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Abstract

This thesis focuses on the theoretical aspects of several classes of continuous time, continu-
ous state space stochastic processes. Chapter 2 and Chapter 3 consider Lévy processes
and Lévy driven stochastic functional differential equations. Chapter 4 studies a high
dimensional factor model and the eigenvalues of the sample auto-covariance matrix.

In Chapter 2 we extend the construction of the so-called weak subordination of
multivariate Lévy processes in [49] to an infinite dimensional setting. More specifically,
we give sufficient conditions for the existence of the weak subordination between a Lévy
processes defined on an arbitrary Hilbert space and a sequence-valued Lévy subordinator
defined on suitable Banach spaces. As by-products of our main results, we obtain a
characterization of subordinators on certain sequence spaces, as well as a characterization
of Lévy measures on direct sums of Banach spaces with different geometries.

Chapter 3 focuses on a Lévy driven stochastic delayed differential equation (SDDE)
which arises as a continuous time analogue to the discrete time GARCH process. The
SDDE was obtained in the recent works [65, 66, 160] as a weak limit in the Skorokhod
topology of a sequence of suitably scaled discrete GARCH processes, as the time between
observations tends to zero. In our work, we give sufficient conditions for the existence,
uniqueness and regularity of the solution to the SDDE. We show that the SDDE can be
reformulated as a stochastic functional differential equation and investigate the behaviour
of its sample paths. The mean process and the covariance process of the solution are
computed and are shown to exhibit similar behaviours to the discrete GARCH process.

Chapter 4 focuses on a high dimensional factor model proposed by [104, 105] and
subsequently studied in [111] to model time series data. We investigate the asymptotic
distribution of leading eigenvalues of the (product symmetrized) sample auto-covariance
matrix under a high dimensional regime where the dimension and sample size tend to
infinity simultaneously. Utilizing some new developments [52, 110, 111] in high dimensional
random matrix theory, we obtain a central limit theorem for the empirical eigenvalues after
suitable centering and scaling. It is shown that the correct centerings for the eigenvalues
are in general not equal to the population eigenvalues.
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Chapter 1

Introduction

This thesis consists of three chapters, each of which focuses on establishing the theoretical
foundations of a class of stochastic processes appearing in the recent literature. The
stochastic processes considered in this thesis share a common origin in the field of finance
and econometrics, and were originally proposed to model financial time series such as asset
returns. The goal of our work is to investigate the theoretical properties of these processes,
thereby gaining a better understanding of the behaviours of these processes and how they
should be used in practical situations.

The common theme between Chapter 2 and Chapter 3 is the study of Lévy processes,
which are introduced in Section 1.1. Chapter 2 focuses on the concept of subordination,
which can be interpreted intuitively as a stochastic time change of a Lévy process. The
main goal of the chapter is to extend the construction of the weak subordination proposed
in [49] to an infinite dimensional setting. In Chapter 3 we consider a Lévy driven stochastic
delayed differential equation obtain in [160] as a continuous time limit of the GARCH
process. We formulate conditions for the existence, uniqueness and regularity of the
solution, and show that the solution has a covariance structure similar to that of the
GARCH process. In Chapter 4 we study the asymptotic properties of a high dimensional
factor model through the perspective of random matrix theory. Under a setting where
the dimension and the sample size diverge simultaneously, we establish the asymptotic
normality of the spiked eigenvalues of the product-symmetrized sample auto-covariance
matrix.

We now give an overview of each topic, focusing mainly on the backgrounds and the
motivations of our work. More details on the technical aspects of these topics can be found
in the introduction section of each chapter. After a brief introduction to Lévy processes in
Section 1.1, we introduce the concept of subordination in Section 1.2. In Section 1.3 we
give an overview of the history and recent development of continuous time approximations
to the GARCH process. Section 1.4 introduces high dimensional factor models and their
connections to high dimensional random matrix theory.

1



1.1 Lévy Processes 2

1.1 Lévy Processes

Lévy processes, named after the French mathematician Paul Lévy, are often described as
a continuous time analogue to discrete time random walks. More precisely, Lévy processes
are defined as continuous time stochastic processes with independent, stationary increments
and stochastic continuity. A formal definition of Lévy processes suitable to the context of
our work as well as their basic properties will be given in Section 2.2 after we introduce
the necessary notations. Common examples of Lévy processes include Brownian motions,
compound Poisson processes, Gamma processes and stable processes.

Classical treatises of Lévy processes defined on Euclidean spaces include [6, 145, 152].
Observe that the definition of Lévy processes only requires the formation of increments
and some notion of continuity. Therefore, in addition to real-valued and vector-valued
Lévy processes, Lévy processes can be generalized and defined in very general topological
vector spaces. Towards this direction, we will mainly refer to [3, 5, 8, 78, 114, 134] for
treatments of Lévy processes in Hilbert and Banach spaces, which is the setting for our
current work. For even more general settings, we refer to [112, 113] for the treatment of
Lévy processes on compact Lie groups, [73] for Lévy processes defined on the dual of a
nuclear space and [8] for cylindrical Lévy processes on the dual of a Banach space.

Lévy processes and equations driven by Lévy processes have been studied extensively
in the recent years, often as an extension to Gaussian type models. Applications of
Lévy processes appear in numerous and diverse fields, including mathematical finance
[122, 41, 60, 121], financial economics [20, 100], insurance [59, 99], and physics [72, 24].
In these works, Lévy processes are used directly to model some stochastic, time varying
quantity of interest, for instance stock returns and insurance claims. The choices of Lévy
processes used in these models are usually tailored to the problem of interest, often by
constructing a Lévy processes whose features closely resemble the stylized features of
the quantities of interest. This is feasible due to the great flexibility of the class of Lévy
processes.

At the same time, instead of being applied directly to model various types of data,
Lévy processes are also used as driving noises for stochastic partial differential equations
(SPDE). Since these SPDEs are usually formulated in general Hilbert or Banach spaces,
this necessitates the study of infinite dimensional Lévy processes. Works in this direction
typically consider the existence, uniqueness, spatial/temporal regularity and ergodicity of
the solution to an SPDE driven by Lévy processes. Examples of such SPDEs include the
Langevin equation and its solution the Ornstein-Uhlenbeck process [4, 45, 107, 148] and
the Heath-Jarrow-Morton-Musiela (HJMM) equation frequently used in term structure
modelling [25, 125]. The study of Lévy driven SPDEs is spanned over multiple fields of
science and an extensive review of the relevant literature is beyond the scope of this thesis.
We refer the interested reader to the following list of recent works in various areas related
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to Lévy driven SPDEs [7, 25, 44, 45, 55, 63, 107, 117, 125, 142, 144, 148].

1.2 Subordination of Lévy Processes

A commonly utilized concept in many of the aforementioned works is the subordination of
Lévy processes. Let X = (X1(t), . . . , Xn(t))t≥0 be a Lévy process taking values in Rn and
T = (T1(t), . . . , Tn(t))t≥0 be a subordinator on Rn, i.e. a Lévy process whose components
are all non-decreasing. Since Ti(t) ≥ 0 for all i = 1, . . . , n and t ≥ 0, we can form a
path-wise composition between X and T and define a process X ◦ T by setting

(X ◦ T )(t) :=
(
X1(T1(t)), . . . , Xn(Tn(t))

)
, t ≥ 0. (1.2.1)

The process X ◦ T is known as the (strong) subordination of X and T . Here, the
subordinator T represents a stochastic flow of time, thus the subordination of Lévy
processes is commonly referred to as a stochastic time change. Here for illustration
purposes we confine our discussion to the finite dimensional case; the infinite dimensional
setting, which is the focus of our work, will be discussed in more detail in Chapter 2.

Subordination of Lévy processes on Euclidean spaces has been used extensively in
mathematical finance to model stock returns. In this context, typically the Lévy process
X models the prices/returns of n assets and the subordinator T models a random time
change applied to each coordinate of X. A large amount of research was inspired by the
pioneering work [122] who constructed the (univariate) variance-gamma (VG) process as a
standard Wiener process subordinated by a gamma subordinator. The subordinator acts
as a time change from real time to “business time”, which is a measure of the volumes
of trading and flow of information. The “business time” is inherently stochastic and is a
more appropriate way to conceptualize the trading of assets. Since its inception, the VG
model has been adopted in the industry by many financial institutions as an alternative to
the more traditional Black-Scholes model with geometric Brownian motion. The success of
VG type models is largely due to the fact that the VG model offers a better fit to financial
data and can capture many stylized features of the data, see [119, 123, 129].

In order to model multiple assets simultaneously and capture the correlation between
them, various attempts had been made to construct a multivariate version of the VG model,
see for instance [120, 121, 153]; see also [47] for some overarching theory on this subject.
We remark that generalizing the VG model to a multivariate setting is a deceptively
difficult task, mainly due to the theory of multivariate subordination being much more
complex and involved than the univariate case. More specifically, in practice it is desirable
to stay within the framework of Lévy processes when constructing the subordinated process
X ◦ T . That is, we would like the process X ◦ T to be a Lévy process itself due to all
the nice and convenient properties Lévy processes have. This requirement is trivial in
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the univariate case where X ◦ T is guaranteed to be a Lévy process for arbitrary Lévy
process X and subordinator T . In the multivariate setting however, the process X ◦T is in
general not a Lévy process. Indeed, for an immediate counter-example, take X = (X1, X2)
where X1 = X2 are the same Wiener processes and set T1(t) = t and T2(t) = 2t which are
deterministic. Simple computations show that X ◦T does not have independent increments
and hence cannot be a Lévy process.

To the best extents of our knowledge, it is unclear if it is possible to formulate a set of
necessary and sufficient conditions on X and T to ensure X ◦ T is again a Lévy process.
Under the overarching assumption that T and X are independent, the literature mainly
focuses on two types of sufficient conditions on X and T under which X ◦T remains a Lévy
process. In the first case, it can be shown that when the subordinator T is univariate, i.e.
T1, . . . , Tn are indistinguishable processes (where indistinguishability is as defined in page
3 of [145]), the process X ◦ T is always a Lévy process for any choice of the Lévy process
X. This result is well-known (see for instance [152]) and we will refer to this setting as
univariate subordination. On the other hand, [21] showed that if the Lévy process X has
independent components, i.e. X1, . . . , Xn are independent Lévy processes, then X ◦ T is a
Lévy process for any choice of (multivariate) subordinator T . We will refer to this setting
as multivariate (strong) subordination.

Returning briefly to our earlier discussions on models, we remark that most attempts
to construct a multivariate version of the VG model utilize some mixture or superposition
of the two types of (strong) subordination described above in order to stay within the
framework of Lévy processes. However, these two types of sufficient condition are quite
restrictive in practice. We observe that in the univariate setting, whenever the subordinator
T has a jump, all coordinates of X ◦ T will have a jump simultaneously. This feature
is clearly restrictive from a practical perspective, as the prices of multiple assets do not
necessarily change simultaneously. On the other hand, in the multivariate setting, since
the subordinators T1, . . . , Tn can have jumps at distinct times, so can the coordinates of
the process X ◦ T . This is an obvious improvement upon the univariate case, however,
multivariate subordination requires the independence of the coordinates of X, which is
again restrictive in practice since asset prices are usually correlated.

These restrictions are fundamentally due to the fact that the (strong) subordination
X ◦ T is not necessarily a Lévy process. To overcome these restrictions, [49] introduced
another type of operation X � T between X and T , called the weak subordination, which
always produces a Lévy process for arbitrary choices of X and T . The formal definition
of X � T , along with some intuitive constructions, will be given in Chapter 2 after the
necessary notations are introduced. Here we motivate the weak subordination by observing
that X � T is a direct generalization of X ◦ T in the following sense.

Whenever X and T satisfy one of the two sufficient conditions discussed above, in which
case X ◦ T is a Lévy process, the weak subordination X � T can be shown to be equal in
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distribution to X ◦ T . On the other hand, if X and T do not satisfy these conditions, we
remark that in general there may be no Lévy process whose distribution matches that of
X ◦ T (see Proposition 1.3.6 and Proposition 2.3.29 of [119] and the discussion therein).
Nevertheless, in this case the weak subordination X � T is still a Lévy process, but relates
to X ◦ T in a more complex and subtle way.

Using weak subordination, [49] constructed a new multivariate version of the VG process,
which the authors named weak variance generalised gamma convolutions (WVGG). The
self-decomposability of the WVGG class, which is a question of theoretical importance,
is investigated in a more recent work [50]. The authors also constructed a generalization
of the variance-α-gamma model of [153], which the authors named the weak variance-
α-gamma model (WVαG). The WVαG model is calibrated to real data and applied to
option pricing in the recent works [48], [128] and [129].

The main focus of our work is to extend the construction of the weak subordination to
an infinite dimensional setting. In particular we will show that for an arbitrary Lévy process
on a separable Hilbert space and a uniformly bounded sequence of real subordinators
T = (T1, T2, . . .), the weak subordination X � T always exists as a Lévy process on a
suitable Banach space. As a by-product, we develop the theory of Lévy measures and
Lévy subordinators in some non-standard settings.

The motivations behind our work are twofold. On one hand, we remark again that the
technique of (univariate) subordination has been utilized in the SPDE literature to define
Lévy noises in function spaces, see [45, 107] and the references therein. This approach
allows one to establish controls on the constructed noise in terms of the properties of X
and T . However, to the best of our knowledge, all existing literature considers cylindrical
Wiener processes on a Hilbert space H, which by definition have independent coordinates.
The existing literature, apart from [140] which we will discuss again in Chapter 2, also only
considers univariate subordinators T , which implies that all coordinates of the constructed
noise of X ◦T will have simultaneous jumps. From this perspective, it is natural to extend
the theory of multivariate and weak subordination into an infinite dimensional setting as
a method to construct Lévy noises with more flexible dependence/jump structure, while
maintaining explicit control over the processes constructed.

On the other hand, our work is also motivated by theoretical curiosity. The proofs
behind the constructions of the weak subordination in [49] rely heavily on the finite
dimensional setting of the problem. In particular, many of their arguments rely on key
properties of Euclidean space such as the equivalence of all norms on Rd, the compactness
of the unit ball and the trivial observation that any finite sequence of real numbers can
be ordered. It is therefore not clear from [49] if the existence of weak subordination is
an inherent feature of Lévy processes (and not just an artifact of working in Euclidean
spaces). Our work answers this question in the positive by showing that the construction
of weak subordination is possible in a much more general setting.
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1.3 Continuous Time GARCH processes

An important aspect of statistical analysis in finance and financial econometrics is finding
models that capture the so-called stylized features of these types of data. Many financial
time series such as asset prices, exchange rates and various macroeconomic series are
heteroscedastic, i.e. the volatility of these series tends to be time varying. For instance, it
is known that asset returns and their volatility series are heavily interdependent - a large
fluctuation in the asset price typically causes a large fluctuation in the volatility, which
persists for a period of time before reverting to a baseline level, see [57, 81]. These features
fit our intuitions about the financial market - a large fluctuation in the price of an asset
leads to investor uncertainty, which drives up the volatility of the price. The volatility
of these series also tends to exhibit long-range dependence, which often manifests in the
heavy-tailedness of the series, another feature commonly observed in financial time series.

The ARCH (autoregressive conditionally heteroscedastic) and GARCH (generalized
ARCH) processes, introduced by [68] and [37], are designed specifically to capture some
of these stylized features. In the GARCH model, the asset return process is temporally
uncorrelated but not independent, and the volatility of asset returns is modeled directly by
modelling the the conditional variance process of asset returns given past information. The
conditional variance process follows an auto-regressive moving-average type of structure,
and is driven by the same noise as the return process. For a review of the properties and
stationarity of GARCH processes, we refer to [40] and [116].

While financial data are often observed at discrete times, the modelling of these data
is sometimes carried out in continuous time for practical concerns as well as theoretical
convenience. In practice, financial time series are often observed at irregular frequencies,
often tied to trading hours of stock exchanges or days of the week. Modelling irregu-
larly spaced data directly is often challenging, see [69, 77, 127] for examples of discrete
time GARCH models adapted to irregularly spaced data; it is often fruitful to consider
continuous time models instead. The increasing popularity of high frequency data in
recent years also motivated the developments of continuous time models such as [109, 159].
On the other hand, from a theoretical perspective, discrete time models are expressed
via recurrence equations while continuous time models are often written as differential
equations. Consequently, the asymptotic theory for discrete time models is often more
involved and less explicit than for the continuous time models.

The preceding paragraph may seem to suggest that there is a large discrepancy between
continuous and discrete time modelling; however, the two paradigms are often quite
compatible with each other. In fact, as the time between observations tends to zero, many
discrete time models (after appropriate scaling) can be shown to converge in some sense
to continuous time models, see [102, 103, 118, 158, 160] and the references therein. Hence
continuous time models can be used as approximations to discrete time models when the
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time between observations is relatively small. On the other hand, discrete time models
can obviously be obtained from continuous time ones by simply sampling at discrete times,
in which case the former can be interpreted as approximations to the latter.

As an interesting and perhaps informal side note, we remark that while financial data
is observed at discrete times, whether the data is inherently discrete or continuous is a
separate and more philosophical question. Some argue that despite having discrete time
observations, the evolution of stock prices actually happens continuously in time. In this
case, the discrete time observations are simply samples from this underlying, unobserved
continuous time process. Others oppose this view and argue that the listed price of a
stock is simply the price at which it is being traded. Therefore unless a trade happens, the
price of a stock should remain constant, implying that continuous time models especially
diffusions are technically convenient approximations to the truth. A debate on which view
is more sensible is beyond the scope of the current work. We do remark however that
under either view, the study of continuous time models is needed.

Motivated by the above observations, various attempts have been made to construct a
continuous time version of the GARCH process. Clearly such a continuous time extension
should capture some aspects of the discrete time GARCH process, such as the recurrence
relationship of the volatility process. Many approaches start with discrete time GARCH
processes and allow the time between observations to tend to zero, and with proper scaling,
a continuous limit may be obtained. The first notable attempt in this direction can be
found in [132], where the author obtained a diffusion in the limit. The nature of this
construction is very similar to taking a scaling limit of discrete time random walks in the
Skorokhod topology to obtain a Brownian motion, see [35].

Although the diffusion limit of [132] is intuitive to understand, the resulting diffusion
process loses many characteristic properties of the GARCH process. In particular, the
diffusion limit is driven by two independent Wiener processes whereas the GARCH process
is driven by a single sequence of noise. The feedback and interactions between the price
and volatility processes is therefore not captured by the diffusion limit. This discrepancy
is investigated further in [166], which established that the statistical inferences for the
discrete time GARCH process and the diffusion limit are not equivalent asymptotically
(in the sense of Le Cam’s deficiency distance, see [46]). An attempt to resolve this issue
can be found in [58], where the author modified the construction of the diffusion limit
in [132] to obtain a limit which is driven by a single Brownian motion. However, the
volatility process obtained in [58] is deterministic, which is clearly undesirable. Despite its
limitations, the diffusion limits of [132] have been studied and applied in numerous works.
We refer to [64, 95] and the references within.

A very different approach to constructing a continuous time GARCH process was put
forward by [100]. In the GARCH process, the price process is driven by a sequence of
white noise, and the volatility process is driven by the square of that sequence. In [100] the
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authors replaced these sequences of driving noises with increments of a Lévy process and
the squares of those increments respectively, obtaining a pair of continuous time processes
named the Continuous Time GARCH (COGARCH) process. In doing so, the price process
and the volatility process are by design driven by the same Lévy process, circumventing
the main issues of the diffusion limit in [132]. The volatility process in the COGARCH
model is an example of the so-called generalized Ornstein-Uhlenbeck process, which is the
subject of many recent works, see [27, 28, 29, 115].

The COGARCH process retains a lot of the unique features of the GARCH process
and is thus considered a more useful extension of the GARCH process than the diffusion
limit of [132]. For properties and stylized features of the COGARCH process, we refer
to the surveys [102, 116] and the references therein. It is shown in [96] that similar
to the construction of the diffusion limit in [132], the COGARCH process can also be
obtained as a weak limit of a sequence of GARCH(1,1) processes. Unlike [132] which
scaled the noise of the discrete GARCH process to obtain a diffusion, the construction
in [96] “randomly thins” the noise to obtain the driving noise in the COGARCH process.
The authors of [96] also argued heuristically that the diffusion limit and the COGARCH
limit are the only possible limits of sequences of GARCH(1,1) processes. Parallel to
the results of [96], a different construction of the COGARCH process from discrete time
GARCH processes was considered in [124]. The authors obtain the COGARCH process as
a limit of a sequence of irregularly spaced GARCH processes using the so-called first jump
approximation. As a by-product [124] constructed a pseudo-maximum-likelihood estimator
for parameters in the COGARCH process which can be applied to irregularly spaced data.
The parameter estimation of the COGARCH process was also considered in [82, 124, 131]
and the COGARCH process was applied in practical situations such as option pricing
in [101, 102]. An analogous result to [166] for the diffusion limit was obtained in [46].
Multivariate versions of the COGARCH process have been studied in for instance [155].

It is worth noting that both the diffusion limit and the COGARCH process are
Markovian processes, while the original GARCH(p, q) process is only Markovian when
p = q = 1. This suggests that the diffusion limit and the COGARCH process are rather
simplistic in their serial dependence structure in comparison to the original GARCH
process. The first attempt at a non-Markovian continuous time GARCH process can
be found in [118]. In contrast to the diffusion limit and the COGARCH process which
are obtained as limits of GARCH(1,1) processes, in [118] the order of the approximating
GARCH processes changes as the time between observations decreases. In particular, for
each n ∈ N and fixed p > 0, a GARCH(pn + 1, 1) process is defined on a uniform grid
of mesh size n−1. As n → ∞, the sequence of GARCH processes is shown to converge
to the solution of a stochastic delayed differential equation (SDDE) driven by a Wiener
process, which is a direct, non-Markovian generalization of the diffusion limit. We note
that in [118], as the time n−1 between observations tends to zero, the “GARCH order”
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of the approximation GARCH(pn + 1, 1) process tends to infinity while the “ARCH
order” remains at one. Allowing the “ARCH order” to diverge as well turns out to be
significantly more difficult, since it involves the analysis of stochastic integrals with delays.
Furthermore, the idea of [118] is developed strictly in the context of the resulting diffusion
limit, and consequently suffers the same issues, namely the two independent sources of
noises discussed above.

A similar idea was explored in greater depth and generality in the recent PhD thesis
[160] and the working papers [65, 66]. Unlike [118] which generalized only the diffusion
limit to a non-Markovian setting, the results in [65, 66, 160] cover both the diffusion case
and the COGARCH case. The authors considered a GARCH(pn + 1, qn + 1) process
embedded into continuous time on a grid of mesh size n−1, where p, q > 0 are fixed real
numbers. As the time between observations n−1 tends to zero, both the ARCH and the
GARCH orders diverge. The sequence of GARCH(pn+ 1, qn+ 1) processes is shown to
converge weakly to the solution of the pair of stochastic delayed equations

Yt = Y0 +
∫ t

0

√
Xs−dLs,

Xt = θt +
∫ 0

−p

∫ t+u

u
Xsdsµ(du) +

∫ 0

−q

∫ t+u

u+
Xs−d[L,L]sν(du), (1.3.1)

where Y and X are the return and variance processes respectively. The solution to this
equation is named the continuous time GARCH process with delays p, q ≥ 0, or the
CDGARCH(p, q) process for short. Here µ and ν are Borel measures capturing the effects
of higher order lags, and θ is a semimartingale representing some form of baseline for
the volatility process, which we will make precise in our work. The driving noise L is a
semimartingale and [L,L] is the quadratic variation process of L.

Depending on how the driving noise of the discrete approximating sequence is construc-
ted, the limiting driving noise L could either be a Brownian motion, in which case the
CDGARCH process generalizes the construction of [118], or a Lévy process, in which case
the CDGARCH process is a generalization of the COGARCH process. In fact, the limit in
[118] is a special case of the CDGARCH(p, q) process when q = 0, and the COGARCH
process of [100] is a special case of the CDGARCH(p, q) process when p = q = 0.

We remark that the main focus of [160] is on establishing the convergence of GARCH
processes to a continuous time limit, the CDGARCH process. In particular [160] did
not further explore the behaviours of this limit and how it compares to discrete time
GARCH processes or the COGARCH process. In our work we take equation (1.3.1) as
a starting point and investigate whether it is a good continuous time analogue to the
GARCH process. We pose conditions for the existence, uniqueness and regularity of the
solutions to (1.3.1). We study the second order behaviour of the solution and show its
resemblance to that of the GARCH process.
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1.4 High Dimensional Factor Models

The analysis of multivariate time series, especially ones of high dimensionality, is a topic
of increasing importance in the modern age. Besides its theoretical importance as a
classic topic in the theory of statistics and probability, multivariate time series has been
successfully utilized in many empirical fields including finance, economics, medical science
and many others. The wide study of high dimensional time series is very easily understood;
indeed, many forms of data in real life are time varying and exhibit autocorrelation
from which useful information can be extracted. Moreover, the increasing abundance of
computing power and capacity in the modern age has made the analysis of large datasets
possible and routine. Many high dimensional stochastic processes exhibit behaviours
fundamentally different from what classic asymptotic theory predicts, resulting in the
rise of many new fields and bodies of theory devoted to the study of these behaviours. A
complete survey of these different fields is beyond the scope of our work, we refer to [90]
and [70] for surveys on two such fields for the interested reader.

A prominent feature of high dimensional datasets and stochastic processes is the
so-called ‘curse of dimensionality’. One way this ‘curse’ manifests itself is through the
fact that the number of parameters in a model often explodes quickly as the dimension
of the model increases. This directly affects how multivariate time series are analyzed
and used in practice, as we will now explain. Many conventional time series models (e.g.
vector ARMA models) have been thoroughly analyzed through Fourier methods in the
time/frequency domain, and the asymptotic theories of these models were known for
decades, see for instance [43, 80, 154] for some classical treatises of these topics. However,
in practice, these are rarely used to model datasets of high dimensions since the number of
parameters of interest very quickly becomes intractable. For instance, even for the simple
case of a vector autoregressive process of order one, the number of parameters increases at
a rate of p2. In practice, when dealing with high dimensional time series, most methods
rely on either regularization to control the number of non-zero parameters, or some form
of dimension-reduction technique such as principal component analysis (PCA) to reduce
the complexity of the model before analysis is carried out. We refer to [90] and [70] for
surveys on recent developments on these approaches.

Our work is motivated by one such example of dimension-reduction technique applicable
to high dimensional time series - the use of factor models. Factor models have enjoyed much
recent success in various empirical fields, especially finance, economics and econometrics.
The literature is vast and we refer to [34, 74, 75, 76, 157, 156] and the references therein
for some notable examples of factor models used to analyze time series data in these
fields. These models exploit the idea that for many types of multivariate data, a large
number of variables are in fact driven by a comparatively small number of common factors.
Most models allow each variable to have an idiosyncratic part as well, but assume that
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the common factors account for most of the information in the model. By identifying
these factors (which can often be modeled using more traditional methods) as well as
the relationship between the original variables and the common factors, we are effectively
reducing the dimension of the problem.

In addition to being widely applied in empirical fields, the theoretical aspect of these
models, especially the large sample asymptotic theory, has attracted significant attention as
well. The asymptotic theory surrounding factor models as a dimension reduction technique
was first explored more than half a century ago. Early works such as [2, 42, 137] build on
the assumption that the dimension p of the time series is large but fixed, and developed the
asymptotic theory as the sample size T tends to infinity. Since then, the literature on factor
models has diverged and branched into many interesting directions. Models of varying
complexity under various settings have been proposed, and corresponding asymptotic
theories were established under ever more general conditions. We refer to [156] and the
references therein for a survey on some recent variants of factor models that attracted the
attention of the statistical and mathematical community.

One recent direction in factor modeling that has attracted significant attention from
econometricians, statisticians and probabilists is the so called high-dimensional setting
where both the dimension p and the sample size T tend to infinity simultaneously. This is
certainly not an unreasonable assumption, as for many datasets encountered in real life,
the dimension p can be much bigger than T . As we will illustrate in Chapter 4, the theory
of factor models under this setting is significantly different to the traditional setting where
p is fixed. The asymptotic theory of factor models under the high dimensional setting
is considered in a number of recent works including [10, 11, 12, 104, 105, 110, 111, 133].
Typical goals of these works include determining the correct number of factors, estimating
the factor loading space and making predictions. Several of these results are directly
related to our current work, we will give a more detailed survey in Chapter 4.

Amongst these works, we note that [10, 11, 12] focus on estimating the factors and
factor loadings directly, while [10, 11, 12, 104, 105, 110, 111, 133] study the factor structure
through the sample auto-covariance matrices of the time series. The latter idea is based on
the observation that when strong serial correlation is exhibited by the data, a substantial
amount of information is contained in the eigenvalues and eigenvectors of the matrix
M := ∑τ0

τ=1 ΣτΣ>τ , where Στ is the lag-τ (population) auto-covariance matrix of the
time series and τ0 is some chosen constant. Most of these works rely on estimating the
eigenvalues (µi) of the matrix M using the eigenvalues (λi) of some estimate M̂ of M .
This naturally brings the discussion to the corresponding asymptotic theory of empirical
eigenvalues (λi) of M , which is the main focus of our current work.

Towards this direction, we note that [104] established the asymptotic rate of |λi − µi|
under the assumption that each µi diverges at a rate close to p. A more recent work [111]
considers the same model under the assumption that all (µi) are finite. Using techniques
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from random matrix theory, the authors in [111] established the phase transition behaviour
of (λi) and identified their asymptotic locations as the sample size T tends to infinity. A
more detailed discussion of these results can be found in Chapter 4.

To the best extent of our knowledge, the existing literature concentrates mainly on
obtaining the asymptotic limits of the eigenvalues (λi) and very little is known about the
asymptotic distributions of (λi). Our work contributes to the literature by initiating some
studies along this direction. More specifically, we establish the asymptotic normality of
spiked eigenvalues of M under quite general conditions. Similar to the settings of [104] we
assume the spiked eigenvalues (µi) tend to infinity, but do not impose any conditions on
their speed as [104] does. We show that under this more general setting, although the spiked
empirical eigenvalues (λi) are close to their population counterparts (µi) asymptotically,
the difference λi−µi typically does not decay fast enough to obtain a central limit theorem.
Using recent techniques in random matrix theory we construct a more accurate centering
for λi in order to obtain its limiting asymptotic distribution.



Chapter 2

Weak Subordination of Infinite
Dimensional Lévy Processes

2.1 Introduction

Our exposition in Section 1.2 so far only focused on the strong subordination of finite
dimensional Lévy processes. We will now discuss two important topics to set context
to our work - the subordination of infinite dimensional Lévy processes and the weak
subordination of Lévy processes as constructed in [49]. In 2.1.1 we give an overview of
the theory of subordination of infinite dimensional Lévy processes, drawing connections
to our discussions in Section 1.2. We will then give an intuitive construction of the weak
subordination in Section 2.1.2 that illustrates the motivations behind it. The content of
the rest of the chapter will be summarized in Section 2.1.3.

2.1.1 Subordination of Infinite Dimensional Lévy Processes

We recall from Section 1.2 that by univariate subordination of Lévy processes we refer
to the situation where the Lévy process X can be arbitrary, but the subordinator T is
required to be univariate, that is, all coordinates of T are indistinguishable processes,
where indistinguishability of stochastic processes is defined on for instance page 3 of [145].

Univariate subordination can be easily extended to the case where X lives on a separable
Banach space, see for example [139], where the process X ◦ T is defined by specifying
its characteristic triplet. The univariate subordination is sometimes used in the SPDE
literature as a method to construct Lévy noises with certain properties. We remark that
there are other ways of defining Lévy type noises in infinite dimensional spaces, for instance
see [8] for a direct construction of a cylindrical Lévy process on Banach spaces. One
convenient feature of using subordination to define Lévy processes is that we often have
explicit control on the process X ◦ T using the characteristic triplet of X and T . As we
will see, this is a feature shared by the weak subordination as well.

13
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To give an example, we first recall that a symmetric α-stable Lévy process on Rn

can be constructed as a standard Wiener process on Rn subordinated by a univariate
α/2-stable subordinator. This observation is used in [107] to define an infinite dimensional
α-stable white noise, using a cylindrical Wiener process X on a separable Hilbert space
subordinated by a univariate α/2-stable subordinator T . The authors studied the Langevin
equation driven by this process and properties of the semigroup generated by its solutions.

Similarly, [45] defined Lévy white noise as a cylindrical Wiener process subordinated
by an arbitrary univariate subordinator T . The authors considered the Langevin equation
driven by this noise, and characterised spatial and temporal regularities of the solution
in terms of the properties of the subordinator T . In particular, stochastic integrals with
respect to the process X ◦ T can be controlled using the integrability of the Lévy measure
of T near the origin. Similar usages of subordination can be found in [164].

On the other hand, the extension of multivariate subordination as constructed by [21]
to an infinite dimensional setting is non-trivial. Indeed, it is not immediately clear how
the definition (1.2.1) should be extended to a an infinite dimensional setting or if the
process X ◦ T lives on the same space X lives on. To our best knowledge, multivariate
subordination has not been studied in an infinite dimensional setting apart from [140].
The authors of [140] considered the setting where X takes values in the space of nuclear
operators L1(H) on a separable Hilbert space H and the subordinator T takes values in
the positive cone of the same space L1(H). The construction and results of [140] are indeed
comparable to the original work [21], but the setting of [21] is perhaps rather unnatural
for the following reasons.

First of all, if the motivation behind extending multivariate subordination to function
spaces is to construct Lévy noises suitable to the study of SPDEs, then it is most natural
to consider cases where X lives on some Hilbert or Banach space. If on the other hand
we wish to construct an infinite dimensional model for the prices of a large number of
assets, then the most natural setting is to define X on sequence spaces. The space of
trace-class operators L1(H) used in [140] does not fit under either of the cases. Secondly,
the assumption [140] that T (t) is a positive trace-class operator on H is very difficult to
motivate for the following reasons. Indeed, in the finite dimensional case, the subordinator
T can be understood as a sequence of stochastic time changes for the coordinates of X.
We argue that it is natural to keep this interpretation when generalizing the construction,
in which case T should be defined as a sequence of subordinators.

As a final side note, we remark that there is a deep and fascinating connection between
certain geometric aspects of Banach spaces and the behaviours of probabilistic objects
defined on these spaces. Unfortunately, a comprehensive survey of the many surprising
results in this direction is beyond the scope of this work. We refer the interested reader
to [9, 61, 83, 84, 114] for some classical results in the theory of Banach spaces and its
connections to probability theory, and to [1, 86, 106, 108] for some modern treatises on
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the topic. These connections are especially important to our work, since the definition
and characterisation of Lévy measures on Banach spaces depend on the geometry of the
Banach space itself. We will summarize some relevant results in Section 2.2.1.

2.1.2 Weak Subordination of Lévy Processes

Before giving a rigorous definition of the weak subordination, we illustrate the intuitions
behind it with the following heuristic construction. We first note that any subordinator T
in Rn can be written uniquely as T (t) = tη + S(t), where η ∈ Rn

+ is a deterministic vector
and S is a pure-jump subordinator on Rn. For the purposes of our work it is helpful to
consider the processes t 7→ tη and t 7→ S(t) separately.

We discuss the t 7→ tη part of the subordinator T first. Suppose X is an arbitrary Lévy
process in Rn and T is the deterministic subordinator T (t) = tη, where η ∈ Rn

+. Then it
is not difficult to show that there always exists a Lévy process Y , unique in law, satisfying
Y (t) D= (X ◦ T )(t) for all t ≥ 0. That is, even though the strong subordination X ◦ T is in
general not a Lévy process as discussed in Section 1.2, there always exists a Lévy process
Y with the same marginal distributions as X ◦ T . It is therefore very natural to regard Y
as a generalization of strong subordination X ◦ T . Indeed, in the case where T (t) = tη,
the weak subordination X � T is defined to be this Lévy processes Y .

We now consider the pure-jump part of T . Unlike the previous case, the existence of
a Lévy process Y with marginal distributions matching those of X ◦ T is in general not
guaranteed, see Proposition 2.3.29 of [119]. The weak subordination in this case generalizes
another key feature of the strong subordination, namely the distribution of jumps. We
remark here that since T is a pure jump process, the strong subordination X ◦ T is clearly
constant in between jumps of T and is hence a pure jump process as well.

The jumps of X ◦ T are given by ∆(X ◦ T )(t) = X(T (t))−X(T (t−)), where T (t−) :=
lims↑t T (s). Note that whenever T is univariate or X has independent components, in which
case X◦T is a Lévy process, by stationarity of increments we have ∆(X◦T )(t) D= X(∆T (t)).
This feature can be regarded as the “natural” behaviour of jumps when X ◦ T is a Lévy
process. However, outside of these cases, the strong subordination X ◦ T is not necessarily
a Lévy process and ∆(X ◦ T )(t) is in general not equal to X(∆T (t)) in distribution.

The weak subordination aims to define a Lévy process that preserves a version of this
feature even when X ◦ T is no longer a Lévy process. More specifically, the idea of weak
subordination in this case is to construct a (pure jump) Lévy process Z whose jumps
∆Z(t) at time t, when conditioned on the subordinator T (t), has the same distribution
as the random variable X(∆T (t)). The requirement of Z being a pure jump process is
very natural since X ◦ T is always a pure jump process itself. It is shown in [49] and [119]
that this construction is always possible on some augmented probability space. See for
example page 24 of [119] for a construction of Z using marked Poisson point processes. In
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this case, the weak subordination X � T is defined to be such a Lévy process Z.
For the general case where T (t) = tη + S, the weak subordination X � T is defined by

combining the processes Y and Z in the previous two cases. Specifically, X � T is defined
as the unique (in distribution) Lévy process, whose distribution is equal to the convolution
of the distributions of Y and Z described above. This feature is a direct generalization of
univariate and multivariate subordination as well, see Proposition 4.3 of [47].

2.1.3 Overview of the Chapter

We extend the construction of [49] to the setting where X is an arbitrary Lévy process
taking values in a separable Hilbert space with a chosen orthonormal basis (en), and T is a
subordinator defined on a suitable infinite dimensional sequence space. Such an extension
is nontrivial since the arguments in [49] do not generalize to non-Euclidean spaces.

Recall from Section 2.1.2 that to define the weak subordination, we need to condition
on T (t) and consider the random variable X(∆T (t)). This motivates a preliminary step
in our analysis; in Section 2.3 we focus on the evaluation of X at a multivariate time
parameter τ ∈ RN

+, given by X(τ) := ∑
n〈X(τn), en〉en. We show that this sum defines

a random variable in H as long as τ is a uniformly bounded sequence, i.e. τ ∈ `+
∞. We

show that the distribution of the resulting random variable X(τ) is infinitely divisible and
specify its characteristic triplet as the limit of a certain sequence of triplets.

From these results we conclude that, in order to define the random variable X(∆T (t))
on the same space as X, the sequence ∆T (t) needs to be uniformly bounded almost
surely. It is easy to show that this implies T has to be uniformly bounded as well. As
a consequence, the natural choice of space to define the subordinator T on is `∞. This
immediately presents a difficulty since `∞ is not a separable space and the analysis becomes
much more involved. To overcome this complication, in Section 2.4 we consider `∞ as a
subspace of a bigger, suitable weighted sequence space which is separable. We characterize
subordinators on such a space and then establish conditions for T to concentrate on the
subspace `∞. This way we avoid directly doing analysis on `∞.

Another complication we encountered in our setting is that fact that in [49], the weak
subordination of X and T is in fact defined as the pair of process (T,X � T ) on R2n.
Beside increased generality, a reason for this choice is that the weak subordination X � T
is only defined up to distribution. Defining the pair (T,X � T ) instead of just X � T
therefore allows us to consider the joint distribution of T and X � T and match up the
jumps of the two processes. We refer to [119] for more details.

Keeping this desirable structure in our work requires some extra efforts, since the pair
(T,X � T ) lives on the direct sum of a Hilbert space and `∞, which is a very specific and
non-standard setting. This issue is tackled in Section 2.5, where we characterize Lévy
measures on direct sums of Banach spaces with different geometries. Finally, in Section
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2.6 we give a formal definition of the weak subordination as well as some explanation on
how this definition corresponds to our intuitive construction in Section 2.1.2. We then
establish the existence of the weak subordination X � T , which is the main result of our
work, in Theorem 2.24.

2.2 Notations and preliminaries

We first collect some preliminary results and setup the necessary notations for our ex-
positions and proofs. For more details we refer the reader to [6, 94, 145, 152] for classic
treatises of probability theory and Lévy processes, [1, 146] for topics in functional analysis
and Banach spaces, and [1, 5, 85, 108, 114, 142] for topics in probability theory, Lévy
processes and their connections to the theory of Banach spaces.

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space where the filtration (Ft)t≥0 satisfies
the usual hypotheses of right continuity and completeness (see [145]). Let (E, | · |E) be a
separable Banach space equipped with its Borel σ-algebra B(E). We will usually omit the
subscript and write | · | when the context is clear. Write E ′ for the topological dual of E
and 〈·, ·〉 for the duality between E and E ′. When E happens to be a Hilbert space, we
identify E ′ with E via Riesz’s theorem and use the notation 〈·, ·〉 for the inner product on
E. Write Br(x) for the open ball in E with radius r and center x, and B := B1(0).

We first give a formal definition Lévy processes taking values in a Banach space E,
which is the the central object of our study. Note that this definition is a straight-forward
generalization of the usual definition of Lévy processes taking values in Rn.

Definition 2.1. Let X = (X(t))t≥0 be a càdlàg stochastic process adapted to (Ft)t taking
values in a separable Banach space E. Then X is called a Lévy process if

a) X(0) = 0, P-almost surely,

b) X has independent and stationary increments, i.e. for any 0 ≤ s < t, the increment
X(t)−X(s) is independent from Fs and is equal in distribution to X(t− s),

c) X is stochastically continuous (in the norm of E), i.e. |X(t) − X(s)|E → 0 in
probability whenever |t− s| → 0.

Write ∆X(t) := X(t)−X(t−) for the jump of X at time t, where X(t−) := lims↑tX(s).
Let N : [0,∞)× B(E \ {0})→ L0(Ω,N) be a family of random measures defined by

Nt(dx) := #
{

0 ≤ s ≤ t,∆X(s) ∈ dx
}

=
∑

0≤s≤t
1∆X(s)∈dx,

where L0(Ω,N) is the space of random variables taking values in the natural numbers.
Then Nt(·) is a Poisson random measure for any t ≥ 0 and we have Nt(A) <∞ a.s. for
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any t ≥ 0 whenever A is bounded away from zero. Furthermore, there exists a σ-finite
measure ν on B(E \ {0}) such that for any t ≥ 0, we have

E[Nt(A)] = tν(A), A ∈ B(E \ {0}).

The measure ν is known as the Lévy measure of the Lévy process X.
In the finite dimensional case, Lévy measures are completely characterized by integ-

rability conditions. It is well known that a σ-finite measure ν on B(Rn \ {0}) is the Lévy
measure of some Lévy process on Rn if and only if

∫
Rn

1 ∧ |x|2ν(dx) <∞.

However, in the Banach space setting, this condition is no longer necessary, nor sufficient.
In fact, it is known that the above condition is necessary and sufficient for a measure on a
Banach space E to be a Lévy measure, if and only if E is isometrically isomorphic to a
Hilbert space (see Theorem 2.4 in Section 2.2.1), i.e. E is a Hilbert space itself.

In finite dimensions, we usually take the above integrability condition to be the
definition of a Lévy measure. On the other hand, the definition of Lévy measures is not as
straight-forward in the Banach space setting. In fact, the properties of Lévy measures on
a Banach space E depends heavily on certain geometric aspects of E. We will introduce
some elements of Banach space theory in Section 2.2.1 which allows us to give a useful
definition for Lévy measures on Banach spaces and state the Lévy-Khintchine formula.

2.2.1 Lévy measures on Banach spaces

The characterisation of Lévy measures on Banach spaces is intimately connected to the
geometry of the underlying space, specifically to the notions of type and cotype. Let (εn)n
be a Rademacher sequence, i.e. a sequence of i.i.d. random variables uniformly distributed
on {−1, 1}. We recall from [86] that a Banach space E is said to have type p ∈ [1, 2] iff
there exists a constant Kp ≥ 0, depending only on the choice of E, such that

E
∣∣∣∣ n∑
i=1

εixi

∣∣∣∣p ≤ Kp

n∑
i=1
|xi|p

holds for any finite sequence x1, . . . , xn of elements in E. Similarly E is said to have cotype
q ∈ [2,∞] if and only if there exists Cq ≥ 0 such that

E
∣∣∣∣ n∑
i=1

εixi

∣∣∣∣q ≥ Cq
n∑
i=1
|xi|q

for any finite sequence x1, . . . , xn in E and n ∈ N.
To compare with the finite dimensional setting, we note that if xi are vectors in Rn,
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then it is easy to show that E|∑n
i=1 εixi|

2 = ∑n
i=1 |xi|2, which is essentially a restatement

of the parallelogram identity. The above inequalities and the notion of type and cotype
can therefore be interpreted as a measure of how much (and in which direction) the
parallelogram identity is distorted in a particular Banach space.

We remark that if E has type p and cotype q, by Hölder’s inequality E automatically
has type p′ and q′ for all 1 ≤ p′ < p and q < q′ ≤ ∞. In particular, by the triangle
inequality we have maxi |xi| ≤ E|∑i εixi| ≤

∑
i |xi|, which implies that every Banach space

has type 1 and cotype ∞. A Banach space is therefore said to have non-trivial type if
it has some type p > 1, and non-trivial cotype if it has some cotype q <∞. For a more
detailed treatment on the type and cotype of Banach spaces, we refer the readers to [1].

Furthermore, the type and cotype of a Banach space are isomorphic invariants and
therefore are often used to classify Banach spaces. An important result is that a Banach
space E is isomorphic to a Hilbert space if and only if it is of both type 2 and cotype 2,
which follows from the parallelogram identity. For some common examples, we note that
every Lp space over some σ-finite measure space is of type p ∧ 2 and cotype p ∨ 2. We will
frequently use the following characterisation of types from Theorem 2.1 of [83]:

Theorem 2.2. A Banach space E has type p ∈ [1, 2] if and only if there exists a constant
K ′p ≥ 0 depending only on E such that the estimate

E
∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p ≤ K ′p

n∑
i=1

E|Xi|p

holds for all finite sequence X1, . . . , Xn of independent E-valued random variables with
mean zero and finite p-th moment.

Recall B := B1(0) denotes the unit ball on E. Finally, to define Lévy measures on E,
we let K : E × E ′ → C be the function

K(x, u) = ei〈x,u〉 − 1− i〈x, u〉1B(x), x ∈ E, u ∈ E ′, (2.2.1)

which is a generalization of the function appearing in the characteristic exponent of a Lévy
process in finite dimensions. We follow Theorem 5.4.8 of [114] and define:

Definition 2.3. Let µ be a σ-finite measure µ on B(E) with µ({0}) = 0. Then µ is said
to be a Lévy measure if and only if

∫
E
|K(x, u)|µ(dx) <∞

for all u ∈ E ′ and the mapping

u 7→ exp
(∫

E
K(x, u)µ(dx)

)
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is the characteristic function of a probability measure on E.

Recall that when E is a Hilbert space (in particular any Euclidean space Rn), a σ-finite
measure µ on E is a Lévy measure if and only if

∫
1 ∧ |x|2µ(dx) < ∞ (see for instance

[134]). For a general Banach space E, this condition is not necessary nor sufficient, instead,
we have some partial characterisation from [9] and [61]:

Theorem 2.4. Let E be a Banach space. Then

a) E if of type p ⇐⇒ every Borel measure µ on E with µ({0}) = 0 satisfying the
condition

∫
1 ∧ |x|pµ(dx) is a Lévy measure.

b) E if of cotype q ⇐⇒ every Lévy measure µ satisfies
∫

1 ∧ |x|qµ(dx).

We are finally ready to state a generalization of the Lévy-Khintchine decomposition to
Banach space valued Lévy process (see for example [3] and [78]) :

Proposition 2.5. Let X be a Lévy process taking values on a Banach space E. Then
the law of X(t) is infinitely divisible for all t ≥ 0 and there exists γ ∈ E, a covariance
operator Q : E ′ → E and a Lévy measure X on E, such that the characteristic function of
X admits the decomposition

E[ei〈X(t),u〉] = etΨX(u), u ∈ E ′,

where the characteristic exponent ΨX of X is given by

ΨX(u) = i〈γ, u〉 − 1
2〈u,Qu〉+

∫
E
K(x, u)X (dx), (2.2.2)

where recall that K is defined in (2.2.1).

The triplet (γ,Q,X ) is called the characteristic triplet of X and uniquely determines
the process X up to distribution.

2.3 Cone-valued time parameters

As discussed in Section 2.1.3, to define the weak subordination we need to first consider
the evaluation of a Lévy process X on a Hilbert space H at a multivariate time index
τ , which we write as X(τ). This object is defined in (2.3.1) and will be the focus of this
section. First, in Proposition 2.6 and Corollary 2.7 we give sufficient conditions for X(τ) to
be well-defined as a random element of H. The distribution of X(τ) is studied in Section
2.3.1. In Proposition 2.9 and Theorem 2.10 we show that the distribution of X(τ) is
infinitely divisible and give its triplet in terms of the triplets of X and the time parameter
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τ . Some technical lemmas commonly seen in the subordination literature are presented in
Lemma 2.11, and the stochastic continuity of τ 7→ X(τ) is shown in Corollary 2.12.

Let H be a separable Hilbert space with a chosen orthonormal basis (en)n. Suppose
(X(t))t≥0 is a Lévy process on H adapted to the filtration (Ft)t, then each Xn(t) :=
〈X(t), en〉 defines a real valued Lévy process and the series ∑nXn(t)en converges to X(t)
in probability on H (see for instance [142]).

Write RN
+ for the set of all non-negative real numbers τ = (τn)n∈N, which we will refer

to as cone-valued time parameters. Using RN
+ as an index set, we may define a stochastic

process {X(τ), τ ∈ RN
+} via the (formal) expression:

X(τ) :=
∞∑
n=1

Xn(τn)en. (2.3.1)

That is, we are evaluating each coordinate of X (with respect to the basis (en)n) at a
different time τn. It is not hard to see that the series is not necessarily convergent in H for
every choice of τ ∈ RN

+ , unless X concentrates on a finite dimensional subspace of H. We
therefore first give a sufficient condition for the convergence of the above series, namely
we require the sequence τ = (τn)n to be uniformly bounded.

Proposition 2.6. Let T > 0 and write KT := {(τn)n ∈ `∞, |τn|∞ ≤ T}.

a) Suppose X is a square integrable Lévy process, then the series (2.3.1) is convergent
in L2(Ω, H) uniformly on KT for all T > 0.

b) Suppose X is a compound Poisson process, then the series (2.3.1) is convergent
P-almost surely uniformly on KT for all T > 0.

Proof. Write XN(τ) := ∑
n≤N Xn(τn)en for N ∈ N, then clearly each XN is a random

variable taking values in H since it is defined by a finite sum. Let T > 0 be arbitrary. For
any N,M ∈ N with N > M , we define

D2
N,M : = sup

|τ |≤T
|XN(τ)−XM(τ)|2 ≤

N∑
n=M+1

sup
|τ |≤T

Xn(τn)2. (2.3.2)

Clearly each D2
N,M is a random element of H as well. To show the convergence of (2.3.1),

it is sufficient to show that DN,M → 0 in L2 or almost surely as N,M →∞.
(a) We assume first that X is a mean zero square integrable Lévy martingale, then
E|X(T )|2 = ∑

n E[Xn(T )]2 <∞ for T ≥ 0. By Doob’s inequality,

E[D2
N,M ] ≤

N∑
n=M+1

E
[

sup
τn≤T

Xn(τn)2
]
≤ 4

N∑
n=M+1

E
[
Xn(T )2

]
M,N→∞→ 0. (2.3.3)

In general, suppose X is a square integrable Lévy process with mean EX(1) = µ ∈ H. Then
t 7→ X̃(t) := X(t)− tµ defines a square integrable Lévy martingale. By the elementary
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inequality (a+ b)2 ≤ 2a2 + 2b2, we have

sup
τn≤T

Xn(τn)2 ≤ 2 sup
τn≤T

X̃n(τn)2 + 2T 2〈µ, en〉2

from which we can obtain

E[D2
N,M ] ≤ 8

N∑
n=M+1

E
[
X̃n(T )2

]
+ 2T 2

N∑
n=M+1

〈µ, en〉2 → 0, M,N →∞,

where the first sum converges to zero by (2.3.3) and the second sum converges to zero
since ∑〈µ, en〉2 = |µ|2 <∞ by Parseval’s identity.

(b) Suppose X is a compound Poisson process. For P-almost every ω ∈ Ω, the function
t 7→ X(ω, t) is right continuous and takes only a finite number (say k) of values on each
interval [0, T ], which we will denote as X(ω, r1), . . . , X(ω, rk) for some (r1, . . . , rk) ⊂ [0, T ]
depending on the choice of ω. Then

D2
N,M ≤

N∑
n=M+1

sup
|τ |≤T

Xn(τn)2 =
N∑

n=M+1
max
1≤i≤k

Xn(ri)2.

Since X takes values in H, for each i ∈ {1, . . . , k}, the sequence (Xn(ri))n is in `2, P-almost
surely. Therefore (max1≤i≤kXn(ri))n ∈ `2 as well and so DN,M → 0 almost surely.

As an easy consequence of the Lévy-Itô decomposition (see [5, 78]), we can combine
the above two results and state the following.

Corollary 2.7. Let X be a Lévy process in H and τ ∈ `+
∞. Then

X(τ) :=
∞∑
n=1

Xn(τn)en

is convergent in probability to a random variable in H.

We remark here that clearly the random variable X(τ) is almost surely equal to∑
n∈supp(τ) Xn(τn)en, where supp(τ) := {n ∈ N, τn 6= 0}.

2.3.1 Distribution and Lévy triplet

To state the distribution of the random variable X(τ), we first introduce some notations.
For N ∈ N and a sequence τ = (τn)n ∈ RN

+, we write τN for the truncated sequence τN :=
(τn1n≤N)n. Let {(1)N , . . . , (N)N} be a permutation of {1, . . . , N} such that the sequence
(τ(n)N )n≤N is non-increasing, i.e. τ(1)N ≥ · · · ≥ τ(N)N . Write ∆τ(n)N := τ(n)N − τ(n+1)N ,
n ∈ {1, . . . , N}, with the convention τ(N+1)N := 0. Finally let π(1,...,n)N be the orthogonal
projection onto the linear subspace of H spanned by {e(1)N , . . . , e(n)N}.
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To state the distribution of X(τ), we first introduce a outer product operation on the
characteristic triplet (γ,Q,X ) of X. For N ∈ N, define

τN � γ : =
N∑
n=1

τn〈γ, en〉,

τN �Q : =
N∑
i=1

N∑
j=1

(τi ∧ τj)〈Qei, ej〉ei ⊗ ej,

τN � X : =
N∑
n=1

∆τ(n)N

(
X ◦ π−1

(1,...,n)N

∣∣∣
H\{0}

)
,

CτN�X : =
N∑
n=1

∆τ(n)N

∫
Bc

(
π−1

(1,...,n)Nx
)

1B
(
π−1

(1,...,n)Nx
)
X (dx),

where ei ⊗ ej is the operator x 7→ 〈x, ei〉ej. It is routine to check that τN � Q defines a
covariance operator on H, τN � X defines a Lévy measure on H and CτN�X is well defined
as a sum of Bochner integrals taking values in H.

Proposition 2.8. The law of X(τN) = ∑N
n=1Xn(τn)en is infinitely divisible with charac-

teristic triplet (τN � γ + CτN�X , τ
N �Q, τN � X ).

Proof. Let u ∈ H, then 〈X(τN), u〉 = ∑N
n=1 u(n)NX(n)N (τ(n)N ) and we may write

〈X(τN), u〉 =
N∑
n=1

u(n)N

N∑
k=n

(
X(n)N (τ(k)N )−X(n)N (τ(k+1)N )

)

=
N∑
k=1

k∑
n=1

u(n)N

(
X(n)N (τ(k)N )−X(n)N (τ(k+1)N )

)
=:

N∑
k=1

ZN,k.

By stationarity and independence of the increments of X, (ZN,k)k≤N is an independent
sequence of infinitely divisible random variables with

ZN,k =
k∑

n=1
u(n)N

(
X(n)N (τ(k)N )−X(n)N (τ(k+1)N )

)
D=
〈
π(1,...,k)Nu,X(∆τ(k)N )

〉
.

Therefore X(τN) is infinitely divisible as well with characteristic exponent given by

ΨX(τN )(u) =
N∑
k=1

ΨZN,k(1) =
N∑
k=1

∆τ(k)NΨX(1)(π(1,...,k)Nu). (2.3.4)

Write |u|Q := 〈u,Qu〉. Expanding (2.3.4) using (2.2.2), we have

ΨX(τN )(u) = i
N∑
k=1

∆τ(k)N 〈γ, π(1,...,k)Nu〉 −
1
2

N∑
k=1

∆τ(k)N |π(1,...,k)Nu|Q (2.3.5)

+
N∑
k=1

∆τ(k)N

∫
H
K(x, π(1,...,k)Nu)X (dx).
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Writing γn := 〈γ, en〉 the first term in (2.3.5) is given by

N∑
k=1

∆τ(k)N 〈γ, π(1,...,k)Nu〉 =
N∑
k=1

∆τ(k)N

k∑
n=1

γ(n)Nu(n)N

=
N∑
n=1

γ(n)Nu(n)N

N∑
k=n

∆τ(k)N =
N∑
n=1

τ(n)Nγ(n)Nu(n)N = 〈τN � γ, u〉.

Similarly, writing Qij := 〈Qei, ej〉, the covariance term in (2.3.5) becomes

N∑
k=1

∆τ(k)N 〈π(1,...,k)Nu,Qπ(1,...,k)Nu〉 =
N∑

i,j=1
Q(i)N (j)Nu(i)Nu(j)N

N∑
k=i∨j

∆τ(k)N

=
N∑

i,j=1
(τ(i)N ∧ τ(j)N )Q(i)N (j)Nu(i)Nu(j)N = 〈u, (τN �Q)u〉.

Finally, observe that {x : x ∈ B} ⊆ {x : π(1,...,k)Nx ∈ B} so we have 1B(x) =
1B(π(1,...,k)Nx)− 1B(π(1,...,k)Nx)1Bc(x). Furthermore, we have

K(x, π(1,...,k)Nu) = ei〈π(1,...,k)N x,u〉 − 1− i〈π(1,...,k)Nx, u〉1B(x)

= K(π(1,...,k)Nx, u) + i〈π(1,...,k)Nx, u〉(1B(π(1,...,k)Nx)− 1B(x)).

Therefore the last sum in (2.3.5) is given by

N∑
k=1

∆τ(k)N

∫
H
K(x, π(1,...,k)Nu)X (dx)

=
∫
H
K(x, u)

(
N∑
k=1

∆τ(k)NX ◦ π−1
(1,...,k)N

)
(dx)

+ i
N∑
k=1

∆τ(k)N

∫
H
〈x, π(1,...,k)Nu〉1B(π(1,...,k)Nx)1Bc(x)X (dx)

=
∫
H
K(x, u)(τN � X )(dx) + CτN�X .

The characteristic triplet of X(τN) follows immediately.

By Proposition 2.6 we have X(τN) → X(τ) in probability as N → ∞ for all τ ∈
`∞. Then the limit X(τ) is infinitely divisible as well and the characteristic triplet
(τN � γ + CτN�X , τ

N �Q, τN � X ) of X(τN ) should converge to the characteristic triplet of
X(τ) in suitable topologies, which is made precise by the following proposition. We note
that the expressions for τN � X and CτN�X involve series whose summands themselves
depend on N and consequently the limits do not have an explicit expression. Nevertheless,
we can derive estimates on the limits as functions of τ and X .

Proposition 2.9. Let (γ,Q,X ) be a characteristic triplet and τ ∈ `∞.



2.3 Cone-valued time parameters 25

a) The sequence (τN � γ)N is convergent in the norm of H to

τ � γ := lim
N→∞

τN � γ =
∞∑
n=1

τn〈γ, en〉,

and the limit satisfies |τ � γ|H ≤ |τ ||γ|H .

b) The sequence (CτN�X )N is convergent in the norm of H to

Cτ�X := lim
N→∞

CτN�X

and the limit satisfies |Cτ�X |H ≤ |τ |X (Bc).

c) The sequence (τN �Q)N is convergent in the trace norm of L1(H) to

τ �Q := lim
N→∞

τN �Q =
∞∑
n=1

(τi ∧ τj)〈Qei, ej〉ei ⊗ ej.

The limit is a covariance operator satisfying |τ �Q|L1(H) ≤ |τ ||Q|L1(H).

d) There exists a Lévy measure τ � X on H such that

τN � X |Uc ⇒ τ � X |Uc

holds for any neighborhood U of zero, where ⇒ denotes convergence in the topology
of weak convergence of (finite) measures. Furthermore, the limit satisfies

(τ � X )(Bc
ε) ≤ |τ |X (Bc

ε), ∀ε > 0.

e) Each 1 ∧ |x|2(τN � X )(dx) is a finite Borel measure and

1 ∧ |x|2(τN � X )(dx)⇒ 1 ∧ |x|2(τ � X )(dx).

Furthermore for all r > 0,
∫
Br

1 ∧ |x|2(τ � X )(dx) ≤ |τ |
(

(1 ∧ r2)X (Bc
r) +

∫
Br

1 ∧ |x|2X (dx)
)
.

Proof. (a) is obvious since γ 7→ ∑
n τn〈γ, en〉en is the multiplication operator Mτ , diagonal

with respect to (en)n with eigenvalues (τn)n ∈ `∞.

(b) By Theorem VI 5.5 of [134], it holds that τN � γ + CτN�X converges in the norm of
H to some limit. Since the sequence (τN � γ)N is convergent by (a), we conclude that
(CτN�X )N must converge as well. Moreover, for N ∈ N, by the triangle inequality we have
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|CτN�X |H ≤
N∑
n=1

∆τ(n)N

∫
|x|≥1
|π−1

(1,...,n)Nx|1B(π−1
(1,...,n)Nx)X (dx)

≤
N∑
n=1

∆τ(n)NX (Bc) = τ(1)NX (Bc) ≤ |τ |X (Bc),

which gives the estimate |Cτ�X |H = limN |CτN�X |H ≤ |τ |X (Bc).

(c) Let M,N ∈ N with M > N . Then by the definition of τN �Q, we have

|τM �Q− τN �Q|L1(H) =
M∑

n=N+1
τn〈Qen, en〉 ≤ |τ |

M∑
n=N+1

〈Qen, en〉 → 0,

since Q is of trace class. It is routine to check that the limit τ � Q is symmetric and
positive definite. Furthermore, we have |τ �Q|L1(H) = ∑

n τnQnn ≤ |τ ||Q|L1(H) <∞.

(d) By Theorem VI 5.5 of [134], for each ε > 0, the measure (τN � X )|Bcε is a finite Lévy
measure and converges weakly to a Lévy measure on H, which we call τ � X . Since
|π(1,...,n)Nx| ≤ |x|, for ε > 0, we have

X ◦ π−1
(1,...,n)N (Bc

ε) = X ({|π(1,...,n)Nx| > ε}) ≤ X (Bc
ε).

We therefore have the bound

(τN � X )(Bc
ε) =

N∑
n=1

∆τ(n)NX ◦ π−1
(1,...,n)N (Bc

ε) ≤ τ(1)NX (Bc
ε) ≤ |τ |X (Bc

ε),

which holds uniformly over N ∈ N, which gives our claimed estimate on τ � X .

(e) For an arbitrary E ∈ B(H), N ∈ N and ε > 0, write

aN,ε :=
∫
E∩Bcε

1 ∧ |x|2(τN � X )(dx),

so that limε→0 limN→∞ aN,ε exists and is equal to

lim
ε→0

lim
N→∞

aN,ε = lim
ε→0

lim
N→∞

∫
E∩Bcε

1 ∧ |x|2(τN � X )(dx)

= lim
ε→0

∫
E∩Bcε

1 ∧ |x|2(τ � X )(dx)

=
∫
E

1 ∧ |x|2(τ � X )(dx),

where the second equality holds by the weak convergence of τN � X to τ � X on sets
bounded away from zero and the last expression is finite since τ � X is a Lévy measure on
H. For N ∈ N, since E − E ∩Bc

ε = E ∩Bε ⊆ Bε,

DN,ε :=
∣∣∣∣aN,ε− ∫

E
1 ∧ |x|2(τN � X )(dx)

∣∣∣∣ ≤ ∫
H

1Bε(x)1 ∧ |x|2(τN � X )(dx)
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=
N∑
n=1

∆τ(n)N

∫
H

1Bε(x)1 ∧ |x|2(X ◦ π(1,...,n)−1
N

)(dx)

=
N∑
n=1

∆τ(n)N

∫
H

1Bε(π(1,...,n)Nx)1 ∧ |π(1,...,n)Nx|2X (dx). (2.3.6)

Since |π(1,...,n)Nx| ≤ |x|, we can easily derive the identity

1Bε(π(1,...,n)Nx) = 1Bε(x) + 1Bcε (x)1Bε(π(1,...,n)Nx).

The integrand of (2.3.6) is then bounded pointwise on H by a function fε on H given by

fε(x) := (1 ∧ |x|2)1Bε(x) + (1 ∧ ε2)1Bcε (x)

uniformly in N , and we have the bound

DN,ε ≤
N∑
n=1

∆τ(n)N

∫
H
fε(x)X (dx) ≤ |τ |

∫
H
fε(x)X (dx).

As ε→ 0, fε(x) converges pointwise on H to zero (uniformly in N). Since

fε(x) ≤ 1 ∧ |x|2 ∈ L1(H,B(H),X ),

by the dominated convergence theorem, DN,ε → 0 uniformly in N . Equivalently, aN,ε is
uniformly convergent to the limit

∫
E 1∧ |x|2(τN �X ) as ε→ 0. Together with the existence

of limN→∞ aN,ε for each ε > 0, we conclude that the two limits commute and therefore
∫
E

1 ∧ |x|2(τ � X )(dx) = lim
ε→0

lim
N→∞

aN,ε

= lim
N→∞

lim
ε→0

aN,ε = lim
N→∞

∫
E

1 ∧ |x|2(τN � X )(dx),

which implies the weak convergence of 1 ∧ |x|2(τN � X )(dx) ⇒ 1 ∧ |x|2(τ � X )(dx) as
N →∞, since E ∈ B(H) is arbitrary.

By the same arguments as above, we see that for all N ∈ N and r > 0,
∫
Br

1 ∧ |x|2(τN � X )(dx) ≤
∫
H
fr(x)X (dx)

≤ |τ |
(∫

Br
1 ∧ |x|2X (dx) + X (Bc

r)(1 ∧ r2)
)

which is uniform in N . By the weak convergence of the sequence 1∧ |x|2(τN � X )(dx), the
bound also applies to the limit 1 ∧ |x|2(τ � X )(dx) and the inequality in (e) follows.

We summarize the above results into the following theorem:

Theorem 2.10. Fix τ ∈ `∞ and let X be a Lévy process on H with characteristic triplet
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(γ,Q,X ). Then the H-valued random variable X(τ) is infinitely divisible with characteristic
triplet (τ � γ + Cτ�X , τ �Q, τ � X ) as defined in Proposition 2.9.

The following technical lemma is analogous to Lemma 30.3 of Sato [152], equations
(3.17)-(3.20) of Barndorff-Nielsen et al. [21], Lemma 27 of Pérez-Abreu and Rocha-Arteaga
[141] and Lemma 5.1 of Buchmann et al. [49]. These estimates will be used later on in the
Chapter to control certain integrals against the Lévy measure τ � X .

Lemma 2.11. The exists finite constants C1, C2, C3, only dependent on the triplet (γ,Q,X ),
such that for all τ ∈ `∞,

P
(
|X(τ)|2 > 1− |τ |

)
≤ C1(|τ |+ |τ |2), (2.3.7)

E
[
|X(τ)|21|X(τ)|≤1

]
≤ C2(|τ |+ |τ |2), (2.3.8)∣∣∣∣E[X(τ)1|X(τ)|≤1

]∣∣∣∣ ≤ C3|τ |. (2.3.9)

Proof. Let Y0 and Y1 be Lévy processes on H with characteristic triplets (0, 0, (τ � X )|Bc)
and (τ � γ + Cτ�X , τ �Q, (τ � X )|B) respectively, then Y0 is a compound Poisson process
with jumps of norm larger than 1, and Y1 has bounded jumps and hence moments of all
orders. By Theorem 2.10, We have Y0(1) + Y1(1) D= X(τ). Observe that

P(|X(τ)|2 > 1− |τ |) ≤ P(Y0(1) 6= 0) + P(|Y1(1)|2 > 1− |τ |). (2.3.10)

Since 1− e−x ≤ x, we have

P(Y0(1) 6= 0) ≤ 1− e−(τ�X )(Bc) ≤ (τ � X )(Bc) ≤ |τ |X (Bc),

where the last inequality holds by Proposition 2.9 (d). For the second term in (2.3.10),
Markov’s inequality gives P(|τ |+ |Y1(1)|2 > 1) ≤ |τ |+ E[|Y1(1)|2], where the second term
is finite since Y1 has moments of all orders. By the monotone convergence theorem

E[|Y1(1)|2] =
∞∑
n=1

(E〈Y1(1), en〉)2 +
∞∑
n=1

Var〈Y1(1), en〉

=
∞∑
n=1
〈E[Y1(1)], en〉2 +

∞∑
n=1
〈Cov(Y1(1))en, en〉

= |E[Y1(1)]|2 + |Cov(Y1(1))|L1(H),

where, by the definition of Y1(1), E[Y1(1)] = τ � γ + Cτ�X and Cov(Y1(1)) = τ � Q +∫
B x〈x, ·〉(τ � X )(dx). By the estimates in Proposition 2.9 (a), (b) and the inequality

(a+ b)2 ≤ 2a2 + 2b2, the term |E[Y1(1)]|2 is bounded by

|E[Y1(1)]|2 = 2|τ � γ|2 + 2|Cτ�γ|2 ≤
(
2|γ|2 + 2X (Bc)2

)
|τ |2.
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Similarly, by the triangle inequality and Proposition 2.9 (c) and (e), we have

|Cov(Y1(1))|L1 ≤ |τ �Q|L1 +
∫
B
|x|2(τ � X )(dx)

≤ |τ |
(
|Q|1 + X (Bc) +

∫
B
|x|2X (dx)

)
.

Collecting the above terms, we see that (2.3.7) holds with

C1 = 1 + 2|γ|2 + |Q|L1 + 2X (Bc) + 2X (Bc)2 +
∫
B
|x|2X (dx).

Next, writing 1|X(τ)|≤1 = (1Y0 6=0 + 1Y0=0)1|X(τ)|≤1, we get

E[|X(τ)|21|X(τ)≤1|] ≤ P(Y0(1) 6= 0) + E[|Y1(1)|2], (2.3.11)

from which (2.3.8) follows with C2 = C1 − 1. Similar to the above, we have
∣∣∣∣E[X(τ)1|X(τ)|≤1]

∣∣∣∣ ≤ P(Y0(1) 6= 0) +
∣∣∣∣E[Y1(1)1|Y1(1)|≤1]

∣∣∣∣,
where |E[Y1(1)1|Y1(1)|≤1]| ≤ |τ � γ| + |Cτ�X | ≤ |τ |(|γ| + X (Bc)). This gives (2.3.9) with
C3 = |γ|+ 2X (Bc).

As a consequence of the above estimates, we can show that {X(τ), τ ∈ `+
∞} is stochastic-

ally continuous when considered as a process indexed by `+
∞.

Corollary 2.12. The process {X(τ), τ ∈ `∞} is stochastically continuous, i.e. whenever
τ k → τ in norm as k →∞, X(τ k)→ X(τ) in probability.

Proof. Note that since each Xn is a Lévy process on R, we have

|X(τ k)−X(τ)|2 =
∑
n

|Xn(τ kn)−Xn(τn)|2 D=
∑
n

|Xn(τ kn − τn)|2

so it suffices to show that the `+
∞-indexed process {X(τ), τ ∈ `+

∞} is stochastically continu-
ous at zero. Let τ k → 0 as k →∞. Then

E
[
1 ∧ |X(τ k)|2

]
= P

(
|X(τ k)| > 1

)
+ E

[
|X(τ k)|21|X(τk)|≤1

]
≤ P

(
|X(τ k)| > 1− |τ k|∞

)
+ E

[
|X(τ k)|21|X(τk)|≤1

]
≤ (C1 + C2)(|τ k|∞ + |τ k|2∞),

where the last estimate follows from Lemma 2.11 and the constants C1 and C2 depend only
on the triplet of X. Taking k →∞ shows that |X(τ k)| converges to zero in probability.
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2.4 Lévy subordinators on `+
∞

Based on Proposition 2.6 we wish to choose subordinators taking values in the space of
bounded, positive sequences. However, since `+

∞ is not separable, we begin our analysis
in a weighted `1 space that contains `+

∞ as a subset. This is the focus of Section 2.4.1.
In Definition 2.13 we define a subordinator T on the positive cone of this weighted
space. Proposition 2.14 then gives the Lévy-Khintchine decomposition of T . Once this
is completed, Theorem 2.15 in Section 2.4.1 gives sufficient conditions for T to admit a
Lévy-Itô decomposition in `∞, which is the space we wanted originally.

We remark that our choice of weighted `1 over other weighted `p spaces (in particular
the Hilbert space `2) is necessary for a nice characterisation of Lévy subordinators in
Banach spaces. More precise results and discussions on Banach space valued subordinators
we refer to [138, 141, 150].

Let w = (wn)n be a summable sequence of positive numbers normalized to |ω|1 = 1.
Define the w-weighted sequence space `1,w:

`1,w :=
{
x ∈ RN,

∞∑
n=1
|xn|wn <∞

}

endowed with the weighted `1 norm |x|1,w := ∑∞
n=1 |xn|wn. Then `1,w is a separable Banach

space of type 1. We first state some preliminary facts and introduce the necessary notations
on such sequence spaces. More details can be found in for instance [1].

Since w is a positive sequence, the counting measure on N is equivalent to the w-
weighted counting measure, so trivially `∞,w = `∞. It is then clear that the topological
dual (`1,w)∗ of `1,w is isomorphic to `∞, and we write 〈x, y〉 := ∑∞

n=1 xnynwn for the
duality pairing between `1,w and `∞. The Borel σ-algebra B(`1,w) coincides with the
cylindrical σ-algebra generated by sets of the form {x ∈ `1,w : (〈x, u1〉, . . . , 〈x, un〉) ∈ A},
where u1, . . . , un are elements of `∞ and A ∈ B(Rn). In particular, sets of the form
{x ∈ `1,w, xn ≥ 0, ∀n ∈ J} where J ⊆ N are Borel measurable.

The standard basis (en)n of `1 is a Schauder basis for `1,w as well, and the corresponding
biorthogonal functionals (e∗n)n ⊆ (`1,w)∗ can be identified isometrically with the collection of
bounded sequences (w−1

n en)n ⊆ `∞. That is, we have the identity e∗n(x) = xn = 〈x,w−1
n en〉

for any x ∈ `1,w. Therefore each e∗n : `1,w → R is a Borel function, and the function
| · |∞ = supn〈 · , e∗n〉 : `1,w → R is Borel measurable as well. This implies that sets of the
form {|x|∞ ∈ A,A ∈ B(R)} are elements of B(`1,w). The space `∞ is a subspace of `1,w

and the embedding `∞ ↪→ `p,w is continuous, since |x|1,w ≤ |x|∞|w|1. On the other hand,
`∞ is not a closed subspace of `1,w under the weighted norm.

Let `+
1,w := {x ∈ `1,w, xn ≥ 0,∀n ≥ 1} be the cone of non-negative sequences in `1,w.

Then `+
1,w is a proper cone in the sense that x ∈ `+

1,w and −x ∈ `+
1,w implies x = 0. Since

|x|1,w = ∑
nwnxn on the cone `+

1,w, the norm | · |1,w on `+
1,w agrees with the linear functional
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w = (wn)n ∈ `∞. Cones with this property are called Birkhoff-Kakutani cones, see [150].
The results in [150] imply that subordinators can be defined on Birkhoff-Kakutani cones
in a similar way to the finite dimensional setting. That is, we can define:

Definition 2.13. A Lévy process process (T (t))t≥0 in the sequence space `1,w is said to
be an `+

1,w-subordinator if and only if T (t) takes values in `+
1,w almost surely for all t ≥ 0.

It can be shown that (T (t))t≥0 takes values in `+
1,w a.s. for each t if T is `+

1,w-increasing,
i.e. we have T (t) − T (s) ∈ `+

1,w for any s ≤ t. The results of [150] imply the following
characterization of subordinators defined on `1,w which is a Birkhoff-Kakutani cone.

Proposition 2.14 (Proposition 8, [150]). Let (T (t))t≥0 be a Lévy process on `1,w. Then T

is an `+
1,w-subordinator iff there exists η ∈ `+

1,w and a Lévy measure T on `1,w concentrated
on `+

1,w \ {0} and satisfying
∫
`+1,w

1 ∧ |x|1,wT (dx) <∞, (2.4.1)

such that T admits a Lévy-Khintchine decomposition of the form

E[ei〈T (t),u〉] = exp
{
it〈η, u〉+ t

∫
`+1,w

(
ei〈x,u〉 − 1

)
T (dx)

}
, u ∈ `∞.

In this case, the Laplace transform of T is given by

E[e−〈T (t),u〉] = exp
{
−t〈η, u〉 − t

∫
`+1,w

(
1− e−〈x,u〉

)
T (dx)

}

and the associated norm process (|T (t)|1,w)t≥0 is a real-valued subordinator.

2.4.1 Lévy-Itô decomposition on `+
∞

Using the results of [150], especially the Lévy-Khintchine decomposition in Proposition
2.14, we have defined a subordinator T on the weighted sequence space `+

1,w. Recall
from earlier discussions that for the purpose of constructing the weak subordination, it is
necessary to define T on the space `∞.

Let (T (t))t≥0 be a subordinator on `+
1,w with drift η ∈ `+

1,w and Lévy measure T . We
formulate a sufficient condition for the law of T (t) to be concentrated on the sub-cone `+

∞.
Let Nt(dx) be the Poisson random measure associated with T , i.e.

Nt(A) :=
∑

0<s≤t
1A(∆T (s)), A ∈ B(`+

1,w).

Theorem 2.15. Suppose η ∈ `+
1,w and the Lévy measure T of T concentrates on the

subcone `+
∞ and is finite on the set {|x|∞ > 1}. Then
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a) The `+
1,w-subordinator T admits a Lévy-Itô decomposition of the form

T (t) = tη +
∫
|x|∞>1

xNt(dx) + lim
ε↓0

∫
|x|∞∈(ε,1]

xNt(dx), (2.4.2)

where the first integral is almost surely equal to a sum of finitely many `+
∞-valued

terms, and the limit is taken with respect to | · |1,w.

b) If furthermore η ∈ `+
∞ and the Lévy measure T satisfies

∫
|x|∞∈(0,1]

|x|∞T (dx) <∞, (2.4.3)

then T (t) takes values in `+
∞ almost surely for every t ≥ 0.

Proof. We precede the proof with the following technical lemmas.

Lemma 2.16. The first integral in (2.4.2) is almost surely equal to a sum of finitely many
terms in `+

∞. Furthermore, it is a.s. equal to the limit
∫
|x|∞>1

xNt(dx) = lim
ε↓0

∫
|x|∞>1

x1|x|1,w>εNt(dx)

Proof. Since T is finite on {|x|∞ > 1}, so is Nt(·) almost surely for each t, and the first
integral in (2.4.2) is a finite sum taking values in `+

∞.
Since |x|1,w > 0 whenever |x|∞ > 1, the function x 7→ x1|x|1,w>ε1|x|∞>1 converges

pointwise to x 7→ x1|x|∞>1 as ε → 0. Furthermore, x1|x|1,w>ε1|x|∞>1 has | · |1,w norm
bounded by |x|1,w1|x|∞>1 which is integrable with respect to Nt(dx) a.s. since Nt is a finite
measure on {|x|∞ > 1} almost surely. By dominated convergence the limit exists and is
equal to the left hand side.

Lemma 2.17. The limit in equation (2.4.2) exists and is equal to

lim
ε↓0

∫
|x|∞∈(ε,1]

xNt(dx) = lim
ε↓0

∫
|x|∞∈(ε,1]

x1|x|1,w>ε Nt(dx).

Proof. Since |x|1,w ≤ |x|∞, we have 1|x|∞∈(ε,1] ≤ 1|x|1,w∈(0,1]. Therefore we have

|x|1,w1|x|1,w>ε1|x|∞∈(ε,1] ≤ |x|1,w1|x|1,w∈(0,1],

which is integrable with respect to Nt(dx) almost surely by (2.4.1). Since |x|1,w = 0 iff
x = 0, the functions x 7→ x1|x|∞∈(ε,1] and x 7→ x1|x|∞∈(ε,1]1|x|1,w>ε both converge pointwise
to the limit x 7→ x1|x|∞∈(0,1]. By the dominated convergence theorem both limits exists
and are therefore equal.

Proof of Theorem 2.15. (a) Since T is a subordinator on `+
1,w, by the Lévy-Itô decomposi-

tion of T on `+
1,w we have
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T (t) = tη + lim
ε↓0

∫
|x|1,w>ε

xNt(dx), (2.4.4)

where the limit is taken with respect to | · |1,w. Since |x|1,w ≤ |x|∞, we have |x|∞ ≥ ε

whenever |x|1,w > ε and therefore we have the equality

1|x|1,w>ε = 1|x|1,w>ε1|x|∞>1 + 1|x|1,w>ε1ε<|x|∞≤1.

The limit in (2.4.4) can therefore be written as

lim
ε↓0

[∫
|x|∞>1

x1|x|1,w>εNt(dx) +
∫
|x|∞∈(ε,1]

x1|x|1,w>εNt(dx)
]

=
∫
|x|∞>1

xNt(dx) + lim
ε↓0

∫
|x|∞∈(ε,1]

xNt(dx),

where the last equality holds because the first term has a limit in | · |1,w by Lemma 2.16
and hence so does the second term. This gives (2.4.2).
(b) Now suppose η ∈ `+

∞ and the condition (2.4.3) holds. By Lemma 2.16, the term∫
|x|∞>1 xNt(dx) is almost surely in `+

∞, since it is equal to a sum of finitely many terms all
taking values in `+

∞. It remains to show that

T̃ (t) :=
∫
|x|∞∈(ε,1]

xNt(dx) = lim
ε↓0

∑
0≤u≤t

∆T (u)1|∆T (u)|∞∈(ε,1]

takes values in `+
∞ as well. Note that for ε > 0, since Nt is finite on {|x|∞ ∈ (ε, 1]} a.s.,

the term ∑
0≤u≤t ∆T (u)1|∆T (u)|∞∈(ε,1] is a sum of finitely many terms with values in `+

∞.
For x ∈ `1,w, recall that the n-th coordinate xn of x is given by xn = e∗n(x) = 〈x,w−1

n en〉,
where w−1

n en is a vector of norm w−1
n in `∞. Since 〈 · , w−1

n en〉 is continuous with respect
to the norm | · |1,w and the term T̃ (t) is obtained as a | · |1,w-limit, we can write

|T̃ (t)|∞ = sup
n

〈
lim
ε↓0

∑
0≤u≤t

∆T (u)1|∆T (u)|∞∈(ε,1], w
−1
n en

〉

= sup
n

lim
ε↓0

∑
0≤u≤t

〈
∆T (u), w−1

n en
〉
1|∆T (u)|∞∈(ε,1]

≤ lim
ε↓0

∑
0≤u≤t

|∆T (u)|∞1|∆T (u)|∞∈(ε,1].

Let Fε : `1,w → R be defined by F (x) = |x|∞1|x|∞∈(ε,1], then F is obviously bounded on
`1,w and belongs to L1(`1,w,B(`1,w), T ) by assumption (2.4.3). By Fatou’s lemma,

E|T̃ (t)|∞ ≤ lim inf
ε↓0

E

 ∑
0≤u≤t

Fε(∆T (u))


= lim inf
ε↓0

t
∫
|x|∞∈(ε,1]

|x|∞T (dx) = t
∫
|x|∞∈(0,1]

|x|∞T (dx) <∞,



2.5 Lévy measures on direct sums of Banach spaces 34

where the last equality follows by monotone convergence. Therefore T̃ (t) is a bounded
sequence almost surely and the proof is complete.

2.5 Lévy measures on direct sums of Banach spaces

In order to define the weak subordination of X and T on H⊕`+
1,w, we need a characterisation

of Lévy measure on the direct sum of spaces with different Rademacher types. This
characterisation is given in Theorem 2.18.

Let (E1, | · |E1) and (E2, | · |E2) be separable Banach spaces of Rademacher type pi and
topological dual E∗i , i = 1, 2. Then their direct sum E1 ⊕ E2 is again a Banach space
under any of the equivalent norms |(x, y)|p := (|x|pE1 + |y|pE2)1/p, p ≥ 1. For simplicity, we
will use |(x, y)| := |(x, y)|1 = |x|E1 + |y|E2 . Furthermore E1 ⊕ E2 is of type p1 ∧ p2. We
endow E1 ⊕ E2 with its Borel σ-algebra generated by any one of these equivalent norms.

For x ∈ E1, y ∈ E2, the maps π1 : E1 ⊕ E2 → E1 ⊕ {0} defined by π1(x, y) := (x, 0)
and π2 : E1 ⊕ E2 → {0} ⊕ E2 defined by π2(x, y) := (0, y) are bounded linear projections
of norm 1. In particular, the function (x, y) 7→ |x|p1

E1 + |y|p2
E2 is Borel measurable.

2.5.1 Characterisation of Lévy measures

Now, let Z be a σ-finite measure on the Borel σ-algebra of a separable Banach space E.
Recall K from 2.2.1. From Definition 2.3 we recall that Z is a Lévy measure if and only if∫
E |K(x, u)|Z(dx) <∞ for all u ∈ E ′ and the function u 7→ exp(

∫
EK(x, u)Z(dx)) defines

the characteristic function of a probability measure on E.
In practice, proving Z is a Lévy measure often requires uses of the Poisson exponent

measure. We recall that for a finite measure µ on a separable Banach space E, the Poisson
exponent measure e(µ) generated by µ (see [9]) is defined as

e(µ) := e−µ(E)
∞∑
k=0

µ∗k

k! , (2.5.1)

where µ∗n is the n-th convolution of µ and µ∗0 := δ0 is the Dirac measure at zero. It is
known (see [114]) that e(µ) is an infinitely divisible Radon probability measure with

ê(µ)(u) = exp
(∫

E
(ei〈x,u〉 − 1)µ(dx)

)
.

The centering constant x(µ) of the measure µ is defined as the Bochner integral

x(µ) := −
∫
|x|≤1

xµ(dx).

The shifted Poisson probability measure es(µ) generated by µ is defined to be es(µ) :=
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e(µ) ∗ δx(µ), whose Fourier transform is given by

ês(µ)(u) = exp
(∫

E
K(x, u)µ(dx)

)
,

where recall K(x, u) = ei〈x,u〉 − 1− i〈x, u〉1B(x). Now suppose µ is only σ-finite instead of
finite, in this case we will abuse some notation and still write ês(µ) for the above expression
whenever the integral in the exponent is well defined.

We are now ready to give a sufficient condition for a σ-finite measure Z to be a Lévy
measure on E1 ⊕ E2. Define the function

K(x, y, u, v) := ei〈(x,y),(u,v)〉 − 1− i〈(x, y), (u, v)〉1|(x,y)|≤1

for (x, y) ∈ E1 ⊕ E2 and (u, v) ∈ (E1 ⊕ E2)∗.

Theorem 2.18. Let Z be a σ-finite measure on E1 ⊕ E2 where E1 and E2 are of type p1

and p2 respectively. Then the integrability condition
∫
E1⊕E2

1 ∧
(
|x|p1

E1 + |y|p2
E2

)
Z(dx, dy) <∞ (2.5.2)

is sufficient for Z to be a Lévy measure on E1 ⊕ E2.

Condition (2.5.2) has many equivalent forms due to the fact that all `p-type norms
on E1 ⊕ E2 are equivalent. We will precede the proofs of Theorem 2.18 with one such
condition and a few technical lemmas.

Proposition 2.19. Condition (2.5.2) is equivalent to
∫
E1⊕E2

[
1|(x,y)|>1 +

(
|x|p1

E1 + |y|p2
E2

)
1|(x,y)|≤1

]
Z(dx, dy) <∞. (2.5.3)

Proof. We will require the following three lemmas.

Lemma 2.20. Let x, y ∈ (0,∞) and p, q ≥ 1. Then the following holds.

a) {x+ y > 2δ} ⊆ {xp + yq > δp ∧ δq} for all δ > 0.

b) {xp + yq > 1} ⊆ {x+ y > 1} ⊆ {xp + yq > 2−p∨q}.

c) {x+ y ≤ 1} ⊆ {xp + yq ≤ 1} ⊆ {x+ y ≤ 2}.

Proof. (a) Since p, q ≥ 1, the functions x 7→ xp and y 7→ yq are increasing. We first suppose
x ≤ y; the case where y ≤ x can be handled in the same way. Clearly the inequality
x+y > 2δ implies x∨y > δ. Since x ≤ y, we have (x∨y)p∧(x∨y)q = yp∧yq ≤ yq ≤ xp∨yq.
Therefore, using x ∨ y > δ we obtain xp + yq ≥ xp ∨ yq ≥ δp ∧ δq.
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(b) Suppose xp + yq > 1. If both xp ≤ 1 and yq ≤ 1 then x ≥ xp and y ≥ yq since p, q ≥ 1,
so x + y ≥ xp + yq > 1 and the first inclusion holds. If on the other hand xp > 1 (resp.
yq > 1) then x > 1 (resp. y > 1) so x+ y > 1 as well. The second inclusion follows from
(a). (c) follows from (a) and (b).

Lemma 2.21. Condition (2.5.3) implies Z(|(x, y)| > δ) <∞ for all δ > 0.

Proof. The claim is trivial for δ > 1. For δ ≤ 1, let δ′ :=
(
δ
2

)p1 ∧
(
δ
2

)p2
< 1. By Lemma

2.20 (a) we have 1|x|+|y|>δ ≤ 1|x|p+|y|q>δ′ and therefore

Z(|(x, y)| ∈ (δ, 1]) ≤ 1
δ′

∫
(|x|p1 + |y|p2)1|x|p1+|y|p2>δ′1|(x,y)|≤1dZ,

which is finite by condition (2.5.3).

To prove Proposition 2.19, It is enough to bound the integrand in (2.5.3) with the
integrand of (2.5.2) and vice versa.
(2.5.2) ⇒ (2.5.3). Lemma 2.20 implies the inequalities 1|x|+|y|≤1 ≤ 1|x|p1+|y|p2≤1 and
1|x|+|y|>1 ≤ 1|x|p1+|y|p2>1 + 1|x|p1+|y|p2∈(ε,1] where ε := 2−p1∨p2 < 1. It remains to bound the
integral of the second term by

Z(|x|p1 + |y|p2 ∈ (ε, 1]) ≤ ε−1
∫

(|x|p1 + |y|p2)1|x|p1+|y|p2∈(ε,1]dZ.

(2.5.3) ⇒ (2.5.2). Lemma 2.20 implies the inequalities 1|x|p1+|y|p2>1 ≤ 1|x|+|y|>1 and
1|x|p1+|y|p2≤1 ≤ 1|x|+|y|≤2, which gives the bound

(|x|p1 + |y|p2)1|x|p1+|x|p2≤1 ≤ (|x|p1 + |y|p2)1|x|+|x|≤2

≤ (2p1 + 2p2)1|x|+|y|∈(1,2] + (|x|p1 + |y|p2)1|x|+|y|≤1,

since |x|+ |y| ≤ 2 implies |x|p1 + |y|p2 ≤ 2p1 + 2p2 .

Lemma 2.22. Suppose µ is a finite, symmetric Borel measure on E1 ⊕ E2 with bounded
support, i.e. there exists δ > 0 such that µ(|(x, y)| > δ) = 0. Then for i = 1, 2, we have

∫
E1⊕E2

|πi(x, y)|pi es(µ)(dx, dy) ≤ Kpi

∫
E1⊕E2

|πi(x, y)|piµ(dx, dy),

where Kpi are the type constants appearing in Theorem 2.2.

Proof. Since µ is a finite measure with bounded support, it is clear that es(µ) is a
probability measure with finite moments of all orders. Let |µ| := |µ(E1 ⊕E2)| and assume
without loss of generality that |µ| 6= 0. Recalling µ∗0 := δ0, we have

∫
|πi(x, y)|pi es(µ)(dx, dy) =

∞∑
n=0

e−|µ|
|µ|n

n!

∫
|π1(x, y)|pi(µ/|µ|)∗n(dx, dy)
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=
∞∑
n=1

e−|µ|
|µ|n

n! E
∣∣∣∣π1

n∑
j=1

Wj

∣∣∣∣pi ,
where Wj are independent, identically distributed random variables with distribution µ/|µ|.
Furthermore each πiWj is symmetric and takes values in a type pi subspace of E1 ⊕ E2.
Therefore by Theorem 2.2 we have

∞∑
n=1

e−|µ|
|µ|n

n! E
∣∣∣∣π1

n∑
j=1

Wj

∣∣∣∣pi ≤ Kpi

∞∑
n=1

e−|µ|
|µ|n

n! nE|π1W1|pi

= Kpi

( ∞∑
n=1

e−|µ|
|µ|n−1

(n− 1)!

)∫
|π1(x, y)|piµ(dx, dy),

which completes the claim since the series in the last line sums up to 1.

Proof of Theorem 2.18. Define the measure Z−(E) := Z(−E) so that Z− + Z is a sym-
metric, σ-finite measure on E1 ⊕ E2. Since Z is a Lévy measure if and only if Z + Z− is
([114], p.70), replacing Z with Z + Z− if necessary we can assume Z is symmetric.

Let Z1 := Z||x,y|>1 and Zk := Z||(x,y)|∈( 1
k
, 1
k−1 ] for k ≥ 2. By Proposition 2.19 it is clear

that each Zk is a finite measure, so by Proposition 5.3.1 of [114] es(Zk) is the distribution
of a random variable, say Yk. Furthermore, since the supports of (Zk) are disjoint Borel
sets, by Proposition 5.3.2 we see that Yk’s are mutually independent and es(Zl + Zm) is
the distribution of Yl + Ym.

Note that 1 ∧ |(x, y)|2 . 1 ∧ (|x|2E1 + |y|2E2) ≤ 1 ∧ (|x|p1
E1 + |y|p2

E2), which is integrable
with respect to Z by (2.5.2). Therefore the integral

∫
K(x, y, u, v)dZ is well-defined (see

pg.71, Linde [114]). Then by the dominated convergence theorem, we have

∫
E1⊕E2

K(x, y, u, v)Z(dx, dy) = lim
n→∞

n∑
k=1

∫
E1⊕E2

K(x, y, u, v)Zk(dx, dy).

Taking exponentials of both sides gives us the expression

ês(Z)(u, v) = lim
n→∞

n∏
k=1

ês(Zk)(u, v) = lim
n→∞

E
[
exp i

〈
n∑
k=1

Yk, (u, v)
〉]
.

From this it is clear that ês(Z)(u, v) is the c.f. of a probability measure, i.e. Z is a
Lévy measure, provided that the series ∑n

k=1 Yk converges in distribution to a random
variable. It is therefore sufficient to show that both ∑n

k=1 π1Yk and ∑n
k=1 π2Yk converge in

distribution as n→∞.
For 2 ≤ l ≤ m, the law of∑m

k=l Yk is the shifted Poisson probability measure es(
∑m
k=lZk),

where ∑m
k=lZk = Z||x,y|∈( 1

m
, 1
l−1 ] is a measure satisfying the assumptions of Lemma 2.22.

Therefore for i = 1, 2 we have
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E
∣∣∣∣πi m∑

k=l
Yk

∣∣∣∣pi =
∫
E1⊕E2

|πi(x, y)|pi es(Z||x,y|∈( 1
m
, 1
l−1 ])(dx, dy)

≤ Kpi

∫
|x,y|∈( 1

m
, 1
l−1 ]
|πi(x, y)|piZ(dx, dy),

which converges to zero as l,m→∞ by (2.5.3) and the dominated convergence theorem.
Hence πi

∑n
k=1 Yk converges in probability and so does ∑n

k=1 Yk.

2.6 Weak subordination

We first give a formal definition of the weak subordination in Definition 2.23, which is
a direct generalization of [49]. In Theorem 2.24 we establish the existence of the weak
subordination as defined in Definition 2.23, which shows that the construction of [49] can
indeed be extended to an infinite dimensional setting. The proof of Theorem 2.24 boils
down to showing a certain measure defined on the direct sum of Banach spaces is a Lévy
measure; this is the content of Theorem 2.26.

Suppose X is a Lévy process on a separable Hilbert space H with characteristic triplet
(γ,Q,X ). Let (T (t))t≥0 be a subordinator taking values in `+

∞ as defined in Section 2.4 , i.e.
T is an subordinator on `+

1,w with drift η ∈ `+
∞ and Lévy measure T which is concentrated

on `+
∞ and satisfies the integrability condition

∫
`+∞

1 ∧ |τ |∞T (dτ) <∞. (2.6.1)

Analogous to [49], we define the the weak subordination (T,X � T ) of X and T by
specifying its characteristic triplet.

Definition 2.23. A Lévy process Z(t) = (Z1(t), Z2(t))t≥0 taking values on the Banach
space `+

∞⊕H is called the weak subordination of X and T , which we write as Z D= (T,X�T ),
if its characteristic triplet (m,Θ,Z) is given by

m = (m1,m2), Θ = 0⊕ (η �Q),

Z(dτ, dx) = δ0(dτ)(η � X )(dx) + T (dτ)P(X(τ) ∈ dx), (2.6.2)

where m = (m1,m2) is given by the Bochner integrals

m1 = η +
∫
`+1,w

τP(|(τ,X(τ))| ≤ 1) T (dτ), (2.6.3)

m2 = η � γ + Cη�X +
∫
`+1,w

E[X(τ)1|(τ,X(τ))|≤1] T (dτ), (2.6.4)

and 0 ⊕ (η � Q) is the direct sum of the zero operator on `∞ and η � Q on H, i.e.
(0⊕(η�Q))(τ, x) = (0, (η�Q)x) for any (τ, x) ∈ `+

∞⊕H. If in addition Z1 is indistinguishable
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from T , the Lévy process Z is called the semi-strong subordination of X and T .

We remark that Definition 2.23 can seem quite involved upon first glance, and it is not at
all clear that it captures the concept of weak subordination we have been describing so far.
To unravel this definition, we recall the intuitive construction of the weak subordination
we presented in Section 2.1.2 and explain how it matches up with the above definition.

Recall from Theorem 2.15 that T can be decomposed into T (t) = tη + S(t), where
η ∈ `+

∞ and S is a pure jump subordinator on `∞ with Lévy measure T . Recall from
Section 2.1.2 that to define the weak subordination, it suffices to consider the two cases
T (t) = tη and T (t) = S(t) separately and define the process X � T in each case. The
weak subordination in the general case is then obtained by convolving the distributions of
the weak subordinated process defined in each case.

When T (t) = tη, the weak subordination X � T is defined to be the Lévy process
whose marginal distributions are equal to those of X ◦ T . In this case, from Theorem
2.10 we can conclude that the characteristic triplet of the process X � T is given by
(η � γ + Cη�X , η �Q, η � X ). Moreover, since T is just a deterministic drift, it is clear that
the triplet of the pair of processes (T,X � T ) is given by

(
(η, η � γ), 0⊕ (η �Q), δ0 ⊗ (η � X )

)
, (2.6.5)

where δ0 ⊗ (η � X ) is the product measure on `∞ ⊕H formed by the Dirac measure δ0 on
`∞ and the Lévy measure η � X on H.

On the other hand, when T = S, recall that X � T is defined to be the (pure jump)
Lévy process whose jump at time t, after conditioning on ∆T (t), is equal in distribution
to the random variable X(∆T (t)). The Lévy measure of (T,X � T ) is thus given by

E
[∑
t≤1

1∆T (t)∈dτ1∆(X�T )(t)∈dx

]
= E

[
E
[∑
t≤1

1∆T (t)∈dτ1X(∆T (t))∈dx|∆T
]]

= E
[∑
t≤1

1∆T (t)P(X(∆T (t)) ∈ dx) ∈ dτ
]

= T (dτ)P(X(τ) ∈ dx).

Since X � T and T are pure jump processes, the covariance operator in the triplet of
(T,X � T ) is zero. To complete the triplet of (T,X � T ), it remains to compute the
compensation term for the Lévy measure of (T,X � T ), which can be shown to be

(∫
`+1,w

τP(|(τ,X(τ))| ≤ 1) T (dτ),
∫
`+1,w

E[X(τ)1|(τ,X(τ))|≤1] T (dτ)
)
∈ `+

1,w ⊕H.

We have therefore obtained the characteristic triplets of the weak subordination in the
case T (t) = tη and the case T (t) = S(t). We recall that for the general case, the weak
subordination is defined by setting its distribution to the convolution of distributions of
X � T in the two cases discussed above. This immediately implies that the characteristic
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triplet of X � T in the general case is the sum of the characteristic triplets in each case.
By summing up the triplets we described above we finally arrive at Definition 2.23.

We now present the main result of our work, which establishes the existence of the
weak subordination as defined in Definition 2.23.

Theorem 2.24. Let X be a Lévy process taking values on a separable Hilbert space and
T be a subordinator taking values on the positive cone `+

∞. Then there exists a unique (in
distribution) Lévy process Z taking values on `+

∞ ⊕H satisfying Definition 2.23.

Since the weak subordination is defined via distribution, the existence of the weak
subordination is guaranteed as long as (m,Θ,Z) is a valid characteristic triplet on `+

∞⊕H.
The semi-strong subordination is then always possible on a possibly augmented probability
space that carries the process T , see Theorem 2.1 (ii) of [49].

From Proposition 2.9 it is clear that τ �γ and Cd�τ are elements of H and Θ is indeed a
covariance operator on `+

1,w⊕H. The Bochner integrals in (2.6.3) are well-defined by (2.4.1)
and the Bochner integrals in (2.6.4) are well-defined by (2.3.9) and (2.6.1). Therefore it
remains to check that (2.6.2) defines a Lévy measure. We first give a preliminary result.

Proposition 2.25. Expression (2.6.2) defines a σ-finite measure on `+
1,w⊕H. Furthermore

the second term T (dτ)P(X(τ) ∈ dx) of (2.6.2) satisfies
∫
`+1,w⊕H

f(τ, x)T (dτ)P(X(τ) ∈ dx) =
∫
`+1,w

∫
H
f(τ, x)P(X(τ) ∈ dx)T (dτ)

for non-negative, measurable functions f : `+
1,w ⊕H → R.

Proof. The proof can be adapted from the arguments on page 28 of [119]. We sketch the
proof here for the reader’s convenience. Let

Z0(dτ, dx) := (η � X )(dx)δ0(dτ), Z1(dx, dτ) := P(X(τ) ∈ dx)T (dτ).

Note that Z0 is simply the product measure on `+
1,w ⊕H and is therefore σ-finite since

η � X is σ-finite and δ0 is finite.
By Corollary 2.12, we have X(τ k)→ X(τ) in probability whenever τ k → τ in `+

1,w as
k → ∞. Let U be an arbitrary open set in H. By the Portmanteau theorem of weak
convergence (see [35]) we have

lim inf
k

P(X(τ k) ∈ U) ≥ P(X(τ) ∈ U)

which implies that τ 7→ P(X(τ) ∈ A) is lower semi-continuous and hence Borel measurable
for all τ ∈ `+

1,w. By Lemma 1.40 in [94], P(X(τ) ∈ dx) is a Markov kernel from `+
1,w to H.

Applying Theorem 6.11 of [56] gives the claimed result.

To prove Theorem 2.24, it remains to show the following.
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Theorem 2.26. Expression (2.6.2) defines a Lévy measure on `+
1,w ⊕H.

Proof. Since Z0 is a σ-finite product measure, by Fubini’s theorem
∫
`+1,w⊕H

1 ∧ (|x|2 + |τ |)Z0(dτ, dx) =
∫
H

1 ∧ |x|2(η � X )(dx) <∞

so Z0 is a Lévy measure by Theorem 2.18. It remains to show Z1 is a Lévy measure as well.
Note that |τ |1,w ≤ |τ |∞ and 1|τ |1,w+|x|2>1 ≤ 1|τ |∞+|x|2>1. Then the set {|τ |∞+ |x|2 > 1} can
be written as the disjoint union

{|τ |∞ + |x|2 > 1} = {|τ |∞ > 1, x ∈ H} ∪ {|τ |∞ ≤ 1, |x|2 > 1− |τ |∞}.

For the first set, we have

Z1(|τ |∞ > 1) =
∫
|τ |∞>1

P(|X(τ)| ∈ H)T (dτ) = T (|τ |∞ > 1) <∞

since T satisfies (2.6.1). For the second set, by Lemma 2.11 we have

Z1(|τ |∞ ≤ 1, |x|2 > 1− |τ |∞) =
∫
|τ |∞≤1

P
(
|X(τ)|2 > 1− |τ |∞

)
T (dτ)

.
∫
|τ |∞≤1

|τ |∞T (dτ).

which is finite by (2.6.1). This shows
∫

1|τ |∞+|x|>1dZ1 < ∞. On the other hand, since
1|x|2+|τ |∞≤1 ≤ 1|x|≤11|τ |∞≤1, by Lemma 2.11 we have

∫
(|x|2+|τ |∞)1|x|2+|τ |∞≤1dZ1 ≤

∫
|τ |∞≤1

∫
(|x|2 + |τ |∞)1|x|≤1dZ1

=
∫
|τ |∞≤1

E
[
|X(τ)2|1|X(τ)|≤1

]
T (dτ) +

∫
|τ |∞≤1

|τ |∞P(|X(τ)| ≤ 1)T (dτ)

.
∫
|τ |∞≤1

(|τ |∞ + |τ |2∞)T (dτ)

which is finite by (2.6.1) and the fact that |τ |2∞ ≤ |τ |∞ on the set {|τ |∞ ≤ 1}. Therefore
by Theorem 2.18 we conclude that Z is a Lévy measure.

So far we have defined the weak subordination as a pair of processes. To conclude our
work we will state the marginal distributions of the weak subordination, which can be
compared to the strong subordination X ◦ T . We first state some elementary properties of
the weak subordination (T,X � T ) in terms of the characteristics of T and X. We shall
use the same notation 〈·, ·〉 for the duality pairing between `+

1,w and `∞, the inner product
of H, and the duality pairing of `+

1,w ⊕H and `∞ ⊕H ' (`+
1,w ⊕H)∗.

Firstly, from Definition 2.23, we immediately obtain the characteristic function of the
weak subordination Z

D= (T,X � T ) of X and T .
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Proposition 2.27. A Lévy process Z on `+
1,w ⊕H is the weak subordination of X and T

iff the characteristic exponent ΨZ of Z is given by

ΨZ((α, u)) = i〈η, α〉+ ΨX(η)(u) +
∫
`+∞

(eΨ(τ,X(τ))(α,u) − 1)T (dτ),

for α ∈ `∞ and u ∈ H, where ΨX(η) is the characteristic exponent of X(η).

Proof. Let α ∈ `∞ and u ∈ H. From Definition 2.23 and the Lévy-Khintchine formula, we
see that Z D= (T,X � T ) if and only if

ΨZ((u, v)) = i〈m1, α〉+ i〈m2, u〉 −
1
2〈u, (η �Q)u〉+

∫
H
K(x, u)(η � X )(dx)

+
∫
`+∞⊕H

[
ei〈(τ,x),(α,u)〉 − 1− i〈(τ, x), (α, u)〉1|τ |+|x|≤1

]
P(X(τ) ∈ dx)T (dτ),

where the first two terms are given by

〈m1, α〉 = 〈η, α〉+
∫
`+∞
〈τ, α〉P(|τ |+ |X(τ)| ≤ 1)T (dτ),

〈m2, u〉 = 〈η � γ + Cη�X , u〉+
∫
`+∞

E[〈X(τ), u〉1|τ |+|X(τ)|≤1]T (dτ),

and the last integral in the expression for ΨZ simplifies to
∫
`+∞⊕H

[
ei〈(τ,x),(α,u)〉 − 1− i〈(τ, x), (α, u)〉1|τ |+|x|≤1

]
P(X(τ) ∈ dx)T (dτ)

=
∫
`+∞

E[ei〈(τ,X(τ)),(α,u)〉 − 1]T (dτ)− i
∫
`+∞
〈τ, α〉P(|τ |+ |X(τ)| ≤ 1)T (dτ)

− i
∫
`+∞

E[〈X(τ), u〉1|τ |+|X(τ)|≤1]T (dτ).

The finiteness of all terms above follows directly from Lemma 2.11. The claim follows
from collecting the above terms and Theorem 2.10.

Finally, using Proposition 2.27 and setting either u = 0 or α = 0, we can easily state
the distributions of the marginal process Z1 and Z2:

Corollary 2.28. Suppose Z = (Z1, Z2) D= (T,X � T ). Then Z1
D= T and Z2 is a Lévy

process on H with characteristics (ζ, η �Q,Z),

ζ = η � γ + Cη�X +
∫
`+∞

E[X(τ)1|X(τ)|≤1]T (dτ),

Z(dx) = (η � X )(dx) +
∫
`+∞

P(X(τ) ∈ dx)T (dτ).
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2.7 Conclusion and Future Works

In this chapter we have extended the construction of the weak subordination in [49] to an
infinite dimensional setting. We have shown that for an arbitrary Lévy process X on a
separable Hilbert space and a uniformly bounded sequence of subordinators T , the weak
subordination (T,X � T ) as defined in (2.23) always exists as a Lévy process on `+

∞ ⊕H.
The next natural step for developing the theory of subordination is of course to

construct concrete examples of it and analyse their properties. For instance, we recall
that [107] defines an infinite dimensional α-stable noise using a cylindrical Wiener process
subordinated by a one dimensional stable process. Using weak subordination and a
multivariate stable subordinator, we can construct a generalized version of the α-stable
noise. Towards this direction, we have some preliminary results suggesting that the weakly
subordinated process can exhibit very different behaviours.

Another natural class of processes to consider is the WVαG processes we discussed
in Section 1.2. An infinite dimensional version of it could be used as a high dimensional
model for a large number of assets. Besides its uses in mathematical finance, this class of
processes has some interesting theoretical properties as well, see [50].

Besides concentrating on the weak subordination itself, we may consider SPDEs
driven by weakly subordinated Lévy processes. Towards this direction we have initiated
some preliminary work with Prof. Ben Goldys. The motivation is that by using weakly
subordination we can define a rather large class of Lévy driving noises. At the same time,
we aim to have some explicit control over this general class of processes in terms of the
triplets of X and T .



Chapter 3

Continuous Time Delayed
Lévy-Driven GARCH Processes

3.1 Introduction

To continue our discussions in Section 1.3, we first give a more detailed overview of the
CDGARCH process and the main results of [65, 66, 160] in Section 3.1.1. The setting of
our work will be described in Section 3.1.2.

3.1.1 The CDGARCH Process

We recall that the discrete time GARCH(P,Q) process is defined by the pair of equations

Yn : = Yn−1 +
√
XnZn, (3.1.1)

Xn : = η +
P∑
k=1

βkXn−k +
Q∑
k=1

αkXn−kZ
2
n−k, n ∈ N, (3.1.2)

subject to initial conditions Xn = xn for n ≤ 0, where (xn)n≤0 is a sequence of positive
constants. The sequence (Zn) is assumed to be standardized white noise, i.e. uncorrelated
random variables with zero mean and unit variance. Here η is a positive constant, and
(βi)1≤i≤P and (αi)1≤i≤Q are sequences of non-negative constants. The process (Xn) is
referred to as the conditional variance process, since Xn = Var(Yn|Fn−1), where (Fn)n is
the natural filtration of the process (Yn, Xn)n.

We now illustrate the resemblance between the discrete time GARCH process and the
CDGARCH processes of [160]. Note that from (3.1.2) we have

Xn −Xn−1 = η + (β1 − 1)Xn−1 +
P∑
k=2

βkXn−k +
Q∑
k=1

αkXn−kZ
2
n−k.

Writing β̃k = βk − 1{k=1}, we can rewrite equation (3.1.2) into

44



3.1 Introduction 45

Xn −X0 =
n∑
i=1

(Xi −Xi−1) = nη +
n∑
i=1

P∑
k=1

β̃kXi−k +
n∑
i=1

Q∑
k=1

αkXi−kZ
2
i−k.

Interchanging the double sums, we can rewrite the GARCH equations into

Yn = Y0 +
n∑
i=1

(Yi − Yi−1),= Y0 +
n∑
i=1

√
XiZi (3.1.3)

Xn = X0 + nη +
−1∑

k=−P
β̃−k

n+k∑
i=1+k

Xi +
−1∑

k=−Q
α−k

n+k∑
i=1+k

XiZ
2
i . (3.1.4)

Intuitively, by replacing the sums in (3.1.4) by appropriate integrals, we obtain the
CDGARCH equation (1.3.1). This intuition is made rigorous in [65, 66, 160], which shows
that after embedding into continuous time, as the time between observations tends to zero,
the solution to (3.1.4) indeed converges in a certain sense to the solution of

Yt = Y0 +
∫ t

0

√
Xs−dLs, (3.1.5)

Xt = θt +
∫ 0

−p

∫ t+u

u
Xsdsµ(du) +

∫ 0

−q

∫ t+u

u+
Xs−d[L,L]sν(du), (3.1.6)

where L, θ are semimartingales and [L,L] is the quadratic variation of L. Here µ and
ν are signed Borel measures on [−p, 0] and [−q, 0] respectively. These measures arise
as the limits in a certain sense of the coefficients (β̃k)1≤k≤P , (αk)1≤k≤Q and capture the
serial dependence of the conditional variance process. Making precise statements on the
convergence of the coefficients (β̃k)k, (αk)k to the measures µ, ν requires a lot of additional
notations; we instead refer the reader to [160] for the details.

Interestingly, the sufficient conditions imposed on the coefficients (αk)k and the measures
ν to obtain the convergence to (3.1.6) depend on the choice of driving noises Z and L.
In particular, when L is assumed to be a continuous process, (αk)k is only required to
converge to ν in a very weak sense, and the limit ν can be any signed Borel measure with
finite variation. That is, when the driving noise L is a Brownian motion, there is very
little restriction on the serial dependence structure specified by ν.

On the other hand, when the continuity assumption on L is dropped, (αk)k is required
to converge in a much stronger sense and ν can only be a Dirac measure at zero. We
remark that this requirement is not explicitly stated in [160] but follows from equation
(7.8) and Assumption 7.2.1 therein. To reiterate, when L is taken to be a Lévy process, to
establish the convergence of (3.1.4) to (3.1.6), the author [160] requires the measure ν to
be a point mass at zero. This is equivalent to requiring q = 0 in which case the setting
reduces to the simpler case of a CDGARCH(p, 0) process.

Since the goal of our work is to study a Lévy driven CDGARCH(p, q) process as a
generalization of the GARCH and COGARCH processes, we will need to overcome this
issue in some way. We remark that while it might be possible to continue the work of
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[160] and investigate whether the sufficient conditions posed in [160] are in fact necessary
as well, we instead take a more direct approach. Observe that (3.1.6) still makes sense
as a stand-alone stochastic integral equation, even if the sufficient conditions in [160] are
not satisfied. In this case (3.1.6) might not be the limit of a sequence of approximating
GARCH processes in the sense of [160], but clearly still resembles the structure of the
GARCH process as can be seen from (3.1.2).

We therefore take equation (3.1.6) as a starting point of our analysis. Essentially, we
are treating the CDGARCH(p, q) process defined by (3.1.6) as a stand-alone process of
interest rather than a limit of discrete time GARCH processes. In doing so however, we
can no longer rely on the results of [160] to obtain the existence and uniqueness of a
solution to (3.1.6). Instead we have to establish the existence and uniqueness of a solution
directly from (3.1.6) without the use of an approximating sequence of GARCH processes.
We now give a formal description of the setting of our work.

3.1.2 Our Setting

Let p, q > 0 and put r := p ∨ q. Let (Ω,F ,F := (Ft)t≥−r,P) be a filtered probability
space that satisfies the usual assumptions (see [145], page 3). Let Ψ be a F0-measurable
non-negative random variable and (Φu)u∈[−(p∨q),0] be a non-negative adapted process.

In this chapter, we will study the CDGARCH(p, q) equation

Yt = Y0 +
∫ t

0

√
Xs−dLs,

Xt = θt +
∫ 0

−p

∫ t+u

u
Xsdsµ(du) +

∫ 0

−q

∫ t+u

u+
Xs−d[L,L]sν(du), t > 0,

with initial conditions Y0 = Ψ and Xu = Φu for u ∈ [−(p ∨ q), 0]. We assume L is a Lévy
process adapted to F and [L,L] is the quadratic variation process of L.

Following the settings of [66, 65, 160], we recall that µ and ν are signed Borel measures
supported on [−p, 0] and [−q, 0] respectively. Although in theory they could be chosen
almost arbitrarily, in our work we assume that they have specific forms that resemble the
GARCH process. The measures µ and ν are assumed to have point masses at zero and
are absolutely continuous with respect to the Lebesgue measure on [−r, 0). We remark
that these choices are in fact natural extensions of the constraints of the original GARCH
process. Specifically, we assume that there exist positive constants cµ, cν and nonnegative,
continuous functions fµ, fν supported on [−p, 0] and [−q, 0] respectively, such that for any
Borel set E ∈ B([−r, 0)), we have

µ(E) : =
∫
E∩[−p,0]

fµ(u)du− cµδ0(E), (3.1.7)

ν(E) : =
∫
E∩[−q,0]

fν(u)du+ cνδ0(E). (3.1.8)
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The stationarity of GARCH processes depends on the size of the coefficients, in fact,
usual weak stationarity constraints effectively require β̃1 < 0, β̃k ∈ (0, 1) for k 6= 1 and
αk ∈ (0, 1) for all k. Our assumptions on µ and ν, including the signs of the constants, are
analogous to these constraints. It will be shown that analogous to the GARCH process,
the stationarity of the CDGARCH process depends on the relative sizes of cµ, cν , fµ and
fν . Furthermore, it is known that the GARCH process exhibits mean reverting behaviour.
This feature is retained in our setup; it will be shown that the constant −cµ captures the
effect of mean reversion.

Finally, to specify the process (θt)t in (3.1.6), we first introduce some notations. Let
D[a,b] := D([a, b]) (resp. D[a,b]) be the space of càdlàg functions (resp. processes) on
[a, b] ⊆ R and write D := D[−r,0] and D := D[−r,0]. Given an initial process Φ· ∈ D, we
extend it to D[−r,∞) by setting Φt = Φ0, for all t > 0. Fix a positive constant η. Throughout
the paper we will assume θ takes the form

θt := Φt + ηt1[0,∞)(t), t ∈ [−r,∞). (3.1.9)

We note that this choice is completely analogues to the nη term in (3.1.4).
We finally remark that our setting is general enough to include the earlier models we

discussed in Section 1.3. When p = q = 0, cµ, cν > 0, and θt = X0 + ηt1[0,∞)(t), equation
(3.1.6) reduces to a stochastic differential equation

dXt = ηdt− cµXtdt+ cνXt−d[L,L]t, t > 0, (3.1.10)

which (after a reparameterization) is the SDE specifying the COGARCH process (see [100]
Proposition 3.2). On the other hand, taking L to be a Brownian motion, it is possible to
define a similar pair of SFDEs that generalizes Nelson’s diffusion and Lorenz’s limit.

The rest of the chapter will be organized as follows. Section 3.2 collects some preliminary
material on Lévy processes and stochastic integrals. Section 3.3 establishes the existence,
uniqueness and positivity of a solution to (3.1.6). Since (3.1.6) is rather difficult to work
with, we derive a more convenient representation of the solution to (3.1.6). Using this we
can study sample paths of the process, and characterize its jumps and mean reverting
behaviour. Section 3.4 studies the second order behaviour of the CDGARCH process. We
give conditions for the process to be stationary and derive an equation for the asymptotic
mean and covariance function. The behaviour of the CDGARCH process is shown to
be similar to the discrete time GARCH process. Finally, the proofs in this chapter are
collected in Section 3.5.
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3.2 Preliminaries

We first collect some preliminary results. We follow Jacod and Shiryaev [89], Protter [145]
for semimartingale theory, Applebaum [6] for Lévy processes, and Diekmann, van Gils,
Lunel, and Walther [62] for deterministic delay differential equations.

3.2.1 Driving Lévy Process

Let r := p∨ q > 0 and suppose we have a filtered probability space (Ω,F ,F := (Ft)t≥−r,P)
that satisfies the “usual conditions” (see Definition 12, [89]). Given a stochastic process Z,
we write σ(Z) := (σ{Zu, u ≤ t})t≥−r for the natural filtration of Z.

Let (Mt)t≥−r be a càdlàg, adapted martingale with respect to F. We follow Protter
[145] and call M a square integrable martingale if E[M2

t ] < ∞ for every t ≥ −r. For a
process Z with finite second moments, i.e. E[Z2

t ] <∞ for all t, write [Z] := [Z,Z] (resp.
〈Z〉 := 〈Z,Z〉) for the quadratic variation (resp. predictable quadratic variation) process
of Z. Let L2(Z) be the set of all predictable processes H such that the integral process
H2 · 〈Z〉 is integrable, i.e. E[

∫ T
−rH

2
sd〈Z〉] < ∞ for each fixed T . The following lemma

follows from Theorems I.4.31 - I.4.40 of Jacod and Shiryaev [89].

Lemma 3.1. Let Z be a semimartingale and suppose H is càdlàg and predictable. Then
the integral process H · Z is a càdlàg, adapted process. If furthermore Z is a square
integrable martingale and H ∈ L2(Z), then H · Z is a square integrable martingale.

We assume that the space (Ω,F ,F,P) supports a càdlàg, F-adapted Lévy process
(Lt)t≥−r, such that L−r = 0 a.s., L is stochastically continuous and for all −r ≤ s < t <∞,
Lt − Ls is independent of Fs and has the same distribution as Lt−s−r. Put R0 := R \ {0}
and write B(R0) for the Borel sigma-algebra on R0. When U ∈ B(R0) with 0 /∈ U , write

N(t, U) :=
∑
−r≤s≤t

1U(∆Ls), t > 0

for the Poisson random measure on B(0,∞) × B(R0) associated with (Lt)t≥−r and
write ΠL(U) := E[N(−r + 1, U)] for the corresponding Lévy measure on B(R0). Write
Ñ(dt, dz) := N(dt, dz)− ΠL(dz)dt for the compensated Poisson random measure.

Recall that a Lévy measure ΠL always satisfies
∫
R0

(1∧z2)ΠL(dz) <∞. Throughout the
chapter, we will also assume that ΠL has finite second moment and L is centered, so that
(Lt)t≥−r is a square integrable martingale with respect to F, i.e., E[Lt] = 0 and E[L2

t ] <∞
for all t ≥ −r. The characteristic function of Lt is given by the Lévy-Khintchine formula

E
[
eiuLt

]
= exp

{
(t+ r)

(
−1

2σ
2
Lu

2 +
∫
R0

(eiuz − 1− iuz)ΠL(dz)
)}
, u ∈ R,

where σL > 0. Furthermore, the Lévy-Itô decomposition of L gives
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Lt = σLBt +
∫ t

−r

∫
R0
zÑ(dz, ds), t ≥ −r, (3.2.1)

where (Bt)t≥−r is a standard Brownian motion with respect to F, having B−r = 0, a.s.
The quadratic variation process S := [L,L] of L is the subordinator

St = σ2
L(t+ r) +

∫ t

−r

∫
R0
z2N(dz, dt), t ≥ −r. (3.2.2)

Put κ2 := E[S−r+1] = σ2
L +

∫
R0
z2ΠL(dz) <∞, so that the process (S̃t)t≥−r defined by

S̃t := St − κ2(t+ r) =
∫ t

−r

∫
R0
z2Ñ(dz, dt), t ≥ −r, (3.2.3)

is a martingale with respect to F (see [6], Theorem 2.5.2). If furthermore L has finite
fourth moments, then κ4 := E[S̃2

−r+1] <∞ and S̃ is a square integrable martingale, with
predictable quadratic variation process d〈S〉t = κ4dt.

3.2.2 Delay Differential Equations

Consider the deterministic functional differential equation

d

dt
x(t) =

∫
[−r,0]

x(t+ u)µ(du), t ≥ 0, (3.2.4)

with initial condition x|[−r,0] = ϕ for some ϕ ∈ D . Here µ is a signed Borel measure with
finite total variation on [−r, 0]. For each initial condition ϕ ∈ D , there exists a unique
solution t 7→ x(t, ϕ) on [−r,∞), i.e. x(u, ϕ) = ϕ(u) for all u ∈ [−r, 0], t 7→ x(t, ϕ) is
continuously differentiable on (0,∞), and (3.2.4) holds on (0,∞). The asymptotic stability
of this solution as t→∞ is governed by the roots of the so-called characteristic function
∆ : C→ C of µ, defined as

∆(z) := z − µ̂(z) = z −
∫

[−r,0]
ezuµ(du). (3.2.5)

Let x(·, ϕ) be a solution to (3.2.4) and fix any λ ∈ R such that ∆(z) 6= 0 on the line
Re z = λ. Then [62] gives the following asymptotic expansion of t 7→ x(t, ϕ):

x(t, ϕ) =
n∑
j=1

pj(t)ezjt + o(eλt), t→∞, (3.2.6)

where z1, . . . , zn are finitely many zeros of ∆(z) with real part exceeding λ, and pj(t)
is a C-valued polynomial in t of degree less than the multiplicity of zj as a zero of
∆(z). In particular, it’s clear from (3.2.6) that if ∆(z) is root free in the right half-plane
{z|Re z ≥ 0}, then the zero solution is asymptotically stable, that is, all solutions x(·, ϕ)
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of the functional differential equation (3.2.4) converge to the zero solution exponentially
fast as t→∞.

3.3 The Solution Process

We first establish the existence and uniqueness of a solution to (3.1.6) in Section 3.3.1.
We show that this solution satisfies a stochastic functional differential equation which is
easier to work with than the original formulation (3.1.6). Using this new formulation we
study the jumps of the solution in Section 3.3.2 and establish the positivity of the solution.
All proofs and supporting lemmas are deferred to Section 3.5.

3.3.1 Existence and Uniqueness

We first specify the space on which we are solving equation (3.1.6) and define the notion
of a strong solution. Given a stochastic process (Zt) ∈ D[−r,∞), define Z∗t := sup0≤s≤t |Zs|
and Z∗ := sups≥0 |Zs|. Let (| · |t)t≥−r be a family of semi-norms given by

|Z|t := |Z∗t |L2(Ω,P) =
(
E
[

sup
s∈[−r,t]

|Zs|2
])1/2

. (3.3.1)

We denote by S2 the class of càdlàg processes with finite |·|t for every t ≥ −r.

Definition 3.2. A stochastic process X = (XΦ
t )t≥−r adapted to F is called a strong

solution to equation (3.1.6) with D-valued initial condition Φ if X belongs to S2, satisfies
X|[−r,0] = Φ, and the equation (3.1.6) holds for all t ∈ (0,∞). We refer to this solution X
as the CDGARCH(p, q) variance process.

The following set of conditions ensures (3.1.6) has a unique strong solution in the sense
of Definition 3.2.

Assumption 3.1.

a) The initial process Φ ∈ D is adapted to σ(L), with |Φ|0 <∞.

b) The process S as defined in (3.2.2) is square integrable, i.e. E[L4
1] <∞.

Here we remark that (b) of Assumption 3.1 does indeed seem very strong for the
purpose of obtaining a solution to the equation. However, it is necessary since we are
interested in the second order properties of the solution. The following theorem establishes
the existence and uniqueness of a solution to the CDGARCH equations. To the extent of
our best knowledge, the form of the CDGARCH equation is not covered by any existing
results in the literature, hence we include a proof for the following results.

Theorem 3.3. Suppose S and Φ satisfy Assumption 3.1. Then
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a) There exists a unique strong solution X to (3.1.6) with initial condition Φ.

b) For all α ∈ [0, 2], the function t 7→ E[|Xt|α] is finite valued and càdlàg.

We note that the equation (3.1.6) is rather difficult to work with. To obtain a more
convenient expression for the solution to (3.1.6), we first introduce some notations. Recall
the functions fµ and fν from (3.1.7). Let Fµ, Fν : R2 → R be functions defined by

Fµ(t, s) :=
∫

[−p∨(s−t),s∧0]
fµ(u)du, Fν(t, s) :=

∫
[−q∨(s−t),s∧0]

fν(u)du. (3.3.2)

Then Fµ and Fν are known as Volterra type kernels on R2, i.e. F (t, s) = 0 for all s ≥ t.
Finally, we define a stochastic process (Ξ(X)t)t≥0 by

Ξ(X)t :=
∫

[−p,t]
Fµ(t, s)Xsds+

∫
(−q,t]

Fν(t, s)Xs−dSs, t ≥ 0. (3.3.3)

The process Ξ(X) is known in the literature as a convoluted Lévy process; we will discuss
this connection in more detail in Remark 3.6. We first present some elementary properties
of the functions Fµ, Fν and the process Ξ(X).

Proposition 3.4. Suppose the functions fµ and fν are non-negative and continuous on
[−p, 0] and [−q, 0] respectively. Then

a) The kernels Fµ and Fν are non-negative Lipschitz continuous functions on R2.

b) The process (Ξ(X)t)t≥0 has locally Lipschitz continuous sample paths. Furthermore,
it is differentiable at Lebesgue almost every t ≥ 0 almost surely, with derivative

ξ(X)t := d

dt
Ξ(X)t =

∫ 0

−p
fµ(u)Xt+udu+

∫ 0

−q+
fν(u)Xt+u−dSt+u. (3.3.4)

Using Fµ, Fν and Ξ(X), we can express X as a stochastic functional differential equation
driven by the quadratic variation process S.

Theorem 3.5. Let X be the unique strong solution to the CDGARCH(p, q) variance
equation (3.1.6), with parameters specified in (3.1.9), (3.1.7) and driving noise S defined
in (3.2.2). Then the process X satisfies the stochastic (Volterra) integral equation

Xt = X0 +
∫ t

0

(
η − cµXs

)
ds+ cν

∫ t

0+
Xs−dSs + Ξ(X)t, t ≥ 0, (3.3.5)

which can be rewritten into a differential form

dXt =
(
η − cµXt + ξ(X)t

)
dt+ cνXt−dSt, t ≥ 0, (3.3.6)

with initial condition Xu = Φu on [−r, 0]. In particular, X is a semimartingale and has
paths of finite variation on compacts sets.
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We note that equation (3.3.6) is of a form commonly seen in the literature while
the original CDGARCH equation (3.1.6) is more difficult to deal with. Furthermore,
from (3.3.6) it is clear that the CDGARCH(p, q) process is a direct generalization of the
COGARCH process. Indeed, without the term ξ(X)t, the equation (3.3.6) is exactly the
SDE for the COGARCH process (3.1.10). We can therefore interpret the CDGARCH(p, q)
process as a COGARCH process with an extra delay-type drift coefficient ξ(X)t.

Since the coefficient ξ(X)t depends on the paths of both X and S, the CDGARCH
process (Xt)t clearly is not a Markovian process. A common technique in the literature to
deal with delayed equations like (3.3.6) is to “lift” the solution X up into a functional space
so that it becomes Markovian, for instance, see [147]. We do not pursue this direction
further in our work. A few remarks are in place to discuss (3.3.6), the process Ξ(X) and
its connections to the literature.

Remark 3.6. a) The stochastic process t 7→ Ξ(X)t in (3.3.3) is an example of a
convoluted Lévy process, studied in [32]. In fact, with a different choice of kernel, the
process Ξ(X) could be a fractional Lévy process considered in [30, 31] and [126]. A
recent work [88] also considered a similar process with convolution type kernels and
Brownian driving noise, with applications to modeling asset volatility.

b) The process ξ(X) has been studied in [22] (and in multiple related works by the
same group of authors) over the past few years to model stochastic volatility and
turbulent flows. In particular ξ(X) is referred to as a volatility modulated Lévy driven
Volterra (VMLV), or more specifically, a Lévy semi-stationary (LSS) process in [23].
Furthermore, these processes are special cases of a much more general class of objects
called Ambit fields. We refer to [22] and [143] for surveys of relevant results.

Finally, we observe from (3.2.2) that the Brownian component of L appears in the
quadratic variation process S as a positive drift σ2

L(t + r). From (3.3.4) and (3.3.6), it
is clear that we could absorb this drift into the constant cµ and the function fµ. That
is, by replacing cµ with cµ − σ2

Lcν and fµ with fµ + σ2
Lfν , we can assume without loss of

generality that σ2
L = 0 and S is a pure jump Lévy process.

3.3.2 Sample Path of the Solution

We now focus on the path properties of the CDGARCH(p, q) process X. The jumps of X
are shown to exhibit similar behaviours to those of the COGARCH process, however the
behaviour of X in between jumps is more complex and interesting. Furthermore, we will
show that X stays positive and is bounded away from zero, which is to be expected since
X is the conditional variance process of the process Y .

We will first focus on the case where the driving noise L is a compound Poisson process.
In general a pure jump Lévy process L could have infinite activity, i.e. L could have
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infinite number of jumps in any compact time interval. In the literature of Lévy processes
it is standard to truncate the small jumps of L and approximate L using a sequence of
compound Poisson processes which have finite activity, see [6, 152]. In Section 3.3.3 we
will show that this approximation can be carried over to the solution of (3.3.6) driven by
L as well. More specifically, we define a sequence (Ln)n of compound Poisson processes
approximating L and show that the solution to (3.3.6) driven by Ln converges in a fairly
strong sense to the solution (3.3.6) with L being the driving noise.

We start with the path properties of X.

Proposition 3.7. Let (Lt)t≥0 be a compound Poisson process, i.e. σL = 0 and the Lévy
measure ΠL is a finite measure. Let −r < T0 < T1 < . . . be the times of jumps of L and
(∆Lt)t≥−r be the sizes of those jumps. Then

a) The jumps of X are driven by the jumps of S = [L,L] and

∆Xt = cνXt−∆St = cνXt−(∆Lt)2, t ≥ −r.

b) Suppose fν(−q) = 0, then on each [Tn, Tn+1), the process ξ(X) is continuous and X
is continuously differentiable, with derivative given by

d

dt
Xt = η − cµXt + ξ(X)t, t ∈ (Tj, Tj+1).

Furthermore, when p > 0 and q = 0, between two consecutive jump times, the process
X satisfies the deterministic differential equation

d

dt
Xt = η − cµXt +

∫ 0

−p
fµ(u)Xt+udu, t ∈ (Tj, Tj+1). (3.3.7)

In the case p = q = 0, i.e. when X is a COGARCH process, X decays exponentially
between its jump times, and we have a closed form solution

Xt = η

cµ
+
(
XTj+ −

η

cµ

)
e−cµ(t−Tj), t ∈ (Tj, Tj+1).

From (a) of the Proposition it is clear that the jump structure of X is the same between
the COGARCH process and the CDGARCH(p, q) process. However, the behavior of X
in between jumps is very different. We illustrate these differences by simulating sample
paths of the CDGARCH(p, q) processes of different orders via a simple Euler scheme.

For clarity we set L to be a compound Poisson process with unit intensity and jumps
equal to ±1 with equal probability. The top figure in Figure 3.1 shows a simulated path of
L. The processes below are the COGARCH (or CDGARCH(0, 0)), the CDGARCH(p, 0)
and the CDGARCH(p, q) variance processes respectively, driven by the same realization
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of L. The horizontal lines are the theoretical stationary means of the variance processes,
computed in Section 3.4. The delay functions fµ and fν are chosen to be exponential, and
comparable parameters are chosen between all three processes.

For the COGARCH process, i.e. when p = q = 0, the process X is deterministic
between jumps and decays exponentially. In the CDGARCH(p, 0) case, the process X
follows a deterministic differential equation (given in Proposition 3.7) between the jumps of
the driving noise L, but the decay towards the baseline level is slower than the exponential
function, indicating a longer memory effect.

In the case p, q > 0, the process X is no longer deterministic between jumps; instead
it is a continuous process of finite variation that depends on {Xu, u ∈ [Tj − p, Tj]} as
well as {∆S(u), u ∈ [Tj − q, Tj]}. For the particular realization shown below, X is in
fact increasing immediately after a jump, then starts decaying towards the baseline level.
Depending on choices and sizes of fν , it is possible to have a range of different behaviors
between jumps.

Figure 3.1: simulated paths of CDGARCH processes with different orders

In comparison to the COGARCH process, the CDGARCH(p, q) process decays signi-
ficantly slower in between jumps. This is a behaviour shared by higher order GARCH
processes as well in comparison to the GARCH(1, 1). In this sense, the CDGARCH(p, q)
process does a better job at capturing high order delays than the COGARCH process.
From Proposition 3.7 it is clear that for the COGARCH process, the rate of decay is
controlled by the constant cµ, which can be interpreted as the speed of mean reversion. In
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the CDGARCH(p, 0) process, beisdes of the decay rate cµ, there is an additional upward
drift whose size depends on fµ as well as past values of X. As will be shown, the constant
cµ needs to be large enough relative to fµ for the process X to behave nicely.

The simulations in Figure 3.2 illustrate the behaviour of X around each jump. We
can also simulate the CDGARCH process over a longer period of time using settings
reminiscent of real financial data. Figure 3.2 shows a simulated sample path of the driving
noise L, the return process dY , the CDGARCH process Y and its volatility process

√
X.

Here L is set to a compound Poisson process with high intensity. We note that the
CDGARCH(p, q) process exhibits many of the features of the GARCH process, including
volatility clustering and the persistence of volatility.

Figure 3.2: Simulated paths of the processes L, dY , Y and X

Finally we give conditions for X to remain positive.

Proposition 3.8. Let S be a compound Poisson process satisfying Assumption 3.1(b) and
X be the unique solution to (3.3.6) driven by S. Suppose η > 0, cµ > |fµ|L1 and

Xu ≥ x− := η

cµ − |fµ|L1
> 0, ∀u ∈ [−r, 0]. (3.3.8)

Then Xt ≥ x− for all t > 0, i.e. X is positive and bounded away from zero
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3.3.3 An Approximation Result

Our analysis in the preceding section is carried out under the assumption that L is a
compound Poisson process. We now relax this assumption by showing that the general
case can be well approximated by this special case.

Without loss of generality we suppose L is a pure jump process in which case

St =
∑
−r<s≤t

(∆Ls)2. (3.3.9)

For each n ∈ N, define the approximating process Sn by

Snt :=
∑
−r<s≤t

(∆Ls)21{|∆Ls|≥ 1
n
}. (3.3.10)

Then (Sn)n is a sequence of compound Poisson processes satisfying Snt ≤ St for all n ∈ N
and t ≥ −r. For each n, we will consider equation (3.3.6) driven by Sn:

dXn
t = bn(Xn)tdt+ cνX

n
t−dS

n
t , (3.3.11)

where the drift coefficient bn : R+ × R× Ω is defined as

bn(H)t := η − cµHt +
∫ t

t−p
fµ(u− t)Hudu+

∫ t

t−q+
fν(u− t)Hu−dS

n
u .

Applying Theorem 3.3, we see that equation (3.3.11) has a unique solution Xn in S2 for
each initial value Φ satisfying Assumption 3.1a. Similar to the definition of bn, we will
write b for the drift coefficient of (3.3.6) driven by S. The main result of the current
section is to show that Xn converges to X in the following sense. We recall from [145] that
a sequence of processes (Hn)n converges to H uniformly on compacts in probability (ucp)
if for each t > 0, the sequence sups≤t |Hn

s −Hs| converges to 0 in probability as n→∞.
We will need the following approximation results on the drift term of the equation. Let

(Ut)t≥0 be the (finite and increasing) process given by

Ut := cµ + |fµ|L1 + (|fν |L1 + fν(0))S∗t . (3.3.12)

Proposition 3.9. Let X and (Xn)n∈N be the unique solutions to (3.3.6) and (3.3.11).

a) For each t ≥ 0, Sn converges to S in |·|t and hence in ucp.

b) The drift coefficient b is functional Lipschitz (page 256, [145]) with Lipschitz process
(Ut)t defined in (3.3.12). That is, for every Y and Z in S2, we have

|b(Y )t − b(Z)t| ≤ Ut sup
s≤t
|Ys − Zs|, ∀t ≥ 0.
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Furthermore, for all n ∈ N, bn is functional Lipschitz with the same U .

c) For each t ≥ 0, the process bn(X) converges to b(X) in |·|t and hence in ucp.

We are now in a position to state the approximation result, which allows us to extend
Proposition 3.8 to a general driving noise S.

Theorem 3.10. Let S and (Sn)n be given by (3.3.9) and (3.3.10). Let X and (Xn)n be
the solutions to (3.3.6) and (3.3.11). Then as n→∞, Xn converges to X in ucp.

Corollary 3.11. Proposition 3.8 holds for any S of the form (3.3.9) satisfying Assumption
3.1b. In particular, suppose η > 0 and cµ > |fµ|L1, then for each t > 0, Xt is positive and
bounded away from zero by x− defined in (3.3.8).

3.4 Moments and Stationarity

We switch our attention to the second order structure of the process X and compare to
the results of [100]. Observe from (3.3.6) that cµ can be interpreted as the speed of mean
reversion and acts as a negative drift in the SDE (3.3.6). On the other hand, the constant
cν and the functions fµ and fν all contribute to the positive drift in (3.3.6). Intuitively,
the value of cµ has to be large enough to balance out the effects of cν , fµ, fν and keep the
solution X from exploding. The following result shows that when cµ is large enough, the
solution X is in fact uniformly bounded in L1 or L2.

Recall η from (3.1.6). Let C+
1 , C

−
1 , C

+
2 , C

−
2 be given by

C±1 = cµ − κ2cν ±
(
|fµ|L1 + κ2|fν |L1

)
,

C±2 = cµ − κ2cν −
1
2κ4c

2
ν ±

(
|fµ|L1 + κ4|fν |L2

)
.

Proposition 3.12. Suppose Assumptions 3.1 hold and X is a positive solution to (3.3.6).

a) Suppose E[X0] <∞ and C−1 > 0, or equivalently,

cµ > κ2cν + |fµ|L1 + κ2|fν |L1 . (3.4.1)

Then X is uniformly bounded in L1 with supt E[Xt] ≤ 2η/C−1 + E[X0]C+
1 /C

−
1 .

b) Suppose E[X2
0 ] <∞ and C−2 > 0, or equivalently,

cµ > κ2cν + 1
2κ4c

2
ν + |fµ|L1 + κ4|fν |L2 . (3.4.2)

Then X is uniformly bounded in L2 with supt E[X2
t ] ≤

(
η/C−2

)2
+ E[X2

0 ]C+
2 /C

−
2 .



3.4 Moments and Stationarity 58

3.4.1 The Moment Processes

Let m be the mean function of X, i.e., m(t) := E[Xt], t ∈ [−r,∞). Write ϕ(·) for the mean
function of the initial segment Φ. For t > 0, define the segment process m(t) : [−r, 0]→ R
of the process m as m(t)(u) := m(t + u), u ∈ [−r, 0]. For notational simplicity, we will
from here onwards write c0 := cµ − κ2cν and f := fµ + κ2fν . We first show that the mean
function of the process X satisfies a deterministic delayed differential equation.

Proposition 3.13. Suppose Assumption 3.1 is satisfied. Then

a) The mean function m is finite-valued, continuously differentiable on (0,∞), and
satisfies the (deterministic) functional differential equation

d

dt
m(t) = η − c0m(t) +

∫ 0

−r
m(t+ u)f(u)du, t > 0, (3.4.3)

with the initial condition m(u) = ϕ(u) for u ∈ [−r, 0].

b) The mean function m also satisfies the renewal equation

m(t) =
∫ t

0
ζ(t− u)m(u)du+ h(t), t > 0,

with initial condition m(0) = ϕ(0). The convolution kernel ζ is given by

ζ(t) = −c01(0,∞)(t) +
∫ t∧r

0
f(−u)du, t ∈ [0,∞), (3.4.4)

and the forcing function h : [0,∞)→ R is given by

h(t) = m(0)(0) + η

ζ(r)

∫ t

0
ζ(u)du+

∫ r

0
(ζ(t+ u)− ζ(u))

(
m(0)(−u) + η

ζ(r)

)
du.

Recall that X is said to be mean stationary if m(t) = M for all t > 0 for some M > 0
and X is said to be asymptotically mean stationary if m(t) → M as t → ∞. Using
Proposition 3.13, we can show that condition 3.4.1 is in fact necessary and sufficient for
the mean stationarity or asymptotic mean stationarity of X.

Theorem 3.14. Suppose Proposition 3.13 holds so m(t) satisfies the functional differential
equation (3.4.3) with some positive initial condition ϕ ∈ D . Then

a) The mean function m converges to a (positive) limit M exponentially fast as t→∞,
if and only if c0 > |f |1. If it exists, the limit M is equal to

M = η

c0 − |f |1
. (3.4.5)
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b) The process X admits a stationary (positive) mean, i.e. m(t) = M for all t ∈ [0,∞),
if and only if c0 > |f |L1 and ϕ ≡M on [−r, 0], where M is given by (3.4.5).

Recall that cµ, cν , fµ, fν are in our case analogues of the coefficients of the GARCH
process. Keeping this in mind it is easy to see that the necessary and sufficient condition
(3.4.1) for mean stationarity and the formula 3.4.5 for the asymptotic mean are exact
analogues of the discrete time GARCH process, see [116].

The second moment of the process X involves the term E[Xt

∫ t
t−q+Xsfν(s)dSs], which

in general cannot be computed easily. However, we can formulate some asymptotic results.

Theorem 3.15. Suppose condition (3.4.1) is satisfied so that E[Xu] → M as u → ∞.
For every t > 0 and Ft-measurable random variable Z with E[Z2X2

u] < ∞, we have
E[ZXu]→ME[Z] exponentially fast as u→∞.

The asymptotic behavior of the covariance function Cov(Xt, Xt+u) of the process X is
an immediate corollary to Theorem 3.15 by taking Z = Xt.

Corollary 3.16. Suppose X is asymptotically mean stationary and has finite fourth
moments. Then for every t > 0, the covariance function Cov(Xt, Xt+u) tends to zero
exponentially fast as u→∞.

We finally look at the properties of the price and return processes under the CDGARCH
model. Recall the price process Yt = Y0 +

∫ t
0+
√
Xs−dLs, t ≥ 0, and define the return

process (Ỹt)t>1 by Ỹt := Yt − Yt−1 =
∫ t
t−1+
√
Xs−dLs.

Corollary 3.17. Let (Xt)t be the solution to (3.3.6) and Y, Ỹ be defined as above. Suppose
X is mean stationary, with mean M defined in (3.4.5).

a) The return process Ỹ is covariance stationary, with zero mean and auto-covariance
function given by Cov(Ỹt, Ỹt+u) = E

[
ỸtỸt+u

]
= κ2M(1− u)+.

b) Suppose Ỹ has finite fourth moments. Then for any t > 1, the squared return process
(Ỹ 2

t )t>1 satisfies Cov(Ỹ 2
t , Ỹ

2
t+u)→ 0 exponentially fast as u→∞.

We note that a stochastic process H with the property that Cov(Ht, Ht+u) → 0
exponentially fast is said to have short memory, see [126, 130, 151] and the references
therein. From Corollary 3.16 and (3.17) we see that that the CDGARCH process indeed
has short memory, just like the discrete time GARCH process.

3.5 Proofs

3.5.1 Existence and uniqueness of the solution

We first introduce some notations. Given a signed measure µ on a measure space (E,Σ),
we denote its corresponding total variation measure |µ| by |µ|(E) = supπ

∑
A∈π |µ(A)|, for
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all E ∈ Σ, where the supremum is taken over all Σ-measurable partitions π of E. We also
denote the total variation norm of µ as |µ| := |µ|(S).

Let µ and ν be signed Borel measures on [−r, 0] with finite total variations and S be
a càdlàg, adapted process with paths of finite variation. Recall θ from (3.1.9) and |·|t
from (3.3.1). We can write the variance equation (3.1.6) as Xt = θt +R(X)t, where R is
a linear map on D given by

R(Z)t =
∫ 0

−r

∫ t+u

u
Zsdsµ(du) +

∫ 0

−r

∫ t+u

u+
Zs−dSsν(du), t > 0, (3.5.1)

and R(Z)u = 0 for all u ≤ 0. Using Lemma 3.1, it is easy to see that R(Z) is càdlàg and
adapted, whenever Z is càdlàg and adapted. We first obtain some norm estimates on R:

Lemma 3.18. Let (Ht)t≥−r be a process in S2, as defined in (3.3.1). Then, under
Assumption 3.1, for all T ≥ −r,

|R(H)|2T ≤ KT

∫ T

−r
E
[
H2
s

]
ds ≤ K ′T |H|2T ,

where KT = 2(|µ|2 + 2κ2|ν|2)T + 16κ4|ν|2 <∞ and K ′T = KT (T + r) <∞.

Proof. For notational convenience, we will define the semi-norm

|Z|[0,t] :=
(
E
[

sup
s∈[0,t]

|Zs|2
])1/2

.

Since R(H)u = 0 for u ≤ 0, by the inequality (a+ b)2 ≤ 2a2 + 2b2, we have

|R(H)|2T ≤ 2
∣∣∣∣∫ 0

−r

∫ u+·

u
Hsdsµ(du)

∣∣∣∣2
[0,T ]

+ 2
∣∣∣∣∫ 0

−r

∫ u+·

u+
Hs−dSsν(du)

∣∣∣∣2
[0,T ]

=: I + II.

Since H = 0 on [−r, 0], an application of the Cauchy-Schwarz inequality yields the bound

I ≤ 2|µ|2E
[

sup
t∈[0,T ]

sup
u∈[−r,0]

(
t
∫ t+u

u
|Hs|2ds

)]
≤ 2T |µ|2E

[∫ T

0
|Hs|2ds

]
.

For II, recall S̃t := St − (t+ r)κ2 from (3.2.3). Using the same reasoning as above,

II ≤ 4κ2
2

∣∣∣∣∫ 0

−r

∫ u+·

u
Hsdsν(du)

∣∣∣∣2
[0,T ]

+ 4
∣∣∣∣∫ 0

−r

∫ u+·

u+
Hs−dS̃sν(du)

∣∣∣∣2
[0,T ]

=: III + IV.

By similar workings as in I, we have III ≤ 4κ2
2T |ν|2E

[∫ T
0 |Hs|2ds

]
. For IV, recall S̃ is a

square integrable martingale and d〈S̃〉t = κ4dt. Since |H|T <∞, H is clearly in L2(S̃), and
the process H · S̃ is a square integrable martingale by Lemma 3.1. By Jensen’s inequality,
Doob’s inequality and the Ito isometry, we have
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IV ≤ 4|ν|
∫ 0

−r
E sup
t∈[0,T ]

∣∣∣∣∫ t+u

u+
Hs−dS̃s

∣∣∣∣2|ν|(du) ≤ 16|ν|
∫ 0

−r
E
∣∣∣∣∣
∫ T+u

u+
Hs−dS̃s

∣∣∣∣∣
2

|ν|(du)

≤ 16|ν|2 sup
u∈[−r,0]

E
[∫ T+u

u
H2
sd〈S̃, S̃〉s

]
≤ 16κ4|ν|2E

[∫ T

−r
H2
sds

]

The lemma follows immediately by collecting all terms.

Proof of Theorem 3.3. (a) Let S and Φ satisfy Assumption 3.1 and θ be defined in (3.1.9).
For existence, we use a Picard iteration to produce a sequence of S2-processes that
converges to a limit. Set the initial term X(0) := θ ∈ S2, and define recursively for each
n ≥ 1 the process X(n) := θ +RX(n−1). We see that the differences between each term
are given by X(1) −X(0) = R(θ) and X(n) −X(n−1) = R(X(n−1) −X(n−2)), for n ≥ 2.

Write Dn,T := |X(n+1) −X(n)|T , so that D0,T = |R(θ)|T and for n ≥ 1, Dn,T =
|R
(
X(n) −X(n−1)

)
|T . The first term D0 is finite by an application of Lemma 3.18 to

H = θ. Since X(n+1) = θ + R(X(n)), by Lemma 3.1 and the second bound in Lemma
3.18, X(n+1) is in S2 whenever X(n) is in S2. Therefore by induction, for each n ≥ 1, the
difference X(n) −X(n−1) is in S2 and we can apply Lemma 3.18 to each Dn,T .

Since t 7→ Dn,t is non-decreasing and non-negative on [−r, T ], applying Lemma 3.18 to
each Dn,T and expanding the recursion yields a Gronwall type inequality

D2
n,T ≤ KT

∫ T

0
D2
n−1,t2dt2 ≤ Kn

T

∫ T

0

∫ t2

0
· · ·

∫ tn

0
D2

0,tn+1dtn+1 · · · dt3dt2 ≤
Kn
TT

n

n! D2
0,T .

The sequence (Dn,T )n is therefore Cauchy for each T > 0. Since D[−r,∞) is complete in
|·|T , taking n→∞, the sequence of processes

X(n) = X(0) +
n∑
k=1

(
X(k) −X(k−1)

)

converges in |·|T to a limit X, which is also in S2.
It remains to show that this limit X is indeed a solution to (3.1.6), i.e. satisfies

X = θ +R(X). First, observe that since (Dn,T )n is summable for every T > 0,

|X −X(n)|T =
∣∣∣∣ ∞∑
k=n

X(k+1) −X(k)
∣∣∣∣
T
≤
∞∑
k=n

D(k)(T )→ 0, (3.5.2)

as n→∞. Using X(n) = θ +R(X(n−1)), by Lemma 3.18, we also have

|θ +RX −X(n)|2T = |R(X −X(n−1))|2T ≤ K ′T |X −X(n−1)|2T → 0.

Then by the triangle inequality, for any n ≥ 1,

|θ +RX −X|T ≤ |θ +RX −X(n)|T + |X −X(n)|T ,
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which implies that sup0≤s≤T |θs +RXs −Xs| = 0 a.s. and hence (3.1.6) is satisfied.
To establish the uniqueness of the solution, suppose X and X ′ are two strong solutions

to (3.1.6), i.e., we have X = θ +R(X) and X ′ = θ +R(X ′). Let DT := |X −X ′|T =
|R(X −X ′)|T . By Lemma 3.18, for any 0 ≤ T <∞, we have D2

T ≤ KT

∫ T
−rD

2
t dt, where

KT is defined in Lemma 3.18. By Gronwall’s inequality (Thm V.68, [145]), |X −X ′|2T = 0
for all t ≥ 0 which implies that sup−r≤s≤T |Xs −X ′s| = 0, almost surely, and the two
solutions are indistinguishable.

((b).) Since |x|α ≤ 1 + |x|2 for any 0 ≤ α ≤ 2 and x ∈ R, we have,

E[(X∗T )α] ≤ 1 + E
[
(X∗T )2

]
<∞.

Hence the function t 7→ E[|Xt|α] is finite-valued. Since X is càdlàg, by the dominated
convergence theorem with |X∗T |α as dominating functions, t 7→ E[|Xt|α] is a càdlàg function
on [0,∞) for 0 ≤ α ≤ 2.

3.5.2 Properties of the solution

Proof of Proposition 3.4. (a) We first rewrite Fν(t, s) =
∫ 0
−q 1[s−t,s](u)fν(u)du. For any

(t2, s2) and (t1, s1) ∈ R2, by the triangle inequality, Fν is Lipschitz on R2 since

|Fν(t2, s2)− Fν(t1, s1)| ≤ |Fν(t2, s2)− Fν(t1, s2)|+ |Fν(t1, s2)− Fν(t1, s1)|

≤
∫ 0

−q

∣∣∣1[s2−t2,s2](u)− 1[s2−t1,s2](u)
∣∣∣fν(u)du+

∫ 0

−q

∣∣∣1[s2−t1,s2](u)− 1[s1−t1,s1](u)
∣∣∣fν(u)du

≤ |fν |
(
|t2 − t1|+ 2|s2 − s1|

)
≤ 2|fν |

∣∣∣∣(t2, s2)− (t1, s1)
∣∣∣∣,

where |·| is the sup-norm and | · | is the Euclidean distance on Rn. Similarly for Fµ.

(b) Since Fµ and Fν are identically zero whenever s ≥ t or s ≤ −r, we will omit the region
of integration and write Ξ(X)t =

∫
Fµ(t, s)Xs−ds+

∫
Fν(t, s)Xs−dSs.

Since for almost every ω ∈ Ω, t 7→ St(ω) is a non-decreasing càdlàg function, we will
fix such an ω and treat the stochastic integral above as a Lebesgue-Stieljes integral with
respect to the function t 7→ St(ω). Since Fµ and Fν vanishes for s /∈ (−r, t), by Proposition
3.4(a), for any t2, t1 ∈ R+,

|Ξ(X)t2 − Ξ(X)t1 | ≤
∫
|Fµ(t2, s)− Fµ(t1, s)||Xs−|ds+

∫
|Fν(t2, s)− Fν(t1, s)||Xs−|dSs

≤ 2|fµ|
(∫ t2∨t1

−p
|Xs|ds

)
|t2 − t1|+ 2|fν |

(∫ t2∨t1

−q+
|Xs−|dSs

)
|t2 − t1|.

It follows that t 7→ Ξ(X)t is locally Lipschitz continuous almost surely, since with probab-
ility one X is locally bounded and S has finite variation on compacts.

We first compute dFν(t, s)/dt - the case of Fµ is identical and omitted. In the expression
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Fν(t, s) =
∫ 0
−q 1[s−t,s](u)fν(u)du, the integrand clearly does not depend on t whenever

t /∈ (s ∨ 0, s + q), hence t 7→ Fν(t, s) is constant on these regions and dFν(t, s)/dt = 0.
On the interval t ∈ (s ∨ 0, s+ q), we have Fν(t, s) =

∫ s∧0
s−t fν(u)du so by the Fundamental

Theorem of Calculus, t 7→ Fν(t, s) is continuously differentiable and dFν(t, s)/dt = fν(s− t)
on the interval t ∈ (s∨ 0, s+ q). We can therefore write dFν(t, s)/dt = fν(s− t)1[s∨0,s+q](t)
for almost every t ≥ 0. Clearly, t 7→ Fν(t, s) is not differentiable at t = s ∨ 0 or t = s+ q,
unless fν(0) and fν(−q) are equal to zero.

We now compute the derivative of the second integral in (3.3.3):

It :=
∫
Fν(t, s)Xs−dSs, t ≥ 0. (3.5.3)

The case of the first integral is similar and omitted. Again, we fix an ω ∈ Ω such that
t 7→ St is a non-decreasing càdlàg function and treat the dS integral as a Stieljes integral.
For every t ∈ R+, the map s 7→ Fν(t, s)Xs− is in L1

loc(R, dS) since X and S are locally
bounded and s 7→ Fν(t, s) is supported on a compact set. For every s ∈ R, the map
t 7→ Fν(t, s)Xs− is continuously differentiable in (s∨0, s+q) by the previous argument. For
every t, the derivative s 7→ d

dt
Fν(t, s)Xs− is locally bounded and hence also in L1

loc(R, dS).
Then by the differentiation lemma ([98, Theorem 6.28]), t 7→ It is differentiable almost
everywhere with derivative

d

dt
It =

∫
fν(u− t)1[u∨0,u+q](t)Xu−dSu =

∫
(t−q,t]

fν(u− t)Xu−dSu, t > 0. (3.5.4)

The expression (3.3.4) then follows with a simple change of variable.

Proof of Theorem 3.5. Recalling ν(du) = cνδ0(du) + fν(u)du, we have
∫ 0

−q

∫ t+u

u+
Xs−dSsν(du) = cν

∫ t

0+
Xs−dSs +

∫ 0−

−q

∫ t+u

u+
Xs−dSsfν(u)du := I + II.

Since X ∈ S2 and is hence locally bounded and progressively measurable, by Fubini’s
theorem, exchanging the order of integration of II gives

II =
∫

(−q,t]

(∫
1[−q,0)(u)1(u,t+u](s)Xs−fν(u)du

)
dSs =

∫
(−q,t]

Fν(t, s)Xs−dSs,

for t ≥ 0, where the kernel Fν is given by 3.3.2. The computations for the dµ integral in
(3.1.6) are exactly the same and the integral equation (3.3.5) follows immediately.

For the functional differential equation, first observe that t 7→ It in (3.5.3) is Lipschitz
and hence absolutely continuous. Hence It−I0 =

∫
(0,t]

d
dt
Isds, where d

dt
It is given by (3.5.4),

with I0 = 0 since Fν(0, s) = 0 for any s. The integral involving Fµ can be differentiated in
exactly the same way. The functional differential equation follows immediately.

Finally, since S is of finite variation and X is càdlàg, X is a semimartingale with finite
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variations by Theorem I.4.31 of Jacod and Shiryaev [89].

Proof of Proposition 3.7. (a) follows immediately from (3.3.6).
(b) On (Tj, Tj+1), St = S(Tj), so by (a) of Proposition 3.7, X is continuous on (Tj, Tj+1).
With the normalization f(−q) = 0, ∆ξ(X)t = fν(0)Xt−∆St, so ξ(X) is continuous on
(Tj, Tj+1) as well. The rest of the proposition follows immediately.

Proof of Proposition 3.8. Suppose Xt ≥ x− for all t ∈ [−r, T ] for some T ≥ 0 and let
T ′ := inf{t > T,∆S > 0}. Since S is a compound Poisson process, we have T ′ > T

almost surely so that the interval [T, T ′) is non-empty. Then by Proposition 3.7(b), X
is continuously differentiable in [T, T ′) with derivative given by Ẋt = η − cµXt + ξ(X)t.
Note that ∆Xt ≥ 0 whenever Xt− ≥ 0 by Proposition 3.7. By iterating this argument, it
suffices to show that Xt ≥ x− for all t ∈ [T, T ′).

Let T ′′ := inf{t > T,Xt < x−} and suppose for a contradiction that T ′′ ≤ T ′ with
positive probability. Note that X is continuous at T ′′ a.s. by definition of T ′′. Then
necessarily we have XT ′′ = x− and ẊT ′′ < 0. But

d

dt
Xt

∣∣∣∣
t=T ′′

≥ η − cµXT ′′ +
∫ 0

−p
XT ′′+ufµ(u)du ≥ 0

almost surely, which contradicts our assumption.

3.5.3 Approximation by processes of finite activity

Proof of Proposition 3.9. (a) From the construction of Sn in (3.3.10), we have

Su − Snu =
∫ u

−r

∫
0<|z|< 1

n

z2N(dz, ds),

which in non-decreasing in u. Fixing t > 0, we have

E
[
sup
u≤t
|Su − Snu |2

]
= E

(∫ t

−r

∫
0<|z|< 1

n

z2N(dz, ds)
)2
 =

∫ t

−r

∫
0<|z|< 1

n

z4ΠL(dz).

Since n ≥ 1, the integrand is dominated by z2 which is dΠL integrable. By the dominated
convergence theorem, E

[
supu≤t |Su − Snu |2

]
→ 0 as n→∞. That is, Sn approximates S

in each |·|t, t > 0. This clearly implies convergence in the ucp topology.

(b) Let Y and Z be càdlàg processes in S2, then

|b(Y )t − b(X)t| ≤ cµ|Yt − Zt|+
∫ t

t−p
fµ(u− t)|Yu − Zu|du+

∫ t

t−q+
fν(u− t)|Yu − Zu|dSu

≤ sup
s≤t
|Ys − Zs|

(
cµ + |fµ|L1 +

∫ t

t−q+
fν(u− t)dSu

)
.
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Since fν is continuous and normalized to f(−q) = 0, integrating by parts gives
∫ t

t−q+
fν(u− t)dSu = Stfν(0)−

∫ 0

q+
St+udfν(u) ≤ S∗t (fν(0) + |fν |L1),

which implies that b is functional Lipschitz. For each bn, it suffices to carry through the
same computation and observe that by construction, Snt ≤ St for each n ≥ 1 and t > 0.

(c) From the definitions of bn, for each t ≥ 0,

b(X)t − bn(X)t =
∫ t

t−q+
fν(u− t)Xu−dSu −

∫ t

t−q+
fν(u− t)Xu−dS

n
u .

By the construction of Sn, we have

|b(X)t − bn(X)t| ≤ sup
u∈(t−q,t]

|fν(u− t)Xu−|
(
St − Snt − (St−q+ − Snt−q+)

)
,

which converges to zero in |·|t for each t and hence in ucp by Proposition 3.9(a).

Proof of Theorem 3.10. The claim directly follows from Proposition 3.9 and Theorem V.15
of [145]. More accurately, we invoke a trivial extension of Theorem V.15 of [145] to the
case with multiple driving semimartingales (see comments on page 257 of [145]).

Proof of Corollary 3.11. For a given S of the form (3.3.9) satisfying Assumption 3.1(b),
let (Sn)n be as defined in (3.3.10). By Theorem 3.3, we can set X and (Xn)n to be unique
solutions to (3.3.6) and (3.3.11) driven by S and (Sn)n respectively.

By Theorem 3.10, Xn converges to X in ucp, which trivially implies that for each
t > 0, Xn

t → Xt in probability and hence in distribution. Furthermore, since each Sn is a
compound Poisson process by construction, by Proposition 3.8, for each n ≥ 1 and t > 0,
we have Xn

t ≥ x− with probability one, where x− > 0 is defined in (3.3.8). Finally, since
(−∞, x−) is open in R, by the Portmanteau theorem of weak convergence (Theorem 2.1
Billingsley [35]), we have for each t > 0,

P(Xt < x−) ≤ lim inf
n

P(Xn
t < x−) = 0,

which completes the proof.

3.5.4 Moment bounds

We precede the proof of Proposition 3.12 with the following two lemmas.

Lemma 3.19 (Lemma 8.1 - 8.2, Ito and Nisio [87]). Suppose x, y : [0,∞) → R+ are
continuous functions, α > 0 and λ1 > λ2 > 0. For every 0 ≤ t <∞,

(a) if xt ≤ x0 − λ1
∫ t

0 xudu+
∫ t

0 yudu, then xt ≤ x0 +
∫ t
0 e
−λ1(t−u)yudu;
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(b) if xt ≤ α + λ2
∫ t

0 e
−λ1(t−s)xudu, then xt ≤ αλ1/(λ1 − λ2).

Lemma 3.20. Suppose Assumptions 3.1 hold, let (Xt)t≥0 be the unique strong solution to
(3.3.6) with initial condition Φ and let (ξ(X)t)t≥0 be as defined in (3.3.4). For n ∈ {1, 2},
we have the estimate

E[|Xn−1
t ξ(X)t|] ≤ Ck sup

u∈[t−r,t]
E[|Xu|n], t > 0,

where C1 = |fµ|L1 + κ2|fν |L1 and C2 = |fµ|L1 + κ4|fν |L2.

Proof. For the case of n = 2, by Fubini’s theorem and the Cauchy-Schwartz inequality,

E[|Xtξ(X)t|] ≤ E
[
|Xt|

∫
fµ(u− t)|Xu|du

]
+ E

[
|Xt|

∫
fν(u− t)|Xu−|dSu

]

≤
∫
fµ(u− t)E[|Xt||Xu|]du+ E[X2

t ] 1
2E
[(∫

fν(u− t)|Xu−|dSu
)2
] 1

2

≤
∫
fµ(u− t)E[X2

t ] 1
2E[X2

u] 1
2du+ E[X2

t ] 1
2κ4

(∫
fν(u− t)2E[X2

u]du
) 1

2

≤
(
|fµ|L1 + κ4|fν |L2

)
sup

u∈[t−r,t]
E[X2

u].

The case of n = 1 easily follows from the same computations.

Proof of Proposition 3.12. (a) and (b) The following proof holds for both n = 1 and n = 2,
with different corresponding constants. Let X be a positive solution to (3.3.6) with η > 0.
For n = 2, it follows from Ito’s Lemma ([89, Theorem I.4.57]) that (the n = 1 case is
trivial),

Xn
t = Xn

0 + n
∫ t

0
Xn−1
s

(
η − cµXs + ξ(X)s

)
ds+

∑
0<s≤t

{
Xn
s −Xn

s−

}
(3.5.5)

where ∆Xt = cνXt−∆St and

∑
0<s≤t

{
X2
s −X2

s−

}
=

∑
0<s≤t

{
(Xs− + cνXs−∆Ss)2 −X2

s−

}
=

∑
0<s≤t

{
X2
s−

(
2cν∆Ss + c2

ν(∆Ss)2
)}
.

Let En(t) := E[Xn
t ] and put K1 := κ2cν and K2 := κ2cν + 1

2κ4c
2
ν . From (3.5.5), we have

En(t) = En(0) + nE
[∫ t

0
Xn−1
s

(
η + (−cµ +Kn)Xs

)
ds
]

+ nE
[∫ t

0
Xn−1
s ξ(X)sds

]
. (3.5.6)

Let C1, C2 be given as in Lemma 3.20 and suppose

λn := cµ −Kn − Cn > 0. (3.5.7)
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An exercise in calculus gives supx≥0 2x
(
η− 1

2λ2x
)

= η2/λ2 =: a2 and supx≥0

(
η− 1

2λ1x
)

=
η =: a1 Then for all Xs ≥ 0,

nXn−1
s

(
η + 1

2
(
− cµ +Kn + Cn

)
Xs

)
< an,

which we rearrange to get a bound for the integrand in the first integral in (3.5.6):

nXn−1
s

(
η +

(
− cµ +Kn

)
Xs

)
< an −

n

2
(
cµ −Kn + Cn

)
Xn
s . (3.5.8)

For the second integral of (3.5.6), Lemma 3.20 gives the bound

nE
[
Xn−1
s ξ(X)s

]
≤ nCn sup

u≤s
E[Xn

u ].

Combining this with (3.5.6) and (3.5.8) and writing Ēn(s) = supu≤sE(u), we have

En(t) ≤ En(0)− λ′n
∫ t

0
En(s)ds+

∫ t

0

(
an + λ′′nĒn(s)

)
ds,

where the constants λ′n and λ′′n are given by λ′n := 1
2n(cµ −Kn + Cn) and λ′′n := nCn. Our

assumed condition (3.5.7) gives λ′n − λ′′n = 1
2nλn > 0. By Lemma 3.19 ((a)),

En(t) ≤ En(0) +
∫ t

0
e−λ

′
n(t−s)

(
an + λ′′nĒn(s)

)
ds. (3.5.9)

Since Ē is non-decreasing and λ′n > 0, an integration by parts shows
∫ t

0
e−λ

′
n(t−s)

(
an + λ′′nĒn(s)

)
ds

= (1− e−λ′nt)(an + λ′′nĒn(0))
λ′n

+ λ′′n
λ′n

∫ t

0

(
1− e−λ′n(t−s)

)
dĒn(s)

= (1− e−λ′nt)(an + λ′′nĒn(0))
λ′n

+ λ′′n
λ′n

(Ēn(t)− Ēn(0))− e−λ′nt
∫ t

0
eλ
′
nsdĒn(s).

The last expression is a non-decreasing function of t. Hence from (3.5.9) we have

Ēn(t) := sup
u∈[0,t]

E(u) ≤ En(0) + sup
u∈[0,t]

∫ u

0
e−λ

′
n(u−s)

(
an + λ′′nĒn(s)

)
ds

≤ E[Xn
0 ] + an

λ′n
+ λ′′n

∫ t

0
e−λ

′
n(t−s)Ēn(s)ds.

By Lemma 3.19 (b), since λ′n > λ′′n > 0 and λ′n − λ′′n = 1
2nλn for all t ≥ 0, we have

Ēn(t) ≤
(
E[Xn

0 ] + an
λ′n

)
λ′n

λ′n − λ′′n
= 2an/n
cµ −Kn − Cn

+ E[Xn
0 ]cµ −Kn + Cn
cµ −Kn − Cn

<∞.
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The theorem follows immediately.

3.5.5 Moment processes

Proof of Proposition 3.13. (a) Since X ∈ S2, the stochastic integral process X · S̃ is a true
martingale. Taking expectation of the equation (3.3.6), we get

m(t) = m(0) +
∫ t

0

(
η − cµm(s) + E[ξ(X)s]

)
ds+ κ2cν

∫ t

0
m(s)ds

= m(0) +
∫ t

0

(
η − c0m(s) +

∫ s

s−p
fµ(u− s)m(u)du+ κ2

∫ s

s−q
fν(u− s)m(u)du

)
ds.

Recalling the definitions of f and c0 before Proposition 3.13, we have the integral equation

m(t) = m(0) +
∫ t

0

(
η − c0m(s) +

∫ 0

−r
f(u)m(s+ u)du

)
ds.

From Theorem 3.3, we know that the function t 7→ m(t) is càdlàg and hence locally
bounded. Since f is integrable, for any t1 ≤ t2, by the dominated convergence theorem,

∣∣∣∣∫ 0

−r
f(u)

(
m(t2 + u)−m(t1 + u)

)
du
∣∣∣∣ ≤ ∫ t2

t1−r

∣∣∣f(u− t2)− f(u− t1)
∣∣∣|m(u)|du

≤
(

sup
u∈[t1−r,t2]

|m(u)|
)∫ ∣∣∣f(u− t2)− f(u− t1)

∣∣∣du→ 0, as |t2 − t1| → 0,

so the function t 7→
∫ 0
−r f(u)m(t+ u)du is continuous. Furthermore,

|m(t2)−m(t1)| ≤ |t2 − t1|
(
η + c0 sup

u∈[t1,t2]
|m(u)|+ |f |L1 sup

u∈[t1−r,t2]
|m(u)|

)
,

so the function t 7→ m(t) is continuous as well. Therefore t 7→ m(t) is continuously
differentiable and the differential equation follows.

(b) The proof is adapted from Section 6.1 of Hale and Lunel [79]. Put M := η/(c0 − |f |L1)
and m̃ := m−M and ϕ̃ := ϕ−M , then clearly m̃ is the solution to the delay equation

m̃′(t) = −c0m̃(t) +
∫ 0

−r
m̃(t+ u)f(u)du, t ∈ [0,∞), (3.5.10)

with initial condition m̃ = ϕ̃ on [−r, 0]. With ζ defined in (3.4.4), we have

m̃′(t) =
∫ r

0
m̃(t− u)dζ(u).

For 0 ≤ t ≤ r, we can separate the initial condition in (3.5.10) to obtain

m̃′(t) =
∫ t

0
m̃(t− u)f(u)du+

∫ r

t
ϕ̃(t− u)f(u)du. (3.5.11)
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Now, since ζ is by construction constant for t ≥ r, (3.5.11) holds for t > r also. Integrating
by parts, we obtain a renewal equation for m̃′:

m̃′(t) =
∫ t

0
m̃′(t− u)ζ(u)du+ g(t), t ∈ [0,∞), (3.5.12)

with initial condition m̃(0) = ϕ̃(0), where g(t) := ζ(t)m̃(0)+
∫ r
t ϕ̃(t−u)f(u)du. Integrating

(3.5.12) and changing the order of integration, we obtain

m̃(t)− m̃(0) =
∫ t

0

∫ s

0
ζ(u)m̃′(s− u)du ds+

∫ t

0
g(s)ds

=
∫ t

0
ζ(u)

∫ t

u
m̃′(s− u)ds du+

∫ t

0
g(s)ds

=
∫ t

0
ζ(u)m̃(t− u)du−

∫ t

0
ζ(u)m̃(0)du+

∫ t

0
g(s)ds.

Changing variables u 7→ t− u, we arrive at a renewal equation for m̃:

m̃(t) =
∫ t

0
ζ(t− u)m̃(u)du+ h̃(t), t ∈ [0,∞), (3.5.13)

with initial condition m̃(0) = ϕ̃(0). The forcing function, h̃, given by

h̃(t) : = ϕ̃(0)−
∫ t

0
ζ(u)ϕ̃(0)du+

∫ t

0
g(s)ds

= ϕ̃(0) +
∫ 0

−r
(ζ(t+ u)− ζ(u))ϕ̃(−u)du, (3.5.14)

is Lipschitz continuous on [0, r] and constant for t ≥ r [62, p.18]. Since ζ(−r) = −M ,
substituting m̃ = m+η/ζ(r) and ϕ̃ = ϕ+η/ζ(r) back into (3.5.13) and (3.5.14) completes
the computations.

Proof of Theorem 3.14. (a) Let M , m̃ and ϕ̃ be as defined in the proof of Proposition 3.13
(b). The characteristic function ∆ of (3.5.10) defined in (3.2.5) is given by

∆(z) = z + c0 −
∫ 0

−r
ezuf(u)du.

It’s clear from (3.2.6) that if ∆(z) is root free in the right half-plane {z|Re z > 0}, then all
solutions m̃ of the functional differential equation (3.5.10) converge to zero exponentially
fast as t→∞.

For sufficiency, it is enough to show that c0 > |f |L1 implies ∆(z) 6= 0 for any z with
Re z ≥ 0. Let z = α + iβ where α ≥ 0. Then the real part of ∆ can be written as

Re ∆(z) = α + c0 −
∫ 0

−r
eαu cos(βu)f(u)du

Since eαu and cos(βu) are no greater than 1 on [−r, 0], we have Re ∆(z) ≥ α + c0 −
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∫ 0
−r f(u)du > 0, whenever c0 > |f |L1 , so ∆ is root free on {z|Re z ≥ 0}. For necessity,

the expansion (3.2.6) implies that 0 is the only possible limit of m̃(t), which gives the
uniqueness of m as a limiting mean. Since we require this limit to be positive, necessarily
we require c0 > |f |L1 .

(b) Suppose that ϕ ≡ M where M is defined in (3.4.5), and assume c0 > |f |L1 so that
M > 0. Then ϕ̃ is identically zero on [−r, 0], and the function h defined in (3.5.14)
is identically zero on [−r,∞). From (3.5.13), the centered mean process m̃(·) satisfies
satisfies the homogeneous renewal equation

m̃(t) =
∫ t

0
ζ(u)m̃(t− u)du.

Applying the representation in Theorem 2.12 of Diekmann et al. [62] shows that the only
solution to this renewal equation is m̃(t) = 0 for all t ∈ [0,∞). This gives m(t) = M for
all t ∈ [−r,∞). Conversely, suppose that for all t ∈ [0,∞), m(t) = M for some positive
M . Then (3.4.3) gives 0 = η+M(−c0 + |f |L1), which implies that M is uniquely given by
(3.4.5) and c0 > |f |L1 . Recall that the delay equation (3.4.3) has a unique solution once the
initial condition ϕ is fixed. Therefore the solution m ≡M for all t ≥ 0 then corresponds
uniquely to the initial condition ϕ ≡M on [−r, 0], and the proof is complete.

Proof of Theorem 3.15. Let Z be an Ft measurable random variable with E[Z2X2
t ] <∞

for any t > 0. Since X has finite variation, for any t > 0 and u > r, we have

Xt+u = ZXt+r +
∫ t+u

t+r+
ZdXs = ZXt+r +

∫ t+u

t+r+
Z
{(
η − c0Xs + ξ(X)s

)
ds+ cνXs−dS̃s

}
.

Taking expectations and using Fubini’s theorem gives

E[ZXt+u] = E[ZXt+r] + η(u− r)E[Z]− c0

∫ t+u

t+r
E[ZXs]ds+

∫ t+u

t+r

∫ s

s−r
E[ZXu]f(u− s)duds

+
∫ t+u

t+r
E
[
Z
∫ s

s−q+
Xu−fν(u− s)dS̃u

]
ds+ cνE

[∫ t+u

t+r+
ZXs−dS̃s

]
.

Since Z is Ft measurable and hence Fs−q+ measurable for any s ≥ t+ r, the two stochastic
integrals in the last expression have zero expectation. Therefore

E[ZXt+u] = E[ZXt+r] + η(u− r)E[Z]− c0

∫ t+u

t+r
E[ZXs]ds+

∫ t+u

t+r

∫ 0

−r
E[ZXs+u]f(u)duds,

from which we obtain a functional differential equation,

d

du
E[ZXt+u] = ηE[Z]− c0E[ZXt+u] +

∫ 0

−r
E[ZXu+u]f(u)duds.

We note that this is a functional differential equation of a similar form as we dealt with
in Theorem 3.14 (a). Since we assumed c0 > |f |L1 , we can compute the characteristic
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function ∆ of this equation like we did in Theorem 3.14 (a), which allows us to establish
the convergence to a limiting mean. Note that the limiting mean is given by

E[ZXt+u]→
ηE[Z]

c0 − |f |L1
= ME[Z]

and the convergence is exponential.

Proof of Corollary 3.17. (a) Since Ỹt =
∫ t
t−1+
√
Xs−dLs and L has zero mean, we have

E[Ỹt] = 0 and Cov(Ỹt, Ỹt+u) = κ2
∫
1[t−1,t](s)1[t+u−1,t+u](s)E[Xs]ds = κ2M(1− u)+.

(b) Write κ1 :=
∫
R0
zΠL(dz). Since dYt = −κ1

√
Xtdt+

∫
R0

√
Xt−zÑ(dz, dt), by Ito’s lemma,

it holds that dY 2
t = −2Ytκ1

√
Xtdt+ Y 2

t − Y 2
t−, where

Y 2
t − Y 2

t− =
∫
R0

(
(Yt− +

√
Xt−z)2 − Y 2

t−

)
N(dz, dt) =

∫
R0

(
2Yt−

√
Xt−z +Xt−z

2
)
N(dz, dt).

Then, since Ỹ 2
t+u = (Yt+u − Yt+u−1)2 = Y 2

t+u − Y 2
t+u−1 − 2Yt+u−1(Yt+u − Yt+u−1), we have

Ỹ 2
t+u =

∫ t+u

t+u−1+
2Ys−

√
Xs−dLs +

∫ t+u

t+u−1+

∫
R0
Xt−z

2N(dz, dt)− 2Yt+u−1

∫ t+u

t+u−1+

√
Xs−dLs.

Now suppose u > 1 so that Ỹt is Ft+u−1 measurable. Taking expectations, we obtain

E[Ỹ 2
t Ỹ

2
t+u] = κ2

∫ t+u

t+u−1
E[Ỹ 2

t Xs]ds.

By Theorem 3.15 and Corollary 3.17 (a), E[Ỹ 2
t Xu]→ κ2M

2 exponentially fast as u→∞,
i.e. there exist constants C and T, λ > 0 such that

∣∣∣E[Ỹ 2
t Xu]− κ2M

2
∣∣∣ ≤ Ce−λu, for all

u > T . Therefore
∣∣∣E[Ỹ 2

t Ỹ
2
t+u]− κ2

2M
2
∣∣∣ ≤ κ2

∫ t+u

t+u−1

∣∣∣E[Ỹ 2
t Xs]− κ2M

2
∣∣∣ds

≤ κ2

∫ t+u

t+u−1
Ce−λsds = κ2Ce

1−λt

λ
e−λu,

for all u > T , which finishes the proof.



Chapter 4

CLT for Spiked Eigenvalues of
Sample Auto-covariance Matrices

4.1 Introduction

This chapter focuses on the asymptotic theory of the high dimensional factor model we
introduced in Section 1.4 of Chapter 1. We work under a high-dimensional setting where
both the dimension p and the sample size T tend to infinity simultaneously. In this high
dimensional setting, most asymptotic results from the finite p setting no longer apply,
which motivated [10, 11, 12, 104, 105, 133] and more recent works [110, 111] to develop
an appropriate asymptotic theory. To set the context for our current work, we begin with
an overview of these results in Section 4.1.1. We observe that some of these works are
naturally related to the theory of random matrices, especially the study of large spiked
covariance matrices. We therefore take a detour and introduce some elements of random
matrix theory in Section 4.1.2 before returning to the discussion of factor models in Section
4.1.3. Finally we give an overview of our current work in Section 4.1.4.

4.1.1 High Dimensional Factor Models

The seminal work [12] provides a consistent estimator for the number of factors K of a
static factor model by minimizing a penalized loss function. Under mostly the same setting
[10] analyses the factor model via PCA and establishes asymptotic normality of estimated
common components. A quasi-maximum likelihood method is proposed in [11] to estimate
the factors and the authors establish the asymptotic normality of the estimators. We
observe that the methods in the three aforementioned works do not explicitly model the
auto-covariance structure of the factor model. The PCA method in [10] is essentially based
on the covariance matrix instead of auto-covariance matrices and the other two approaches
do not model the serial correlations directly neither.

An alternative perspective stems from the idea that when strong serial correlation is

72
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exhibited by the data, it is more natural to analyse the model using the sample auto-
covariance matrices. This approach is explored in [133] and more recently in [104, 105].
Define the matrix M := ∑τ0

τ=1 ΣτΣ>τ , where Στ is the lag-τ (population) auto-covariance
matrix of the time series and τ0 is some chosen constant. It is not difficult to see that the
eigenvalues and eigenvectors of M capture a lot of information on the structure of the
factor model. Indeed, observe that a vector x belongs to the kernel of M if and only if
Στx = 0 for all τ ≤ τ0, and it can be shown that this happens if and only if x is in the
orthogonal complement of the factor loading matrix. This implies that the factor loading
space is in fact spanned by the eigenvectors of M corresponding to non-zero eigenvalues.
Therefore by estimating the eigenvectors of the matrix M , we are effectively estimating the
factor loading space of the model. Moreover, the matrix M contains exactly K non-zero
eigenvalues which represent the strength of the K factors in the model. This implies that
the ratio µi+1/µi, where µi is the i-th largest eigenvalue of M , i = 1, . . . , p is equal to
zero for all i > K. Therefore by estimating the number of non-zero ratios we obtain an
estimate for the number of factors.

In [104, 105] the authors consider a factor model where the strength of the factors, or
equivalently the eigenvalues {µi} of M tend to infinity as T →∞. More specifically, it is
assumed that each µi diverges at a rate of p1−δ for i ≤ K where δ ∈ [0, 1] is a constant.
Under this assumption [104] proposes a ratio-based estimator K̂ := arg mini≤pλi+1/λi,
where λi is the i-th largest eigenvalue of some estimate M̂ of M . The authors did not
obtain explicit asymptotic results for K̂ but instead developed the asymptotic theory for
the estimators λ̂i . Using the asymptotic properties of λ̂i as well as empirical results the
authors argued that K̂ is a good estimator for the number of factors K. A similar setting
is considered in [105] in which the authors provide estimators of the factor loading space
using the eigenvectors M̂ and establish the asymptotic theory.

As can be seen from the above discussion, accurately estimating the eigenvalues {µi}
is of paramount importance in the analysis of factor models. This naturally brings the
discussion to the corresponding asymptotic theory of empirical eigenvalues {λi}, which is
the main focus of our current work. As observed in [104], when p diverges at the same
time as T , empirical eigenvalues are no longer consistent estimators of true eigenvalues. In
the case of [104], the authors obtain a rate of |λi − µi| = Op(p2−δT−1/2) for i ≤ K, which
is directly related to not only T but the dimension p as well. A similar type of result is
obtained in [105] for estimates of the factor loadings matrix. We remark that this type
of results, especially the observation that the rate depends explicit on the dimension p,
is a known phenomenon in high dimensional statistics and its closely related field, large
dimensional random matrix theory. We will take on this perspective and examine these
results in the context of random matrix theory.

To see the connection to high dimensional statistics and random matrix theory, we
observe that the spectrum of the matrix M discussed above consists of K large (in fact,
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diverging) eigenvalues while the rest of the eigenvalues are small and similar in size. This
is an example of the so-called spiked covariance model which has been an area of extensive
research since the pioneering work of [91]. The theory of spiked covariance matrices is by
now very well developed and plays an essential role in the asymptotic theory of principal
component analysis in a high dimensional setting. We refer to the monograph [14] for
a detailed treatise of the topic and [90] for a survey of recent developments and related
topics. On the other hand, the topic of spiked auto-covariance matrix has only recently
started to attract attention and the literature is still relatively sparse. We will therefore
first discuss some simple spiked covariance models to outline the landscape of the theory
before returning to the topic of factor models.

4.1.2 Spiked Sample Covariance Matrices

To set the scene, suppose X = (x1, . . . ,xn) is a p× n matrix of random variables with p

interpreted as the dimension of the model and n the sample size. Assuming the columns (xi)
are independent and identically distributed (i.i.d.), let Σ := E[x1x>1 ] be the (population)
covariance matrix and Σ = UΛU> = Udiag(µ1, . . . , µp)U> be its spectral decomposition
where the eigenvalues {µi} are arranged in non-increasing order. A spiked covariance
matrix informally refers to the assumption that µ1, . . . , µK are ‘much bigger’ than the rest
of the eigenvalues for some number K, which can be unknown or even diverging as well.
The rest of the eigenvalues are assumed to be small and of ‘similar’ size. The case where
K = 0 and all eigenvalues are of similar size is referred to as the null case.

We will focus on a particular asymptotic regime where p and n diverge simultaneously
and p/n → c for constant c > 0. The cases where p/n → 0 or p/n →∞ are interesting
as well, some recent developments include [53, 54, 97, 67, 36]. We also refer to [90] for a
survey of some relevant results. Let {λi}1≤i≤n be the eigenvalues of the sample covariance
matrix Σ̂ := n−1XX>. It is easy to show that one cannot in general expect λi to be
consistent estimators of µi, even in very simple cases. For an immediate counter-example,
consider the simple case where p > n, K = 0 and population covariance matrix is given by
Σ = Ip. Then clearly Σ̂ is a matrix of rank at most n and therefore contains at least p− n
zero eigenvalues which do not converge to the true value one 1. Similarly, in general, the
largest eigenvalue λ̂i of Σ̂ does not converge to its theoretical counterpart either.

In the null case where K = 0, the asymptotic properties of the spectrum of Σ̂ are best
captured by its limiting spectral distribution (LSD). Put F := p−1∑p

i=1 δλi where δa is
the Dirac measure at a, i.e. F is the empirical measure of eigenvalues of Σ̂. Then F is a
random probability measure on B(R) and is known as the empirical spectral distribution
(ESD) of Σ̂. Under certain regularity conditions, the measure F converges almost surely
in the weak topology of measures to a deterministic probability measure known as the
Marčenko-Pastur distribution. As a consequence, it can be shown that the k-th largest
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eigenvalue λk converges a.s. to the right end-point of the support of the Marčenko-Pastur
distribution for any fixed k. For more details on the LSD of covariance matrices and the
Marčenko-Pastur law we refer to [14] and [90].

In the case where K > 0, i.e. where spiked eigenvalues are present, even more
interesting phenomena occur. The number γ := 1 +

√
c functions as a critical threshold in

the sense that spikes below this threshold cannot be distinguished from the non-spiked
eigenvalues asymptotically. More specifically, supposing µi < γ, under certain regularity
conditions it can be shown that λi converges a.s. to the right end point of the support
of the Marčenko-Pastur distribution at a convergence rate of n−2/3. On the other hand,
if µi > γ, then λi has an a.s. limit equal to µi + cµi/(µi − 1) at a convergence rate of
n−1/2. In particular, this limit is outside the support of the Marčenko-Pastur distribution,
allowing the spike to be distinguished from the non-spiked eigenvalues.

Taking a closer inspection at the difference in convergence rates discussed above, it is
natural to postulate that besides tending to different limits, empirical eigenvalues could
exhibit different types of limiting distributions depending on the size of their population
counterparts in relation to the threshold. Indeed, for eigenvalue µi below the threshold,
it can be shown that after centering by the right end-point of the Marčenko-Pastur law
and scaling by n2/3, the empirical eigenvalue λi tends to the Tracy-Widom distribution.
On the other hand, for µi above the threshold, the estimator λi is instead asymptotically
Gaussian with the usual scaling of n1/2. This dichotomy of asymptotic behaviours of
estimated eigenvalues is known as the Baik/Ben Arous/Péché (BBP) phase transition,
named after the authors of the pioneering work [17].

Since [17], the phase transition phenomenon and related results were investigated in
various different settings; see [16, 36, 51, 92, 93] and the references therein. Both the
case above and below the transition threshold have attracted significant research from
probabilists, mathematicians, statisticians and mathematical physicists. Recent works
in the latter direction such as [15, 19, 52, 135, 165] manage to establish the CLT for
spiked eigenvalues of the covariance matrix under quite general settings. These theoretical
results are of great importance in the study of the asymptotic behaviours of the PCA. Our
current work fits under this area - we aim to establish the asymptotic normality for spiked
eigenvalues of the auto-covariance matrix.

The phase transition phenomenon immediate illustrates the striking differences between
high dimensional asymptotic theory and the traditional, fixed dimensional theory. In
the high dimensional setting, empirical eigenvalues are not consistent estimators of true
eigenvalues, and the bias as well as the asymptotic distribution of λi depends on whether
the true eigenvalue µi is above or below the phase transition threshold. In particular,
only eigenvalues above the threshold can be detected asymptotically, while the rest are
indistinguishable from each other. This has immediate implications for the estimation of
the number of factors, since only factors with strength above the phase transition threshold
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can be detected asymptotically.

4.1.3 Spiked Sample Auto-Covariance Matrices

To conclude the above introduction on spiked covariance matrices, we remark that the
asymptotic theory for the spectral structure of spiked covariance matrices is very well
developed. In contrast, the theory around spiked auto-covariance matrices (or more
precisely of the matrix Σ̂τ Σ̂>τ discussed above) is not yet well understood. Nevertheless,
due to its connection and importance in the analysis of high dimensional factor models
and time series, this topic has been gaining attention. Recent work including [26, 38] and
[110, 111, 161] are a first step toward a better and more systematic understanding of the
asymptotic properties of spiked auto-covariance matrices.

Mirroring the theory on spiked covariance matrices, the first step in the analysis is
to study the empirical distribution of sample eigenvalues. Towards this, the limiting
spectral distribution for Σ̂τ Σ̂>τ in the null case (K = 0 number of factors) was studied
recently [110] and [161] using the Stieltjes transform and moment methods respectively.
Results of a similar type were obtained in [38] based on the theory of non-commutative
probability. The phase transition phenomena and the limits of eigenvalues of Σ̂τ Σ̂>τ in a
spiked model were first established in the recent work [111]. The setting of [111] is based
on the factor model proposed by [104] but assumes that all spiked eigenvalues are finite
instead of diverging. In [111], the authors give a precise description of the asymptotic
property of the ratio λi/λi+1, which is used in [104] to estimate the number of factors
K. As a consequence of the developed theory, the authors in [111] are able to propose
a strongly consistent estimator for K, which is a sizable improvement upon the original
methodology and results of [104].

Based on the discussions above, the asymptotic properties of Σ̂τ Σ̂>τ studied in the
literature so far exhibit a certain resemblance to those of the spiked covariance matrix.
The actual form of the LSD and phase transition threshold obviously differ from those of
the covariance matrix, but there is a clear parallel in the type of behaviours observed in
large dimensional random matrices. It is therefore interesting, from both a theoretical and
a practical perspective, to identify what other important features are common between
the covariance and the auto-covariance matrix, as well as what features are unique to the
auto-covariance matrix. On the other hand, due to the presence of temporal correlation
in the data and the more complex structure of the matrix Σ̂τ Σ̂>τ , these results are much
harder to establish in the case of the auto-covariance matrix and new techniques need to
be invented.

In our work we focus on one such feature - the asymptotic normality of spiked eigen-
values whose population counterparts are above the transition threshold. The asymptotic
distributions of the eigenvalues of covariance matrices proved to be of great importance
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in the asymptotic theory of the PCA, as shown by [52, 165]. Analogously, the theory of
asymptotic distributions for eigenvalues of spiked auto-covariance matrices could provide
a powerful tool in studying the asymptotics of high dimensional factor models. To the
best extent of our knowledge however, identifying the limiting distribution of leading
eigenvalues in the case of the auto-covariance matrix remains an open topic. Based on
what is known for the covariance matrix and the work of [111], it is reasonable to suspect
that the leading eigenvalues are asymptotically Gaussian with the usual scaling of T 1/2.
Indeed, in our current work we will establish this result under quite general conditions.

4.1.4 Overview of our work

We now give an overview of our settings and the contributions of our work. Our setting
is based on the factor model studied in [104, 111] and we will too be working in a high-
dimensional setting where p and T diverge at the same time such that p/T → c ∈ (0,∞).
The main object of our study is the symmetrized lag-τ sample auto-covariance matrix
Σ̂τ Σ̂>τ and its eigenvalues λi, in particular, we will establish the asymptotic normality of
λi under appropriate conditions.

Similar to [104] and [105] we assume that the factor strength {µi}i≤K diverges as
T → ∞. We remark that most results on spiked sample covariance matrices assume
that the spikes are bounded as p, T → ∞. On the other hand, in the context of factor
modelling, it is perhaps more natural to consider situations where the factor strengths
are divergent, as seen in the recent literature [105, 104, 11]. The authors in [104, 105]
assumes that each µi diverges at a specified rate of p1−δ where δ ∈ [0, 1] and argue that
this choice is in fact quite natural. We relax this assumption and allow µi to diverge at any
arbitrary rate instead of as a specified function of p, T . As a consequence our results are
applicable to a much wider range of cases where the factors are not as strong. Additionally,
we also allow the number of factors K to be possibly diverging as T →∞. This type of
assumption has been made in the literature for covariance matrices in [52, 136] but has
not been incorporated into the factor model setting. Lastly, we consider both the standard
case where the lag τ in the auto-covariance matrix Σ̂τ Σ̂>τ is a fixed constant, as well as
the new asymptotic regime where τ is diverging as well. It will be shown that in these two
cases, the scalings for the central limit theorems are not of the same order. Consequently,
if one is interested in the eigenvalues of Σ̂τ Σ̂>τ for a moderately large τ , the central limit
theorem in the regime where k →∞ might provide a more accurate result.

A major source of difficulty in our setting is that we do not impose any restriction on the
rate of divergence of the factor strength µi. We argue that strong assumptions on the speed
of µi such as ones used in [104, 105] essentially reduce the analysis of a high-dimensional
factor model to the study of just the factors, which is a low dimensional problem (see
the remarks below Theorem 4.2). While this aligns with the goals of dimension reduction
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in [104, 105], it obfuscates some interesting features otherwise seen in high-dimensional
models. Without such assumptions, the idiosyncratic noise is no longer negligible and we
obtain a clearer picture of how the high-dimensional noise accumulates and affects the
location of eigenvalues. More specifically, even though λi is close to µi asymptotically, it
will be shown that the speed of convergence rate of λi − µi (after appropriate scaling) is
in general slower than T−1/2, i.e. we will not be able to obtain a CLT using µi as the
centering term. What happens here is that the bias of λi decays too slowly for the purpose
of obtaining a CLT and a more accurate centering is need. In our work this centering
term will be defined implicitly as the solution to an equation. The phenomenon described
above is more common in the random matrix literature where there is less emphasis on
reducing high-dimensional models to low dimensional ones, see for instance [52].

Lastly, instead of working with the auto-covariance matrix Σ̂τ , we deal only with the
symmetrized version Σ̂τ Σ̂>τ in our analysis. The matrix Σ̂τ Σ̂>τ does not factor into a matrix
with independent entries like the covariance matrix Σ̂ does. Consequently the central ideas
of works like [15] and [52] are not applicable in our case and we need a new approach
to establish asymptotic normality. The approach we develop here could potentially be
applied to other types of products of covariance type matrices.

The rest of the chapter is organized as follows. Section 4.2 introduces the setting and
assumptions of our work, sets up the relevant notations and presents some preliminary
results. The results of our work are given in Section 4.3. In Section 4.3.1 we investigate the
asymptotic location of empirical eigenvalues and construct an accurate centering for these
eigenvalues. The central limit theorem for the empirical eigenvalues, which is the main
result of our work, is given in Section 4.3.2. The proof of the CLT is quite involved and
is thus divided into a series of intermediate results collected in Section 4.4 and technical
lemmas collected in Section 4.5. We give a summary of the strategy of the proof in Section
4.3.2 and explain how the intermediate results are used to obtain the CLT.

4.2 The Setting

As discussed in the introduction, in this work we study a high-dimensional time series
arising from a factor model considered in [104, 105, 111]. Suppose (yt)t=1,...,T ⊆ RK+p is a
K + p dimensional stationary time series consisting of K factors, observed over a time
period of length T . Here the choice of writing K + p for the dimension of the time series
is purely for notational convenience in our exposition and proofs. Then we may write

yt = Lft + εt, t = 1, . . . , T, (4.2.1)

where the K × T matrix (ft)t=1,...,T contains K independent factors, each assumed to be a
stationary time series. The matrix L is the (p+K)×K factor loading matrix and εt is a
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K + p dimensional idiosyncratic noise time series to be specified below.
It is well-known that the factor model (4.2.1) is not identifiable without additional

constraints on L and ft. There are multiple ways to impose such constraints, see Table 1 of
[11] for a discussion and comparisons between different constraints found in the literature.
The constraint we chose to work with, mainly for notational convenience, is to assume
L>L is equal to a diagonal matrix and all factors are standardized, i.e. E[fit] = 0 and
E[f 2

it] = 1 for all i = 1, . . . , K and t = 1, . . . , T .
We work in a high-dimensional setting where p and T diverge simultaneously and

the ratio p/T tends to a constant c > 0 as T → ∞. We allow the number of factors K
to diverge as T → ∞, but impose conditions on the speed of its divergence so that the
number of factors remains small in comparison to the dimension of the entire observation
(see Assumption 4.2 and Assumption 4.3).

Each factor (fit)t is assumed to be a stationary time series of the form

fit =
∞∑
l=0

ϕilzi,t−l, i = 1, . . . , K, t = 1, . . . , T, (4.2.2)

where the random variables (zit) are i.i.d. with zero mean, unit variance and finite (4+ε)-th
moment for some small ε > 0. Under this setup, the constraint Var(fit) = 1 mentioned
above directly translates to the constraint ‖ϕi‖`2 = 1 where ϕi := (ϕil)l is the vector
of coefficients for the i-th factor and ‖·‖`2 is the `2 norm on sequence spaces. Write
γi(τ) := E[fi,1fi,τ+1] for the population lag-τ auto-covariance of the i-th factor time series
fi. Then clearly γi(τ) can be written as

γi(τ) := E[fi,1fi,τ+1] =
∞∑
l=0

ϕi,lϕi,l+τ . (4.2.3)

In general, the loading matrix L is important in the analysis of the factor model as
it appears in the (population) covariance and auto-covariance matrices of yt. However,
the recent work [111] makes an important observation that under additional Gaussian
assumptions on the error time series εt, the factor model can be reduced to a canonical form
where L =

(
IK 0K×p

)>
. The authors of [111] are able to obtain explicit results on the

phase transition of leading eigenvalues under this assumption. As previously mentioned,
for notational convenience we employ a slightly different normalization for the matrix L.
Nevertheless, we argue that under Gaussian assumptions on the error εt, the factor model
can be reduced to a canonical form where L takes the form

L =
diag(σ1, . . . , σK)

0p×K

,
where (σ1, . . . , σK) is a sequence of positive real numbers. For the completeness of our
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exposition, we give a detailed explanation of this simplification.
Recalling our constraint on L>L being a diagonal matrix, without loss of generality we

can assume L>L := diag(σ2
1, . . . , σ

2
K) where (σ1, . . . , σK) is a sequence of positive numbers.

Clearly the (p + K) × K matrix L := L diag(σ−1
1 , . . . , σ−1

K ) satisfies L>L = IK , thus
there exists a (p+K)× p matrix L with orthogonal columns such that L̃ := (L,L) is an
orthogonal matrix. Recall from (4.2.1) that yt = Lft + εt. Define

zt := L̃>yt =
L>
L>

Lft + L̃>εt =
L>
L>

L diag(σ1, . . . , σK) ft + L̃>εt.

By definition we clearly have L>L = IK and L>L = 0p, therefore

zt = L̃>yt =
diag(σ1, . . . , σK)

0p×K

ft + L̃>εt. (4.2.4)

Note that zt is simply the original data yt subjected to an orthogonal transformation, in
particular, the sample auto-covariance matrix of (zt) contains the same information as
that of (yt). More precisely, define the sample auto-covariance matrices

Σy := 1
T

T−τ∑
t=1

yt+τy>t , Σz := 1
T

T−τ∑
t=1

zt+τz>t = L̃>ΣyL̃.

It is easy to see that the spectrum of ΣyΣ>y coincides with that of ΣzΣ>z . Indeed, we have

ΣzΣ>z = L̃>ΣyL̃ L̃>Σ>y L̃ = L̃>ΣyΣ>y L̃,

where L̃ is orthogonal so a conjugation by L̃ does not affect the spectrum ΣyΣ>y .
Recall that the main goal of our work is to establish the asymptotic distribution of

the leading eigenvalues of ΣyΣ>y . By the above arguments, it suffices to consider ΣzΣ>z
instead of ΣyΣ>y , that is, we may without any loss of generality assume that

yt =
diag(σ1, . . . , σK)

0p×K

ft + L̃>εt.

Finally, when εt is assumed to be standard Gaussian and hence unitarily invariant, the
transformed error L̃>εt is equal in distribution to εt. Under this assumption, we have

yt
dist.=

diag(σ1, . . . , σK)
0p×K

ft + εt (4.2.5)

and we may take this as the canonical form of the factor model 4.2.1. Motivated by these
observations, we will work under the assumption that εit iid∼ N(0, 1) for all i = 1, . . . , K,
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t = 1, . . . , T and start with the canonical form (4.2.5).

4.2.1 Assumptions

Observe that under the canonical representation (4.2.5), the sequence (σ1, . . . , σK) are in
fact the standard deviations of the factors. We adopt similar assumptions as in [104] and
assume that every σi →∞ as p→∞, i.e. the strength of factors in the model is much
stronger than that of the noise. In [104] it is assumed that all σi diverge at the specific
rate p1−δ where δ ∈ [0, 1] is fixed. We do not impose such strong assumptions and instead
allow σi to diverge at any rate, no matter how slow. The only restriction we impose is that
all factors are asymptotically equal in strength, i.e. there exists a constant C > 0 such
that σi/σj ≤ C for any i, j = 1, . . . , K and T > 0. As a result, our result is applicable to
a much wider range of situations where the factors are not as strong as required by [104].

Recall γi(τ) := E[fi,1fi,τ+1] from (4.2.3). Under the canonical form (4.2.5), the (popu-
lation) lag-τ auto-covariance function for each time series (yit)t can be written as

µi,τ := E[yi,tyi,t+τ ]2 = σ4
i γi(τ)2, i = 1, . . . , K, τ ≥ 0. (4.2.6)

For increased generality, we will consider two different types of asymptotic regimes on
µi,τ as T → ∞. In the first case we assume τ is a fixed integer for all T ; in the second
case we allow τ to vary with T and assume τ → ∞ as T → ∞. In the case where τ is
fixed, we will assume without any loss of generality that the sequence (µi,τ )i is arranged
in decreasing order. Furthermore, we assume that {µi,τ} is well separated, i.e. there exists
ε > 0 such that µi,τ/µi+1,τ > 1 + ε for all i and T . This assumption is standard (see e.g.
[52]) and ensures that the empirical eigenvalues are separated asymptotically.

In the case where τ is allowed to vary with T , it is too restrictive to assume that such
an ordering on µi,τ exists for all τ ≥ 0. For example, suppose that the first coordinate
(y1t)t has a large variance σ2

1 but a very rapidly decaying auto-covariance function γ1(·),
while (y2t)t has a smaller variance but a slow decaying auto-covariance function. Then we
can easily have µ1,1 > µ2,1 as well as µ1,τ < µ2,τ for a larger τ so the assumption µ1,τ > µ2,τ

for all τ is unrealistic. Instead, we will assume that the sequence (µi,τ )i is well separated
only asymptotically, i.e. we assume there exists T0 large enough and ε > 0 such that

µi,τ/µi+1,τ > 1 + ε, ∀T > T0, i = 1, . . . , K.

We will assume that each γi(τ) decays at the same speed asymptotically, i.e. γi(τ)/γj(τ) <
C1 for i, j = 1, . . . , K and some constant C1. This implies that the µi,τ ’s are of the same
order as well and a comparison between them is more reasonable.

For clarity and the convenience of the reader we summarize our settings into the
following sets of conditions which will be referred to in later parts of the paper.
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Assumption 4.1. a) p, T →∞ and p/T → c > 0.

b) σi →∞ and there exists C > 0 such that σi/σj < C for all i, j = 1, . . . , K.

c) (zit)1≤i≤K,1−L≤t≤T+1 is independent, identically distributed with E[zit] = 0, E[z2
it] = 1

and uniformly bounded 4 + ε moment for some ε > 0.

d) (εit)1≤i≤p+K,1≤t≤T+1 is i.i.d. standard Gaussian.

e) supi‖ϕi‖`1 <∞.

We note that (a) and (b) of Assumption 4.1 capture our asymptotic regime where p
diverges at the same rate as T and the strength of all factors diverge at comparable rates.
Moment conditions such as (c) of Assumption 4.1 are standard in the literature; see for
instance [18, 52, 110, 162, 163]. The normality assumption in (d) is solely for the purpose
of reducing the model to a canonical form, as discussed in the previous section. Finally,
condition (e) is very standard in the time series literature, see [43]; we list it here for ease
of reference. For instance, condition (e) is satisfied by any causal auto-regressive moving
average process written in the form (4.2.2).

The following two sets of assumptions encapsulate the two asymptotic schemes discussed
above. Most of our main results hold under either set of assumptions.

Assumption 4.2. a) τ is a fixed, non-negative integer

b) K = o(T 1/16) and K = o(σ2
1) as T →∞.

c) the sequence (µ1,τ , . . . , µK,τ ) is arranged in decreasing order and there exists ε > 0
such that µi,τ/µi+1,τ > 1 + ε for all i = 1, . . . , K − 1.

Assumption 4.3. a) τ ∈ N and τ →∞ as T →∞.

b) K = o(T 1/16γ1(τ)1/2) and K = o(σ2
1γ1(τ)3) as T →∞.

c) there exists C1 > 0 such that µi,τ/µj,τ ≤ C1 for all i, j = 1, . . . , K and τ ≥ 0.

d) there exists T0 large enough and some ε > 0 such that µi,τ/µi+1,τ > 1 + ε for all
i = 1, . . . , K − 1 and T > T0.

Assumption 4.2 describes the asymptotic regime where τ is a fixed integer and As-
sumption 4.3 allows τ to diverge along with T . We note that condition (b) of both of the
above set of assumptions is trivially satisfied when the number of factors K is assumed to
be finite. Under (b) of Assumption 4.1, condition (c) of Assumption 4.3 ensures that the
strengths of factors are comparable when τ →∞. Finally, (c) of Assumption 4.2 and (d)
of Assumption 4.3 are standard and ensure that the empirical eigenvalues are separated
from each other asymptotically, see for instance see e.g. [52].
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4.2.2 Notations and Preliminaries

In our exposition and proofs we will often encounter various resolvent matrices, which
capture the spectral information of the random matrices we are studying. Since we are
constantly dealing with many different matrices, assigning to each a different letter will
easily exhaust the alphabet. Instead, we adopt some non-standard notations for matrices
and sub-matrices. Write (aij) for a matrix where the (i, j)-th entry is equal to aij. For
such a matrix (aij), we will write

a[i:j],[k:l] :=


aik . . . ail
... . . . ...
ajk . . . ajl


for a specified sub-matrix. Similarly we will write ai,[j:k] and a[i:j],k for the column vectors
(aij, . . . , aik)> and (aik, . . . , ajk)> respectively.

First we introduce notations for some of the more important random matrices in our
study. We denote xit = σifit + εit, i = 1, . . . , K, t = 1, . . . , T and write

X0 := 1√
T

x[1:K],[1:T−τ ], Xτ := 1√
T

x[1:K],[τ+1:T ], (4.2.7)

E0 := 1√
T
ε[K+1:K+p],[1:T−τ ], Eτ := 1√

T
ε[K+1:K+p],[τ+1:T ],

for matrices containing the factors and noises in our model. We will also write

Y0 := 1√
T

y[1:p+K],[1:T−τ ], Yτ := 1√
T

y[1:p+K],[τ+1:T ], (4.2.8)

i.e. we have Y0 = (X>0 , E>0 )> and Yτ = (X>τ , E>τ )>. For an integer τ ≥ 0, the lag-τ sample
auto-covariance matrix of yt can then be written as

Σ̂τ := 1
T

T−τ∑
t=1

yt+τy>t =
Xτ

Eτ

X0

E0

> =
XτX

>
0 XτE

>
0

EτX
>
0 EτE

>
0

.
Next we introduce resolvent matrices which are central to the study of spectral properties

of random matrices. Most of our results rely on certain bilinear forms formed using the
resolvents. For a ∈ R outside of the spectrum of the matrix E>τ EτE>0 E0 write

R(a) := (IT−τ − a−1E>τ EτE
>
0 E0)−1 = a(a− E>τ EτE>0 E0)−1 (4.2.9)

for the (scaled) resolvent of E>τ EτE>0 E0 at a. The resolvent R(a) satisfies

R(a) = IT−τ + a−1R(a)E>τ EτE>0 E0, (4.2.10)
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which follows from rearranging R(a)(IT−τ − a−1E>τ EτE
>E) = IT−τ . Using the identity

A(λI −BA)−1 = (λI − AB)−1A (4.2.11)

we may also obtain the following identities

R(a)E>τ Eτ = E>τ EτR(a)>, E>0 E0R(a) = R(a)>E>0 E0. (4.2.12)

In our analysis we will constantly be dealing with certain quadratic forms involving
matrices X0, Xτ , E0, Eτ and the resolvent R(a). To simplify notations we will write

A(a) := 1√
a
X0R(a)X>τ , B(a) := 1

a
XτE

>
0 E0R(a)X>τ , (4.2.13)

Q(a) := IK − a−1XτE
>
0 E0R(a)X>τ , Q(a) := IK − a−1X0R(a)E>τ EτX>0 . (4.2.14)

For any a outside the spectrum of the matrix X0R(a)E>τ EτX>0 , the matrix Q(a) defined
above is invertible and similar to (4.2.10), we have

Q(a)−1 = IK + 1
a
Q(a)−1X0R(a)E>τ EτX>0 . (4.2.15)

For two sequences of positive numbers (an) and (bn), we write an . bn if there exists
a constant c > 0 such that an ≤ cbn. We write an � bn if an . bn and bn . an hold
simultaneously. A sequence of events (Fn) is said to hold with high probability if there
exist constants c, C > 0 such that P(F c

n) ≤ Cn−c. The operator and Hilbert-Schmidt
norms of a matrix M are denoted by ‖M‖ and ‖M‖F respectively, and we write ‖(an)‖`p
for the `p norm of a sequence (an). We will write (ei)ni=1 for the standard orthonormal
basis of Euclidean space Rn, often without specifying the dimension n.

We will use the usual op and Op notations for convergence in probability and stochastic
compactness. For p ≥ 1, we will write oLp and OLp for convergence to zero and boundedness
in Lp, i.e. for a sequence of random variables (Xn)n and real numbers (an), we write
Xn = OLp(an) if E|Xn/an|p = O(1) and Xn = oLp(an) if E|Xn/an|p = o(1). For matrices
(An) we will write An = Op,‖·‖(an) if ‖An‖ = Op(an).

Throughout the paper we will make use of certain events of high probability. Define

B0 :=
{
‖E>0 E0‖+ ‖E>τ Eτ‖ ≤ 4

(
1 + p

T

)}
,

B1 :=
{
‖X>0 X0‖+ ‖X>τ Xτ‖ ≤ 2

K∑
i=1

σ2
i

}
(4.2.16)

and B2 := B1 ∩ B2. We first state a preliminary result showing that these events happen
with high probability as T →∞. The proof will be given in Section 4.5.

Lemma 4.1. Under Assumption 4.1 and either Assumption 4.2 or 4.3, we have
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a) B0 holds with probability P(B0) = 1− o(T−l) for any l ∈ N as T →∞.

b) For k = 1, 2, Bk holds with probability P(Bk) = 1−O(KT−1) as T →∞.

As an immediate consequence of this lemma and (b) of Assumption 4.1, we have

‖E>0 E0‖+ ‖E>τ Eτ‖ = Op(1), ‖X>0 X0‖+ ‖X>τ Xτ‖ = Op(Kσ2
1). (4.2.17)

Furthermore, we observe that under the event B0, for any sequence (aT )T such that
aT → ∞, the matrix IT−τ − a−1

T E>τ EτE
>
0 E0 is eventually invertible. Moreover, we

note that under B0 we have ‖a−1
T E>τ EτE

>
0 E01B0‖ ≤ 4a−1

T (1 + p/T ) = O(a−1
T ), which is

a deterministic upper-bound. By the reverse triangle inequality we immediately have
‖IT−τ − a−1

T E>τ EτE
>
0 E01B0‖ ≥ 1−O(a−1

T ) and therefore

‖R(aT )1B0‖ = 1 + o(1), ‖R(aT )‖ = 1 + op(1). (4.2.18)

Similarly, under the event B2 the matrix Q(aT ) is eventually invertible as aT →∞ and

‖Q(aT )−11B2‖ = 1 + o(1), ‖Q(aT )−1‖ = 1 + op(1). (4.2.19)

Finally, let Fp be the σ-algebra generated by the noise time series (εt), i.e.

Fp := σ
(
{εit, i = K + 1, . . . , K + p, t = 1, . . . , T}

)
. (4.2.20)

We will often take expectations conditional on the noise series, in which case we shall write

E[ · ] := E[ · |Fp]. (4.2.21)

4.3 Main results

Write λn,τ for the n-th largest eigenvalue of the symmetrized lag-τ sample auto-covariance
matrix Σ̂τ Σ̂>τ . The main goal of our work is to establish the asymptotic normality of λn,τ
for n ≤ K after appropriate centering and scaling. We will first in Section 4.3.1 establish
the asymptotic location of the eigenvalue λn,τ as well as identify the correct centering for
λn,τ in order to obtain a central limit theorem. The central limit theorem itself, which is
the main result of our work, is stated in Theorem 4.5 of Section 4.3.2.

Due to its length, the proof of Theorem 4.5 will be divided into a series of propositions
and technical lemmas, which are collected in Section 4.4 and Section 4.5. For the
convenience of the reader, we will summarize the strategy of the proof of Theorem
4.5 and explain how the intermediate results are used at the end of Section 4.3.2.
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4.3.1 Location of Spiked Eigenvalues

We first show that the spiked eigenvalue λn,τ is close to its population counterpart µn,τ
asymptotically. This will in particular give the asymptotic order of λn,τ as T →∞.

Theorem 4.2. Under Assumption 4.1 and either Assumption 4.2 or 4.3, we have

λn,τ
µn,τ
− 1 = Op

(
1

γn(τ)
√
T

)
+Op

(
K

σ2
nγn(τ)2

)
, n = 1, . . . , K, (4.3.1)

where µn,τ and γn(τ) are defined in (4.2.6) and (4.2.3) respectively.

Proof. We shall write Λn(A) for the n-th largest eigenvalue of a matrix A. Note that the
non-zero eigenvalues of Σ̂τ Σ̂>τ = YτY

>
0 Y0Y

>
τ coincide with those of the matrix Y >0 Y0Y

>
τ Yτ =

(X>0 X0 +E>0 E0)(X>τ Xτ +E>τ Eτ ). We first show that the eigenvalue Λn(Σ̂τ Σ̂>τ ) is close to
Λn(X>0 X0X

>
τ Xτ ). By Weyl’s inequality (Lemma B.1 of [71]) we have

∣∣∣Λn(Σ̂τ Σ̂>τ )− Λn(X>0 X0X
>
τ Xτ )

∣∣∣ =
∣∣∣Λn(Y >0 Y0Y

>
τ Yτ )− Λn(X>0 X0X

>
τ Xτ )

∣∣∣
≤ ‖X>0 X0E

>
τ Eτ + E>0 E0X

>
τ Xτ + E>0 E0E

>
τ Eτ‖ = Op(Kσ2

1),

where the last equality follows from (4.2.17). Dividing by µn,τ = σ4
nγn(τ)2 we have

Λn(Σ̂τ Σ̂>τ )− Λn(XτX
>
0 X0X

>
τ )

σ4
nγn(τ)2 = Op

(
Kσ2

1
σ4
nγn(τ)2

)
. (4.3.2)

Next we compute Λn(XτX
>
0 X0X

>
τ ) in more detail. It is shown in Lemma 4.14 that

(X0X
>
τ )ij = E[(X0X

>
τ )ij] +OL2(σiσjT−1/2), (4.3.3)

where from equation (4.5.6) we know E[(X0X
>
τ )ij] = 1i=jσ2

i γi(τ). Therefore for any i 6= j,
the off-diagonal elements of XτX

>
0 X0X

>
τ can be written as

(XτX
>
0 X0X

>
τ )ij =

K∑
k=1

(X0X
>
τ )ki(X0X

>
τ )kj

= (X0X
>
τ )ii(X0X

>
τ )ij + (X0X

>
τ )ji(X0X

>
τ )jj +

∑
k 6=i,j

(X0X
>
τ )ki(X0X

>
τ )kj

=
(
σ2
i γi(τ) + σ2

jγj(τ)
)
OL2(σiσjT−1/2) +OL1(σ4

1KT
−1)

= OL2

(
σ4

1γ1(τ)T−1/2
)

+OL1

(
σ4

1γ1(τ)√
T

K

γ1(τ)
√
T

)
= OL1

(
σ4

1γ1(τ)√
T

)
, (4.3.4)

where the equality in the second last line follows from (4.3.3) and the last line follows from
Assumption 4.2 and 4.3. Similarly, the diagonal elements of XτX

>
0 X0X

>
τ satisfy
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(XτX
>
0 X0X

>
τ )ii = (X0X

>
τ )2

ii +
∑
k 6=i

(X0X
>
τ )2

ki

=
(
σ2
i γi(τ) +OL2(σ2

i T
−1/2)

)2
+OL1(KT−1) = µi,τ +OL1

(
σ4

1γ1(τ)√
T

)
. (4.3.5)

Using (4.3.4), (4.3.5) and taking a union bound over i, j we finally obtain

‖XτX
>
0 X0X

>
τ − diag(µi,τ )‖∞ = Op

(
K2σ4

1γ1(τ)√
T

)
(4.3.6)

or equivalently we may write

XτX
>
0 X0X

>
τ diag(µ−1

i,τ ) = IK +Op,‖·‖∞

(
K2

√
Tγ1(τ)

)
. (4.3.7)

Let ω1, . . . , ωK be the eigenvalues of XτX
>
0 X0X

>
τ arranged in decreasing order. Let ω be

one of these eigenvalues. Define the function

G(ω) :=
(
XτX

>
0 X0X

>
τ − ωIK

)
diag(µ−1

i,τ ),

then clearly we have 0 = |XτX
>
0 X0X

>
τ − ωIK | = |G(ω)|. From (4.3.7) we get

0 = |G(ω)| =
∣∣∣∣∣IK +Op,‖·‖∞

(
K2

√
Tγ1(τ)

)
− ωdiag

(
µ−1
i,τ

)∣∣∣∣∣
=
∣∣∣∣∣IK − diag(ωµ−1

i ) +Op,‖·‖∞

(
K2

√
Tγ1(τ)

)∣∣∣∣∣,
and using Leibniz’s formula analogous to the derivation of (4.4.42) we obtain

0 = |G(ω)| =
K∏
i=1

G(ω)ii +Op

(
K6

γ1(τ)2T

)
. (4.3.8)

Since ∏iG(ω)ii = op(1), there is at least one i ∈ {1, . . . , K} such that G(ω)ii = op(1).
Now we show that in fact there can be only one such i. For any i 6= j, we have

G(ω)ii −G(ω)jj = ω(µ−1
i − µ−1

j ) ≥ ωµ−1
i (1 + ε) (4.3.9)

for some ε > 0, where the last inequality follows from either Assumption 4.2 or 4.3. We
first observe that ωµ−1

i 6= op(1) for any i as T →∞. Indeed, suppose for a contradiction
that ωµ−1

i = op(1), since µi � µj for any i = j, we easily see that G(ω)ii = 1 + op(1)
for every i, which makes (4.3.8) impossible. Substituting back into (4.3.9) we see that
G(ω)ii−G(ω)jj & 1+ε for any i 6= j. Clearly, if G(ω)ii = op(1), then G(ω)jj & 1+ε+op(1)
for any j 6= i, i.e. there can be only one i such that G(ω)ii = op(1).

Therefore, for (4.3.8) to hold, there must exist some i ∈ {1, . . . , K} such that
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0 = G(ω)ii +Op

(
K6

γ1(τ)2T

)
.

It then follows that the K solutions to |G(ω)| = 0 satisfy the system of equations

0 = G(ω)ii +Op

(
K6

γ1(τ)2T

)
, i = 1, . . . , K.

Using (4.3.5), we see that each G(ω)ii satisfies

G(ω)ii = (XτX
>
0 X0X

>
τ )ii − ω

µi,τ
= 1− ω

µi,τ
+Op

(
1√

Tγ1(τ)

)
,

which implies that the K solutions to |G(ω)| = 0 satisfy the system of equations

ω

µi,τ
− 1 = Op

(
1

γ1(τ)
√
T

)
, i = 1, . . . , K. (4.3.10)

Note that by definition there are K possible choices of ω, which are the ordered eigenvalues
of XτX

>
0 X0X

>
τ . Since {µi,τ} are ordered under Assumption 4.2 or asymptotically ordered

under Assumption 4.3, we can easily conclude that

Λi(XτX
>
0 X0X

>
τ )

µi,τ
− 1 = Op

(
1

γ1(τ)
√
T

)
.

Combining this result with (4.3.2) we get

Λi(Σ̂τ Σ̂>τ )
µi,τ

− 1 = Op

(
1√

Tγ1(τ)
+ K

σ2
i γi(τ)2

)

which completes the proof.

Remark 4.3. A closer inspection of the convergence rate in Theorem 4.2 shows that µn,τ
is not the appropriate centering constant for λn,τ for the purpose of obtaining a CLT.
The first term on the right hand side of (4.3.1) can indeed be shown to be asymptotically
normal at a scaling of γn(τ)

√
T , which is the same scaling as in our main result Theorem

4.5. However, the second term in (4.3.1) is in general not negligible after scaling by
γn(τ)

√
T since we do not impose assumptions on the rate of divergence of µn,τ .

If we were to impose stronger assumptions on the rate of µn,τ , for example assuming
the rate µn,τ � p1−δ required in [104], then the second term in (4.3.1) indeed becomes
negligible. Under such assumptions the K leading eigenvalues of the (p+K)× (p+K)
dimensional matrix Σ̂τ Σ̂>τ are extremely close to the eigenvalues of the K × K matrix
XτX

>
0 X0X

>
τ , as can be deduced from the proof of Theorem 4.2. The analysis of the

matrix Σ̂τ Σ̂>τ reduces to the analysis of the much simpler matrix XτX
>
0 X0X

>
τ , which is

essentially a low dimensional problem. In this case, the derivation of a CLT is much easier
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and does not require any techniques and results from random matrix theory.

As can be seen from the proof of Theorem 4.2, the second term in (4.3.1) represents
the bias incurred when estimating µn,τ using λn,τ . In order to obtain a CLT, we need a
more accurate centering term for λn,τ to remove or reduce this bias. This centering term,
which we write as θn,τ , will be defined implicitly as the unique solution to the equation

1 = E[B(θn,τ )nn1B0 ]− E[A(θn,τ )nn1B0 ]2E[Q(θn,τ )−1
nn1B2 ], (4.3.11)

where the matrices B(a), A(a) and Q(a) are defined in (4.2.13) and (4.2.14) for a ∈ R.
To make this definition rigorous, we start with Proposition 4.4 which shows that (4.3.11)

indeed has a unique solution for T large enough. Furthermore, this solution is shown to
exist in some small interval containing µn,τ = σ4

nγn(τ)2. This in particular establishes the
asymptotic order of θn,τ .

Proposition 4.4. Suppose Assumption 4.1 and either Assumption 4.2 or Assumption 4.3
hold. Fix n ∈ {1, . . . , K} and let ε ∈ (0, 1) be an arbitrary constant not related to p, T .
Then there exists T0 large enough such that for T > T0, the function

a 7→ g(a) = 1− E[B(a)nn1B0 ]− E[A(a)nn1B0 ]2E[Q(a)−1
nn1B2 ]

has a unique root in the interval

σ4
nγn(τ)2[1− ε, 1 + ε]. (4.3.12)

Proof. We first consider the invertibility of the matrix Q(a) defined in (4.2.14). Recall
the matrix R(a) from (4.2.9) and the event B2 from (4.2.16). Since a � σ4

nγn(τ)2 → ∞
and ‖E>τ EτE>0 E01B2‖ is bounded by definition of B2, the matrix I − a−1E>τ EτE

>
0 E0 is

invertible under B2 and we have ‖R(a)‖1B2 = O(1). Therefore ‖a−1X0RaE
>
τ EτX

>
0 ‖1B2 =

O(σ−2
n γn(τ)−2) = o(1) and thus Q(a) is invertible under B2 for T large enough.
It will be shown in Lemma 4.15 that

E[A(a)nn1B0 ] = σ2
nγn(τ)√
a

+ o(1), E[B(a)nn1B0 ] = o(1), E[Q(a)−1
nn1B2 ] = 1 + o(1).

From (4.3.12) we have a−1/2σ2
nγn(τ) � O(1), using which we can obtain

g(a) = 1− E[A(a)1B0 ]2nnE[Q(a)−1
nn1B2 ] + o(1) = 1− σ4

nγn(τ)2

a
+ o(1).

Substituting the endpoints of the interval (4.3.12) into the function g, we have

g((1± ε)σ4
nγn(τ)2) = 1− 1

1± ε + o(1) = ∓ε
1± ε + o(1).
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For T large enough, the signs of g differ at the two endpoints of the interval (4.3.12) and
therefore g has a root inside the interval. It is not difficult to observe that g is a monotone
function in a for T large enough which implies the root is unique.

4.3.2 Central Limit Theorem for Spiked Eigenvalues

The constant θn,τ defined via equation (4.3.11) turns out to be the appropriate centering
constant for λn,τ , in the sense that the second term in (4.3.1) becomes negligible after
centering by θn,τ . We are ready to state the main result of our work. Define

δn,τ := λn,τ − θn,τ
θn,τ

= λn,τ
θn,τ
− 1. (4.3.13)

Theorem 4.5. Under Assumption 4.1 and either Assumption 4.2 or 4.3, we have

√
T
γn(τ)
2vn,τ

δn,τ ⇒ N(0, 1),

where vn,τ is defined by

v2
i,τ := 1

T
Var(f>i0 fiτ ) =

∑
|k|<T−τ

(
1− |k|

T − τ

)
uk, (4.3.14)

and (uk)|k|<T−τ is a sequence of constants given by

uk := γi(k)2 + γi(k + τ)γi(k − τ)+(E[z4
11]− 3)

∞∑
l=0

ϕi,lϕi,l+τϕi,l+kϕi,l+k+τ .

Remark 4.6. We remark that for generality as well as tidiness of presentation we choose
to formulate Theorem 4.5 in a form that holds under either one of Assumption 4.2 and
4.3. A closer inspection shows that the two cases are quite different. In the case where
τ →∞, we observe that γn(τ)→ 0 while the term v2

i,τ defined by (4.3.14) can easily be
shown to be bounded away from zero. This implies that the scaling of CLT in the two
cases are not of the same order. In the case where τ is fixed, the variance 4vn,τγn(τ)−2 of√
Tδn,τ is bounded both from above and away from zero from below. On the other hand,

when τ →∞, the variance of
√
Tδn,τ tends to infinity at a speed of γn(τ)−1.

This result might seem surprising since δn,τ = (λn,τ − θn,τ )/θn,τ is already normalized
in an obvious way so one might expect δn,τ to be of order T−1/2. One might be tempted
to draw the conclusion that λn,τ is less accurate an estimator of θn,τ for larger values of
τ , since the variance of δn,τ increases with τ . However, the opposite is true here. Since
θn,τ � σ4

nγn(τ)2 by Proposition 4.4, this implies that in fact λn,τ−θn,τ = Op(σ4
nγn(τ)T−1/2),

which is faster than the rate λn,τ − δn,τ = Op(σ4
nT
−1/2) obtained in the case where τ is

fixed. In practical situations where we deal with the auto-covariance matrix with a larger
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τ , the CLT under Assumption 4.3 provides a much more accurate convergence speed and
asymptotic variance than using fixed τ results.

To establish our main result Theorem 4.5, we need a collection of preliminary results
in Propositions 4.7-4.10 and technical Lemmas 4.12-4.18. Due to the length of the proofs,
we provide a summary of the key ideas involved. Before we proceed, we make some
simplifications to commonly used notations.

Throughout the rest of the work, we will without loss of generality deal with the n-th
largest eigenvalue λn,τ of Σ̂τ Σ̂>τ for a chosen n ∈ {1, . . . , K}. To avoid using too many
layers of subscripts, we will routinely suppress the subscripts n, τ and write λ := λn,τ .
Recall the scaled resolvent R(a) of the matrix E>τ EτE>0 E0 evaluated at a, as defined in
(4.2.9). When we evaluate R(·) at the values λn,τ and θn,τ , we will simply write Rλ := Rλn,τ

and R := Rθn,τ . Similarly, we will write Qλ, Qλ, Q and Q for Qλn,τ , Qλn,τ , Qθn,τ and Qθn,τ

respectively. Using these notations we define the matrix M := (Mij)ij by

M := IK −
1
θ
XτE

>
0 E0RX

>
τ −

1
θ
XτR

>X>0 Q
−1X0RX

>
τ , (4.3.15)

which will turn out to be the central object of our study.
The initial step in our analysis is to derive an expression for the eigenvalue λ and the

quantity δ defined in (4.3.13). This is necessary because the eigenvalue λ of the matrix
Σ̂τ Σ̂>τ in general depends on its entries in complicated and non-linear ways. We take an
approach commonly seen in the random matrix literature (e.g. [15, 52, 111]) and express δ
as the solution to an equation involving the determinant of certain random matrices. This
is established in Proposition 4.7 in which we express δ as the solution to the equation

det
(
M + δ

θ
XτX

>
0 X0X

>
τ + δop,‖·‖(1)

)
= 0. (4.3.16)

The main idea is then to apply Leibniz’s formula to compute this determinant. Doing so
will express δ as a polynomial function of the entries of the matrices M and θ−1XτX

>
0 X0X

>
τ

plus many higher order terms. After controlling the terms in this polynomial, it can
be shown that the asymptotic normality of the ratio δn,τ directly originates from the
asymptotic normality of the corresponding entry Mnn. Specifically, as shown in the proof
of Theorem 4.5, to establish the CLT, it suffices to show

√
T

Mnn

2γn(τ)vn,τ
⇒ N(0, 1), Mii = 1 + op(1), ∀i 6= n,

establish a uniform bound of sufficient sharpness on the off-diagonals of M , and identify
the limits in probability of the entries of θ−1XτX

>
0 X0X

>
τ . From this, it is clear that M and

hence the resolvents R and Q−1 appearing in the definition of M are the central objects of
our analysis. To deal with the expression (4.3.15), we first construct an approximation to
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M in Proposition 4.8 that preserves its asymptotic distribution.
We now discuss why this approximation is constructed in a seemingly unusual way.

Observe that since θ diverges, the resolvents R and Q−1 are very close to identity matrices
for large T , a fact used many times in our proofs. However one cannot simply replace them
by identities to simplify (4.3.15). Indeed, it is easy to show that R− IT−τ = Op,‖·‖(θ−1),
which converges to zero but not fast enough for obtaining a CLT after scaling by

√
T .

This is because we allow θ to diverge at any rate and not as a specified function of T .
It can be shown however that this approximation error of order θ−1 appears only in the

mean of the asymptotic distribution, see for instance (4.4.33). That is, we can use identity
matrices to approximate R and Q−1 in (4.8) as long as we include an appropriate centering
step to adjust the expectation of M before scaling by

√
T . This centering step for the

matrix M results in (4.3.11) from which the centering θn,τ for λn,τ is defined. Recall from
our discussion following the statement of Theorem 4.2 that θ is a more accurate centering
term for λ than µ is. From the discussion above, it can be seen that this is essentially due
to the fact that R and Q−1 are not close enough (in spectral norm) to identity matrices to
allow for the scaling of

√
T .

Instead of identity matrices, we therefore use more accurate approximations to R

and Q−1, which in our case turn out to be their expectations under certain events of
high probability. To show that these expectations are close enough to the resolvents
themselves, we establish the concentration of R around its expectation in Lemma 4.16,
the concentration of Q−1 around a certain conditional expectation in Lemma 4.17, and
estimates on the differences between conditional and unconditional expectations in 4.18.

Using these tools, we can show in Proposition 4.8 that after centering by a certain
conditional expectation (which is later replaced by an unconditional one using Lemma
4.18), the asymptotic distribution of M can be obtained from the asymptotic distribution
of the bilinear form X0RX

>
τ , up to adjustments in the expectations.

It therefore remains to establish the asymptotics of X0RX
>
τ . Using tools developed

in Lemma 4.12-4.15, we study the bilinear form X0RX
>
τ and establish its concentration

around a certain conditional expectation. Using these results we show in the proof of
Proposition 4.10 that the asymptotic normality for X0RX

>
τ follows from the asymptotic

normality of the much simpler auto-covariance matrix X0X
>
τ , again up to adjustments in

the expectations. The CLT for this matrix X0X
>
τ is established in Proposition 4.9. Finally

Proposition 4.10 gives the CLT for diagonals of the matrix M and required estimates for
the off-diagonals. The proof of Theorem 4.5 is then assembled from the above pieces.

To recapitulate, the quantity of interest δ is first shown to satisfy equation 4.7. Through
a series of approximations we establish the asymptotic normality of the diagonals of the
matrix M appearing in 4.7. The off-diagonals of M are bounded in probability and we
establish the limit in probability of the matrix XτX

>
0 X0X

>
τ appearing in 4.7. Leibniz’s

formula is then applied to compute the determinant in 4.7, and our main result 4.5 follows.
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4.4 Proofs

This section contains the statements and proofs of the four propositions described in
Section 4.3. The proof of our main result Theorem 4.5 is given at the end of this section.

We first give an expression for δ := δn,τ . Recall the matrix M from (4.3.15)

M := IK −
1
θ
XτE

>
0 E0RX

>
τ −

1
θ
XτR

>X>0 Q
−1X0RX

>
τ .

Proposition 4.7. Suppose Assumption 4.1 and either Assumption 4.2 or 4.3 hold. Then
the ratio δ is the solution to the following equation

det
(
M + δ

θ
XτX

>
0 X0X

>
τ + δop,‖·‖

(
1
))

= 0. (4.4.1)

Proof. Suppose λ is an eigenvalue of Σ̂τ Σ̂>τ , then
√
λ is a singular value of the matrix Σ̂τ ,

or equivalently an eigenvalue of the (2p+ 2K)× (2p+ 2K) matrix

 0 Σ̂τ

Σ̂>τ 0

 =


0 0 XτX

>
0 XτE

>
0

0 0 EτX
>
0 EτE

>
0

X0X
>
τ X0E

>
τ 0 0

E0X
>
τ E0E

>
τ 0 0

.

By definition the eigenvalue λ satisfies

0 =

∣∣∣∣∣∣
√λIK 0

0
√
λI>K

−
 0 Σ̂τ

Σ̂>τ 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣



√
λIK 0 −XτX

>
0 −XτE

>
0

0
√
λIp −EτX>0 −EτE>0

−X0X
>
τ −X0E

>
τ

√
λIK 0

−E0X
>
τ −E0E

>
τ 0

√
λIp



∣∣∣∣∣∣∣∣∣∣∣∣
,

which, after interchanging the columns and rows, becomes

0 =

∣∣∣∣∣∣∣∣∣∣∣∣



√
λIK −XτX

>
0 0 −XτE

>
0

−X0X
>
τ

√
λIK −X0E

>
τ 0

0 −EτX>0
√
λIp −EτE>0

−E0X
>
τ 0 −E0E

>
τ

√
λIp



∣∣∣∣∣∣∣∣∣∣∣∣
. (4.4.2)

From Theorem 4.2 we know that λ→∞ as T →∞. From Lemma 4.1 we recall that the
spectral norm of EτE>0 is bounded with probability tending to 1 as T →∞. Therefore
the bottom right sub-matrix

( √
λIp −EτE>0

−E0E>τ
√
λIp

)
is invertible with probability tending to 1.

Using the matrix identity
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A B

C D

−1

=
 (A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1)



we can compute the inverse of the submatrix
( √

λIp −EτE>0
−E0E>τ

√
λIp

)
and get

 √λIp −EτE>0
−EE>τ

√
λIp

−1

=


(√

λIp − 1√
λ
EτE

>
0 E0E

>
τ

)−1 1√
λ
EτE

>
0

(√
λIp − 1√

λ
E0E

>
τ EτE

>
0

)−1

1√
λ
E0E

>
τ

(√
λIp − 1√

λ
EτE

>
0 E0E

>
τ

)−1 (√
λIp − 1√

λ
E0E

>
τ EτE

>
0

)−1


=


√
λ
(
λIp − EτE>0 E0E

>
τ

)−1
EτE

>
0

(
λIp − E0E

>
τ EτE

>
0

)−1

E0E
>
τ

(
λIp − EτE>0 E0E

>
τ

)−1 √
λ
(
λIp − E0E

>
τ EτE

>
0

)−1

.
Observe that 0 α

β 0

A B

C D

 0 β>

α> 0

 =
αDα> αCβ>

βBα> βAβ>

.
Substituting the above computations back into (4.4.2) we have

0 =

∣∣∣∣∣
( √

λIK −XτX>0
−X0X>τ

√
λIK

)
−
(

0 −XτE>0
−X0E>τ 0

)( √
λIp −EτE>0

−E0E>τ
√
λIp

)−1(
0 −EτX>0

−E0X>τ 0

)∣∣∣∣∣
=

∣∣∣∣∣
( √

λIK −XτX>0
−X0X>τ

√
λIK

)
−

(
XτE>0

√
λ
(
λIp − E0E>τ EτE

>
0
)−1

E0X>τ XτE>0 E0E>τ
(
λIp − EτE>0 E0E>τ

)−1
EτX>0

X0E>τ EτE
>
0
(
λIp − E0E>τ EτE

>
0
)−1

E0X>τ X0E>τ
√
λ
(
λIp − EτE>0 E0E>τ

)−1
EτX>0

)∣∣∣∣∣
=

∣∣∣∣( √
λ(IK −XτE>0 (λIp − E0E>τ EτE

>
0 )−1E0X>τ ) −Xτ (IT−τ + E>0 E0E>τ (λIp − EτE>0 E0E>τ )−1Eτ )X>0

−X0(IT−τ + E>τ EτE
>
0 (λIp − E0E>τ EτE

>
0 )−1E0)X>τ

√
λ(IK −X0E>τ (λIp − EτE>0 E0E>τ )−1EτX>0 )

)∣∣∣∣,
=

∣∣∣∣( √
λ(IK −XτE>0 E0(λIT−τ − E>τ EτE>0 E0)−1X>τ ) −Xτ (IT−τ + E>0 E0E>τ Eτ (λIT−τ − E>0 E0E>τ Eτ )−1)X>0

−X0(IT−τ + (λIT−τ − E>τ EτE>0 E0)−1E>τ EτE
>
0 E0)X>τ

√
λ(IK −X0(λIT−τ − E>τ EτE>0 E0)−1E>τ EτX

>
0 )

)∣∣∣∣,
where the last equality holds by (4.2.11). Recalling the notations we introduced in Section
4.2 and identity (4.2.10), we obtain

0 =

∣∣∣∣∣∣
 √

λ Qλ −XτR
>
λX

>
0

−X0RλX
>
τ

√
λQλ

∣∣∣∣∣∣ =
∣∣∣Qλ − λ−1XτR

>
λX

>
0 Q

−1
λ X0RλX

>
τ

∣∣∣. (4.4.3)

Next, we center λ around the quantity θ defined in (4.3.11). Since λ and θ diverge,
they are outside of the spectrum of E>τ EτE>0 E0 with probability tending to 1. Then

1
λ
Rλ −

1
θ
R = (λIT−τ − E>τ EτE>0 E0)−1 − (θIT−τ − E>τ EτE>0 E0)−1

= (θ − λ)(λIT−τ − E>τ EτE>0 E0)−1(θIT−τ − E>τ EτE>0 E0)−1 = − δ
λ
RλR.

Substituting back into itself, we obtain
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1
λ
Rλ = 1

θ
R− δ

[
1
θ
R− δ

λ
RλR

]
R = 1

θ
R− δ

θ
R2 + δ2

λ
RλR

2. (4.4.4)

Using the bounds in (4.2.17) and (4.2.18) we have

R− IT−τ = 1
θ
E>τ EτE

>
0 E0R = Op,‖·‖(θ−1), R2 = IT−τ +Op,‖·‖(θ−1), (4.4.5)

where the second equation follows from expanding (R − I)2. By Theorem 4.2 we have
δ = op(1). Substituting back into (4.4.4) we get

1
λ
Rλ = 1

θ
R− δ

θ
R2 + δop,‖·‖(λ−1) = 1

θ
R− δ

θ
IT−τ + δop,‖·‖(λ−1). (4.4.6)

Using this we can get

Qλ −Q = (IK −XτE
>
0 E0λ

−1RλX
>
τ )− (IK −XτE

>
0 E0θ

−1RX>τ )

= XτE
>
0 E0(θ−1R− λ−1Rλ)X>τ = XτE

>
0 E0

[
δ

θ
IT−τ + δop,‖·‖(λ−1)

]
X>τ .

From (4.2.17) we recall that ‖Xτ‖2 = O(Kσ2
1). Using δ = op(1) again we get

Qλ = Q+ δ

θ
XτE

>
0 E0X

>
τ + δop,‖·‖(Kσ2

1λ
−1) = Q+ δop,‖·‖(1),

and similarly Qλ = Q+ δop,‖·‖(1). Finally, since ‖Q−1
λ ‖ = Op(1), we have

Q−1
λ −Q−1 = Q−1

λ (Q−Qλ)Q−1 = op,‖·‖(1). (4.4.7)

Next we consider the matrix X0RλX
>
τ appearing in (4.4.3). From (4.4.4) we have

√
θ

λ
X0RλX

>
τ = 1√

θ
X0RX

>
τ −

δ√
θ
X0R

2X>τ + δ2
√
θ

λ
X0RλR

2X>τ . (4.4.8)

For the second term on the right hand side of (4.4.8), using (4.4.5) and (4.2.17) we have

δ√
θ
X0R

2X>τ = δ√
θ
X0X

>
τ + δ√

θ
X0(R2 − I)X>τ

= δ√
θ
X0X

>
τ + δOp,‖·‖

(
Kσ2

1
θ3/2

)
= δ√

θ
X0X

>
τ + δop,‖·‖(1).

Similarly the last term in (4.4.8) satisfies δ2√θ
λ
X0RλR

2X>τ = δop,‖·‖(1). Therefore

√
θ

λ
X0RλX

>
τ = 1√

θ
X0RX

>
τ −

δ√
θ
X0X

>
τ + δop,‖·‖(1). (4.4.9)

To deal with the second term appearing in the determinant in (4.4.3), we first make
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the following computations. Using (4.4.8)-(4.4.9) as well as (4.4.7) we have

θ

λ2XτR
>
λX

>
0 Q

−1
λ X0RλX

>
τ =

( 1√
θ
XτR

>X>0 −
δ√
θ
XτX

>
0 + δop,‖·‖(1)

)
×
(
Q−1 + δop,‖·‖(1)

)( 1√
θ
X0RX

>
τ −

δ√
θ
X0X

>
τ + δop,‖·‖(1)

)
=
( 1√

θ
XτR

>X>0 −
δ√
θ
XτX

>
0

)
Q−1

( 1√
θ
X0RX

>
τ −

δ√
θ
X0X

>
τ

)
+ δop,‖·‖(1).

Expanding the expression above and using (4.4.8)-(4.4.9) again we obtain

θ

λ2XτR
>
λX

>
0 Q

−1
λ X0RλX

>
τ = 1

θ
XτR

>X>0 Q
−1X0RX

>
τ

− δ

θ

(
XτR

>X>0 Q
−1X0X

>
τ +XτX

>
0 Q

−1X0RX
>
τ

)
+ δop,‖·‖(1)

= 1
θ
XτR

>X>0 Q
−1X0RX

>
τ −

2δ
θ
XτX

>
0 Q

−1X0X
>
τ + δop,‖·‖(1)

Finally, recalling λ/θ = 1 + δ, we can conclude

1
λ
XτR

>
λX

>
0 Q

−1
λ X0RλX

>
τ = (1 + δ) θ

λ2X
>
τ R

>
λX

>
0 Q

−1
λ X0RλX

>
τ

= 1
θ
XτR

>X>0 Q
−1X0RX

>
τ −

2δ
θ
XτX

>
0 Q

−1X0X
>
τ

+ δ

(
1
θ
XτR

>X>0 Q
−1X0RX

>
τ −

2δ
θ
XτX

>
0 Q

−1X0X
>
τ

)
+ δop,‖·‖(1)

= 1
θ
XτR

>X>0 Q
−1X0RX

>
τ −

δ

θ
XτX

>
0 X0X

>
τ + δop,‖·‖(1),

where in the last line we have used (4.4.5)-(4.4.9) again. To conclude, we have shown

Qλ = IK −
1
θ
XτE

>
0 E0RX

>
τ + δop,‖·‖(1),

for the first term in the right hand side of (4.4.3) and

1
λ
XτR

>
λX

>
0 Q

−1
λ X0RλX

>
τ = 1

θ
XτR

>X>0 Q
−1X0RX

>
τ −

δ

θ
XτX

>
0 X0X

>
τ + δop,‖·‖(1)

for the second term. The claim then follows.

We now work towards establishing the the asymptotic distribution of the matrix M
from (4.3.15) with the help of Lemma 4.14-4.18. For notational convenience we define

A = 1√
θ
X0RX

>
τ , B = 1

θ
XτE

>
0 E0RX

>
τ , (4.4.10)

so that M = IK −B − A>Q−1A. For each i = 1, . . . , K, define
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M ii := 1− E[Bii1B0 ]− E[Aii1B0 ]2E[Q−1
ii 1B2 ] (4.4.11)

which serves as a deterministic centering for the i-th diagonal entry of M . We first give
an approximation for Mii −M ii up to the scaling of T−1/2.

Proposition 4.8. Under Assumption 4.1 and either Assumption 4.2 or 4.3, we have

Mii −M ii = −2
(
Aii − E[Aii]

)
E[Aii1B0 ]E[Q−1

ii 1B2 ] + op

(
1√
T

)
, (4.4.12)

for all i = 1, . . . , K, where E[ · ] is defined in (4.2.21). Furthermore,

max
i 6=j
|Mij| = Op

(
K3

γ1(τ)2
√
T

)
.

Proof. We first recall from Lemma 4.15 and Assumption 4.1 that

E[Aij1B0 ] = 1i=j
(
σ2
i γi(τ)
θ1/2 + o(1)

)
, Var(Aij1B0) = O

(
σ2
i σ

2
j

θT

)
. (4.4.13)

We also recall from Lemma 4.17 that

Q−1
kk 1B2 = E[Q−1

kk 1B2 ] + oL1(T−1/2), Q−1
ij 1B2 = oL2(T−1). (4.4.14)

Recall that M = IK −B − A>Q−1A. We first consider the i-th diagonal of A>Q−1A and
show that it is close to A2

iiE[Q−1
ii 1B2 ] under the event B2. Note that we can write

(A>Q−1A)ii =
∑
m,n

AmiAniQ
−1
mn

= A2
iiQ
−1
ii +

∑
m,n 6=i

AmiAniQ
−1
mn + Aii

(∑
n6=i

AniQ
−1
in +

∑
m6=i

AmiQ
−1
mi

)
. (4.4.15)

We will consider each term in (4.4.15) separately. Recall from (4.2.19) that ‖Q−11B2‖ =
1 + o(1) which implies Q−1

ij 1B2 = 1 + o(1) for all i, j ≤ K. Using the triangle inequality
followed by the Cauchy Schwarz inequality we have

E
∣∣∣ ∑
m,n 6=i

AmiAniQ
−1
mn1B2

∣∣∣ . ∑
m,n 6=i

E[A2
mi1B2 ]

1
2E[A2

ni1B2 ] 1
2

.
∑
m,n 6=i

E[A2
mi1B0 ]

1
2E[A2

ni1B0 ] 1
2 = O

(
K2σ2

i σmσn
θT

)
,

where the second inequality follows since 1B2 ≤ 1B0 by definition and the last equality
follows from (4.4.13). By Assumption 4.1 we then have
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∑
m,n 6=i

AmiAniQ
−1
mn1B2 = oL1

(
1√
T

)
. (4.4.16)

For the last term in (4.4.15), we note that 1B2 = 1B21B0 by definition. Using ‖Q−11B2‖ =
1 + o(1) and the triangle inequality we have

E
∣∣∣∑
n6=i

AiiAniQ
−1
in 1B2

∣∣∣ .∑
n6=i

E
∣∣∣(Aii1B0 − E[Aii1B0 ])Ani1B2

∣∣∣+ ∣∣∣E[Aii1B0 ]
∣∣∣∑
n6=i

E
∣∣∣AniQ−1

in 1B2

∣∣∣.
By the Cauchy Schwarz inequality and (4.4.13) we have

E
∣∣∣∣Aii∑

n6=i
AniQ

−1
in 1B2

∣∣∣∣ .∑
n 6=i

Var(Aii1B0)1/2E[A2
ni1B0 ]1/2

+ E|A2
ii1B0|1/2

∑
n6=i

E[A2
ni1B0 ]1/2E[(Q−1)2

in1B2 ]1/2 = o

(
1√
T

)
.

Combining with (4.4.16), substituting back into (4.4.15) and applying (4.4.14) we obtain

(A>Q−1A)ii1B2 = A2
ii1B2E[Q−1

ii 1B2 ] + oL1

(
1√
T

)
.

From Lemma 4.1 we know that 1B2 = 1 + o(1), therefore

(A>Q−1A)ii = A2
iiE[Q−1

ii 1B2 ] + op

(
1√
T

)
. (4.4.17)

Next, we expand A2
ii around the conditional mean E[Aii1B0 ]. Note that

A2
ii1B0 = E[Aii1B0 ]2 + 2E[Aii1B0 ](Aii1B0 − E[Aii1B0 ]) + (Aii1B0 − E[Aii1B0 ])2, (4.4.18)

where by (c) of Lemma 4.14 and Assumption 4.1, the last term satisfies

(Aii1B0 − E[Aii1B0 ])2 = OL1

(
σ4
i

θT

)
= oL1

(
1√
T

)
.

Note that by definition of E and B0, we have

Aii1B0 − E[Aii1B0 ] = (Aii − E[Aii])1B0 = Aii − E[Aii] + op

(
1√
T

)
,

where the last equality follows from Lemma 4.1. Therefore from (4.4.18) we may obtain

A2
ii = E[Aii1B0 ]2 + 2E[Aii1B0 ](Aii − E[Aii]) + op

(
1√
T

)
.

Substituting back into (4.4.17) we have
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(A>Q−1A)ii = E[Aii1B0 ]2E[Q−1
ii 1B2 ] + 2E[Aii1B0 ]E[Q−1

ii 1B2 ](Aii − E[Aii]) + op

(
1√
T

)

= E[Aii1B0 ]2E[Q−1
ii 1B2 ] + 2E[Aii1B0 ]E[Q−1

ii 1B2 ](Aii − E[Aii]) + op

(
1√
T

)
,

where in the last equality, Lemma 4.18 is used to replace the conditional expectations with
the unconditional ones (except for the centering of Aii where the conditional expectation
is intentionally kept).

Finally, we recall Mii = 1 − Bii − (A>Q−1A)ii, so it remains to consider the matrix
B = 1

θ
XτE

>
0 E0RX

>
τ in the same manner as above. By Lemma 4.14, we have

E
∣∣∣Bij1B0 − 1i=jE[Bii1B0 ]

∣∣∣2 . 1
θ2T 2O(σ2

i σ
2
jT ) = o

(
1√
T

)
. (4.4.19)

Using Lemma 4.18 to replace E[Bii1B0 ] with E[Bii1B0 ] and 1B0 = 1− o(1), we get

Bij = 1i=jE[Bii1B0 ] + op

(
1√
T

)
.

Combining the above computations, we get

Mii = M ii − 2E[Aii1B0 ]E[Q−1
ii 1B2 ](Aii − E[Aii]) + op

(
1√
T

)

and the first claim follows.
For the off-diagonal elements, write

(A>Q−1A)ij =
∑
m,n

AmiAnjQ
−1
mn = AiiAjjQ

−1
ij + AiiAijQ

−1
ii + AjiAjjQ

−1
jj

+
∑

m 6=i,n 6=j,m6=n
AmiAnjQ

−1
mn + Aii

∑
n6=i,j

AnjQ
−1
in + Ajj

∑
m 6=i,j

AmiQ
−1
mj. (4.4.20)

Observe that by definition of Aii, Qii and the event B2 we have

Aii1B2 = O

(
Kσ2

1√
θ

)
= O

(
K

γ1(τ)

)
, Q−1

ij 1B2 = O(1). (4.4.21)

Recall from (4.4.13), Lemma 4.17 and Lemma 4.15 that

Aij1B2 = OL2

(
1

γ1(τ)
√
T

)
, Q−1

ij 1B2 = OL2

(
1

γ1(τ)2σ2
1
√
T

)
, ∀i 6= j. (4.4.22)

Substituting (4.4.21) and (4.4.22) back into the terms in (4.4.20) we have

AiiAjjQ
−1
ij 1B2 = OL2

(
K2

γ1(τ)4σ2
1
√
T

)
, AiiAijQ

−1
ii 1B2 = OL2

(
K

γ1(τ)2
√
T

)
.
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With similar computation, the rest of (4.4.20) satisfy

∑
m 6=i,n6=j,m6=n

AmiAnjQ
−1
mn = OL1

(
K4

γ1(τ)2T

)
, Aii

∑
n6=i,j

AnjQ
−1
in = OL1

(
K2

γ1(τ)4σ2
1T

)
,

both of which are of order OL1(T−1/2) by Assumption 4.1. Substituting the above four
estimates back into (4.4.20) we get

(A>Q−1A)ij = OL1

(
K

γ1(τ)2
√
T

)
,

which is uniform in i, j. Taking a union bound we obtain

P
(

max
i 6=j

(A>Q−1A)ij > ε
)
≤ 1
ε

∑
i 6=j

E|(A>Q−1A)ij| =
1
ε
O

(
K3

γ1(τ)2
√
T

)
,

or in other words we have the bound

max
i 6=j
|(A>Q−1A)ij| = Op

(
K3

γ1(τ)2
√
T

)

Lastly, since M = IK −B−A>Q−1A, it remains to bound the off-diagonals of B. Routine
computations similar to (4.4.13) and the union bound above show that Bij is of high order
compared to (A>Q−1A)ij and is thus negligible. This completes the proof.

From Proposition 4.8 we can conclude that the CLT for Mii is given by the CLT for
Aii, up to centering and scaling. This is what we compute next.

Proposition 4.9. Suppose Assumption 4.1 and either Assumption 4.2 or 4.3 hold. For
any i = 1, . . . , K and τ ≥ 0, define

v2
i,τ := 1

T − τ
Var

(
T−τ∑
t=1

fi,tfi,t+τ

)
.

a) For any i and τ , the quantity v2
i,τ satisfies

v2
i,τ =

∑
|k|<T−τ

(
1− |k|

T − τ

)
ui,k(τ), (4.4.23)

where the sequence (ui,k(τ))k is given by

ui,k(τ) := γi(k)2 + γi(k + τ)γi(k − τ) + (E[z4
11]− 3)

∞∑
l=0

ϕi,lϕi,l+τϕi,l+kϕi,l+k+τ .

b) As T →∞, the sequence (v2
i,τ ) tends to a limit
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lim
T→∞

v2
i,τ = (E[z4

11]− 3)γi(τ)2 +
∑
k∈Z

(
γi(k)2 + γi(k + τ)γi(k − τ)

)

in the case where τ is a fixed constant, and

lim
T→∞

v2
i,τ =

∑
k∈Z

γi(k)2

in the case where τ = τT →∞ as T →∞.

c) In both cases where τ is fixed and where τ →∞, we have

1√
Tvi,τ

(
T−τ∑
t=1

fi,tfi,t+τ − E
[
T−τ∑
t=1

fi,tfi,t+τ

])
⇒ N(0, 1), T →∞.

Proof. In the case where τ is fixed, the proof can be adapted from the arguments in section
7.3 of [43] so it remains to consider the case where τ →∞. For concreteness, the following
proof covers both the case where τ is finite and fixed and where τ is diverging as T →∞.
For brevity of notation we will drop the subscript i (denoting the i-th factor) within the
proof and write for instance ft := fit and ϕl := ϕil.

With some adaptations to the computations in page 226-227 of [43], we may obtain

v2
T := 1

T − τ
Var

(
T−τ∑
t=1

ftft+τ

)
= 1
T − τ

E
[
T−τ∑
t=1

T−τ∑
s=1

ftft+τfsfs+τ

]
− (T − τ)γ(τ)2

=
∑

|k|<T−τ

(
1− |k|

T − τ

)
uk(τ), (4.4.24)

where (uk(τ))k is given by

uk(τ) := γ(k)2 + γ(k + τ)γ(k − τ) + (E[z4
11]− 3)

∞∑
l=0

ϕlϕl+τϕl+kϕl+k+τ .

Note that the sequence (ϕl)l is summable and so is the sequence (uk(τ))k. Taking the
limit of (4.4.24) and invoking the dominated convergence theorem we conclude

v2 := lim
T→∞

v2
T =

∑
k∈Z

lim
T→∞

(
1− |k|

T − τ

)
uk(τ).

In the case where τ is a fixed constant, we have, as in Proposition 7.3.1 of [43],

v2 = (E[z4
11]− 3)γ(τ)2 +

∑
k∈Z

(
γ(k)2 + γ(k + τ)γ(k − τ)

)
, (4.4.25)

and in the case where τ is diverging, i.e. γ(τ)→ 0 as T →∞, we easily see that
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v2 = lim
T→∞

v2
T =

∑
k∈Z

γ(k)2. (4.4.26)

This settles the first two claims of the proposition.
We first prove a version of the CLT for a truncated version of the factor (ft)t≥0. The

truncation will be justified further below. Fix L > 0 and define (f (L)
t )t=1,...,T by

f
(L)
t :=

L∑
l=0

ϕlzt−l,

Consider the stochastic process (f (L)
t f

(L)
t+τ )t=1,...,T−τ . Clearly (f (L)

t f
(L)
t+τ )t is an (L + τ)-

dependent process, i.e. f (L)
t f

(L)
t+τ is independent from f (L)

s f
(L)
s+τ whenever |s − t| > L + τ .

The mean is given by E[f (L)
t f

(L)
t+τ ] = γL(τ), where γL(·) is the auto-covariance function of

the truncated process (f (L)
t ). Similar to (4.4.24)-(4.4.26) we may compute

v2
T,(L) := 1

T − τ
Var

(
T−τ∑
t=1

f
(L)
t f

(L)
t+τ

)
,

which has limits, in the case where τ is fixed:

v2
(L) := lim

T→∞
v2
T,(L) = (E[z4

11]− 3)γL(τ)2 +
∑
k∈Z

(
γL(k)2 + γL(k + τ)γL(k − τ)

)

and in the case where τ →∞:

v2
(L) = lim

T→∞
v2
T,(L) =

∑
k∈Z

γL(k)2.

Note that in either case V (L) is a non-zero constant. It can easily be checked that, under
Assumption 4.1 and either Assumption 4.2 or 4.3, the process (f (L)

t f
(L)
t+τ )t=1,...,T−τ (after

centering) satisfies the conditions in [33], whose main theorem can be applied here to
obtain

√
T − τ

(
1

T − τ

T−τ∑
t=1

f
(L)
t f

(L)
t+τ − γL(τ)

)
⇒ N(0, v2

(L)), T →∞.

We now justify the truncation. Since (ϕl)l ∈ `1 and (zt)t is uniformly bounded in L4, it is
easy to conclude that, for each fixed T , we have

∥∥∥∥ T−τ∑
t=1

f
(L)
t f

(L)
t+τ −

T−τ∑
t=1

ftft+τ

∥∥∥∥
L2
→ 0, L→∞. (4.4.27)

Consequently, we may conclude that γL(τ)→ γ(τ) and v2
(L) → v2 as L→∞, since they are

the first and second moments of the sums in (4.4.27). We may then follow the arguments
on page 229 of [43] and apply Proposition 6.3.9 of [43] to obtain
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√
T − τ

(
1

T − τ

T−τ∑
t=1

ftft+τ − γ(τ)
)
⇒ N(0, v2), T →∞. (4.4.28)

Finally, using (4.4.25), (4.4.26) and T−τ
T
→ 1, by Slutsky’s theorem we may conclude that

1√
TvT

(
T−τ∑
t=1

ftft+τ − (T − τ)γL(τ)
)
⇒ N(0, 1).

It remains to observe that (T − τ)γL(τ) is exactly the expectation of ∑ ftft+τ and the last
claim of the proposition follows.

Proposition 4.10. Under Assumption 4.1 and either Assumption 4.2 or 4.3, we have

√
T

θ

2σ4
i γi(τ)vi,τ

(
Mii −M ii

)
⇒ N(0, 1), i = 1, . . . , K, (4.4.29)

where M ii is as defined in (4.4.11) and vi,τ is defined as in (4.3.14).

Proof. For simplicity, within the current proof we will denote xi0 := xi,[1:T−τ ],xiτ :=
xi,[τ+1:T ] and similarly fi0 := fi,[1:T−τ ], fiτ := fi,[τ+1:T ], εi0 := εi,[1:T−τ ], εiτ := εi,[τ+1:T ].

Observe from (4.4.12) that the asymptotic distribution of M depends crucially on
that of A. We first give the asymptotic distribution of Aii. Recall from (4.2.10) that
R− IT−τ = θ−1E>τ EτE

>
0 E0R, using which we can write

Aii = 1√
θT

x>i0xiτ + 1√
θT

x>i0(R− IT−τ )xiτ

= 1√
θT

x>i0xiτ + 1
θ3/2T

x>i0E>τ EτE>0 E0Rxiτ . (4.4.30)

Applying Lemma 4.14 to the last term in (4.4.30) we have

1
θ3/2T

x>i0E>τ EτE>0 E0Rxiτ1B0 −
1

θ3/2T
E[x>i0E>τ EτE>0 E0Rxiτ1B0 ] = OL2

(
σ2
i

θ3/2
√
T

)
.

Recalling from Theorem 4.2 that θ � σ4
1γ1(τ)2, we get

Aii1B0 − E[Aii1B0 ] = 1√
θT

(
x>i0xiτ1B0 − E[x>i0xiτ1B0 ]

)
+OL2

(
σ2
i

θ3/2
√
T

)

= 1√
θT

(
x>i0xiτ − E[x>i0xiτ ]

)
1B0 +OL2

(
1

σ4
1γ1(τ)3

√
T

)
. (4.4.31)

Next, we recall that xi0 = 1√
θT

(σifi0 + εi0) and xiτ = 1√
θT

(σifiτ + εiτ ) so that

x>i0xiτ = σ2
i f>i0 fiτ + (σif>i0εiτ + σiε

>
i0fiτ + ε>i0εiτ ).

Applying Lemma 4.13 to the three terms in parenthesis on the right hand we get
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x>i0xiτ − E[x>i0xiτ ] = σ2
i f>i0 fiτ − σ2

iE[f>i0 fiτ ] +OL2(σi
√
T ). (4.4.32)

Substituting back into (4.4.31) and using θ � σ4
1γ1(τ)2 again we obtain

Aii1B0 − E[Aii1B0 ] = σ2
i√
θT

(
f>i0 fiτ − E[f>i0 fiτ ]

)
1B0 +OL2

(
σi√
θT

)
+OL2

(
1

σ4
1
√
Tγ1(τ)3

)

= σ2
i√
θT

(
f>i0 fiτ − E[f>i0 fiτ ]

)
1B0 +OL2

(
1

σ1γ1(τ)
√
T

)
. (4.4.33)

Rescaling and recalling that 1B0 = 1− op(T−l) for any l ≥ 1, we have

√
T

√
θ

σ2
i

(Aii − E[Aii]) = 1√
T

(
f>i0 fiτ − E[f>i0 fiτ ]

)
+Op(σ−1

1 ).

From this we observe that we can obtain a CLT for Aii from a CLT for the auto-covariance
function of fi. Indeed, by Proposition 4.9 we have

√
T

√
θ

σ2
i vi,τ

(Aii − E[Aii])⇒ N(0, 1), p, T →∞, (4.4.34)

where vi,τ is specified in the statement of Proposition 4.9.
Finally, we recall from Proposition 4.8 that

Mii −M ii = −2
(
Aii − E[Aii]

)
E[Aii1B0 ]E[Q−1

ii 1B2 ] + op

(
1√
T

)
. (4.4.35)

In order to apply the CLT in (4.4.34) to (4.4.35), we need to divide (4.4.35) by the
coefficient of Aii − E[Aii], which requires it to be bounded away from zero. Indeed, we
recall from (4.2.19) that Q−1

ii 1B2 = 1 + o(1). Furthermore, from Lemma 4.15 we have

E[Aii1B0 ] = σ2
i γi(τ)√
θ

+ o(1) (4.4.36)

which is bounded from below as well for large T . Therefore from (4.4.35) we get
√
θ

−2σ2
i γi(τ)

(
Mii −M ii

)
=
(
Aii − E[Aii]

)
(1 + o(1)) + op

(
1√
T

)
,

and the claim follows then from the CLT in (4.4.34).

The asymptotic distribution of Mii proved in Proposition 4.10 is the last result we
need to prove the main result of the paper, which we present below.

Proof of Theorem 4.5. Recall from Section 4.3 that up to now we have dealt with, without
loss of generality, the n-th largest eigenvalue λ := λn and the corresponding θ := θn and
δ := δn := λn/θn − 1. Recall from Proposition 4.7 that δn satisfies
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det
(
M + δn

θn
XτX

>
0 X0X

>
τ + δop,‖·‖(1)

)
= 0 (4.4.37)

We first consider the asymptotic properties of the elements of the matrix M . From
Proposition 4.4 and the definition of M ii in (4.4.11), clearly we see Mnn = 0. From
Theorem 4.2 and Proposition we also recall that 4.4 that θn/(σ4

nγn(τ)2) = θn/µ
2
n,τ = 1+o(1).

Then, using Proposition 4.10 we immediately have

√
T
γn(τ)
2vn,τ

Mnn ⇒ N(0, 1), T →∞.

For i 6= n, we recall from (4.4.11) and Lemma 4.15 that

M ii = 1− σ4
i γi(τ)2

θn
+ o(1) = 1−

µ2
i,τ

µ2
n,τ

+ o(1) � 1,

where the last equality is due to Assumption 4.1. Using Proposition 4.8 we have

Mii � 1 + op(1), ∀i 6= n, max
i 6=j
|Mij| = Op

(
K3

γ1(τ)2
√
T

)
.

Next, recall δ = op(1) from Theorem 4.2. From (4.3.6) recall that

‖θ−1XτX
>
0 X0X

>
τ − θ−1diag(σ4

i γi(τ)2)‖∞ = Op

(
K2σ4

1γ1(τ)
θ
√
T

)
= op(1).

This in particular implies δθ−1(XτX
>
0 X0X

>
τ )ii = δθ−1σ4

i γi(τ)2 + op(1) = op(1) and

δ

θ
(XτX

>
0 X0X

>
τ )ij = op(δ), ∀i 6= j.

Combining the above, equation (4.4.37) becomes det(Q) = 0, where Q is a matrix satisfying

Qnn = Mnn + δn
σ4
nγn(τ)2

θn
+ δnop(1),

for its n-th diagonal element, Qii � 1 + op(1), ∀i 6= n and

sup
ij
Qij = Op

(
K3

γ1(τ)2
√
T

)
+ δop(1). (4.4.38)

Using Leibniz’s formula to compute det(Q), we have

0 = det(Q) =
∑
π∈SK

sgn(π)
K∏
i=1

Qi,π(i), (4.4.39)

where sgn(π) is the sign of a permutation π in the symmetry group SK . Next we show
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that ∏iQii is the leading term in the sum in (4.4.39). Write SK,k for the subgroup of
permutations that has exactly K − k fixed points, i.e.

SK,k = {π ∈ SK , i = π(i) for exactly K − k such i’s}.

Using this notation we can rewrite (4.4.39) into

0 = det(Q) =
K∑
k=0

∑
π∈SK,k

sgn(π)
K∏
i=1

Qi,π(i). (4.4.40)

We recall that the order of SK,k is given by the rencontres numbers (see [149])

|SK,k| = DK,K−k := K!
(K − k)!

k∑
i=0

(−1)i
i! .

Observe that |SK,0| = 1 since SK,0 contains only the identity permutation and |SK,1| = 0
since for any non-identity permutation π, there exists at least two indices i, j ∈ {1, . . . , K},
i 6= j such that i 6= π(i) and j 6= π(j). Therefore (4.4.40) becomes

0 = det(Q) =
K∏
i=1

Qii +
K∑
k=2

∑
π∈SK,k

sgn(π)
K∏
i=1

Qi,π(i). (4.4.41)

Note that for any k ≥ 2 and any permutation π ∈ SK,k, the product ∏K
i=1Qi,π(i) contains

exactly k off-diagonal elements of Q. By (4.4.38) we have the estimate

K∏
i=1

Qi,π(i) =
(
Op

(
K3

γ1(τ)2
√
T

)
+ δop(1)

)k
.

Finally, after substituting back into (4.4.41) and a lengthy computation we have

0 = det(Q) =
K∏
i=1

Qii + δop(1) + op(T−1/2), (4.4.42)

which shows that the product ∏K
i=1Qii is the leading term of det(Q).

Next, using (4.4.38) again we see that ∏K
i=1Qii can be written as

K∏
i=1

Qii =
(
Mnn + δn

σ4
nγn(τ)2

θn
+ δnop(1)

)
(1 + op(1)) = (Mnn + δn)(1 + op(1)),

which can be substituted back into (4.4.42) to obtain

0 = Mnn(1 + op(1)) + δn(1 + op(1)) + δnop(1) + op(T−1/2).

Rearranging (and recalling θn � σ4
nγn(τ)2 by Proposition 4.4), we finally get
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−
√
T
γn(τ)
2vn,τ

δn(1 + op(1)) =
√
T

θn
2σ4

nγn(τ)vn,τ
Mnn(1 + op(1)) + op(1).

Applying Proposition (4.10) we immediately have

√
T
γn(τ)
2vn,τ

δn ⇒ N(0, 1), T →∞

and the proof is complete.

4.5 Technical Lemmas

4.5.1 Estimates on quadratic forms

We start with the proof of Lemma 4.1.

Proof of Lemma 4.1. (a) of the lemma can be found in [52], here we give a proof for (b).
Since X>0 X0 is symmetric and positive definite, we have

‖X>0 X0‖ ≤ tr(X>0 X0) = 1
T

K∑
i=1

T−τ∑
t=1

x2
it ≤

K∑
i=1

1
T

T∑
t=1

x2
it.

By (a) of Lemma 4.14 (whose proof does not depend the current lemma) we have

E
[

1
T

T∑
t=1

x2
it

]
= σ2

i + 1, Var
(

1
T

T∑
t=1

x2
it

)
= O

(
σ4
i

T

)
.

Taking a union bound and applying Chebyshev’s inequality we have

P
(
‖X>0 X0‖ > 2

K∑
i=1

σ2
i

)
≤ P

( K∑
i=1

1
T

T∑
t=1

x2
it > 2

K∑
i=1

σ2
i

)
≤

K∑
i=1

P
(

1
T

T∑
t=1

x2
it > 2σ2

i

)

=
K∑
i=1

P
(

1
T

T∑
t=1

x2
it − (σ2

i + 1) > σ2
i − 1

)
= O

(
Kσ4

i

(σ2
i − 1)2T

)
= O

(
K

T

)

and the proof is complete.

Lemma 4.11 (Sherman-Morrison formula). Suppose A and B are invertible matrices of
the same dimension, such that A−B is of rank one. Then

A−1 −B−1 = − B−1(A−B)B−1

1 + tr(B−1(A−B)) . (4.5.1)

Further more, if A−B = uv>, then

A−1u = B−1u
1 + v>B−1u

, v>A−1 = v>B−1

1 + v>B−1u
. (4.5.2)
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We first establish some concentration inequalities for quadratic forms of the random
vector x. To do so we will need to introduce some notations. We recall that

xit = σifit + εit = σi
∞∑
l=0

ϕilzi,t−l + εit, i = 1, . . . , K, t = 1, . . . , T.

We truncate the series and define an approximation

x
(L)
it := σif

(L)
it + εit := σi

L∑
l=0

ϕilzi,t−l + εit, L ≥ 1, (4.5.3a)

and write x(L)
i,[1:T ], f (L)

i,[1:T ] for (x(L)
it )t=1,...,T and (f (L)

it )t=1,...,T . For each L, We write

ϕ>
i

:=
(
ϕiL, . . . , ϕi0,0>T−1

)
∈ RT+L. (4.5.3b)

Let S be the right-shift operator on RT+L, i.e. Sei = ei+1. Define

Φi :=
(
ϕ
i
, Sϕ

i
, . . . , ST−1ϕ

i

)
∈ R(T+L)×T , (4.5.3c)

then clearly we can write the approximation f (L)
i into

f (L)
i,[1:T ] = z>i,[1−L,T ]Φi. (4.5.3d)

We note that the space of n × n matrices equipped with the Frobenius norm is
isometrically isomorphic to Rn×n with the Euclidean norm. For each 1 ≤ i, j ≤ K, we
define linear operators Ψij

n , n = 0, 1, 2,

Ψij
n : R(T−τ)×(T−τ) → R(2T+L)×(2T+L)

by sending a (T − τ)× (T − τ) matrix B to the (2T + L)× (2T + L) matrices

Ψij
0 B :=

σiΦi

IT

 IT−τ

0τ×(T−τ)

B
 IT−τ

0τ×(T−τ)

>σjΦj

IT

>,
Ψij

1 B :=
σiΦi

IT

 IT−τ

0τ×(T−τ)

B
0τ×(T−τ)

IT−τ

>σjΦj

IT

>, (4.5.4)

Ψij
2 B :=

σiΦi

IT

0τ×(T−τ)

IT−τ

B
0τ×(T−τ)

IT−τ

>σjΦj

IT

>,
where Φi := (ϕ

i
, Sϕ

i
. . . , ST−1ϕ

i
) ∈ R(T+L)×T is as defined in (4.5.3c). We first give some

estimates on the operators Ψij
n .

Lemma 4.12. The following estimates hold uniformly in L ∈ N.
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a) The matrix Φ>i Φi is symmetric and (banded) Toeplitz with

sup
i
‖Φ>i Φi‖ ≤ 1 + sup

i
‖ϕi‖2

`1 = O(1).

b) For n = 0, 1, 2, the operator norms of Ψij
n be bounded by

‖Ψij
n ‖2 ≤

(
1 + σ2

i ‖ϕi‖2
`1

)(
1 + σ2

j‖ϕj‖2
`1

)
= O(σ2

i σ
2
j ).

c) For any B ∈ RT×T , the trace of Ψii
nB can be bounded by

∣∣∣tr(Ψii
nB)

∣∣∣ ≤ (T − τ)(1 + σ2
i ‖ϕi‖2

`1)‖B‖ = O(σ2
i (T − τ)‖B‖).

Proof. (a) From the definitions (4.5.3b) and (4.5.3c) we immediately have

(Φ>i Φi)s,t = 1|s−t|≤Lϕ>i S
|s−t|ϕ

i
= 1|s−t|=k≤L

L−k∑
l=0

ϕi,l+kϕi,l.

It is clear that Φ>i Φi is a banded, symmetric Toeplitz matrix. The operator norm of Φ>i Φi

is controlled by the supremum of its symbol over C (see [39]) and we have

‖Φ>i Φi‖ ≤ sup
λ∈C

∣∣∣∣∣∣
L∑
|k|=0

ϕ>
i
S|k|ϕ

i
e
√
−1kλ

∣∣∣∣∣∣ ≤ ‖ϕi‖2
`2 +

L∑
k=1

L−k∑
l=0
|ϕi,l+kϕi,l| ≤ 1 + ‖ϕi‖2

`1 ,

which is bounded uniformly in i = 1, . . . , K, due to Assumption (4.1).

(b) By the cyclic property of the trace and Cauchy-Schwarz inequality we get

‖Ψij
1 B‖2

F = tr
(
(Ψij

1 B)(Ψij
1 B)>

)
= tr

(
(IT + σ2

i Φ>i Φi)(IT−τ ,0)>B(0, IT−τ )(IT + σ2
jΦ>j Φj)(0, IT−τ )>B>(IT−τ ,0)

)
.

≤
∣∣∣∣(IT + σ2

i Φ>i Φi)(IT−τ ,0)>B(IT−τ ,0)
∣∣∣∣
F

∣∣∣∣(IT + σ2
jΦ>j Φj)(0, IT−τ )>B>(IT−τ ,0)

∣∣∣∣
F
.

Since ‖AB‖F ≤ ‖A‖‖B‖F , we have

‖Ψij
1 B‖2

F ≤ ‖IT + σ2
i Φ>i Φi‖‖IT + σ2

jΦ>j Φj‖‖B‖2
F ,

where ‖IT + σ2
i Φ>i Φi‖ ≤ 1 + σ2

i ‖ϕi‖2
`1 by the first claim of the Lemma. By identifying

Ψij
1 as an operator between spaces of matrices equipped with the Frobenius norm, this

translates to a bound on its spectral norm. The case of Ψ0 and Ψ2 hold analogously.

(c ) For the last bound, similar computations give

|tr(Ψii
0B)| =

∣∣∣tr((IT + σ2
i Φ>i Φi)(IT−τ ,0)>B(IT−τ ,0)

)∣∣∣
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≤ ‖IT + σ2
i Φ>i Φi‖‖B‖F ≤ (T − τ)(1 + σ2

i ‖ϕi‖2
`1)‖B‖

The rest of the claims hold similarly.

Next, we state an easy extension to Lemma 2.7 of [13] suited to our needs.

Lemma 4.13. Let z = (z>1 , z>2 )>, where z1 = (z1, . . . , zm) and z2 = (z̃1, . . . , z̃n) are
independent random vectors each with i.i.d. entries satisfying E[z1] = E[z̃1] = 0, E[z2

1 ] =
E[z̃2

1 ] = 1, νq := E|z1|q <∞ and ν̃q := E|z̃1|q <∞ for some q ∈ [1,∞).

a) Let C be a deterministic m× n matrix, then

z>1 Cz2 = OLq(‖C‖F ),

where the constant in the estimate depends only on q and νq, ν̃q.

b) Let M be a deterministic (m+ n)× (m+ n) matrix, then

z>Mz− trM = OLq(‖M‖F ),

where the constant in the estimate depends only on q and νk, ν̃k for k ≤ 2q.

Proof. (a) By Lemma 2.2 and Lemma 2.3 of [13] we have

E
∣∣∣z>1 Cz2

∣∣∣q = E
∣∣∣∑
i,j

ziz̃jCij
∣∣∣q . E

∣∣∣∑
i,j

z2
i z̃

2
jC

2
ij

∣∣∣q/2
.
(∑
i,j

E[z2
i z̃

2
jC

2
ij]
)q/2

+
∑
i,j

E[|zi|q|z̃j|q|Cij|q]

=
(∑
i,j

M2
ij

)q/2
+ νqν̃q

∑
i,j

|Cij|q ≤ (1 + νqν̃q)‖C‖qF ,

where the last inequality holds since ∑ |Cij|q ≤ (∑ |Cij|2)q/2 for q ≥ 2.

(b) Write M =
A B

C D

 where A,B,C,D are of dimensions such that

z>Mz = z>1 Az1 + z>1 Bz2 + z>2 Cz1 + z>2 Dz2.

By Lemma 2.7 of Bai and Silverstein [13] we have

E
∣∣∣z>1 Az1 − trA

∣∣∣q . (νq/24 + ν2q)tr(AA>)q/2 ≤ (νq/24 + ν2q)‖M‖qF ,

E
∣∣∣z>2 Dz2 − trD

∣∣∣q . (ν̃q/24 + ν̃2q)tr(DD>)q/2 ≤ (νq/24 + ν2q)‖M‖qF .

Then we can write
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E|z>Mz− trM |q . E
∣∣∣z>1 Az1 − trA

∣∣∣q + E
∣∣∣z>2 Bz2 − trB

∣∣∣q
+ E

∣∣∣z>1 Cz2

∣∣∣q + E
∣∣∣z>2 Dz1

∣∣∣q.
and the claim follows from (a) of the lemma.

Using Lemma 4.12 and Lemma 4.13 we can derive the following concentration inequal-
ities for quadratic forms involving certain high probability events.

Lemma 4.14. Let x, f , ε be defined as in (4.2.7) and q ≤ 2. Under Assumptions 4.1 and
either Assumptions 4.2 or 4.3 we have

a) For any (deterministic) square matrix B of size T − τ , we have

x>i,[1:T−τ ]Bxj,[τ+1:T ] − E[x>i,[1:T−τ ]Bxj,[τ+1:T ]] = OLq

(
σiσj
√
T‖B‖

)
,

where the expectation is satisfies

E[x>i,[1:T−τ ]Bxj,[τ+1:T ]] = 1i=jtr
(
Ψii

1 (B)
)

= 1i=jO(σ2
i T‖B‖).

b) For all i, j we have E[f>i,[1:T−τ ]Bεj,[τ+1:T ]] = 0 and

f>i,[1:T−τ ]Bεj,[τ+1:T ] = OL2q(σi
√
T‖B‖).

c) Suppose n ∈ {1, . . . , K} and c1, c2 are positive constants with c1 < c2. Pick any

a ∈ [c1, c2]µ2
n,τ .

Recall from (4.2.9) the resolvent R(a) := (IT−τ − a−1E>τ EτE
>E)−1, then

x>i,[1,T−τ ]R(a)kxj,[τ+1:T ]1B0 − E[x>i,[1,T−τ ]R(a)kxj,[τ+1:T ]1B0 ] = OLq(σiσj
√
T ),

for all k ∈ N, where E[ · ] := E[ · |Fp] is defined in (4.2.21). In particular,

x>i,[1,T−τ ]R(a)kxj,[τ+1:T ] − E[x>i,[1,T−τ ]R(a)kxj,[τ+1:T ]1B0 ] = Op(σiσj
√
T ).

d) Parts (a)-(c) of the lemma remain true if the vector xj,[τ+1:T ] is replaced by xj,[1:T−τ ]

and the operator Ψii
1 is replaced by Ψii

0 .

Proof. (a) We apply the truncation procedure as described in (4.5.3a). Recalling (4.5.3a),
(4.5.3d) and (4.5.4) we may write

x(L)>
i,[1:T−τ ]Bx(L)

j,[τ+1:T ] = (σif (L)
i,[1:T ] + εi,[1:T ])>

IT−τ
0

B
 0
IT−τ

>(σjf (L)
j,[1:T ] + εj,[1:T ])
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= (z>i,[1−L:T ], ε
>
i,[1:T ])(Ψ

ij
1 (B))(z>i,[1−L:T ], ε

>
i,[1:T ])>.

Applying (b) of Lemma 4.13 to the above quadratic form gives

E
∣∣∣x(L)>
i,[1:T−τ ]Bx(L)

j,[τ+1:T ] − E
[
x(L)>
i,[1:T−τ ]Bx(L)

j,[τ+1:T ]

]∣∣∣q . ‖Ψij
1 (B)‖qF , (4.5.5)

where E[x(L)>
i,[1:T ]Bx(L)

j,[1:T ]] = 1i=jtr(Ψii
1 (B)). Using Lemma 4.12 we see that

‖Ψij
0 (B)‖qF = O

(
σqi σ

q
j

)
‖B‖qF = (T − τ)q/2O

(
σqi σ

q
j

)
‖B‖q = T q/2O

(
σqi σ

q
j

)
‖B‖q,

and
E[x(L)>

i,[1:T ]Bx(L)
j,[1:T ]] = 1i=jO(σ2

i (T − τ))‖B‖ = 1i=jO(σ2
i T )‖B‖,

both of which are uniform in L.
Since (ϕil)l is summable and (zit) have uniformly bounded 4-th moments, it is clear

that x(L)
i /σi converges to xi/σi in L4 as L → ∞, for each fixed T . By the dominated

convergence theorem with (4.5.5) as an upper-bound, we can take the limit as L → ∞
inside the expectation in (4.5.5) and the claim follows.
(b) follows from similar computations as in (a) and is omitted.
(c) Note that E>τ EτE>E has bounded operator norm under the event B0 defined in (4.2.16).
Since a � σ4

nγn(τ)2 diverges as T →∞, the resolvent R(a) is well-defined under B0 and
‖R(a)k1B0‖ = O(1). After conditioning on the σ-algebra F defined in (4.2.20), we can
then apply (a) of the Lemma and get

E
∣∣∣x>i,[1:T−τ ]R(a)kxj,[τ+1:T ]1B0 − E

[
x>i,[1:T−τ ]R(a)kxj,[τ+1:T ]1B0

]∣∣∣q . T q/2O(σqi σ
q
j ).

Taking expectations again to remove the conditioning, we obtain

E
∣∣∣x>i,[1:T−τ ]R(a)kxj,[τ+1:T ]1B0 − E

[
x>i,[1:T−τ ]R(a)kxj,[τ+1:T ]1B0

]∣∣∣q . T q/2O(σqi σ
q
j ).

Note that E[x>i,[1:T−τ ]R(a)kxj,[τ+1:T ]1B0 ] = 0 for all i 6= j by (a) of the Lemma. So

x>i,[1,T−τ ]R(a)kxj,[τ+1:T ]1B0 = 1i=jE[x>i,[1,T−τ ]R(a)kxi,[τ+1:T ]1B0 ] +OLq(σiσj
√
T ).

By Lemma 4.1 we have 1B0 = 1− op(1), from which the last claim follows.
(d) follows from similar computations to the above and is omitted.

Note that the expectations appearing in the previous lemma are conditional on the
noise series ε. The following lemma gives a preliminary computation on the unconditional
moments of certain quadratic forms. Recall matrices B(a), A(a) and Q(a):

A(a) := 1√
a
X0R(a)X>τ , B(a) := 1

a
XτE

>
0 E0R(a)X>τ ,
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Q(a) := IK − a−1X0RaE
>
τ EτX

>
0 .

Lemma 4.15. Under the same setting as (c) of Lemma 4.14, we have

E[A(a)ij1B0 ] = 1i=j
(
σ2
i γi(τ)
a1/2 + o(1)

)

Var(A(a)ij1B0) = O

(
σ2
i σ

2
j

aT

)
,

E[B(a)ij1B0 ] = 1i=jo(1), E[Q(a)−1
ij 1B2 ] = 1i=j + o(1).

Proof. Since xi = σifi + εi, we first observe that

1√
aT

E[x>i,[1,T−τ ]xj,[τ+1:T ]] = 1√
aT

E[σ2
i f>i,[1,T−τ ]fj,[τ+1:T ]] = 1i=j

σ2
i γi(τ)√
a

. (4.5.6)

By definition, the event B0 is independent from the vector x. Therefore

E[A(a)ij1B0 ] = 1√
aT

E[x>i,[1,T−τ ]xj,[τ+1:T ]1B0 ] + 1√
aT

E[x>i,[1,T−τ ](R(a)− I)1B0xj,[τ+1:T ]]

= 1i=j
σ2
i γi(τ)√
a

P(B0) + 1√
aT

E[x>i,[1,T−τ ](R(a)− I)1B0xj,[τ+1:T ]]

= 1i=j
(
σ2
i γi(τ)√
a

+ o(1)
)

+ 1√
aT

E[x>i,[1,T−τ ](R(a)− I)1B0xj,[τ+1:T ]],

where the last equality follows since P(B0) = 1 + o(1) by Lemma 4.1. It remains to
compute the last expectation above. Recall from (4.2.10) that the resolvent R(a) satisfies
R(a)− I = a−1E>τ EτE

>ER(a). By definition of B0 we have ‖E>τ EτE>E1B0‖ = O(1) and
‖R(a)1B0‖ = O(1). Therefore

(R(a)− I)1B0 = O‖·‖(a−1). (4.5.7)

Using (4.5.7) and (a) of Lemma 4.14 and taking iterated expectations we obtain

1√
aT

E[x>i,[1,T−τ ](R(a)− I)1B0xj,[τ+1:T ]] = 1√
aT

E
[
E[x>i,[1,T−τ ](R(a)− I)1B0xj,[τ+1:T ]]

]
= 1i=j

1√
aT

O(σ2
i T )E[‖R(a)− I‖1B0 ] = 1i=jo(1).

For the second moment, using (a− b)2 = (a− c)2 + (c− b)2 + 2(a− c)(c− b), we write

(A(a)ij1B0 − E[A(a)ij1B0 ])2 (4.5.8)

= (A(a)ij1B0 − E[A(a)ij1B0 ])2 + (E[A(a)ij1B0 ]− E[A(a)ij1B0 ])2

+ 2(A(a)ij1B0 − E[A(a)ij1B0 ])(E[A(a)ij1B0 ]− E[Aij1B0 ]).
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where by (c) of Lemma 4.14 we have

E
[
(A(a)ij1B0 − E[A(a)ij1B0 ])2

]
= 1
aT 2O

(
σ2
i σ

2
jT
)

= O

(
σ2
i σ

2
j

aT

)
,

and from Lemma 4.18 (whose proof does not depend on the current lemma) we recall

E
[
(E[A(a)ij1B0 ]− E[A(a)ij1B0 ])2

]
= O

( 1
aT

)
.

Taking the expectation of (4.5.8) and using the Cauchy Schwarz inequality we have

E[(A(a)ij1B0−E[A(a)ij1B0 ])2] = O

(
σ2
i σ

2
j

aT

)
.

The expectation of B(a) can be computed based on the same ideas and is omitted.
Lastly, under the event B2, the matrix Q(a) is invertible with ‖Q(a)1B2‖ = O(1). We

recall from (4.2.15) that the inverse of Q(a) satisfies

Q(a)−1 = IK + 1
a
Q(a)−1X0R(a)E>τ EτX>0 .

By definition of B2 we know 1B2Q(a)−1X0R(a)E>τ EτX>0 = O‖·‖(σ2
1) and therefore

Q(a)−11B2 = 1B2IK + o‖·‖(1)

and the last claim follows after taking expectations.

4.5.2 Estimates on resolvents

Define the following families of σ-algebras (Fi)pi=1 and (F i)Ki=1 by

Fi := σ
(
ε[K+1,K+i],[1:T ]

)
, F i := σ

(
x[1:i],[1:T ], ε[K+1,K+p],[1:T ]

)
,

i.e. Fi is the σ-algebra generated by the first i coordinates of the noise series ε and F i is
generated by all p coordinates of ε plus the first i coordinates of the series x.

Throughout the appendix we will write

Ei[ · ] := Ei[ · |Fi], Ei[ · ] := Ei[ · |F i]. (4.5.9)

Note that by definition E0[ · ] = E[ · ] and Ep[ · ] = E0[ · ] = E[ · ].
We first develope a concentration inequality for normalized traces of the resolvent R.

Lemma 4.16. For any matrix B with T − τ columns, we have
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1
T

tr
(
B(R1B0 − E[R1B0 ])

)
= OL2

(
‖B‖
θ
√
T

)
,(a)

1
T

tr
(
B(E>0 E0R1B0 − E[E>0 E0R1B0 ])

)
= OL2

(
‖B‖√
T

)
.(b)

Proof. (a) Similar to Lemma 4.17 the proof is based on a martingale difference decom-
position of R1B0 − E[R1B0 ]. We first setup the necessary notations and carry out some
preliminary computations.

Recall that the k-th row of E0 is equal to T−1/2ε>K+k,[1:T−τ ]. For brevity of notation we
will adopt the following notation

εk0 := εK+k,[1:T−τ ], εkτ := εK+k,[τ+1:T ]. (4.5.10)

Let Ek0 and Ekτ be the matrices E0 and Eτ with the k-th row replaced by zeros, i.e.
Ek0 := E0 − T−1/2ekεk0 and Ekτ := E0 − T−1/2ekεkτ . Define

Rk :=
(
IT −

1
θ
E>kτEkτE

>
0 E0

)−1
, Rk :=

(
IT −

1
θ
E>kτEkτE

>
k0Ek0

)−1
,

where Rk is not to be confused with Rθ and Rλ defined previously. Then

E>0 E0 − E>k0Ek0 = 1
T
εk0ε

>
k0, E>τ Eτ − E>kτEkτ = 1

T
εkτε

>
kτ ,

from which we can compute

R−1 −R−1
k = −1

θ
(E>τ Eτ − E>kτEkτ )E>0 E0 = − 1

θT
εkτε

>
kτE

>
0 E0

R−1
k −R−1

k = −1
θ
E>kτEkτ (E>0 E0 − E>k0Ek0) = − 1

θT
E>kτEkτεk0ε

>
k0.

We furthermore define scalars

β
k

= 1
1 + tr(Rk(R−1 −R−1

k ))
= 1

1− 1
θT
ε>kτE

>
0 E0Rkεkτ

,

βk = 1
1 + tr(Rk(R−1

k −R−1
k ))

= 1
1− 1

θT
ε>k0RkE>kτEkτεk0

,

both of which are clearly of order 1 + o(1) under the event B0. Using (4.5.1) we get

R−Rk = −β
k
Rk(R−1 −R−1

k )Rk =
β
k

θT
Rkεkτε

>
kτE

>
0 E0Rk, (4.5.11a)

Rk −Rk = −βkRk(R−1
k −R−1

k )Rk = βk
θT

RkE
>
kτEkτεk0ε

>
k0Rk. (4.5.11b)

Substituting (4.5.11b) back into (4.5.11a) we get
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R−Rk =
β
k

θT

(
Rk + βk

θT
RkE

>
kτEkτεk0ε

>
k0Rk

)
εkτε

>
kτE

>
0 E0

(
Rk + βk

θT
RkE

>
kτEkτεk0ε

>
k0Rk

)
,

and so we have

R−Rk = (Rk −Rk) + (R−Rk) =: U1 + U2 + U3 + U4 + U5, (4.5.12)

where we have defined

U1 := βk
θT

RkE
>
kτEkτεk0ε

>
k0Rk, U2 :=

β
k

θT
Rkεkτε

>
kτE

>
0 E0Rk, (4.5.13)

U3 :=
β
k
βk

θ2T 2Rkεkτε
>
kτE

>
0 E0RkE

>
kτEkτεk0ε

>
k0Rk,

U4 :=
β
k
βk

θ2T 2RkE
>
kτEkτεk0ε

>
k0Rkεkτε

>
kτE

>
0 E0Rk,

U5 :=
β
k
β2
k

θ3T 3RkE
>
kτEkτεk0ε

>
k0Rkεkτε

>
kτE

>
0 E0RkE

>
kτEkτεk0ε

>
k0Rk.

Recall the event B0 from (4.1). Define

Bk0 :=
{
‖E>k0Ek0‖+ ‖E>kτEkτ‖ ≤ 4

(
1 + p

T

)}
, k = 1, . . . , p. (4.5.14)

Clearly ‖E>k0Ek0‖ ≤ ‖E>0 E0‖ which implies B0 ⊆ Bk0 and so 1B0 ≤ 1Bk0 . Recall the family
of conditional expectations Ei[ · ] defined in (4.5.9). Then

1
T

tr(B(R1B0 − E[R1B0 ])) = 1
T

p∑
k=1

(Ek − Ek−1)tr(BR1B0)

= 1
T

p∑
k=1

(Ek − Ek−1)
(
tr(BR1B0)− tr(BRk1Bk0 )

)

= 1
T

p∑
k=1

(Ek − Ek−1)tr(B(R−Rk)1B0)− 1
T

p∑
k=1

(Ek − Ek−1)tr(BRk(1Bk0 − 1B0))

=: I1 + I2, (4.5.15)

where the second equality holds since Ek[tr(BRk1Bk0 )] = Ek−1[tr(BRk1Bk0 )] and the third
equality is purely algebraic computations. We first deal with the second term in (4.5.15).
Using tr(BRk) ≤ p‖BRk‖ and ‖BRk1Bk0‖ = O(‖B‖) we have

E|I2|2 = 1
T 2

p∑
k=1

E
∣∣∣(Ek − Ek−1)tr(BRk(1Bk0 − 1B0))

∣∣∣2 ≤ 4p2

T 2

p∑
k=1

E
∣∣∣‖BRk‖(1Bk0 − 1B0)

∣∣∣2
= O

(
p2

T 2‖B‖
2
) p∑
k=1

E
∣∣∣1Bk0 − 1B0

∣∣∣2 = O

(
p2

T 2‖B‖
2
) p∑
k=1

P(Bc0) = o(T−l‖B‖2),

for any l ∈ N by Lemma 4.1. For the first term in (4.5.15), since I1 is a sum of a martingale
difference sequence, using (4.5.12) and B0 ⊆ Bk0 we have
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E|I1|2 ≤
1
T 2

p∑
k=1

E
∣∣∣(Ek − Ek−1)tr(B(R−Rk)1Bk0 )

∣∣∣2
≤ 4
T 2

p∑
k=1

E
∣∣∣tr(B(R−Rk)1Bk0 )

∣∣∣2 ≤ 20
T 2

p∑
k=1

5∑
n=1

E
∣∣∣tr(BUn1Bk0 )

∣∣∣2,
and it remains to bound the second moment of each tr(BUn1Bk0 ). Since {εit} are assumed
to be i.i.d. standard Gaussian, we have the following moment estimate

E[‖εk0‖n] = E

( T−τ∑
t=1

ε2kt

)n/2 . (T − τ)n/2−1
T−τ∑
t=1

E|εkt|n = O(T n/2). (4.5.16)

Using βk1Bk0 = 1 + o(1) and the trivial inequality x>Ax ≤ ‖x‖2‖A‖ we obtain

E
∣∣∣tr(BU11Bk0 )

∣∣∣2 . 1
θ2T 2E

[
(ε>k0RkBRkE

>
kτEkτεk0)21Bk0

]
(4.5.17a)

≤ 1
θ2T 2E

[
‖εk0‖4‖Rk‖4‖E>kτEkτ‖21Bk0

]
‖B‖2 .

1
θ2‖B‖

2.

The second term U2 can be dealt with in exactly the same way to obtain

E
∣∣∣tr(BU21Bk0 )

∣∣∣2 . 1
θ2‖B‖

2, (4.5.17b)

and we omit the details. For U3, similar computations gives

E
∣∣∣tr(BU31Bk0 )

∣∣∣2 . 1
θ4T 4E

[
(ε>k0RkBRkεkτε

>
kτE

>
0 E0RkE

>
kτEkτεk0)21Bk0

]
≤ 1
θ4T 4E

[
‖εk0‖4‖εkτ‖4‖Rk‖4‖E>0 E0RkE

>
kτEkτ‖21Bk0

]
‖B‖2,

since x>Ay ≤ ‖x‖‖y‖‖A‖. Therefore

E
∣∣∣tr(BU3)

∣∣∣2 . 1
θ4T 4E

[
‖εk0‖8

]1/2
E
[
‖εkτ‖8

]1/2
.

1
θ4‖B‖

2. (4.5.17c)

Once again U4 can be bounded in the same way to obtain

E
∣∣∣tr(BU4)1Bk0

∣∣∣2 ≤ 1
θ4‖B‖

2. (4.5.17d)

With the same approach but more laborious computations we can obtain

E
∣∣∣tr(BU5)1Bk0

∣∣∣2 . 1
θ6‖B‖

2. (4.5.17e)

Note that the estimates (4.5.17a)-(4.5.17e) are uniform in k = 1, . . . , p. We then conclude

E
∣∣∣∣ 1T tr(B(R1Bk0 − E[R1Bk0 ]))

∣∣∣∣2 = O
(

p

T 2θ2

)
‖B‖2 = O

( 1
Tθ2

)
‖B‖2,
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and the conclusion follows.

(b) Similar to (a), via a martingale difference decomposition we obtain

E
∣∣∣∣ 1T tr(B(E>0 E0R1Bk0 − E[E>0 E0R1Bk0 ]))

∣∣∣∣2 . 1
T 2

p∑
k=1

E
∣∣∣tr(B(E>0 E0R− E>k0Ek0Rk))1Bk0

∣∣∣2,
where, recalling the Un’s defined in the proof of (a), we have

E>0 E0R− E>k0Ek0Rk = 1
T
εk0ε

>
k0Rk + 1

T
εk0ε

>
k0(R−Rk) + E>k0Ek0(R−Rk) (4.5.18)

= 1
T
εk0ε

>
k0Rk + 1

T

5∑
n=1
εk0ε

>
k0Un +

5∑
n=1

E>k0Ek0Un.

We deal with the first two term in (4.5.18) to illustrate the ideas of the proof, the other
terms can be dealth with similarly. Using (4.5.16) and p � T , clearly we have

1
T 2

p∑
k=1

E
∣∣∣∣ 1T tr(Bεk0ε

>
k0Rk)1Bk0

∣∣∣∣2 . 1
T 4

p∑
k=1

T 2E[‖BRk1Bk0‖
2] = O

( 1
T

)
‖B‖2. (4.5.19)

Similar to the computations in (4.5.17a), we can get

E
∣∣∣∣ 1T tr(B(εk0ε

>
k0U1))1Bk0

∣∣∣∣2 . 1
θ2T 2

1
T 2E[(ε>k0RkBεk0ε

>
k0RkE

>
kτEkτεk0)21Bk0 ]

≤ 1
θ2T 4E

[
‖εk0‖8‖Rk‖4‖E>kτEkτ‖21Bk0

]
‖B‖2 .

1
θ2‖B‖

2,

which immediately gives

1
T 2

p∑
k=1

E
∣∣∣∣ 1T tr(B(εk0ε

>
k0U1))1Bk0

∣∣∣∣2 = O
(

p

θ2T 2

)
‖B‖2 = O

( 1
θ2T

)
‖B‖2.

Note that this term is negligible in comparison to (4.5.19). Using the same ideas, it is
routine to check that the other 9 terms in (4.5.18) are negligible as well, and we omit the
details. The bound therefore follows from (4.5.19).

Next recall that Q = IK − 1
θ
X0RE

>
τ EτX

>
0 . We now state a concentration inequality

for entries of the matrix Q−1, under the event B2.

Lemma 4.17. Write Q−1
ij := (Q−1)ij. Then

a) For all k = 1, . . . , K, we have

Q−1
kk 1B2 − E[Q−1

kk 1B2 ] = oL1

(
1√
T

)
.

b) The off-diagonal elements of Q−1 satisfy
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Q−1
ij 1B2 = OL2

(
1

γ1(τ)2σ2
1
√
T

)

uniformly in i, j = 1, . . . , K, i 6= j.

Proof. (a) Recalling the event B2, we note that the matrix Q is invertible with probability
tending to 1. The proof relies on expressing Q−1

kk 1B2 − E[Q−1
kk 1B2 ] as a sum of martingale

differences. We first setup the notations necessary.
Let T−1/2xi := T−1/2xi,[1:T−τ ] be the (column vector) of the i-th row of X0, i.e. we can

write X0 = T−1/2∑K
i=1 eix>i . Define Xi0 := X0 − 1√

T
eix>i , and

Q(i) := IK −
1
θ
Xi0RE

>
τ EτX

>
0 , Q(ii) := IK −

1
θ
Xi0RE

>
τ EτX

>
i0,

from which we can immediately compute

Q−Q(i) = − 1
θ
√
T

eix>i RE>τ EτX>0 , Q(i) −Q(ii) = − 1
θ
√
T
Xi0RE

>
τ Eτxie>i .

Note that all elements on the i-th row of Q(i) are equal to zero except for the diagonal
which is equal to 1, i.e. Q(i) is equal to the identity when restricted to the i-th coordinate.
Then the inverse Q−1

(i) , whenever it exists, must also equal to the identity when restricted
to the i-th coordinate. A similar observation can be made for the matrix Q(ii) and it is
not hard to observe that

e>i (Q(ii))−1ei = 1, e>i (Q(i))−1ej = 0, ∀j 6= i, (4.5.20)

e>i (Q(ii))−1ej = e>j (Q(ii))−1ei = 0, ∀j 6= i.

To compute the difference Q−1 −Q−1
(i) , which will turn out to be the central focus of the

proof, we first define the following scalars

bi : = 1
1 + tr(Q−1

(i) (Q−Q(i)))
= 1

1− 1
θ
√
T
x>i RE>τ EτX>0 Q−1

(i) ei
(4.5.21)

bii : = 1
1 + tr(Q−1

(ii)(Q(i) −Q(ii)))
= 1

1− 1
θ
√
T
e>i Q−1

(ii)Xi0RE>τ Eτxi
= 1,

where the last equality holds by (4.5.20). Then using the identity (4.5.1) we have

Q−1 −Q−1
(i) = bi

θ
√
T
Q−1

(i) eix
>
i RE

>
τ EτX

>
0 Q

−1
(i) , (4.5.22a)

Q−1
(i) −Q

−1
(ii) = 1

θ
√
T
Q−1

(ii)Xi0RE
>
τ Eτxie>i Q−1

(ii). (4.5.22b)

We observe that the matrices Q−1
(i) and Q−1

(ii) differ only on off-diagonal elements on the
i-th column. Indeed, from (4.5.20) and (4.5.22b), if n 6= i or if n = m = i then
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e>m(Q−1
(i) −Q

−1
(ii))en = 1

θ
√
T

e>mQ−1
(ii)Xi0RE

>
τ Eτxie>i Q−1

(ii)en = 0. (4.5.23)

Then, substituting (4.5.22b) back into (4.5.22a) we obtain

e>k (Q−1−Q−1
(i) )ek = bi

θ
√
T

e>kQ−1
(i) eix

>
i RE

>
τ EτX

>
0 Q

−1
(i) ek

= bi

θ
√
T

e>kQ−1
(i) eix

>
i RE

>
τ EτX

>
0 Q

−1
(ii)ek

+ bi
θ2T

e>kQ−1
(i) eix

>
i RE

>
τ EτX

>
0 Q

−1
(ii)Xi0RE

>
τ Eτxie>i Q−1

(ii)ek

= bi

θ
√
T

e>kQ−1
(ii)eix

>
i RE

>
τ EτX

>
0 Q

−1
(ii)ek

+ bi
θ2T

e>kQ−1
(i) eix

>
i RE

>
τ EτX

>
0 Q

−1
(ii)Xi0RE

>
τ Eτxie>i Q−1

(ii)ek

+ bi
θ2T

e>kQ−1
(ii)Xi0RE

>
τ Eτxie>i Q−1

(ii)eix
>
i RE

>
τ EτX

>
0 Q

−1
(ii)ek

=: I1 + I2 + I3. (4.5.24)

To simplify this expression further, define the following quadratic forms

ξi := 1
θT

x>i RE>τ Eτxi, ηi := 1
θ2T

x>i RE>τ EτX>i0Q−1
(ii)Xi0RE

>
τ Eτxi,

ζik := 1
θ2T

x>i RE>τ EτX>i0Q−1
(ii)eke

>
kQ
−1
(ii)Xi0RE

>
τ Eτxi, (4.5.25)

then using (4.5.20), we can easily write I1, I2 and I3 into

I1 = 1i=k
bk

θ
√
T

x>k RE>τ EτX>0 Q−1
(kk)ek = 1i=kbkξk, (4.5.26)

I2 = 1i=k
bk
θ2T

x>k RE>τ EτX>0 Q−1
(kk)Xk0RE

>
τ Eτxk = 1i=kbkηk,

I3 = 1i 6=k
bi
θ2T

e>kQ−1
(ii)Xi0RE

>
τ Eτxix>i RE>τ EτX>0 Q−1

(ii)ek = 1i 6=kbiζik.

We first state some estimates on ξ and η under appropriate events. Recall from (4.2.16)
the event B1 :=

{
‖X>0 X0‖ ≤ 2∑K

i=1 σ
2
1

}
. Define the event

Bi1 :=
{
‖X>i0Xi0‖ ≤ 2

K∑
i=1

σ2
1

}
, i = 1, . . . , K (4.5.27)

and write Bi2 := B0 ∩ Bi1. Then clearly Bi2 ⊆ B2. Define

ξi := 1
θT

tr
(
Ψii

0 (RE>τ Eτ )
)
, ηi := 1

θ2T
tr
(
Ψii

0 (RE>τ EτX>i0Q−1
(ii)Xi0RE

>
τ Eτ )

)
,

where Ψii
0 is defined in (4.5.4). Write
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ξ
i

:= ξi − ξi, η
i

:= ηi − ηi. (4.5.28)

Using Lemma 4.14 and taking iterated expectations we have

E
[
ξ2
i
1Bi2

]
= E

[
E[ξ2

i
1Bi2 ]

]
= 1
θ2T 2O(σ4

i T )E‖RE>τ E1Bi2‖
2 = O

(
σ4
i

θ2T

)
,

E
[
η2
i
1Bi2

]
= 1
θ4T 2O(σ4

i T )E‖RE>τ EτX>i0Q−1
(ii)Xi0RE

>
τ Eτ1Bi2‖

2 = O

(
σ4
i

∑K
j=1 σ

4
j

θ4T

)
.

Using θ = θk � σ4
kγk(τ)2 from Proposition 4.4, Lemma 4.12 to deal with Ψii

0 and Assump-
tions 4.1 to compare the different speeds, we conclude

E
[
ξ2
i
1Bi2

]
= O

(
1

γ1(τ)2θT

)
, E

[
η2
i
1Bi2

]
= O

(
K

γ1(τ)4θ2T

)
, (4.5.29)

ξi1Bi2 = O(σ2
i θ
−1), ηi1Bi2 = O(Kσ4

i θ
−2).

We then consider the scalar bi defined in (4.5.21). From (4.5.20) and (4.5.22b) we observe

1
θ
√
T

x>i RE>τ EτX>0 Q−1
(i) ei = 1

θ
√
T

x>i RE>τ EτX>0 Q−1
(ii)ei

+ 1
θ2T

x>i RE>τ EτX>0 Q−1
(ii)Xi0RE

>
τ Eτxie>i Q−1

(ii)ei = ξi + ηi.

Substituting back into (4.5.21) we can simplify to obtain

bi = (1− ξi − ηi)−1. (4.5.30)

Define bi = (1− ξi − ηi)−1 so that subtracting the two we get

bi = (1− ξi − ηi)−1 = bi − bibi(ξi + η
i
). (4.5.31)

Finally, from the expression (4.5.30) and the bounds (4.5.29) we clearly have

bi1B2 = 1 + o(1), bi1Bi2 = 1 + o(1). (4.5.32)

We can now carry out the main idea of the proof. Recall notations E[ · ] and Ei[ · ]
from (4.5.9). By definition of Q(ii) and Bi2 we have

e>k
(
Q−11B2 − E[Q−11B2 ]

)
ek =

K∑
i=1

(Ei − Ei−1)
(
e>kQ−11B2ek − e>kQ−1

(ii)1Bi2ek
)

=
K∑
i=1

(Ei − Ei−1)
(
e>kQ−11B2ek − e>kQ−1

(i) 1Bi2ek
)
,

where the last equality follows from (4.5.23). Similar to how we dealt with the second
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term in (4.5.15) in the proof of Lemma 4.16, using Lemma 4.1 we may obtain

e>k
(
Q−11B2 − E[Q−11B2 ]

)
ek =

K∑
i=1

(Ei − Ei−1)ek
(
Q−1 −Q−1

(ii)

)
1B2ek + oL2

(
1√
T

)

=
K∑
i=1

(Ei − Ei−1)(I1 + I2 + I3)1B2 + oL2

(
1√
T

)
, (4.5.33)

where the second equality holds by (4.5.23).
As will be shown, the term involving I1 is the leading term of (4.5.33), this is what we

consider now. Using the identity (4.5.26) we simply have

K∑
i=1

(Ei − Ei−1)I11Bi2 = (Ek − Ek−1)bkξk1B2 ,

which, recalling (4.5.28) and using (4.5.31), can be written into

(Ek − Ek−1)bkξk1B2 = (Ek − Ek−1)
(
bk − bkbk(ξk + η

k
)
)(
ξk + ξ

k

)
1B2

= (Ek − Ek−1)
[
bkξk + bkξk − bkbk(ξk + η

k
)(ξk + ξ

k
)
]
1B2 . (4.5.34)

We consider the three terms in the square bracket in (4.5.34) separately. For the first term,
we note that (Ek − Ek−1)bkξk1Bk2 = 0 by definition of bkξk and Bk2 . Using this, we have

(Ek − Ek−1)bkξk1B2 = 0− (Ek − Ek−1)bkξk(1Bk2 − 1B2).

Recalling (4.5.29) and (4.5.32) and using Assumptions 4.1 we have

E
∣∣∣(Ek − Ek−1)bkξk1B2

∣∣∣ ≤ 2E
∣∣∣bkξk(1Bk2 − 1B2)

∣∣∣ = O(σ2
i θ
−1)E|1Bk2 − 1B2| = o(T−1),

where the last equality follows from the fact that B2 ⊆ Bk2 and Lemma 4.1. For the second
term in (4.5.34), using B2 ⊆ Bk2 , (4.5.32) and (4.5.29) we have

E
∣∣∣(Ek − Ek−1)bkξk1B2

∣∣∣2 . 4E
∣∣∣bkξk1Bk2 ∣∣∣2 = o(T−1/2).

Similarly the third term of (4.5.34) is bounded by

E
∣∣∣(Ek−Ek−1)

[
bkbk(ξk + η

k
)(ξk + ξ

k
)1B2

]∣∣∣ . 2E
∣∣∣(ξ

k
+ η

k
)(ξk + ξ

k
)1Bk2

∣∣∣.
Expanding, applying the Cauchy-Schwarz inequality and using (4.5.32) and (4.5.29), we
may obtain a bound of order oL1(T−1/2); we omit the repetitive details. Substituting the
above bounds back into equation (4.5.34) we obtain
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E
∣∣∣ K∑
i=1

(Ei − Ei−1)I1

∣∣∣ = E
∣∣∣∣(Ek − Ek−1)bkξk

∣∣∣∣ = o

(
1√
T

)
.

The cases of I2 and I3 can be dealt with with similar approaches and we omit the details.
In fact, from the definitions in (4.5.26) it is not difficult to see that η and ζ are higher
order terms relative to ξ under the event B2. It can therefore be shown that the term
involving I1 is the leading term in (4.5.33) and the claim follows.

(b) Define Q := IT − θ−1X>0 X0RE
>
τ Eτ so that similar to (4.2.15) we have

Q−1 − IK = 1
θ
X0RE

>
τ EτX

>
0 (IK − θ−1X0RE

>
τ EτX

>
0 )−1 = 1

θ
X0RE

>
τ EτQ

−1
X>0 .

Recall that we have X>0 X0 = T−1∑K
i=1 xix>i , define the matrices

Q(j) := IT −
1
θT

∑
k 6=j

xkx>k RE>τ Eτ , Q(ij) := IT −
1
θT

∑
k 6=i,j

xkx>k RE>τ Eτ ,

so that Q−Q(j) = − 1
θT

xjx>j RE>τ Eτ and Q(j) −Q(ij) = − 1
θT

xix>i RE>τ Eτ . Let

aj := 1
1 + tr(Q−1

(j)(Q−Q(j)))
= 1

1− 1
θT

x>j RE>τ EτQ
−1
(j)xj

,

aij := 1
1 + tr(Q−1

(ij)(Q(j) −Q(ij)))
= 1

1− 1
θT

x>i RE>τ EτQ
−1
(ij)xi

,

then by (4.5.2) we have

Q
−1xj = ajQ

−1
(j)xj, x>i RE>τ EτQ

−1
(i) = aijx>i RE>τ EτQ

−1
(ij).

We can therefore write

Q−1
ij = 1

θT
x>i RE>τ EτQ

−1xj = ajaij
θT

x>i RE>τ EτQ
−1
(ij)xj.

Now define Xij0 := X0 − T−1/2(eix>i + ejxj) and events Bij1 and Bij2 analogous to (4.5.27)
with Xi0 replaced by Xij0. Similar to (a) of the Lemma we have aj = 1 + o(1) and
aij = 1 + o(1) under the event B2. Therefore we have

E
∣∣∣Q−1

ij 1B2

∣∣∣2 . 1
θ2T 2E

∣∣∣x>i RE>τ EτQ−1
(ij)xj1B2

∣∣∣2 ≤ 1
θ2T 2E

∣∣∣x>i RE>τ EτQ−1
(ij)xj1Bij2

∣∣∣2.
By Lemma 4.14 and Assumptions 4.1 we have

E
∣∣∣Q−1

ij 1B2

∣∣∣2 = 1
θ2T 2O(σ2

i σ
2
jT ) = O

(
1

γ1(τ)4σ4
1T

)
.

Finally we remark that the uniformity of this bound in i, j = 1, . . . , K should be obvious
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from the proof since all σi’s are of the same order.

We finally show that the conditional expectations of diagonal elements of A, B and
Q−1, defined in (4.2.13), are sufficiently close to the unconditional expectations.

Lemma 4.18. For each i = 1, . . . , K, we have

E[Aii1B0 ]− E[Aii1B0 ] = OL2

(
1√
θT

)
, E[Bii1B0 ]− E[Bii1B0 ] = OL2

(
1√
θT

)
,

E[Q−1
ii 1B2 ]− E[Q−1

ii 1B2 ] = oL2

(
1√
T

)
.

Proof. From (a) of Lemma 4.14 we recall that

E[Aii1B0 ] = 1√
θT

E[x>i,[1:T−τ ]R1B0xi,[τ+1:T ]] = 1√
θT

tr(Ψii
1 (R))1B0 (4.5.35)

where, using (4.5.4) and the cyclic property of the trace, we have

tr(Ψii
1 (R)) = tr

(
(0, IT−τ )(σ2

i Φ>i Φi + IT )(IT−τ ,0)>R
)

=: tr(GR). (4.5.36)

Furthermore, using (a) of Lemma 4.12, we see that

G := (0, IT−τ )(σ2
i Φ>i Φi + IT )(IT−τ ,0)> = O‖·‖(σ2

i ). (4.5.37)

From (4.5.35) we have E[Aii1B0 ] = E[E[Aii1B0 ]] = 1√
θT
E[tr(Ψii

1 (R))1B0 ] and so

E[Aii1B0 ]− E[Aii1B0 ] = 1√
θT

(
tr(Ψii

1 (R))1B0 − E[tr(Ψii
1 (R))1B0 ]

)
= 1√

θT
(tr(GR)1B0 − E[tr(GR)1B0 ]) = 1√

θT
tr
(
G(R1B0 − E[R1B0 ])

)
,

by linearity of the expectation and the trace. By (a) of Lemma 4.16 we have

E[Aii1B0 ]− E[Aii1B0 ] = 1√
θ
OL2

(
‖G‖
θ
√
T

)
= OL2

(
1√
θT

)
,

where the last equality follows from (4.5.37) and Assumption 4.1. For the case of B,
similar computations and (b) of Lemma 4.16 give

E[Bii1B0 ]− E[Bii1B0 ] = 1
θT

(
tr(Ψii

1 (E>0 E0R))1B0 − E[tr(Ψii
1 (E>0 E0R))1B0 ]

)
= 1
θT

tr
(
G(E>0 E0R1B0 − E[E>0 E0R1B0 ]

)
= 1
θ
OL2

(
‖G‖√
T

)
= OL2

(
1√
θT

)
.

It remains to consider E[Q−1
ii ]. We recall from (4.2.15) that
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Q := IK −
1
θ
X0RE

>
τ EτX

>
0 . (4.5.38)

The strategy of the proof, similar to that of Lemma 4.16 and Lemma 4.17, is to express
E[Q−1

ii 1B2 ]−E[Q−1
ii 1B2 ] as a sum of martingale differences. We first introduce the necessary

notations and carry out some algebraic computations.
Similar to (4.5.10), we will define εk0 := εK+k,[1:T−τ ] and εkτ := εK+k,[τ+1:T ]. Recall

from (4.5.12) that R−Rk = ∑5
n=1 Un, where the Un’s are defined in (4.5.13). Similar to

the computations in (4.5.18), we may obtain

RE>τ Eτ −RkE
>
kτEkτ = 1

T
Rkεkτε

>
kτ +

5∑
n=1

UnE
>
τ Eτ =: V +W,

where we defined

V := 1
T
Rkεkτε

>
kτ + (U2 + U3)E>τ Eτ ,

W := (U1 + U4 + U5)E>τ Eτ .

Define matrices V1, V2, V3,W1,W2,W3 by,

V1 := IT , V2 :=
β
k

θ
E>0 E0RkE

>
τ Eτ , V3 :=

β
k
βk

θ2T
E>0 E0RkE

>
kτEkτεk0ε

>
k0RkE

>
τ Eτ

W1 := βkRkE
>
τ Eτ , W2 :=

β
k
βk

θT
Rkεkτε

>
kτE

>
0 E0RkE

>
τ Eτ ,

W3 :=
β
k
β2
k

θ2T 2Rkεkτε
>
kτE

>
0 E0RkE

>
kτEkτεk0ε

>
k0RkE

>
τ Eτ ,

so that using (4.5.13) we can decompose V and W into

V = 1
T
Rkεkτε

>
kτ (V1 + V2 + V3) (4.5.39a)

W = 1
θT

RkE
>
kτEkτεk0ε

>
k0(W1 +W2 +W3). (4.5.39b)

It is clear that V and W are matrices of rank one. We define

Q(k) : = IK −
1
θ
X0(RE>τ Eτ − V )X>0 ,

Q(kk) : = IK −
1
θ
X0(RE>τ Eτ − V −W )X>0 ,

then from (4.5.38) we can write Q−Q(k) = −θ−1X0V X
>
0 and Q(k)−Q(kk) = −θ−1X0WX>0 .

Define the following scalar quantities

αk := 1
1− θ−1tr(Q−1

(k)X0V X>0 )
, αkk := 1

1− θ−1tr(Q−1
(kk)X0WX>0 )

,
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then using (4.5.1) we obtain

Q−1 = Q−1
(k) + 1

θ
Q−1

(k)X0V X
>
0 Q

−1
(k), Q−1

(k) = Q−1
(kk) + 1

θ
Q−1

(kk)X0WX>0 Q
−1
(kk).

Substituting the second identity into the first gives

Q−1 −Q−1
(kk) = 1

θ
Q−1

(kk)X0WX>0 Q
−1
(kk)

+ 1
θ

(
Q−1

(kk) + 1
θ
Q−1

(kk)X0WX>0 Q
−1
(kk)

)
X0V X

>
0

(
Q−1

(kk) + 1
θ
Q−1

(kk)X0WX>0 Q
−1
(kk)

)
,

which after simplifying becomes

Q−1 −Q−1
(kk) = 1

θ
Q−1

(kk)X0V X
>
0 Q

−1
(kk) + 1

θ
Q−1

(kk)X0WX>0 Q
−1
(kk) (4.5.40)

+ 1
θ2Q

−1
(kk)X0V X

>
0 Q

−1
(kk)X0WX>0 Q

−1
(kk) + 1

θ2Q
−1
(kk)X0WX>0 Q

−1
(kk)X0V X

>
0 Q

−1
(kk).

Before we proceed with the proof we first prove some moment estimates for the terms in
(4.5.40). We start with some informal observations. By comparing (4.5.39a) and (4.5.39a),
we see that the matrix W is smaller in magnitude in comparison to V by a factor of θ−1.
This suggests that the first term in (4.5.40) is the leading term while the rest are high
order terms in comparison and we will therefore only deal with first term in detail below.
The same arguments can be applied to the rest of (4.5.40) to make the above argument
rigorous, but we omit the repetitive details.

Recall the family of event {Bk0 , k = 1, . . . , p} from (4.5.14) and define Bk2 := Bk0 ∩ B1.
From definition we note that B2 ⊆ Bk2 . Furthermore, from Lemma 4.1 we have

1Bk2 − 1B2 ≤ 1− 1B2 = op(T−l), ∀l ∈ N. (4.5.41)

In the computations below, we will often substitute 1Bk2 with 1B2 and vice versa in
expectations. Whenever we do so, we may use (4.5.41) and a similar argument to how
we dealt with (4.5.15) to show that the error term of such a substitution is negligible for
the purpose of the proof. Hence from now on we will use the two indicators 1Bk2 and 1B2

interchangeably below without further justifications.
Since we can write X>0 = 1√

T

∑K
l=1 xle>l , the first term in (4.5.40) can be expressed as

1
θ
e>i Q−1

(kk)X0V X
>
0 Q

−1
(kk)ei = 1

θT

K∑
l=1

K∑
m=1

e>i Q−1
(kk)el(x

>
l V xm)e>mQ−1

(kk)ei, (4.5.42)

where, recalling (4.5.39a), we have

x>l V xm = 1
T

3∑
n=1

x>l Rkεkτε
>
kτVnxm. (4.5.43)
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Using (4.5.42)-(4.5.43) and the inequality (∑n
i=1 xi)p . np−1∑n

i=1 x
p
i we have

E
∣∣∣∣1θe>i Q−1

(kk)X0V X
>
0 Q

−1
(kk)ei1B2

∣∣∣∣2 . K2

θ2T 2

K∑
l=1

K∑
m=1

E
∣∣∣∣e>i Q−1

(kk)el(x
>
l V xm)e>mQ−1

(kk)ei1B2

∣∣∣∣2

.
3K2

θ2T 4

K∑
l=1

K∑
m=1

3∑
n=1

E
∣∣∣∣x>l Rkεkτε

>
kτVnxm‖Q−1

(kk)‖
21B2

∣∣∣∣2. (4.5.44)

Note that under the event B2, we can easily see that ‖Q−1
(kk)1B2‖ = O(1). Therefore by the

Cauchy Schwarz inequality we can obtain

(4.5.44) . K2

θ2T 4

K∑
l=1

K∑
m=1

3∑
n=1

E
[
(x>l Rkεkτ )41B2

]1/2
E
[
(ε>kτVnxm)41B2

]1/2
. (4.5.45)

Note that B2 = B1 ∩ B0 ⊆ B0 ⊆ Bk0 so that 1B2 ≤ 1Bk0 . We can then condition on Rk and
apply (a) of Lemma 4.13 to the first quadratic form in (4.5.44) to get

E|x>l Rkεkτ1B2|4 ≤ E

∣∣∣∣∣∣∣
zl,[1:T ]

εl,[1:T ]

>σlΦl

IT

 IT−τ

0τ×(T−τ)

Rkεkτ1Bk0

∣∣∣∣∣∣∣
4

. E
[
tr(R2

k(σ2
l Φ>l Φl + IT ))21Bk0

]
= O(σ4

l T
2),

where the last equality follows from using tr(R) ≤ T‖R‖ and applying Lemma 4.12.
Similarly, for the quadratic involving V1 in (4.5.45), we have

E|ε>kτV1xm|4 = E|ε>kτxm|4 . tr(σ2
mΦ>mΦm + IT )2 = O(σ4

mT
2).

We observe here that that the matrices V2 and V3 are smaller in magnitude in comparison
to V1 by a factor of θ−1 under the event B2. Hence it is to be expected that the quadratic
forms involving V2 and V3 in (4.5.45) should be negligible in comparison to the one involving
V1. To be more concrete, we sketch here how bound the quadratic form involving V2; the
case of V3 can be dealt with in a similar manner. Recall that the matrix E>0 E0 can be
written as E>0 E0 = E>k0Ek0 + 1

T
εk0ε

>
k0. Then we can write

E|ε>kτV2xm1B2|4 = 1
θ4E

∣∣∣β
k
ε>kτE

>
0 E0RkE

>
τ Eτxm1B2

∣∣∣4
.

1
θ4E

∣∣∣ε>kτE>k0Ek0RkE
>
kτEkτxm1B2

∣∣∣4 + 1
θ4E

∣∣∣ 1
T
ε>kτεk0

1
T
ε>k0Rkεk0ε

>
k0xm1B2

∣∣∣4
+ 1
θ4E

∣∣∣ 1
T
ε>kτE

>
k0Ek0Rkεkτε

>
kτxm1B2

∣∣∣4 + 1
θ4E

∣∣∣ 1
T
ε>kτεk0ε

>
k0RkE

>
k0Ek0xm1B2

∣∣∣4.
At this point we recognize that the four terms above have a similar structure as in the
case of V1. Namely they all involve quadratic forms where the matrix in the middle is
independent from the vectors on each side. Using the same approach as we did in the case
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of V1 we can indeed show that this is a negligible term in comparison. The case of V3 is
similar albeit more tedious, and we omit the details.

After the above arguments, we may conclude that

E
∣∣∣1
θ
e>i Q−1

(kk)X0V X
>
0 Q

−1
(kk)ei1B2

∣∣∣2 . K2

θ2T 4

K∑
l=1

K∑
m=1

σ2
l σ

2
mT

2 = o

(
1√
θT 2

)
. (4.5.46)

The same strategy described above can then be repeated for each of the remaining three
terms in (4.5.40) to show that they are negligible (c.f. the remark right below (4.5.40)).
We may therefore conclude that

E
∣∣∣e>i (Q−1 −Q−1

(kk))ei1B2

∣∣∣2 = o

(
1√
θT 2

)
. (4.5.47)

Finally, we can decompose E[e>i Q−1ei1B2 ]− E[e>i Q−1ei1B2 ] into

E[e>i Q−1ei1B2 ]− E[e>i Q−1ei1B2 ] =
p∑

k=1
(Ei − Ei−1)e>i Q−1ei1B2

=
p∑

k=1
(Ei − Ei−1)e>i (Q−1 −Q−1

(kk))ei1B2 ,

where for the last equality we refer to (4.5.41) and the remark immediately below it. Using
the bound (4.5.47) we immediately have

E
∣∣∣E[e>i Q−1ei1B2 ]−E[e>i Q−1ei1B2 ]

∣∣∣2
≤ 4

p∑
k=1

E|e>i (Q−1 −Q−1
(kk)1B2)ei|2 = o

(
p√
θT 2

)
,

from which the claim follows.

4.6 Conclusion and Future Work

In this chapter we focused on the asymptotic theory of a high dimensional time series
arising from a factor model. We established the asymptotic normality of the spiked
eigenvalues of the product symmetrized sample auto-covariance matrix of the data.

Our work serves as a first step in understanding the asymptotic distributions of
eigenvalues of the auto-covariance matrix. So far we have dealt exclusively with spiked
eigenvalues which diverge as the dimension and sample size tend to infinity; a natural
next step is to study the asymptotic distributions of the non-spiked eigenvalues. Based
on what is known about spiked covariance matrices, it is reasonable to suspect that the
non-spiked eigenvalues are not asymptotically normal, but should tend to the Tracy-Widom
distribution instead. Establishing this result is of both theoretical and practical interest.
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[82] S. Haug, C. Klüppelberg, A. Lindner, and M. Zapp. Method of moment estimation
in the COGARCH(1,1) model. The Econometrics Journal, 10(2):320–341, 2007.
ISSN 1368-4221, 1368-423X. doi: 10.1111/j.1368-423X.2007.00210.x.

[83] J. Hoffmann-Jørgensen and G. Pisier. The Law of Large Numbers and the Central
Limit Theorem in Banach Spaces. The Annals of Probability, 4(4):587–599, 1976.
ISSN 0091-1798.



Bibliography 136

[84] Jørgen Hoffmann-Jørgensen. Sums of independent Banach space valued random
variables. Studia Mathematica, 52(2):159–186, 1974. ISSN 0039-3223.

[85] T. Hytönen, J. van Neerven, M. Veraar, and L. Weis. Analysis in Banach spaces.
Vol. II, volume 67 of. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3.

[86] T. Hytönen, J. Van Neerven, M. Veraar, and L. Weis. Analysis in Banach Spaces,
Vol. I, A Series of Modern Surveys in Mathematics 63. Springer, Cham, 2016.

[87] K. Ito and Makiko Nisio. On stationary solutions of a stochastic differential equation.
J. Math. Kyoto Univ, 4(1):1–75, 1964.

[88] Eduardo Abi Jaber, Martin Larsson, and Sergio Pulido. Affine Volterra processes.
arXiv:1708.08796, 2017.

[89] Jean Jacod and Albert Shiryaev. Limit Theorems For Stochastic Processes. Springer,
2nd ed edition, 2013.

[90] I. M. Johnstone and D. Paul. PCA in High Dimensions: An Orientation. Proceedings
of the IEEE, 106(8):1277–1292, August 2018. ISSN 0018-9219. doi: 10.1109/JPROC.
2018.2846730.

[91] Iain M. Johnstone. On the distribution of the largest eigenvalue in principal com-
ponents analysis. Annals of statistics, pages 295–327, 2001.

[92] Iain M. Johnstone and Arthur Yu Lu. On consistency and sparsity for principal com-
ponents analysis in high dimensions. Journal of the American Statistical Association,
104(486):682–693, 2009.

[93] Sungkyu Jung and J. Stephen Marron. PCA consistency in high dimension, low
sample size context. The Annals of Statistics, 37(6B):4104–4130, 2009.

[94] Olav Kallenberg. Foundations of Modern Probability. Springer Science & Business
Media, 2006.

[95] Jan Kallsen and Murad S. Taqqu. Option Pricing in ARCH-type Models. Mathem-
atical Finance, 8(1):13–26, 1998.

[96] Jan Kallsen and Bernhard Vesenmayer. COGARCH as a continuous-time limit of
GARCH(1,1). Stochastic Processes and their Applications, 119(1):74–98, 2009.

[97] Noureddine El Karoui. On the largest eigenvalue of Wishart matrices with identity
covariance when n, p and p/n tend to infinity. arXiv preprint math/0309355, 2003.

[98] Achim Klenke. Probability Theory: A Comprehensive Course. Springer Science &
Business Media, 2013. ISBN 978-1-4471-5361-0.



Bibliography 137
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GARCH process driven by a Lévy process stationarity and second-order behaviour.
Journal of Applied Probability, 2004.
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