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Abstract

This thesis aims to study various statistical inferences for high-dimensional data,

especially high-dimensional time series, including sieve bootstrap, homogeneity

pursuit, and an equivalence test for spiked eigenvalues of autocovariance ma-

trix. The primary techniques used in this thesis are novel dimension-reduction

methods developed from factor models and principal component analysis (PCA).

Chapter 2 proposes a novel sieve bootstrap method for high-dimensional time

series and applies it to sparse functional time series where the actual observations

are not dense, and pre-smoothing is misleading. Chapter 3 introduces an

iterative complement-clustering principal component analysis (CPCA) to study

high-dimensional data with group structures, where both homogeneity and

sub-homogeneity (group-specific information) can be identified and estimated.

Lastly, Chapter 4 proposes a novel test statistic named the autocovariance test

to compare the spiked eigenvalues of the autocovariance matrices for two high-

dimensional time series. In all chapters, dimension-reduction methods are

applied for novel statistical inferences. In particular, Chapters 2 and 4 focus on

the spiked eigenstructure of autocovariance matrix and use factors to capture the

temporal dependence of the high-dimensional time series. Meanwhile, Chapter 3

aims to simultaneously estimate homogeneity and sub-homogeneity, which form

a more complicated spiked eigenstructure of the covariance matrix, despite that

the group-specific information is relatively weak compared with the homogeneity

and traditional PCA fails to capture it.

The theoretical and asymptotic results of all three statistical inferences are

provided in each chapter, respectively, where the numerical evidence on the

finite-sample performance for each method is also discussed. Finally, these three

statistical inferences are applied on particulate matter concentration data, stock

return data, and age-specific mortality data for multiple countries, respectively,

to provide valid statistical inferences.
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Chapter 1

Introduction

With the developments in computer sciences and information technologies, an

increasing number of data are now being collected for statistical analysis. High-

dimensional data, especially high-dimensional time series data, are now widely

seen in many disciplines such as economics, finance, meteorology, and biology.

Despite the developments in computing powers, novel statistical methods for

statistical inferences such as estimation, prediction, and hypothesis testing are in

urgent demand for many scientific questions.

Unlike univariate or multivariate data with finite dimensions, when the data

dimension and the number of unknown parameters grow with the sample size,

the sample estimates of unknown parameter matrices such as covariance and

autocovariance matrices for high-dimensional data are generally not consistent.

This phenomenon is usually referred to as the ‘curse of dimensionality’, which

has received innumerable attention in the past few years. Among numerous

attempts to deal with the ‘curse of dimensionality’, most of them grow from either

regularisation or dimension-reduction methods. In this thesis, novel statistical

inferences based on variations of dimension-reduction methods, including factor

models (Bai and Ng, 2002a; Bai, 2003a) and principal component analysis (PCA)

(Jolliffe, 2002), are developed to study high-dimensional data, especially high-

dimensional time series.

Factor models (Bai and Ng, 2002a; Bai, 2003a) are introduced for studying

large dimensional data-set where both the data dimension N and sample size T

tend to infinity. As an efficient dimension-reduction method, factor models trans-

fer the study on high-dimensional data to low-dimensional factors. Following the

1
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2 Introduction

original work for independent data, Lam et al. (2011); Lam and Yao (2012) apply

factor models on high-dimensional time series, where the temporal dependence

of the high-dimensional data are assumed to be captured by low-dimensional

factors. On the other hand, the idea of principal component analysis (PCA)

can date back to the early twentieth century in Pearson (1901), and Hotelling

(1933) for multivariate data with fixed dimensions. With the developments in

recent years, PCA has become a well-known statistical method to represent

high-dimensional data onto a low-dimensional space. Besides, (Fan et al., 2013a)

summarises the relationship between PCA and factor models, where PCA can

be utilised as a statistical technique to estimate factor models since PCA on

the sample covariance matrix consistently estimates the eigenspace spanned

by factor loadings. Moreover, both methods have received a vast number of

developments in the past few years, and various variations have been introduced

to solve different statistical problems. A complete survey on PCA and factor

models’ recent developments can be found in Johnstone and Paul (2018).

This thesis mainly contributes to three statistical inferences for high-dimensional

data, especially high-dimensional time series. They are sieve bootstrap, homo-

geneity and sub-homogeneity pursuit, and the equivalence test for spiked eigen-

values of autocovariance matrix (the autocovariance test). Typically, the sieve

bootstrap in Chapter 2 and the autocovariance test in Chapter 4 focus on the

spiked eigenstructure of the autocovariance matrix and use factors to capture the

temporal dependence of the original high-dimensional time series. On the other

hand, Chapter 3 aims to develop a novel method to estimate homogeneity and

sub-homogeneity (group-specific information), where a more complicated spiked

eigenstructure exists in the covariance matrix and the group-specific information

is relatively weak compared with the homogeneity hence hard to be estimated

by traditional PCA methods.

First of all, Chapter 2 introduces a novel sieve bootstrap method for high-

dimensional time series and applies it on sparse functional time series where

traditional functional bootstrap methods fail to work as the observations are

not dense enough, and pre-smoothing on sparse observations is misleading.

© Daning Bi – 21 May 2021



3

Bootstrap (Efron, 1979), as a pervasive and powerful tool, can be utilised to create

confidence intervals and perform hypothesis testings when theoretical results

are not available or hard to be applied. For time series data, the traditional

non-parametric bootstrap method (Efron, 1979) fails to work since the temporal

dependence of time series data cannot be correctly mimicked. Kreiss and Lahiri

(2012) summarise a few variations of the traditional bootstrap method, including

the block bootstrap (Kunsch, 1989), the autoregressive (AR) sieve bootstrap

(Kreiss, 1988), and the bootstrap for Markov chains (Kulperger and Rao, 1989),

for studying statistical inferences of time series data. Nonetheless, as discussed in

El Karoui and Purdom (2018), traditional non-parametric bootstrap methods for

univariate and multivariate data are not directly applicable for high-dimensional

data, including time series, due to the ’curse of dimensionality’. In particular, the

validity of the AR sieve bootstrap (Kreiss, 1988) relies on a so-called Boundedness

Condition (Wiener and Masani, 1958) as presented in Chapter 2. Nevertheless,

this condition cannot be fulfilled when N → ∞ with the sample size T, hence the

AR sieve bootstrap is not valid for high-dimensional time series. Consequently,

to overcome the issues associated with the ’curse of dimensionality’, Chapter 2

assumes high-dimensional time series follow factor models in (Lam et al., 2011)

and apply the AR sieve bootstrap on low-dimensional factor time series. Finally,

the bootstrapped data is transferred back to the original high-dimensional space

by factor models to provide statistical inferences.

Secondly, a novel ‘iterative complement-clustering principal component analy-

sis’ (CPCA) is introduced in Chapter 3, which aims at studying high-dimensional

data with group structures. With recent improvements in computation powers,

an increasing number of high-dimensional data, including time series, are now

being collected. Moreover, it is natural to consider combining similar data for an

aggregated analysis, which may benefit statistical inferences such as estimation

and prediction. However, as discussed in Boivin and Ng (2006), grouping up

more data does not always benefit statistical analysis since data from different

populations may exhibit quite different patterns that increase the complexity and

heterogeneity of the whole data-set. More specifically, for a particular group of

© Daning Bi – 21 May 2021



4 Introduction

data, we consider it contains two styles of information. One is the information

shared with all the groups, which forms the homogeneity for the whole data-set.

However, another style of information, named sub-homogeneity, is group-specific

and belongs to a particular group of data exclusively. Furthermore, since the

sub-homogeneity is relatively weak compared with the homogeneity, when di-

rectly applying traditional dimension-reduction methods, such as PCA, on the

whole data-set, sub-homogeneity in each group are not necessarily captured.

To alleviate this issue, the whole data-set can be clustered into groups, where

sub-homogeneity can be identified and estimated from each cluster. To achieve

that, we propose a novel method named CPCA to identify both homogeneity

and sub-homogeneity and handle the interaction between them iteratively. To

be more specific, since each group’s data is still high-dimensional, the CPCA

method applies traditional PCA in each cluster first and then aggregates the

principal component scores for a further PCA. Meanwhile, a leave-one-out prin-

cipal component regression (PCR) clustering method inspired by Chiou and Li

(2007) is performed for each iteration to improve the result of clustering actively.

Consequently, this CPCA is essential for estimations and predictions of both

homogeneity and sub-homogeneity and can correctly identify the clustering of

the original high-dimensional data-set.

Thirdly, Following the idea in Chapter 3 on combining similar high-dimensional

data for aggregated analysis, Chapter 4 extends the study to high-dimensional

time series. In contrast to the new method CPCA proposed in Chapter 3, which

effectively estimates both homogeneity and sub-homogeneity for combined data,

Chapter 4 studies whether two high-dimensional time series data have the same

spiked eigenstructure of the autocovariance matrices. In particular, a novel equiv-

alence test named autocovariance test on spiked eigenvalues of autocovariance

matrices is proposed in Chapter 4 for comparing two high-dimensional time

series. Due to the ’curse of dimensionality’, traditional statistical testing methods

based on sample estimates of covariance and auto-covariance matrices generally

fail to work when the data dimension N grows to infinity. To overcome the

issues associated with the ’curse of dimensionality’, the high-dimensional time
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series data is assumed to follow factor models as in Chapter 2. Moreover, the test

statistic is built based on a central limit theorem (CLT) for spiked eigenvalues of

the sample autocovariance matrices for high-dimensional time series, which is in

my joint work with others (Bi et al., 2020). Meanwhile, to implement the test pro-

cedure, the sieve bootstrap proposed in Chapter 2 is also employed for estimating

specific unknown parameters. Consequently, this autocovariance test facilitates

combined analysis for high-dimensional time series from multiple populations.

For example, the autocovariance test can be applied to the age-specific mortality

data for multiple countries to test whether human mortality rates have the same

spiked eigenvalues in autocovariance matrices for countries worldwide. This

work is also inspiring since the aggregated analysis may improve the estimation

accuracy and provide more consistent forecastings for human mortality rates

worldwide.

The rest of this thesis is organised as follows. Three aforementioned statistical

inferences are proposed in Chapter 2 to 4 in order, where statistical models,

implementations, asymptotic results, simulation studies, and real data applica-

tions are all addressed with discussions. Besides, the conclusions and future

works are presented in Chapter 5. Furthermore, technical proofs of theorems in

Chapter 2 to 4 and some auxiliary lemmas are included in appendices. It is also

worth noting that each chapter uses its own notations.

© Daning Bi – 21 May 2021
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Chapter 2

Sieve Bootstrap for

High-dimensional Time Series: A

Factor Model Approach

2.1 Introduction

In this chapter, we propose a novel sieve bootstrap method for high-dimensional

time series. Studying statistical inferences for mean, variance and many other

statistics is a major problem for modern statistics. For high-dimensional data

especially time series, deriving the theoretical properties including the central

limit theorem for certain statistics such as leading eigenvalues of covariance

matrix and autocovariance matrices can be rather involved especially when the

data dimension goes to infinity. Bootstrap (Efron, 1979), as an alternative, has

become more attractive when pursuing statistical inferences for both indepen-

dent and dependent data. However, as discussed in El Karoui and Purdom

(2018), conventional nonparametric bootstrap does not work in general for high-

dimensional data including time series due to the ’curse of dimensionality’,

where sample estimates of certain statistics are no longer statistically consistent

to their population counterparts. Consequently, novel bootstrap methods that

can be applied on high-dimensional time series is in urgent demand.

The first contribution of this work is that we develop a sieve bootstrap method

for high-dimensional time series, where a factor model is introduced. Since being

developed, the conventional nonparametric bootstrap (Efron, 1979) has become

7
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8 Sieve Bootstrap

very popular in studying statistical inferences as it is not only accurate but

also easy to apply on real data. However, unlike for independent data, the

conventional nonparametric bootstrap (Efron, 1979) is not readily applicable

for time series, since the temporal dependence of the observations cannot be

correctly mimicked by simple resampling. Consequently, a few variations and

modifications have been made on the conventional bootstrap method for the

purpose of applying bootstrap for dependent data. And among all bootstrap

methods for time series, block-wise bootstrap methods (Kunsch, 1989) and

autoregressive (AR) sieve bootstrap methods (Kreiss, 1988; Bühlmann, 1997) have

received the most discussions and developments in the past few years. The AR

sieve bootstrap was introduced by Kreiss (1988) and has been well studied from

the case of linear time series (Bühlmann, 1997) to strictly stationary time series

fulfilling a general moving average (MA) (∞) representation (Kreiss et al., 2011).

Prior to this work, the theoretical requirement and validity of a general AR sieve

bootstrap method for certain type of statistics have been discussed for univariate

(Kreiss et al., 2011), multivariate (Meyer and Kreiss, 2015) and functional time

series (Paparoditis, 2018), respectively. However, for high-dimensional time series

where the data dimension N increases with the sample size T, the AR sieve

bootstrap method is not readily applicable. This is because the dimension of

the spectral density matrix of underlying multivariate time series diverges with

data dimension N, and an infinite order vector AR or MA representation do

not exist (see Wold theorem in Anderson (1971), and boundedness condition

in Wiener and Masani (1958)). Besides, for real data applications where the

dimension N of observed time series is not required to go to infinity, estimating

high-dimensional coefficient matrices in an one-side AR or MA representation of

the original time series is still very complicated and time-consuming. Recently,

Krampe et al. (2019) consider sieve bootstrap for VAR model of linear time

series where the VAR coefficients are assumed to be sparse, while we consider a

different set-up in this work, where the dimension N of time series is allowed

grow but the observations are assumed to fulfil a (strong) factor model with finite

number of factors. Factor models (Bai and Ng, 2002b; Bai, 2003b), are originally
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introduced and developed to study large dimensional data with N, T → ∞

through dimension reduction techniques. Later on, Fan et al. (2011) utilises factor

models to estimate a large covariance matrix where the covariance of error terms

is assumed to be approximately sparse. To study the temporal dependence of a

factor model, Lam et al. (2011) propose a factor model which can be estimated

based on the accumulated squared autocovariance matrices. Consequently, a

finite-dimensional factor process is then developed to explore the dependence

structure of the original high-dimensional time series. In our work, we consider

the strong factors’ case in Lam et al. (2011), where the spiked eigenvalues of

accumulated squared (first k0) autocovariance matrices of high-dimensional time

series {yt} are of order N. In summary, we propose an AR sieve bootstrap for

high-dimensional time series using a factor model approach. The proposed AR

sieve bootstrap using factor model is not only an efficient statistical method for

studying inference of high-dimensional time series but also an indispensable

building block of AR sieve bootstrap methods under high-dimensional set-up.

The second contribution of this work is that we compare the proposed novel

sieve bootstrap for high-dimensional time series with the sieve bootstrap method

for functional time series (Paparoditis, 2018) in terms of their applications on

sparse and unsmoothed functional observations. And we suggest that the sparse

and unsmoothed observations need to be treated as high-dimensional time

series and the sieve bootstrap proposed in this work needs to be applied. In

the literature of functional time series studies, a very fundamental assumption

is that the actual observations come from a smoothed functional curve and

statistical inferences for functional data usually require the observations to be

dense. In a classic functional set-up, dense and discrete points are observed on a

sample of T curves. Denoted by Nt the number of observations for the curve t,

the discussions on the density of observations in functional data literature are

generally through assumptions made on Nt. Typically, when Nt is much larger

than the sample size T, the data can be considered dense functional data where

each curve can be well smoothed before analysis. Discussions on the density

of functional observations and smoothing methods can be found in Ramsay
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and Silverman (2002), Hall et al. (2006) and Wang and Fan (2017). However, in

the case where Nt is small compared with sample size T for all t, the discrete

observations should be considered as sparse along the population functional

curve (Wang and Fan, 2017). The fundamental problem of sparse functional

data is that the local patterns of population functional curve are generally not

captured by those sparse observations.

To illustrate the potential problems of pre-smoothing sparse observations

for functional time series analysis, we consider a toy example. For a square-

integrable functional process {X (u), u ∈ I}, let yi,t be the i-th observation of

{Xt(·)}, observed at a random time t with the measurement errors defined as

εi,t for t = 1, 2, ..., T and i = 1, 2, ..., N. Consider now a model of functional

observations

yi,t = Xt(ui) + εi,t, ui ∈ I , (2.1)

where εi,t is independent and identically distributed (i.i.d.) with E(εi,t) = 0,

V(εi,t) = σ2 and I is a functional support. In this model, the observations of

{Xt(·)} are assumed to be equally spaced, and the number of measurements N

assesses the density and design of the actual observations. In the functional data

analysis, Xt(ui) can be estimated or recovered by some smoothing methods such

as a linear smoother as follows,

X̂t(ui) =
N

∑
j=1

wi(uj)yt,i,

where wi(uj) is the weight of j-th point on the i-th point with ∑N
j=1 wi(uj) = 1 for

t = 1, 2, ..., T and i = 1, 2, ..., N. Various smoothing methods have been developed

for functional data, and Ramsay and Silverman (2002) study choosing smoothing

basis for different types of functional data. Besides, Yao et al. (2005) compare

the functional data with longitude data and discuss the impact of pre-smoothing

on a functional model, and Zhang and Wang (2016) extend this discussion to

investigate the asymptotic properties of local linear smoothers on various types
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of sampling designs. However, the accuracy of the smoothing curve is highly

related to the density of observations and measurement errors. If observations

along the curve are equally spaced, the change of density can affect the quality

of smoothness and its recovering power to the population curve. For a relatively

sparse curve, smoothing can fail to work under certain situations; for example,

when there are local patterns that observations are too sparse to capture. To

visually depict this phenomenon, we provide a toy example by simulations in

Section 2.5. We consider a contaminated functional time series model generated

from three Fourier bases with different frequencies reflecting local patterns. The

details of the simulation setting can be found in Section 2.5.1. The curves in

Figure 2.1 are plotted based on 401 grid points defined on a functional support

[0, 1], whereas the actual number of observations N along each curve are chosen

as 51, 21 and 5 to address different observation densities. As shown in Figure

Figure 2.1: Example of smoothing error of sparse functional time series observa-
tions

2.1, when the observations (red points) become sparse (but still equally spaced),

the (red) smoothing curve can lead to an obvious misleading result with local

patterns not accurately captured by the smoothing curve. The errors associated

with pre-smoothing on those sparse observations are generally large. In this

situation, the assumption of dense functional data suffers from insufficient

observations along each curve. As a result, we cannot adopt the pre-smoothing

results based on functional set-up but instead treat the data as multivariate time

series with growing dimensions. In other words, when N grows with sample size
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T but at a relatively slower rate, the real data may adapt to a high-dimensional

set-up rather than a functional set-up, which makes statistical inferences and

applications rather different. This phenomenon is associated with an area where

functional data analysis and high-dimensional data analysis may overlap yet

follow different assumptions and produce quite different asymptotic results.

In contrast to functional data analysis, where the increase of observations

along a curve can practically improve pre-smoothing and recovering the func-

tional curve, the growing of dimensions is associated with the increase of com-

plexity for high-dimensional data analysis. This key difference makes it vital to

choose between functional time series and high-dimensional time series methods.

In this work, we consider the situation where N is growing but not fast enough.

The curve smoothed from the sparse observations is inaccurate, especially to

local patterns of a functional curve. We propose an AR sieve bootstrap method

for studying the inferences of this type of high-dimensional time series. The rest

of this chapter is organised as follows. Section 2.2 introduces factor models for

high-dimensional time series and discusses the AR representation of the factor

time series, a building block of general AR sieve bootstrap. In Section 2.3, the

estimation procedure for factor models and sieve bootstrap procedure for factor

time series is introduced with regularity conditions on factor models. The addi-

tional assumptions and asymptotic validity of our novel sieve bootstrap method

are discussed in Section 2.4. An overall mean statistics of factor time series and

spiked eigenvalues of squared autocovariance matrices are introduced. In Sec-

tion 2.5, we first explore the impact of density of observations on pre-smoothing

results and then verify the validity of our novel sieve bootstrap methods on the

overall mean statistics and the spiked eigenvalues of squared autocovariance

matrices. Section 2.6 provides an example of applying our novel sieve bootstrap

method to PM10 data. Conclusions are presented in Section 2.7. Technical proofs

and auxiliary lemmas are presented in Appendixes 2.A and 2.B in additional

supplementary documents.
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2.2 Model

In this chapter, we study a situation where the actual observations from functional

time series are sparse such that smoothing methods generally fail to work,

especially for local patterns of the raw functional curve. Hence, the sparse

observations we considered are high-dimensional time series instead of functional

time series. In general, bootstrap methods fail to work when the dimension N of

the time series grows to infinity. To effectively overcome this problem and reduce

the dimension for bootstrap, we consider a strictly stationary N-dimensional

time series {yt ∈ RN, t ∈ Z} following a general unobservable factor model

yt = Q ft + ut, (2.2)

where { ft ∈ Rr, t ∈ Z} are r× 1 unobserved finite-dimensional factor time series

and {ut ∈ Rr, t ∈ Z} are N × 1 white noises with mean zero and covariance

matrix Σu. Unobservable (approximate) factor models have received numerous

discussions and there are various identification condition and assumptions on

Q, ft and ut depending on objects. In our work, we adapt the idea in Lam et al.

(2011) to consider a factor model where temporal dependence of {yt} can be

fully captured by the factors { ft} with a constant factor loading matrix Q. In

other words, we do not allow for a direct dynamic system on { ft}, therefore

we still maintain a static relationship between {yt} and { ft}. In addition, to

establish a sieve bootstrap method which mimic the temporal dependence of

the original data, we also adapt the assumptions used in literature of factor

models, such as Bai and Ng (2002b) and Bai (2003b) where the high-dimensional

noise components {ut} are independent of the finite-dimensional factors { ft}.
The exact assumptions and conditions for estimation of this factor model is

introduced and discussed in Section 2.3.

For the r× 1 unobserved factors { ft}, under certain assumptions that will

be specified in Section 2.4.1, we can consider it to admit a general (vector)

AR representations. That is, there exists an infinite sequence of r× r matrices
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{Al ∈ Rr×r, l ∈N} such that factors { ft} can be expressed as

ft =
∞

∑
l=1

Al ft−l + et, t ∈ Z, (2.3)

where {et ∈ Rr, t ∈ Z} are full rank uncorrelated white noises innovation

processes with E(et) = 0 and E(ete>s ) = 1t=sΣe, with Σe a full rank r × r

covariance matrix. The (vector) AR representation is also the AR analogue of the

Wold representation of ft, and it is represented by a MA representation based on

a function of the same innovation processes {et ∈ Rr, t ∈ Z} as in (2.3):

ft =
∞

∑
l=1

Ψlet−l + et, t ∈ Z, (2.4)

where {Ψl ∈ Rr×r, l ∈ N} are the coefficients matrices of the power series(
Ir −∑∞

l=1 Alzl)−1
, for |z| ≤ 1 (Brockwell and Davis, 1991). The (vector) AR

representation in (2.3) is more attractive for statistical applications and has

received more attentions since it relates ft to its past values. Sieve bootstrap, on

the other hand, utilises the Wold representation in (2.4) to generate bootstrap

factors by resampling from the innovations et. In practice, since neither the

factors { ft} or their loadings Q are observable, sieve bootstrap for sparse time

series is performed on estimates of { ft} rather than true factors. Hence, we need

to introduce the estimation and bootstrap procedure first.

2.3 Estimation and bootstrap procedure

2.3.1 Estimation of factor models

Since { ft} in model (2.3) are assumed to contain all the temporal dependence

of {yt}, we can utilise and modify the idea in Lam et al. (2011) to estimate { ft}.
Define the accumulated squared autocovariance of {yt} up to a prescribed lag

k0 > 0 as

L =
k0

∑
k=1

Γy(k)Γy(k)>, (2.5)
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where Γy(k) = Cov(yt, yt+k) is the autocovariance of {yt} at lag k, for k =

1, 2, ..., k0. L then collects the temporal dependence of {yt} by pooling up the

information contained in first k0-lags of autocovariance with the square form

facilitating the spectral decomposition on L.

Remark 2.1. The reason of not to consider the covariance matrix Σy into L is

undemanding. As discussed in Lam et al. (2011), for the factor model (2.2),

Σy = Γy(0) = QΓ f (0)Q> + Σu, where Γ f (0) is the covariance matrix of {yt} and

Σu is the covariance matrix of {ut}. Hence to exclude Σy from L can filter out

the impact of covariance on {ut}, especially for N → ∞.

It is then straightforward to use spectral (eigenvalue) decomposition on L

to estimate the factor loading matrix Q, and the factors { ft} from L. Before

discussing the estimation procedure details, we summarise the assumptions and

identification conditions for the factor model defined in (2.2) first. Recall that

none of the terms in (2.2) are observable except {yt}, we need the following

conditions to identify and estimate factors { ft} and their corresponding loading

matrix Q.

Assumptions 2.1 (Factor models). For factor models (2.2), we impose the following

assumptions,

(i) { ft} are strictly stationary with E ft = 0 and E ‖ ft‖2 < ∞; {ut} ∼WN(0, Σu)

are uncorrelated white noise with covariance matrix Σu, and all eigenvalues of Σu

are uniformly bounded as N → ∞; ft are independent of us for any t, s ∈ Z.

(ii) (Identification for {Q ft} and { ft}) 1
N Q>Q = Ir and for a prescribed integer

k0 > 0, the r × r matrices Γ f (k) = Cov( ft, ft+k) are full rank for all k =

0, 1, ..., k0 with the eigenvalues {λi( f ), i = 1, 2, ..., r} of ∑k0
k=1 Γ f (k)Γ f (k)>

fulfilling ∞ > λ1( f ) ≥ λ2( f ) ≥ · · · ≥ λr( f ) > 0 as N → ∞.

(iii) {yt}, therefore { ft}, is ψ-mixing with the mixing coefficients ψ(·) satisfying the

condition that ∑t≥1 ψ(t)1/2 < ∞, and E|yj,t|4 < ∞ element-wisely.

Assumption 2.1 (i) states the strict stationarity on { ft}, which has been used

in literature of factor models, such as Fan et al. (2013b) and is commonly seen
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in AR sieve bootstrap literature, such as Kreiss et al. (2011) and Meyer and

Kreiss (2015). Apart from the stationarity, Assumption 2.1 (i) also states that

factor time series { ft} and error terms {ut} are independent at any time lags,

which is stronger than the assumption in Lam et al. (2011), but is required

for us to apply bootstrap methods by resampling from the innovations {et} in

Wold representation of { ft} as in (2.4), since sieve bootstrap does not work for

high-dimensional noises {ut}.
We impose Assumption 2.1 (ii) to identify the factor components {Q ft}

from the original high-dimensional data. The conditions that 1
N Q>Q = Ir

and eigenvalues {λi( f ), i = 1, 2, ..., r} of ∑k0
k=1 Γ f (k)Γ f (k)> fulfil ∞ > λ1( f ) ≥

λ2( f ) ≥ · · · ≥ λr( f ) > 0 as N → ∞ are sufficient for {Q ft} to be identifiable

from {ut} when N → ∞, since the N × N matrix L can be represented as

L =
k0

∑
k=1

Γy(k)Γy(k)> = NQ

{
k0

∑
k=1

Γ f (k)Γ f (k)>
}

Q>, (2.6)

with the first r eigenvalues of 1
N2 L non-vanishing. In other words, the columns

of Q can be considered as the eigenvectors of L corresponding to r nonzero

eigenvalues scaled by
√

N. As a consequence, Assumption 2.1 (ii) implies the

pervasiveness of r factors { ft} when N goes to infinity, which is equivalent to

the strong factors’ case according to the definition in Lam et al. (2011).

The ψ-mixing in Assumption 2.1 (iii) is introduced to specify the week de-

pendence structure of { ft}, which is considered in Lam et al. (2011) to simplify

the technical proof of consistency on loading matrix Q. However, it is not the

weakest possible. In the meantime, Assumption 2.1 (ii) together with the mixing

condition in (iii) is also sufficient for the absolute summability condition on { ft}
when N → ∞, which is preliminary for AR sieve bootstrap to be applicable on

{ ft}, since otherwise the Wold representation is not guaranteed to exist (Cheng

and Pourahmadi, 1993).

To further explain the use of Assumption 2.1 with the estimation procedure,

first notice that { ft} are strong factors and no linear combinations of the compo-

nents of { ft} are white noises (WN) as implied by Assumption 2.1 (ii). Recall that
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L is non-negative definite and can be represented as in (2.6) with 1
N Q>Q = Ir.

Since the middle part of (2.6) is symmetric, we can apply spectral decomposition

on it and recognize L as NQUDU>Q> where U is an r× r orthonormal matrix

and D is an r× r diagonal matrix. Therefore, by Assumption 2.1 (ii), we can treat

QU as Q for inferences’ purpose and estimate Q and ft based on the spectral

decomposition of L.

Remark 2.2. The factor model discussed in Lam et al. (2011) assumes the temporal

dependence of a high-dimensional time series {yt} can be captured by the factor

time series { ft}. In general, let P be a N × (N − r) matrix in which the columns

are orthogonal to those of Q, then Γy(k)>P = 0. Hence as long as Γ f (k) is full

rank,M(Q) is the orthogonal complement to the linear space spanned by the

eigenvectors of Γy(k)> that are associated with those zero eigenvalues (i.e. the

eigenvectors spanning M(P) (Lam et al., 2011)). This also justifies the use of

autocovariance but not covariance when estimating this factor time series, since

Σy = Γy(0) = QΓ f (0)Q> + Σu and Γy(0)>P 6= 0. The fact that Γy(k)Γy(k)> is

non-negative definite for all k = 1, 2, ..., k0 guarantees that the columns of P are

those orthogonal eigenvectors of L corresponding to zero eigenvalues and the

sum in (2.5) pools up the temporal dependence of {yt} from different time lags.

With such regularity conditions in Assumptions 2.1, we can estimate the

factors and their loadings, and construct a pseudo-time series with AR sieve

bootstrap. To facilitate the estimation process, we define Qo = 1√
N

Q as the

(unscaled) orthonormal factor loading matrix such that Qo>Qo = Ir and f o
t as

the scaled factors such that yt = Qo f o
t + ut is equivalent to model (2.2) with

different scaling on Q and { ft}. The detailed estimation and bootstrap procedure

of our proposed method is illustrated as follows.

2.3.2 Bootstrap procedures

Step 1: Estimation of Q:

To utilise the idea in Lam et al. (2011) to estimate Q and { ft} using L, the

accumulated squared autocovariance matrices of {yt} up to a prescribed lag
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k0 > 0, we first define the sample accumulation of squared autocovariance

up to lag k0 as

L̃ =
k0

∑
k=1

Γ̃y(k)Γ̃y(k)>, (2.7)

with Γ̃y(k) the sample autocovariance at lag k defined as

Γ̃y(k) =
1

T − k

T−k

∑
t=1

(yt+k − y)(yt − y)>.

By applying spectral (eigenvalue) decomposition on L̃, we can obtain

Q̂o = (q̂o
1, q̂o

2, ..., q̂o
r) with q̂o

i the eigenvector of L̃ corresponding to the i-th

largest eigenvalue of L̃. Q̂o is then a natural estimator of the unscaled

loading matrix Qo. And by scaling up Q̂o with
√

N, the square root of

dimension, we ended up with Q̂ =
√

NQ̂o as the estimator of Q.

As discussed in Lam et al. (2011), the estimation results are not sensitive

to the choice of k0, and the numeral results associated with k0 = 1 to

k0 = 5 are similar. In general, when dimension N is large compared with

T, a relatively larger k0 may be considered for better accuracy of sample

estimates, while k0 = 1 is computational more efficient when the sample

size T is large compared with dimension N. Besides, for finite samples,

some of the non-spiked eigenvalues of L̃ may not be exactly zero, therefore

we can use the ratio-based estimator as discussed in Lam et al. (2011)

to estimate the number of factor r. As defined in Lam et al. (2011), the

ratio-based estimator for r is

r̂ = argmin
1≤j≤R

λ̂j+1/λ̂j,

with λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂N the eigenvalues of L̃ and R an integer satisfying

r ≤ R < N. And practically, R can be taken as N/2 or N/3 for computation

efficiency (Lam et al., 2011).

Step 2: Estimation of { ft}:
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With Q̂ the estimator of Q, it is then straightforward to estimate { ft} by

f̂t = Q̂>yt.

Step 3: Sieve bootstrap on { f̂t}:

To apply sieve bootstrap on { f̂t}, we can, first of all, fit a pth order VAR

model on the r-dimensional time series { f̂t} as

f̂t =
p

∑
l=1

Âl,p(r) f̂t−l + êt,p, t = p + 1, p + 2, ..., T,

and denote the residuals by êt,p,

êt,p = f̂t −
p

∑
l=1

Âl,p(r) f̂t−l, t = p + 1, p + 2, ..., T,

where {Âl,p, l = 1, 2, ..., p; t = p + 1, p + 2, ..., T} are Yule-Walker estima-

tors of the AR coefficient matrices. We can then generate {e∗t } the bootstrap

sample of residuals by resampling from the empirical distribution of the

centered residual vectors. Consequently, based on the idea of sieve boot-

strap (see, e.g. Kreiss, 1992; Meyer and Kreiss, 2015; Paparoditis, 2018), we

can generate the r-dimensional pseudo time series { f ∗t , t = 1, 2, ..., T} by

simulating the VAR model with bootstrap residuals {e∗t }. Therefore, a sieve

bootstrap sample of { f ∗t } is generated by

f ∗t =
p

∑
l=1

Âl,p(r) f ∗t−l + e∗t ,

where {e∗t } are i.i.d. random vectors following the empirical distribution

of the centered residual vectors {ẽt}, where ẽt,p = êt,p − êT,p and êT,p =

1/(T − p)∑T
t=p+1 êt,p.

Step 4: Generating bootstrap data {y∗t }:
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Lastly, the bootstrap time series {y∗t } can be constructed as

y∗t =
r

∑
j=1

f ∗j,tq̂j,

where q̂j =
√

Nq̂o
j is the scaled eigenvector of L̂ corresponding to the jth

largest eigenvalue. Following this sieve bootstrap procedure, the pseudo-

time series {y∗t } can mimic the temporal dependence of the original data

{yt} via a factor model. Notice that, when N is fixed and relatively small,

another bootstrap procedure such as wild bootstrap can be applied on

ût = yt− Q̂ f̂t when generating {y∗t }. However, when N goes to infinity, tra-

ditional bootstrap methods generally fail to work for the high-dimensional

noises {ut}. Therefore, it is generally not valid to apply bootstrap on

{ût} when generating {y∗t }. As a consequence, {y∗t } correctly mimic the

temporal dependence of {yt} through the factors { ft} but not the noises

{ut} in the factor model (2.2).

Remark 2.3. Since traditional bootstrap procedures are not valid for high-

dimensional noises {ut}, our sieve bootstrap time series {y∗t } do not contain

bootstrap noises. As a result, {y∗t } can only provide valid inferences for statistics

that are temporal dependent or not depending on {ut} since {ut} are indepen-

dent of { ft} and Q. For statistics relying on {ut}, such as Γy(0), the covariance

matrix of {yt}, our sieve bootstrap method is not valid since Σu cannot be

mimicked.

2.4 Asymptotic theory

2.4.1 Regularity assumptions

Before introducing the additional regularity assumptions, we fix some notations

first. We use ‖ · ‖2 to denote the L2 norm (also known as spectral norm or

operator norm) of a matrix or vector, and ‖ · ‖F to denote the Frobenius norm of

a matrix. And we use a � b to denote the case that a = OP(b) and b = OP(a).
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In addition to Assumptions 2.1 made on the factor model (2.2), to apply sieve

bootstrap on { f̂t}, the estimates of factors { ft}, we also need some regularity

conditions on { ft} for sieve bootstrap to be consistent and valid. Denoted

by W(·), the spectral density matrix of a vector process for all frequencies

ω ∈ (0, 2π], then the spectral density matrix of { ft} can be defined as

Wf (ω) =
1

2π

∞

∑
k=−∞

Γ f (k)e−iωk, ω ∈ (0, 2π].

Assumptions 2.2. In model (2.2), we strengthen Assumption 2.1 such that { ft} are

strictly stationary and purely nondeterministic stochastic processes of full rank with

E ft = 0 and E ‖ ft‖2 < ∞. Γ f (k), the autocovariance matrix of ft at lag k fulfils the

matrix norm summability condition ∑∞
k=−∞(1 + |k|)γ

∥∥Γ f (k)
∥∥

F < ∞ for some γ ≥ 0

that will be specified later on.

Assumption 2.2 is introduced to fulfil the requirement for the existence of a

general VAR representation (2.3). This type of conditions are commonly seen

in sieve bootstrap literature, such as Kreiss et al. (2011) and Meyer and Kreiss

(2015), and it is worth noting that {et}, the innovation processes in the VAR

representation of factor processes { ft}, are linear independent as { ft} are full

rank (Wiener and Masani, 1958). In addition, following the heredity of mixing

properties in Assumption 2.1, { ft} are strict stationary and also ψ−mixing, which

in turn implies the decaying of Γ f (k) as k→ ∞. The matrix norm summability

condition on Γ f (k), as in Assumption 2.2, then specifies the rate of decaying

that is required for a vector AR representation to be valid as stated in the next

Lemma. Besides, since we assume the dimension r of { ft} is finite, E ft = 0

in Assumption 2.1 is made on a multivariate factor process, therefore, will not

affect the results we derived on the consistency and validity of the proposed

sieve bootstrap method. The assumption E ft = 0 can be relaxed to E ft = µ f

with the cost of a more lengthy proof of theorems in this work.

Lemma 2.1. Under Assumption 2.1 and 2.2 with γ = 0, the spectral density matrix

W(·) of { ft} fulfils the following so-called Boundedness Condition (Wiener and Masani,
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1958):

cIr ≤Wf (ω) ≤ dIr, for all ω ∈ (0, 2π],

where Ir is the unity matrix with dimension r× r and 0 < c ≤ d < ∞.

Proof of Lemma 2.1. The upper bound dIr for all ω ∈ (0, 2π] follows directly from

the norm summability condition stated in Assumption 2.2. The assumption

of strong factors in Assumption 2.1 implies the positivity on eigenvalues of

the spectral density matrix W(·). Therefore, denoted by σi(ω), the minimum

eigenvalue of Wf (ω) for i = 1, 2, ..., r, then σi(ω) is continuous in (0, 2π] and

strictly positive. Denoted by σmin = minω∈(0,2π](σi(ω)), the minimum eigenvalue

of the spectral density matrix of { ft}, then there exists a constant c > 0 so that

σmin ≥ c for all frequencies ω ∈ (0, 2π].

The continuity and Boundedness properties in Lemma 2.1 then entail the

existence of a vector AR representation for any vector process satisfying Assump-

tion 2.2 (see, e.g. Meyer and Kreiss, 2015; Cheng and Pourahmadi, 1993; Wiener

and Masani, 1958). That is, the AR representation (2.3) and Wold representation

(2.4) are valid under Assumption 2.2.

The validity of sieve bootstrap on a class of strictly stationary vector series

fulfilling Assumption 2.2 has been discussed in Meyer and Kreiss (2015), where

some additional conditions on the convergence of Yule-Walker estimators of the

finite predictor coefficients on { ft} are also introduced. We summarise these

conditions in Assumption 2.3 and leave the results of Meyer and Kreiss (2015) to

Lemma 2.6 in Appendix B, as they are preliminary for showing the bootstrap

consistency and validity.

Assumptions 2.3. The Yule-Walker estimators {Ãl,p, l = 1, 2, ..., p} of {Al,p, l =

1, 2, ..., p}, the finite predictor coefficients matrices on the VAR model of { ft}, fulfils that

p2 ∑
p
l=1 ‖Ãl,p − Al,p‖F = OP (1) , as T → ∞ and p→ ∞.

Assumption 2.3 requires p → ∞ at a relatively slower rate of sample size

T, which is required for the convergence of the Yule-Walker estimator of Ap =
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(A1,p, ..., Ap,p). In other words, the order p of the AR terms in sieve bootstrap de-

pends on the sample size T and has to be chosen properly. For { ft} fulfilling As-

sumption 2.2, Assumption 2.3 is also satisfied if we choose p = O
(
(T/ ln T)1/6),

for example (Meyer and Kreiss, 2015). Assumptions 2.2 and 2.3 are widely

discussed in literature of sieve bootstrap, for example, in Kreiss et al. (2011) and

Meyer and Kreiss (2015). In summary, Assumption 2.2 ensures the existence of

VAR representation in (2.3) and specifies the rate of decaying for the coefficient

matrices and Assumption 2.3 relates to the convergence of Yule-walker estimators

{Ãl,p} to the finite predictor coefficient matrices {Al,p}.

Assumptions 2.4. The dimension N and AR(p) satisfy N → ∞, p→ ∞ when T → ∞

such that p11/2(N−1/2 + T−1/2)→ 0.

In addition to Assumption 2.3, Assumption 2.4 is introduced as the bootstrap

procedure is performed on the estimated factors { f̂t} rather than true unobserv-

able factors { ft}, where the error comes from both the estimation of factors and

finite order approximation of sieve AR representations. In other words, we need

to control the error imposed by the bootstrap procedure by restricting the speed

that the AR order p goes to infinity. On the other hand, the order on dimension

N in Assumption 2.4 also indicates ‘blessing of dimensionality’, since { ft} are

assumed to be strong factors according to definitions in Lam et al. (2011).

2.4.2 Bootstrap validity for generalised mean statistics

One of the most fundamental problems in functional data analysis is to estimate

the mean function from observations with noises. Some methods and appli-

cations can be found, for example, in Ramsay and Silverman (2002) and Cai

and Yuan (2011). Under the setting where observations are generally sparse,

statistical inferences for (general) mean statistics of high-dimensional data is also

fundamental.

The validity of general AR and VAR sieve bootstrap has been well discussed in

Kreiss et al. (2011) and Meyer and Kreiss (2015). The key idea is that the general

AR and VAR sieve bootstrap doesn’t mimic the behaviour of the underlying
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processes in (2.3) or (2.4), but the behaviour of a so-called companion processes

{ f̆t} defined in the same form as { ft} but with i.i.d. white noises {ĕt} rather than

{et}, where L(ĕt) = L(et) though {et} are only uncorrelated for t 6= s. In other

words, except for the Gaussian case, the general AR and VAR sieve bootstrap

works for statistics that only depend on up-to-second-order quantities of { ft}.
Without additional assumptions on the distribution of {et}, the higher-order

properties of { f̆t} and { ft} are not necessarily the same. With this result, the

bootstrap consistency for a class of general mean statistics stated below have

been investigated by Kreiss et al. (2011) and Meyer and Kreiss (2015). Based on

this result, we can study statistical inferences for such class of statistics based on

the unobservable factor terms Q and { ft} by bootstrapping { f̂t}. The following

general mean statistics is introduced by Kunsch (1989), and has been widely

discussed in sieve bootstrap literature such as Bühlmann (1997), Kreiss et al.

(2011) and Meyer and Kreiss (2015). Consider for a class of general mean statistics

MT = η

(
1

T −m + 1

T−m+1

∑
t=1

g( ft, ..., ft+m−1)

)
, (2.8)

for functions g : Rmr → Rd and η : Rd → R for some d ≥ 1 and 1 ≤ m ≤ T,

fulfilling the following smoothness condition: η(z) has continuous partial deriva-

tives for all z in a neighbourhood of θ = Eg( ft, ..., ft+m−1) and the differentials

∑d
i=1 ∂η/∂zi|z=θzi do not vanish. The function g has continuous partial deriva-

tives of order h (h ≥ 1) that satisfy a Lipschitz condition for all i = 1, 2, ..., d. We

summarise our first result on bootstrap consistency of Q fT, the mean statistics

of the unobservable factor component {Q ft}, in the following Theorem.

Theorem 2.1. Suppose that Assumptions 2.1, 2.2 (γ = 1), 2.3 and 2.4 are satisfied for

fixed and known number of factors r. In addition, if we further assume that

(a) E
(

e2(h+2)
j,t

)
< ∞ for each element ej,t in {et}, (see (2.8) for the definition of h).

(b) The empirical distribution of {et} converges weakly to the distribution function of

L(et).

(c) limT→∞ V(
√

T fT) = ∑k∈Z Γ f (k) > 0.
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Then, for any vector c ∈ RN such that ‖c>Q‖`1 < ∞ and 0 < ∑k∈Z c>QΓ f (k)Q>c <

∞ as N → ∞, we can conclude that

dK

(
L∗
(√

Tc>Q̂
(

f ∗T −E∗ f ∗T
))

,L
(√

Tc>Q
(

fT −E fT

))) p→ 0,

when N → ∞ and T → ∞, where dK denotes the Kolmogorov distance.

Theorem 2.1 states the validity of proposed sieve bootstrap methods on esti-

mated factors { f̂t}. In general, statistical inferences such as bootstrap standard

errors or bootstrap confidence intervals can be computed for a linear combi-

nation of factor components {Q ft}, which makes inferences on the mean level

of originally high-dimensional time series possible. On the other hand, the

bootstrap inferences can be considered an alternative statistical tool for practical

use compared with the asymptotic results, which can be rather difficult to derive.

The factor model in (2.2) filtered out the time-invariant noises {ut} and reduced

the dimension of {yt}. In turn, the factor model facilitates the development of

the sieve bootstrap procedure.

Remark 2.4. As discussed in Kreiss et al. (2011) and Meyer and Kreiss (2015),

AR sieve bootstrap in fact mimics the behavior of a companion process f̆t which

shares the same first and second-order quantities as { ft}. Hence for the mean

statistics, AR sieve bootstrap works without any additional assumptions made on

the higher-order moments of { ft}. Also, for sieve bootstrap to be asymptotically

valid on { ft}, the dimension r needs not to go to infinity. Therefore we imposed

the assumption on strong factors. To study the impact of factor strength on

the validity of AR sieve bootstrap, we also consider weak factors in simulation

studies in Section 2.5.

2.4.3 Bootstrap consistency for autocovariance matrices

For high-dimensional i.i.d. data, the covariance matrix plays an important role in

dimension reduction techniques, such as factor models and principal component

analysis. However, for high-dimensional dependent data, the autocovariance
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matrices are vital or even more crucial than the covariance matrix. Lam et al.

(2011) provides a discussion on the use of autocovariance in dimension-reduction

techniques. Therefore, it is critical to find the bootstrap consistency for the

autocovariance matrices under the proposed sieve bootstrap method. In the next

theorem, we show that the proposed sieve bootstrap method can guarantee the

asymptotic consistency on the autocovariance matrices, which in turn implies

the validity of using bootstrap data {y∗t } to approximate the original data {yt}.
Recall that Γ f (k) = Cov( ft, ft+k) is the autocovariance of unobservable factor

{ ft} at lag k, for k > 0. Without the loss of generality, we again assume the

means of factors are 0 to simplify the notations used in the next theorem. Define

Γ∗f (k) = Cov( f ∗t , f ∗t+k) as the autocovariance of bootstrap factor { f ∗t } at lag k,

then we have the following theorem on the asymptotic consistency of Γ∗f (k).

Theorem 2.2. Suppose that Assumptions 2.1, 2.2 (γ = 1) and 2.3 are satisfied for fixed

and known number of factors r. In addition, if we further assume that

(a) E
(

e2(h+2)
j,t

)
< ∞ for each element ej,t in {et}, (see (2.8) for the definition of h).

(b) The empirical distribution of {et} converges weakly to the distribution function of

L(et).

Then for k ∈N, we have

∥∥∥Γ∗f (k)− Γ f (k)
∥∥∥

2

p→ 0,

when N → ∞ and T → ∞.

Let {δi(k)}r
i=1 be the ordered spiked eigenvalues of 1

N2 Γy(k)Γy(k)>, the

squared autocovariance matrices of {yt} at lag k > 0. And define {δ∗i (k)}r
i=1

to be the first r largest eigenvalues of 1
N2 Γ∗y(k)Γ∗y(k)>, the bootstrap squared

autocovariance matrices of {y∗t } at lag k > 0, where Γ∗y(k) = Cov∗(y∗t , y∗t+k). As

a consequence of Theorem 2.2, we immediately have the following Proposition on

the convergence of spiked eigenvalues of the bootstrap squared autocovariance

matrices to their population counterparts.
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Proposition 2.1. Under the same Assumptions of Theorem 2.2, for i = 1, 2, ..., r and

k ∈N, we have

∥∥∥Γ∗y(k)− Γy(k)
∥∥∥

2

p→ 0, (2.9)

and

|δ∗i (k)− δi(k)|
p→ 0, (2.10)

when N → ∞ and T → ∞.

The study of spiked eigenvalues of squared autocovariance matrices of high-

dimensional time series is necessary but significant in many applications. How-

ever, there are very few inference tools available in the literature due to the

difficulties and complexities of studying dependent data when N → ∞. Propo-

sition 2.1 verifies the bootstrap consistency on spiked eigenvalues of squared

autocovariance matrices and provides statistical tools to study the properties of

spiked eigenvalues based on sieve bootstrap.

Remark 2.5. The results of Proposition 2.1 are on the whole probability space,

which allows for the use of autocovariances and their spiked eigenvalues com-

puted from a bootstrap sample {y∗t } to approximate the autocovariances and

corresponding spiked eigenvalues of the original data {yt}.

2.5 Simulation studies

In this section, we first compare the proposed sieve bootstrap method’s per-

formances under functional time series assumptions and multivariate (high-

dimensional) time series assumptions. We then study the sieve bootstrap confi-

dence intervals for the general mean statistics and eigenvalues of the squared

autocovariance matrix by evaluating the empirical coverage probability. Lastly,

we also examine the proposed sieve bootstrap method’s performance when the

factors { ft} are assumed to be weak, and the dimension N goes to infinity. This
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is particularly important for statistical inferences of high-dimensional factor

modelling.

2.5.1 Smoothing on sparse discrete functional time series

To study the impact of smoothing on the sparse functional time series observa-

tions, we can compare bootstrap samples’ empirical distributions under various

densities of observations. To start, we first assume the data are originated from

functional curves, which are temporal dependent. Recall model (2.1) that

yt,i = Xt(ui) + εt,i, ui ∈ I ,

where εt,i is i.i.d. with E(εt,i) = 0 and V(εt,i) = σ2, for t = 1, 2, ..., T and

i = 1, 2, ..., N. In this model, the number of measurements N reflect the density

of the actual observations. To study the impact of density, we assume the

observations are equally spaced and generated from a three factors’ model

yt = Q ft + ut,

where ut,i, the element in {ut}, is independent N (0, 1) random noise, Q is a

N × 3 matrix with each column a Fourier basis and cos(2πi/N), cos(4πi/N),

0.5 cos(16πi/N) as i-th element, respectively. The factors { ft} follows a VAR(1)

model with a coefficient matrix 
0.5 0.1 0.1

0.1 0.5 0.1

0.1 0.1 0.5


and errors independent simulated from N (0, 1). The Fourier basis is selected

to produce a smoothed population curve, with the third basis reflecting local

patterns. Hence, we can generate discrete observations from a functional curve

with local patterns. In Section 2.1, we have presented plots of {yt} at a particular

time t with three different densities of observations to illustrate a smoothing’s

© Daning Bi – 21 May 2021



§2.5 Simulation studies 29

Figure 2.2: Example of smoothing errors on sparse functional observations

potential issue. This section takes it one step further and considers a wider choice

of densities so that the actual dimensions of observations along each curve are

N = 101, 51, 21, 17, 11 and 5.

For the same choice of time t as in Section 2.1, we have generated 6 plots

under various densities in Figure 2.2 to compare the smoothing results with

the population true curve and noisy curve with small measurement errors. The

smoothing results are obtained using B-splines with the number of basis func-

tions set to N, the actual number of observations in each case, and the roughness

penalties selected based on generalised cross-validation (GCV). As depicted in

Figure 2.2, when the actual number of observations N is relatively small, for

example, N < 21, some local patterns of the population curve are generally not

captured. In addition, the smoothing curve sometimes also averaged out the ac-

tual observations to achieve relatively flat results, for example, when N = 21, 17

and 5 as in Figure 2.2. As a result, the observations after smoothing are gener-

ally less spread than the original observations, which produces very different
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bootstrap samples and inferences’ results. To see that, we generate B = 499 sieve

bootstrap samples and computed two summary statistics to compare the boot-

strap distribution based on original observations with smoothed observations.

We use sieve bootstrap to obtain estimates of a so-called (standardised) overall

mean statistic, computed as y∗ =
√

T√
N

1>Q̂ f ∗ according to Theorem 2.1, and δ∗1 ,

the estimate of (standardised) largest eigenvalue of squared lag-1 sample autoco-

variance matrix as defined in Proposition 2.1, to compare bootstrap samples from

original observations with bootstrap samples from pre-smoothed observations.

Figure 2.3: Histograms of δ∗1 , the sieve bootstrap estimates of the largest eigen-
value of squared lag-1 sample autocovariance matrix

Figures 2.3 and 2.4 compare the histograms and boxplots of δ∗1 , the sieve

bootstrap estimates of largest eigenvalue of squared lag-1 autocovariance matrix,

while Figures 2.5 and 2.6 compare the histograms and boxplots of y∗, the sieve

bootstrap estimates of overall mean statistic. As seen in Figure 2.2, when

N = 21, 17 and 5, the pre-smoothed observations are averaged out compared

with the original observations. As a result, the bootstrap estimates of the two
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Figure 2.4: Boxplots of δ∗1 , the sieve bootstrap estimates of the largest eigenvalue
of squared lag-1 sample autocovariance matrix
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statistics perform differently before and after smoothing, when N = 21, 17

and 5. Figures 2.3 and 2.5 use boxplots to present the difference of empirical

distributions of y∗ and δ∗1 for N = 21, 17 and 5, whereas Figures 2.4 and 2.6

illustrate the impact of smoothing by comparing the histograms of y∗ and δ∗1 .

Figure 2.5: Histograms of y∗, the sieve bootstrap estimates of overall mean
statistic

The last example we presented in Figure 2.7 illustrates results of sieve boot-

strap estimates (bootstrap average) of the functional mean curve when we pre-

smooth the observations under various densities of data. As shown in Figure 2.7,

when the actual observations are relatively dense, for example, N ≥ 51, sieve

bootstrap estimates of the mean functional curve are close to the pre-smoothed

curve and the population curve. However, when the observations are sparse, for

example, N ≤ 21, sieve bootstrap estimates of the mean functional curve do not

correctly capture the local patterns of the population curve, which is due to the

unacceptable smoothing results. This result is also typical evidence of the impact

of pre-smoothing on sieve bootstrap for functional time series. Hence, when
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Figure 2.6: Boxplots of y∗, the sieve bootstrap estimates of overall mean statistic

the actual functional time series observations are sparse, pre-smoothing may

significantly impact statistical inferences, including bootstrap. In fact, for many

real-world time series data, the rule on considering a data set as dense functional

time series is generally not clear and often varies across researchers and problems.

Practically speaking, the impact of observations’ density is only about whether

to pre-smooth the functional time series before performing bootstrap or other

statistical analysis.

Nonetheless, the theoretical assumptions behind functional time series and

high-dimensional time series vary, leading to very different theoretical results on

statistical inferences, including sieve bootstrap. On the other hand, this differ-

ence in data structure assumptions demonstrates the importance of developing

statistical methods on sparse functional time series observations. It verifies our

contributions on the building blocks of sieve bootstrap for high-dimensional time

series.
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Figure 2.7: Example of errors of sieve bootstrap mean curve for sparse functional
observations

© Daning Bi – 21 May 2021



§2.5 Simulation studies 35

2.5.2 Sieve bootstrap for mean statistic

We study the validity and consistency of our proposed sieve bootstrap method for

high-dimensional factor time series models. To achieve this, we use simulation

to evaluate the empirical coverage and average width of bootstrap confidence

intervals for the overall mean statistics defined in Theorem 2.1 first. Recall model

(2.2) that yt = Q ft + ut and its equivalent form yt = Qo f o
t + ut with different

scales on Q and ft. To address the problem under a general high-dimensional

factor time series model, we no longer assume the original data are generated

from a functional curve as in Section 2.5.1. Instead, we generate the factor loading

matrix Qo by an arbitrary QR decomposition on standard multivariate normal

random variables, where Qo fulfils Qo>Qo = Ir with r the number of factors

but is not necessarily a smoothing basis. We then assume the observations {yt}
are from a two factors model {yt} = Qo f o

t + ut, where {ui,t} are independent

N (0, 1) random noises, Q is a N × 2 matrix with each column an orthogonal

basis, and both factors of f o
t are strong factors following an AR(1) model with

mean 0 and the AR coefficient 0.5. In other words, both factors are generated

from fi,t = 0.5 fi,t−1 + ei,t, with i = 1, 2.

To study the impact of factor strength or dimensionality and signal to noise

ratio, we simulate data from two cases with different factor strengths. In the first

case, we assume the error term ei,t in AR(1) model of both factors are independent

N (0, N) and N (0, 0.5N), respectively, where N is the dimension of original data.

The use of order N in the variance of error terms in the AR(1) model of both

factors reflects both factors’ pervasiveness, or equivalently, that the strength of

factors is set to be the strongest. The use of different scales 1 and 0.5 in the

variance of ei,t for i = 1, 2 is to ensure that the first two largest eigenvalues of

accumulated squared autocovariance matrices that are associated with the two

factors are spiked and unequal.

In the second case, we consider a weak factor model where the error terms ei,t

in AR(1) model of both factors { ft} are independentN (0, N0.2) andN (0, 0.5N0.2),

respectively. In this case, the factors are relatively weak since the variance of
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ei,t in AR(1) model are of order N0.2, which means the spikiness of the first two

largest eigenvalues of accumulated squared autocovariance matrices weakens

when N increases. The use of 0.5 as the AR coefficient in both cases reflects a

moderate temporal dependence within each factor. Generally speaking, a larger

AR coefficient or strong temporal dependence within each factor also demands a

relatively large sample size T for better sieve bootstrap results. In comparison, a

smaller AR coefficient or weaker temporal dependence within each factor can

lead to the overestimating problem on the number of factors, which is already

considered in the second case.

In both cases, we repeat the simulation by 500 times and each time we

generate B = 499 bootstrap samples to create a confidence interval for the

(standardised) overall mean statistics defined as θy :=
√

T√
N

1>Qµ f , with µ f the

population mean of { ft} for strong factors’ case and θy :=
√

T√
N0.2 1>Qµ f for weak

factors’ case, where the two statistics are standardised by the factor strength for

comparison of the length of confidence intervals as below.

Specifically, we first compute B = 499 sieve bootstrap estimates of (stan-

dardised) overall mean statistics as y∗ =
√

T√
N

1>Q̂ f ∗, and then create bootstrap

intervals based on it. In this example, we investigate the performance of our

proposed sieve bootstrap method based on two types of bootstrap intervals, the

nonparametric bootstrap interval using quantiles and the parametric bootstrap

interval based on normality. Both bootstrap intervals are practically popular,

computationally efficient and easy to implement. For an arbitrary statistic θ

and its sample estimate θ̂, the nonparametric bootstrap interval using quantiles

are calculated as
(

2θ̂ − θ∗(1−α/2), 2θ̂ + θ∗(α/2)

)
, where θ∗(1−α/2) is the (1 − α/2)

percentile of the bootstrap estimates θ∗. The nonparametric bootstrap inter-

val using quantiles are sometimes referred as reverse percentile interval as the

order of upper and lower quantiles are reversed in the formula. The idea of

nonparametric bootstrap interval using quantiles is to use the bootstrap dis-

tribution of (θ∗ − θ̂) to approximate the distribution of (θ̂ − θ). On the other

hand, the parametric bootstrap interval based on normality can be computed as(
θ̂ − b∗ −

√
v∗z(1−α/2), θ̂ − b∗ −

√
v∗z(1−α/2)

)
, where b∗ and v∗ are the bootstrap
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estimates of bias and variance of θ̂, and z(1−α/2) is the (1− α/2) percentile of

standard normal distribution. Similar to the nonparametric bootstrap interval us-

ing quantiles, the parametric bootstrap interval based on normality also assumes

the bootstrap distribution of (θ∗ − θ̂) correctly approximates the distribution of

(θ̂ − θ), but are constructed in a parametric way. To achieve improved empiri-

cal coverage and average width of intervals, more sophisticated intervals with

additional corrections on bias and variance may also be constructed, such as

double bootstrap, with a higher cost of computations. Since this example’s main

purpose is to inspect the validity and consistency of our proposed sieve bootstrap

method under various cases, we only use these two ways of bootstrap intervals

as they are simple and computationally efficient. Finally, to get a comprehensive

comparison on the performance of two types of intervals, we compute empirical

coverage, average width, and interval score (Gneiting and Raftery, 2007) of boot-

strap intervals under various combinations of N and T. The interval score of a

bootstrap interval (l, u) is computed as

Sα = (u− l) +
2
α
(l − θ)1{θ < l}+ 2

α
(θ − u)1{θ > u},

with the idea of rewarding narrower intervals but putting penalties on intervals

missing true statistics θ. Therefore, when the empirical coverage and average

width of two bootstrap intervals are close, the average interval score can be used

for overall comparison.

In Tables 2.1 and 2.2, we present the empirical coverage, average width and

interval score of nonparametric bootstrap intervals using quantiles and para-

metric bootstrap intervals based on normality for θy in strong factors’ case. The

nominate coverages we investigated are 95%, 90%, and 80% with different com-

binations of N and T for comparison. As shown in both tables, when the sample

size T is large enough and the factors are strong, or the signal to noise ratio is

not affected by N, the empirical coverage is reasonably close to the nominated

coverage and are not largely affected by the ratio of N/T. Besides, bootstrap

intervals’ average width is also similar for various combinations of N and T.
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This result is often referred to as the ‘Blessing of dimensionality’ in the literature

of high-dimensional statistics. The performance of bootstrap confidence intervals

generally benefits from the increase of both N and T. Between nonparametric

bootstrap intervals using quantiles and parametric bootstrap intervals based on

normality, the average interval scores are very close for almost all combinations

of N and T. Hence, we conclude that both intervals perform well in strong

factors’ case.

Table 2.1: Empirical coverage, average width and interval score of nonparametric
bootstrap intervals using quantiles for θy of a strong factor model

Nonparametric bootstrap intervals using quantiles

95% 90% 80%

T N Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

200

50 0.936 8.333 12.545 0.894 6.997 11.379 0.804 5.454 10.069
100 0.950 8.367 10.517 0.906 7.033 9.799 0.784 5.498 9.012
200 0.946 8.201 11.404 0.892 6.909 10.336 0.794 5.407 9.378
500 0.944 8.415 12.056 0.884 7.076 10.972 0.766 5.522 9.895

1000 0.934 8.021 13.144 0.882 6.752 11.586 0.808 5.278 9.789

500

50 0.942 8.507 12.616 0.890 7.168 11.454 0.790 5.591 10.207
100 0.930 8.275 12.210 0.864 6.959 11.417 0.800 5.449 10.062
200 0.940 8.525 12.891 0.902 7.177 11.310 0.812 5.609 9.639
500 0.940 8.608 13.715 0.880 7.240 12.188 0.800 5.646 10.629

1000 0.948 8.572 13.150 0.904 7.229 11.363 0.800 5.642 9.912

1000

50 0.944 8.452 11.809 0.896 7.104 10.932 0.784 5.553 9.696
100 0.946 8.415 12.187 0.890 7.093 11.050 0.790 5.530 9.938
200 0.936 8.114 12.200 0.880 6.827 11.039 0.772 5.324 10.177
500 0.952 8.347 11.236 0.904 7.022 10.194 0.828 5.476 8.993

1000 0.952 8.355 12.103 0.884 7.029 10.906 0.782 5.476 9.982

Table 2.2: Empirical coverage, average width and interval score of parametric
bootstrap intervals based on normality for θy of a strong factor model

Parametric bootstrap intervals based on normality

95% 90% 80%

T N Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

200

50 0.936 8.388 12.346 0.886 7.039 11.504 0.794 5.484 10.124
100 0.948 8.445 10.461 0.906 7.087 9.748 0.796 5.522 9.066
200 0.948 8.282 11.344 0.890 6.951 10.227 0.798 5.416 9.270
500 0.948 8.482 11.642 0.888 7.118 10.732 0.766 5.546 9.869

1000 0.928 8.094 13.232 0.890 6.793 11.551 0.812 5.292 9.805

500

50 0.940 8.582 12.444 0.902 7.202 11.314 0.784 5.611 10.161
100 0.928 8.352 11.975 0.874 7.009 11.323 0.796 5.461 10.044
200 0.942 8.597 13.018 0.910 7.215 11.255 0.810 5.622 9.636
500 0.944 8.669 13.605 0.886 7.275 12.147 0.796 5.668 10.585

1000 0.950 8.649 13.049 0.904 7.258 11.335 0.804 5.655 9.956

1000

50 0.940 8.526 11.860 0.898 7.156 10.847 0.780 5.575 9.706
100 0.948 8.492 12.313 0.892 7.127 10.936 0.790 5.553 9.882
200 0.942 8.185 12.060 0.888 6.869 11.136 0.778 5.352 10.194
500 0.954 8.411 11.134 0.904 7.059 10.216 0.828 5.500 8.990

1000 0.952 8.423 11.870 0.894 7.069 10.882 0.784 5.508 9.911

However, as shown in Tables 2.3 and 2.4, when the factors are weak, with the
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factor strength set to N0.2, the empirical coverage tends to increase with N/T,

and the bootstrap intervals become wider and wider. This suggests that bootstrap

overestimates the standard error of (standardised) overall mean statistics when

N increases. When the factors are weak, the spikiness of the first two largest

eigenvalues of accumulated squared autocovariance matrices decreases. The

number of factors is overestimated, which brings the noises into bootstrap

samples. As a result, neither of the two types of bootstrap intervals performs

well when factors are weak, and N/T is large. The bootstrap distribution of the

(standardised) overall mean statistics suffers from comparably fatter tails.

Table 2.3: Empirical coverage, average width and interval score of nonparametric
bootstrap intervals using quantiles for θy of a weak factor model

Nonparametric bootstrap intervals using quantiles

95% 90% 80%

T N Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

200

50 0.972 8.700 10.109 0.938 7.319 9.162 0.840 5.706 8.324
100 0.990 8.854 9.248 0.960 7.429 8.112 0.868 5.809 7.138
200 0.988 9.141 9.757 0.960 7.705 8.658 0.894 6.011 7.382
500 0.996 10.263 10.321 0.984 8.643 8.957 0.934 6.742 7.637

1000 0.962 10.979 19.094 0.958 9.232 14.167 0.932 7.214 10.428

500

50 0.936 8.524 13.455 0.866 7.182 11.862 0.780 5.617 10.336
100 0.958 8.603 11.340 0.906 7.235 10.602 0.816 5.673 9.332
200 0.964 8.872 11.071 0.926 7.480 9.893 0.856 5.852 8.767
500 0.982 9.471 11.053 0.960 7.967 9.635 0.862 6.220 8.220

1000 0.996 10.251 10.728 0.978 8.610 9.306 0.932 6.723 7.827

1000

50 0.930 8.506 12.453 0.876 7.165 11.454 0.774 5.591 10.392
100 0.940 8.462 11.969 0.882 7.102 11.029 0.774 5.547 10.057
200 0.948 8.315 11.400 0.908 6.984 10.121 0.810 5.438 9.288
500 0.968 8.959 10.526 0.934 7.528 9.288 0.860 5.870 8.158

1000 0.980 9.183 9.962 0.948 7.730 9.178 0.878 6.047 8.273

2.5.3 Sieve bootstrap for spiked eigenvalues of squared autoco-

variance matrix

The study on spiked eigenvalues of high-dimensional covariance matrix has

received massive attention in the past decades. For time series data, researchers

are generally interested in the spiked eigenvalues of the squared autocovariance

matrix. However, the theoretical results of these spiked eigenvalues of squared

autocovariance matrix for high-dimensional time series are much more involved

and hard to be applied for practical analysis. As an alternative, the bootstrap

can be considered for real data applications when the theoretical results do not
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Table 2.4: Empirical coverage, average width and interval score of parametric
bootstrap intervals based on normality for θy of a weak factor model

Parametric bootstrap intervals based on normality

95% 90% 80%

T N Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

200

50 0.974 8.771 9.914 0.944 7.361 9.071 0.834 5.735 8.339
100 0.986 8.925 9.350 0.962 7.490 8.187 0.870 5.836 7.175
200 0.988 9.222 9.851 0.960 7.739 8.606 0.894 6.030 7.370
500 0.996 10.355 10.467 0.986 8.690 9.018 0.934 6.771 7.615

1000 0.964 11.079 19.357 0.958 9.298 14.231 0.932 7.244 10.363

500

50 0.940 8.605 13.329 0.878 7.221 11.776 0.770 5.626 10.327
100 0.962 8.684 11.013 0.906 7.288 10.354 0.808 5.678 9.284
200 0.972 8.967 10.826 0.926 7.526 9.758 0.862 5.863 8.721
500 0.984 9.551 11.057 0.962 8.016 9.594 0.866 6.245 8.244

1000 0.994 10.327 10.965 0.978 8.667 9.373 0.940 6.752 7.799

1000

50 0.930 8.585 12.507 0.886 7.205 11.569 0.780 5.614 10.395
100 0.942 8.524 12.153 0.878 7.153 11.116 0.774 5.573 10.001
200 0.954 8.358 11.114 0.908 7.014 10.150 0.802 5.465 9.213
500 0.972 9.013 10.452 0.944 7.564 9.320 0.866 5.894 8.175

1000 0.982 9.272 9.892 0.944 7.781 9.171 0.878 6.062 8.197

exist or hard to be implemented. As discussed in Proposition 2.1, the bootstrap

estimates δ∗i (k) are generally consistent to δi(k). However, without a general

central limit theorem (CLT) on δ̂i(k), the spiked eigenvalues of squared sample

autocovariance matrix, the validity of sieve bootstrap estimate is generally hard

to derive theoretically. Therefore, we use simulation to study our sieve bootstrap

method’s performance on estimating δi(k). To be more specific, the data we

generated are based on the strong factors’ case model in Section 2.5.2. We

continue the study on validity and consistency of our sieve bootstrap method by

accessing the empirical coverage of bootstrap intervals on the first two largest

eigenvalues δ1 and δ2 of squared lag-1 autocovariance matrix. In order to get

a comprehensive comparison based on average width and interval score of

bootstrap intervals for various combination of N and T, instead of δ1 and δ2, the

bootstrap intervals can be created based on standardised eigenvalues δ0
1 =

√
T

N2 δ1

and δ0
2 =

√
T

N2 δ2.

First of all, we compute the empirical coverage, average width, and interval

score for nonparametric bootstrap intervals using quantiles and parametric boot-

strap intervals based on normality for strong factors. As shown in Tables 2.5

to 2.8, neither of two types bootstrap intervals can provide an desired result as

the empirical coverage probabilities are consistently lower than the nominate

probabilities for each interval, especially when T is small. While the ‘blessing of
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dimensionality’ may improve the empirical coverage of both intervals on δ1 and

δ2 for large N, the results are not as good for the overall mean statistic. They con-

sistently underestimated empirical coverage probabilities are due to the skewness

of sampling distribution of δ̂i(k), the eigenvalues of sample lag-k autocovariance

matrices, especially for a relatively small T. In general, nonparametric bootstrap

intervals using quantiles and parametric bootstrap intervals based on normality

perform well when the sampling distributions are symmetric. However, the

parametric bootstrap interval based on normality, which is symmetric, and the

nonparametric bootstrap interval using quantiles, which is reversely skewed, do

not perform well when the sample statistic follows a skewed distribution. To

consider for this skewness, an unreversed nonparametric bootstrap interval using

quantiles, computed as
(

θ∗(α/2), θ∗(1−α/2)

)
, can also be computed and compared

since the skewness of sample statistic is retained by the bootstrap estimates.

Table 2.5: Empirical coverage, average width and interval score of nonparametric
bootstrap intervals using quantiles for δ0

1 of a strong factor model

Nonparametric bootstrap intervals using quantiles

95% 90% 80%

T N Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

200

50 0.842 11.682 28.717 0.810 9.653 19.626 0.768 7.385 13.919
100 0.842 11.775 27.056 0.832 9.719 18.711 0.786 7.455 13.268
200 0.854 11.625 26.011 0.830 9.592 18.102 0.782 7.342 12.964
500 0.842 11.625 27.406 0.820 9.621 18.971 0.774 7.380 13.436

1000 0.858 11.484 24.363 0.836 9.450 17.167 0.786 7.251 12.377

500

50 0.876 11.127 22.388 0.848 9.264 16.777 0.760 7.185 13.468
100 0.902 11.310 22.295 0.876 9.447 16.504 0.786 7.307 13.178
200 0.900 11.610 22.324 0.868 9.679 16.786 0.768 7.508 13.986
500 0.888 11.352 23.279 0.850 9.481 17.251 0.750 7.330 13.685

1000 0.900 11.342 21.580 0.872 9.452 16.159 0.800 7.327 12.785

1000

50 0.930 11.381 19.688 0.902 9.544 15.411 0.820 7.440 12.960
100 0.904 10.920 22.254 0.862 9.183 17.069 0.756 7.135 13.601
200 0.916 11.244 19.419 0.888 9.426 15.552 0.788 7.327 12.762
500 0.938 11.277 18.019 0.896 9.472 14.308 0.798 7.363 12.137

1000 0.932 11.303 18.043 0.892 9.466 14.796 0.790 7.357 12.636

As shown in Tables 2.9 and 2.10, unreversed nonparametric bootstrap intervals

using quantiles outperform the other two competitors for δ1 with almost all

combinations of N and T and for δ2 with small T. The failure of nonparametric

bootstrap intervals using quantiles and parametric bootstrap intervals based on

normality, on the other hand, verifies the skewness on the distribution of δ̂i(k).

Although some bias-corrected intervals may also be constructed, for example, by

double bootstrap, to improve the empirical coverage probabilities further, those
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Table 2.6: Empirical coverage, average width and interval score of nonparametric
bootstrap intervals using quantiles for δ0

2 of a strong factor model

Nonparametric bootstrap intervals using quantiles

95% 90% 80%

T N Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

200

50 0.824 2.274 6.551 0.744 1.884 5.088 0.612 1.450 4.406
100 0.820 2.207 7.632 0.766 1.828 5.568 0.666 1.414 4.387
200 0.836 2.200 6.303 0.770 1.821 4.852 0.654 1.397 4.118
500 0.866 2.259 5.204 0.794 1.875 4.344 0.684 1.443 3.886

1000 0.814 2.175 7.343 0.756 1.810 5.241 0.642 1.389 4.213

500

50 0.896 2.665 5.580 0.826 2.230 4.495 0.722 1.727 3.979
100 0.894 2.519 5.194 0.842 2.102 4.021 0.746 1.630 3.344
200 0.896 2.592 5.265 0.842 2.172 4.153 0.756 1.683 3.575
500 0.912 2.565 4.980 0.868 2.146 3.849 0.778 1.665 3.261

1000 0.896 2.579 4.799 0.846 2.160 3.964 0.744 1.675 3.562

1000

50 0.924 2.728 4.662 0.878 2.290 3.952 0.792 1.785 3.343
100 0.918 2.689 4.374 0.874 2.252 3.613 0.778 1.753 3.223
200 0.904 2.670 5.078 0.856 2.241 4.149 0.756 1.744 3.518
500 0.938 2.695 4.118 0.872 2.259 3.589 0.780 1.759 3.201

1000 0.908 2.635 4.957 0.868 2.213 3.926 0.758 1.724 3.384

Table 2.7: Empirical coverage, average width and interval score of parametric
bootstrap intervals based on normality for δ0

1 of a strong factor model

Parametric bootstrap intervals based on normality

95% 90% 80%

T N Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

200

50 0.900 12.001 21.334 0.868 10.072 16.830 0.790 7.847 13.373
100 0.898 12.119 19.448 0.868 10.171 15.888 0.812 7.924 12.638
200 0.910 11.947 19.026 0.878 10.026 15.385 0.802 7.812 12.419
500 0.918 12.004 20.782 0.880 10.074 16.199 0.796 7.849 12.975

1000 0.928 11.819 18.451 0.902 9.919 14.744 0.814 7.728 11.834

500

50 0.930 11.320 17.496 0.874 9.500 14.953 0.788 7.402 12.868
100 0.934 11.489 18.826 0.892 9.642 15.345 0.814 7.512 12.901
200 0.936 11.806 19.009 0.884 9.908 15.920 0.784 7.720 13.795
500 0.934 11.521 18.831 0.882 9.669 15.571 0.766 7.533 13.356

1000 0.928 11.487 17.414 0.892 9.640 14.745 0.802 7.511 12.433

1000

50 0.944 11.528 17.524 0.896 9.674 14.991 0.808 7.538 13.001
100 0.928 11.071 19.106 0.880 9.291 15.728 0.776 7.239 13.158
200 0.928 11.392 16.591 0.902 9.561 14.526 0.786 7.449 12.613
500 0.950 11.420 15.860 0.914 9.584 13.501 0.790 7.467 12.002

1000 0.936 11.420 15.883 0.910 9.584 14.020 0.804 7.467 12.494
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Table 2.8: Empirical coverage, average width and interval score of parametric
bootstrap intervals based on normality for δ0

2 of a strong factor model

Parametric bootstrap intervals based on normality

95% 90% 80%

T N Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

200

50 0.844 2.329 6.049 0.776 1.955 5.166 0.646 1.523 4.390
100 0.840 2.269 7.042 0.788 1.904 5.520 0.672 1.484 4.392
200 0.860 2.251 5.834 0.790 1.890 4.850 0.696 1.472 4.015
500 0.868 2.318 5.169 0.814 1.945 4.525 0.706 1.516 3.865

1000 0.858 2.234 6.576 0.778 1.875 5.119 0.664 1.461 4.171

500

50 0.894 2.707 5.001 0.834 2.272 4.553 0.740 1.770 3.969
100 0.908 2.553 4.421 0.864 2.142 3.824 0.772 1.669 3.299
200 0.914 2.631 4.639 0.848 2.208 4.033 0.760 1.721 3.561
500 0.934 2.608 4.476 0.878 2.189 3.803 0.792 1.705 3.263

1000 0.910 2.620 4.101 0.844 2.199 3.877 0.754 1.713 3.541

1000

50 0.942 2.765 4.445 0.896 2.321 3.813 0.798 1.808 3.324
100 0.942 2.719 3.923 0.880 2.282 3.500 0.778 1.778 3.232
200 0.920 2.705 4.526 0.860 2.270 4.048 0.756 1.769 3.504
500 0.946 2.730 3.799 0.880 2.291 3.476 0.788 1.785 3.190

1000 0.930 2.671 4.284 0.874 2.242 3.743 0.770 1.746 3.338

methods on reducing the error of bootstrap intervals generally have significant

requirements on computations and are beyond the scope of this work.

Table 2.9: Empirical coverage, average width and interval score of unreversed
nonparametric bootstrap intervals using quantiles for δ0

1 of a strong factor model

Unreversed nonparametric bootstrap intervals using quantiles

95% 90% 80%

T N Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

200

50 0.942 11.682 16.165 0.900 9.653 14.147 0.810 7.385 12.086
100 0.952 11.775 14.332 0.900 9.719 12.771 0.818 7.455 11.336
200 0.960 11.625 13.247 0.910 9.592 12.188 0.824 7.342 10.910
500 0.948 11.625 14.970 0.918 9.621 13.025 0.818 7.380 11.344

1000 0.970 11.484 13.951 0.926 9.450 12.077 0.830 7.251 10.399

500

50 0.952 11.127 14.622 0.904 9.264 13.088 0.798 7.185 11.784
100 0.944 11.310 16.024 0.906 9.447 14.138 0.818 7.307 12.024
200 0.940 11.610 17.097 0.878 9.679 15.135 0.778 7.508 13.444
500 0.956 11.352 15.419 0.900 9.481 13.710 0.768 7.330 12.577

1000 0.966 11.342 14.164 0.914 9.452 12.760 0.798 7.327 11.576

1000

50 0.944 11.381 16.588 0.898 9.544 14.825 0.798 7.440 13.120
100 0.936 10.920 16.243 0.900 9.183 14.309 0.786 7.135 12.541
200 0.944 11.244 14.869 0.898 9.426 13.542 0.784 7.327 12.327
500 0.964 11.277 14.435 0.924 9.472 12.799 0.796 7.363 11.696

1000 0.956 11.303 14.641 0.896 9.466 13.749 0.800 7.357 12.565

2.6 Particulate matter concentration

We apply the proposed sieve bootstrap methods on a real data set of high-

dimensional time series. The raw data are observations of PM10 particles in the

air, collected on a half-hour basis in Graz, Austria from 1 Oct. 2010 to 31 Mar.

© Daning Bi – 21 May 2021



44 Sieve Bootstrap

Table 2.10: Empirical coverage, average width and interval score of unreversed
nonparametric bootstrap intervals using quantiles for δ0

2 of a strong factor model

Unreversed nonparametric bootstrap intervals using quantiles

95% 90% 80%

T N Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

Empirical
coverage

Average
width

Average
interval score

200

50 0.852 2.274 5.738 0.776 1.884 4.721 0.664 1.450 3.888
100 0.860 2.207 5.817 0.798 1.828 4.725 0.682 1.414 3.777
200 0.876 2.200 5.351 0.790 1.821 4.410 0.664 1.397 3.728
500 0.898 2.259 4.414 0.832 1.875 3.779 0.698 1.443 3.260

1000 0.850 2.175 6.195 0.768 1.810 4.989 0.660 1.389 4.038

500

50 0.906 2.665 4.854 0.862 2.230 4.204 0.758 1.727 3.523
100 0.904 2.519 4.682 0.852 2.102 4.029 0.720 1.630 3.478
200 0.914 2.592 4.626 0.864 2.172 3.984 0.748 1.683 3.404
500 0.930 2.565 4.373 0.884 2.146 3.683 0.770 1.665 3.149

1000 0.910 2.579 3.995 0.868 2.160 3.718 0.760 1.675 3.267

1000

50 0.932 2.728 4.244 0.874 2.290 3.785 0.788 1.785 3.319
100 0.932 2.689 4.154 0.864 2.252 3.752 0.778 1.753 3.303
200 0.912 2.670 4.703 0.860 2.241 4.137 0.764 1.744 3.548
500 0.946 2.695 3.969 0.892 2.259 3.526 0.806 1.759 3.148

1000 0.924 2.635 4.453 0.860 2.213 3.972 0.758 1.724 3.399

2011. PM10 particles represent a common type of air pollutant that can be found

in smoke and dust with an aerodynamic diameter of less than 0.01mm.

This data set has been studied in Hörmann et al. (2015) for topics of dynamic

functional principal component analysis (FPCA) and in Shang (2018) for com-

parisons of bootstrap methods for stationary functional time series. The original

data is preprocessed by a square-root transformation to stabilize the variance and

avoid heavy-tailed observations as directed in Aue et al. (2015) and Hörmann

et al. (2015). The square-root of PM10 levels contained in a 48× 182 matrix are

then plotted in Figure 2.8a as high-dimensional time series over 182 days with

dimension of 48 and in Figure 2.8b as 182 repeats of 48 half-hourly observations

within each day. In general, the PM10 concentration levels are relatively high in

winters when the temperatures are low and the pollutants related to daily life

such as traffics and heating lack space to disperse in the atmosphere. Therefore,

the day-to-day PM10 levels in winter are highly temporally dependent, while the

half-hourly observations in each day experience similar local patterns which are

mainly related to people’s day-to-day life and temperature.

In Hörmann et al. (2015) and Shang (2018), observations of half-hourly PM10

levels as in Figure 2.8b are assumed to come from a functional curve. In general,

for a functional time series, the original observations are smoothed before further

studies such as FPCA and functional bootstrap. Hence, according to Hörmann
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(a) Univariate time-series plot (b) Functional time-series plot

Figure 2.8: Observed time series of (square-root) PM10 levels

et al. (2015) and Shang (2018), there are 182 temporal dependent functional curves

each smoothed from 48 observations. However, as illustrated in this work, the

pre-smoothing results rely heavily on the smoothness condition of the functional

curve. When the observations are not dense enough, pre-smoothing may cause a

loss of information, especially on local patterns. To maintain the original features

of time series observations to the greatest extent, we instead treat the data as

a multivariate or high-dimensional time series. We then perform the proposed

sieve bootstrap methods with a factor model on this 48 by 182 matrix of time

series. This creates a bootstrap confidence interval for the mean levels of (square

root) PM10 which are temporal dependent at each half-hourly time point, and

to create a bootstrap confidence surface for the lag-1 autocovariance matrix of

(square root) PM10 levels.

In Figure 2.9, a 90% nonparametric bootstrap interval using quantiles is

created on the mean levels of (square root) PM10, defined as θy := Qµ f with

µ f the population mean of temporal dependent factors { ft}. From this plot

of sample estimate and confidence interval of θy, it is clear that local patterns,

for example, between 4th and 10-th half-hourly time points, are preserved

flawlessly by our proposed sieve bootstrap methods based on high-dimensional

time series. Similarly, a sample estimate and a 90% unreversed nonparametric

bootstrap interval using quantiles for lag-1 autocovariance matrix Cov(yt, yt+1)
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of temporal dependent (square root) PM10 levels at 48 half-hourly time points

are also computed and presented in Figure 2.10. This unreversed nonparametric

bootstrap interval using quantiles provides interval estimates on autocovariance

of (square root) PM10 levels between two consecutive days, where, as shown in

Figure 2.10, the local patterns are again completely preserved by our proposed

sieve bootstrap methods.

Figure 2.9: 90% Sieve bootstrap confidence interval for the mean of temporal
dependent (square root) PM10 levels at 48 half-hourly time

2.7 Conclusions and discussions

We first introduce pre-smoothing failure on sparse functional time series obser-

vations, especially when there are local patterns in the population curve. We also

address statistical inferences, such as bootstrap associated with pre-smoothing

of sparse observations under functional set-up. We then suggest alternatively

treating the sparse observations as multivariate high-dimensional time series. We

adapt dimension-reduction methods, such as factor models, to pursue statistical

inferences, such as bootstrap. Specifically, we suggest using autocovariance to

estimate the factor model and perform a sieve bootstrap on the estimated factors

to provide ultimate inferences on the original time series. Our proposed sieve
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Figure 2.10: 90% Sieve bootstrap confidence surface for lag-1 autocovariance of
temporal dependent (square root) PM10 levels at 48 half-hourly time point
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bootstrap methods using factor models provide valid statistical inferences on a

general overall mean statistic and maintain consistency on bootstrap estimates

of spiked eigenvalues of autocovariance matrices. Simulation studies provide

numerical evidence on the finite-sample performance of the sieve bootstrap

methods on high-dimensional time series following strong factor models. At

last, we apply our methods to PM10 data for constructing bootstrap confidence

intervals for mean vector and autocovariance matrix, respectively.

Our work is crucial as a building block of sieve bootstrap methods under high-

dimensional set-up and inspirational for studying the differences and connections

between studies on functional and high-dimensional time series. Our future

work includes further exploration and justification on density or sparsity of

functional time series observations and the impact of pre-smoothing, which are

fundamental for data analysis.

2.A Appendix A: Technical proofs of theorems

Proof of Theorem 2.1. Let f b
t = ∑

p
l=1 Ãl,p f b

t−l + eb
t,p, where {Ãl,p, l = 1, 2, ..., p} are

the estimators of AR coefficient matrices based on true factors { ft}, and {eb
t,p, t =

p + 1, p + 2, ..., T} are generated by i.i.d. resampling from the centered residuals

(ẽt,p − ẽT,p) with ẽt,p = ft − ∑
p
l=1 Ã ft−l and ẽT,p = 1

T−p ∑T
t=p+1 ẽt,p. Therefore,

{ f b
t } are bootstrap pseudo-variables generated based on the true factors { ft}

rather than { f̂t}. Recall that { f ∗t } are bootstrapped based on the centered

residuals (êt,p − êT,p) with êt,p = f̂t − ∑
p
l=1 Âl,p f̂t−l and êT,p = 1

T−p ∑T
t=p+1 êt,p,

and we define E∗ and Cov∗ as the expectation and covariance with respect to

the measure assigning probability 1/(T − p) to each observation, respectively.

Therefore, E∗ f ∗T = f̂T by definition and we can write

√
Tc>Q̂

(
f ∗T −E∗ f ∗T

)
=:M1 +M2 +M3

=
√

Tc>Q
(

f b
T −E∗ f b

T

)
+
√

Tc>
(

Q̂−Q
) (

f ∗T −E∗ f ∗T
)

+
√

Tc>Q
[(

f ∗T −E∗ f ∗T
)
−
(

f b
T −E∗ f b

T

)]
,
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with obvious definitions ofM1,M2 andM3.

For the termM1, under Assumptions 2.1 (iii), 2.2 and the additional assump-

tion in Theorem 2.1 that limT→∞ V(
√

T fT) = ∑k∈Z Γ f (k) < ∞, using Theorem

2.1 in Politis et al. (1997), we have the following CLT for
√

T fT

√
T
(

fT −E fT

)
d→ N

(
0, ∑

k∈Z
Γ f (k)

)
.

Moreover, under the additional assumptions in Theorem 2.1, c>Q is an r-

dimensional vector such that ‖c>Q‖`1 < ∞ for a fixed r, Therefore, under

Assumptions 2.1 (ii) and 2.2, we can use Cramer-Wold Theorem (Cramér and

Wold, 1936) to conclude for the scalar
√

Tc>Q fT that

√
Tc>Q

(
fT −E fT

)
d→ N

(
0, c>Q

(
∑
k∈Z

Γ f (k)

)
Q>c

)
,

when T, N → ∞.

Besides, under the strong mixing condition on true factors { ft}, the empirical

moments of {et} converge to its population counterpart. Therefore, under all

the assumptions of 2.1, we fulfil all the conditions of Theorem 4.1 in Meyer

and Kreiss (2015). Consequently, we can use Theorem 4.1 in Meyer and Kreiss

(2015) to conclude that the general VAR sieve bootstrap is valid for
√

Tc>Q fT

since
√

Tc>Q fT shares the same CLT with its counterpart generated from the

companion process as discussed in Meyer and Kreiss (2015). Hence

dK

(
L∗
(√

Tc>Q
(

f b
T −E∗ f b

T

))
,L
(√

Tc>Q
(

fT −E fT

)))
= oP (1)

as T, N → ∞.

Therefore, to see the assertion in Theorem 2.1, we need to show that when

T, N → ∞, both M2 and M3 tend to 0 in probability, then apply Slutsky’s

theorem.
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To showM2 → 0 in probability for T, N → ∞, we first of all notice that

√
Tc>

(
Q̂−Q

) (
f ∗T −E∗ f ∗T

)
=

1√
T

c>
(

Q̂−Q
) T

∑
t=1

(
f ∗t − f̂T

)
.

Therefore, we can show that

E
[√

Tc>
(

Q̂−Q
) (

f ∗T −E f ∗T
)]2

=E

[
1
T

c>
(

Q̂−Q
) T

∑
t=1

(
f ∗t − f̂T

)] [ T

∑
s=1

(
f ∗s − f̂T

)> (
Q̂−Q

)>
c

]

=

[
1
T

c>
(

Q̂−Q
) T

∑
t=1

T

∑
s=1

E
(

f ∗t − f̂T

) (
f ∗s − f̂T

)> (
Q̂−Q

)>
c

]

≤ 1
T

∥∥∥c>
(

Q̂−Q
)∥∥∥2

∥∥∥∥∥ T

∑
t=1

T

∑
s=1

E
(

f ∗t − f̂T

) (
f ∗s − f̂T

)>∥∥∥∥∥
F

=OP

(
1

T2

∥∥∥∥∥ T

∑
t=1

T

∑
s=1

E
(

f ∗t − f̂T

) (
f ∗s − f̂T

)>∥∥∥∥∥
F

)
,

where the last line follows from the fact that ‖c>Q‖`1 < ∞ for N, T → ∞ under

the additional assumptions in Theorem 2.1, ‖Q‖2 �
√

N, and
∥∥∥Q̂−Q

∥∥∥
2
=

OP
(

N1/2T−1/2) by Lemma 2.3.

Define Σ∗e,p := E∗
(
e∗t e∗>t

)
, then

T

∑
t=1

T

∑
s=1

E∗
(

f ∗t − f̂T

) (
f ∗s − f̂T

)>
=

T

∑
t=1

T

∑
s=1

E∗

( ∞

∑
l1=0

Ψ̂l1,pe∗t−l1

)(
∞

∑
l2=0

Ψ̂l2,pe∗s−l2

)>
=

T

∑
t=1

T

∑
s=1

E∗
∞

∑
l1=0

∞

∑
l2=0

(
Ψ̂l1,pe∗t−l1e∗>s−l2Ψ̂>l2,p

)
=

T

∑
t=1

T

∑
s=1

∞

∑
l=0

Ψ̂l,pE∗
(

e∗t−le
∗>
t−l

)
Ψ̂>s−t+l,p

where e∗t−l1
and e∗t−l2

are i.i.d. bootstrapped therefore E∗
(

e∗t−l1
e∗>t−l2

)
= 0 for

l1 6= l2.
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Hence we can show that

1
T2

∥∥∥∥∥ T

∑
t=1

T

∑
s=1

E∗
(

f ∗t − f̂T

) (
f ∗s − f̂T

)>∥∥∥∥∥
F

≤ 1
T2

∥∥∥Σ∗e,p

∥∥∥
F

∞

∑
l=0

∥∥∥Ψ̂l,p

∥∥∥
F

T

∑
t=1

T

∑
s=1

∥∥∥Ψ̂s−t+l,p

∥∥∥
F

=OP

(
1
T

)
,

where we note that Lemmas 2.6 and 2.8 imply the summability of
∥∥∥Ψ̂l,p

∥∥∥
F
, hence

∑T
s=1

∥∥∥Ψ̂s−t+l,p

∥∥∥
F

is bounded for T → ∞. Therefore, 1
T ∑∞

l=0

∥∥∥Ψ̂l,p

∥∥∥
F

∑T
t=1 ∑T

s=1

∥∥∥Ψ̂s−t+l,p

∥∥∥
F

is bounded for T → ∞, and we can conclude that E∗
[√

Tc>
(

Q̂−Q
) (

f ∗T −E∗ f ∗T
)]2
→

0 in probability, which suffices for M2 → 0 in probability conditional on the

sample.

ForM3, we first write

E∗
[√

Tc>Q
{(

f ∗T −E∗ f ∗T
)
−
(

f b
T −E∗ f b

T

)}]2

=E∗
∥∥∥√Tc>Q

{(
f ∗T − f̂T

)
−
(

f b
T − f̃T

)}∥∥∥2

≤‖c>Q‖2 1
T

T

∑
t=1

T

∑
s=1

E∗
∥∥∥∥{( f ∗t − f̂T

)
−
(

f b
t − f̃T

)}{(
f ∗s − f̂T

)
−
(

f b
s − f̃T

)}>∥∥∥∥
F

=OP

(
1
T

T

∑
t=1

T

∑
s=1

E∗
∥∥∥∥{( f ∗t − f̂T

)
−
(

f b
t − f̃T

)}{(
f ∗s − f̂T

)
−
(

f b
s − f̃T

)}>∥∥∥∥
F

)
,

where the last line follows from the fact that ‖c>Q‖2 is bounded when N → ∞.
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To proceed, first note that

1
T

T

∑
t=1

T

∑
s=1

E∗
{(

f ∗t − f̂T

)
−
(

f b
t − f̃T

)}{(
f ∗s − f̂T

)
−
(

f b
s − f̃T

)}>
=

1
T

T

∑
t=1

T

∑
s=1

E∗
{

∞

∑
l1=0

Ψ̂l1,pe∗t−l1,p − Ψ̃l1,peb
t−l1,p

}{
∞

∑
l2=0

Ψ̂l2,pe∗s−l2,p − Ψ̃l2,peb
s−l2,p

}>

=
1
T

T

∑
t=1

T

∑
s=1

E∗
{

∞

∑
l1=0

Ψ̂l1,pe∗t−l1,p

}{
∞

∑
l2=0

Ψ̂l2,pe∗s−l2,p − Ψ̃l2,peb
s−l2,p

}>

+
1
T

T

∑
t=1

T

∑
s=1

E∗
{

∞

∑
l1=0

Ψ̃l1,peb
t−l1,p

}{
∞

∑
l2=0

Ψ̃l2,peb
s−l2,p − Ψ̂l2,pe∗s−l2,p

}>

=:
1
T

T

∑
t=1

T

∑
s=1

(H1 +H2) ,

with an obvious notation for H1 and H2. Then, we only consider H1 as H2 can

be dealt with similarly.

For H1, we can further decompose it as

H1 =
T

∑
s=1

E∗
{

∞

∑
l1=0

Ψ̂l1,pe∗t−l1,p

}{
∞

∑
l2=0

Ψ̂l2,pe∗s−l2,p − Ψ̃l2,pe∗s−l2,p

}>

+
T

∑
s=1

E∗
{

∞

∑
l1=0

Ψ̂l1,pe∗t−l1,p

}{
∞

∑
l2=0

Ψ̃l2,pe∗s−l2,p − Ψ̃l2,peb
s−l2,p

}>

=
T

∑
s=1

∞

∑
l=0

Ψ̂l,pE∗
{

e∗t−l,pe∗>t−l,p

}{
Ψ̂l+s−t,p − Ψ̃l+s−t,p

}>
+

T

∑
s=1

∞

∑
l=0

Ψ̂l,pE∗
{

e∗t−l,p(e
∗
t−l,p − eb

t−l,p)
>
}

Ψ̃>l+s−t,p

=:H11 +H12.

where the second last line follows from the bootstrap independence for l1 6= l2.
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Hence we can conclude for H11 that

1
T

T

∑
t=1

T

∑
s=1
‖H11‖F =

1
T

T

∑
t=1

T

∑
s=1

∥∥∥∥∥ ∞

∑
l=0

Ψ̂l,pΣ∗e,p

{
Ψ̂l+s−t,p − Ψ̃l+s−t,p

}>∥∥∥∥∥
F

≤
∥∥∥Σ∗e,p

∥∥∥
F

1
T

∞

∑
l=0

∥∥∥Ψ̂l,p

∥∥∥
F

T

∑
t=1

T

∑
s=1

∥∥∥Ψ̂l+s−t,p − Ψ̃l+s−t,p

∥∥∥
F

=OP

(
p

3
2

∥∥∥Âp − Ãp

∥∥∥
F

)
=oP (1) ,

where the second last line follows from the results in Lemmas 2.6 and 2.8, and

the last line follows the result in Lemma 2.8.

For H12 we can show that

1
T

T

∑
t=1

T

∑
s=1
‖H12‖F ≤

√
E∗
∥∥∥e∗t,p

∥∥∥2
√

E∗
∥∥∥e∗t,p − eb

t,p

∥∥∥2 1
T

∞

∑
l=0

∥∥∥Ψ̂l,p

∥∥∥
F

T

∑
t=1

T

∑
s=1

∥∥∥Ψ̂l+s−t,p

∥∥∥
F

=OP

(√
E∗
∥∥∥e∗t,p − eb

t,p

∥∥∥2
)

,

where the last line follows from the same arguments on summability properties in

Lemmas 2.6. Hence it remains to show E∗
∥∥∥e∗t,p − eb

t,p

∥∥∥2
→ 0 in probability. Recall

that E∗ defines expectation with respect to the measure assigning probability

1/(T − p) to each observation, this follows as

E∗
∥∥∥e∗t,p − eb

t,p

∥∥∥2
=E∗

{(
e∗t,p − eb

t,p

) (
e∗t,p − eb

t,p

)>}
=

1
T − p

T

∑
t=p+1

{
(êt,p − êT,p)− (ẽt,p − ẽT,p)

}{
(êt,p − êT,p)− (ẽt,p − ẽT,p)

}>
=

1
T − p

T

∑
t=p+1

{
(êt,p − ẽt,p)− (êT,p − ẽT,p)

}{
(êt,p − ẽt,p)− (êT,p − ẽT,p)

}>
≤ 2

T − p

T

∑
t=p+1

∥∥êt,p − ẽt,p
∥∥2

+ 2
{∥∥∥ẽT,p

∥∥∥2
+
∥∥∥êT,p

∥∥∥2
− 2

∥∥∥ẽT,p

∥∥∥ ∥∥∥êT,p

∥∥∥}

≤ 2
T − p

T

∑
t=p+1

∥∥êt,p − ẽt,p
∥∥2

+ 4
{∥∥∥ẽT,p

∥∥∥2
+
∥∥∥êT,p

∥∥∥2
}

.

© Daning Bi – 21 May 2021



54 Sieve Bootstrap

Recall that when { ft} and { f̂t} have non-zero means, ẽt,p =
(

ft − fT

)
−

∑
p
l=1 Ãl,p

(
ft−l − f T

)
and êt,p =

(
f̂t − f̂T

)
− ∑

p
l=1 Âl,p

(
f̂t−l − f̂ T

)
. Without

altering the idea of proof, to simplify the notations used, we use { ft} and { f̂t} to

denote the demeaned factors
(

ft − fT

)
and their sample counterparts

(
f̂t − f̂T

)
,

respectively. Therefore, with the same arguments in the proof of Lemma 2.9, we

have

2
T − p

T

∑
t=p+1

∥∥êt,p − ẽt,p
∥∥2

=
2

T − p

T

∑
t=p+1

∥∥∥∥∥( f̂t − ft) +
p

∑
l=1

(Ãl,p ft−l − Âl,p f̂t−l)

∥∥∥∥∥
2

≤ 4
T − p

T

∑
t=p+1

∥∥∥ f̂t − ft

∥∥∥2
+

4
T − p

T

∑
t=p+1

∥∥∥∥∥ p

∑
l=1

Ãl,p ft−l − Âl,p f̂t−l

∥∥∥∥∥
2

≤ 4
T − p

T

∑
t=p+1

∥∥∥ f̂t − ft

∥∥∥2
+ 8

p

∑
l=1

∥∥∥Âl,p

∥∥∥2

F

1
T − p

T

∑
t=p+1

∥∥∥ f̂t−l − ft−l

∥∥∥2

+8

∥∥∥∥∥ p

∑
l=1

(
Âl,p − Ãl,p

) 1
T − p

T

∑
t=p+1

ft−l

∥∥∥∥∥
2

F

=OP

(
sup

p+1≤t≤T

∥∥∥ f̂t − ft

∥∥∥2
)
+ OP

∥∥∥∥∥ p

∑
l=1

(
Âp − Ãp

)∥∥∥∥∥
2

F


=OP

((
1√
T
+

1√
N

)2
)
+ OP

(
p8
(

1√
T
+

1√
N

)2
)

=oP(1), (2.11)

where the third last line follows from the fact that
∥∥∥Âl,p

∥∥∥2

F
is summable, which is

implied by Assumption 2.3 and Lemma 2.4. The second last line is then a direct

result of Lemmas 2.4 and 2.5, and Assumption 2.4 implies the last line.

Furthermore, êT,p = 1
T−p ∑T

t=p+1 êt,p = 1
T−p ∑T

t=p+1

(
f̂t −∑

p
l=1 Âl,p f̂t−l

)
and

we can show that

∥∥∥êT,p

∥∥∥2
≤2

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

f̂t

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ p

∑
l=1

Âl,p
1

T − p

T

∑
t=p+1

f̂t−l

∥∥∥∥∥
2

= oP(1). (2.12)
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This is because, firstly

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

f̂t

∥∥∥∥∥
2

≤2

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

ft

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

(
f̂t − ft

)∥∥∥∥∥
2

=OP

(
1

T − p

)
+ OP

(
1

T − p

T

∑
t=p+1

∥∥∥ f̂t − ft

∥∥∥2
)

=OP

(
1

T − p

)
+ OP

((
1√
T
+

1√
N

)2
)

= oP(1),

where the second last line follows as we have assumed the population mean of

{ ft} is 0 for technical convenience. Moreover,∥∥∥∥∥ p

∑
l=1

Âl,p
1

T − p

T

∑
t=p+1

f̂t−l

∥∥∥∥∥ ≤ p

∑
l=1

∥∥∥Âl,p

∥∥∥
F

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

f̂t−l

∥∥∥∥∥
=OP (1)×OP

(
1√

T − p
+

1√
T
+

1√
N

)
= oP(1),

where the second last line follows from the summability conditions in Lemma

2.6, the order of
∥∥∥ f̂t − ft

∥∥∥ in Lemma 2.4 and the fact that the mean of { f̂t} is

assumed to be 0 for technical convenience.

Lastly, we can show that
∥∥∥ẽT

∥∥∥2
→ 0 in probability with the same tech-

nique as stated above for
∥∥∥êT

∥∥∥. Hence with (2.11) and (2.12), we can con-

clude that 1
T ∑T

t=1 ∑T
s=1 ‖H12‖F → 0 in probability. Together with the result that

1
T ∑T

t=1 ∑T
s=1 ‖H11‖F → 0 in probability, we have 1

T ∑T
t=1 ∑T

s=1 ‖H1‖F → 0 in prob-

ability. Therefore, it suffices to conclude thatM3 → 0 in probability conditional

on the sample.

Consequently, by utilizing Slutsky’s theorem conditional on the sample, we

can conclude that

dK

(
L∗
(√

Tc>Q̂
(

f ∗T −E∗ f ∗T
))

,L
(√

Tc>Q
(

fT −E fT

))) p→ 0,

Proof of Theorem 2.2. Without loss of generality, we again assume { ft} are the
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demeaned factors (or the mean of factors are all 0) in this proof to simplify the

notations.

Firstly, notice that f ∗t = ∑
p
l=1 Âl,p f ∗t−l + e∗t = ∑∞

l=1 Ψ̂l,pe∗t−l + e∗t = ∑∞
l=0 Ψ̂l,pe∗t−l .

We can then represent Γ∗f (k) as

Γ∗f (k) = Cov∗( f ∗t , f ∗t+k)

= Cov∗
(

∞

∑
l1=0

Ψ̂l1,pe∗t−l1 ,
∞

∑
l2=0

Ψ̂l2,pe∗t+k−l2

)

=
∞

∑
l1=0

∞

∑
l2=0

Ψ̂l1,pCov∗(e∗t−l1 , e∗t+k−l2)Ψ̂
>
l2,p

=
∞

∑
l1=0

Ψ̂l1,pCov∗(e∗t−l1 , e∗t−l1)Ψ̂
>
l1+k,p

=
∞

∑
l=0

Ψ̂l,pΣ̂e,pΨ̂>l+k,p,

where we stress the fact that Cov∗(e∗t−l1
, e∗t−l2

) = 0 for l1 6= l2 and Cov∗(e∗t−l1
, e∗t−l1

) =

E∗(e∗t e∗>t ) = Σ̂e,p for all l1 ∈ Z, since e∗t is uniformly distributed on the set of

centered residuals (êt,p − êT). Similarly,

Γ f (k) = Cov ( ft, ft+k)

= Cov

(
∞

∑
l1=0

Ψl1et−l1 ,
∞

∑
l2=0

Ψl2et+k−l2

)

=
∞

∑
l1=0

∞

∑
l2=0

Ψl1Cov
(
et−l1 , et+k−l2

)
Ψ>l2

=
∞

∑
l1=0

Ψl1Cov
(
et−l1 , et−l1

)
Ψ>l1+k

=
∞

∑
l=0

ΨlΣeΨ
>
l+k,

where we write Σe = Cov(et, et) and use the fact that ft = ∑∞
l=1 Al ft−l + et =

∑∞
l=1 Ψlet−l + et = ∑∞

l=0 Ψlet−l.

To see the assertion in this theorem, we first of all define an intermediate

term Γ f ,p(k) := ∑∞
l=0 Ψl,pΣe,pΨ>l+k,p, where {Ψl,p, l ∈ N} are the power series

coefficients matrices of
(

Ir −∑
p
l=1 Al,pzl)−1

for |z| ≤ 1, and Σe,p = Cov(et,p, et,p)
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where et,p = ft−∑
p
l=1 Al,p ft−l with {Al,p, l ∈ N} the finite predictor coefficients

matrices of {Al, l ∈ N}. Hence by triangular inequality, we have

∥∥∥Γ∗f (k)− Γ f (k)
∥∥∥

2
≤
∥∥∥Γ∗f (k)− Γ f ,p(k)

∥∥∥
2
+
∥∥Γ f ,p(k)− Γ f (k)

∥∥
2 .

It is then sufficient to show both terms on the right side converge to 0 in

probability. For
∥∥∥Γ∗f (k)− Γ f ,p(k)

∥∥∥
2
, we have

∥∥∥Γ∗f (k)− Γ f ,p(k)
∥∥∥

2
=

∥∥∥∥∥ ∞

∑
l=0

Ψ̂l,pΣ̂e,pΨ̂>l+k,p −
∞

∑
l=0

Ψl,pΣe,pΨ>l+k,p

∥∥∥∥∥
2

=

∥∥∥∥∥ ∞

∑
l=0

[(
Ψ̂l,p −Ψl,p

)
Σ̂e,pΨ̂>l+k,p + Ψl,p

(
Σ̂e,p − Σe,p

)
Ψ̂>l+k,p

+ Ψl,pΣe,p

(
Ψ̂l+k,p −Ψl+k,p

)>]∥∥∥∥
2

= OP

(
∞

∑
l=1

∥∥∥Ψ̂l,p −Ψl,p

∥∥∥
F

)
+ OP

(∥∥∥Σ̂e,p − Σe,p

∥∥∥
F

)
,

where the second last line follows from the norm summable conditions on Ψ̂l,p

and Ψl,p. Hence we can use the results of Lemma 2.8 and 2.9 to conclude that∥∥∥Γ∗f (k)− Γ f ,p(k)
∥∥∥

2
→ 0 in probability. Similarly, we have

∥∥Γ f ,p(k)− Γ f (k)
∥∥

2 =

∥∥∥∥∥ ∞

∑
l=0

Ψl,pΣe,pΨ>l+k,p −
∞

∑
l=0

ΨlΣeΨ
>
l+k

∥∥∥∥∥
2

=

∥∥∥∥∥ ∞

∑
l=0

[(
Ψl,p −Ψl

)
Σe,pΨ>l+k,p + Ψl

(
Σe,p − Σe

)
Ψ>l+k,p

+ ΨlΣe
(
Ψl+k,p −Ψl+k

)>]∥∥∥
2

= OP

(
∞

∑
l=1

∥∥Ψl,p −Ψl
∥∥

F

)
+ OP

(∥∥Σe,p − Σe
∥∥

F

)
,

since Ψl,p and Ψl are norm summable. Hence
∥∥Γ f ,p(k)− Γ f (k)

∥∥
2 → 0 in probabil-

ity by Lemmas 2.8 and 2.9. Therefore we can conclude that
∥∥∥Γ∗f (k)− Γ f (k)

∥∥∥
2
→ 0

in probability.

© Daning Bi – 21 May 2021



58 Sieve Bootstrap

Proof of Proposition 2.1. To see the assertions, we first note that,

∥∥∥Γ∗y(k)− Γy(k)
∥∥∥

2
=
∥∥∥Q̂Γ∗f (k)Q̂

T −QΓ f (k)QT
∥∥∥

2

≤
∥∥∥(Q̂−Q

)
Γ∗f (k)Q̂

T
∥∥∥

2
+
∥∥∥Q

(
Γ∗f (k)− Γ f (k)

)
Q̂T
∥∥∥

2

+

∥∥∥∥QΓ f (k)
(

Q̂−Q
)T
∥∥∥∥

2

= OP

(
N1/2

∥∥∥Q̂−Q
∥∥∥

2

)
+ OP

(
N
∥∥∥Γ∗f (k)− Γ f (k)

∥∥∥
2

)
= oP(1),

where the last line follows from Assumption 2.1, Lemma 2.2 and Theorem 2.2.

To see (2.10), we can apply Weyl’s Eigenvalue Theorem (Fan et al., 2013b), that is

|δ∗i (k)− δi(k)| ≤
1

N2

∥∥∥Γ∗y(k)Γ
∗
y(k)

> − Γy(k)Γy(k)>
∥∥∥

2
.

Furthermore,

1
N2

∥∥∥Γ∗y(k)Γ
∗
y(k)

> − Γy(k)Γy(k)>
∥∥∥

2
=

1
N2

∥∥∥∥[Γ∗y(k)− Γy(k)
]

Γ∗y(k)
> + Γy(k)

[
Γ∗y(k)− Γy(k)

]>∥∥∥∥
2

≤ 1
N2

∥∥∥[Γ∗y(k)− Γy(k)
]

Γ∗y(k)
>
∥∥∥

2

+
1

N2

∥∥∥∥Γy(k)
[
Γ∗y(k)− Γy(k)

]>∥∥∥∥
2

.

It is then sufficient to consider one of the two terms on the right side since the

other one can be dealt with similarly. To study 1
N2

∥∥∥[Γ∗y(k)− Γy(k)
]

Γ∗y(k)>
∥∥∥

2
, we

first notice that from Assumption 2.1, Lemma 2.2 and Theorem 2.2,
∥∥∥Γ∗y(k)

∥∥∥
2
=∥∥∥Q̂Γ∗f (k)Q̂

T
∥∥∥

2
� N. Therefore, we have

1
N2

∥∥∥[Γ∗y(k)− Γy(k)
]

Γ∗y(k)
>
∥∥∥

2
= OP

(
1
N

∥∥∥Γ∗y(k)− Γy(k)
∥∥∥

2

)
= OP

(
N−1/2

∥∥∥Q̂−Q
∥∥∥

2

)
+ OP

(∥∥∥Γ∗f (k)− Γ f (k)
∥∥∥

2

)
,

where both terms on the right side converge to 0 in probability as shown in

Lemma 2.3 and Theorem 2.2.
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2.B Appendix B: Auxiliary lemmas and proofs

In this section, we present some auxiliary results that facilitate the proofs of

theorems in this chapter. Those auxiliary results are divided into two subsections

according to the related topics. In the first subsection, we present some results

for factor models’ estimates, and in the second subsection, the results for sieve

bootstrap of factor models are summarised.

2.B.1 Auxiliary results for estimates of factor models

Lemma 2.2. Denoted by ‖V‖min the positive square root of the minimum eigenvalue of

VV> or V>V, under Assumption 2.1, we have

∥∥Γ f (k)
∥∥

2 � 1 �
∥∥Γ f (k)

∥∥
min , (2.13)

and ∥∥∥Γ̃ f (k)− Γ f (k)
∥∥∥

2
= OP

(
T−1/2

)
. (2.14)

Lemma 2.2 is a modification of the results in Lemma 1 and 2 of Lam et al.

(2011) for the strong factors’ case, since we have assumed Q>Q = NIr but not

Q>Q = Ir as in Lam et al. (2011). Therefore, the proof of Lemma 2.2 is similar

to the proofs of Lemma 1 and 2 in Lam et al. (2011), hence omitted.

Lemma 2.3. Under Assumption 2.1,

∥∥∥Q̂−Q
∥∥∥

2
= OP

(
N1/2T−1/2

)
,

and

N−1/2
∥∥∥Q̂ f̂t −Q ft

∥∥∥
2
= OP

(
T−1/2 + N−1/2

)
.

Although compared with the model introduced in Lam et al. (2011), we scale

the columns in Q by
√

N in our factor models’ setting, the above convergence

rate is the same as that of strong factors’ case in Theorem 3 of Lam et al. (2011).

Besides, the proof of Lemma 2.3 is the case for strong factors in the proof of
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Theorem 3 in Lam et al. (2011) with the only difference on scaled factor loading

matrix Q and factors f . Therefore, the proof is omitted here.

Lemma 2.4. Define Γ̂ f (k) = 1
T−k ∑T−k

t=1 f̂t f̂t+k and Γ̃ f (k) = 1
T−k ∑T−k

t=1 ft ft+k, for some

k ≤ p, where p fulfils Assumption 2.4. It then holds that

∥∥∥Γ̂ f (k)− Γ̃ f (k)
∥∥∥

2
= OP

(
N−1/2 + T−1/2

)
.

Lemma 2.4 illustrates the convergence rate on autocovariance matrices of esti-

mated factors under strong factors’ case, which is an extension to the convergence

rate of estimated factors obtained in Theorem 3 in Lam et al. (2011).

Proof of Lemma 2.4. First of all, we notice that

Γ̂ f (k)− Γ̃ f (k) =
1

T − k

T−k

∑
t=1

(
f̂t f̂t+k − ft ft+k

)
=

1
T − k

T−k

∑
t=1

[(
f̂t − ft

)
f̂t+k + ft

(
f̂t+k − ft+k

)]
.

Hence,

∥∥∥Γ̂ f (k)− Γ̃ f (k)
∥∥∥

2
≤
∥∥∥∥∥ 1

T − k

T−k

∑
t=1

(
f̂t − ft

)
f̂t+k

∥∥∥∥∥
2

+

∥∥∥∥∥ 1
T − k

T−k

∑
t=1

ft

(
f̂t+k − ft+k

)∥∥∥∥∥
2

≤ 1
T − k

T−k

∑
t=1

∥∥∥( f̂t − ft

)
f̂t+k

∥∥∥
2
+

1
T − k

T−k

∑
t=1

∥∥∥ ft

(
f̂t+k − ft+k

)∥∥∥
2

.

And it is sufficient to consider only one of the two terms on the right-hand

side above since the other one can be dealt with in precisely the same way. For

the first term on the right-hand side above, notice that under the factor model
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defined in (2.3), we have

f̂t − ft =
1
N

Q̂>yt − ft

=
1
N

(
Q̂−Q

)>
yt +

1
N

Q>yt − ft

=
1
N

(
Q̂−Q

)>
yt +

1
N

Q>yt −
1
N

Q>Q ft

=
1
N

(
Q̂−Q

)>
yt +

1
N

Q>ut.

Hence

∥∥∥ f̂t − ft

∥∥∥
2
≤
∥∥∥∥ 1

N

(
Q̂−Q

)>
yt

∥∥∥∥
2
+

∥∥∥∥ 1
N

Q>ut

∥∥∥∥
2

,

by triangular inequality. To study
∥∥∥ 1

N Q>ut

∥∥∥
2

, first consider the random vari-

ables 1√
N

q>i ut for each 1√
N

qi in 1√
N

Q =
(

1√
N

q1, 1√
N

q2, ..., 1√
N

qr

)
, where 1√

N
qi

for i = 1, 2, ..., r are unscaled eigenvectors estimated from L̂. Observe that

E
(

1√
N

q>i ut

)
= 0 and V

(
1√
N

q>i ut

)
= 1

N q>i Σuqi ≤ λmax (Σu) < ∞, since∥∥∥ 1√
N

qi

∥∥∥
2
= 1 and λmax (Σu) is the largest eigenvalue of Σu. Consequently,

1√
N

q>i ut = OP (1) and
∥∥∥ 1

N Q>ut

∥∥∥
2
=

√
1
N ∑r

i=1

(
1√
N

q>i ut

)2
= OP

(
N−1/2), as

the eigenvalues of Σu are assumed to be bounded when N → ∞ under Assump-

tion 2.1.

Recall that
∥∥∥Q̂−Q

∥∥∥
2
= OP

(
N1/2T−1/2) by Lemma 2.3, we then have

∥∥∥∥ 1
N

(
Q̂−Q

)>
yt

∥∥∥∥
2
≤

1
N

∥∥∥∥(Q̂−Q
)>∥∥∥∥

2
‖yt‖2 = OP

(
T−1/2), and

∥∥∥ f̂t − ft

∥∥∥
2
≤
∥∥∥∥ 1

N

(
Q̂−Q

)>
yt

∥∥∥∥
2
+

∥∥∥∥ 1
N

Q>ut

∥∥∥∥
2

= OP

(
N−1/2 + T−1/2

)
,
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uniformly for t. Finally, we can conclude that

∥∥∥Γ̂ f (k)− Γ̃ f (k)
∥∥∥

2
≤ 1

T − k

T−k

∑
t=1

∥∥∥( f̂t − ft

)
f̂t+k

∥∥∥
2
+

1
T − k

T−k

∑
t=1

∥∥∥ ft

(
f̂t+k − ft+k

)∥∥∥
2

= OP

(
N−1/2 + T−1/2

)
.

2.B.2 Auxiliary results for sieve bootstrap of factor models

Lemma 2.5. Let Ãp =
(

Ã1,p, Ã2,p, ..., Ãp,p

)
be the matrix of the Yule-Walker estima-

tors of the finite predictor coefficients on true factors { ft}, and Âp =
(

Â1,p, Â2,p, ..., Âp,p

)
be the matrix of the Yule-Walker estimators of the finite predictor coefficients on estimated

factors { f̂t}, then

∥∥∥Âp − Ãp

∥∥∥
F
= OP

(
p4
(

N−1/2 + T−1/2
))

.

Proof of Lemma 2.5. Recall that the Yule-Walker estimators are solved from the

Yule-Walker equations on the finite predictors’ coefficients matrices as follows,

Ap =
(

A1,p, A2,p, ..., Ap,p
)
= Π1Π−1

0,p,

where Π1 =
(
Γ f (1), Γ f (2), ..., Γ f (p)

)
is an r× (rp) block matrix of autocovariance

matrices and

Π0,p =


Γ f (0) Γ f (1) · · · Γ f (p− 1)

Γ f (−1) Γ f (0) · · · Γ f (p− 2)
...

... . . . ...

Γ f (−p + 1) Γ f (−p + 2) · · · Γ f (0)

 ,

is then an (rp)× (rp) block matrix of autocovariance matrices (Brockwell and

Davis, 1991). Write Âp =
(

Â1,p, Â2,p, ..., Âp,p

)
= Π̂1Π̂−1

0,p with Π̂1 and Π̂0,p the

same matrices as Π1 and Π0,p but defined based on Γ̂ f rather than Γ f . Similarly,
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Ãp =
(

Ã1,p, Ã2,p, ..., Ãp,p

)
= Π̃1Π̃−1

0,p with Π̃1 and Π̃0,p defined based on Γ̃ f

rather than Γ f . Recall that Γ̂ f and Γ̃ f are sample lag-k autocovariance matrices

defined in Lemma 2.4, then we have

∥∥∥Âp − Ãp

∥∥∥
F
≤
∥∥∥Π̂−1

0,p − Π̃−1
0,p

∥∥∥
F

∥∥∥Π̂1

∥∥∥
F
+
∥∥∥Π̃−1

0,p

∥∥∥
F

∥∥∥Π̂1 − Π̃1

∥∥∥
F

. (2.15)

To find
∥∥∥Π̃−1

0,p

∥∥∥
F
, we first compute

∥∥∥Π−1
0,p

∥∥∥
F
. Recall the recursive derivation based

on the partitioned inverse formula for Π−1
0,p+1 as in Sowell (1989),

Π−1
0,p+1 =

Π−1
0,p + Jp Apv−1

p A>p Jp −Jp Apv−1
p

−v−1
p A>p Jp v−1

p


=

Π−1
0,p 0

0 0

+

0 −Jp Apv−1/2
p

0 v−1/2
p

 0 0

−v−1/2
p A>p Jp v−1/2

p

 , (2.16)

where Jp = Jp ⊗ Ir with Jp the p × p matrix with ones on the anti-diagonal

and Ir the r× r identity matrix, v = E
(

ft −∑
p
l=1 Al,p ft+l

) (
ft −∑

p
l=1 Al,p ft+l

)>
and Ap =

(
A>1,p, A>2,p, ..., A>p,p

)
the coefficient matrices minimizing the forward

prediction variance E
(

ft −∑
p
l=1 Fl,p ft+l

) (
ft −∑

p
l=1 Fl,p ft+l

)>
. Denoted by Sp

the second term on the right-hand side of (2.16), we can then get the recursive

expression of Π−1
0,p as

Π−1
0,p =

Γ f (0)−1 0

0 0

+
p−1

∑
l=1
Sl.

For Sl, note that

‖Sl‖F ≤
∥∥∥v−1/2

l

∥∥∥2

F

(
1 +

∥∥Jl Al
∥∥

F

)2

≤
∥∥∥v−1/2

l

∥∥∥2

F

(
1 +

l

∑
j=1

∥∥Aj,l
∥∥

F

)2

= O (1) ,

uniformly for l = 1, 2, ..., p, where we use the definition of vl and Lemma 2.6.
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Hence
∥∥∥∑

p−1
l=1 Sl

∥∥∥
F
≤ ∑

p−1
l=1 ‖Sl‖F = O (p). Besides,

∥∥Γ f (0)−1
∥∥

F =
√

∑r
i=1 λ−2

i ≤√
rλ−1

min = O (1), where λi is the i-th eigenvalue of Γ f (0), λmin is the smallest

eigenvalue of Γ f (0) and we use Assumption 2.2 that Γ f (0) is full rank. Thus, we

have shown
∥∥∥Π−1

0,p

∥∥∥
F
= O (p) .

To find ‖Π̂−1
0,p − Π̃−1

0,p‖F, note that for invertible matrices Π̂0,p and Π̃0,p,

∥∥∥Π̂−1
0,p − Π̃−1

0,p

∥∥∥
F
=
∥∥∥Π̂−1

0,p(Π̃0,p − Π̂0,p)Π̃
−1
0,p

∥∥∥
F

=
∥∥∥(Π̂−1

0,p − Π̃−1
0,p)(Π̃0,p − Π̂0,p)Π̃

−1
0,p + Π̃−1

0,p(Π̃0,p − Π̂0,p)Π̃
−1
0,p

∥∥∥
F

≤
∥∥∥Π̂−1

0,p − Π̃−1
0,p

∥∥∥
F

∥∥∥Π̃0,p − Π̂0,p

∥∥∥
F

∥∥∥Π̃−1
0,p

∥∥∥
F
+
∥∥∥Π̃0,p − Π̂0,p

∥∥∥
F

∥∥∥Π̃−1
0,p

∥∥∥2

F
.

And for large enough N and T such as
∥∥∥Γ̂ f (k)− Γ̃ f (k)

∥∥∥
2
→ 0 and

∥∥∥Π̃0,p − Π̂0,p

∥∥∥
F
→

0 in probability, we can write

∥∥∥Π̂−1
0,p − Π̃−1

0,p

∥∥∥
F
≤

∥∥∥Π̃−1
0,p

∥∥∥2

F

∥∥∥Π̃0,p − Π̂0,p

∥∥∥
F

1−
∥∥∥Π̃−1

0,p

∥∥∥
F

∥∥∥Π̃0,p − Π̂0,p

∥∥∥
F

≤

∥∥∥Π−1
0,p

∥∥∥2

F

∥∥∥Π̃0,p − Π̂0,p

∥∥∥
F

1−
∥∥∥Π̃−1

0,p

∥∥∥
F

∥∥∥Π̃0,p − Π̂0,p

∥∥∥
F

+

∥∥∥Π̃−1
0,p −Π−1

0,p

∥∥∥2

F

∥∥∥Π̃0,p − Π̂0,p

∥∥∥
F

1−
∥∥∥Π̃−1

0,p

∥∥∥
F

∥∥∥Π̃0,p − Π̂0,p

∥∥∥
F

= OP

(∥∥∥Π−1
0,p

∥∥∥2

F

∥∥∥Π̃0,p − Π̂0,p

∥∥∥
F

)
,

where the last line follows since when N, T → ∞, ‖Π̃0,p − Π̂0,p‖F → 0 in

probability and the first term in the second last line is the leading term. In

addition, we have

∥∥∥Π̃0,p − Π̂0,p

∥∥∥
F
≤

p

∑
l=1

p

∑
j=1

∥∥∥Γ̂ f (l − j)− Γ̃ f (l − j)
∥∥∥

F

≤ p2 max
|k|≤p−1

∥∥∥Γ̂ f (k)− Γ̃ f (k)
∥∥∥

F

= OP

(
p5/2

(
N−1/2 + T−1/2

))
, (2.17)

where for r× r matrices Γ̂ f (k) and Γ̃ f (k),
∥∥∥Γ̂ f (k)− Γ̃ f (k)

∥∥∥
F
�
∥∥∥Γ̂ f (k)− Γ̃ f (k)

∥∥∥
2
=

OP
(

N−1/2 + T−1/2) as shown in Lemma 2.4. Therefore, with (2.17) we can con-
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clude that

∥∥∥Π̂−1
0,p − Π̃−1

0,p

∥∥∥
F
= OP

(∥∥∥Π−1
0,p

∥∥∥2

F

∥∥∥Π̃0,p − Π̂0,p

∥∥∥
F

)
= OP

(
p4
(

N−1/2 + T−1/2
))

. (2.18)

Lastly,

∥∥∥Π̂1

∥∥∥
F
≤

p

∑
k=1

∥∥∥Γ̂ f (k)
∥∥∥

F

≤
p

∑
k=1

∥∥Γ f (k)
∥∥

F +
p

∑
k=1

∥∥∥Γ̂ f (k)− Γ f (k)
∥∥∥

F

= O (1) + OP

(
p
(

N−1/2 + T−1/2
))

, (2.19)

where the first term follows from the summability condition in Assumption 2.2.

Moreover,

∥∥∥Π̂1 − Π̃1

∥∥∥
F
≤

p

∑
k=1

∥∥∥Γ̂ f (k)− Γ̃ f (k)
∥∥∥

F

= OP

(
p
(

N−1/2 + T−1/2
))

.

Hence we can conclude that the first term in (2.15) is the leading term, and

∥∥∥Âp − Ãp

∥∥∥
F
= OP

(
p4
(

N−1/2 + T−1/2
))

,

by (2.18) and (2.19).

Lemma 2.6. Let { ft} be factor processes fulfilling Assumptions 2.1 and 2.2 for some

γ ≥ 0. Write
{

Al,p, l = 1, 2, ..., p
}

and
{

Ψl,p, l = 1, 2, ..., p
}

as the finite predictor coef-

ficients matrices of the AR coefficients {Al, l ∈N} and the MA coefficients {Ψl, l ∈N}
as in (2.3) and (2.4), respectively.

(i) Norm summability: the coefficients matrices Al and Ψl fulfil the following summa-

bility properties: ∑∞
l=1(1 + l)γ ‖Al‖F < ∞ and ∑∞

l=1(1 + l)γ ‖Ψl‖F < ∞.

(ii) (Lemma 3.1 of Meyer and Kreiss (2015)) For some γ ≥ 0 as in Assumption 2.2,
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there exist p0 ∈N and d < ∞ such that

p

∑
l=1

(1 + l)γ
∥∥Al,p − Al

∥∥
F ≤ d

∞

∑
l=p+1

(1 + l)γ ‖Al‖F , for p ≥ p0,

and the right side converges to 0 when p→ ∞.

(iii) (Lemma 3.2 of Meyer and Kreiss (2015)) Let Ap(z) := Ir − ∑
p
l=1 Al,pzl, then

there exist p1 ∈N and c < ∞ such that

inf
|z|≤1+1/p

∣∣det
(

Ap(z)
)∣∣ ≥ c, for p ≥ p1.

(iv) (Lemma 3.3 of Meyer and Kreiss (2015)) Let {Ψl,p, l ∈ N} be the power series

coefficients matrices of
(

Ir −∑
p
l=1 Al,pzl)−1

, for |z| ≤ 1. For p1 as defined in

(iii) and some γ ≥ 0 in Assumption 2.2, there exist p2 ≥ p1 and d < ∞ such that

∞

∑
l=1

(1 + l)γ
∥∥Ψl,p −Ψl

∥∥
F ≤ d

∞

∑
l=p+1

(1 + l)γ ‖Al‖F , for p ≥ p2,

and the right side converges to 0 when p→ ∞.

Lemma 2.6 (ii) is the vector form of Baxter’s inequality on the AR coeffi-

cients matrices {Al} and its finite predictor coefficients matrices {Al,p}, whereas

Lemma 2.6 (iv) relates Baxter’s inequality of AR coefficients to the MA coeffi-

cients matrices {Ψl} and its finite predictor coefficients matrices {Ψl,p}. The

proofs of Lemma 2.6 can be found in Meyer and Kreiss (2015), hence it is omitted

here.

Lemma 2.7. (Lemma 3.5 of Meyer and Kreiss (2015)) Let { ft} be factor processes defined

under the assumptions of Lemma 2.6 and also fulfil Assumption 2.3. Define Ψl,p as the co-

efficients matrices in the power series of
(

Ir −∑
p
l=1 Al,pzl)−1

, for |z| ≤ 1 with Ψ0,q :=

Ir and Ψ̃l,p as the power series coefficients matrices of
(

Ir −∑
p
l=1 Ãl,pzl

)−1
, for |z| ≤ 1

with Ψ̃0,q := Ir. Then, there exists p3 ∈N such that it holds uniformly in l ∈N and
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for all p ≥ p3,

∥∥∥Ψ̃l,p −Ψl,p

∥∥∥
F
≤
(

1 +
1
p

)−l 1
p2 OP (1) .

The proof of Lemma 2.7 can be found in Meyer and Kreiss (2015).

Lemma 2.8. Let { ft} be factor processes fulfilling Assumptions 2.1, 2.2 (γ = 1), 2.3 and

2.4. Define {Ψl,p} as the coefficients matrices in the power series of
(

Ir −∑
p
l=1 Al,pzl)−1

,

for |z| ≤ 1 with Ψ0,q := Ir. Similarly, define {Ψ̃l,p} as the power series coefficients

matrices of
(

Ir −∑
p
l=1 Ãl,pzl

)−1
, for |z| ≤ 1 with Ψ̃0,q := Ir, and {Ψ̂l,p} as the power

series coefficients matrices of
(

Ir −∑
p
l=1 Âl,pzl

)−1
, for |z| ≤ 1 with Ψ̂0,q := Ir. Then,

there exists p3 ∈N such that for all p ≥ p3 as in Lemma 2.7,

∞

∑
l=1

∥∥∥Ψ̃l,p −Ψl,p

∥∥∥
F
= OP

(
1
p

)
= oP(1),

∞

∑
l=1

∥∥Ψl,p −Ψl
∥∥

F = o (1) ,

∞

∑
l=1

∥∥∥Ψ̂l,p − Ψ̃l,p

∥∥∥
F
= OP

(
p3/2

∥∥∥Âp − Ãp

∥∥∥
F

)
= oP(1),

∞

∑
l=1

∥∥∥Ψ̂l,p −Ψl,p

∥∥∥
F
= oP(1),

when N → ∞ and T → ∞.

Proof of Lemma 2.8. For large enough N, T and p > p3 as in Lemma 2.7, ∑∞
l=1

∥∥∥Ψ̃l,p −Ψl,p

∥∥∥
F

follows directly from Lemma 2.7 as

∞

∑
l=1

∥∥∥Ψ̃l,p −Ψl,p

∥∥∥
F
≤ 1

p2

∞

∑
l=1

(
1 +

1
p

)−l
OP (1)

≤ 1
p2

p
1 + p

(1 + p)OP (1)

= OP

(
1
p

)
.
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The order of ∑∞
l=1
∥∥Ψl,p −Ψl

∥∥
F follows directly from Lemma 2.6 (i) and (iv), as

∞

∑
l=1

∥∥Ψl,p −Ψl
∥∥

F ≤
∞

∑
l=1

(1 + l)γ
∥∥Ψl,p −Ψl

∥∥
F

≤ d
∞

∑
l=p+1

(1 + l)γ ‖Al‖F

= o (1) .

To show ∑∞
l=1

∥∥∥Ψ̂l,p − Ψ̃l,p

∥∥∥
F
= oP (1) , first notice that

∞

∑
l=1

∥∥∥Ψ̂l,p − Ψ̃l,p

∥∥∥
F
≤

∞

∑
l=1

r

∑
u=1

r

∑
v=1

∣∣∣Ψ̂(u,v)
l,p − Ψ̃(u,v)

l,p

∣∣∣ ,

where Ψ̂(u,v)
l,p and Ψ̃(u,v)

l,p are the (u, v)-th elements of the matrices Ψ̂l,p and Ψ̃l,p,

respectively. We then apply Cauchy’s inequality for holomorphic functions on

the (u, v)-th element of Ψ̃l,p and Ψl,p, that is

∣∣∣Ψ̂(u,v)
l,p − Ψ̃(u,v)

l,p

∣∣∣ ≤ (1 +
1
p

)−l
max
|z|=1+ 1

p

∥∥∥Â−1
p (z)− Ã−1

p (z)
∥∥∥

F

≤
(

1 +
1
p

)−l
[

max
|z|=1+ 1

p

1
|det(Âp(z))|

∥∥∥Âadj
p (z)− Ãadj

p (z)
∥∥∥

F

+ max
|z|=1+ 1

p

∣∣∣∣∣ 1
det(Âp(z))

− 1
det(Ãp(z))

∣∣∣∣∣ ∥∥∥Ãadj
p (z)

∥∥∥
F

]

=:
(

1 +
1
p

)−l
[

max
|z|=1+ 1

p

K1,z + max
|z|=1+ 1

p

K2,z

]
,

where we use Aadj to denote the adjugate matrix of A, and write the two terms

above as K1,z and K2,z.

To study K1,z, with Assumption 2.3, Lemmas 2.3 and 2.5, we show that with

sufficiently large N and T, we can choose p > p3 such that
∥∥∥Âp − Ãp

∥∥∥
F
= oP(1)

and sup|z|≤1+ 1
p

∥∥∥Âp(z)− Ãp(z)
∥∥∥

F
= oP(1).

Furthermore, since determinants are continuous functions of the elements, it
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can be extended to sup|z|≤1+ 1
p

∣∣∣det Âp(z)− det Ãp(z)
∣∣∣→ 0 in probability, with

∣∣∣det
(

Ãp(z)
)∣∣∣ ≥ c and

∣∣∣det
(

Âp(z)
)∣∣∣ ≥ c in probability, for |z| ≤ 1 +

1
p

,

and for some c > 0 as in Lemma 2.6. Then, for p > p3 and any |z| = 1 + 1/p we

can show that

K1,z ≤
1
c

∥∥∥Âadj
p (z)− Ãadj

p (z)
∥∥∥

F

≤ 1
c

r

∑
u=1

r

∑
v=1

∣∣∣Âadj
p (z)(u,v) − Ãadj

p (z)(u,v)
∣∣∣

≤ 1
c

r

∑
u=1

r

∑
v=1

sup
|z|≤1+ 1

p

∣∣∣det Â(−v,−u)
p (z)− det Ã(−v,−u)

p (z)
∣∣∣

≤ 1
c

r

∑
u=1

r

∑
v=1

sup
|z|≤1+ 1

p

r
∥∥∥Âp(z)− Ãp(z)

∥∥∥
F

OP (1)

≤ sup
|z|≤1+ 1

p

∥∥∥Âp(z)− Ãp(z)
∥∥∥

F
,

where Ã(−v,−u)
p (z) is a matrix generated by removing the v-th row and the u-th

column of Ãp(z).

And for sup|z|≤1+ 1
p

∥∥∥Âp(z)− Ãp(z)
∥∥∥

F
, we have

sup
|z|≤1+ 1

p

∥∥∥Âp(z)− Ãp(z)
∥∥∥

F
≤ sup
|z|≤1+ 1

p

p

∑
l=1

∥∥∥Âl,p − Ãl,p

∥∥∥
F
|Z|l

≤
(

1 +
1
p

)p p

∑
l=1

∥∥∥Âl,p − Ãl,p

∥∥∥
F

= OP

(√
p
∥∥∥Âp − Ãp

∥∥∥
F

)
.

Hence we can conclude that for K1,z,

max
|z|=1+ 1

p

K1,z = OP

(√
p
∥∥∥Âp − Ãp

∥∥∥
F

)
,

since the bound does not depend on z.
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For K2,z, note that max|z|=1+ 1
p

∥∥Ap(z)
∥∥

F ≤ (1 + 1/p)p ∑
p
l=1

∥∥Al,p
∥∥

F = OP (1)

by Lemma 2.6, therefore, max|z|=1+ 1
p

∥∥∥Ãp(z)
∥∥∥

F
= OP (1) by Assumption 2.3.

Similarly, for some constants c,

max
|z|=1+ 1

p

K2,z ≤
1
c2 max
|z|=1+ 1

p

∣∣∣det Âp(z)− det Ãp(z)
∣∣∣ ∥∥∥Ãadj

p (z)
∥∥∥

F

= OP

(√
p
∥∥∥Âp − Ãp

∥∥∥
F

)
.

As a result,

∞

∑
l=1

∥∥∥Ψ̂l,p − Ψ̃l,p

∥∥∥
F
≤

∞

∑
l=1

r

∑
u=1

r

∑
v=1
|Ψ̂(u,v)

l,p − Ψ̃(u,v)
l,p |

= OP

(
p3/2

∥∥∥Âp − Ãp

∥∥∥
F

)
.

Then, we can conclude that

∞

∑
l=1

∥∥∥Ψ̂l,p −Ψl,p

∥∥∥
F
≤

∞

∑
l=1

∥∥∥Ψ̃l,p −Ψl,p

∥∥∥
F
+

∞

∑
l=1

∥∥∥Ψ̂l,p − Ψ̃l,p

∥∥∥
F

= OP

(
1
p

)
+ OP

(
p3/2

∥∥∥Âp − Ãp

∥∥∥
F

)
.

Lemma 2.9. Let { ft} be factor processes defined under the assumptions of Lemma 2.8.

Write et = ft −∑∞
l=1 Al ft−l , et,p = ft −∑

p
l=1 Al,p ft−l, ẽt,p = ft −∑

p
l=1 Ãl,p ft−l and

êt,p = f̂t − ∑
p
l=1 Âl,p f̂t−l. Furthermore, define the corresponding covariance Σ̃e,p =

E∗(ẽt,p − ẽT,p)(ẽt,p − ẽT,p)
> with ẽT,p = 1

T−p ∑T
t=p+1 ẽt,p, and Σ̂e,p = E∗(êt,p −

êT,p)(êt,p − êT,p)
> with êT,p = 1

T−p ∑T
t=p+1 êt,p, where E∗ is the expectation defined

on the measure of assigning probability 1
T−p to each observation.

If we additionally assume that the empirical distribution of {et} converges weakly to

the distribution function of L(et), then, there exists p3 ∈N such that for all p ≥ p3 as
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in Lemma 2.7,

‖Σ̃e,p − Σe,p‖F = oP(1),

‖Σe,p − Σe‖F = o(1),

‖Σ̂e,p − Σ̃e,p‖F = OP

(
p3/2

∥∥∥Âp − Ãp

∥∥∥
F

)
= oP(1),

‖Σ̂e,p − Σe,p‖F = oP(1),

when N → ∞ and T → ∞.

Proof of Lemma 2.9. To show
∥∥∥Σ̃e,p − Σe,p

∥∥∥
F
→ 0 in probability, first note that by

definition,

∥∥∥Σ̃e,p − Σe,p

∥∥∥
F
=

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

(
ẽt,pẽ>t,p − et,pe>t,p

)∥∥∥∥∥
F

+

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

et,pe>t,p −E
(

et,pe>t,p
)∥∥∥∥∥

F

+
∥∥∥ẽT,pẽ

>
T,p

∥∥∥
F

=: E1 + E2 + E3,

with straightforward notations for E1, E2 and E3. Next, we show that the three

terms above converge to zero in probability. For E1, we know that by triangular

inequality,

E1 ≤
∥∥∥∥∥ 1

T − p

T

∑
t=p+1

(
ẽt,p − et,p

)
ẽ>t,p

∥∥∥∥∥
F

+

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

et,p
(
ẽt,p − et,p

)>∥∥∥∥∥
F

=: E1,1 + E1,2,

with obvious notations for E1,1 and E1,2. It is then sufficient to show E1,1 → 0 in

probability since E1,2 can be dealt with in a similar way. We can now bound E1,1
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by

E1,1 ≤
∥∥∥∥∥ 1

T − p

T

∑
t=p+1

p

∑
l=1

(
Ãl,p − Al,p

)
ft−l ẽ>t,p

∥∥∥∥∥
F

+

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

p

∑
l=1

(
Al,p − Al

)
ft−l ẽ>t,p

∥∥∥∥∥
F

+

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

∞

∑
l=p+1

Al ft−l ẽ>t,p

∥∥∥∥∥
F

.

Since both { ft} and {ẽt,p} are r× 1 vectors, by Assumption 2.3 and Lemma 2.6,

we have

E1,1 = OP

(∥∥∥∥∥ p

∑
l=1

(
Ãl,p − Al,p

)∥∥∥∥∥
F

+
∞

∑
l=p+1

(1 + l) ‖Al‖F

)
,

which tends to zero in probability.

E2 → 0 in probability can be shown similarly, since { ft} is stationary. For E3,

first write that

E3 =
∥∥∥ẽT,pẽ

>
T,p

∥∥∥
F

≤
∥∥∥∥(ẽT,p − eT,p

) (
ẽT,p − eT,p

)>∥∥∥∥
F
+ 2

∥∥∥(ẽT,p − eT,p

)
e>T,p

∥∥∥
F
+
∥∥∥eT,pe>T,p

∥∥∥
F

,

where
∥∥eT,p

∥∥ = OP

(
(T − p)−1/2

)
. Hence it is sufficient to consider

∥∥∥ẽT,p − eT,p

∥∥∥
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as

∥∥∥ẽT,p − eT,p

∥∥∥ =

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

(
ẽT,p − eT,p

)∥∥∥∥∥
=

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

(
p

∑
l=1

Ãl,p ft−l −
∞

∑
l=1

Al ft−l

)∥∥∥∥∥
≤
∥∥∥∥∥ 1

T − p

T

∑
t=p+1

p

∑
l=1

(
Ãl,p − Al,p

)
ft−l

∥∥∥∥∥
+

∥∥∥∥∥ 1
T − p

T

∑
t=p+1

p

∑
l=1

(
Al,p − Al

)
ft−l

∥∥∥∥∥+
∥∥∥∥∥ 1

T − p

T

∑
t=p+1

∞

∑
l=p+1

Al ft−l

∥∥∥∥∥
= OP

(∥∥∥∥∥ p

∑
l=1

(
Ãl,p − Al,p

)∥∥∥∥∥
F

)
+ OP

(
∞

∑
l=p+1

(1 + l) ‖Al‖F

)
p→ 0,

where the last line follows from Assumption 2.3 and Lemma 2.6, and we

use the same arguments for E1,1 as above. Therefore, we can conclude that∥∥∥Σ̃e,p − Σe,p

∥∥∥
F
→ 0 in probability.

To see
∥∥Σe,p − Σe

∥∥
F → 0, note that

∥∥Σe,p − Σe
∥∥

F =
∥∥∥E
(

et,pe>t,p − ete>t
)∥∥∥

F

≤
∥∥∥E
{(

et,p − et
)

e>t,p
}∥∥∥

F
+
∥∥∥E
{

et,p
(
et,p − et

)>}∥∥∥
F

.

Hence it suffices to show
∥∥∥E
{(

et,p − et
)

e>t,p
}∥∥∥

F
→ 0. For this, by triangular

inequality, we have

∥∥∥E
{(

et,p − et
)

e>t,p
}∥∥∥

F
≤
∥∥∥∥∥E

p

∑
l=1

(
Al,p − Al

)
ft−le>t,p

∥∥∥∥∥
F

+

∥∥∥∥∥E
∞

∑
l=p+1

Al ft−le>t,p

∥∥∥∥∥
F

= O

(
p

∑
l=1

∥∥Al,p − Al
∥∥

F

)
+ O

(
∞

∑
l=p+1

‖Al‖F

)
→ 0,

where we stress the fact that ‖ ft‖ � ‖et,p‖ � 1 and use the results in Lemma 2.6.

With similar arguments, we can show that
∥∥∥Σ̂e,p − Σ̃e,p

∥∥∥
F
→ 0 in probability.
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Firstly, notice that
(

Σ̂e,p − Σ̃e,p

)
can be expressed as

Σ̂e,p − Σ̃e,p =
1

T − p

T

∑
t=p+1

[(
êt,p − êT,p

) (
êt,p − êT,p

)>
−
(

ẽt,p − ẽT,p

) (
ẽt,p − ẽT,p

)>]

=
1

T − p

T

∑
t=p+1

[(
êt,p − êT,p

)
−
(

ẽt,p − ẽT,p

)] (
êt,p − ẽt,p

)>
− 1

T − p

T

∑
t=p+1

[(
êt,p − êT,p

)
−
(

ẽt,p − ẽT,p

)] (
êT,p − ẽT,p

)>
+

1
T − p

T

∑
t=p+1

[(
êt,p − êT,p

) (
ẽt,p − ẽT,p

)>]

+
1

T − p

T

∑
t=p+1

[(
ẽt,p − ẽT,p

) (
êt,p − êT,p

)>]
.

Recall that ẽT,p = 1
T−p ∑T

t=p+1 ẽt,p and êT,p = 1
T−p ∑T

t=p+1 êt,p, by triangular in-

equality, it suffices to study the leading term 1
T−p ∑T

t=p+1

[
(êt,p − êt,p)− (ẽt,p − ẽt,p)

]
(êt,p−

ẽt,p)>. For this, it is sufficient to consider the order of
∥∥∥ 1

T−p ∑T
t=p+1(êt,p − ẽt,p)(êt,p − ẽt,p)>

∥∥∥
F
.

We then have the bound

1
T − p

T

∑
t=p+1

∥∥êt,p − ẽt,p
∥∥2 ≤ 3

p

∑
l=1

∥∥∥Âl,p − Ãl,p

∥∥∥2

F

1
T − p

T

∑
t=p+1

∥∥∥ f̂t−l

∥∥∥2

+
3

T − p

T

∑
t=p+1

∥∥∥ f̂t − ft

∥∥∥2
+ 3

p

∑
l=1

∥∥∥Ãl,p

∥∥∥2

F

1
T − p

T

∑
t=p+1

∥∥∥ f̂t−l − ft−l

∥∥∥2

= OP

(∥∥∥Âp − Ãp

∥∥∥2

F

)
+ OP

(
p
∥∥∥ f̂t − ft

∥∥∥2
)

,

which converges to 0 in probability by the results of Lemmas 2.4 and 2.5. Hence

we can conclude that
∥∥∥Σ̂e,p − Σ̃e,p

∥∥∥
F
→ 0 in probability.

Lastly,
∥∥∥Σ̂e,p − Σe,p

∥∥∥
F
= oP (1) follows directly from

∥∥∥Σ̂e,p − Σ̃e,p

∥∥∥
F
= oP (1),∥∥∥Σ̃e,p − Σe,p

∥∥∥
F
= oP (1), and the triangular inequality.
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Chapter 3

Homogeneity and Sub-homogeneity

Pursuit: Iterative Complement

Clustering PCA

3.1 Introduction

Since its introduction, principal component analysis (PCA) (Jolliffe, 2002; Ander-

son, 2003) has become one of the most popular statistical tools for data analysis

in a wide range of areas. Literature on PCA dates back to the early twentieth cen-

tury (e.g., see Pearson (1901) and Hotelling (1933)). However, with an increasing

dimension of data, PCA has now been reconsidered and widely discussed for

the purpose of analyzing high-dimensional data. Jolliffe and Cadima (2016) and

Fan et al. (2018) reviewed recent developments in PCA for statistical analysis on

high-dimensional data, including its sparsity and robustness. However, are more

data together really benefiting statistical analysis? Boivin and Ng (2006) pro-

vided a negative answer at the aspect of forecasting. This is due to an increased

complexity when more data from different populations are grouped together,

as a proportion of data can exhibit a different pattern compared with the rest.

More specifically, increased complexity refers to heterogeneity when more data

are collected from different populations.

In this study, we consider that information from a particular group of data

collected from one population can be divided into two categories. One is

shared with other groups and forms the homogeneity within the entire data,
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while the other is group-specific and is the main source of heterogeneity. This

type of heterogeneity can be treated as sub-homogeneity, which refers to the

homogeneity for a particular group of data.

However, sub-homogeneity may not be identified using traditional estimation

methods such as PCA. One reason for this is that the sub-homogeneity for a

particular group of data can be relatively small compared with the homogeneity

within the entire data because it usually contributes less than the homogeneity

to the total variance of all of the data. In such a situation, traditional PCA

may regard the sub-homogeneity as negligible compared with homogeneity and

ignore this group-specific pattern. Moreover, from the interpretation perspective,

principal components that are produced using traditional PCA on all of the data

do not target a specific group (e.g., information on which component corresponds

to which group of data is not known). In previous studies, the discussion

of PCA has mainly focused on the large eigenvalues, which correspond to

the homogeneity in this chapter. For example, Johnstone (2001) studied the

asymptotic distribution of the largest eigenvalue of PCA. Recently, Cai et al.

(2017) extended the discussion to the asymptotic distribution of the spiked

eigenvalues, while Morales-Jimenez et al. (2018) studied the asymptotics for the

leading eigenvalues and eigenvectors of the correlation matrix in the class of

spiked models. None of them have considered the existence of sub-homogeneity

within the data.

To the best of our knowledge, the sub-homogeneity has not been well dis-

cussed, but it can be very important in high-dimensional data analysis. The

following example of analyzing stock returns from different industries is used

to explain the importance of finding sub-homogeneity. As stated in Fama and

French (1997), stock returns from various industries can have varying perfor-

mance over time, although the homogeneity (e.g., market return) can be deemed

to be driven by some common economic variables. In a situation in which a

vast number of individual stock returns are collected together for statistical

analysis, traditional dimension-reduction techniques such as PCA may be able

to capture the market effect but can fail to identify the sub-homogeneity within
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each industry (industry-specific pattern). This is because some industry-specific

components may have much smaller variance than the market component and

are highly likely to be omitted by PCA. However, these industry-specific com-

ponents may be very important in capturing the movement of the stock returns

within the industry. This loss of information may result in a very poor forecast

of stock returns for some companies in which sub-homogeneity exists. In ad-

dition, although it would be interesting to study which industry has a larger

industry-specific effect on stock returns, traditional PCA performed on the entire

data does not allow us to draw such conclusions. Therefore, this study aims at

identifying both homogeneity and sub-homogeneity in high-dimensional data

analysis.

The sub-homogeneity in several parts of the data can be identified and es-

timated by dividing the whole data set into several groups. However, in most

situations, the group structure is not known in advance. Therefore, a clustering

method can be used to group the data at the first stage, and PCA can then be

applied to identify the sub-homogeneity within each group. Similarly, Liu et al.

(2002) performed PCA in different blocks of variables, while Tan et al. (2015)

penalised the variables in each group differently when using the graphical lasso.

Both studies used hierarchical clustering to group the variables to take into

account the heterogeneity. However, when homogeneity exists across different

groups, the sub-homogeneity in each group cannot be successfully identified.

This is mainly because the homogeneity shared by most groups can dominate

the sub-homogeneity so that the data from different groups all seem to be highly

correlated. In this situation, the sub-homogeneity is masked by the homogeneity,

and these clustering methods tend to group all individuals (variables) into one

cluster. Therefore, the homogeneity must be correctly identified and removed be-

fore we can successfully group the individuals and discover the sub-homogeneity

of each group.

On the other hand, the estimation of homogeneity can often be problematic in

a high-dimensional setting. This is because of the inconsistency of PCA estimates

when the number of variables p is comparable with or greater than the sample
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size n, as discussed in Johnstone and Lu (2009). Motivated by the group structure

of the data, we suggest first clustering the individuals into groups and then

performing a traditional approach such as PCA on the level of groups, followed

by a second layer of PCA that extracts common information shared by each

group. This approach can improve the estimation accuracy of the homogeneity

because the components are now extracted from groups in which the dimension

has already been reduced (to the number of variables in a group), while the

traditional dimension-reduction method (e.g., PCA) is performed on the full

dimension p. This can be viewed as an effective way to alleviate the potential

problem caused by the curse of dimensionality. Other studies have modified the

traditional approaches to deal with the curse of dimensionality. For example,

Johnstone and Lu (2009) suggest that some initial dimension-reduction work is

necessary before using PCA, as long as a sparse basis exists. Further, Zou et al.

(2006) introduced sparse PCA, which uses the lasso (elastic net) to modify the

principal components so that sparse loadings can be achieved. In addition, a

review of some sparse versions of PCA can be found in Tibshirani et al. (2015),

while some general discussions about the blessing and curse of dimensionality

can be found in Donoho et al. (2000) and Fan et al. (2014).

To conclude, homogeneity must be removed to correctly identify the cluster

structure and sub-homogeneity, but the cluster structure of the data is used

to accurately find the homogeneity. Therefore, we introduce a novel “iterative

complement-clustering principal component analysis” (CPCA) to iteratively esti-

mate the homogeneity and sub-homogeneity. Details of the CPCA are provided

in Section 3.4.

The contributions of this study can be summarised as follows. First, we

propose CPCA to identify homogeneity and sub-homogeneity and handle the

interaction between them when the whole data set exhibits a group structure.

Second, our proposed estimation method not only correctly captures the sub-

homogeneity, but also provides very reliable cluster information (e.g., which part

of the data is from the same group), which can be useful in understanding and

explaining the data structure. Third, inspired by Chiou and Li (2007), we develop

© Daning Bi – 21 May 2021



§3.2 Homogeneity and sub-homogeneity 79

a leave-one-out principal component regression (PCR) clustering method that

can outperform the hierarchical clustering method used in previous studies. In

addition, we theoretically illustrate that if the sub-homogeneity from different

clusters is distinct, our proposed clustering procedure can effectively separate

the variables from different clusters. This is also numerically confirmed by the

simulation study and real data analysis. Details of the proposed clustering

method are provided in Section 3.4.

The rest of this study is organised as follows. A low-rank representation of

the data that captures both homogeneity and sub-homogeneity is introduced

in Section 3.2, and some related PCA methods are discussed in Section 3.3.

In Section 3.4, a novel estimation method called CPCA is proposed, followed

by a discussion of more details of the algorithm. Section 3.5 demonstrates

and explains the effectiveness of the proposed clustering method. Extensive

simulations, along with two applications (PCR and covariance estimation) of our

proposed method are provided in Sections 3.6 and 3.7. Section 3.8 analyses a

stock return dataset using our method. Lastly, Section 3.9 concludes the study.

3.2 Homogeneity and sub-homogeneity

Considering the data xi = (x1i, . . . , xpi)
> ∈ Rp from ith observation with p

variables, the singular value decomposition (SVD) of the data xi can be written

as:

xi =
K

∑
k=1

gikφk + ui,

where ui =
min (n,p)

∑
k=K+1

gikφk i = 1, . . . , n, (3.1)

where gik is defined as kth principal component score and φk denotes a p× 1

eigenvector for gik. Traditional PCA summaries the data using the first k principal

components, and it treats ui as noise because gik for k = m + 1, . . . , min (n, p)

has lower variance. However, under certain conditions, some of the information
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contained in ui can be useful in prediction or forecasting problems, particularly

for one or more specific groups of data. Therefore, when the data exhibit a

group structure, we propose the following low-rank representation for the data

to capture both homogeneity and sub-homogeneity:

xi =
rc

∑
k=1

gikφk + ui,

where ui =
J

∑
j=1

rj

∑
h=1

f (j)
ih γ

(j)
h +

J

∑
j=1

I(j)ε
(j)
i , i = 1, . . . , n, j = 1, . . . , J. (3.2)

The first line in (3.2) measures the homogeneity among all variables from all

groups, where gik, k = 1, . . . , rc is kth principal component, which we call the

common component, and φk is its corresponding eigenvector. The first part

of ui in (3.2) consists of J cluster-specific components from which the sub-

homogeneity of the data is derived. Assuming p variables can be split into J

clusters, f (j)
ih , h = 1, . . . , rj measures the within-cluster principal components for

cluster j. The within-cluster eigenvector with dimension p× 1 has the form of

γ
(j)
h = (0(1)>, . . . , η

(j)>
h , . . . , 0(J)>)>, where η

(j)
h defines a pj × 1 vector and pj is

the number of variables in cluster j so that ∑J
j=1 pj = p. That is, the values of

γ
(j)
h for variables that do not belong to cluster j are zero. This implies that after

removing the effect of the common principal components, data from different

clusters are uncorrelated (e.g., ui has a block-diagonal covariance structure). In

the second part of ui, ε
(j)
i is simply a pj-dimensional error that has variance σ(j)2

,

and I(j) is a diagonal matrix, but the diagonals for variables that do not belong

to cluster j are zero.

We further define gi = (gi1, . . . , girc)
> and f (j)

i = ( f (j)
i1 , . . . , f (j)

irj
)>, j = 1, . . . , J

as the vector forms of the common components and cluster-specific compo-

nents, and the eigenvector matrices as Φ(p×rc) = (φ1, . . . , φrc) and Γ
(j)
(p×rj)

=

(γ
(j)
1 , . . . , γ

(j)
rj ), j = 1, . . . , J, respectively. Without loss of generality, E(gi) =
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E( f (j)
i ) = E(ε(j)

i ) = 0 and gi, f (j)
i , ε

(j)
i , j = 1, . . . , J are mutually uncorrelated and:

Φ>Φ = Ip, cov(gi) is diagonal;

Γ(j)>Γ(j) = Ip, cov( f (j)
i ) is diagonal, j = 1, . . . , J. (3.3)

Under the data structure given in (3.2), the population covariance is given by a

low-rank plus block-diagonal representation:

Σ = Φcov (gi)Φ> +
J

∑
j=1

Γ(j)cov( f (j)
i )Γ(j)> +

J

∑
j=1

I(j)σ(j)2, j = 1, . . . , J. (3.4)

If we denote the data X(n×p) = (x1, . . . , xn)>, the common components

and cluster-specific components in a matrix form G(n×rc) = (g1, . . . , gn)> and

F(j)
(n×rj)

= ( f (j)
1 , . . . , f (j)

n )> , respectively, data representation (3.2) can also be

presented as a matrix form:

X =GΦ> + U,

where U =
J

∑
j=1

F(j)Γ(j)> + E, j = 1, . . . , J. (3.5)

In general, there are two goals in using representation (3.2). In the presence

of an unknown cluster structure, the first goal is to cluster the variables (i.e.,

determine which variables are in the same group). From the interpretation

perspective, it is interesting to know how variables are clustered and which

variables belong to the same cluster. The second goal is to correctly estimate

both the common components gi and the cluster-specific components f (j)
i . These

components serve as a low-rank representation of the data and can therefore be

used for further applications. One obvious application is to estimate Σ as in (3.4).

The use of both gi and f (j)
i captures both the low rank and the block-diagonal

representation of Σ, which results in a more efficient estimation compared with

using gi only. Another important application is PCR. In some situations, it

is a cluster-specific component f (j)
i that contributes most to determining the
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response in PCR rather than the common component gi. It is important to

identify each cluster-specific component f (j)
i to explain which cluster of variables

has a greater effect in predicting the response. We will discuss more about these

two applications using simulated data in Section 3.7.

3.3 Relationship with existing PCA methods

Our proposed data representation (3.2) should be used to perform dimension

reduction of the data with a cluster structure because it captures both the

common effect (homogeneity) and the cluster-specific effect (sub-homogeneity).

Consequently, this method can be viewed as an extension of many other widely

used dimension-reduction methods. Three of these methods are discussed below.

• Case 1: When there is no cluster-specific effect, for example, f (j)
i = 0, j =

1, . . . , J and σ(j)2 ≡ σ2, representation (3.2) simply reduces to the well-

known PCA:

xi =
rc

∑
k=1

gikφk + εi, i = 1, . . . , n, (3.6)

where gik can be found by the principal component with kth largest eigen-

value and φk is the corresponding eigenvector. However, in the presence

of a small cluster-specific effect, traditional PCA generally only identifies

the large common effect and treats the rest as noise, disregarding the

sub-homogeneity within the data.

• Case 2: When the common components do not exist (e.g., gi = 0), rep-

resentation (3.2) demonstrates a well-studied block-diagonal covariance

structure of the data, as discussed in Liu et al. (2002) and Tan et al. (2015).

Thus, representation (3.2) can be reduced to:

xi =
J

∑
j=1

rj

∑
h=1

f (j)
ih γ

(j)
h +

J

∑
j=1

I(j)ε
(j)
i , i = 1, . . . , n, j = 1, . . . , J. (3.7)
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In this case, hierarchical clustering is usually used to group the variables

with high correlations, and PCA is then performed on each group of vari-

ables to estimate the cluster-specific components f (j)
i . In many situations,

this cluster structure is masked by a dominant common effect. Ignoring

this common effect will result in a non-identifiable cluster structure.

• Case 3: Fan et al. (2013a) and Li et al. (2018) consider the following low-

rank representation, in which the error covariance matrix is assumed to be

cross-sectional dependent after the common components have been taken

out:

xi =
rc

∑
k=1

gikφk + ui, i = 1, . . . , n, (3.8)

where they assume that the covariance of ui, Σu, is sparse and propose a

method called Principal Orthogonal complEment Thresholding (POET) to

explore such a high-dimensional structure with sparsity. Li et al. (2018) used

weighted PCA to find a more efficient estimator of common components

gi. Hong et al. (2018) and Deville and Malinvaud (1983) also applied

weighted PCA to estimate the covariance matrix when heteroscedastic

noise of samples or variables exists. However, in this chapter, we consider

ui following a cluster structure with a block-diagonal covariance and aim

to find its low-rank presentation, which we call sub-homogeneity. In

addition, we propose iteratively estimating the common components and

cluster-specific components.

3.4 Estimation methods

Correctly estimating gi and f (j)
i poses many challenges. First, PCA, which is

widely used to estimate the common component gi, often performs very poorly

when p is much larger than n. The group structure of the variables motivates

us to separate the data according to the clusters and then extract the common

information from each cluster to determine the common components. This is less
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influenced by the curse of dimensionality because each cluster of the data results

in a lower dimension of variable pj. However, to accurately identify the clusters,

we must remove the common effect and then perform the clustering method

based on the complement (xi −∑rc
k=1 gikφk), but the common components and

its eigenvectors are not known in advance. This inspires us to propose a new

iterative method, CPCA, to cluster the variables and estimate the components

simultaneously. A flowchart that summaries our estimation method is presented

in Figure 3.1. Details of the method are described in Algorithm 1.

Algorithm 3.1 (CPCA).

1. Initial Step:

(a) Perform PCA directly on the entire data X and select the number

of components according to the largest drop in eigenvalues. The

resulting eigenvectors Φ0 and principal components G0 are served as

the initial estimates of Φ and G. Then, find the initial complement

Xc
0 = X −G0Φ>0

(b) Perform hierarchical clustering for Xc
0 based on a similarity matrix

given by the absolute value of the empirical correlation matrix Xc
0. The

obtained clusters C(j)
0 , j = 1, . . . , J0 are served as the initial clusters.

2. Iterative Step: for s = 1, 2, . . .

(a) Cluster the variables into Js−1 groups according to C(j)
s−1 and de-

fine variables from jth cluster as X(j)
s . Perform PCA on each clus-

ter of variables X(j)
s and denote the obtained principal components

as Ψ
(j)
s , j = 1, . . . , Js−1. Combine these principal components as

Ψs = (Ψ
(1)
s , . . . , Ψ

(J0)
s ) and perform a further step of PCA on Ψs. Define

the principal components as Gs and their corresponding eigenvectors

as Φs. Then, compute the updated complement Xc
s = X − GsΦ

>
s .

Details for finding the eigenvectors Φ1 can be found in Appendix 3.A.

(b) Perform leave-one-out clustering for variables in Xc
s using PCR (more

details of this clustering method are discussed in Remark 3):
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X
Output: Φ0, G0 and com-

plement: Xc
0 = X − G0Φ

′
0

Hierarchical clustering on Xc
0

Output: C
(j)
0 , j = 1, 2, ..., J0

Clusters C
(j)
s−1 of X

X(j)
s

· · ·X(2)
sX(1)

s
· · · X(Js−1)

s

Ψ(1)
s Ψ(2)

s
· · · Ψ(j)

s
· · · Ψ(Js−1)

s

Ψs

Output: Φs, Gs and com-
plement: Xc

s = X − GsΦ
′
s

Leave-one-out clustering on Xc
s

Clusters C
(j)
s of X

Output: final clusters C
(j)
f , final

complement Xc
f = X − GfΦ

′
f

X
c(j)
f

· · ·X
c(2)
fX

c(1)
f

· · · X
c(Jf )

f

F
(1)
f F

(2)
f

· · · F
(j)
f

· · · F
(Jf )

f

PCA

Divide

PCA PCA PCA PCA

Combine

PCA

Update C
(j)
s−1 to C

(j)
s

until convergence

s = s + 1

Convergence of C
(j)
s

Divide

PCA PCA PCA PCA

Initial step:

Iterative steps: s = 1, 2, ...

Final step:

Figure 3.1: Flowchart of Algorithm 1.
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(i) For k, k = 1, . . . , p, leave kth variable out of Xc
s .

(ii) Group the rest of the variables of Xc
s based on C(j)

s−1, perform PCA

on each cluster again and denote the obtained components as

F(j)
s−1, j = 1, . . . , Js−1.

(iii) Fit Js−1 PCRs by using kth variable of Xc
s as the response and F(j)

s−1

as the predictor for each j = 1, . . . , Js−1, respectively.

(iv) Compute the sum of squared residuals (SSR) for each Js−1 PCR

model. Assign kth variable to the cluster with the minimum SSR.

Update the cluster index for kth variable in C(j)
s−1.

(v) Repeat (i)∼(iv) for each k and denote the updated clusters as C(j)
s .

(c) Repeat (a) and (b) within this step until the clusters converge, and

define this final converged cluster as C(j)
f .

3. Final Step:

(a) Repeat (a) in the Iterative Step, but using cluster C(j)
f . The final

complement is denoted by Xc
f = X −G f Φ>f .

(b) Cluster variables of Xc
f based on C(j)

f , perform PCA on each cluster

Xc(j)
f and denote the obtained cluster-specific components as F(j)

f , j =

1, . . . , J f .

Therefore, CPCA produces these required outputs: the final clusters of p

variables C(j)
f , j = 1, . . . , J f , the final estimate of the common components G f and

the cluster-specific components F(j)
f , j = 1, . . . , J f , along with their eigenvectors.

Some details and discussions of CPCA are provided in the following remarks.

Remark 3.1. [Iterative Step]:

One of the key contributions of our algorithm is iteratively estimating the com-

mon components and cluster-specific components. Directly using PCA on the

entire data X generally leads to a very poor estimate of the common components

because a large p may blur the spike structure of the sample covariance matrix.

Motivated by the group structure of the data, we utilise Iterative Step (a) to first

cluster variables and then perform PCA on the level of clusters, followed by a
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second layer of PCA that extracts common information shared by each group.

Iterative Step (b) is then implemented to update and improve the clusters infor-

mation. This is more effective in estimating the common components because

PCA is performed in a smaller p case, which is also numerically shown in Figure

3.2. The data X used here are generated by simulation Example 2. Figure 3.2a

presents the correlation plot for the original data X. We observe that the cluster

structure is masked by the common effect. Figure 3.2b demonstrates that after

the common effects estimated in the Initial Step are removed, it is still difficult

to perceive the cluster structure. However, if we remove the common effects

estimated in the Final Step, the block-diagonal structure is clear, implying a

prominent heterogeneity within the data. Therefore, iteratively estimating the

common components is advantageous.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Correlation for the original data X
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(c) Correlation for Xc
f = X −G f Φ>f

Figure 3.2: Correlation plot using data generated by simulation example 2

Remark 3.2. [Initial Step (a) and Iterative Step (a)]:

In Section 3.2, we have assumed that the common components have a larger
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variance than the cluster-specific components. However, in practice, when the

number of common components is greater than 1 (e.g., rc > 1), the discrepancy

of the eigenvalues (from the sample covariance) among the common components

can be accidentally greater than the one between the common components and

the cluster-specific component, especially when some groups have a relatively

larger cluster-specific effect (e.g., variables in one group are on a large scale or

highly correlated). In this situation, selecting the number of components using

the largest drop in eigenvalues in Initial Step (a) and Iterative Step (a) may lead

to underestimating the number of common components. One possible way to

alleviate this problem is to remove the scale effect by scaling X and Ψ before

applying PCA in these two steps. After the number of common components is

determined, we multiply the standard deviation back while calculating GΦ>.

This standardisation, along with the Iterative Step, can avoid underestimating the

number of common components, which will be demonstrated in the simulation

studies.

Remark 3.3. [Initial Step (b), Iterative Step (b) and (c)]:

Initial Step (b), an ordinary hierarchical clustering method using average-linkage

as dissimilarity between clusters is performed. As discussed in Bühlmann

et al. (2013), we choose the number of clusters using the largest increment in

height between iterations proceeded in a agglomerative way, such that J0 =

argmaxj(hj+1 − hj).

In Iterative Step (b), we propose a new clustering method called “leave-one-

out PCR clustering” (LOO-PCR clustering), which is another key contribution

of the CPCA. The underlying idea of this new clustering method is that if

one variable belongs to a cluster, it should be well-predicted by the principal

components extracted from that cluster. This is more aligned with our model set-

up than hierarchical clustering based on correlations. A similar idea of leaving

one out is used for functional clustering, as discussed in (Chiou and Li, 2007).

In addition, hierarchical clustering can perform poorly when the dimension of

variables p is larger than n. In step (iv), we assign kth variable to the cluster that

achieves the minimum SSR. However, when the minimum SSR is larger than a
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threshold τ, we treat the kth variable itself as a cluster, because in such a situation,

this variable cannot be well-predicted by any clusters of variables. Hence, the

number of clusters is driven by the data and can vary in each iteration. This

suggests that our proposed method is more flexible than hierarchical clustering.

We set τ = 0.95, and Example 4 in the simulation studies demonstrates that our

proposed LOO-PCR clustering, served as a clustering method itself, outperforms

hierarchical clustering in a large p small n case. Identifiability of LOO-PCR

clustering is also demonstrated theoretically in Section 3.5.

In Iterative Step (c), we stop the iteration when the clusters C(j)
s converge. In

our algorithm, we adopt the adjusted rand index (ARI) (Rand, 1971; Hubert and

Arabie, 1985) between the clusters C(j)
s and the one in the previous iteration C(j)

s−1

as the stopping criterion. When the ARI is above a certain threshold η, we stop

the iteration. Details of the ARI are discussed in Section 3.6. In this study, we

use η = 0.97.

Remark 3.4. [Final Step (b)]:

In Final Step (b), after the variables are clustered based on C(j)
f , we perform PCA

on each cluster Xc(j)
f , j = 1, . . . , J f (complement ) separately. To prevent losing

too much information, the principal components selected in each cluster should

explain a certain percentage α of the total variation within that cluster (Jolliffe,

2002). Therefore, we select the number of cluster-specific principal components

rj at which the largest drop in eigenvalues occurs, given that those principal

components explain at least α percent of the total variation in the corresponding

cluster, such that

r̂j = argmax
rj∈Rj

{λ̂(j)
rj − λ̂

(j)
rj−1},

where Rj =

{
rj :

rj

∑
h=1

λ̂
(j)
h

/ min(n,p)

∑
h=1

λ̂
(j)
h I{λ̂(j)

h > 0} > α

}
(3.9)

and λ̂
(j)
h defines hth largest eigenvalue of the sample covariance of Xc(j)

f . In this

study, α = 0.8.
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3.5 Identifiability of LOO-PCR clustering approach

Achieving an accurate sub-homogeneity pursuit relies on the effectiveness of

the clustering procedure. In this section, we investigate the proposed LOO-PCR

clustering method theoretically. More specifically, we examine the identifiability

of cluster membership in our proposed method.

Consider one random variable Xmi that belongs to cluster l. Based on the

variable’s structure in cluster l, there exists m ∈ {1, 2, . . . , p}, such that:

Xmi =
rc

∑
k=1

gikφmk + u(l)
mi , u(l)

mi =
rl

∑
h=1

f (l)ih γ
(l)
mh + ε

(l)
mi . (3.10)

We now consider another cluster d with components gik, k = 1, . . . , rc and

f (d)ih , h = 1, . . . , rd. When applying our proposed LOO-PCR clustering method, we

regress u(l)
mi on f (d)ih , h = 1, 2, . . . , rd and measure its goodness of fit to determine

whether the random variable Xmi belongs to cluster d, such that:

u(l)
mi =

rd

∑
h=1

βh f (d)ih + ζ
(d)
mi , (3.11)

where β1, . . . , βrd are coefficients and ζ
(d)
mi is the error. Naturally, we expect

that features (e.g., principal components) from cluster d cannot explain u(l)
mi

sufficiently. Based on (3.10) and (3.11), intuitively, a large discrepancy between

principal components f (d)ih from cluster d and principal components f (l)ih from

cluster l will result in a large residual ζ
(d)
mi in (3.11).

The following theorem will show the property of ζ̂
(d)
mi , which is an estimator

of the error ζ
(d)
mi from our proposed clustering approach.

Theorem 3.1. For any cluster d and any random variable Xmi from another cluster l,

we have the following evaluation:

‖ζ̂(d)m ‖2 = ‖MF(d) MGxm‖2 + Op
(
max(αnpd , γnJ)

)
‖xm‖2, (3.12)

where ζ̂
(d)
m =

(
ζ̂
(d)
m1 , ζ̂

(d)
m2 , . . . , ζ̂

(d)
mn

)>
, ‖MF̂(d)−MF(d)‖2 := Op(αnpd), ‖MĜ−MG‖2 :=
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Op(γnJ), xm = (Xm1, Xm2, . . . , Xmn)>, MF(d) = In − F(d)
(

F(d)>F(d)
)−1

F(d)>, and

MG = In −G(G>G)−1G>; here, F(d) is an n× rd matrix with (i, h)-th element being

f (d)ih , and G is an n× rc matrix with (i, k)-th element being gik. Here, MF̂(d) and MĜ

are MF(d) and MG, but with F(d) and G replaced by F̂(d) and Ĝ, respectively.

A brief proof of Theorem 3.1 is provided in Appendix 3.B.

Remark 3.5. It is expected that ζ̂
(d)
m will be large when cluster d and cluster l are

different. When l = d, the first term on the right-hand side of (3.12) is equal to

‖MF(d) MGζ
(d)
m ‖2. In contrast, when l 6= d (e.g., ‖F(l)‖2 and ‖F(d)‖2 are distinct),

the first term on the right-hand side of (3.12) is equal to ‖MF(d) MGF(l)γ(l) +

MF(d) MGζ
(l)
m ‖2, which is dominated by ‖F(l)‖2. Meanwhile, the second term

on the right-hand side of (3.12) is determined by the estimation accuracy of

F(d) and G. It is related to the dimension of cluster d (e.g., pd), the sample

size n and the total number of clusters J. Bai and Ng (2002a) provided the rate

of convergence for the projection matrices of principal components. Fan et al.

(2013a) and Fan et al. (2018) also studied the properties of principal components

for high-dimensional data. In this study, we do not pursue the exact expression

of αnpd and γnJ . However, given that the homogeneity MG and sub-homogeneity

F(d) can be estimated accurately, the first term on the right-hand side of (3.12)

is expected to dominate ‖ζ̂(d)m ‖2. This implies that two different clusters d and l

are identifiable, given that ‖F(l)‖2 has a higher order than ‖ζ(d)m ‖2. As a general

discussion, Theorem 3.1 shows that when the sub-homogeneity from the different

clusters is distinct, our clustering procedure can effectively separate the variables

from the different clusters.

3.6 Simulation studies

In this section, we conduct various simulation studies to investigate the perfor-

mance of our proposed CPCA method compared with traditional PCA under

different simulation settings.
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3.6.1 Simulation settings

We generate the data from representation (3.2):

xi =
rc

∑
k=1

gikφk +
J

∑
j=1

rj

∑
h=1

f (j)
ih γ

(j)
h +

J

∑
j=1

I(j)ε
(j)
i , i = 1, . . . , n, j = 1, . . . , J.

First, we generate Φ = (φ1, . . . , φrc) as a p × rc orthonormal matrix. Sec-

ond, pj × rj orthonormal matrix Ψ(j) = (ψ
(j)
1 , . . . , ψ

(j)
rj ) is generated randomly

and independently across different clusters for j = 1, . . . , J and let Γ
(j)
h =

(0(1), . . . , Ψ
(j)
h , . . . , 0(J)). We then generate gik, i = 1, . . . , n, k = 1, . . . , rc from

√
δkWik, where Wik are i.i.d. standard normal random variables and the eigen-

values δh are defined as δ1 > . . . > δrc > 0. Similarly, we generate f (j)
ih , i =

1, . . . , n, h = 1, . . . , rj, j = 1, . . . , J from
√

λ
(j)
h Z(j)

ih , where Z(j)
hi are again i.i.d.

standard normal random variables and the eigenvalues λ
(j)
h are defined as

λ
(j)
1 > . . . > λ

(j)
rj > 0, j = 1, . . . , J. Lastly, ε

(j)
i is a pj × 1 vector consisting of pj

i.i.d. normal random variables with mean 0 and variance σ(j)2
. Data from each

cluster are generated according to the above setting and then combined to obtain

X.

In our simulation study, we consider four different settings, which are out-

lined below.

• Example 1 (n = 50, p = 100). In this example, we consider the number of

common components rc = 3 and generate δk, k = 1, . . . , rc, from N (75, 5).

We further simulate Wik, k = 1, 2, . . . , rc, i = 1, 2, . . . , 2n, from a standard

normal distribution independently so that gi can be constructed.

In terms of the cluster-specific components, we set J = 5, and for each

of the five clusters, we consider rj ≡ 2 and generate λ
(j)
h ∼ N (5, 1) for

h = 1, 2, j = 1, 2, 3, but λ
(j)
h ∼ N (25, 1) for h = 1, 2, j = 4, 5. That is, each of

the five clusters has the same number of cluster-specific components, while

the components from the last two clusters have higher variance than those

from the first three clusters. Then, setting pj ≡ 20 for each cluster results

in a total number of variables p = 100. According to (3.2), Z(j)
ih for h = 1, 2
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and ε
(j)
i are simulated independently for each cluster j, with σ(j) = 0.1 for

j = 1, 2, 3 and σ(j) = 0.5 for j = 4, 5 so that 2n observations are constructed

based on (3.2). Then, the first n observations are served as the training

sample Xtrain = (x1, . . . , xn) and the last n observations are designated as

the testing sample Xtest = (xn+1, . . . , x2n). In this example, n = 50.

• Example 2 (n = 30, p = 100). This example is identical to Example 1, except

that the sample size is decreased from 50 to 30. We will show that our

CPCA is more reliable than other competing methods when the sample

size is relatively small.

• Example 3 (n = 50, p = 200). In this example, we consider data that

consist of more clusters, that is, we consider J = 10 clusters compared

with five in Example 1, leading to a number of variables p = 200 given

pj ≡ 20. We maintain rj ≡ 2 but generate λ
(j)
h ∼ N (5, 1) for j = 1, . . . , 6

and λ
(j)
h ∼ N (25, 1) for j = 7, . . . , 10. Alternatively, the first six clusters

have smaller cluster-specific effects than the last four clusters. Accordingly,

ε
(j)
i is simulated independently for each of the 10 clusters, with σ(j) = 0.1

for j = 1, . . . , 6 and σ(j) = 0.5 for j = 7, . . . , 10. The settings for the common

components remain the same as those in Example 1.

• Example 4 (n = 30, p = 100). This example is identical to Example 2, but

without the common effect, which is a special case of our proposed data

representation as in (3.7). Correspondingly, the response is generated as:

yi =
J

∑
j=1

f (j)>
i β j + ei, i = 1, . . . , n, j = 1, . . . , J. (3.13)

In this example, we do not estimate the common effect, and the clustering

method is directly applied to the data. Therefore, the purpose of consider-

ing this example is to demonstrate that our proposed LOO-PCR clustering

(Iterative Step (b) and (c) in CPCA), served as a clustering method itself,

can outperform the hierarchical clustering.
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For all four examples, we repeat the simulation procedure 100 times and

investigate the clustering and recovering accuracy of the following methods:

• PCA: The classical PCA method is performed directly on the whole data set

without clustering variables. In addition, clustering accuracy is not consid-

ered for this method. The number of principal components is determined

according to (3.9) as discussed in Remark 3.4.

• CPCA I ns: This procedure is simply the CPCA, but without the Iterative

Step. First, the complement Xc
0 = X − G0Φ>0 is found, and then clusters

C(j)
0 are obtained using hierarchical clustering for Xc

0. Variables of Xc
0 are

clustered, and the cluster-specific components F(j)
0 are finally obtained

using PCA on each cluster. In this method, X is not scaled. Note that this

method is not considered in Example 4.

• CPCA I: This is identical to CPCA I ns, but X is scaled when we find the

number of common components.

• CPCA F ns: This is exactly the estimation procedure described in CPCA.

Different to CPCA I ns, the clusters and components are estimated itera-

tively. In this method, X and Ψ are not scaled. Note that this method is not

considered in Example 4.

• CPCA F: This is identical to CPCA F ns, but X and Ψ are scaled when we

find the number of common components, as discussed in Remark 3.2.

The main purposes of this comparison are to demonstrate that: 1) traditional

PCA fails to capture the cluster-specific components; 2) our proposed iterative

estimation of the clusters and components significantly outperforms the initial

estimation; 3) scaling X and Ψ can improve the performance of CPCA; 4) our

proposed LOO-PCR clustering outperforms the traditional hierarchical clustering

method.

In this study, clustering accuracy is measured by the ARI (Rand, 1971; Hubert

and Arabie, 1985). The ARI is a corrected version of the rand index that measures
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the similarity between two clusterings of the same data using the proportions

of agreements between these two partitions. The correction is achieved by

subtracting the rand index by its expected value. The ARI can yield a maximum

value of 1, and a high value implies high similarity. In this simulation study, we

use the function ‘adj.rand.index’ in R package ‘pdfCluster’ to compute the ARI

between the partitions of the variables produced by these methods and the true

partitions as in the data generation process.

The recovering accuracy is measured by the mean squared recovering error

(MSRE). In this study, the MSRE is defined as:

MSRE =
1

np

∥∥∥X̂test − Xtest

∥∥∥2

F
, (3.14)

where X̂test is the recovered testing sample computed using the testing sample

and the eigenvectors (Φ, Λ(j)) estimated from the training sample Xtrain. We

prefer a lower MSRE because it indicates a better recovering of the data.

3.6.2 Simulation results

The boxplots of the ARI, total number of principal components selected (No.PCs),

and MSRE for Example 1 are presented in the first row of Figure 3.3. As shown,

CPCA F and CPCA F ns (blue boxes) achieve a consistently higher ARI than their

non-iterative counterparts (red boxes), which implies the advantages of using the

iterative estimation. In the initial clustering, the common effects are estimated

without partitioning the variables, while the iterative clustering partitions the

variables in the previous step to estimate the common components, resulting in

a more accurate estimation. This is also stated in Remark 3.1. Further, the first

column of Table 3.1 shows that CPCA F yields the most desirable average ARI,

which is 15% higher than that of CPCA I. Compared with CPCA F ns, CPCA F

achieves a higher average ARI but lower standard errors, which numerically

confirms that estimating the common components using scaled X and Ψ leads

to more accurate and stable results.

From the recovering accuracy perspective, it is worth noting from the first
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row of Figure 3.3 and the first column of Table 3.1 that PCA always performs

poorly under this cluster structure of the data, while all CPCA-based methods

demonstrate superior performance in recovering because they achieve lower

MSRE than PCA. Of these methods, CPCA F generally obtains the lowest MSRE.

This is to be expected because CPCA F results in more accurate partitions and

produces more reliable estimations of the cluster-specific components, especially

those with small variations, which contributes the most to predicting the response

according to our simulation settings. This further confirms the advantages

of using our proposed method. The outperformance of CPCA F can also be

explained by the number of principal components selected in each method.

As shown in Figure 3.3 1(b), classical PCA always underestimates the true

number of components (the dashed line), while CPCA I and CPCA I ns tend to

overestimate it. Of these methods, CPCA F estimates the number of components

most accurately and stably, thus obtaining the lowest MSRE with the smallest

standard errors.

The second row of Figure 3.3 and the second column of Table 3.1 summarize

the simulation results for Example 2. As shown, when the sample size is small

(n = 30), the ARI for all methods declines as expected, while CPCA F still

achieves a satisfactory ARI of 82%. In terms of recovery accuracy, it is evident

that CPCA F outperforms all other methods, because the discrepancies in MSRE

between CPCA F and other methods are more significant compared with those

in Example 1. This indicates that the iterative estimation is less sensitive to a

small n large p situation.

We now investigate the simulation results for Example 3, which are displayed

in the third row of Figure 3.3 and the third column of Table 3.1. As demonstrated

in the last panel of Table 3.1, in terms of the recovering, we observe similar

findings as in Example 2. CPCA I and CPCA I ns are very unstable in recovering

the test data; however, CPCA F still achieves a satisfactory and stable MSRE

regardless of whether n decreases or p increases.

Lastly, we investigate Example 4, which does not take into account the com-

mon effect. In this example, CPCA I ns and CPCA F ns are not considered,
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and CPCA I and CPCA F simply reduce to performing PCA on each cluster

of variables based on hierarchical clustering and LOO-PCR clustering, respec-

tively. From the last row of Figure 3.3 and the last column of Table 3.1, we

observe that applying PCA after clustering the variables demonstrates better

performance than applying PCA directly to the data. Compared with CPCA I,

CPCA F achieves a higher average ARI and lower average MSRE with smaller

standard deviations, implying that our proposed LOO-PCR clustering outper-

forms hierarchical clustering when p is large but n is small.
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Figure 3.3: Boxplots of the following three measurements based on 100 simula-
tions from Example 1 to 4: (a) ARI, (b) No.PCs, and (c) MSRE.
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Table 3.1: Averages (standard errors) of ARI, total number of principal compo-
nents selected (No.PCs), and MSPE for Example 1, 2, 3, and 4.

Method Example 1 Example 2 Example 3 Example 4

ARI CPCA I ns 0.39 0.23 0.45 -
(0.26) (0.18) (0.29) -

CPCA I 0.75 0.52 0.88 0.88
(0.26) (0.24) (0.17) (0.12)

CPCA F ns 0.57 0.48 0.63 -
(0.27) (0.23) (0.27) -

CPCA F 0.90 0.82 0.95 0.95
(0.21) (0.19) (0.06) (0.07)

No.PCs CPCA I ns 17.90 17.54 29.08 -
(3.54) (4.76) (8.41) -

CPCA I 16.66 19.31 28.61 12.83
(3.64) (4.36) (6.14) (2.96)

CPCA F ns 13.77 13.63 25.04 -
(2.28) (3.19) (4.34) -

CPCA F 14.08 14.11 25.12 10.99
(2.28) (1.73) (2.25) (1.31)

PCA 6.43 5.61 9.91 6.10
(0.77) (1.00) (1.09) (1.45)

MSRE CPCA I ns 0.29 0.41 0.29 -
(0.12) (0.16) (0.12) -

CPCA I 0.18 0.28 0.13 0.13
(0.10) (0.13) (0.03) (0.04)

CPCA F ns 0.26 0.37 0.26 -
(0.12) (0.16) (0.10) -

CPCA F 0.14 0.19 0.12 0.11
(0.06) (0.09) (0.01) (0.03)

PCA 0.58 0.82 0.62 0.33
(0.20) (0.25) (0.13) (0.08)
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3.7.1 Principal component regression

As aforementioned, one of the most important uses of the principal components is

PCR. We consider a PCR model with an univariate response yi for ith observation

as:

yi = g>i α +
J

∑
j=1

f (j)>
iβ j + ei, i = 1, . . . , n, j = 1, . . . , J. (3.15)

where α is a rc × 1 vector representing the regression coefficients of the common

components gi, β j is a rj × 1 vector denoting the regression coefficients of jth

cluster-specific components f (j)
i and ei is simply the error term with mean 0 and

variance θ2.

Therefore, after the the common components gi and cluster-specific compo-

nents f (j)
i are estimated via CPCA, we can fit a PCR to predict the response.

However, in many situations, only a few groups are useful in predicting the

response. To investigate which clusters of variable have an impact on predicting

the response, we utilise the group lasso (Yuan and Lin, 2006) using the compo-

nents produced by CPCA as the coviarates to estimate the regression coefficients

as in (3.15),

(α̂, β̂) = argmin
α,β

1
2n

n

∑
i=1

(
yi − g>i α−

J

∑
j=1

f (j)>
iβ j

)2

+ λ

(
‖α‖2 +

J

∑
j=1
‖β(j)‖2

)
,

(3.16)

where λ is the tuning parameter that controls the sparsity of the regression

coefficients. Using this group lasso penalty, β j for some j will be shrunk to

zero exactly so that we can identify which clusters of variables are important in

predicting the response.

To better demonstrate the performance of our method, we conduct similar

simulation studies as in Section 3.6. We consider the following three examples:

• Example 1 (n = 50, p = 100). We generate X using the same settings as

Example 1 in Section 3.6.1. Then, we simulate the response yi according

© Daning Bi – 21 May 2021



100 Homogeneity and Sub-homogeneity Pursuit

to (3.15) by setting regression coefficients α = (1, 1, 1), β = (β1, . . . , β5) =

(10, 10, 0, . . . , 0) and standard deviation θ = 1. That is, only the common

effect and the cluster-specific effects for the first cluster are important in

predicting the response. This regression setting is interesting because the

cluster-specific components with smaller variance (e.g. 1st cluster) are

highly likely to be omitted or estimated poorly in traditional PCA, but they

can sometimes be very important in predicting the response.

• Example 2 (n = 30, p = 100). This example is identical to Example 1 above,

except that the sample size is decreased from 50 to 30.

• Example 3 (n = 50, p = 200). We generate X using the same settings as

Example 3 in Section 3.6.1. That is, we consider J = 10 clusters in this

example. In regard to the PCR, we set regression coefficients α = (1, 1, 1)

again and consider β = (β1, . . . , β10) = (10, 10, 0, . . . , 0) such that only the

common effect and the cluster-specific effects for the first cluster are useful

and the rest of clusters are noise.

For all three examples, we repeat the simulation procedure 100 times and inves-

tigate prediction accuracy of the methods mentioned in Section 3.6.1. The MSPE

is used to determine whether the selected components can accurately predict the

response:

MSPE =
1
n

n

∑
i=1

(ŷi,test − yi,test)
2 , (3.17)

where ŷi,test is computed using (3.15) with the regression coefficients (γ, β) and

the eigenvectors (Φ, Λ(j)) estimated from the training sample.

The first panel of Table 3.2 and the first row of Figure 3.4 display mean/standard

errors and the boxplot of MSPE for all three examples. Note that in this section,

CPCA F and CPCA F g represent the ordinary least squares (OLS) and the group

lasso regressed on the principal components produced by CPCA F, respectively.

Similar applies to the rest of CPCA-based methods. When the traditional PCR

(OLS) is utilised, we clearly see that CPCA F achieves much lower average MSPE
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Table 3.2: Averages (standard errors) of MSPE and ‖Σ̂− Σ‖2
F for Example 1, 2,

and 3.

Method Example 1 Example 2 Example 3

MSPE CPCA I ns 2.06 4.51 4.02
(1.09) (3.60) (2.65)

CPCA I 1.86 5.48 3.43
(0.87) (4.61) (2.91)

CPCA F ns 2.68 4.00 2.98
(2.11) (2.38) (1.71)

CPCA F 1.64 2.56 2.31
(0.59) (1.44) (0.64)

PCA 6.76 6.98 7.22
(1.55) (1.96) (2.14)

CPCA I ns g 1.80 3.24 2.52
(1.08) (1.75) (1.50)

CPCA I g 1.56 2.37 1.79
(0.77) (1.11) (0.53)

CPCA F ns g 2.62 3.70 2.43
(2.07) ( 2.21) (1.38)

CPCA F g 1.50 2.18 1.77
(0.53) ( 0.97) (0.46)

‖Σ̂− Σ‖2
F CPCA I ns 63.09 79.08 85.49

(9.70) (12.99) (9.84)
CPCA I 56.56 74.73 73.62

(9.03) (13.85) (8.72)
CPCA F ns 59.83 77.44 84.50

(8.62) (13.34) (9.48)
CPCA F 54.87 72.37 72.48

(7.73) (13.52) (7.94)
PCA 58.33 77.26 78.00

(7.71) (13.63) (7.69)
POET 57.18 74.86 76.41

(7.27) (12.49) (7.28)
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Figure 3.4: Boxplots of the following two measurements based on 100 simulations
from Example 1 to 3: (a) MSPE and (b) ‖Σ̂− Σ‖2

F .

and standard deviation than other methods, especially when n is small or p is

large. Not surprisingly, the traditional PCA performs the worst because it fails

to capture any of the sub-homogeneity, which is important in predicting the

response under our setting. Moreover, we observe that PCR using the group lasso

significantly outperforms those OLS counterparts, especially for CPCA I ns and

CPCA I when n is small or p is large. The group lasso can provide substantial

reductions in MSPE for these methods because they tend to select a large number

of principal components, only some of which are useful. Overall, CPCA F g

achieves the lowest mean and standard error of MSPE among all the methods in

all three examples, because it not only accurately extracts both common compo-

nents and group-specific components, but also shrinks the coefficients of those

unimportant groups down to zero.

3.7.2 Covariance estimation

Another useful application of CPCA is to estimate Σ as in (3.4). Using gi and

f (j)
i leads to a better estimation of Σ compared with using gi only, because gi
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and f (j)
i can capture both the low rank and the block-diagonal representation of

Σ. Therefore, we estimate Σ using clusters, the common components, and the

cluster specific components, along with their associated eigenvectors estimated

via CPCA. In this section, we numerically illustrate the advantage of using CPCA

to estimate the covariance matrix in comparison with other traditional PCA

methods. Again, we conduct three simulation examples mentioned in Section

3.7.1 and utilise the Euclidean distance (ED) between the estimated covariance

and population covariance, ‖Σ̂− Σ‖2
F, to measure the performances of different

methods. Recall Σ is generated from (3.4):

Σ = Φcov (gi)Φ> +
J

∑
j=1

Γ(j)cov( f (j)
i )Γ(j)> +

J

∑
j=1

I(j)σ(j)2.

In this section, we add another prevalent covariance estimation method POET

(Fan et al., 2013a) as aforementioned into our comparison.

The second panel of Table 3.2 and the second column of Figure 3.4 demon-

strate the mean/standard errors and boxplot of ‖Σ̂− Σ‖2
F for all three examples,

computed using methods discussed before. From these results, we see that

POET performs better than PCA but worse than CPCA I and CPCA F, indicating

that the sparsity structure implemented in POET can partly capture the sub-

homogeneity, while not in a very efficient way. Among these methods, CPCA F

achieves the lowest mean and standard error of ‖Σ̂− Σ‖2
F because it can best

identify both homogeneity and sub-homogeneity to accurately estimate Σ.

3.8 Real data analysis

For further illustration, we analyze a stock return data set using the proposed

CPCA and compare it with traditional PCA. As a result of the poor performance

of CPCA I ns and CPCA F ns in our simulation studies, as well as the real

analysis below, we have removed these two methods from the discussion in this

section.

The data are collected from the Center for Research in Security Prices and
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104 Homogeneity and Sub-homogeneity Pursuit

include the daily stock returns of 160 companies from 1st January, 2014 to 31st

December, 2014, with 252 trading days. The 160 stocks are selected from eight

different industries according to Fama and French’s 48-industry classification

(Fama and French, 1997), namely, Candy and Soda, Tobacco Products, Apparel,

Aircraft, Shipbuilding and Railroad Equipment, Petroleum and Natural Gas,

Measuring and Control Equipment, and Shipping Containers, with 20 stocks

from each industry. The data for the first 126 trading days are treated as the

training sample, and the rest are the testing sample. Thus, the training data

have the dimensions n = 126 and p = 160. In this example, after removing

the common effect from the data, we aim to identify the clusters that consist of

companies from the same industry. This cluster structure of stock returns is also

discussed in Fan et al. (2013a).

Figure 3.5a shows the correlation plot for the original stock data. We can

observe a vague cluster structure, but the off-diagonals are clearly non-zero,

implying that the stocks from the different industries selected in our study

tend to be positively correlated. We apply hierarchical clustering directly to the

original data and find that most stocks from different industries are clustered in

the same group, as displayed in Figure 3.6b. Only stocks from 5th industry stand

out as another cluster, because they have a relatively lower correlation with other

stocks. If we consider the industries as true clusters, the hierarchical clustering

of the original data results in an ARI of only 0.09. This indicates that common

components may exist and conceal the cluster structure within the data.

Next, we apply our proposed CPCA method to the stock data, and one

common component is determined. This is not surprising because the largest

eigenvalue of the sample covariance (0.020) is much larger than the second-

largest eigenvalue (0.005). Figure 3.5b presents the correlation plot of the data

after the common effect is removed. Comparatively, the cluster structure is more

apparent. One can interpret the common effect as the market effect and the

rest of the components as industry-specific effects. Further, the final clusters

produced by the CPCA obtain an ARI of 0.67. As demonstrated in Figures 3.6, the

final clusters mainly capture the industry information, but a few stocks are not
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§3.9 Conclusions and discussions 105

clustered into their own industries. This is to be expected because some stocks

from the same industry are not highly correlated, as shown in Figures 3.5 (e.g.,

some stocks from the first, sixth and seventh industries), which can be common

in reality. From the prediction perspective, we compute the MSRE for PCA,

CPCA I, and CPCA F as 1.87, 1.18, and 0.95 (in unit of 10−4), respectively. All of

these findings firmly support that our proposed CPCA method is appropriate

for analyzing these stock return data.
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Figure 3.5: Correlation plot for stock return data

3.9 Conclusions and discussions

To conclude, we introduced a novel CPCA method to study the homogeneity and

sub-homogeneity of high-dimensional data collected from different populations,

where the sub-homogeneity refers to a group-specific feature from a particular

population. Our numerical simulations confirmed that traditional PCA can

only extract the homogeneity from the data, whereas CPCA not only provides

a more accurate estimate of the common components, but also identifies the

group-specific features, even for the group with small variations. The features

extracted using CPCA can significantly outperform those selected by classical

PCA in terms of prediction and covariance estimation, especially when n is small

but p is large. Our real analysis of the stock return data also demonstrated that,

when using the CPCA method, we can capture the industry information after the
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(b) Hierarchical clustering of the original data
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(c) Final clusters obtained from the CPCA

Figure 3.6: Cluster membership for 160 stocks. Stocks with the same color are
from the same industry.
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common component (i.e., market effect) is removed. All of these findings support

the use of our proposed CPCA method in dimension-reduction problems.

The applications of CPCA are not limited to producing principal components

in PCR and revealing the industry structure from the stock return data. CPCA

can also be applied to any other data sets in which a group structure exists

but hides in the homogeneity. Further, it can be used to estimate a covariance

matrix and its inverse of a large data set that exhibits a group structure. More

applications of CPCA will be explored in our future work.

3.A Appendix A: Estimations in CPCA Iterative Step

(a)

In this part, we describe the estimation of the principal components, along with

their eigenvectors, combined from each cluster in Iterative Step (a) of Algorithm

1.

First, we perform PCA in cluster j by:

X(j) = Ψ(j)Π(j)′ + U(j),

where Ψ(j) is an n× rj matrix of principal components for variables in cluster j

and Π(j) is a pj × rj matrix in which each column represents an eigenvector of

X(j)′X(j). Here, recall that pj denotes the number of variables in cluster j, and rj

is the number of principal components in cluster j. Then, we can combine the

principal components Ψ(j) from each cluster as Ψ = (Ψ(1), ..., Ψ(J0)) and perform

a further step of PCA on Ψ to obtain:

Ψ = G1H′ + V ,

where we assume the first rc principal components can be used to summarize the

common effects among all clusters. Then, G1 is a n× r matrix of principal com-

ponents of Ψ, and H is a (∑J0
j=1 rj)× rc matrix in which each column represents
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an eigenvector of Ψ′Ψ. Lastly, we can find the complement for cluster j as:

X(j)c
1 = X(j) −G1H′Π(j)?′ ,

where Π(j)? = (0(1), 0(2), ..., Π(j), ..., 0(J0)) is a pj × (∑J0
j=1 rj) matrix in which Π(j)

is a pj × rj matrix, as we described earlier, and 0(l) is a pj × rl zero matrix for

l = 1, 2, ..., J0; l 6= j. Once we obtain the complement from each cluster, we can

combine them and present the total complement using:

Xc
1 = X −G1H′Π′,

where Π = (Π(1)?′ , Π(2)?′ , ..., Π(j)?′ , ..., Π(J0)?
′
)′ is a p× (∑J0

j=1 rj) block-diagonal

matrix. Hence, we can finally define Φ1 = ΠH as the corresponding eigenvectors

for G1. It is also easy to show that Φ
′
1Φ1 = Ip.

3.B Appendix B: Proof of Theorem 3.1

The matrix form of (3.11) is:

um = F(d)β + ζ
(d)
m , (3.18)

where um =
(

u(l)
m1, u(l)

m2, . . . , u(l)
mn

)′
and β = (β1, β2, . . . , βrd).

Hence, the least-squares estimation of the residual ζ
(d)
m is:

ζ̃
(d)
m = um − F(d)

(
F(d)′F(d)

)−1
F(d)′um =: MF(d)um. (3.19)

It should be noted that um and F(d) are not observed. In terms of our proposed

clustering method, we estimate um via PCA, such that:

ûm = MĜxm, (3.20)

where MĜ = In − Ĝ(Ĝ
′
Ĝ)−1Ĝ

′
, with Ĝ being an estimator for G, as described

in CPCA.
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For F(d), we also perform PCA on cluster d and denote the estimator by F̂(d).

Based on (3.19) and (3.20), our estimator of ζ
(d)
m can be written as:

ζ̂
(d)
m = MF̂(d) ûm = MF̂(d) MĜxm

= MF̂(d)

(
MĜ −MG

)
xm + MF̂(d) MGxm

=
(

MF̂(d) −MF(d)

) (
MĜ −MG

)
xm + MF(d)

(
MĜ −MG

)
xm

+
(

MF̂(d) −MF(d)

)
MGxm + MF(d) MGxm. (3.21)

To define ‖MF̂(d) −MF(d)‖2 = Op(αnpd), ‖MĜ −MG‖2 = Op(γnJ), we obtain the

result in this theorem.
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Chapter 4

Autocovariance Test for

High-dimensional Time Series

4.1 Introduction

In this chapter, we propose a novel test statistic named the autocovariance test

to compare the spiked eigenvalues of the autocovariance matrices for two high-

dimensional time series. This autocovariance test is built based on a factor model

approach where the temporal dependence of the original high-dimensional data

are captured by the factors. The test statistic is computed based on a central limit

theorem (CLT) on spiked eigenvalues of the symmetrized sample autocovariance

matrix for high-dimensional time series, which is derived my joint work (Bi et al.,

2020).

With recent developments in information technologies, more and more data

are now available for statistical analysis, including hypothesis testing. Among

various types of data, high-dimensional time series have been widely seen

in many disciplines, including economics, finance, meteorology, and biology.

Equivalent test for two high-dimensional time series is becoming increasingly

important since multiple data-sets may be aggregated for further statistical

analysis. As a traditional and fundamental statistical inference for univariate

and multivariate data, hypothesis testing for comparing two samples has been

widely discussed; for example, the well-known Z-test and Student’s T-test have

been considered for the test on the equivalence of means, and the F-test can be

performed for the equivalence of variances. For multivariate data, the mean-

111
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based Hotelling’s T2 test is a generalisation of the Student’s T-test and has also

received developments for growing dimensions (see, e.g. Pan and Zhou, 2011).

Besides, for testing the equivalence of population means of high-dimensional

data, Bai and Saranadasa (1996) proposes a test based on the squared norm

of the difference between sample means, where the dimensions and sample

sizes are required to be of the same order, while Chen and Qin (2010) proposed

a two-sample test by restricting the trace of the common sample covariance

matrix. However, for high-dimensional time series, there are both cross-sectional

and temporal dependences within the data-sets, while the above tests for the

equivalence of population means do not consider the temporal dependence of the

data. In this chapter, we propose a test that incorporates both cross-sectional and

temporal dependence within the data-set for comparing two high-dimensional

time series.

Besides, statistical analysis for high-dimensional data, especially time series,

also suffers from the ‘curse of dimensionality’, where sample estimates are not

asymptotically consistent to their population counterparts. Hence, dimension-

reduction methods can be utilised to project the original high-dimensional time

series into a low-dimensional space spanned by the eigenvectors corresponding

to the spiked eigenvalues of the autocovariance matrix. It is then convenient

to study the projected data in the low-dimensional space. In the literature of

dimension-reduction methods, principal component analysis (Jolliffe, 2002) and

factor models (Bai and Ng, 2002b; Bai, 2003b) are popular and have received most

attention and developments. For high-dimensional dependent data, to capture

both cross-sectional and temporal dependence of the original data, dynamic

principal components (Ku et al., 1995) can be considered. Alternatively, Lam et al.

(2011) suggest using approximate factor models to study high-dimensional time

series, where the temporal dependence of the original high-dimensional time

series are captured by low-dimensional factor time series. In summary, to simul-

taneously study both the cross-sectional and temporal dependence between two

high-dimensional time series, we can reduce the dimensions of the original high-

dimensional time series by projecting them into the low-dimensional eigenspace
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and study the autocovariance of the low-dimensional factors. In other words, we

mainly contribute to checking if the factors of two high-dimensional time series,

after projection onto the same eigenspace, have the same autocovariance matrix.

Besides, it is worth to be noticed that we are testing if the factors have the same

autocovariance, which is equivalent to test whether the spiked eigenvalues of

the autocovariance matrices for two high-dimensional time series are the same.

In summary we propose a novel autocovariance test based on the spiked

eigenvalues of the symmetrized sample autocovariance matrices to compare

two high-dimensional time series. Consequently, for two high-dimensional time

series sharing the same eigenstructure of the autocovariance matrix, aggregated

and simultaneous studies may also be considered.

The rest of chapter is organised as follows. Section 4.2 proposes the model of

the autocovariance test. In specific, the hypothesis we are interested in and the

test statistic based on the spiked eigenvalues of the symmetrized autocovariance

matrix for two high-dimensional time series are proposed, where we also intro-

duce the identification and regularisation conditions on the factor model and

study the asymptotic power of the autocovariance test. Section 4.3 illustrates the

implementation of the testing procedure, including the estimations for unknown

parameters that determine the test statistic. In Section 4.4, we use numerical

simulations to explore the empirical sizes and powers of the proposed test under

various settings. Section 4.5 provides an example of applying our autocovari-

ance test on age-specific mortality rates for multiple countries. Conclusions

and discussions are presented in Section 4.6, whereas technical proofs are in

Appendix 4.A.

4.2 Model

4.2.1 Hypotheses and test statistic

When the data dimension N increases, direct comparison on the sample auto-

covariance matrices for two high-dimensional time series is not feasible due to
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the ‘curse of dimensionality’. With dimension-reduction methods such as factor

models proposed in Lam et al. (2011) and Lam and Yao (2012), high-dimensional

time series can be projected into a low-dimensional space spanned by the eigen-

vectors (factor loadings) obtained from applying eigendecomposition on the

autocovariance matrix of the original high-dimensional time series data. It is

then feasible to compare two time series in the same low-dimensional space

spanned by the eigenvectors (factor loadings) of both high-dimensional time

series. To explain the idea of the autocovariance test, we will firstly introduce

the factor models for high-dimensional time series.

Consider now two independent high-dimensional stationary time series{
y(1)

t ∈ RN, t = 1, 2, ..., T
}

and
{

y(2)
t ∈ RN, t = 1, 2, ..., T

}
following factor mod-

els

y(k)
t = Q(k) f (k)t + u(k)

t , k = 1, 2, (4.1)

where
{

f (k)t ∈ Rrk , t = 1, 2, ..., T
}

are stationary factor time series with rk �
N, and Q(k) is a N × rk factor loading matrix with a normalisation condition

Q(k)>Q(k) = Irk .

For high-dimensional time series
{

y(k)
t

}
following factor models such as (4.1),

Q(k) is the time invariant factor loading matrix. Without altering the idea in

Lam et al. (2011) and Lam and Yao (2012), we consider i.i.d.
{

u(k)
t

}
which is

also independent of
{

f (k)t

}
to illustrate the idea of our test. With this set-up,

the autocovariance matrices of
{

y(k)
t

}
can be represented by the factor loading

matrix Q(k) and the autocovariance matrices of
{

f (k)t

}
as

Γ
(k)
y (τ) = Q(k)Γ

(k)
f (τ)Q(k)>

for τ ≥ 1, where Γ
(k)
y (τ) = Cov

(
y(k)

t , y(k)
t+τ

)
is the lag-τ autocovariance matrix

of
{

y(k)
t

}
, and Γ

(k)
f (τ) = Cov

(
f (k)t , f (k)t+τ

)
is the lag-τ autocovariance matrix of{

f (k)t

}
. As a result, the temporal dependence, in the form of autocovariance

matrix, of
{

y(k)
t

}
is fully captured by

{
f (k)t

}
.

Next, we will study the theoretical property of the factor loading matrix Q(k).

As discussed in Lam et al. (2011), we can decompose the symmetrized lag-τ

© Daning Bi – 21 May 2021



§4.2 Model 115

autocovariance matrix of
{

y(k)
t

}
as

Γ
(k)
y (τ)Γ

(k)
y (τ)> = Q(k)Γ

(k)
f (τ)Q(k)>Q(k)Γ

(k)
f (τ)>Q(k)> = Q(k)Γ

(k)
f (τ)Γ

(k)
f (τ)>Q(k)>.

(4.2)

Denote by µ
(k)
i,τ the eigenvalues of Γ

(k)
y (τ)Γ

(k)
y (τ)>. We then consider in this

chapter the setting where there are rk spiked eigenvalues in Γ
(k)
y (τ)Γ

(k)
y (τ)> and

µ
(k)
1,τ > µ

(k)
2,τ > ... > µ

(k)
rk,τ tend to infinity with N, while µ

(k)
rk+1,τ = µ

(k)
rk+2,τ = ... =

µ
(k)
rN ,τ = 0 for some τ ≥ 1. With this definition of spiked eigenvalues, we can show

that the columns of Q(k) are the eigenvectors of Γ
(k)
y (τ)Γ

(k)
y (τ)> corresponding

to the spiked eigenvalues, as follow.

Write W (k) for an N × (N − rk) matrix where
(

Q(k), W (k)
)

forms a N × N

orthogonal matrix so that Q(k)>W (k) = 0 and W (k)>W (k) = IN−rk . It follows

from (4.2) that Γ
(k)
y (τ)Γ

(k)
y (τ)>W (k) = 0, which means the columns of W (k) are

precisely the eigenvectors associated with zero-eigenvalues. In other words, the

columns of Q(k) are the rk eigenvectors of Γ
(k)
y (τ)Γ

(k)
y (τ)> corresponding to those

non-zero eigenvalues, and those non-zero eigenvalues of Γ
(k)
y (τ)Γ

(k)
y (τ)> are

precisely the eigenvalues of Γ
(k)
f (τ)Γ

(k)
f (τ)>. Besides, the condition Q(k)>Q(k) =

Irk is not sufficient for Q(k) to be uniquely defined, but only defines a so-called

eigenspace asM
(

Q(k)
)

.

Consequently, on one hand, M
(

Q(k)
)

is the eigenspace spanned by the

columns of Q(k), which is also the eigenvectors corresponding to the spiked

eigenvalues of the symmetrized autocovariance matrix of
{

y(k)
t

}
. On the other

hand, the eigenvalues of the symmetrized autocovariance matrix of
{

f (k)t

}
,

which summarise the information contained in the autocovariance matrix of{
f (k)t

}
, are precisely the spkied eigenvalues of the symmetrized autocovariance

matrix of
{

y(k)
t

}
. Therefore, by assuming M

(
Q(1)

)
= M

(
Q(2)

)
, we can

build a test statistic based on the difference between spiked eigenvalues of the

symmetrized lag-τ sample autocovariance matrices of two high-dimensional

time series
{

y(1)
t

}
and

{
y(2)

t

}
.

In this chapter, it is worth noting that we typically focus on testing the
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equivalence of spiked eigenvalues, but not the eigenspace of autocovariance

matrices for two high-dimensional time series
{

y(1)
t

}
and

{
y(2)

t

}
. Consequently,

for a finite τ, the null and alternative hypothesis of the autocovariance test for

two high-dimensional time series can be summarised as

Test 4.1. (Autocovariance test for two high-dimensional time series
{

y(1)
t

}
and

{
y(2)

t

}
)

H0: µ
(1)
i,τ = µ

(2)
i,τ for all i = 1, 2, ..., rk

H1: µ
(1)
i,τ 6= µ

(2)
i,τ for at least one i, i = 1, 2, ..., rk

For factor models in canonical form which will be specified in Section 4.2.2,

write γ
(k)
i,τ := E

(
f (k)i,1 f (k)i,τ+1

)
and

(
v(k)i,τ

)2
:= 1

T−τ Var
(

∑T−τ
t=1 f (k)i,t f (k)i,t+τ

)
for a finite

time lag τ, i = 1, 2, ..., rk and k = 1, 2. Denote by λ
(k)
i,τ the i-th largest spiked eigen-

value of the symmetrized lag-τ sample autocovariance matrix Γ̃
(k)
y (τ)Γ̃

(k)
y (τ)>,

where Γ̃
(k)
y (τ) = 1

T−τ−1 ∑T−τ
t=1 (y(k)

t − y(k)
T )(y(k)

t+τ − y(k)
T )>, for k = 1, 2. Then, for

i = 1, 2, ..., rk and some finite τ, the test statistic is given by

Zi,τ =
√

T
γi,τ

2
√

2vi,τ

λ
(1)
i,τ − λ

(2)
i,τ

θi,τ
, (4.3)

where

θi,τ =
θ
(1)
i,τ + θ

(2)
i,τ

2
, vi,τ =

v(1)i,τ + v(2)i,τ

2
, and γi,τ =

γ
(1)
i,τ + γ

(2)
i,τ

2
, (4.4)

and θ
(k)
i,τ is the asymptotic centring of λ

(k)
i,τ . It is worth noting that, the exact

definition of θ
(k)
i,τ is in Proposition 1.3 of Bi et al. (2020), which is rather involved

and requires technical details that are beyond the scope of this chapter. It is then

clearly that |Zi,τ| will be generally large if
{

y(1)
t

}
and

{
y(2)

t

}
follow different

factor models where the i-th largest eigenvalues of the symmetrized lag-τ sample

autocovariance matrix for two factor models are different. We name this test by

autocovariance test since the idea behind is testing whether two independent

high-dimensional time series observations share the same spiked eigenvalues of

the autocovariance matrices.
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4.2.2 Factor model and regularisation conditions

As discussed in Chapter 2, factor models have been widely discussed in the

literature, and there are various identification conditions on Q(k), f (k)t , and u(k)
t in

factor models (4.1). In this work, we adopt the idea in Lam et al. (2011) again and

assume the temporal dependence of
{

y(k)
t

}
can be fully captured by the factors{

f (k)t

}
with a time invariant factor loading matrix Q(k). In other words, we still

work in the scheme where a static relationship between
{

y(k)
t

}
and

{
f (k)t

}
is

maintained.

In a general factor model set-up that has been well discussed in Bai and Ng

(2002b) and Bai (2003b), the idiosyncratic components
{

u(k)
t ∈ RN, t = 1, 2, ..., T

}
are assumed to be independent of the factors

{
f (k)t

}
, with E

(
u(k)

j,t

)
= 0 and

E
(

u(k)
j,t

)2
=:
(

σ
(k)
u

)2
< ∞ for j = 1, 2, ..., N; t = 1, 2, ..., T. Without loss of

generality, we can work on standardised factor models where the variance of

noise component is normalised to one. For factor models with
(

σ
(k)
u

)2
6= 1, we

can standardise it by dividing σ
(k)
u on both sides. This standardisation on

{
y(k)

t

}
,

facilitates the comparison between two high-dimensional time series
{

y(1)
t

}
and{

y(2)
t

}
by restricting them to have the same scale of noises. In this work, we

follow the set-up in Li et al. (2017) and assume u(k)
j,t ∼ N (0, 1) for all j, t and k.

In addition to the assumptions made on
{

u(k)
t

}
, we assume the factors{

f (k)i,t , i = 1, 2, ..., rk; t = 1, 2, ..., T; k = 1, 2
}

in (4.1) are given by a stationary time

series

f (k)i,t =
∞

∑
l=0

ψ
(k)
i,l z(k)i,t−l, i = 1, 2, ..., rk, t = 1, 2, ..., T, (4.5)

where the random variables
{

z(k)i,t

}
are i.i.d. with mean zero, variance one and

finite fourth moments. Without loss of generality, we have assumed E
(

f (k)i,t

)
= 0

for i = 1, 2, ..., rk, t = 1, 2, ..., T, and k = 1, 2. Besides, to compare two factor

models, we can also impose a condition on
{

f (k)i,t

}
such that the variance is

normalised to one, i.e., E
(

f (k)i,t

)2
= 1. In other words, we require

∥∥∥ψ
(k)
i

∥∥∥
2
= 1

for i = 1, 2, ..., rk, and k = 1, 2, where ψ
(k)
i :=

(
ψ
(k)
i,1 , ψ

(k)
i,2 , ...

)
is the vector of
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coefficients for the i-th factor f (k)i,t . In general, this normalisation condition can

be considered as an identification condition made on Q(k) and f (k)t , where Q(k)

is no longer orthonormal and Q(k)>Q(k) = diag
((

σ
(k)
1

)2
,
(

σ
(k)
2

)2
, , ...,

(
σ
(k)
rk

)2
)

with
(

σ
(k)
i

)2
the un-normalised variance of f (k)i,t .

Lastly, we impose an additional identification condition on the loading matrix

Q(k) in (4.1) for technical convenience. To simplify factor models (4.1), we firstly

introduce the following normalisation process discussed in Li et al. (2017), where

we can consider a factor model with the loading matrix Q(k) in the following

canonical form

Q(k) =

 Irk

0N−rk

 . (4.6)

This is because for any factor loading matrix Q(k) in (4.1) that is not in the above

canonical form, we can find an orthonormal matrix P(k) =
(

Q(k), W (k)
)

such

that W (k)>Q(k) = 0, and normalise the factor models by left multiplying the

transpose of the orthonormal matrix P(k). Note that by condition Q(k)>Q(k) = Ir,

we have

P(k)>y(k)
t = P(k)>Q(k) f (k)t + P(k)>u(k)

t =

 Irk

0N−rk

 f (k)t + P(k)>u(k)
t ,

where P(k)>u(k)
t ∼ N (0, 1N) since u(k)

t ∼ N (0, 1N) and P(k) is orthonormal.

Therefore, the transferred data P(k)>y(k)
t fulfils a factor model with canonical

loading matrix. Since P(k) is orthonormal, this transfer is nothing but a rotation

made on the original data, which does not alter the eigenspace of the autocovari-

ance matrix. Instead, we can assume the variances of factors are absorbed into

the loading matrix Q(k) and impose a different canonical form condition on Q(k)
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as

Q(k) =


σ
(k)
1

. . .

σ
(k)
rk

0N−rk

 , (4.7)

where we stress the fact that Q(k)>Q(k) = diag
((

σ
(k)
1

)2
,
(

σ
(k)
2

)2
, , ...,

(
σ
(k)
rk

)2
)

with the normalisation on the variances of factors. It is worth noting that since we

have required the variances of factors
{

f (k)i,t

}
to be normalised to 1, the canonical

loading matrix Q(k) defined by (4.7) is different from that in Li et al. (2017).

Consequently, the factor models are now simplified to a canonical form as

y(k)
t = Q(k) f (k)t + u(k)

t =


σ
(k)
1 f (k)1,t

...

σ
(k)
rk f (k)rk,t

0N−rk

+ u(k)
t , (4.8)

where
{

σ
(k)
i , i = 1, 2, ..., rk; k = 1, 2

}
are positive real numbers representing (cross-

sectional) factor strengths, where we refer to Lam et al. (2011) for the definition

of factor strengths.

In summary, we consider factor models in canonical form (4.8), where the

loading matrix Q(k) is defined by (4.7) and the variances of
{

f (k)i,t

}
and

{
u(k)

j,t

}
are normalised to 1. In addition, we assume the data

{
y(k)

t

}
comes from strong

factor models where σ
(k)
i is divergent as N → ∞ for i = 1, 2, ..., rk and k = 1, 2.

Besides, for a general strong factor model that is not in the canonical form 4.7, it

can be normalised by standardising the variance of
{

u(k)
j,t

}
to one first and then

rotating the original data such that the loading matrix Q(k) is in the canonical

form (4.7).

Moreover, recall that for a finite time lag τ, γ
(k)
i,τ := E

(
f (k)i,1 f (k)i,τ+1

)
is the

population lag-τ autocovariance (autocorrelation) of the i-th factor time series{
f (k)i,t

}
. Since each factor in (4.1) is assumed to be stationary following (4.5), γ

(k)
i,τ
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can also be written as

γ
(k)
i,τ = E

(
f (k)i,1 f (k)i,τ+1

)
=

∞

∑
l=0

ψ
(k)
i,l ψ

(k)
i,l+τ.

Therefore, for high-dimensional time series
{

y(k)i,t

}
fulfilling factor models (4.8),

the population lag-τ autocovariance can be defined as

µ
(k)
i,τ := E

(
y(k)i,t y(k)i,t+τ

)
=
(

σ
(k)
i

)2
γ
(k)
i,τ , for i = 1, 2, ..., rk; k = 1, 2,

where the time lag τ is a prescribed positive integer. Besides, to compare two

high-dimensional time series in the same eigenspace, we require the eigenvalues

of the symmetrized lag-τ sample autocovariance matrix to be distinct and well-

separated asymptotically. For technical convenience, we have also assumed

without loss of generality that µ
(k)
1,τ > µ

(k)
2,τ > · · · > µ

(k)
rk,τ > 0 in Section 4.2.1,

therefore each population eigenvector can be uniquely identified and recovered

(Lam and Yao, 2012).

Consequently, the assumptions for high-dimensional time series fulfilling

factor models in canonical form (4.8) are summarised below.

Assumptions 4.1.

(i) N → ∞ and N/T → c > 0 as T → ∞.

(ii) rk = o
(
T1/16) and rk = o

((
σ
(k)
i

)2
)

as T → ∞ for i = 1, 2, ..., rk.

(iii) σ
(k)
i → ∞ as T → ∞ for i = 1, 2, ..., rk, and σ

(k)
i /σ

(k)
j = O(1) for i, j =

1, 2, ..., rk.

(iv) τ is a fixed non-negative integer and µ
(k)
1,τ > µ

(k)
2,τ > · · · > µ

(k)
rk,τ > 0.

(v)
{

u(k)
j,t

}
are i.i.d. N (0, 1).

(vi) The coefficients in the linear process of
{

f (k)i,t

}
fulfils supi

∥∥∥ψ
(k)
i

∥∥∥
1
< ∞ and∥∥∥ψ

(k)
i

∥∥∥
2
= 1;

{
z(k)i,t

}
are i.i.d. with E

(
z(k)i,t

)
= 0, E

(
z(k)i,t

)2
= 1 and uniformly

bounded 4 + ε moment for some ε > 0.
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Remark 4.1. We note that (i) and (iii) of Assumption 4.1 capture our asymptotic

regime where we allow N diverging at the same rate as T, and the strength

of all factors diverge at comparable rates. The condition in (ii) allows the

number of factors to diverge but at a relatively slow rate compared with T, and

it is trivially satisfied when the number of factors rk is finite. The condition

in (iv) ensures that the empirical eigenvalues, as well as the eigenvectors, are

asymptotically separable. Besides, as discussed in the previous section, the

normality assumption in (v) is for the purpose of reducing the model to a

canonical form. Lastly, the moments’ conditions in (vi) are standard for time

series studies (Anderson, 1971), while the conditions on ψ
(k)
i are for normalising

purpose and can be satisfied by any causal autoregressive moving average

processes.

4.2.3 Asymptotic results for the autocovariance test

To study the asymptotic properties of the autocovariance test for comparing

two high-dimensional time series, we firstly present a result in my joint work

(Bi et al., 2020), where a central limit theorem (CLT) on spiked eigenvalues of

the symmetrized sample autocovariance matrix of
{

y(k)
t

}
is developed. For

factor models in canonical form (4.8), recall that γ
(k)
i,τ = E

(
f (k)i,1 f (k)i,τ+1

)
and(

v(k)i,τ

)2
= 1

T−τ Var
(

∑T−τ
t=1 f (k)i,t f (k)i,t+τ

)
for a finite time lag τ, i = 1, 2, ..., rk, and

k = 1, 2. Then for the i-th largest spiked eigenvalue λ
(k)
i,τ of the symmetrized

lag-τ sample autocovariance matrix of
{

y(k)
t

}
, we have the following CLT.

Lemma 4.1 (Theorem 1.5 in Bi et al. (2020)). Suppose that Assumption 4.1 hold, for

i = 1, 2, ..., rk and some finite τ, it holds that

√
T

γ
(k)
i,τ

2v(k)i,τ

λ
(k)
i,τ − θ

(k)
i,τ

θ
(k)
i,τ

⇒ N (0, 1), (4.9)

as T, N → ∞, where θ
(k)
i,τ is the asymptotic centring of λ

(k)
i,τ and the exact definition can

be found in Proposition 1.3 of Bi et al. (2020).
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Lemma 4.1 provides the asymptotic properties of
{

λ
(k)
i,τ , i = 1, 2, ..., rk

}
which

are associated with the i-th factors in (4.8). Consider again for the two inde-

pendent N-dimensional time series
{

y(1)
t

}
and

{
y(2)

t

}
with the sample size T.

Recall that λ
(1)
i,τ and λ

(2)
i,τ are the i-th spiked eigenvalues of the symmetrized lag-τ

sample autocovariance matrices of
{

y(1)
t

}
and

{
y(2)

t

}
, respectively. If

{
y(1)

t

}
and

{
y(2)

t

}
are assumed following the same factor model under Assumptions

4.1, independently, λ
(1)
i,τ and λ

(2)
i,τ will also share the same asymptotic distribution

as shown in Lemma 4.1, independently. Therefore, to test whether
{

y(1)
t

}
and{

y(2)
t

}
share the same spiked eigenvalues of the autocovariance matrices, it is

natural to create the test statistic (4.3) base on the difference between λ
(1)
i,τ and

λ
(2)
i,τ . When

{
y(1)

t

}
and

{
y(2)

t

}
follow the same factor model in the canonical

form (4.8), we have the following CLT on the difference between λ
(1)
i,τ and λ

(2)
i,τ .

Theorem 4.1. Under the same assumptions of Lemma 4.1, for two independent high-

dimensional time series
{

y(1)
t

}
and

{
y(2)

t

}
following the same factors in canonical form

(4.8), we have

Zi,τ =
√

T
γi,τ

2
√

2vi,τ

λ
(1)
i,τ − λ

(2)
i,τ

θi,τ
⇒ N (0, 1), (4.10)

as T, N → ∞, where θi,τ, vi,τ and γi,τ are defined in (4.4).

Theorem 4.1 is a direct result of Lemma 4.1, since an asymptotic distribution of
λ
(1)
i,τ −λ

(2)
i,τ

θi,τ
can be derived using the independence between λ

(1)
i,τ and λ

(2)
i,τ . According

to Theorem 4.1, under the null hypothesis, the test statistic Zi,τ converges weakly

to a standard normal random variable when T, N → ∞.

On the other hand, under certain alternative hypotheses such as r1 =

r2, γ
(1)
i,τ = γ

(2)
i,τ , v(1)i,τ = v(2)i,τ , but

(
σ
(1)
i

)2
6=
(

σ
(2)
i

)2
and θ

(1)
i,τ 6= θ

(2)
i,τ , it can be

shown in the next theorem that for some significant levels α, the power of the

autocovariance test converges to 1 as T, N → ∞.

Theorem 4.2. Under the same assumptions of Lemma 4.1, if we assume two indepen-

dent high-dimensional time series
{

y(1)
t

}
and

{
y(2)

t

}
follow different factor models in
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canonical form (4.8) with

r1 = r2 = r, γ
(1)
i,τ = γ

(2)
i,τ = γi,τ, v(1)i,τ = v(2)i,τ = vi,τ, and θ

(1)
i,τ = (1 + c)θ(2)i,τ .

Then, for any c such that
√

T 2c
2+c → ∞ as T, N → ∞ and λ

(1)
i,τ 6= λ

(2)
i,τ , it holds that

Pr (|Zi,τ| > zα|H1)→ 1, (4.11)

for T, N → ∞, where zα is the α-th quantile of the standard normal distribution.

Remark 4.2. The condition
√

T 2c
2+c → ∞ as T, N → ∞ in Theorem 4.2 is relatively

weak. It implies that for T, N → ∞, the power of the test converges to 1 not only

for a constant c, but also for some c→ 0 as long as
√

Tc→ ∞. In other words,

this test even works asymptotically for a local alternative hypothesis where the

difference between θ
(1)
i,τ and θ

(2)
i,τ tends to 0, but slower than 1/

√
T.

4.3 Implementation of testing procedure

In this section, the procedure of the autocovariance test is illustrated. For two

high-dimensional time series, the test procedure can be summarised into four

steps. Firstly, estimates of the factor models for both populations should be

conducted, where the number of factors needs to be determined. Secondly,

the original high-dimensional observations and the factor models’ estimates

need to be standardised to fulfil the canonical factor model (4.8). Thirdly, the

quantities required to compute the test statistic Z̃i,τ should be estimated from

both populations. Furthermore, we can compute the test statistic Z̃i,τ and its

corresponding p-value for testing the equivalence of factor models. The details

of the estimation and testing procedure are illustrated and discussed as follows.

Step 1: Estimates of the factor model:

For de-meaned high-dimensional time series observations
{

y(k)
t

}
, we first

compute the symmetrized lag-τ sample autocovariance matrix Γ̃
(k)
y (τ)Γ̃

(k)
y (τ)>,

where Γ̃
(k)
y (τ) = 1

T−τ−1 ∑T−τ
t=1 y(k)

t y(k)>
t+τ is the lag-τ sample autocovariance
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matrix of
{

y(k)
t

}
. By applying spectral (eigenvalue) decomposition on

Γ̃
(k)
y (τ)Γ̃

(k)
y (τ)>, we can obtain an estimate of the factor loading matrix

as Q̂(k)
τ =

(
q̂(k)

1,τ , q̂(k)
2,τ , ..., q̂(k)

rk,τ

)
with q̂(k)

i,τ the eigenvector of Γ̃
(k)
y (τ)Γ̃

(k)
y (τ)>

associated with the i-th largest eigenvalue λ̂
(k)
i,τ . To determine the number

of factors, we adopt the idea in Lam et al. (2011), and use a ratio-based

estimator r̂k = argmin1≤j≤R λ̂
(k)
j+1,τ/λ̂

(k)
j,τ where λ̂

(k)
1,τ ≥ λ̂

(k)
2,τ ≥ · · · ≥ λ̂

(k)
N,τ

and R is an integer satisfying rk ≤ R < N.

With Q̂(k)
τ , the factors can then be estimated by f̂ (k)t = Q̂(k)>

τ y(k)
t and the

high-dimensional time series can be recovered by ŷ(k)
t = Q̂(k)

τ f̂ (k)t . Hence

we have estimates of the factor model that is not in the canonical form (4.8)

and the residuals are

û(k)
t = y(k)

t − Q̂(k)
τ f̂ (k)t . (4.12)

Moreover, to standardise the estimated factor model into the canonical

form (4.8), we also need to estimate the variance of u(k)
j,t by

(
σ̂
(k)
u

)2
=

1
NT−1 ∑N

j=1 ∑T
t=1

(
û(k)

j,t − û
(k)
j,t

)2
.

Remark 4.3. It is clear that for two high-dimensional time series where the

estimated numbers of factors are different, i.e., r̂1 6= r̂2, one can conclude

that the two high-dimensional data follow different factor models where

M
(

Q(1)
)
6=M

(
Q(2)

)
and the numbers of spiked eigenvalues for their

autocovariance matrices are different. However, if we are interested in test-

ing the equivalence for particular spiked eigenvalue of the autocovariance

matrices for two high-dimensional data, it is still possible to perform the

autocovariance test even if r̂1 6= r̂2. The intuition is to test whether the

low-dimensional representations of both high-dimensional time series have

the same variance in certain directions, though the data cannot be fully

projected into the same eigenspace.

Step 2: Standardise the estimated factor model to satisfy the canonical form condi-

tions:
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With Q̂(k)
τ and

(
σ̂
(k)
u

)2
, we can now standardise the estimated factor mod-

els (4.12) to fulfil the canonical form condition. Firstly, write M(k)
τ =(

Q̂(k)
τ , 0N−r̂k

)
for an N×N matrix. Then we can define ỹ(k)

t := M(k)>
τ y(k)

t /σ̂
(k)
u

for the normalised data and ũ(k)
t := û(k)

t /σ̂
(k)
u for the normalised residuals.

By left multiplying Q̂(k)>
τ and then dividing by σ̂

(k)
u , the estimated factor

model is reduced to

ỹ(k)
t = M(k)>

τ Q̂(k)
τ f̂ (k)t /σ̂

(k)
u + ũ(k)

t ,

where note that

M(k)>
τ Q̂(k)

τ =

 Ir̂k

0N−r̂k

 .

Secondly, to normalise f̂ (k)t , we can estimate the variances of f̂ (k)t by(
σ̂
(k)
i

)2
= 1

T−1 ∑T
t=1

(
f̂ (k)i,t − f̂

(k)

i,t

)2

, for i = 1, 2, ..., r̂k.

In addition, write f̃ (k)t = f̂ (k)t /
(

σ̂
(k)
u σ̂

(k)
i

)
for the normalised estimates of

factors, and

Q̃(k)
τ =


σ̂
(k)
1

. . .

σ̂
(k)
r̂k

0N−r̂k

 ,

for the N × r̂k estimated loading matrix. Then we have standardised the

estimated factor model to

ỹ(k)
t = Q̃(k)

τ f̃ (k)t + ũ(k)
t , (4.13)

which follows the canonical form defined by (4.8).

Step 3: Estimate unknown parameters in the test statistic:
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For standardised data
{

ỹ(k)
t

}
following the estimated factor model (4.13),

λ
(k)
i,τ can be computed as the i-th largest eigenvalue of the symmetrized

lag-τ sample autocovariance matrix Γ̃
(k)
ỹ (τ)Γ̃

(k)
ỹ (τ)>, where the sample

autocovariance matrix is given by Γ̃
(k)
ỹ (τ) = 1

T−τ−1 ∑T−τ
t=1 ỹ(k)

t ỹ(k)>
t+τ and

γ
(k)
i,τ can be estimated from the sample lag-τ autocovariance of the i-th

estimated factor
{

f̃ (k)i,t

}
. Besides, we also need to estimate the quantities

v(k)i,τ and θ
(k)
i,τ , as defined in Test 4.1, for each sample to compute the test

statistic. However, since
(

v(k)i,τ

)2
= 1

T−τ Var
(

∑T−τ
t=1 f (k)i,t f (k)i,t+τ

)
depends on

the variance of ∑T−τ
t=1 f (k)i,t f (k)i,t+τ and θ

(k)
i,τ is the asymptotic centring of λ

(k)
i,τ ,

they cannot be directly estimated from sample observations. Instead, we

can use bootstrap to estimate both quantities. It is worth noting that since

the bootstrap is conducted on the estimated low-dimensional factor time

series
{

f̃ (k)t

}
, the bootstrap estimators are not affected by the increasing

dimensions.

Therefore, the sieve bootstrap proposed in Chapter 2 can be utilised for

estimating v(k)i,τ and θ
(k)
i,τ . In specific, an AR(p) model can be fitted for each

estimated factor f̃ (k)i and the residuals can be taken as

ε̃
(k)
i,t = f̃ (k)i,t −

p

∑
l=1

ψ̃
(k)
i,l f̃ (k)i,t−l,

where
{

ψ̃
(k)
i,l , l = 1, 2, ..., p

}
are the AR coefficients. Then by resampling

from the empirical distribution of centralised residuals
(

ε̃
(k)
i,t − ε̃

(k)
i

)
, the

bootstrap factors can be generated as

f (k)bi,t =
p

∑
l=1

ψ̃
(k)
i,l f (k)bi,t−l + ε

(k)b
i,t ,

where ε
(k)b
i,t is the bootstrap residual. Hence, we can estimate v(k)i,τ by

ṽ(k)∗i,τ =

√√√√√ 1
T − τ

 1
B− 1

B

∑
b=1

(
T−τ

∑
t=1

f (k)bi,t f (k)bi,t+τ −
1
B

B

∑
b=1

(
T−τ

∑
t=1

f (k)bi,t f (k)bi,t+τ

))2
,

© Daning Bi – 21 May 2021



§4.3 Implementation of testing procedure 127

where b = 1, 2, ..., B for B bootstrap samples of
{

f (k)∗i,t

}
. In addition, since

θ̃
(k)
i,τ is an estimate of the asymptotic centring of λ

(k)
i,τ , we can bootstrap{

ỹ(k)
t

}
by

y(k)b
t = Q̃(k)

τ f (k)bt ,

for B times and estimate θ
(k)
i,τ by

θ̃
(k)∗
i,τ =

1
B

B

∑
b=1

λ
(k)b
i,τ ,

where λ
(k)b
i,τ is the i-th largest eigenvalue of the symmetrized lag-τ sample

autocovariance matrices of
{

y(k)b
t

}
. In the meantime, since bootstrap is

conducted to estimate v(k)i,τ and θ
(k)
i,τ , an alternative estimate of γ

(k)
i,τ can also

be computed based on B bootstrap samples, as

γ̃
(k)∗
i,τ =

1
B

B

∑
b=1

(
1

T − τ − 1

T−τ

∑
t=1

(
f (k)bi,1 −

1
T

T

∑
t=1

f (k)bi,t

)(
f (k)bi,τ+1 −

1
T

T

∑
t=1

f (k)bi,t

))
.

Step 4: Compute the test statistic and p-value:

When the first three steps have been conducted on both high-dimensional

times series
{

y(1)
t

}
and

{
y(2)

t

}
, we can estimate the unknown parameters

in (4.3) by

θ̃∗i,τ :=
T1θ̃

(1)∗
i,τ + T2θ̃

(2)∗
i,τ

T1 + T2
, ṽ∗i,τ :=

T1ṽ(1)∗i,τ + T2ṽ(2)∗i,τ

T1 + T2
, γ̃∗i,τ :=

T1γ̃
(1)∗
i,τ + T2γ̃

(2)∗
i,τ

T1 + T2
,

where θ̃
(k)∗
i,τ , ṽ(k)∗i,τ and γ̃

(k)∗
i,τ are computed from two high-dimensional times

following the procedure in Step 4.3. Then, the test statistic can be computed

as

Z̃i,τ :=
(

λ
(1)
i,τ − λ

(2)
i,τ

)√ T1T2

T1 + T2

γ̃∗i,τ
2ṽ∗i,τ θ̃∗i,τ

, (4.14)
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where λ
(1)
i,τ and λ

(2)
i,τ are the i-th (1 ≤ i ≤ r̂k) largest eigenvalues of the

symmetrized lag-τ sample autocovariance matrix for the standardised data{
ỹ(1)

t

}
and

{
ỹ(2)

t

}
, respectively. Lastly, the p-value of this test statistic Z̃i,τ

can be computed as Pr
(

z >
∣∣∣Z̃i,τ

∣∣∣) = 2
(

1−Φ
(
|Z̃i,τ|

))
for a two-sided

test, and Pr
(

z > Z̃i,τ

)
= 1−Φ

(
Z̃i,τ

)
or Pr

(
z < Z̃i,τ

)
= Φ

(
Z̃i,τ

)
for one-

sided tests, where Φ (·) denotes the cumulative distribution function (CDF)

of a standard normal random variable.

4.4 Simulation studies

This section uses numerical simulations to investigate the proposed autocovari-

ance test’s empirical sizes and powers in various scenarios.

To start, we first of all explore the empirical sizes of the autocovariance test

for various orders of factor strengths and ratios between the sample size T and

the data dimension N. We assume the high-dimensional observations
{

y(1)
t

}
and

{
y(2)

t

}
are generated from the one-factor model y(k)

t = Q(k) f (k)t + u(k)
t in the

canonical form (4.8). Moreover, we assume the factor
{

f (k)1,t

}
follow an AR(1)

model with mean zero, AR coefficient φ
(k)
1 = 0.5 and variance normalised to one.

In other words, the factors for both time series are generated by

f (k)1,t = φ
(k)
1 f (k)1,t−1 + z(k)1,t , k = 1, 2, (4.15)

where φ
(k)
1 = 0.5 and

{
z(k)1,t

}
are i.i.d. N

(
0,
(

σ
(k)
z

)2
)

with the variance given

by
(

σ
(k)
z

)2
= 1/

(
1−

(
φ
(k)
1

)2
)

= 3/4, so that Var
(

f (k)1,t

)
= 1. As discussed

for the canonical form condition of factor models, the variances
{(

σ
(k)
i

)2
}

of normalised factors are contained in the loading matrix Q(k). To study the

empirical sizes of the autocovariance test under various factor strengths, we

firstly refer to Lam et al. (2011) for the definition of factor strength. Lam et al.

(2011) define the factor strength through the relationship between the orders

of variances and the data dimension N, which is
(

σ
(k)
1

)2
� N1−δ for δ ∈ [0, 1).
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Using this definition, δ = 0 refers to the strongest factors with the pervasiveness,

and factor strengths drop when δ increases from 0 to 1. In this section, we

consider four different cases for factor strengths, where δ = 0, 0.1, 0.3, and 0.5.

Specifically,
(

σ
(k)
1

)2
in the loading matrix Q(k) that follows canonical form (4.7)

is assumed to be N, N0.9, N0.7, and N0.5, respectively, and
{

u(k)
j,t

}
are assumed to

be i.i.d. N (0, 1). In summary, both N-dimensional time series observations are

generated by

y(k)
t =

 σ
(k)
1

0N−1

 f (k)1,t + u(k)
t , (4.16)

where σ
(k)
1 = N1−δ,

{
uj,t
}

are i.i.d. N (0, 1), and
{

f (k)1,t

}
are generated by (4.15).

In addition to factor strengths, to explore the impact of ratios between sample

size T and data dimension N, we generate data with T = 400, 800 and N =

100, 200, 400, 800, 1600. To compute the empirical sizes, for each combination

of T, N and δ, two high-dimensional time series observations are first of all

generated as
{

y(1)
t

}
and

{
y(2)

t

}
. Then, by utilizing the estimation and testing

procedure in Section 4.3, the test statistic Z̃i,τ can be computed by (4.14) where

B = 500 bootstrap samples are generated to find θ̃
(k)∗
i,τ , ṽ(k)∗i,τ and γ̃

(k)∗
i,τ , at the

numbers of factors are assumed to be known (i.e., r̃k = 1) for both samples. The

empirical sizes of a one-sided autocovariance test for i = 1, τ = 1, and significant

level α = 0.1 under various combinations of T, N and δ are computed as the

averages of empirical probabilities that Z̃1,1 is less than zα or greater than z1−α,

i.e.,

1
M

M

∑
m=1

1{Z̃1,1(m)<zα}, or
1
M

M

∑
m=1

1{Z̃1,1(m)>z1−α},

for M = 500 Monte Carlo simulations, where Z̃1,1(m) is the test statistic com-

puted from the m-th simulation.

As presented in Figure 4.1, despite some minor fluctuations, the empirical

sizes of the autocovariance test are close to the nominal significant level α = 0.1
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Figure 4.1: Empirical sizes of the autocovariance test in the first scenario with
T = 400, 800, N = 100, 200, 400, 800, 1600, and δ = 0, 0.1, 0.3, 0.5.

for all choices of N, T and δ. That is, when the numbers of factors are known or

can be correctly estimated, the nominal type-I errors of the autocovariance test

can be verified via empirical simulation studies for δ = 0, 0.1, 0.3, 0.5, T = 400, 800,

and N = 100, 200, 400, 800, 1600. The choice of τ = 1 for the autocovariance

test is to acquire the most information on temporal dependence of
{

y(k)
t

}
and

to achieve the best accuracy on corresponding estimators θ̃
(k)∗
i,τ , ṽ(k)∗i,τ and γ̃

(k)∗
i,τ ,

while other choices of finite τ may be considered with cautions as γ
(k)
i,τ tends to 0

when τ increases.

For two high-dimensional time series following factor models that are nor-

malised to the canonical form (4.13), the difference between spiked eigenvalues

of the symmetrized lag-τ autocovariance matrix for two time series may come

from the difference between variances or auto-correlations of factors in different

factor models. Therefore, to empirically investigate the autocovariance test’s

power, we study two typical scenarios where either variances or auto-correlations

of factors are different between two factor models. We are particularly interested

in whether the autocovariance test’s empirical power grows with the difference

between variances or auto-correlations for two high-dimensional time series.

Specifically, to explore the impacts of δ, N and T on empirical powers, we

again generate observations from two populations with T = 400, 800, N =

200, 400, 800, and δ = 0, 0.1, 0.3, 0.5. The data in the first population is generated
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by (4.16), which is precisely the same as we study the empirical sizes, while

the data in the second population is generated with a different σ
(2)
1 or φ

(2)
1 in

the factor model. In the first scenario, we examine the impact of difference

between σ
(1)
1 and σ

(2)
1 on empirical powers of the autocovariance test, therefore,

keep the AR coefficient φ
(2)
1 the same as φ

(1)
1 (i.e., φ

(2)
1 = φ

(1)
1 = 0.5), and

set
(

σ
(2)
1

)2
as 1.1

(
σ
(1)
1

)2
, 1.3

(
σ
(1)
1

)2
, 1.5

(
σ
(1)
1

)2
, 1.7

(
σ
(1)
1

)2
, and 1.9

(
σ
(1)
1

)2
,

respectively. On the other hand, in the second scenario, we keep
(

σ
(2)
1

)2
=(

σ
(1)
1

)2
= N1−δ, but set the AR coefficients for the second population to be

φ
(2)
1 = 0.9φ

(1)
1 , 0.8φ

(1)
1 , 0.7φ

(1)
1 , 0.6φ

(1)
1 , and 0.5φ

(1)
1 , respectively. By doing that, we

can investigate how the empirical powers of the autocovariance test are affected

by the difference between auto-correlations of factors in two factor models.

Moreover, when generating
{

f (2)i,t

}
, it is worth to mention that

{
z(2)1,t

}
are i.i.d.

N
(

0,
(

σ
(2)
z

)2
)

with
(

σ
(2)
z

)
= 1/

(
1− φ

(2)2
1

)
.

To compute the empirical powers, for each combination of T, N and δ, two

high-dimensional time series observations are generated as
{

y(1)
t

}
and

{
y(2)

t

}
first. Then, we can follow the estimation and testing procedure in Section 4.3 and

compute the test statistic Z̃i,τ by (4.14), where again B = 500 bootstrap samples

are generated to find θ̃
(k)∗
i,τ , ṽ(k)∗i,τ , and γ̃

(k)∗
i,τ for both samples with the number

of factors assumed to be known (i.e., r̃k = 1). Lastly, based on M = 500 Monte

Carlo simulations, the empirical powers of a one-sided autocovariance test for

i = 1, τ = 1, and α = 0.1 can be estimated by the empirical probability that Z̃1,1

is less than zα, i.e.,

1
M

M

∑
m=1

1{Z̃1,1(m)<zα},

for the first scenario, and the probability that Z̃1,1 is greater than z1−α, i.e.,

1
M

M

∑
m=1

1{Z̃1,1(m)>z1−α},

for the second scenario, where we have assumed µ
(1)
1,1 < µ

(2)
1,1 for various choices
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of
(

σ
(2)
1

)2
in the first scenario, and µ

(1)
1,1 > µ

(2)
1,1 for various choices of φ

(2)
1 in the

second scenario.

Figure 4.2: Empirical powers of the autocovariance test in the first scenario with
T = 400, N = 200, 400, 800, and δ = 0, 0.1, 0.3, 0.5.

Figure 4.3: Empirical powers of the autocovariance test in the first scenario with
T = 800, N = 200, 400, 800, and δ = 0, 0.1, 0.3, 0.5.

Empirical powers of the autocovariance test in both scenarios with various

choices of N, T, and δ are presented in Figures 4.2 to 4.5. As shown in Fig-

ures 4.2 and 4.3, it is clear that for all combinations of N and T, empirical powers

in the first scenario increase towards 1 when
(

σ
(2)
1

)2
increases from 1.1

(
σ
(1)
1

)2

to 1.9
(

σ
(1)
1

)2
. Therefore, numerical results in Figure 4.2 and 4.3 suggest that

the autocovariance test can correctly reject the null hypothesis when two high-

dimensional time series follow different factor models with
(

σ
(2)
1

)2
6=
(

σ
(1)
1

)2
.
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Besides, despite the common trend, for the same difference between
(

σ
(2)
1

)2

and
(

σ
(1)
1

)2
, the empirical powers of one-sided autocovariance tests for T = 800

are generally higher than those associated with T = 400, which can be justified

by
√

T in (4.3). Also, the powers of stronger factor models with smaller δ are

slightly higher than those of weaker factor models with larger δ, especially for

T = 400.

Figure 4.4: Empirical powers of the autocovariance test in the second scenario
with T = 400, N = 200, 400, 800, and δ = 0, 0.1, 0.3, 0.5.

Figure 4.5: Empirical powers of the autocovariance test in the second scenario
with T = 800, N = 200, 400, 800, and δ = 0, 0.1, 0.3, 0.5.

Similarly, as presented in Figure 4.4 and 4.5, for all ratios of N and T, empirical

powers in the second scenario also increase towards 1, while φ
(2)
1 drops from

φ
(1)
1 = 0.5. As a consequence, Figure 4.4 and 4.5 suggest that the autocovariance
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test can correctly reject the null hypothesis when two high-dimensional time

series follow different factor models with φ
(2)
1 6= φ

(1)
1 . However, unlike the first

scenario, empirical powers of the one-sided the autocovariance test for relatively

weak factor models with large δ, especially δ = 0.5, are slightly lower than those

of relatively strong factor models with small δ. In other words, compared with

strong factor models, the autocovariance test for weak factor models is slightly

less potent in detecting the same proportional changes in auto-correlations of

factors for two different factor models.

4.5 Mortality data for multiple countries

To apply the proposed autocovariance test in real-world data, we study age-

specific mortality rates for countries worldwide and test whether the mortality

rates for different countries share the same factor model with the same spiked

eigenvalues of their autocovariance matrices. In the past century, age-specific

mortality rates have received massive attention, especially by insurance compa-

nies and governments, as accurate forecasting mortality rates are crucial for the

pricing of life insurance products and are highly related to social and economic

policies. Among many works on forecasting age-specific mortality rates, the

Lee-Carter model (Lee and Carter, 1992) is prevalent and has been used glob-

ally. Despite some extensions on the original model (see, e.g., Hyndman and

Shahid Ullah, 2007; Li et al., 2013), one drawback of the Lee-Carter model is

that it only focuses on the death rates of a single country, therefore may pro-

duce quite different long-run forecasts of mortality rates for different countries.

Recently, joint modelling of mortality rates for multiple countries has become

more attractive since the common features extracted for multiple populations can

further improve forecasting accuracy. In this sense, correctly classifying countries

with similar patterns of mortality rates into the same group for joint modelling

and combined statistical analysis becomes critical. In addition to the traditional

grouping methods based on socioeconomic status or ethnic group, Tang et al.

(2020) emphasise the use of statistical clustering methods on determining the

© Daning Bi – 21 May 2021



§4.5 Mortality data for multiple countries 135

grouping of countries.

This section uses the proposed autocovariance test to explore whether mul-

tiple countries’ mortality data have the same spiked eigenvalues of the autoco-

variance matrices. To achieve this, we collect the total death rates for various

countries from the Human Mortality Database (University of California, Berkeley

(USA) and Max Planck Institute for Demographic Research (Germany), 2018). For

the best quality of data, we choose the death rates from age 0 to 90 and require

each country’s sample size to be relatively large. For some countries such as the

Republic of Korea and Chile, the data are only available for a short period, while

for some other countries, the data quality cannot be guaranteed due to some

historical reasons. As a result, we only study selected countries with total death

rates available from 1957 to 2017. Besides, as seen in the first graph of Figure 4.6,

the age-specific mortality rates are not stationary for most ages; therefore, they

have been pre-processed by taking the logarithm and then differenced, since our

method is developed for stationary time series. For countries such as Norway

and Iceland, there are quite a few zero death rates for young children due to

the relatively small population; hence they are excluded from our study. For

all the other countries, zero death rates are replaced by the averages of death

rates in adjacent years. In summary, the data we study has dimension N = 91

and sample size T = 60 for each country. The plots of log mortality rates for

Australia are shown in Figure 4.6 as an example.

Figure 4.6: Observed time series of log death rates in Australia
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According to the estimation and testing procedure in Section 4.3, factor

models in canonical form 4.8 are firstly estimated and normalised from the

differenced log death rates for each country. In the meantime, the number of

factors in the factor model for each country is estimated and compared. As

shown in Table 4.1, for most countries, there is only one factor estimated from

the differenced log death rates, while there are some exceptions where two, three,

and five factors are estimated. For countries with the same number of factors, we

can compute the test statistic Z̃i,τ to test the equivalence of factors. For the best

accuracy in estimating the number of factors and temporal dependence among

death rates, the autocovariance test is performed based on τ = 1 throughout this

section.

Table 4.1: Estimated number of factors in the factor model for each country

Estimated number of factors Countries

1
Australia, Belgium, Bulgaria, Czechia, Finland, Greece, Hungary,

Japan, Netherlands, Sweden, Switzerland, U.K., U.S.A.

2 Denmark

3 Canada, France, Italy, Portugal

5 Poland

For countries with one factor in their estimated factor models, the test statistic

Z̃1,1 for each pair of countries can be computed. Meanwhile, the signs of γ̃
(k)
1,1

are checked for all countries where it is positive for the U.S.A. but negative for

all the other countries. Consequently, the factor model for the U.S.A. should

be considered different from the rest countries with one factor. For all other

countries with one factor, the p-values associated with all test statistics are com-

puted. As illustrated in Figure 4.7, the factor model and the spiked eigenvalues

of the autocovariance matrices in the majority of European countries are similar

as most p-values of test statistics between two European countries are greater

than 0.1. However, the p-values between Finland and Bulgaria, the U.K. and

Bulgaria, Finland and Switzerland, the U.K. and Switzerland are relatively small.

As a result, extra caution needs to be taken when these countries are included

in a combined statistical analysis. Besides, some p-values associated with either
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Japan or Australia are also relatively small, which can be considered statistical

evidence of geographic impacts.

Figure 4.7: p-values of the autocovariance test for each pair of countries that have
one factor in the estimated factor model

For countries with three factors, to test on the equivalence of autocovariance

through factor models, test statistics between each pair of countries are computed

for all three factors as Z̃1,1, Z̃2,1 and Z̃3,1. As depicted in Figure 4.8, the p-values

for Z̃1,1 and Z̃2,1 between all pairs of countries are relatively large, which suggests

that the differences of the first two factors between each pair of countries are

not significant (at α = 0.1). Nonetheless, p-values for Z̃1,3 are relatively small

between Canada and France, Canada and Italy, and very small between Italy

and Portugal. As a result, despite that p-value is 0.09 for Z̃1,3 between Italy and

Portugal, one may suggest considering France, Italy, and Portugal have similar
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spiked eigenvalues of their autocovariance matrices in a three-factor model and

include them in a combined statistical analysis while leaving Canada for an

independent analysis.

Figure 4.8: p-values of the autocovariance test for each pair of countries that have
three factors in the estimated factor model

In practice, as discussed in Remark 4.3, regardless of whether the estimated

number of factors of total mortality rates for multiple countries are the same,

it is still of interest to test whether the mortality rates for multiple countries

have the same low-dimensional representations in the eigenspace spanned by

the first eigenvector that is shared by all countries. For this purpose, we perform

autocovariance tests on the first factor for all countries except the U.S.A., and the

results are illustrated in Figure 4.9. It is then straightforward that, in addition to

what has been discussed for those countries with only one factor in their factor

models, the first factor of Australia, Bulgaria, and Switzerland also differs from

Italy and Poland’s first factor, respectively. Consequently, despite the differences

between the estimated numbers of factors for Denmark, Canada, France, Italy,

Portugal, Poland, and all other countries, the total death rates projected in

the eigenspace spanned by the first common eigenvector are not significantly

different across these countries.

From the perspective of combined statistical analysis on age-specific mortality

rates, p-values of the autocovariance test for each pair of countries in Figure 4.9

can also be considered a measure of dissimilarities between the age-specific

death rates for two countries. A relatively small p-value suggests that these
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two countries’ age-specific death rates are somewhat different. Consequently, a

hierarchical clustering method can be developed with the dissimilarities mea-

sured by the p-values of the autocovariance test, providing clustering results for

combined statistical analysis on age-specific mortality rates.

Figure 4.9: p-values of the autocovariance test of the first factor for all countries
except U.S.A.

4.6 Conclusions and discussions

Hypothesis testing for the spiked eigenvalues of the autocovariance matrices for

two high-dimensional time series is becoming critical since multiple data-sets

may be aggregated together for better inference, including improving estimation

and forecasting accuracy. In this work, we propose a novel autocovariance test
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for comparing the spiked eigenvalues of the autocovariance matrices for two

high-dimensional time series. The test statistic is created using a central limit

theorem (CLT) of spiked eigenvalues extracted from the symmetrized lag-τ

sample autocovariance matrix of high-dimensional time series. Therefore, this

novel autocovariance test takes both cross-sectional and temporal dependence of

high-dimensional time series into consideration. The proposed autocovariance

test is efficient in telling the difference between the spiked eigenvalues of the

autocovariance matrices for two high-dimensional time series, even for a local

alternative hypothesis, as the p-value of the test statistic increases towards one

with sample size T. Simulation studies provide numerical evidence on the autoco-

variance test’s finite-sample performance for high-dimensional time series under

various strengths of factors and ratios between data dimensions and sample

sizes. Finally, we apply our method to age-specific mortality rates for multiple

countries and test whether different countries share the same spiked eigenvalues

of the autocovariance matrices. This work is preliminary for combined analysis

of human mortality rates for multiple countries since it can provide satistical in-

ference on clustering and grouping countries worldwide. Finally, our work forms

an essential part of the statistical inferences for high-dimensional time series and

motivates the combined and aggregated analysis for multiple high-dimensional

time series.

4.A Appendix A: Technical proof of Theorem 4.2

Proof of Theorem 4.2. Without loss of generality, we only consider the case for

Zi,τ > 0 since the case for Zi,τ < 0 can be considered in precisely the same way.

For a constant significant level α, to see Pr(Zi,τ > zα|H1)→ 1 as T, N → ∞, it is

sufficient to show that Zi,τ → ∞ as T, N → ∞.

To start, we firstly notice that for any i ∈ {1, 2, ..., r} and a finite time lag

τ, γi,τ

2
√

2vi,τ
does not divergent with N and T, since both γi,τ and vi,τ are some

constants when T, N → ∞. It then suffices to show
√

T
λ
(1)
i,τ −λ

(2)
i,τ

θi,τ
→ ∞ when
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T, N → ∞. Note that by the definition of θi,τ in (4.4), we can show that

λ
(1)
i,τ − λ

(2)
i,τ

θi,τ
=

λ
(1)
i,τ

θ
(1)
i,τ

θ
(1)
i,τ

θi,τ
−

λ
(2)
i,τ

θ
(2)
i,τ

θ
(2)
i,τ

θi,τ
=

λ
(1)
i,τ

θ
(1)
i,τ

2 + 2c
2 + c

−
λ
(2)
i,τ

θ
(2)
i,τ

2
2 + c

, (4.17)

where the second equation follows from the fact that θ
(1)
i,τ = (1 + c)θ(2)i,τ and

θi,τ =
θ
(1)
i,τ +θ

(2)
i,τ

2 = 2+c
2 θ

(2)
i,τ . Moreover, under Assumptions 4.1, we know from

Lemma 4.1 that for k = 1 and 2,

√
T

γ
(k)
i,τ

2v(k)i,τ

λ
(k)
i,τ − θ

(k)
i,τ

θ
(k)
i,τ

⇒ N (0, 1),

as T, N → ∞ where θ
(k)
i,τ is the asymptotic centring of λ

(k)
i,τ . As a result,

λ
(k)
i,τ

θ
(k)
i,τ

= 1 + oP

(
1√
T

)
,

as T, N → ∞, where we stress the fact that γ
(k)
i,τ and v(k)i,τ are constant when

T, N → ∞. Therefore, (4.17) reduces to

λ
(1)
i,τ − λ

(2)
i,τ

θi,τ
=

2 + 2c
2 + c

(
1 + oP

(
1√
T

))
− 2

2 + c

(
1 + oP

(
1√
T

))
=

2c
2 + c

+ oP

(
1√
T

2c
2 + c

)
,

for T, N → ∞, and we conclude that

√
T

λ
(1)
i,τ − λ

(2)
i,τ

θi,τ
=
√

T
2c

2 + c
+ oP

(
2c

2 + c

)
,

when T, N → ∞.

Consequently, when T, N → ∞, Zi,τ → ∞ as long as
√

T 2c
2+c → ∞ and

λ
(1)
i,τ 6= λ

(2)
i,τ . And it is sufficient to show the assertion in this theorem.
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Chapter 5

Conclusions and Future Works

This thesis studies statistical inferences for high-dimensional data, especially

time series, based on dimension reduction methods, such as factor models and

principal component analysis. Our main contribution is the novel statistical

methods proposed in each chapter, they are sieve bootstrap, homogeneity and

sub-homogeneity pursuit, and the equivalence test for spiked eigenvalues of auto-

covariance matrix (the autocovariance test). In particular, the sieve bootstrap and

the autocovariance test are proposed based on the spiked eigenstructure of the au-

tocovariance matrix where factor models are introduced to represent the temporal

dependence of the original high-dimensional time series by low-dimensional

factors. Meanwhile, the CPCA method is developed to simultaneously estimate

homogeneity and sub-homogeneity (group-specific information), where the data

is assumed to have a more complicated spiked eigenstructure in its covariance

matrix. Besides, the work in Chapter 2 is not only a building block of bootstrap

methods, but also act as an essential high-dimensional statistical method. For

example, when implementing the autocovariance test in Chapter 4, the sieve

bootstrap method can be utilised to estimate unknown quantities in the test

statistic.

The work presented in this thesis leaves several directions open for future

research. In both Chapter 2 and 4, the high-dimensional time series we study are

assumed to be stationary or even follow linear models. One of the potential works

is then related to extending the existing sieve bootstrap method proposed in

Chapter 2 to non-linear time series and non-stationary time series. As discussed

in Kreiss et al. (2011) and Bühlmann (1997), when time series are non-linear but

143
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stationary, the sieve bootstrap may be still applicable as long as the autoregressive

representation exists. Besides, other bootstrap schemes, such as block bootstrap,

are also applicable for non-linear time series; therefore, they can also be applied

to the factors for statistical inferences. However, despite that block bootstrap

methods may provide a better finite sample performance than sieve bootstrap

methods (Bühlmann, 1997), most of the bootstrap methods are not valid for

general non-stationary time series. As discussed in Bühlmann (1998) and Kreiss

et al. (2011), one of the exceptions is that the sieve bootstrap can correctly estimate

the deterministic trend of non-stationary time series and provide valid inferences.

Therefore, our bootstrap may be extended to a broader class of time series.

Besides, as discussed in Chapter 4, the p-value of the autocovariance test

can be considered a measure of dissimilarity between two populations of high-

dimensional time series. Therefore, a hierarchical clustering method (Gordon,

1999) for high-dimensional time series can be proposed, which can motivate

our method’s applications on not only hypothesis testings but also clusterings

for many real data. Moreover, no matter if two high-dimensional time series

share the same spiked eigenvalues or not, another potential extension to our

work is to adopt canonical correlation analysis (CCA) (Anderson, 2003) on the

low-dimensional factors to study whether factors from one high-dimensional

time series have the predictability on the other one. In other words, we can use

CCA to pursue simultaneous inferences for two high-dimensional time series.
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