model parameters and better data,
for example from the James Webb Space Telescope, is required.

The exact same three dusty models are shown in light red, but before the
additional extinction caused by high-altitude dust clouds made of enstatite grains
is added to the model spectra. Here, the striking difference in predicted grain
size between the DP grid and the BT and ER grids becomes very clear. While
for the BT and ER grids, the difference between unextinct (light red) and extinct
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Figure 6.5: Extinction cross-section (top) and size distribution (bottom) of the
enstatite dust grains for the best fit dusty ER model. The plots show 30 ran-
domly drawn samples from the posterior distribution. Given the similar grain
size parameters, the plots look similar for the best fit dusty BT model, but the
extinction cross-section would be normalized to a smaller V-band extinction.
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(dark red) model spectrum decreases with increasing wavelength and approaches
zero over the L and M-band, the extinction reaches its maximum near the L-band
(where the wavelength is of the order of the geometric mean grain size) for the
DP grid. Finally, we note that the ER grid predicts a significantly higher V-
band extinction than the BT grid, despite the very similar grain size parameters.
This is the case because the ER grid converges toward a significantly larger
radius if compared to the BT grid, resulting in a higher bolometric luminosity
and therefore requiring higher extinction. We note that similar results would be
expected for other common dust species such as forsterite, corundum, and iron
given their similar extinction cross-sections below 1 µm.

6.4.2 Evolutionary tracks

Similar to Delorme et al. (2017), we compare our best fit atmospheric models
to evolutionary tracks for giant planets and brown dwarfs to ensure that they
correspond to physically plausible sub-stellar companions. Therefore, we use the
AMES-Cond evolutionary tracks (Baraffe et al., 2003). Figure 6.6 shows these
tracks for objects of different masses from 1–100 MJup in the surface gravity
vs. effective temperature and the radius vs. effective temperature planes. The
parameters of our best fit atmospheric models are overplotted in light red (plain
models) and dark red (dusty models).

The most significant outlier is the plain ER grid, which predicts an implausi-
bly large radius of 2.32+0.02

−0.02 RJup for a relatively cool (1049+2
−4 K) and low-mass

(6.58+0.11
−0.10 MJup) object. With the additional extinction, the radius decreases

and the effective temperature increases, leading to an object which is roughly
consistent between the atmospheric models and the evolutionary tracks with an
extremely young (< 10 Myr) planetary-mass (< 5 MJup) companion, given the
uncertainties on the surface gravity and the radius from the atmospheric model
fitting. We also note that the dusty ER grid converges toward the lower boundary
of the surface gravity (∼ 3.5). Other implausible objects are predicted by both
the plain BT and the dusty DP grids. While the low surface gravity predicted by
the plain BT grid is consistent with an extremely young object (∼ 1–3 Myr), its
predicted small radius is consistent with a rather old object (∼ 300–1000 Myr).
The same is observed the other way around for the dusty DP grid. Here, the pre-
dicted high surface gravity is consistent with a rather old object and the predicted
large radius is consistent with an extremely young object. However, the dusty BT
and the plain DP grids predict objects which are roughly consistent between the
atmospheric models and the evolutionary tracks. The dusty BT grid suggests a
moderately young (∼ 3–300 Myr) object somewhere between ∼ 5–30 MJup. The
plain DP grid suggests a rather old (∼ 100–1000 Myr) object somewhere between
∼ 15–75 MJup. We note that the parameter space predicted from the dusty BT
and the plain DP grids is also in agreement with the age and mass predicted for
HD 206893 B by Delorme et al. (2017).
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Figure 6.6: Parameters inferred for HD 206893 B from atmospheric model fitting
compared to AMES-Cond evolutionary tracks. Light red points show the best fit
parameters for the plain models and dark red points show the best fit parameters
for the dusty models including additional extinction caused by high-altitude dust
clouds made of enstatite grains. The evolutionary tracks are shown for objects
with exactly those masses printed below the colorbar. Curves of constant age are
shown in dashed grey. BT = BT-Settl-CIFIST, DP = DRIFT-PHOENIX, and
ER = Exo-REM.

Overall, we find that the BT and the ER grids require additional extinction
in order to predict physically plausible objects. This is different for the DP grid,
which becomes unphysical when additional extinction is included. This could also
be related to the much larger grain sizes predicted by the DP grid if compared
to the BT and ER grids, which are not expected for high-altitude dust clouds
(Hiranaka et al., 2016). Moreover, we find that the three different atmospheric
model grids predict three degenerate objects. The (dusty) ER grid predicts an
extremely young (< 10 Myr) object of < 5 MJup, the (dusty) BT grid predicts a
moderately young (∼ 3–300 Myr) object of ∼ 5–30 MJup, and the (plain) DP grid
predicts a rather old (100–1000 Myr) object of ∼ 15–75 MJup. Again, we note
that this degeneracy could potentially be resolved by more precise L and M-band
photometry, where the best fit plain DP model deviates significantly from the
best fit dusty BT and ER models.

6.4.3 Color-magnitude diagram

In a color-magnitude diagram, it can easily be seen that HD 206893 B is the
reddest known sub-stellar object (Milli et al., 2017; Delorme et al., 2017; Ward-
Duong et al., 2021). Figure 6.7 shows J-K and H-K color-magnitude diagrams
of HD 206893 B and other known planetary-mass companions. For reference,
M, L, and T-dwarfs from the SpeX Prism Spectral Libraries8 are shown in the

8http://pono.ucsd.edu/~adam/browndwarfs/spexprism/library.html

http://pono.ucsd.edu/~adam/browndwarfs/spexprism/library.html
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Libraries are shown in green. For the dust model, we assume amean = 0.33 µm,
σa = 1.30, and AV = 0–3. The red dots are in steps of 1 mag.

background. The apparent magnitudes of the planetary-mass companions were
taken from Delorme et al. 2017 (HD 206893 B), Currie et al. 2013 (β Pic b),
Skemer et al. 2016 (GJ 504 b), Rajan et al. 2017 (51 Eri b), Zurlo et al. 2016
(HR 8799 b, c, d, and e), Patience et al. 2012 (2M1207 b), and Bohn et al. 2020
(TYC 8998 b). Apparent magnitudes were converted to absolute magnitudes
using distances (i.e., parallaxes) from Gaia Collaboration (2018).

The red lines show the reddening vectors of our best fit enstatite dust model
for different V-band extinctions. Here, we assume amean = 0.33 µm and σa =
1.30, consistent with the best fit dusty BT and ER models. We did not plot
the reddening vector for the best fit dusty DP model because it corresponds
to a physically implausible object (cf. Section 6.4.2). The shown reddening
vectors extend from AV = 0–3. For the best fit dusty BT and ER models, the
predicted V-band extinction of AV ∼ 2.0 and AV ∼ 2.9, respectively, brings
HD 206893 B back to the red end of the sub-stellar main-sequence, close to
where other planetary-mass objects such as β Pic b and κ And b are located.
This implies that HD 206893 B could indeed be a very dusty companion around a
young moving group member, such as β Pic b and κ And b. Finally, compared to
the interstellar reddening law applied by Ward-Duong et al. (2021), our enstatite
dust model predicts a similar reddening slope in theMH vs. H-K color-magnitude
diagram while requiring smaller V-band extinction values of ∼ 2–3 instead of
∼ 10 in order to bring HD 206893 B back to the red end of the sub-stellar
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main-sequence. The existence of the CT Cha companion (Schmidt et al., 2008)
mentioned by Ward-Duong et al. (2021) and suffering from an extreme V-band
extinction of ∼ 5 magnitudes therefore puts the values of AV ∼ 2–3 obtained for
HD 206893 B in a realistic regime.

6.5 Discussion

In Section 6.3, we infer the orbital parameters of HD 206893 B for two different
scenarios. Scenario 1 is constrained by the data only and scenario 2 has an
additional constraint on coplanarity with the debris disk of the system observed
by Milli et al. (2017) and Marino et al. (2020). By comparison with earlier works
from Grandjean et al. (2019) and Ward-Duong et al. (2021), we find that the
GRAVITY data resolves the degeneracy between a lower eccentricity, larger semi-
major axis and a higher eccentricity, smaller semi-major axis orbit by preferring
the latter of these in scenario 1. This is interesting because this orbital solution
is slightly misaligned with respect to the debris disk by ∼ 6 deg. Marino et al.
(2020) mention that a misalignment between the orbit of HD 206893 B and
the debris disk should be unlikely given the system’s age of at least 50 Myr
(Delorme et al., 2017). They argue that HD 206893 B should align with the debris
disk due to secular interactions on timescales of only ∼ 10 Myr. In scenario 2,
where we enforce alignment between the orbit of HD 206893 B and the debris
disk, we clearly find that the lower eccentricity, larger semi-major axis orbit is
preferred. This is in agreement with Marino et al. (2020), who obtained the
same result without the additional GRAVITY data, and reinforces our finding
that the GRAVITY data alone prefers a slight misalignment between the orbit
of HD 206893 B and the debris disk.

If this misalignment is confirmed by future GRAVITY observations, an expla-
nation for it needs to be found. One possibility would be a significantly younger
age (< 50 Myr) for the system. We note that such a young age would be in
agreement with the age constraint set by comparing our best fit dusty BT and
ER models with evolutionary tracks. In addition, an age of ∼ 40 Myr would be
expected according to Torres et al. (2008) if the system was part of the Argus mov-
ing group. Another possibility would be tidal interactions between HD 206893 B
and the other putative companions predicted to exist in this system (e.g., Wu
& Lithwick, 2011). There is evidence for a second, massive (∼ 15 MJup) and
close (1.4–2.6 au) companion interior to the orbit of HD 206893 B from radial
velocity data (Grandjean et al., 2019) and a third 0.4–1.7 MJup companion fur-
ther out responsible for carving the gap at ∼ 74 au in the debris disk observed
with ALMA (Marino et al., 2020). However, a profound analysis of potential
planet-planet interactions is beyond the scope of this work. Finally, we note that
an eccentricity of ∼ 0.3 for HD 206893 B preferred by the GRAVITY data is in
better agreement with the eccentricity distribution of the brown dwarf popula-
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tion than that of wide-separation (5–100 au) giant planets, the latter of which
show a preference for low eccentricities (≈ 0.05–0.25, Bowler et al., 2020). Still,
sorting an individual companion into one or the other class of objects based on its
eccentricity remains highly speculative, and as highlighted before, there might be
other mechanisms responsible for an excitement of HD 206893 B’s eccentricity,
such as tidal interactions with other companions in the system.

In Section 6.4, we analyze the near-infrared spectrum of HD 206893 B. We
obtain a dense spectral coverage between 1–2.5 µm by combining data from
SPHERE, GPI, and GRAVITY that we extend up to ∼ 5 µm with VLT/NACO
photometry from Stolker et al. (2020). While Delorme et al. (2017) and Ward-
Duong et al. (2021) found that currently available atmospheric models for giant
planets and brown dwarfs fail to predict the extremely red color and the very
shallow 1.4 µm water absorption feature of HD 206893 B at the same time, they
also compared the spectrum of HD 206893 B to those of other dusty, low-gravity
or young M and L-dwarfs and found that none of these objects could reproduce
all spectral features of HD 206893 B. Hence, both of these authors tried to recon-
cile the spectrum of HD 206893 B with those of other dusty, low-gravity or young
M and L-dwarfs by including additional extinction caused by high-altitude dust
clouds. Therefore, they explored a variety of dust species (forsterite, enstatite,
corundum, and iron), grain sizes (0.05–1 µm), and extinction values. They found
that reddening by forsterite or enstatite grains with sizes between 0.27–0.50 µm
yields the best match to a very low-gravity L3-dwarf. Such a reddening by small
(< 1 µm) dust grains in the cool upper atmosphere has been suggested before
by Marocco et al. (2014) and Hiranaka et al. (2016) to match the spectra of
unusually red L-dwarfs with those of spectroscopic standards. They concluded
that scattering by dust clouds with grain sizes between 1–100 µm included in cur-
rent atmospheric models is not sufficient to describe the peculiarly red L-dwarfs,
which seem to require additional scattering by smaller grains in the cool upper
atmosphere.

Here, we focussed on a slightly different approach by adding extinction caused
by high-altitude dust clouds made of enstatite grains directly to the atmospheric
model grids. Our dusty BT, DP, and ER grids fit the extremely red color as
well as the very shallow 1.4 µm water absorption feature of HD 206893 B well
(see Figure 6.4). However, both the plain and dusty DP grids fail to predict the
pointy H-band peak observed with GPI9. Therefore, we obtain the best fits with
our dusty BT and ER grids with χ2 = 0.751 and 0.757, respectively. In agreement
with the comparison between HD 206893 B and other dusty, low-gravity or young
M and L-dwarfs by Delorme et al. (2017) and Ward-Duong et al. (2021), we find
a grain size distribution with a geometric mean size of ∼ 0.33–0.34 µm for these
grids.

9We note that since we allow for a scaling parameter for the GPI spectra, we cannot use
them to obtain information about the absolute flux, but they are still useful to compare the
spectral morphology between data and model.
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From the comparison between our best fit atmospheric models and the AMES-
Cond evolutionary tracks in Section 6.4.2, we find that the dusty ER grid would
be consistent with an extremely young object and the plain DP grid would be
consistent with a rather old object. In between the two, the dusty BT grid
suggests a moderately young (∼ 3–300 Myr) object somewhere between ∼ 5–
30 MJup. While the uncertainties on HD 206893 B’s age and mass are large, it
is still noteworthy that this solution is also in agreement with both the age of
∼ 40–270 Myr estimated for the Argus moving group (Torres et al., 2008; Bell
et al., 2015) and the mass of 10+5

−4 MJup predicted from radial velocity data of
the system (Grandjean et al., 2019). Compared to Delorme et al. (2017), who
report a best fit age and mass of 100–300 Myr and 15–30 MJup, respectively, we
find that a younger, planetary-mass object would fit the data equally well.

6.6 Conclusions

We present new VLTI/GRAVITY K-band spectroscopy at a resolution ofR ∼ 500
of the reddest known sub-stellar companion HD 206893 B. From these observa-
tions we obtain two new astrometric data points with a precision of ∼ 100 µas
as well as a low signal-to-noise K-band spectrum of HD 206893 B. We use the
astrometry to update the orbital parameters of HD 206893 B and the spectrum
to infer its atmospheric parameters with atmospheric model fitting. Given the
previously observed difficulties with fitting both the extremely red color as well
as the very shallow 1.4 µm water absorption feature of HD 206893 B (Delorme
et al., 2017; Ward-Duong et al., 2021), we include additional extinction caused
by high-altitude dust clouds made of enstatite grains in our atmospheric model
fits.

From the orbit fitting, we find that the GRAVITY data resolves the previ-
ously observed degeneracy between a lower eccentricity, larger semi-major axis
and a higher eccentricity, smaller semi-major axis orbit by preferring the latter
of these. The orbital solution for HD 206893 B preferred by the GRAVITY data
is also slightly misaligned with respect to the debris disk of the system. We
argue that this misalignment could suggest a significantly younger age for the
system or could be caused by tidal planet-planet interactions with other putative
companions in the system. However, the slight preference for a misaligned orbit
needs to be confirmed by future GRAVITY observations and a profound analysis
of tidal planet-planet interactions and their impact on the alignment and eccen-
tricity of HD 206893 B’s orbit is left for future work. Astrometric accelerations
from Gaia will further assist this process, but the timespan will be too small to
cover a significant fraction of an orbit of B so that precision radial velocities are
needed to disentangle between the inner (HD 206893 C) and outer (HD 206893 B)
companion.

From the atmospheric model fitting, we find that the BT-Settl-CIFIST (BT)
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and Exo-REM (ER) grids including additional extinction (dusty models) can fit
all near-infrared spectral features of HD 206893 B, namely the extremely red
color, the very shallow 1.4 µm water absorption feature, and the pointy H-band
peak observed with GPI. Both DRIFT-PHOENIX (DP) grids, however, these
with (dusty models) and without (plain models) additional extinction, fail to
reproduce the pointy H-band peak. By comparison to evolutionary tracks, we
argue that only the best fit dusty BT and ER models as well as the plain DP
model correspond to physically plausible objects. The best fit parameters of these
three models are spread over a wide range of ages and masses, though. If the best
fit dusty BT and ER models are favored over the best fit plain DP model, due to
their ability to fit the pointy H-band peak observed with GPI, we predict an age
of ∼ 3–300 Myr and a mass of ∼ 5–30 MJup for HD 206893 B. Together with the
mass estimate of 10+5

−4 MJup from radial velocity data (Grandjean et al., 2019)
and a potential Argus moving group membership of the system (membership
probability ∼ 61%, Ward-Duong et al., 2021), we conclude that a planetary
nature has to be considered for HD 206893 B. However, further observations such
as more precise L and M-band photometry from the James Webb Space Telescope
and a broader spectral coverage or higher spectral resolution are required to make
a robust statement on the nature of HD 206893 B.

Finally, it has been shown that the extreme atmospheric conditions on HD
206893 B responsible for its exceptionally red color cannot be reproduced by cur-
rently available atmospheric models for giant planets and brown dwarfs without
further adaptions. The case of HD 206893 B can therefore serve as a benchmark
for the further development of such atmospheric models which could ultimately
lead to a more complete understanding of the objects at the boundary between
exoplanets and brown dwarfs. Moreover, future radial velocity or high-contrast
imaging observations might confirm the additional companions predicted to exist
in this system and improve the mass estimate for HD 206893 B.
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Appendix 1: orbit fitting and debris disk

Table 6.7: Relative astrometry of HD 206893 B from the literature. “Sep.” and
“PA” denote the angular separation and the position angle, respectively, and
“Inst.” denotes the instrument with which the data was acquired.

MJD Sep. PA Inst. Band Source
(days) (mas) (deg)
57300 270.0± 2.6 69.95± 0.55 SPHERE H M17
57608 269.0± 10.4 61.6± 1.9 NACO L’ M17
57647 265± 2 62.25± 0.11 SPHERE K1/K2 D17
57653 267.6± 2.9 62.72± 0.62 GPI H W20
57682 265.0± 2.7 61.33± 0.64 GPI K1 W20
57948 260.3± 2.0 54.2± 0.4 SPHERE H G19
58066 256.9± 1.1 51.01± 0.35 GPI K2 W20
58289 249.11± 1.60 45.50± 0.37 SPHERE H2/H3 G19
58385 251.7± 5.4 42.6± 1.6 GPI J W20
Notes. M17 = Milli et al. (2017), D17 = Delorme et al. (2017),

G19 = Grandjean et al. (2019), W20 = Ward-Duong
et al. (2021).
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Figure 6.8: Same as Figure 6.2, but imposing Gaussian priors of 140± 3 deg for
the inclination i and 61±4 deg for the longitude of the ascending node Ω in order
to enforce co-planarity between the orbit of HD 206893 B and the debris disk of
the system.
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Appendix 2: photometry

Table 6.8: Photometry of HD 206893 B from the literature. “Inst.” denotes the
instrument with which the data was acquired.

Inst. Band λ Value Source
(µm) (mag)

SPHERE J 1.245 18.33± 0.17 D17
SPHERE H 1.626 16.79± 0.06 D17
SPHERE K1 2.104 15.20± 0.10 D17
SPHERE K2 2.255 14.88± 0.09 D17
NACO L’ 3.805 13.80± 0.31 S20
NACO NB405 4.056 13.17± 0.55 S20
NACO M’ 4.781 12.78± 0.51 S20
Notes. D17 = Delorme et al. (2017), S20 =

Stolker et al. (2020).
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Conclusions

In this thesis, we developed new methods to characterize data correlations in
kernel phase and long-baseline interferometry and to account for them in the
model fitting process. Furthermore, we refined the calibration process in ker-
nel phase interferometry with a special variant of principal component analysis
methods known as Karhunen-Loève decomposition. These improvements enable
us to enter the high-contrast imaging regime from the ground, which we demon-
strate on an archival VLT/NACO data set of nearby field stars. We detect eight
low-mass stellar companions, five of which represent new discoveries, and two
of which have separations below the classical (Rayleigh) diffraction-limit of the
VLT, demonstrating the unprecedented angular resolution achievable with ker-
nel phase interferometry. However, we find that the achieved contrast is limited
by systematic errors due to a non-ideal observing strategy. With an observing
technique called “star-hopping” we tackle this issue and enable a more accurate
calibration of the stellar PSF at the smallest spatial scales (/ 1 λ/D). We survey
55 young stars in the Taurus star-forming region for forming giant planets with
this technique. For those, we achieve typical 5–σ contrast limits of ∼ 6 mag at
separations of 0.2 arcsec and ∼ 8 mag at separations of 0.5 arcsec. In principle,
these limits are sufficient for the detection of other young accreting protoplanets
(e.g., PDS 70 b, Keppler et al., 2018), but we do not discover any new com-
panions. Given the extreme youth of the observed targets in Taurus and based
on our non-detections, we are able to put upper constraints on the giant planet
frequency as a function of mass and orbital separation. As a next step, we apply
kernel phase interferometry to mid-infrared data of the enigmatic T Tauri triple
system. Once thought to be a prototypical single T Tauri-star with a circum-
stellar disk from which it accretes matter, it is today known to be a complex
triple system with multiple misaligned circumstellar and circumbinary disks. At
relatively low contrast, we obtain photometry of all three components of T Tauri,
including the southern binary at an angular separation of down to ∼ 0.2 λ/D in
our longest wavelength filter at ∼ 12.8 µm.

Our empirical correlation model for VLTI/GRAVITY data enables a gain in
contrast of a factor of up to ∼ 2 at small angular separations, where detections
are limited by systematic errors. We highlight the importance of accounting
for these correlations by investigating the probability of false positive or false
negative detections with and without our correlation model, finding that widely
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used detection criteria based on χ2 statistics are only valid when accounting for
the correlations. Not doing so can lead to an excessive number of false positive
detections. On the one hand, our correlation model enables observing fainter
companions or circumstellar disks at small angular separations (/ 50 mas) and
the sensitivity to asymmetric features of observations such as those presented in
Varga et al. (2020) could be improved by a factor of ∼ 2. On the other hand,
accounting for the correlated errors yields a remarkable boost in the robustness of
the detections (i.e., significantly fewer false positive detections). Therefore, a re-
analysis of marginal companion (non)-detections from the archive, such as those
presented in multiplicity studies of Cepheid stars from Gallenne et al. (2013,
2014, 2015), would greatly benefit from our correlation model and potentially
yield new insights into the true nature of these companions.

Finally, we demonstrate the capabilities of optical long-baseline interferome-
try in terms of exoplanet and brown dwarf characterization. We obtain medium-
resolution VLTI/GRAVITY spectroscopy of the reddest known sub-stellar com-
panion HD 206893 B (Milli et al., 2017; Delorme et al., 2017) and infer its orbital
and atmospheric parameters by model fitting. From the orbital fitting, we find
that HD 206893 B orbits roughly co-planar with the debris disk of its parent star
and therefore likely formed from its circumstellar disk. However, the GRAVITY
astrometry prefers an eccentric orbit (e ∼ 0.3) slightly misaligned with the de-
bris disk, as opposed to the low-eccentricity orbit (e < 0.1) which is preferred if
co-planarity with the debris disk is assumed. From the atmospheric fitting, we
find that HD 206893 B is relatively hot, small, and low-mass, probably resid-
ing at the lower end of the brown dwarf regime. However, its extreme redness,
most likely caused by high-altitude dust clouds in the cool upper atmosphere,
complicates the model fitting process. More precise photometry in the L and M-
band (e.g., with the James Webb Space Telescope) is required to draw a definitive
conclusion on the nature of HD 206893 B and the extinction and dust grain prop-
erties of its clouds. Further insights could come from higher signal-to-noise or
higher resolution near-infrared spectroscopy, which would enable measuring ele-
mental abundances and linking them to chemical enrichment during formation
(e.g., Öberg et al., 2011; Lavie et al., 2017).

Our work enables high-contrast imaging at extremely high resolution with
kernel phase interferometery. While Martinache (2010) and Pope et al. (2013)
reported 5–σ detection limits of ∼ 5.75 mag at ∼ 1 λ/D with the Hubble Space
Telescope, we achieve better limits of ∼ 6 mag at separations of 0.2 arcsec and
∼ 8 mag at separations of 0.5 arcsec with Keck/NIRC2 from the ground. This
enables the detection of the youngest hot start giant planets (Wallace et al.,
2020) and cold and warm start giant planets during the runaway gas accretion
phase (Wallace & Ireland, 2019). Besides using a larger telescope, the gain in
contrast if compared to earlier works is achieved by various improvements in
the data reduction process, such as propagating uncertainties in the image plane
to covariances in the Fourier plane and applying a calibration approach based
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on principal component analysis methods. While kernel phase interferometry
has mostly been used with space-based facilities before (Martinache, 2010; Pope
et al., 2013), due to their exquisite PSF stability, our work enables using the tech-
nique with adaptive-optics-fed instruments from the ground. Kernel phase inter-
ferometry opens up the parameter space of young accreting protoplanets in the
nearest star-forming regions, both in terms of contrast and resolution. However,
as shown by Wallace & Ireland (2019), a further increase in contrast is required
to access the bulk of young giant planets rather than just those which are partic-
ularly bright due to brief runaway gas accretion from a hot circumplanetary disk
(e.g., Zhu, 2015). Such an increase in contrast could come either from the next
generation of Extremely Large ground-based Telescopes (ELTs), improved adap-
tive optics systems delivering higher Strehl ratios, or from further developments
on the post-processing side. Recently, Martinache et al. (2020) have shown that
the previously used binary representation (i.e., either 0% or 100% transmission)
of the pupil model introduced systematic errors to the kernel phase observables,
which could be significantly mitigated by using a grey representation (i.e., con-
tinuous transmission between 0–100%) of the pupil model. Laugier et al. (2019)
developed a method for reconstructing saturated PSFs complementary to the one
applied in Kammerer et al. (2019) and Laugier et al. (2020) constructed a sub-
set of kernel phases, the so-called angular differential kernel phases, which are
robust with respect to static biases by making use of the field rotation. Further
improvements could come from a treatment of higher-order atmospheric noise,
for example by making use of the telemetry of adaptive optics systems, and mit-
igating remaining systematic errors will be key for high-contrast kernel phase
observations of exoplanets.

We have further shown that (ground-based) kernel-phase observations require
a careful data post-processing before the actual kernel-phases and their uncer-
tainties can be extracted. Most important are the correction of bad or saturated
pixels and the selection of “good” frames which fulfill the small-angle Fourier
phase approximation on which the kernel-phase formalism is based. For the frame
selection, we have presented three different methods in Chapters 2, 3, and 4; one
based on the peak pixel count of each frame, one based on the sum of the squared
kernel-phase signal of each frame, and one based on the Fourier phase signal of
each frame. To first order, all of these methods are equivalent, since the peak
pixel count is a function of the Strehl ratio, which directly impacts the non-zero
Fourier phase signal and the higher-order terms in the kernel-phase formalism.
However, considering directly the Fourier or kernel-phase signal is preferred over
rejecting frames based on their peak pixel count, since this quantity is difficult
to compare among different targets with different brightnesses. The kernel-phase
signal, however, is independent of the target brightness and enables comparison
of the data quality throughout an entire observing run. Finally, when the ob-
served target is expected to have a significant kernel-phase signal because it is
a low-contrast binary or multiple system, rejecting frames based on the Fourier
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phase can be more robust to ensure compatibility with the small-angle approxi-
mation. We have also shown that using a large library of calibrator PSFs is only
beneficial over using a single one when these calibrators were observed close in
time to the science target, since the quasi-static phase errors which dominate the
systematic error budget of kernel-phase observations from the ground evolve over
timescales of tens of minutes.

In the near future, kernel phase interferometry will complement the aperture
masking interferometry (AMI) mode of the James Webb Space Telescope (JWST).
While AMI is ideal for high-resolution imaging around bright targets, since the
aperture mask blocks 85% of the light, kernel phase will yield similar performance
around fainter targets (Ceau et al., 2019). This enables searching for young
giant planets in the nearest star-forming regions, although we highlight that the
resolution achievable with JWST will not be sufficient to probe the tip of the
giant planet distribution. Nevertheless, there might be a compelling science case
which makes use of JWST’s large FOV. In a dense stellar region, multiple targets
could be observed at the same time and kernel phase interferometry could be used
to search for faint companions around all of them. This is because unlike with
a coronagraph or an aperture mask, off-axis targets can be studied with kernel
phase interferometry. Apart from that, both kernel phase interferometry and
AMI can be used to obtain 3–5 µm photometry of sub-stellar companions. This
wavelength regime contains absorption features of methane and carbon-monoxide
and enables to constrain the metallicity, especially the C/O abundance ratio,
of exoplanet and brown dwarf companions (e.g., Stolker et al., 2020). These
parameters are tightly linked to the formation of these objects, and can be used
to infer the formation mechanism and location in the protoplanetary disk (Öberg
et al., 2011; Gravity Collaboration et al., 2020).

However, until the ELTs go online, studying planet formation will be limited
to a few exquisite cases. Even then, Wallace & Ireland (2019) have shown that
the probability of detecting young giant planets is limited rather by resolution
than sensitivity. Only in an optimistic migration scenario, in which giant planets
form and stay at larger orbital periods, the yield predicted for E-ELT/METIS
is of a few percent (∼ 2–3%) and comparable to that of VIKiNG, a potential
high-contrast kernel nuller for the VLTI (Martinache & Ireland, 2018). In this
regard, kernel phase interferometry would be a solution to overcome the limitation
of the ELTs in terms of angular resolution, while still achieving high-contrasts
suitable for the detection of young giant planets. Other possibilities can come
from the development of novel coronagraphs, such as (vector) apodizing phase
plates (e.g., Kenworthy et al., 2007; Otten et al., 2014) or vortex coronagraphs
(e.g., Mawet et al., 2012), which reach smaller inner working angles than classical
Lyot coronagraphs and are planned to be installed in E-ELT/METIS.

Optical/near-infrared long-baseline interferometry will be another key player
in the field, and next-generation nulling instruments (SCIFY, VIKiNG, Defrère



CHAPTER 7 180

et al., 2018; Martinache & Ireland, 2018) will be able to detect a sizeable sample
of young giant exoplanets (Wallace & Ireland, 2019). At present, long-baseline
interferometry is limited in sensitivity due to poorly understood systematic errors
at the smallest spatial scales. We contribute to the understanding of these errors
by studying the correlations present in VLTI/GRAVITY data and developing an
empirical correlation model in order to account for them in the model fitting pro-
cess. This yields a gain in sensitivity by a factor of up to ∼ 2 and greatly improves
the reliability of the technique. Recently, Gravity Collaboration et al. (2019)
have shown the capability of GRAVITY to detect known exoplanets, and the
direct confirmation of β Pic c (Nowak et al., 2020), a giant exoplanet discovered
through radial velocity observations (Lagrange et al., 2019), marks an important
step toward high-resolution surveys for young giant exoplanets with long-baseline
interferometry. GRAVITY+, the adaptive-optics and fringe tracker upgrade for
GRAVITY, will further improve the sensitivity and contrast of GRAVITY and
enable follow-up spectroscopy of giant planets detected via Gaia astrometry (Per-
ryman et al., 2014). As a consequence, studying the age-luminosity relationship
and inferring the formation entropy of giant planets will be possible on a statis-
tically relevant scale. However, as statistical uncertainties decrease, systematic
errors will become more important and our work on correlations in GRAVITY
data will be a useful starting point for mitigating their impact on GRAVITY+.

The application of high-contrast imaging techniques to single-dish kernel-
phase and multi-aperture long-baseline interferometry throughout this work has
shown significant differences and complementarity between these methods. Kernel-
phase is efficient in searching for new sub-stellar companions because it features a
dense uv-plane coverage and can easily be applied at small angular separations in
combination with PSF subtraction methods at larger angular separations. Con-
trast detection limits of ∼ 6–8 mag at angular separations of ∼ 0.2–0.5 arcsec
can be readily achieved in half an hour with an optimized observing strategy
(such as star-hopping) capable of tracing quasi-static phase errors varying on
timescales of tens of minutes. Compared to aperture masking interferometry,
kernel-phase also achieves a higher throughput and can thus be used to search
for companions around fainter targets, with the drawback of requiring better ob-
serving conditions. While optical long-baseline single-field interferometry pushes
the resolution down to a few milli-arcseconds (e.g., Gallenne et al., 2015), it is still
limited in contrast to / 6 mag, even with our novel error correlation model. In
between these two methods, GRAVITY dual-field interferometry achieves faint
source detection limits of ∼ 18 mag apparent magnitude in the K-band in three
hours, suitable for detecting even the faintest known directly-imaged exoplanets
(e.g., 51 Eri b, Macintosh et al., 2015). However, the diameter of the optical
fibers used in these dual-field observations limits the angular resolution and the
field-of-view to about 50 mas so that this method is only useful if the position
of the companion can be constrained a priori (e.g., Lacour et al., 2020). In
summary, while GRAVITY dual-field interferometry is a powerful method for
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following-up and cgaracterizing already known sub-stellar objects, kernel-phase
is more suitable for searching for new companions.

In the far future, long-baseline interferometry could become a dominant tech-
nique in optical and infrared imaging, similar to radio and sub-millimeter as-
tronomy today. We are at a point in time where constructing larger single-dish
telescopes has become impossible, and even large-aperture segmented telescopes
comprise immense challenges to be overcome. Segmented mirrors need to be
co-phased, very similar to the phase-referencing of an interferometer, and while
co-phasing the E-ELT still has to be demonstrated, fringe tracking with base-
lines of ∼ 100 m is already daily practice at the VLTI. Advancements in optical
fiber and integrated optics technology greatly aid long-baseline interferometry
(Perraut et al., 2018) and even put a large space-based nulling interferometer
(Cockell et al., 2009) in reach. With such an instrument, a sizeable sample of
nearby terrestrial worlds could be searched for signs of habitability and biological
activity for the first time in human history (Kammerer & Quanz, 2018; Quanz
et al., 2018, 2019). This would be a significant advancement toward answering
the question whether alien life exists – a question that might also have been on
Galilei’s mind when he pointed his telescope to the night sky in 1609.
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