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Abstract

Dynamic programming is an essential tool lying at the heart of many problems in the

modern theory of economic dynamics. Due to its versatility in solving dynamic optimiza-

tion problems, it can be used to study the decisions of households, firms, governments,

and other economic agents with a wide range of applications in macroeconomics and fi-

nance. Dynamic programming transforms dynamic optimization problems to a class of

functional equations, the Bellman equations, which can be solved via appropriate math-

ematical tools. One of the most important tools is the contraction mapping theorem, a

fixed point theorem that can be used to solve the Bellman equation under the usual dis-

counting assumption for economic agents. However, many recent economic models often

make alternative discounting assumptions under which contraction no longer holds. This

is the primary motivation for the thesis.

This thesis is a re-examination of the standard discrete-time infinite horizon dynamic

programming theory under two different discounting specifications: state-dependent dis-

counting and negative discounting. For the case of state-dependent discounting, the stan-

dard discounting condition is generalized to an “eventual discounting” condition, under

which the Bellman operator is a contraction in the long run, instead of a contraction in

one step. For negative discounting, the theory of monotone concave operators is used to

derive a unique solution to the Bellman equation; no contraction mapping arguments are

required. The core results of the standard theory are extended to these two cases and

economic applications are discussed.
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CHAPTER 1

Introduction

1.1. Overview

Dynamic programming is the approach of using recursive methods to solve dynamic op-

timization problems. It is the building block of the modern theory of economic dynamics

with applications spanning multiple fields of economics. It is particularly useful in study-

ing the optimal decisions of households, firms, and governments in a dynamic environment,

which forms the basis of research in economic growth, business cycles, asset pricing, fiscal

and monetary policies, and other important topics in macroeconomics and finance.

The fundamental idea of dynamic programming is to solve dynamic optimization problems

through a functional equation—the Bellman equation. This essentially transforms an

optimization problem to a fixed point problem, which can be tackled with a wide range of

mathematical tools. The Bellman equation is also static in nature and thus much easier

to solve than the original dynamic problem. A typical example is a household saving

problem, where an agent maximizes lifetime discounted utility of consumption. Under

appropriate conditions, the optimal choice of the agent can be recovered as the solution

to a single period decision problem.

Standard dynamic programming theory relies heavily on the Banach fixed point theorem,

also known as the contraction mapping theorem. A standard assumption is that the Bell-

man operator is a contraction mapping. This restriction, however, affects the applicability

of dynamic programming to many recent economic models. The goal of this thesis is to

develop extensions in this regard and study related economic applications.

1.2. Structure of the Thesis

Chapter 2 provides technical background on the topics covered in the thesis. It begins

with an informal introduction to dynamic programming and moves on to explain the

1



2 1. INTRODUCTION

fundamental ideas and theories behind the extensions developed in later chapters. Some

applications that can be handled by the extensions are also briefly discussed.

Chapter 3 replaces the constant discount factor in standard dynamic programming with

a state-dependent discount process. This specification has been adopted to study a series

of empirical phenomena including, for example, the equity premium puzzle, zero lower

bound, extreme inequality, and macroeconomic volatility. In some settings, the discount

factor is even allowed to temporarily exceed unity, which poses a challenge to the standard

theory based on contraction mapping. We obtain a sufficient condition on the discount

factor process under which all of the standard optimality results can be recovered. In

particular, we show that the Bellman operator is a contraction in the long run, instead

of a contraction in one step. We also extend the results to the cases of unbounded

rewards and recursive preferences and discuss a range of applications. This chapter is

based on a joint paper with my supervisor John Stachurski (“Dynamic programming

with state-dependent discounting”, published in the Journal of Economic Theory, doi:

10.1016/j.jet.2021.105190). The chapter contains mostly my own work, although I have

benefited from numerous helpful comments and suggestions from John.

Chapter 4 studies negative discount dynamic programming problems, where the discount

factor is larger than one and the Bellman operator is expansive, the diametric opposite of

the standard case. We focus on the problem in which an agent minimizes the present value

of a sequence of losses over an infinite horizon while assigning greater weight to future

losses. We develop a general dynamic programming framework for such noncontractive

models based on the theory of monotone concave operators and show that it can be used

to recover competitive equilibria in models related to production networks, management

layers within firms, and the size distribution of cities. We also give a set of analogous

results for the continuous time setting. This chapter is based on the paper “Coase Meets

Bellman: Dynamic Programming for Production Chains” jointly with Tomoo Kikuchi,

Kazuo Nishimura, and John Stachurski. The chapter only contains content that I have

made significant contribution to.

Chapter 5 is an application of the concave operator theory used in Chapter 4 to the

production networks model introduced by Kikuchi et al. (2018). We prove the existence,
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uniqueness, and global stability of equilibrium price, hence improving their results on

production networks with multiple upstream partners. We propose and prove the validity

of an algorithm for computing the equilibrium price function that is more than ten times

faster than value function iteration. The model is then generalized to a stochastic setting

that offers richer implications for the distribution of firms in a production network. This

chapter is based on a joint paper with Meng Yu (“Equilibrium in production chains

with multiple upstream partners”, published in the Journal of Mathematical Economics,

doi: 10.1016/j.jmateco.2019.04.002). The chapter contains my original work except some

proofs provided by Meng, which I have included for completeness.

1.3. Literature Review

This section provides background on the two main themes of this thesis: state-dependent

discounting and negative discounting in dynamic programs. More closely related studies

are reviewed in the introduction of each chapter.

1.3.1. State-Dependent Discounting.

1.3.1.1. Motivation. Standard dynamic programming theory assumes that the sub-

jective discount factor of agents is constant and strictly less than one (Bellman, 1957;

Stokey and Lucas, 1989). This assumption ensures the applicability of the contraction

mapping theorem, which is central to the proof of existence and uniqueness of solutions.

However, researchers in economics and finance have increasingly adopted settings where

the discount factor varies with the state to either explain empirical phenomena or offer

better calibrations.

For example, state-dependent discounting has been shown to help explain some long-

standing puzzles in asset pricing. Mehra and Sah (2002) show that small fluctuations

in agents’ discount factors can have large effect on the volatility of equity prices. Al-

buquerque et al. (2016) study an asset pricing model in which the discount factor of the

representative agent is perturbed by an AR(1) process and show that the resulting demand

shocks help explain the equity premium puzzle. Also see Campbell (1986), Albuquerque

et al. (2015), and Schorfheide et al. (2018).
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State-dependent discounting is also useful in studying wealth inequality. An early example

is Krusell and Smith (1998). In related work, Krusell et al. (2009) model the discount

process as a three state Markov chain and show how discount factor dispersion helps their

heterogeneous agent model match the wealth distribution. Also see Fagereng et al. (2019)

and Hubmer et al. (2020).

In labor economics, state-dependent discounting has been adopted to help explain the ex-

cess unemployment volatility puzzle discussed in Shimer (2005). For example, Mukoyama

(2009) enhances the Diamond–Mortensen–Pissarides model with state dependent discount

factors for entrepreneurs and workers, which is then shown to increase unemployment

volatility. Related analysis and extensions can be found in Beraja et al. (2016), Hall

(2017) and Kehoe et al. (2018).

In addition, state-dependent discounting is often used in studies of macroeconomic volatil-

ity. For example, Primiceri et al. (2006) argue that shocks to agents’ rates of intertemporal

substitution are a key source of macroeconomic fluctuations. Justiniano and Primiceri

(2008) study the shifts in the volatility of macroeconomic variables in the US and find that

a large portion of consumption volatility can be attributable to the variance in discount

factors. Additional research in a similar vein can be found in Justiniano et al. (2010),

Justiniano et al. (2011), Christiano et al. (2014), Saijo (2017), and Bhandari et al. (2013).

State-dependent discounting is also an important device in the New Keynesian litera-

ture to study the effective lower bound. It usually appears in the form of multiplicative

preference shocks to the discount factor. For example, Eggertsson and Woodford (2003)

study monetary policy under a zero lower bound constraint for nominal interest rate with

preference shocks. Woodford (2011) considers the government expenditure multiplier in

a similar environment. Eggertsson (2011) and Christiano et al. (2011) study the effect of

fiscal policies at the zero lower bound on interest rates, while Nakata and Tanaka (2020)

analyze the term structure of interest rates at the zero lower bound when agents have

recursive preferences. See also Correia et al. (2013), Hills and Nakata (2018), Hills et al.

(2019) and Williamson (2019). In these papers, it is common to let the discount factor
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Figure 1.1. Simulated time path for {βt} in Hills et al. (2019)

temporarily exceed one so that the lower bound on nominal interest rates binds. Fig-

ure 1.1 illustrates by showing a simulated time path of {βt} in Hills et al. (2019), where

the discount factor follows an AR(1) process.

1.3.1.2. Theoretical Studies. On the theoretical side, Karni and Zilcha (2000) study

the saving behavior of agents with random discount factors in a steady-state competitive

equilibrium. Cao (2020) proves the existence of sequential and recursive competitive

equilibria in incomplete markets with aggregate shocks in which agents also have state-

dependent discount factors. Toda (2019) obtains a necessary and sufficient condition for

the existence of a solution to the optimal saving problem with state-dependent discount

factors. Also see Ma et al. (2020) for a generalization that exploits a consumption policy

operator.

In the mathematical literature, Wei and Guo (2011) study the existence and uniqueness

of equilibrium in a general dynamic programming model with state-dependent discount

factors. Also see Minjárez-Sosa (2015), Ilhuicatzi-Roldán et al. (2017), and Jasso-Fuentes

et al. (2020) for other works along these lines. However, these papers assume that the

discount process in the dynamic program is bounded above by one or by some constant

less than one. This is too strict for many applications, especially those adopting an AR(1)

specification for the discount factor as mentioned above.

1.3.2. Negative Discounting.
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1.3.2.1. Motivation. Negative discount dynamic programming studies dynamic opti-

mization problems in which the subjective discount rates of agents are negative, or in other

words, the subjective discount factors are larger than one. Such preference structures have

been documented in Thaler (1981), Loewenstein and Thaler (1989), Loewenstein and Pr-

elec (1991) and Loewenstein and Sicherman (1991). For example, Loewenstein and Prelec

(1991) find in a survey that “sequences of outcomes that decline in value are greatly dis-

liked, indicating a negative rate of time preference”. Also see Frederick et al. (2002) for

a literature review.

Despite its empirical relevance in dynamic settings, negative discount rates arise more

naturally in production chain models after the time index is reinterpreted as an index

over firms. For example, Kikuchi et al. (2018) embed the ideas on the theory of the

firm in Coase (1937) in an equilibrium model with a continuum of price taking firms

and represent the equilibrium price as the solution to a discrete-time negative discount

dynamic program. The negative discount rate captures transaction costs between firms

along the chain. Using a similar formulation in continuous time, Fally and Hillberry

(2018) extend the partial equilibrium model in Kikuchi et al. (2018) to an international

trade setting. Also see Tyazhelnikov (2019) and Antràs and De Gortari (2020).

1.3.2.2. Monotone Concave Operator Theory. As briefly mentioned above, our nega-

tive discount dynamic programming framework draws on the theory of concave operators,

originally due to Krasnosel’skii (1964, Chapter 6). Our framework is based on a theorem

due to Du (1989) for monotone concave operators on arbitrary Banach spaces.

There are other similar techniques that utilize concavity to show uniqueness of the fixed

point. Krasnosel’skii (1964) shows that a monotone operator on a positive cone has at

most one nonzero fixed point if the operator satisfies a concavity condition (u0-concave).

Marinacci and Montrucchio (2010, 2019) link concavity to contraction in the Thompson

metric (Thompson, 1963), which allows one to apply the contraction mapping theorem to

operators that are not contractive under the supremum norm. In a similar vein, Marinacci

and Montrucchio (2019) establish existence and uniqueness results for monotone operators

under a range of weaker concavity conditions using Tarski-type fixed point theorems and

the Thompson metric. For similar treatment in the math literature, also see Krasnosel’skii
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et al. (1972), Krasnosel’skii and Zabrĕiko (1984), Guo and Lakshmikantham (1988), Guo

et al. (2004), and Zhang (2013).

The monotone concave operator theory has seen some recent success in the economic

literature. Lacker and Schreft (1991) study an economy with cash and trade credit as

means of payment and show that the equilibrium interest rate is a unique fixed point of a

monotone concave operator. Coleman (1991, 2000) studies the equilibrium in a produc-

tion economy with income tax and proves the existence and uniqueness of consumption

function by constructing a monotone concave map. Following this approach, Datta et al.

(2002b) prove the existence and uniqueness of equilibrium in a large class of dynamic

economies with capital and elastic labor supply. Similar work in the same vein includes

Morand and Reffett (2003) and Datta et al. (2002a).





CHAPTER 2

Technical Background

This chapter starts with an informal introduction to dynamic programming for readers

who are not familiar with this topic. I will motivate with a standard dynamic optimization

problem and state some major results from the literature. Then I will move on to the

cases of state-dependent discounting and negative discounting—two main themes of the

thesis, and explain the basic ideas behind results in later chapters.

2.1. Dynamic Programming

This section considers an infinite-horizon stochastic dynamic optimization problem where

an agent maximizes the expected discounted sum of rewards.

The state of the world consists of a pair (x, z), where x and z represent endogenous and

exogenous variables, taking values in spaces X and Z, respectively. Uncertainty is driven

by a time-homogeneous Markov process on Z with stochastic kernel Q.1 Let the initial

state (x0, z0) be given. In each period, the agent chooses the next period endogenous state

subject to a constraint that depends on the current state to maximize lifetime reward.

Formally, the agent solves

max
{xt}∞t=1

E

{
∞∑
t=0

βt r(xt, zt, xt+1)

}
s.t. xt+1 ∈ Γ(xt, zt), zt+1 ∼ Q(zt, ·), (2.1)

where r is the reward function and Γ is the feasible correspondence. This is a generic addi-

tively separable dynamic optimization problem that encompasses many common problems

in economics, for example, stochastic optimal growth, optimal consumption saving, etc.2

1Roughly speaking, if {zt} is a time-homogeneous Markov process with stochastic kernel Q, the
distribution of zt+1 for any t is given by Q(zt, ·), which depends only on the value of zt.

2One simplification we make here is that the agent can directly choose the next period state. In a
more general setting, we can let the agent choose an action that affects the distribution of next period
state. The formulation in (2.1) also cannot deal with recursive preferences. A general and abstract
framework that can accommodate these complications is discussed in Chapter 3.

9
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Solving (2.1) directly is difficult because it involves choosing an infinite sequence of state-

contingent variables {xt}. Backward induction is also not applicable since there is an

infinite horizon. Dynamic programming, on the other hand, aims to transform the infinite

horizon problem into a static problem by exploiting the recursive structure of (2.1).

To see how this works, first note that the maximum value in (2.1) depends only on

the initial state, and in each period, the agent faces a sub-problem that is completely

characterized by the current state. Hence, it is natural to conjecture that the optimal

choice of the agent in each period also depends only on the current state. Let v∗ : X×Z→
R be the value function, which gives the maximum payoff of the agent for each initial

state. We aim to find an optimal policy σ∗ : X× Z→ X for the agent such that choosing

xt+1 = σ∗(xt, zt) in each period gives v∗.

Consider the following functional equation

v(x, z) = (Tv)(x, z) := sup
x′∈Γ(x,z)

{r(x, z, x′) + βEzv(x′, z′)} , (2.2)

where Ez represents expectation conditional on z and Ezv(x′, z′) =
∫
v(x′, z′)Q(z, dz′).

Equation (2.2) is called the Bellman equation due to Bellman (1957) and T is called the

Bellman operator. The Bellman equation turns out to be closely related to (2.1).

The function v on the right hand side of (2.2) is called the continuation value function,

which gives the payoff of the agent in the next period. Hence, Tv is the maximum value

that can be attained for the agent in the current period given continuation value function

v. If the continuation value function is v∗, which implies that agent achieves maximum

from the next period onward, it is reasonable to conjecture that Tv∗ = v∗. In fact, this is

one of the main results we aim to prove in dynamic programming. A second main result is

that the optimal policy σ∗ is given by the maximizer on the right hand side of (2.2) when

v = v∗. The intuition is that, if a policy achieves maximum in the current period given

continuation value v∗, it should also lead to maximum if the agent follows this policy in

every period.

In order to prove these results, a crucial step is to show the existence of fixed points of

the Bellman operator in a certain function space. A standard assumption is that r is
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bounded and continuous and β < 1. Then under some additional regularity conditions,

it can be shown that T is a contraction self map on bcS, the space of bounded continuous

functions on S := X× Z. Indeed, for any u, v ∈ bcS, we have

‖Tu− Tv‖ = sup
x∈X,z∈Z

|(Tu)(x, z)− (Tv)(x, z)|

≤ sup
x∈X,z∈Z

sup
x′∈Γ(x,z)

β |Ezu(x′, z′)−Ezv(x′, z′)| ≤ β‖u− v‖,

where ‖ · ‖ is the supremum norm. Since bcS is a complete metric space, the contraction

mapping theorem implies that T has a unique fixed point v̄ in bcS and for any v ∈ bcS,

there exists M > 0 such that ‖T nv− v̄‖ < Mβn. In other words, the standard assumption

not only guarantees the existence and uniqueness of the fixed point, but also a strong form

of convergence: uniform convergence with a fixed rate β. This also ensures that we can

obtain the unique fixed point via value function iteration starting from any function in

bcS.3

With these fixed point results, it can be shown that v̄ = v∗ and a policy function σ∗

is optimal if and only if σ∗(x, z) ∈ arg maxx′∈Γ(x,z){r(x, z, x′) + βEzv
∗(x′, z′)} (see, for

example, Stokey and Lucas (1989)). The latter property is called the Bellman’s principle

of optimality. Besides these two main results, it can further be proved that v∗ is increasing,

concave, and continuously differentiable, and that σ∗ is single-valued and continuous,

under additional assumptions on the primitives.

Recent studies in dynamic programming have relaxed the standard assumptions, espe-

cially the boundedness of the reward function, to accommodate more economic appli-

cations. For example, Boyd (1990) uses a weighted supremum norm approach to study

unbounded rewards and recursive preferences. Alvarez and Stokey (1998) treat dynamic

programs with unbounded reward functions that are homogeneous. Rincón-Zapatero and

Rodŕıguez-Palmero (2003), Martins-da Rocha and Vailakis (2010), Matkowski and Nowak

(2011) use local contraction methods to deal with unbounded rewards. Also see Durán

(2003), Le Van and Vailakis (2005), and Kamihigashi (2007).

3Value function iteration is the algorithm of repeatedly applying the Bellman operator on some initial
guess.
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2.2. State-Dependent Discounting

The standard dynamic programming theory and extensions mentioned above all assume

that the subjective discount factor of the agent is a constant β ∈ (0, 1). However, as

reviewed in Section 1.3, many recent economic applications adopt discount factors that

are state-dependent.

To accommodate this case, we replace the constant discount factor of the agent with

a discount process that depends on the exogenous state variable. Then problem (2.1)

becomes

max
{xt}∞t=1

E

{
∞∑
t=0

(
t−1∏
i=0

β(zi)

)
r(xt, zt, xt+1)

}
s.t. xt+1 ∈ Γ(xt, zt), zt+1 ∼ Q(zt, ·) (2.3)

and the corresponding Bellman equation becomes

v(x, z) = (Tv)(x, z) := sup
x′∈Γ(x,z)

{r(x, z, x′) + β(z)Ezv(x′, z′)} , (2.4)

where β : Z→ R+ is a bounded continuous function. Now, the discount factor on time-t

reward is the product of all past β(zt), and the discount factor on the continuation value

function in the Bellman equation is β(z), a function of the exogenous state.

Although this is a small change and the new Bellman equation (2.4) is highly similar to

(2.2), the argument in the previous section fails to lead to contraction. Indeed, for any

u, v ∈ bcS, we have

‖Tu− Tv‖ ≤ sup
z∈Z

β(z)‖u− v‖.

We can only show that T is a contraction if supz∈Z β(z) < 1, which is too restrictive

for many applications as discussed in Section 1.3. Intuitively speaking, a uniform upper

bound of one on the discount process also appears unnecessarily strong. Problem (2.3)

should retain the good properties of (2.1), all other things being equal, if the discount

factor only occasionally exceeds one but is less than one “on average”.
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In Chapter 3, we build on this idea and give a weaker condition—eventual discounting,

which requires the existence of some n ∈ N such that,

rβn := sup
z0∈Z

Ez0

n−1∏
i=0

β(zi) < 1. (2.5)

The product
∏n−1

i=0 β(zi) in (2.5) is the discount factor on time-n reward in (2.3). Hence,

eventual discounting says that the discount factors on future rewards are eventually less

than one. Condition (2.5) also implies (rβn)1/n < 1, which has the interpretation that the

geometric average of the discount process is less than one in the long run.

Although T in (2.4) is not necessarily a contraction under eventual discounting, we show

in Chapter 3 that the Bellman operator is still well-behaved in the sense that

‖T nu− T nv‖ ≤ sup
z0∈Z

Ez0

t−1∏
i=0

β(zi)‖u− v‖,

where T n is the nth iterate of the Bellman operator. In other words, eventual discounting

implies that T n is eventually a contraction mapping. An extension of the contraction

mapping theorem shows that the Bellman operator has a unique fixed point in bcS and T nv

converges to the fixed point uniformly for all v ∈ bcS. All standard dynamic programming

results can then be recovered building on this result.

To facilitate computation, we connect the eventual discounting condition to the spectral

radius of a bounded linear operator.4 Let Lβ be defined by (Lβh)(z) = β(z)
∫
h(z′)Q(z, dz′).

We show that eventual discounting holds if and only if the spectral radius of Lβ is less

than one. This provides us a way to check the eventual discounting condition for different

discount specifications. It is particularly useful in applications where the state spaces are

discretized, since Lβ becomes a matrix and its spectral radius can be readily calculated

as the largest absolute value of its eigenvalues.

A range of recent studies consider dynamic optimization problems with state-dependent

discounting. For example, in the quantitative model of Hubmer et al. (2020), the discount

4The spectral radius of a bounded linear operator L is given by r(L) := limn→∞ ‖Ln‖1/n where ‖ · ‖
is the operator norm.
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factor of households is modeled as an AR(1) process to generate realistic wealth distri-

butions; Christiano et al. (2011) use a two-state discount process for households to study

fiscal policy under the zero lower bound constraint. Such problems cannot be handled by

the standard dynamic programming theory. In particular, it is not clear if those problems

are well defined and well behaved. This issue is covered in our theory as shown above.

In Chapter 3, we also extend our basic results to dynamic programs with unbounded

rewards and recursive preferences. We obtain similar eventual discounting and spec-

tral radius conditions for these cases. For example, the eventual discounting condition

for dynamic programs with Epstein-Zin preferences also depends on the elasticity of in-

tertemporal substitution. Of particular interest is an application of our extension to the

asset pricing model of Albuquerque et al. (2016), in which the representative agent has

Epstein-Zin preferences with state-dependent discounting. We find that eventual dis-

counting fails in their model due to high persistence of the discount process and low

elasticity of intertemporal substitution. See Section 3.6.2 for details.

2.3. Negative Discounting

For negative discounting, we focus on a special class of dynamic optimization problems in

which the agent, instead of maximizing lifetime reward, minimizes a flow of “discounted”

losses. The agent solves

min
{at}

∞∑
t=0

βt`(at) s.t. at ≥ 0 for all t ≥ 0 and
∞∑
t=0

at = x̂, (2.6)

where at is action in period t and ` is a loss function. We assume that `(0) = 0, `′ > 0,

`′′ > 0, β > 1, and x̂ > 0. We can think of x̂ as the amount of tasks that need to be

completed by the agent and at as the amount completed in period t. The convexity of

the loss function provides an incentive for the agent to defer some effort but negative

discounting (β > 1) encourages the agent to finish as soon as possible.
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Define a state process {xt} that tracks the remaining tasks by setting x0 = x̂ and xt+1 =

xt − at. Then, the Bellman equation for problem (2.6) is

w(x) = (Tw)(x) := inf
0≤a≤x

{`(a) + βw(x− a)}. (2.7)

There are two crucial differences between problem (2.6) and problem (2.1). First, the extra

constraint
∑

t at = x̂ in (2.6) is not encoded in the Bellman equation. Hence, it is not

clear whether (2.7) can characterize the solution to (2.6). Second, the Bellman operator

T in (2.7) is not a contraction mapping due to negative discounting. In Chapter 4, we

develop a general dynamic programming theory that can handle these two issues. The

rest of this section focuses on the solution to the second issue, which relies on a set of

fixed point results for monotone concave operators.

The idea behind it is intuitive: imagine an increasing and strictly concave real function

f such that f(u0) > u0 and f(v0) < v0 with u0 < v0. Then it must be true that f has a

unique fixed point on [u0, v0], and by the concavity of f , the fixed point can be computed

by successive evaluations of f on any x ∈ [u0, v0]. These properties are illustrated in

Figure 2.1, where the intersection of f and the 45° line is the fixed point of f and the

dashed line segments represent the trajectories of two iterations starting from u0 and

v0 respectively. Despite not a contraction (as can be seen from the derivative of f), f

has very similar fixed point properties to a contraction mapping. In particular, fn(x)

converges to the fixed point for any initial guess in [u0, v0].

It turns out that the same idea also works for general functional operators with additional

technical assumptions.

For the Bellman operator T in (2.7), we can show that T is increasing and concave.5

Monotonicity is obvious. For concavity, we have for any 0 ≤ λ ≤ 1,

λ(Tu)(x) + (1− λ)(Tv)(x)

= λ inf
0≤a≤x

{`(a) + βu(x− a)}+ (1− λ) inf
0≤a≤x

{`(a) + βu(x− a)}

≤ inf
0≤a≤x

{`(a) + λβu(x− a) + (1− λ)βv(x− a)}

5We say T is increasing if Tu ≤ Tv whenever u ≤ v and concave if for all 0 ≤ λ ≤ 1, λTu+(1−λ)Tv ≤
T (λu+ (1− λ)v).
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u0 v0

f (x)

45◦

Figure 2.1. Fixed Point Properties of an Increasing Concave Function

= (T (λu+ (1− λ)v)) (x).

Let φ(x) = `′(0)x and ψ(x) = `(x).6 It can be shown that Tφ > φ and Tψ < ψ. By a

fixed point theorem for monotone concave operators on Banach spaces, T has a unique

fixed point w̄ on [φ, ψ] and T nw → w̄ for all w ∈ [φ, ψ], where [φ, ψ] is an order interval

defined by all w such that φ ≤ w ≤ ψ.

The idea of deriving fixed point results from monotonicity and concavity/convexity has

been adopted in several theoretical studies, albeit not in negative discount settings. For

example, Rincón-Zapatero and Rodŕıguez-Palmero (2003) exploit the monotonicity and

convexity properties of the Bellman operator and give conditions for existence and unique-

ness of fixed points in the case of unbounded returns. Balbus et al. (2013) study the ex-

istence and uniqueness of pure strategy Markovian equilibrium using theories concerning

“mixed monotone” operators that are convex in a certain sense. Also see Balbus et al.

(2012) for a similar treatment. More recently, this idea has been applied extensively to

models with recursive utilities since Marinacci and Montrucchio (2010); other contribu-

tions along the same lines include Balbus (2016), Borovička and Stachurski (2020, 2021),

Becker and Rincon-Zapatero (2018), Marinacci and Montrucchio (2019), Pavoni et al.

(2018), Bloise and Vailakis (2018), and Ren and Stachurski (2018).

6These two functions act as upper and lower bounds on candidate value function. Since completing
all remaining tasks at once is in the choice set, its value `(x) is an upper bound of the minimized value.
Regarding the lower bound `′(0)x, this is the value that could be obtained if β = 1 (no discounting) and
the agent, having no time constraint, subdivided without limit.
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The negative discount dynamic programming theory turns out to be suitable for studying

a range of competitive equilibrium models that have no direct connection to negative

discount rates. To build this connection, we reinterpret the time index in (2.6) as an

index over some decision making entities, who are required to complete tasks of amount

x̂ together sequentially. Specifically, agent t, who is paid to complete tasks of amount

xt, completes at and pays agent t + 1 to complete xt+1 = xt − at. Due to some friction

between agents, the payment to an agent is the total cost for the agent multiplied by β.

The following equation illustrates this process:

total cost for agent 0 = `(a0) + β
[ total cost for agent 1︷ ︸︸ ︷
`(a1) + β

(
`(a2) + β(. . .)︸ ︷︷ ︸

total cost for agent 2

) ]
.

As a result, (2.6) can be thought of as a social planner’s problem in which the planner

minimizes the total cost of completing tasks of amount x̂.

On the other hand, the Bellman equation (2.7) represents a decentralized problem. Let

w∗(x̂) be the value of (2.6). Then, w∗ can be regarded as a price function such that w∗(x)

gives the price of completing x. Given w∗, the minimum cost of an agent who is paid to

complete x is inf0≤a≤x {`(a) + βw∗(x − a)}. In equilibrium, the total cost of an agent is

equal to the price paid to the agent, so the equilibrium price function is the solution to

the Bellman equation (2.7).

In Chapter 4, we show that the negative discount dynamic program (2.6) and its variants

can be used to study competitive equilibria in models related to production chains, pro-

duction networks, city hierarchy, and the organization of knowledge within firms. In each

model, the equilibrium is the solution to a Bellman equation with negative discounting

and the discount factor β represents frictions such as transaction costs, transportation

costs, or communication costs.





CHAPTER 3

Dynamic Programming with State-Dependent Discounting

3.1. Introduction

This chapter studies discrete-time dynamic programming over infinite horizons with state-

dependent discount factors. Applications of such specifications are prevalent in macroe-

conomics and finance as reviewed in Section 1.3.

In particular, We replace the constant discount factor β in the standard theory with a dis-

count process {βt}, so that time t payoff πt is discounted to present value as Ez
∏t−1

i=0 βi πt

rather than βtEz πt. Here z is the initial condition of an exogenous Markov state pro-

cess that drives evolution of the discount factor. We replace the traditional condition

β < 1 with a weaker “eventual discounting” condition: existence of a t ∈ N such that

supz∈ZEz
∏t−1

i=0 βi < 1. For a finite irreducible state process, this is equivalent to existence

of a t ∈ N such that E
∏t−1

i=0 βi < 1, where E is the unconditional expectation.1

We show that, when eventual discounting holds, (i) the value function satisfies the Bellman

equation, (ii) an optimal policy exists, (iii) Bellman’s principle of optimality holds, and (iv)

value function iteration and Howard policy iteration (Howard, 1960) are both convergent.

When βt is constant at β < 1, eventual discounting holds at t = 1, so these results capture

the standard theory as a special case.

Note that if supz βt < 1, standard contraction mapping arguments can be applied to

the Bellman equation. In this sense, our conditions are most relevant when βt ≥ 1 with

positive probability, which is common in the New Keynesian literature among studies of

the zero lower bound. For example, Christiano et al. (2011) assume that β = 1.02 at

the beginning of a recession and returns to normal with some probability in each period

1As stated above, we assume that the discount factor is driven by an exogenous state process. How-
ever, our methods can also be applied to individual agent problems where endogenous aggregates appear
in the discount factor, provided that the agent treats these aggregates as external to his or her actions.
See, for example, Schmitt-Grohé and Uribe (2003).

19
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afterwards. Also see Eggertsson (2011) and Correia et al. (2013). Fernández-Villaverde

et al. (2015) adopts an AR(1) specification for log(βt) and use a projection method to

solve the model, where the largest β is 1.0066. Similarly, Hills et al. (2019) analyze

tail risk associated with the effective lower bound on the policy rate in a model where

the discount process is a constant multiple of a discretized AR(1) process that regularly

generates value of βt exceeding unity.2

To facilitate easy checking of the eventual discounting condition, we give several equivalent

conditions, which involve the spectral radius of a discounting operator. We show that

eventual discounting is equivalent to the spectral radius being less than one. We provide

guidelines on how to calculate the spectral radius for a range of discount specifications.

For example, a commonly adopted setting is an AR(1) discount process. We show that,

in this case, the eventual discounting condition is more likely to fail when the AR(1)

process has higher mean, higher persistence, or higher volatility. When the logarithm of

the discount factor follows an AR(1) process, we give an analytical expression that can

help us check the eventual discounting condition.

To handle unbounded rewards, we extend two approaches that have been developed previ-

ously for the case of constant discounting. The first one treats homogeneous programs in

the spirit of Alvarez and Stokey (1998) and Stokey and Lucas (1989, Section 9.3). The sec-

ond uses a local contraction method pioneered in Rincón-Zapatero and Rodŕıguez-Palmero

(2003) and further developed by Martins-da Rocha and Vailakis (2010) and Matkowski

and Nowak (2011). In each case, we show how the eventual discounting condition can be

adapted to handle these extensions.

In addition, we study dynamic programming with Epstein–Zin utilities, where rewards

are unbounded above and the Bellman operator is not a contraction in the short or long

run under standard metrics. To solve the problem, we extend earlier work by Marinacci

and Montrucchio (2010), Bloise and Vailakis (2018), and Becker and Rincon-Zapatero

(2018), which exploits the monotonicity and concavity of the aggregator, to allow for

state-dependent discounting. We show that, in the case of Epstein–Zin utility, the eventual

2See Figure 1.1 in Section 1.3 for an illustration. Other studies using an AR(1) specification for the
discount process or its logarithm include Nakata (2016), Hubmer et al. (2020), Albuquerque et al. (2016)
and Schorfheide et al. (2018).
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discounting condition must be adapted to compensate for the role played by elasticity of

intertemporal substitution.

As an application of our theory, we discuss asset pricing in an exchange economy of

Lucas (1978a) for additively separable as well as Epstein–Zin utilities. We prove the

existence and uniqueness of asset prices under different versions of the eventual discounting

conditions.

The use of spectral radii connects our work to a strand of literature in finance that studies

the long-term factorization of stochastic discount factors using eigenfunctions of valuation

operators (see, e.g., Hansen and Scheinkman (2009), Hansen and Scheinkman (2012), and

Qin and Linetsky (2017)). Drawing on these ideas, Borovička and Stachurski (2020)

and Christensen (2020) connect the spectral radius of valuation operators with existence

and uniqueness of recursively defined utilities. However, neither of these papers provides

results on optimality or dynamic programming.

Our work is also related to Toda (2019) and Ma et al. (2020), who investigate an in-

come fluctuation problem that features state-dependent discount factors. Their results

are specialized to optimal savings with additively separable rewards and do not apply

to problems that involve discrete choices, endogenous labor supply, durable goods, or

other common features. In contrast, the theory below is developed in a general dynamic

programming setting, where the state spaces are arbitrary metric spaces. In addition,

their results rely on an consumption policy operator derived from the Euler equation,

which is not universally applicable especially in cases of recursive preferences (see, e.g.,

Albuquerque et al. (2016), Basu and Bundick (2017), Schorfheide et al. (2018), Nakata

and Tanaka (2020), or De Groot et al. (2020)).

In the mathematical literature, Schäl (1975) admits state-dependent discounting in dis-

crete time under rather weak conditions, but he directly assumes that expected discounted

rewards are finite under any Markov policy. This restricts all primitives in the dynamic

program simultaneously and makes the condition impractical for applications.

The rest of this paper is structured as follows. Section 3.2 sets out the model and provides

our main results. Section 3.3 gives examples. Section 3.4 reviews our key assumption.
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Sections 3.5 and 3.6 treat extensions. Section 3.7 discusses an application in asset pricing.

Section 3.8 concludes. All the proofs are in the appendix.

3.2. A Dynamic Program

In what follows, for any metric space Y, the symbols mY, bmY and bcY denote the

(Borel) measurable, bounded measurable and bounded continuous functions from Y to R

respectively. Unless otherwise stated, the last two spaces are endowed with the supremum

norm and this norm is represented by ‖ · ‖. In expressions with products below, we adopt

the convention that
∏n−1

t=0 βt = 1 whenever n = 0.

3.2.1. Framework. The state of the world consists of a pair (x, z), where x and z

represent endogenous and exogenous variables. These variables take values in separable

metric spaces X and Z respectively. The agent responds to (x, z) by choosing future state

x′ from Γ(x, z) ⊂ X, where Γ is the feasible correspondence. Let gr Γ be the graph of Γ,

defined by

gr Γ = {(x, z, x′) ∈ S× X : x′ ∈ Γ(x, z)} where S := X× Z. (3.1)

Similar to Bertsekas (2013), we combine the remaining elements of the dynamic pro-

gramming problem into a single continuation aggregator H, with the understanding that

H(x, z, x′, v) is the maximal value that can be obtained from the present time under the

continuation value function v, given current state (x, z) and next period state x′. The

aggregator H maps each (x, z, x′, v) in gr Γ × bmS into R and is assumed to satisfy, for

all v, w ∈ bmS and all (x, z, x′) ∈ gr Γ,

H(x, z, x′, v) ≤ H(x, z, x′, w) whenever v ≤ w. (3.2)

This basic monotonicity condition is satisfied in all applications of interest. Bellman’s

equation takes the form

v(x, z) = sup
x′∈Γ(x,z)

H(x, z, x′, v). (3.3)

For fixed X and Z, a dynamic program D = (Γ, H) consists of a feasible correspondence

Γ and a continuation aggregator H.
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3.2.2. Feasibility and Optimality. Let D = (Γ, H) be a dynamic program and let

Σ be the set of feasible policies, defined as all Borel measurable maps σ from S to X such

that σ(x, z) ∈ Γ(x, z) for each (x, z) in S. Given such σ, let Tσ be the policy operator on

bmS given by

(Tσv)(x, z) = H(x, z, σ(x, z), v). (3.4)

Define the Bellman operator T on bmS by

(Tv)(x, z) = sup
x′∈Γ(x,z)

H(x, z, x′, v). (3.5)

Given v0 in bmS and σ in Σ, we can interpret vn,σ(x, z) := (T nσ v0)(x, z) as the lifetime

payoff of an agent who starts at state (x, z), follows policy σ for n periods and uses v0

to evaluate the terminal state. The σ-value function for an infinite-horizon problem is

defined here as

vσ(x, z) := lim
n→∞

vn,σ(x, z). (3.6)

The definition requires that this limit exists and is independent of v0. Below we impose

conditions such that this is always the case.

We define the value function corresponding to our dynamic program by

v∗(x, z) = sup
σ∈Σ

vσ(x, z) (3.7)

at each (x, z) in S. A policy σ∗ ∈ Σ is called optimal if it attains the supremum in (3.7)

at each (x, z) in S. We say that Bellman’s principle of optimality holds when

σ ∈ Σ is optimal ⇐⇒ σ(x, z) ∈ arg max
x′∈Γ(x,z)

H(x, z, x′, v∗) for each (x, z) in S.

3.2.3. Assumptions. A dynamic program D = (Γ, H) will be called regular if

(a) Γ is continuous, nonempty, and compact valued and

(b) the function (x, z, x′) 7→ H(x, z, x′, v) is bounded and measurable on gr Γ for all

v ∈ bmS, and also continuous when v ∈ bcS.
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Most standard cases from the literature are regular, including all dynamic programs with

a finite state space.3 Further discussion of regularity is provided in Section 3.3.

Let βt = β(Zt) ≥ 0 for some β ∈ bmZ and Markov process {Zt} on Z with transition kernel

Q.4 Let Ez represent expectation given Z0 = z. We call (β,Q) eventually discounting if

rβn < 1 for some n ∈ N, where

rβn := sup
z∈Z

Ez

n−1∏
t=0

βt.

Example 3.2.1. If there exists a constant b ≥ 0 such that βt ≡ b for all t ≥ 0, then

rβn = bn. Eventual discounting holds if and only if b < 1.

Example 3.2.2. If {Zt} is iid, then rβn =
∏n−1

t=0 Eβt = bn where b := Eβt. Hence eventual

discounting holds if and only if Eβt < 1. In particular, higher moments have no influence

on eventual discounting unless there is persistence.

Section 3.4 provides an extended discussion of eventual discounting for more sophisticated

state processes.

Assumption 3.2.1 (Eventual Contractivity). There is a nonnegative function β in bcZ

and a Feller transition kernel Q on Z such that (β,Q) is eventually discounting and

|H(x, z, x′, v)−H(x, z, x′, w)| ≤ β(z)

∫
|v(x′, z′)− w(x′, z′)|Q(z, dz′) (3.8)

for all v, w ∈ bmS and (x, z, x′) ∈ gr Γ.5

The Feller property means that either Z is discrete or the law of motion is continuous.6

3The continuity and compactness conditions are automatically satisfied when X and Z are finite and
endowed with the discrete topology.

4That is, Q(z,B) = P{Zt+1 ∈ B |Zt = z} for all z ∈ Z and B in the Borel subsets of Z.
5Here we implicitly assume that the discount factor is known to the agent at the beginning of each

period. Our results hold for alternative timing with slight modifications to (3.8). See Section 3.6.1.
6More precisely, we assume that, for any h ∈ bcS, the function (x, z) 7→

∫
h(x, z′)Q(z, dz′) is con-

tinuous. This holds automatically when Z is countable (under the discrete topology). It also holds if Q
is generated by a continuous law of motion, in the sense that Zt+1 = F (Zt,Wt+1) for some continuous
function F and iid sequence {Wt}. These two cases cover all the applications we consider. Further
discussion can be found in Lemma 12.14 of Stokey and Lucas (1989).
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3.2.4. Optimality Results. In the statement of the next theorem, a map M from

a metric space into itself is called eventually contracting if there exists an n in N such

that the n-th iterate Mn is a contraction mapping.7

Theorem 3.2.1. Let D be a dynamic program. If D is regular and Assumption 3.2.1

holds, then the following statements are true:

(a) Tσ is eventually contracting on bmS and T is eventually contracting on bcS.

(b) For each feasible policy σ, the lifetime value vσ is a well defined element of bmS.

(c) The value function v∗ is finite, continuous, and the only fixed point of T in bcS.

(d) At least one optimal policy exists.

(e) Bellman’s principle of optimality holds.

In addition, value function and Howard policy iteration converge:

(f) limk→∞ T
kv = v∗ for all v ∈ bcS and

(g) limk→∞ vσk = v∗ when σk ∈ Σ and Tσkvσk−1
= Tvσk−1

for all k ∈ N.

This theorem extends the core results of dynamic programming theory to the case of state-

dependent discounting. In particular, the value function satisfies the Bellman equation,

an optimal policy exists, and Bellman’s principle of optimality is valid. Value iteration

and policy iteration both lead to the value function, so that we have both existence of an

optimal policy and means to compute it. The proof of Theorem 3.2.1 can be found in the

appendix.

Relative to the results that can be obtained under standard contraction conditions (see,

e.g., Bertsekas (2013)), the only significant weakening of the main findings is that T and Tσ

are eventually contracting, rather than always contracting in one step. Such an outcome

cannot be avoided when values of the discount factor greater than one are admitted.

7More precisely, a self-map M on metric space (Y, ρ) is called eventually contracting if there exists
an n in N and a λ < 1 such that ρ(Mny,Mny′) ≤ λρ(y, y′) for all y, y′ in Y .
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The eventual discounting condition is, in many cases, not just sufficient but also nec-

essary for the dynamic program to be well defined and the optimality results to hold.

Appendix 3.9.7 provides additional discussion.

3.2.5. Blackwell’s Condition. Blackwell’s sufficient condition for a contraction has

a natural analogue in the case of state-dependent discounting. As shown in Proposi-

tion 3.9.4, if the Bellman operator satisfies

[T (v + c)](x, z) ≤ (Tv)(x, z) + β(z)

∫
c(z′)Q(z, dz′) ((x, z) ∈ S)

for all c ∈ bmZ+ where (β,Q) is eventually discounting, then T is eventually contracting

on bcS. As a consequence, T has a unique fixed point in bcS that is globally attracting

under iteration of T . This extends Blackwell’s original result,8 with the caveat that T

might not itself be a contraction. Again, this cannot be avoided when β is allowed to take

values greater than one.9

3.2.6. Monotonicity, Concavity and Differentiability. Next we show that stan-

dard results on monotonicity, concavity, and differentiability of the value function (cf,

e.g., Stokey and Lucas (1989)) are preserved under state-dependent discounting without

additional assumptions on the discount factor process. We assume that X is a convex

subset of R in the discussion below and denote ibcS the set of functions in bcS that are

increasing and concave in x.

Assumption 3.2.2. For all v ∈ ibcS and z ∈ Z, (i) x 7→ H(x, z, x′, v) is increasing for all

x′ ∈ Γ(x, z), (ii) (x, x′) 7→ H(x, z, x′, v) is strictly concave, (iii) Γ(x, z) ⊂ Γ(y, z) for all

x ≤ y, and (iv) the set {(x, x′) : x′ ∈ Γ(x, z)} is convex.

Assumption 3.2.3. The map x 7→ H(x, z, x′, v) is continuously differentiable on intX for

all z ∈ Z, x′ ∈ int Γ(x, z), and v ∈ ibcS.

8The original result states that if an operator T is monotone and there exists a b ∈ (0, 1) such that
T (v+ c) ≤ Tv+ bc for all c ≥ 0, then T is a contraction (see, e.g., Stokey and Lucas, 1989, Theorem 3.3).

9In fact, when T is an eventual contraction on a Banach space, one can construct a complete metric
on the same space under which T is a contraction. See, for example, Krasnosel’skii et al. (1972). Our
terminology on contractions in this section refers specifically to the supremum norm.
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The following theorem shows that the value function v∗ is increasing, strictly concave,

and continuously differentiable in x under standard assumptions.10

Theorem 3.2.2. If D is regular and Assumptions 3.2.1–3.2.2 hold, then x 7→ v∗(x, z)

is increasing and strictly concave and x 7→ σ∗(x, z) is single-valued and continuous for

all z ∈ Z. If, in addition, Assumption 3.2.3 holds, then x 7→ v∗(x, z0) is continuously

differentiable at x0 whenever x0 ∈ intX with σ∗(x0, z0) ∈ int Γ(x0, z0) for some z0, and

v∗x(x0, z0) = Hx(x0, z0, σ
∗(x0, z0), v∗).

Additional comments on these assumptions and results can be found in the applications.

3.2.7. Optimality over Nonstationary Policies. For the sake of simplicity, we

have been restricting our attention to optimality over stationary policies—that is, the

agent chooses the same policy in every period. In fact, if we define λ-value function for a

sequence of feasible policies λ = (σ0, σ1, . . .) by

vλ(x, z) := lim inf
n→∞

(Tσ0Tσ1 . . . Tσnv0)(x, z),

we can reformulate the agent’s problem taking into account nonstationary policies. The

value function over nonstationary policies is defined by

ṽ∗(x, z) = sup
{σt∈Σ}∞t=0

vλ(x, z), ∀x ∈ X, z ∈ Z. (3.9)

We have the following proposition.

Proposition 3.2.3. If D is regular and Assumption 3.2.1 holds, then v∗ = ṽ∗.

Proposition 3.2.3 together with Theorem 3.2.1 says that the optimal stationary policy is

also optimal over nonstationary policies.

10If D is additively separable, sufficiency of the Euler equations and transversality conditions can also
be established, analogous to Section 9.5 of Stokey and Lucas (1989).
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3.3. Examples

In this section we discuss examples of dynamic programs with state-dependent discount-

ing in settings where rewards are bounded and the aggregator are additively separable.

Extensions to unbounded rewards and recursive preferences are deferred to Sections 3.5

and 3.6.

3.3.1. A Generic Additively Separable Problem. Consider the dynamic pro-

gram in Section 9.2 of Stokey and Lucas (1989) with the addition of state-dependent

discounting. The objective is to maximize

E

∞∑
t=0

t−1∏
i=0

βi F (Xt, Zt, Xt+1) s.t. Xt+1 ∈ Γ(Xt, Zt) for all t ≥ 0. (3.10)

As in Stokey and Lucas (1989), F is assumed to be bounded and continuous on gr Γ, while

Γ is a continuous, nonempty, and compact-valued correspondence. We set βt = β(Zt)

where β is continuous, bounded and nonnegative, while {Zt} is Markov with Feller kernel

Q.

We connect this dynamic program to our framework by setting D = (Γ, H) with

H(x, z, x′, v) := F (x, z, x′) + β(z)

∫
v(x′, z′)Q(z, dz′) (3.11)

for all v ∈ bmS. The monotonicity condition (3.2) is clearly satisfied. The function

(x, z, x′) 7→ H(x, z, x′, v) is bounded and Borel measurable on gr Γ because v and F

have these properties, and continuous when v is continuous by the Feller property (see

footnote 6). Hence D is regular.

If (β,Q) is eventually discounting then Assumption 3.2.1 holds, since (3.11) yields

|H(x, z, x′, v)−H(x, z, x′, w)| ≤ β(z)

∣∣∣∣∫ [v(x′, z′)− w(x′, z′)]Q(z, dz′)

∣∣∣∣ ,
and an application of the triangle inequality gives (3.8).
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To connect this application with the definition of optimality given in Section 3.2.2, fix

σ ∈ Σ and v ∈ bmS. The policy operator Tσ from (3.4) can be expressed as

(Tσv)(x0, z0) = F (x0, z0, σ(x0, z0)) + β(z0)E0 v(X1, Z1) (3.12)

where {Xt} is generated by Xt+1 = σ(Xt, Zt), the initial condition is (X0, Z0) = (x0, z0),

and Et conditions on {Zi}i≤t. If we take Tσ, iterate forward n times and apply the law of

iterated expectations, we obtain

(T nσ v)(x0, z0) = E0

n−1∑
t=0

t−1∏
i=0

βiF (Xt, Zt, Xt+1) +E0

n∏
i=0

βiv(Xn, Zn). (3.13)

Recall from (3.6) that, to obtain the value vσ of the policy σ, we take the limit of (3.13) in

n. Eventual discounting implies that the second term vanishes as n→∞.11 In the limit

we obtain as vσ the value in (3.10) under the policy σ. Maximizing over σ in Σ yields the

optimal policy.

The Bellman operator corresponding to D is the map T on bcS defined by

(Tv)(x, z) = max
x′∈Γ(x,z)

{
F (x, z, x′) + β(z)

∫
v(x′, z′)Q(z, dz′)

}
. (3.14)

Since the conditions of Theorem 3.2.1 are satisfied, the unique fixed point of T in bcS is

v∗ := supσ∈Σ vσ, the value function of D. Bellman’s principle of optimality applies and

an optimal policy can be computed by either value function iteration or Howard’s policy

iteration algorithm. Monotonicity, concavity and differentiability of v∗ can be obtained

by imposing the same conditions that Stokey and Lucas (1989) impose on F and Γ and

then applying Theorem 3.2.2.

3.3.2. One-Sector Stochastic Optimal Growth. Consider first the one-sector

stochastic optimal growth model as found in, say, Stokey and Lucas (1989), except that

the discount rate is state-dependent. The agent solves

max
{Ct,Kt}∞t=0

E

{
∞∑
t=0

t−1∏
i=0

β(Zi)u(Ct)

}
11This term is dominated by rβn+1 ‖v‖. Hence it suffices to prove that rβn → 0 as n → ∞. Eventual

discounting implies that rβn < 1 for some n, and, as shown in Proposition 3.4.1 below, this in turn gives
limn→∞(rβn)1/n < 1. But then rβn → 0, as was to be shown.
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subject to Ct = f(Kt, Zt) − Kt+1 ≥ 0, where Kt, Ct, and Zt are consumption, capital,

and exogenous shocks at time t, respectively; u is a one-period return function and f is

a production function. This problem can be mapped to the framework provided in the

previous section by taking capital as the endogenous state and defining the continuation

aggregator by

H(x, z, x′, v) = u(f(x, z)− x′) + β(z)

∫
v(x′, z′)Q(z, dz′).

The endogenous state space X can be set to R+ and Z to be some arbitrary metric space.

The next period state x′ is chosen from the feasible correspondence Γ(x, z) = [0, f(x, z)].

Note that while the same exogenous state z affects both production and the discount rate

under this formulation, there is no loss of generality because the space Z is arbitrary and

hence can support multiple independent processes.

If u and f satisfy standard conditions, as in, say, Section 5.1 of Stokey and Lucas (1989),

then the dynamic program is regular. The previous section implies that we need only

check the eventual discounting condition before applying Theorem 3.2.1. This will be

discussed in detail in Section 3.4.

3.3.3. A Household Savings Problem. The dynamic program associated with the

household problem in Hubmer et al. (2020) can also be placed within our framework. The

continuation aggregator takes the form

H(x, z, x′, v) = u(R(x, z)x+ y(x, z)− x′) + β(z)

∫
v(x′, z′)Q(z, dz′) (3.15)

where x ∈ X := R+ is current assets, z is a vector of exogenous shocks taking values in Rk,

R(x, z) is the gross rate of return on asset holdings (which depends on both exogenous

shocks and current asset holdings) and y(x, z) is labor income net of income tax and

capital gains tax, as well as a lump sum transfer. The utility function is

u(c) :=
c1−γ

1− γ where γ > 1. (3.16)
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Next period assets x′ are constrained to lie in

Γ(x, z) := {x′ ∈ R : x̄ ≤ x′ ≤ R(x, z)x+ y(x, z)}. (3.17)

This problem is not regular because H is not bounded, since u is unbounded below.

However, in solving this dynamic program, Hubmer et al. (2020) reduce both the asset

space X and the exogenous shock space Z to a finite grid. The aggregator is then bounded

and the continuity parts of the regularity condition are automatically satisfied (under

the discrete topology). Hence, to show that all of the conclusions of Theorem 3.2.1

apply, we need only verify that eventual discounting holds. This issue is discussed for the

parameterization in Hubmer et al. (2020) in Section 3.4 below.

3.3.4. Job Search. Our framework is also able to deal with optimal stopping prob-

lems with proper definitions of the primitives. In this section, we demonstrate this using

an elementary job search problem in McCall (1970) except that the agent has state-

dependent discount factors. The basic structure considered here can be modified to deal

with more complicated optimal stopping problems, such as Lucas and Prescott (1974)

and Robin (2011).

An unemployed worker searching for a job is given a wage offer every period. He can

accept the offer and receive this wage every period forever, or he can choose to receive

an unemployment compensation c and wait for another offer next period. Uncertainty is

driven by a Markov process on a metric space Z with stochastic kernel Q. The wage offer

is given by a function w : Z → R+. Since the discount factors are state dependent, the

lifetime utility of accepting an offer at state z is K(z)w(z) where

K(z) :=
∞∑
t=0

(
Ez

t−1∏
i=0

β(Zi)

)
, ∀z ∈ Z.

The Bellman equation is thus

v(z) = max

{
w(z)K(z), c+ β(z)

∫
Z

v(z′)Q(z, dz′)

}
.
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We can study this problem in a generalized version of the framework in 3.2.1. Instead of

directly choosing the next period state, the agent at state (x, z) ∈ S chooses an action

a from an action space A, which is a separable metric space, subject to a ∈ Γ(x, z).

Then H(x, z, a, v) is interpreted as the value obtained by choosing action a under the

continuation value v given current state (x, z).

For the job search problem, we let S = Z, A = {0, 1}, Γ ≡ A, and

H(x, z, a, v) = aw(z)K(z) + (1− a)

[
c+ β(z)

∫
Z

v(z′)Q(z, dz′)

]
.

Then D = (H,Γ) is the associated dynamic program. Note that in this setting, the

endogenous state space X is redundant. In particular, the Bellman operator defined from

D is

(Tv)(z) = max
a∈{0,1}

{
aw(z)K(z) + (1− a)

[
c+ β(z)

∫
Z

v(z′)Q(z, dz′)

]}
= max

{
w(z)K(z), c+ β(z)

∫
Z

v(z′)Q(z, dz′)

}
.

We have the following proposition.

Proposition 3.3.1. If (i) w and β are bounded and continuous, (ii) (β,Q) is eventually

discounting, and (iii) Q has the Feller property, then D is regular and Assumptions 3.2.1

holds. In particular, the conclusions of Theorems 3.2.1 are valid.

3.4. The Discount Condition

In this section we discuss tests for the eventual discounting condition and develop intuition

regarding its value.

3.4.1. Connection to Spectral Radii. Given β and Q as in Assumption 3.2.1, let

Lβ : bmZ→ bmZ be the discount operator defined by

(Lβh)(z) = β(z)

∫
h(z′)Q(z, dz′) (h ∈ bmZ, z ∈ Z). (3.18)
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The next proposition shows that we can test Assumption 3.2.1 by computing the spectral

radius r(Lβ) of the operator Lβ.12 In stating it, we set βt := β(Zt) where {Zt} is a

Z-valued Markov process generated by Q.

Proposition 3.4.1. The spectral radius of Lβ satisfies r(Lβ) = limn→∞(rβn)1/n. Moreover,

(β,Q) is eventually discounting if and only if r(Lβ) < 1.

The expression for r(Lβ) in Proposition 3.4.1 is obtained through a local spectral radius

condition for positive linear operators. It provides both a simple representation of the

spectral radius of Lβ and a link to eventual discounting. For example, it is immediate

from r(Lβ) = limn→∞(rβn)1/n that rβn → 0 when r(Lβ) < 1. This, in turn, implies that

(β,Q) is eventually discounting. The converse implication is more subtle and involves the

Markov property. Details are in the appendix.

3.4.2. Finite Exogenous State. Testing eventual discounting is simple when Z is

finite. In this case, Q can be represented as a Markov matrix of values Qij, giving the

one-step probability of transitioning from zi to zj, and Lβ can be represented as the matrix

Lβ := (βiQij)1≤i,j≤N . (3.19)

Here βi := β(zi) and N is the number of elements in Z. The spectral radius r(Lβ) is equal

to the dominant eigenvalue of Lβ, which is real and nonnegative by the Perron–Frobenius

Theorem. In view of Proposition 3.4.1, eventual discounting holds if and only if this

eigenvalue is strictly less than unity.

Example 3.4.1. Christiano et al. (2011) consider the case βt ∈ {β`, βh} with β` < 1 <

βh. The process {βt} stays at βh with probability p and shifts permanently to β` with

probability 1− p. Thus, by (3.19),

Lβ =

 β` 0

(1− p)βh pβh

 .

12As usual, the spectral radius of a bounded linear operator L from a Banach space B to itself is given
by r(L) := limn→∞ ‖Ln‖1/n, where ‖ · ‖ is the operator norm. This limit always exists and is equal to
infn∈N ‖Ln‖1/n. If B is finite dimensional, it equals the maximal modulus of the eigenvalues of L. See,
for example, Bühler and Salamon (2018), Theorem 1.5.5.
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The eigenvalues are β` and pβh, so r(Lβ) is the maximum of these values. Since β` < 1,

eventual discounting holds if and only if pβh < 1. The condition is violated if the state βh

is too large or too persistent. Christiano et al. (2011) set βh = 1.02 and consider p ≤ 0.82,

so eventual discounting is satisfied. Since their household problem can be treated in the

same way as in Section 3.3.3, all of our results in Section 3.2.4 apply.

3.4.3. Stationary Spectral Radius. The expression obtained for r(Lβ) in Propo-

sition 3.4.1 is a geometric mean, and hence is determined by the asymptotic behavior of

the discount process. When {Zt} is irreducible, it seems likely that these asymptotics will

be independent of the initial condition z. This suggests that the conditional expectation

and supremum in the definition of rβn can be replaced by the unconditional expectation

E for the stationary process. The next proposition confirms this intuition.

Proposition 3.4.2. If Z is finite and the exogenous state process {Zt} is irreducible, then

r(Lβ) satisfies the stationary representation

r(Lβ) = sβ where sβ := lim
n→∞

(sβn)1/n with sβn := E

n−1∏
t=0

βt. (3.20)

Our analysis below shows that this stationary representation is also highly accurate even

when Z is infinite, provided that {Zt} is irreducible and sufficiently mean reverting for

dependence on initial conditions to die out. This is helpful because the stationary repre-

sentation of r(Lβ) sometimes admits analytical solutions that facilitate benchmark calcu-

lations and enhance intuition.13

3.4.4. Autoregressive Specifications. Some studies adopt discount processes that

are autoregressive in levels or logs (e.g., Hubmer et al., 2020; Hills et al., 2019; Nakata,

2016) and then discretize them prior to computation. Such specifications always fit the

dynamic programming framework adopted above after discretization.14 The only remain-

ing issue is whether or not eventual discounting holds. For common reference, all examples

13While finiteness of the state space can be weakened, as discussed above, irreducibility is essential.
To see this, consider the application in Christiano et al. (2011), where the unique stationary distribution
puts all mass on the low state and irreducibility fails. With all mass on the low state we have sβn = (β`)n

for all n, and hence sβ = β`, which differs from r(Lβ) = max{β`, pβh}.
14Recall that β is assumed to be bounded and continuous in Assumption 3.2.1. Both conditions hold

after discretization. (Continuity holds automatically under the discrete topology.)
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use the state process

Zt+1 = ρZt + (1− ρ)µ+ σεεt+1, {εt} iid∼ N(0, 1). (3.21)

3.4.4.1. AR(1) in Levels. We first give examples where βt is a multiple of Zt. After

following the discretization procedure used by the authors, we calculate the spectral radius

of the matrix (3.19).

Example 3.4.2. Hubmer et al. (2020) take the AR(1) specification βt = Zt where {Zt}
follows (3.21) with ρ = 0.992, µ = 0.944 and σε = 0.0006 and discretize the process

onto a grid of 15 states via Tauchen’s method. This gives r(Lβ) = 0.9469, so eventual

discounting holds. This is as expected, since the mean µ is substantially less than one

and low volatility suggests that the impact of stochastic variation is minor.

Example 3.4.3. In Hills et al. (2019), the discount process is βt = bZt where {Zt} obeys

(3.21). They consider several parameterizations, the most empirically motivated of which

is µ = 1, b = 0.99875, ρ = 0.85 and σε = 0.0062. Under this parameterization βt regularly

exceeds one, as observed in the simulated process shown in Figure 1.1. Nonetheless, after

following their discretization procedure and computing the spectral radius of Lβ, we find

r(Lβ) = 0.9996, so eventual discounting holds.

Example 3.4.4. In a similar setting to Example 3.4.3, Nakata (2016) assumes βt = bZt

where {Zt} follows (3.21), µ = 1, b = 0.995, ρ = 0.85, and σε = 0.00395. The process is

discretized onto a grid of 501 points, yielding r(Lβ) = 0.9953.

To illustrate how the stochastic properties of βt affect the size of r(Lβ), we take the

parameterization in Example 3.4.3 as a benchmark and vary the persistence term ρ and

the volatility σε. Other parameters are held constant. Figure 3.1 plots the resulting

values of r(Lβ). The figure shows that higher volatility and higher persistence both

increase r(Lβ), leading to a failure of eventual discounting when r(Lβ) ≥ 1. Note also

that there is a positive interaction between persistence and volatility, with the effect of

each parameter enhanced by the other.
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Figure 3.1. r(Lβ) as a function of ρ and σε; µ = 0.944

Some further insight can be gained by considering the expected two period discount factor

when βt = Zt and {Zt} is as given in (3.21). Under the stationary distribution, which

governs asymptotic outcomes, this evaluates to

Eβtβt+1 = µ2 + ρ
σ2
ε

1− ρ2
. (3.22)

The value in (3.22) depends on the sign of ρ. Positive correlation combined with positive

volatility in the state process leads to a value greater than the stationary mean. This

is because, under positive correlation, positive deviations from the mean tend to occur

consecutively and reinforce each other.

3.4.4.2. AR(1) in Logs. Next we set βt := exp(Zt) where {Zt} obeys the AR(1) specifi-

cation (3.21). This specification is arguably more natural than the direct AR(1) approach

discussed above due to positivity. While the state space is not finite, irreducibility of {Zt}
leads us to conjecture that an approximate version of Proposition 3.4.2 holds, so that the

stationary geometric mean sβ = limn→∞(sβn)1/n for the original process will be close to

r(Lβ) = limn→∞(rβn)1/n when the latter is calculated using an appropriately discretized

version of the process. As shown in Appendix 3.9.6, for the original process we have

sβ = lim
n→∞

(sβn)1/n = lim
n→∞

(
E

n−1∏
t=0

βt

)1/n

= exp

{
µ+

σ2
ε

2(1− ρ)2

}
. (3.23)
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Table 3.1. Comparison of sβ and r(Lβ) after discretization

Parameters N=10 N=200

µ = −0.05 sβ r(Lβ) Error r(Lβ) Error

ρ = 0.90, σε = 0.01 0.956 0.956 2.5e-05 0.956 1.1e-06
ρ = 0.90, σε = 0.02 0.970 0.970 3.9e-04 0.970 1.8e-05

ρ = 0.92, σε = 0.01 0.959 0.959 7.6e-05 0.959 3.5e-06
ρ = 0.92, σε = 0.02 0.981 0.980 1.2e-03 0.981 5.8e-05

ρ = 0.94, σε = 0.01 0.965 0.964 3.2e-04 0.965 1.5e-05
ρ = 0.94, σε = 0.02 1.006 1.001 4.7e-03 1.005 2.5e-04

Numerical experiments show that the expression on the right hand side of (3.23) provides

a good approximation of r(Lβ) even when the discretization is relatively coarse, and an

almost perfect approximation when the discretization is fine. Table 3.1 illustrates by

comparing sβ given by (3.23) and r(Lβ) under two different levels of discretization, for a

range of parameter values.15

Given this tight relationship between sβ and r(Lβ), we can use (3.23) to examine how

the parameters of the state process affect eventual discounting. Consistent with our

previous findings, the expression in (3.23) indicates that r(Lβ) is increasing in all of the

three parameters (although the effect is now exponential). Higher persistence and higher

volatility reinforce each other. The impact of ρ is nonlinear and large in the neighborhood

of unity.

3.5. Unbounded Rewards

In this section we show that the optimality results presented above extend to a range

of unbounded reward settings after suitable modifications. We consider the additively

separable aggregator

H(x, z, x′, v) = u(x, z, x′) + β(z)

∫
v(x′, z′)Q(z, dz′). (3.24)

The continuation value function v is in V, which is the set of all candidate value functions

and varies across applications. As before, β ∈ bcZ and Q is a Feller transition kernel. The

15N is the number of grid points. We use the Rouwenhorst’s method for discretization, which has
strong asymptotic properties in terms of approximating the distributions of Gaussian AR(1) processes
(Kopecky and Suen, 2010). We fix µ because it has no effect on the errors.
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feasible correspondence Γ is assumed to be continuous, nonempty, and compact valued.

The reward function u is continuous but not necessarily bounded. The Euclidean norm

is represented by | · |.

3.5.1. Homogeneous Functions. We begin by extending the core results of Al-

varez and Stokey (1998) to the case of state-dependent discounting. We consider reward

functions that are homogeneous of degree θ ∈ (0, 1] and feasible correspondences that are

homogeneous of degree one.16

Assumption 3.5.1. X is a convex cone in Rk
+ and λx′ ∈ Γ(λx, z) when (x, z, x′) ∈ gr Γ

and λ ≥ 0. For each z ∈ Z, u(·, z, ·) is homogeneous of degree θ, and there exists a B > 0

such that

|u(x, z, x′)| ≤ B(|x|+ |x′|)θ for all (x, z, x′) ∈ gr Γ.

Assumption 3.5.1 follows Alvarez and Stokey (1998). The next assumption generalizes

their growth restriction to problems with state-dependent discounting.

Assumption 3.5.2. There exists an α ≥ 0 in bmZ such that |x′| ≤ α(z)|x| when

(x, z, x′) ∈ gr Γ. In addition, for {Zt} generated by Q,

sup
z∈Z

Ez

n−1∏
t=0

β(Zt)α
θ(Zt) < 1 for some n ∈ N. (3.25)

The function α is a state-dependent upper bound on the growth rate of the state variable.

Comparing to the eventual discounting condition in Section 3.2.3, the extra term αθ(Zt)

in (3.25) reflects the need to take into account the growth restriction when the reward

function is homogeneous and unbounded above. If both β and α are constant, then (3.25)

reduces to the condition αθβ < 1 used in Alvarez and Stokey (1998).

In household problems where the state is asset holdings, the gross asset return bounds the

growth rate of the state. The condition in (3.25) implies that the shocks to the discount

factor and asset return have a similar effect on eventual discounting, but their relative

importance depends on the degree of homogeneity of the reward function.

16Recall that a real-valued f defined on a convex cone C of Rk is homogeneous of degree θ if f(λx) =
λθf(x) for all λ ≥ 0 and x ∈ C.
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Let (hθS, ‖ · ‖h) be the space of continuous functions on S that are homogeneous of degree

θ in x and bounded in the norm defined by

‖f‖h := sup{|f(x, z)| : z ∈ Z, x ∈ X, |x| = 1}. (3.26)

Then hθS is a Banach space (Stokey and Lucas, 1989). To make the problem well defined,

we let v0 ≡ 0 so the σ-value function is given by vσ := limn(Tσ0).

Proposition 3.5.1. Let V = hθS. Under Assumptions 3.5.1–3.5.2, the lifetime value vσ

is well defined and finite on S for any feasible policy σ, the value function v∗ is a unique

fixed point of T on V, T nv → v∗ for all v ∈ V, there exists an optimal policy that is

homogeneous of degree one, and the principle of optimality holds.

Example 3.5.1. Consider the household saving problem in Toda (2019) where the ex-

ogenous state {Zt} is Markovian on Z with stochastic kernel Q. The asset return R

and discount function β are bounded continuous functions of Zt. The utility function is

u(c) = c1−γ/(1− γ) with γ ∈ (0, 1). The budget constraint is Xt+1 = R(Zt)(Xt−Ct) ≥ 0

where Xt is the beginning-of-period wealth and Ct is consumption. The Bellman equation

is

v(x, z) = max
c,x′≥0

{
u(c) + β(z)

∫
v (x′, z′)Q(z, dz′)

}
s.t. x′ = R(z)(x− c).

If we use the constraint to eliminate c in the Bellman equation and let Γ(x, z) = [0, R(z)x],

then Assumption 3.5.1 is satisfied with θ = 1−γ and B = 1/(1−γ). By Proposition 3.4.1,

Assumption 3.5.2 holds if r(Lα) < 1 with Lα defined by

(Lαh)(z) := β(z)R1−γ(z)

∫
h(z′)Q(z, dz′),

where we let the upper bound function α = R. This is a direct extension of the results

in Toda (2019) to the case of infinite Z. In particular, the condition r(Lα) < 1 reduces to

the condition in Proposition 1 of Toda (2019) whenever Z is finite.

3.5.2. Local Contractions. Next we adopt a local contraction approach to dynamic

programs with state dependent discounting and unbounded rewards, extending methods

first developed in Rincón-Zapatero and Rodŕıguez-Palmero (2003). As in the previous

section, the aggregator has the form of (3.24).
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Let cS be all continuous functions on S. Let Z be compact and write X =
⋃
j intKj where

{Kj} is a sequence of strictly increasing and compact subsets of X. Let

‖f‖j := sup
x∈Kj ,z∈Z

|f(x, z)| (f ∈ cS).

Let c > 1 and {mj} be an unbounded sequence of increasing positive real numbers. Let

cmS be all f ∈ cS such that

‖f‖m :=
∞∑
j=1

‖f‖j
mjcj

<∞.

The pair (cmS, ‖ · ‖m) forms a Banach space (Matkowski and Nowak, 2011).

Assumption 3.5.3. Γ(x, z) ⊂ Kj for all x ∈ Kj, all z ∈ Z, and all j ∈ N, and (β,Q) is

eventually discounting in the sense of Section 3.2.3.

Proposition 3.5.2. Under Assumption 3.5.3, the lifetime value vσ is well defined and

finite on S for any σ ∈ Σ, there exists a sequence mj ↑ ∞ such that the value function v∗

is the unique fixed point of T on cmS, T nv → v∗ for all v ∈ cmS, there exists an optimal

policy, and the principle of optimality holds.

Example 3.5.2. Consider a stochastic optimal growth model with state dependent dis-

counting, total production zf(x) and continuous utility u. The feasible correspondence

is Γ(x, z) = [0, zf(x)]. Let X = R+ and let Z ⊂ R+ be compact. Suppose f ′ > 0, f ′′ < 0

and limx→∞ f
′(x) = 0. Let {Kj} be an increasing sequence of compact sets covering X

such that Γ(x, z) ⊂ Kj for all x ∈ Kj.
17 Assumption 3.5.3 holds and Proposition 3.5.2

can be applied if (β,Q) is eventual discounting.

3.6. Further Extensions

We study two further extensions. Section 3.6.1 studies an alternative discount specifica-

tion to the framework in Section 3.2. Section 3.6.2 extends our main results to Epstein-Zin

preferences with unbounded rewards.

17For example, set Kj := [0,M + j] for all j ∈ N, where M is some large constant.
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3.6.1. Alternative Discount Specifications. Discounting methods that differ from

the preceding framework can also be analyzed. To illustrate, we consider the shocks to

long-run discount factors found in Primiceri et al. (2006), Justiniano et al. (2010), Leeper

et al. (2010), and Christiano et al. (2014). Their maximization problems are analogous

to the additively separable problem in Section 3.3.1, with the difference that
∏n−1

t=0 βt is

replaced by bnZn for some constant b. While the discount factor bnZn can be expressed

as
∏n−1

t=0 βt after setting βt := bZt+1/Zt and Z0 = 1, notice that βt is not observable until

t+ 1. Hence inequality (3.8) cannot be used, since it assumes that βt is visible at t.

To handle such cases, one option is to replace inequality (3.8) with

|H(x, z, x′, v)−H(x, z, x′, w)| ≤
∫
β(z′)|v(x′, z′)− w(x′, z′)|Q(z, dz′). (3.27)

Inequality (3.27) integrates over β(z′), supposing that its realization is not observed at

the time that x′ is chosen. We prove in the appendix that Theorem 3.2.1 extends to this

case: the theorem is valid under eventual discounting when (3.27) replaces (3.8).

The set up of Primiceri et al. (2006) and other authors mentioned above satisfies (3.27)

after redefining the aggregator and the exogenous state variable.18 The only question,

then, is whether or not eventual discounting holds. The following proposition shows that,

in many cases, the answer depends only on the value of b in βt := bZt+1/Zt. Stochastic

components are irrelevant.

Proposition 3.6.1. If βt := bZt+1/Zt for all t and {Zt} is positive and bounded, then

eventual discounting holds if and only if b < 1.

The intuition behind Proposition 3.6.1 is that the spectral radius r(Lβ) equals the as-

ymptotic growth rate of the discount factor process. If
∏n−1

t=0 βt = bnZn and Zt is positive

and bounded, the asymptotic growth rate is equal to b.

18To be specific, let the exogenous state variable be Z̃t+1 = (Zt+1, Zt). The aggregator then be-

comes H(x, z, x′, v) = F̃ (x, z, x′) +
∫
β(z′)v(x′, z′)Q̃(z, dz′), where F̃ (Xt, Z̃t, Xt+1) = F (Xt, Zt, Xt+1),

β(Z̃t+1) = bZt+1/Zt, and Q̃ is the transition kernel on Z̃ := Z2 induced by Q.
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3.6.2. Epstein-Zin Preferences. Next we extend the preceding results on dynamic

programming under state-dependent discounting to settings where lifetime utility is gov-

erned by Epstein–Zin preferences. Lifetime utility of an agent satisfies

U(Ct, Ct+1, . . .) =

{
C

1−1/ψ
t + βt

[
EtU

1−γ(Ct+1, Ct+2, . . .)
] 1−1/ψ

1−γ

} 1
1−1/ψ

, (3.28)

where γ is the relative risk aversion and ψ is the elasticity of intertemporal substitution.

The agent maximizes lifetime utility by choosing consumption {Ct} subject to Xt+1 =

Rt(Xt − Ct) ≥ 0. Here Xt is asset holding of the agent at the beginning of time t and

Rt is returns. We focus on the empirically relevant case of γ > 1 and ψ > 1, as in, say,

Bansal and Yaron (2004), Albuquerque et al. (2016), or Schorfheide et al. (2018). This is

the most challenging setting because the usual contraction argument fails and the utility

function is unbounded above.

3.6.2.1. Discounting Continuation Values. Let X = R+, assume that βt and Rt are

functions of the exogenous state, and define the aggregator H by

H(x, z, c, v) =

{
c1−1/ψ + β(z)

[∫
v (R(z)(x− c), z′)1−γ

Q(z, dz′)

] 1−1/ψ
1−γ

} 1
1−1/ψ

, (3.29)

where x, z, and c are asset holding, exogenous state, and consumption, respectively,

satisfying c ∈ Γ(x, z) = [0, x].

Assumption 3.6.1. The functions β and R are nonnegative elements of bmZ. In addition,

for {Zt} generated by Q, we have

sup
z∈Z

Ez

n−1∏
t=0

β(Zt)
1/(1−1/ψ)R(Zt) < 1 for some n ∈ N. (3.30)

Assumption 3.6.1 is an eventual discounting condition for the Epstein–Zin case. It is

modified to take into account both the underlying growth rate, as in Assumption 3.5.2,

and also the role of elasticity of intertemporal substitution. (Intuition and numerical

applications are provided below.)

Let V be all f ∈ mS such that ‖f‖I := supx∈X,z∈Z |f(x, z)/(1 + x)| is finite. We show in

Appendix 3.9.5.2 that there exists an upper bound function v̂ ∈ V such that Tσ is a self
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map on the order interval [0, v̂] ⊂ V with the pointwise partial order. Then we show that

vσ := limn(T nσ 0) is well defined on the order interval and is a fixed point of Tσ. In addition,

if σ satisfies an interiority condition, the fixed point is unique. See Proposition 3.9.6.

Let V̂ be the space of functions in V that are homogeneous of degree one in x. Our main

result for this section is as follows.

Proposition 3.6.2. If Assumption 3.6.1 holds, then v̄ := limn→∞ T
n0 is a well defined

element of V̂ and equal to the value function. There exists an optimal policy σ∗ ∈ Σ that

is homogeneous of degree one in x and the principle of optimality holds.

Notice that Proposition 3.6.2 contains no analogue of the eventual contraction condition

in Assumption 3.2.1. This is because, as mentioned above, T and Tσ are not contraction

mappings under conventional metrics. Instead, the proof uses monotonicity and a form

of concavity inherent in Epstein–Zin preferences, combined with fixed point results due

to Marinacci and Montrucchio (2010).

3.6.2.2. Alternative Preference Shocks. While (3.28) parallels the definitions in, say,

Epstein and Zin (1989), Nakata and Tanaka (2020) and De Groot et al. (2020), other

studies introduce preference shocks to current consumption (Albuquerque et al., 2016;

Schorfheide et al., 2018). In this setting, lifetime utility satisfies

U(Ct, Ct+1, . . .) =

{
λtC

1−1/ψ
t + b

[
EtU

1−γ(Ct+1, Ct+2, . . .)
] 1−1/ψ

1−γ

} 1
1−1/ψ

, (3.31)

where b < 1 is a fixed constant and {λt} is a preference shock.19 As we now show, the

preceding analysis can be brought to bear on this case as well.

Using homogeneity and dividing both sides of (3.31) by λ
1/(1−1/ψ)
t yields

Ũt =

C1−1/ψ
t + b

[
EtŨ

1−γ
t+1

(
λt+1

λt

) 1−γ
1−1/ψ

] 1−1/ψ
1−γ


1

1−1/ψ

, (3.32)

19Some authors also place an additional term (1−b) before λt. This is inconsequential to our optimality
results since we can simply redefine λt to include (1− b).
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where Ũt := U(Ct, Ct+1, . . .)/λ
1/(1−1/ψ)
t . If λt+1/λt is measurable with respect to the time-t

information set, then (3.32) becomes

Ũt =

{
C

1−1/ψ
t + bδt

[
EtŨ

1−γ
t+1

] 1−1/ψ
1−γ

} 1
1−1/ψ

, (3.33)

where δt := λt+1/λt. This is the same as the original Koopmans equation in (3.28) with

βt = bδt.
20 Optimality results from the previous section can now be applied. In particular,

Proposition 3.6.2 can be directly applied to the agent’s problem in Albuquerque et al.

(2016).

3.6.2.3. Interpretation. Condition (3.30) is the key restriction required for Proposi-

tion 3.6.2 and elasticity of intertemporal substitution plays a role. To illustrate the impli-

cations of the condition, we consider the study of Albuquerque et al. (2016), who adopt

the specification in (3.31) with δt := λt+1/λt satisfying log δt = ρ log δt−1 + σεεt. In view

of the discussion in Section 3.6.2.2, we can study optimality by applying the eventual dis-

counting condition (3.30) to the transformed representation (3.33). By a result analogous

to Proposition 3.4.1, condition (3.30) is equivalent to r(LR) < 1 with LR defined by

(LRh)(z) := β(z)1/(1−1/ψ)R(z)

∫
h(z′)Q(z, dz′). (3.34)

One way to obtain insight on the value r(LR) is to use the stationary approximation

s := limn→∞ s
1/n
n , where sn := E

∏n−1
t=0 β

1/(1−1/ψ)
t Rt. The advantage of the stationary ap-

proximation is that, if we specialize to R(z) ≡ R, then we obtain the analytical expression

s = R exp

(
1

1− 1/ψ
log b+

1

(1− 1/ψ)2

σ2
ε

2(1− ρ)2

)
. (3.35)

(See Appendix 3.9.6 for details.) Analogous to the findings in Section 3.4.4.2 (cf. Ta-

ble 3.1), this stationary representation closely approximates r(LR) for a discretized version

with moderately fine grid.

The expression in (3.35) sheds light on the role that elasticity of intertemporal substitution

plays in eventual discounting. The impact of ψ in (3.35) is not monotone because the

20The equivalence between βt and bλt+1/λt is demonstrated in De Groot et al. (2020) using the Euler
equation in an expected utility setting.



3.6. FURTHER EXTENSIONS 45

mean term log b is typically negative, while the volatility term σ2
ε/(2(1− ρ)2) is positive.

Nonetheless, we can understand the impact of ψ by the relative weight placed on the

mean and volatility terms: 1/(1− 1/ψ) enters (3.35) directly for the mean and is squared

on the volatility term. Hence, as ψ rises and 1/(1 − 1/ψ) falls, the relative importance

of b in determining r(LR) increases. Conversely, as ψ ↓ 1, the volatility term increasingly

dominates.

Intuitively, if ψ is large, then the agent is more willing to shift consumption across time,

so the volatility in the discount factor plays a lesser role. Conversely, when ψ is small,

consumption cannot shift as freely to compensate for fluctuations in the discount factor.

Hence volatility in the discount factor has a large impact on lifetime utility.

3.6.2.4. Numerical Analysis. In the applications discussed in Section 3.4.2, discount

dynamics are driven by Gaussian AR(1) processes, where standard discretization methods

are available and eventual discounting is easy to test. In some recent studies, however,

discounting is driven by a Markov process and additional innovations, as in Albuquerque

et al. (2016), or stochastic volatility, as in Basu and Bundick (2017). For such cases, one

can either use a more sophisticated discretization procedure (see, e.g., Farmer and Toda

(2017)) or use Monte Carlo.

To illustrate the Monte Carlo method, we return to the model in Albuquerque et al.

(2016) studied above, where the eventual discounting condition is (3.30), or equivalently,

r(LR) < 1 with LR defined in (3.34). An analytical expression was obtained in (3.35)

for the case when Rt is constant, but in Albuquerque et al. (2016) this is not the case.

Nonetheless, by the strong law of large numbers, we can approximate each sn by generating

m independent simulated paths of {βt, Rt} and calculating

ŝn =
1

m

m∑
i=1

n−1∏
t=0

β
1/(1−1/ψ)
i,t Ri,t. (3.36)

Using the parameters in Albuquerque et al. (2016), we find that ŝ
1/n
n increases with n and

exceeds one when n is large, as shown in Table 3.2.21 This is in line with the analytical

21We treat the baseline model in Albuquerque et al. (2016), where γ = 1.516 and ψ = 1.4567. There
are three exogenous states: preference shock xt, log consumption growth ∆ct, and log price consumption
ratio zct. The discount factor is βt = bext with xt = ρxt−1 + σεt, b = 0.99795, ρ = 0.99132, and σ =
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Table 3.2. Calculate r(LR) Using Monte Carlo Method

Length of Paths n = 100 n = 200 n = 500 n = 1000

Estimate of r(LR) 1.00355 1.00698 1.01220 1.01321
Standard Error (0.00004) (0.00008) (0.00045) (0.00054)

expression given by (3.35), which yields s = 1.0168 if we fix Rt ≡ 1. Hence eventual

discounting fails under their parameterization.22

3.6.2.5. The Role of Elasticity of Intertemporal Substitution. In a New Keynesian

model with preference similar to (3.31) studied by Basu and Bundick (2017), De Groot

et al. (2018) show that the responses to discount factor shocks explode when the elas-

ticity of intertemporal substitution approaches one, and that this issue disappears if βt

is constant. This matches (3.35). If the volatility term is not zero, then r(LR) becomes

arbitrarily large as ψ approaches one. Hence it appears that the large responses found

in De Groot et al. (2018) are the result of an ill-defined household problem that fails

the eventual discounting condition. If βt ≡ b, then (3.35) becomes b1/(1−ψ)R. Letting ψ

approach one will push down r(LR) instead so the issue disappears.

In De Groot et al. (2018), the asymptote in the responses is attributed to the distributional

weights on current and future utility not summing to one. They propose an alternative

setting where current utility is weighted by 1 − βt and future utility is weighted by βt

with βt < 1. We show in the appendix that the eventual discounting condition for this

specification is the same as Assumption 3.6.1. Since βt is assumed to be strictly less than

one in De Groot et al. (2018), we let βt ≤ b for some b < 1 and assume fixed returns.

Then (3.35) implies that r(LR) ≤ b1/(1−1/ψ)R. The previous discussion shows that, in this

case, eventual discounting holds when ψ approaches one. This provides an alternative

0.00058631. The logarithm of returns satisfies rt+1 = κc0+κc1zct+1−zct+∆ct+1 where zct = Ac0+Ac1xt
and ∆ct+1 = µ + σcε

c
t+1 with µ = 0.0015644 and σc = 0.0069004. The remaining parameters can be

solved as detailed in their Internet Appendix, giving κc0 = 0.023108, κc1 = 0.99653, Ac0 = 5.6605, and
Ac1 = 82.519. We run a large number of simulations (m = 100000) for each experiment to ensure that ŝn is
close to sn. The last row lists the standard error for each estimate by calculating the standard deviation

of 1000 simulated ŝ
1/n
n with ŝn replaced by an approximating normal distribution for computational

efficiency.
22We have not shown the eventual discounting condition to be necessary in the Epstein–Zin case,

so the optimization problem in Albuquerque et al. (2016) might still be well defined. The quantitative
exercise in Albuquerque et al. (2016) does not shed light on this issue because they do not solve the
agent’s optimization problem directly. Instead, they assume that a solution exists and use it to derive
asset pricing moments.
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explanation of why the model does not produce an asymptote in responses to discount

factor shocks.

3.7. Application: Asset Pricing in an Exchange Economy

In this section, we apply our theory to an exchange economy of Lucas (1978a) and study

the asset pricing implications of state-dependent discounting.

The economy consists of a representative agent and a productive asset in unit supply.23

Uncertainty is driven by an exogenous Markov state process {Zt} on Z with a Feller

stochastic kernel Q. Given exogenous state z, one unit of asset pays dividend d(z) and is

sold at price p(z). The agent maximizes lifetime utility subject to budget constraint

Ct + p(Zt)Xt+1 ≤ d(Zt)Xt + p(Zt)Xt (3.37)

where Ct is consumption and Xt ∈ X = R+ is asset holding of the agent at time t. In

equilibrium, the agent holds one unit of asset and consumes all its dividend in every

period. We aim to prove the existence and uniqueness of a price function that supports

such an equilibrium.

3.7.1. Additively Separable Preferences. Consider first the case where the agent

is an expected utility maximizer with state-dependent discount factors. The Bellman

equation is

v(x, z) = max
x′∈Γ(x,z)

{
u(F (x, z, x′)) + β(z)

∫
v(x′, z′)Q(z, dz′)

}
where F (x, z, x′) := d(z)x+p(z)(x−x′) corresponds to consumption given current-period

asset x, next-period asset x′, and exogenous state z, and the feasible correspondence is

Γ(x, z) = {x′ ∈ [0, x̄] : p(z)x′ ≤ d(z)x+ p(z)x} ,

where x̄ is a number larger than one.

23For ease of notation, we consider a single asset. It is straightforward to extend the results to an
economy with a finite number of assets.
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Assume that u : X → R+ is bounded, continuously differentiable, strictly concave, and

satisfies u(0) = 0. Further assume that (β,Q) is eventually discounting. Then Theo-

rems 3.2.1 and 3.2.2 imply that, given any price function p, there exists a unique solution

v∗ to the Bellman equation and v∗ is increasing, strictly concave, continuously differen-

tiable. Moreover, there exists an optimal policy σ∗ such that the envelope condition

v∗x(x, z) = (d(z) + p(z))u′(F (x, z, σ∗(x, z)))

holds. It follows that in equilibrium,

u′(d(z))p(z) = β(z)

∫
[d(z′) + p(z′)]u′(d(z′))Q(z, dz′).

Following Lucas (1978a), we define g(z) := β(z)
∫
d(z′)u′(d(z′))Q(z, dz′) and consider the

functional equation

f(z) = g(z) + β(z)

∫
f(z′)Q(z, dz′). (3.38)

If there exists f that satisfies (3.38), then the price function is given by p(z) = f(z)/u′(d(z)).

Define the operator Tg by

(Tgf)(z) := g(z) + β(z)

∫
f(z′)Q(z, dz′). (3.39)

Then Tg is a self map on bcZ and is eventually contracting. Hence, there exists a unique

f ∗ ∈ bcZ that satisfies (3.38) and the unique price function p∗ is given by p∗(z) =

f ∗(z)/u′(d(z)).

3.7.2. Epstein-Zin Preferences. Now suppose that the agent has Epstein-Zin pref-

erences with discount factor shocks as in Section 3.6.2. Write asset returns as

Rt+1 =
d(Zt+1) + p(Zt+1)

p(Zt)
.

Then, the budget constraint (3.37) becomes X̃t+1 ≤ Rt+1(X̃t−Ct), where X̃t := d(Zt)Xt+

p(Zt)Xt. Proposition 3.6.2 implies that the value function and optimal policy are homoge-

neous of degree one in x. Let the value function be v∗(x, z) = xh(z) and optimal consump-

tion be c∗(x, z) = xc(z). It follows from the first order condition that h(z) = [c(z)]−ρ/(1−ρ),
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where ρ = 1/ψ. Plugging it to the Bellman equation gives24

1 = βθ(z)

{∫ (
c∗(x′, z′)

c∗(x, z)

)−ρθ (
d(z′) + p(z′)

p(z)

)θ
Q(z, dz′)

}1/θ

,

where θ := (1−γ)/(1−ρ). In equilibrium, the agent consumes all the dividend and hence

c∗(x, z) = d(z) for all (x, z) ∈ S. Then, a price function p supports the equilibrium if it

satisfies

p(z) = β(z)

{∫ (
d(z′)

d(z)

)−ρθ
(d(z′) + p(z′))

θ
Q(z, dz′)

}1/θ

. (3.40)

Define function f by

f(z) :=
(
d(z)1−ρ + d(z)−ρp(z)

)θ
.

The equilibrium condition (3.40) implies that f satisfies

f(z) = (Tdf)(z) :=

{
d(z)1−ρ +

(
β(z)θ

∫
f(z′)Q(z, dz′)

)1/θ
}θ

.

Then, finding a equilibrium price function amounts to finding a fixed point of Td.

Assume that Z is compact and d, β ∈ bcZ are strictly positive. Then Td is a self map

on bcZ+. Theorem 1 of Borovička and Stachurski (2020) implies that a necessary and

sufficient condition for Td to have a unique fixed point in bmZ+ is r(Lθ) < 1, where Lθ is

defined by

Lθh(z) := β(z)θ
∫
Z

h(z′)Q(z, dz′).

Let f ∗ = Lθf
∗. Then the equilibrium price function p∗ is given by

p∗(z) = d(z)ρf ∗(z)1/θ − d(z).

3.8. Conclusion

We introduce a weak discounting condition and show that, under this condition, standard

infinite horizon dynamic programs with state-dependent discount rates are well defined

and well behaved. The value function satisfies the Bellman equation, an optimal policy

exists, Bellman’s principle of optimality is valid, value function iteration converges and so

24Also see Epstein (1988) for a similar derivation in the constant discounting case.
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does Howard’s policy iteration algorithm. The method can be applied to a broad range of

dynamic programming problems, including those with discrete choices, continuous choices

and recursive preferences.

We connect eventual discounting to a spectral radius condition and provide guidelines

on how to calculate the spectral radius for a range of discount specifications. We show

that the condition is more likely to fail when the discount process has higher mean,

persistence, or volatility. For models with Epstein–Zin preferences and state-dependent

discount factors, the condition also depends on the elasticity of intertemporal substitution.

One natural open question is: how do our results translate into continuous time? It

would also be valuable to understand how the results change if discounting depends on

endogenous states and actions. Finally, more research is needed on how close to necessary

the eventual discounting conditions are for recursive preference models, and especially

those involving long run risks, since these models generate realistic asset price processes

by driving their parameterizations close to the boundary between stability and instability.

These questions are left to future research.

3.9. Appendix

In what follows, we consider the dynamic program described in Section 3.2.1.

3.9.1. Proofs for Section 3.2.

3.9.1.1. Proof of Theorem 3.2.1. For each σ ∈ Σ, let Tσ be defined on bmS by (3.4).

Let T be defined on bcS by (3.5). We prove part (a) through two lemmas.

Lemma 3.9.1. If σ ∈ Σ, then Tσ is eventually contracting on bmS.

Proof. Fix σ ∈ Σ and v ∈ bmS. The map Tσv is Borel measurable on S by the

regularity conditions and measurability of σ. It is bounded by the assumption that H is

bounded. Hence Tσ is a self-map on bmS. To see that it is eventually contracting, fix

(x, z) in S and observe that, by Assumption 3.2.1,

|(Tσv)(x, z)− (Tσw)(x, z)| = |H(x, z, σ(x, z), v)−H(x, z, σ(x, z), w)|
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≤ β(z)

∫
|v(σ(x, z), z′)− w(σ(x, z), z′)|Q(z, dz′)

for any v, w ∈ bmS. We can write this expression as

|Tσv − Tσw| ≤ Kσ|v − w|, (3.41)

where Kσ is the operator defined by

(Kσh)(x, z) := β(z)

∫
h(σ(x, z), z′)Q(z, dz′) (h ∈ bmS, z ∈ Z).

Since β ∈ bcZ, Kσ is a self-map on bmS. Since Kσ is order preserving, we can iterate

on (3.41) to obtain |T nσ v − T nσw| ≤ Kn
σ |v − w| for all n ∈ N.

Let {Zt} be a Markov process generated by Q and started at z, let βt = β(Zt), and let {Xt}
be the controlled Markov process generated by Xt+1 = σ(Xt, Zt) with (X0, Z0) = (x, z).

We then have (Kσh)(x, z) = Ex,z β0 h(X1, Z1) and, iterating on this equation,

(Kn
σh)(x, z) = Ex,z β0β1 · · · βn−1 h(Xn, Zn) ≤ rβn‖h‖. (3.42)

Since |T nσ v− T nσw| ≤ Kn
σ |v−w|, taking the supremum yields ‖T nσ v− T nσw‖ ≤ rβn‖v−w‖.

It now follows from the eventual discounting property that T nσ is a contraction for some

n ∈ N. Hence Tσ is eventually contracting. �

Lemma 3.9.2. The operator T is eventually contracting on bcS.

Proof. Fix v ∈ bcS. The map Tv is continuous on S by regularity and Berge’s

Maximum Theorem (Aliprantis and Border, 2006, Theorem 17.31). It is bounded by

boundedness of H. Hence T is a self-map on bcS. To see that it is eventually contracting,

fix (x, z) in S and observe that, by Assumption 3.2.1,

|(Tv)(x, z)− (Tw)(x, z)| ≤ max
x′∈Γ(x,z)

|H(x, z, x′, v)−H(x, z, x′, w)|

≤ max
x′∈Γ(x,z)

β(z)

∫
|v(x′, z′)− w(x′, z′)|Q(z, dz′)

for any v, w ∈ bcS. We can write this expression as

|Tv − Tw| ≤ K|v − w|, (3.43)
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where K is the operator on bcS defined by

(Kh)(x, z) := max
x′∈Γ(x,z)

β(z)

∫
h(x′, z′)Q(z, dz′) (h ∈ bcS, z ∈ Z).

It follows from regularity and the Feller property (see footnote 6) that (x′, z) 7→
∫
h(x′, z′)Q(z, dz′)

is continuous. Since β ∈ bcZ, it follows from the maximum theorem that K is a self-map

on bcS. Since K is order preserving, we can iterate on (3.43) to obtain |T nv − T nw| ≤
Kn|v − w| for all n ∈ N.

Now set h := |v−w|, let {Zt} be a Markov process generated by Q with initial condition

z and let βt = β(Zt). We then have (Kh)(x, z) = maxx1∈Γ(x,z)Ez β0 h(x1, Z1) and hence

(K2h)(x, z) = max
x1∈Γ(x,z)

Ez β0 (Kh)(x1, Z1)

= max
x1∈Γ(x,z)

Ez β0 max
x2∈Γ(x1,Z1)

EZ1 β1 h(x2, Z2)

≤ ‖h‖Ez β0β1.

More generally, for arbitrary n ∈ N, we have (Knh)(x, z) ≤ rβn‖h‖. Since |T nv − T nw| ≤
Knh, taking the supremum gives ‖T nv−T nw‖ ≤ rβn‖v−w‖ for all n ∈ N. It follows from

eventual discounting that T n is a contraction for some n ∈ N and hence T is eventually

contracting. �

We have an immediate corollary to Lemma 3.9.1 and 3.9.2.

Corollary 3.9.3. If v0 ∈ bmS, the σ-value function vσ is the unique fixed point of Tσ in

bmS and T nσ v → vσ for all v ∈ bmS. The Bellman operator T has a unique fixed point v̄

in bcS and T nw → v̄ for all w ∈ bcS.

Proof. By Lemma 3.9.1 and a generalized Contraction Mapping Theorem (see, e.g.,

Cheney, 2013, Section 4.2), Tσ is globally stable on bmS. Hence, if v0 ∈ bmS, vσ is the

unique fixed point of Tσ in bmS and T nσ v → vσ for all v ∈ bmS. The claim for T follows

similarly from Lemma 3.9.2. �

Part (b) follows directly from Corollary 3.9.3.
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Next we show that v̄ given by Corollary 3.9.3 is the value function. First note that

v̄ = T v̄ ≥ Tσv̄ by definition. Iterating Tσ on both sides and using (3.2), we have v̄ ≥ T nσ v̄.

Taking n to infinity, it follows from Corollary 3.9.3 that v̄ ≥ vσ. Taking the supremum

over Σ gives v̄ ≥ v∗.

For the other direction, regularity and the measurable maximum theorem (Aliprantis and

Border, 2006, Theorem 18.19) ensure that there exists a σ∗ ∈ Σ such that Tσ∗ v̄ = T v̄.

Then we have Tσ∗ v̄ = v̄. Because v̄ ∈ bcS ⊂ bmS and Tσ∗ has a unique fixed point in bmS

by Corollary 3.9.3, v̄ = vσ∗ . By the definition of v∗, we have v∗ ≥ vσ∗ = v̄. Therefore,

v∗ = v̄ and σ∗ is the optimal policy. This proves (c) and (d).

One direction of the Bellman’s principle of optimality is implied in the argument above.

For the other direction, if a policy σ is optimal, then vσ = v∗. It follows from Corol-

lary 3.9.3 that v∗ = Tσv
∗. Since v∗ = v̄ is the fixed point of T , Tσv

∗ = Tv∗. This proves

(e).

Part (f) is valid by Corollary 3.9.3 and the fact that v̄ = v∗.

For part (g), the following proof is adapted from Bertsekas (2013, Proposition 2.4.1).

Let {σk} ⊂ Σ satisfy Tσkvσk−1
= Tvσk−1

. By definition, Tσkvσk−1
= Tvσk−1

≥ Tσk−1
vσk−1

=

vσk−1
. By inequality (3.2), applying Tσk to both sides repeatedly gives T nσkvσk−1

≥ Tvσk−1
≥

vσk−1
. Taking n to infinity, it follows from Corollary 3.9.3 that vσk ≥ Tvσk−1

≥ vσk−1
. An

inductive argument implies that v∗ ≥ vσk ≥ T kvσ0 . Taking k to infinity, Corollary 3.9.3

then implies that vσk → v∗.

3.9.1.2. Blackwell’s Condition.

Proposition 3.9.4 (Blackwell’s Condition). Let D = (Γ, H) be a regular dynamic pro-

gram. If there exists a nonnegative function β ∈ bcZ and a Feller transition kernel Q on

Z such that (β,Q) is eventually discounting and the Bellman operator satisfies

[T (v + c)](x, z) ≤ (Tv)(x, z) + β(z)

∫
c(z′)Q(z, dz′) (3.44)

for all (x, z) ∈ S, v ∈ bcS, and c ∈ bmZ+, then T is eventually contracting on bcS.
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Proof of Proposition 3.9.4. For any v, w ∈ bcS, we have

v(x, z)− w(x, z) ≤ sup
x′∈X
|v(x′, z)− w(x′, z)| =: c(z)

for all (x, z) ∈ S, where c is lower semicontinuous (Aliprantis and Border, 2006, Lemma

17.29) and thus c ∈ bmZ+. Inequality (3.44) implies that

[T (v + c)](x, z) ≤ (Tv)(x, z) + β(z)

∫
sup
x′∈X
|v(x′, z′)− w(x′, z′)|Q(z, dz′).

It then follows from (3.2) that

(Tv)(x, z) ≤ (Tw)(x, z) + β(z)

∫
sup
x′∈X
|v(x′, z′)− w(x′, z′)|Q(z, dz′).

Exchanging the roles of v and w, we have

|(Tv)(x, z)− (Tw)(x, z)| ≤ β(z)

∫
sup
x′∈X
|v(x′, z′)− w(x′, z′)|Q(z, dz′).

Iterating on the above inequality, it follows from a similar argument to the proof of

Lemma 3.9.2 that ‖T nv − T nw‖ ≤ rβn‖v − w‖. Since T is a self map on bcS, it follows

from eventual discounting that T is eventually contracting. �

3.9.1.3. Monotonicity, Concavity, and Differentiability.

Proof of Theorem 3.2.2. Since ibcS is a closed subset of bcS, it suffices to show

that T maps ibcS to functions in ibcS that are strictly concave in x. For monotonicity,

pick any z ∈ Z and v ∈ ibcS. Then for any y ≥ x,

(Tv)(y, z) = H (y, z, σ∗(y, z), v)

≥ H (y, z, σ∗(x, z), v)

≥ H (x, z, σ∗(x, z), v) = (Tv)(x, z),

where the first inequality holds because σ∗(x, z) ∈ Γ(x, z) ⊂ Γ(y, z) and the second

inequality holds because H is increasing in x by Assumption 3.2.2. For concavity, pick

any x, y satisfying x 6= y and θ ∈ (0, 1) and define xθ = θx+(1−θ)y. Then, for any z ∈ Z
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and v ∈ ibcS,

θ(Tv)(x, z) + (1− θ)(Tv)(y, z) = θH (x, z, σ∗(x, z), v) + (1− θ)H (y, z, σ∗(y, z), v)

< H (xθ, z, θσ
∗(x, z) + (1− θ)σ∗(y, z), v)

≤ H (xθ, z, σ
∗(xθ, z), v) = (Tv)(xθ, z),

where the first inequality holds because (x, x′) 7→ H(x, z, x′, v) is strictly concave and the

second inequality holds because θσ∗(x, z)+(1−θ)σ∗(y, z) ∈ Γ(xθ, z) by Assumption 3.2.2.

The strict concavity of H and the maximum theorem imply that x 7→ σ∗(x, z) is single-

valued and continuous.

Now we add Assumption 3.2.3 and consider differentiability. Since σ∗(x0, z0) ∈ int Γ(x0, z0)

and Γ is continuous, there exists an open neighborhood O of x0 such that σ∗(x0, z0) ∈
int Γ(x, z0) for all x ∈ O. On O we define W (x) := H (x, z0, σ

∗(x0, z0), v∗). Then

W (x) ≤ v∗(x, z0) on O and W (x0) = v∗(x0, z0). The claim follows then from Assump-

tion 3.2.3 and Benveniste and Scheinkman (1979). �

3.9.1.4. Optimality over Nonstationary Policies. Let vλ and ṽ∗ be defined as in Sec-

tion 3.2.7.

Proof of Proposition 3.2.3. The proof is adapted from Bertsekas (2013, Chapter

2). Since the set of nonstationary policies includes all stationary policies, we have v∗ ≤ ṽ∗.

By (3.2) and the definition of T , we have for every λ = (σ0, σ1, . . .),

vλ(x, z) = lim inf
n→∞

(Tσ0Tσ1 . . . Tσnv0)(x, z)

≤ lim
n→∞

(T n+1v0)(x, z).

Since D is regular and Assumption 3.2.1 is satisfied, we can apply Theorem 3.2.1, which

implies that vλ ≤ v∗ for every λ. Taking supremum over all λ gives ṽ∗ ≤ v∗. This

completes the proof. �

3.9.2. Proofs for Section 3.3.
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Proof of Proposition 3.3.1. For any v1, v2 ∈ bcS, we have

|H(x, z, a, v1)−H(x, z, a, v2)| = (1− a)β(z)

∣∣∣∣∫
Z

(v1(z′)− v2(z′))Q(z, dz′)

∣∣∣∣
≤ β(z)

∫
Z

|v1(z′)− v2(z′)|Q(z, dz′).

Since (β,Q) is eventually discounting, Assumption 3.2.1 is satisfied. It is apparent that

the feasible correspondence Γ ≡ {0, 1} is continuous, nonempty, and compact valued. It

follows from Proposition 3.4.1 and the Cauchy root test that K(z) is well defined and

finite for all z ∈ Z. Since w and β are bounded and continuous and Q is Feller, D is

regular if we can show that K is continuous.

Since Q is Feller, SN(z) :=
∑N

t=1Ez

∏t−1
i=0 β(Zi) is bounded and continuous for all N ∈ N.

Since SN is nonnegative, it follows from Tonelli’s theorem that limN→∞ SN is continuous.

Therefore, K is continuous and D is a regular dynamic program. The proposition then

follows from Theorem 3.2.1. �

3.9.3. Proofs for Section 3.4.

Proof of Proposition 3.4.1. Since β ∈ bcZ, Lβ defined in (3.18) is a bounded

linear operator. It follows from Theorem 1.5.5 of Bühler and Salamon (2018) that r(Lβ) :=

limn→∞ ‖Lnβ‖1/n always exists and is bounded above by ‖Lβ‖ = supz β(z).

Let 1 ≡ 1 on Z. For each z ∈ Z and n ∈ N, an inductive argument gives

Ez

n−1∏
t=0

β(Zt) = Lnβ1(z). (3.45)

Thus, eventual discounting can be written as ‖Lnβ1‖ < 1 for some n ∈ N. Applying

Theorem 9.1 of Krasnosel’skii et al. (1972), since (i) Lβ is a positive linear operator on

bmZ, (ii) the positive cone in this set is solid and normal under the pointwise partial

order25, and (iii) 1 lies interior to the positive cone in bmZ, we have

r(Lβ) = lim
n→∞

‖Lnβ1‖1/n = lim
n→∞

{
sup
z∈Z

Ez

n−1∏
t=0

β(Zt)

}1/n

, (3.46)

25A cone is solid if it has an interior point; it is normal if 0 ≤ x ≤ y implies that ‖x‖ ≤ M‖y‖. The
cone of nonnegative functions in bmZ is both solid and normal.
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where the second equality is due to (3.45), nonnegativity of β and the definition of the

supremum norm. This confirms the first claim in Proposition 3.4.1. It also follows imme-

diately that r(Lβ) < 1 implies eventual discounting.

To see that the converse is true, suppose there exists an n ∈ N such that rβn < 1. Then

any m ∈ N can be expressed uniquely as m = kn + i for some k, i ∈ N with i < n. For

sufficiently large m, it follows from the Markov property that

(
rβm
)1/m

=

{
sup
z∈Z

Ez

n−1∏
t=0

β(Zt)

[
EZn−1

m−1∏
t=n

β(Zt)

]}1/m

≤
(
rβn r

β
m−n

)1/m ≤
(
rβn
)k/m(

rβi
)1/m

.

The right hand side is dominated by (rβn)k/mM1/m, where M := supi<n r
β
i < ∞. If

m → ∞, then k/m → 1/n, and this term approaches (rβn)1/n < 1. Hence r(Lβ) < 1, as

was to be shown. �

Proof of Proposition 3.4.2. The proof of Proposition 3.4.1 uses the fact that

rB(M) = limn→∞ ‖Mnh‖1/n
B holds when M is a positive (i.e., order preserving) linear

operator on a Banach lattice (B, ‖ · ‖B) with solid positive cone, rB denotes the spectral

radius of a linear operator mapping this Banach lattice to itself, and h is interior to

the positive cone (Krasnosel’skii et al., 1972, Theorem 9.1). If Z is finite and {Zt} is

irreducible with stationary distribution π, we can take B to be all h : Z → R and set

‖h‖B =
∑

z∈Z |h(z)|π(z) =: Eπh. Under this norm, 1 is interior to the positive cone of B

because, by irreducibility, π(z) > 0 for all z ∈ Z. Applying the above expression for the

spectral radius to Lβ, as well as the result in (3.45), we obtain

rB(Lβ) = lim
n→∞

‖Lnβ1‖1/n
B = lim

n→∞

{
EπEz

n−1∏
t=0

β(Zt)

}1/n

= lim
n→∞

(sβn)1/n, (3.47)

where the last equality uses the law of iterated expectations and the definition of sβn in

Proposition 3.4.2.
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It remains only to show that rB(Lβ) = r(Lβ), where the latter is defined, as before, using

the supremum norm (see, e.g., (3.46)). In other words, we need to show that

lim
n→∞

‖Lnβ1‖1/n = lim
n→∞

‖Lnβ1‖1/n
B . (3.48)

On finite dimensional normed linear spaces, any two norms are equivalent (see, e.g.,

Bühler and Salamon (2018), Theorem 1.2.5), so we can take positive constants c and d

with ‖ · ‖ ≤ c‖ · ‖B ≤ d‖ · ‖ on B. The equality in (3.48) easily follows and the proof is

now complete. �

3.9.4. Proofs for Section 3.5.

3.9.4.1. Homogeneous Functions. Let the operators Tσ and T be as defined in (3.4)

and (3.5), respectively, with aggregator H given by (3.24). The definition of hθS is given

in Section 3.5.1.

Proof of Proposition 3.5.1. We first show that T is eventually contracting on

V = hθS. Since Assumption 3.5.1 holds, the Feller property implies that T maps V

to itself. Note that for any v ∈ V, we have v(x, z) = |x|θv(x/|x|, z). It follows from

Assumption 3.5.2 that for any v, w ∈ V,

|(T nv)(x0, z0)− (T nw)(x0, z0)|

≤ sup
x1∈Γ(x0,z0)

β(z0)

∫ ∣∣(T n−1v)(x1, z1)− (T n−1w)(x1, z1)
∣∣Q(z0, dz1)

≤ sup
x1∈Γ(x0,z0)

β(z0)

∫
|x1|θ

∣∣∣∣(T n−1v)

(
x1

|x1|
, z1

)
− (T n−1w)

(
x1

|x1|
, z1

)∣∣∣∣Q(z0, dz1)

≤ sup
x1∈Γ(x0,z0)

β(z0)αθ(z0)|x0|θ
∫ ∣∣∣∣(T n−1v)

(
x1

|x1|
, z1

)
− (T n−1w)

(
x1

|x1|
, z1

)∣∣∣∣Q(z0, dz1).

An inductive argument gives that

|(T nv)(x0, z0)− (T nw)(x0, z0)|

≤ |x0|θ sup
x1∈Γ(x0,z0)

Ez0

n−1∏
t=0

β(zt)α
θ(zt)

∣∣∣∣v( xn
|xn|

, zn

)
− w

(
xn
|xn|

, zn

)∣∣∣∣
≤ |x0|θ

(
Ez0

n−1∏
t=0

β(zt)α
θ(zt)

)
‖v − w‖h
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where the norm ‖ · ‖h is defined in (3.26). Therefore, we have

‖T nv − T nw‖h ≤ sup
z0∈Z

(
Ez0

n−1∏
t=0

β(zt)α
θ(zt)

)
‖v − w‖h.

By Assumption 3.5.2, T is eventually contracting on V. Hence, T has a unique fixed point

v̄ on V and T nv → v̄ for any v ∈ V.

Since Tσv is not necessarily in V, we cannot apply the same argument to Tσ. Hence, we

prove the remaining results directly. We first show that vσ := limn(T nσ 0) is well defined.

It follows from Assumptions 3.5.1 and 3.5.2 that

(T nσ 0)(x0, z0) =
n−1∑
t=0

Ez0

t−1∏
i=0

β(zi)u(xt, zt, σ(xt, zt))

≤
n−1∑
t=0

Ez0

t−1∏
i=0

β(zi) |u(xt, zt, σ(xt, zt))|

≤
n−1∑
t=0

Ez0

t−1∏
i=0

β(zi)α(zi)
θB(1 + α(zt))

θ|x0|

≤
n−1∑
t=0

Ez0

t−1∏
i=0

β(zi)α(zi)
θB(1 + ᾱ)θ|x0|

where ᾱ = supz∈Z α(z). It follows from Proposition 3.4.1 and the Cauchy root test that

the series converges absolutely and hence vσ(x0, z0) is finite and well defined.

Next we show that v̄ = v∗. Since v̄ = T v̄, we have for any σ ∈ Σ,

v̄(x0, z0) = max
x′∈Γ(x0,z0)

{
u(x0, z0, x

′) + β(z0)

∫
v̄(x′, z1)Q(z0, dz1)

}
≥ u(x0, z0, σ(x0, z0)) + β(z0)

∫
v̄(σ(x0, z0), z1)Q(z0, dz1).

It follows from induction that

v̄(x0, z0) ≥ (T nσ 0)(x0, z0) +Ez0

n−1∏
t=0

β(zt)v̄(xn, zn) (3.49)

where {xn} is given by σ. Since v̄ ∈ V, we have v̄(xn, zn) ≤∏n−1
t=0 α(zt)

θ|x0|θ‖v̄‖h. Taking

n to infinity in (3.49), the last term goes to 0 and thus v̄ ≥ vσ for all σ ∈ Σ. By the

measurable maximum theorem, we can find σ∗ ∈ Σ such that T v̄ = Tσ∗ v̄. A similar
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argument shows that σ∗ achieves the maximum. Therefore, v̄ is the value function and

σ∗ is the optimal policy.

Because v∗ = Tσ∗v
∗ is homogeneous of degree θ, we have for any λ ≥ 0,

v∗(λx, z) = λθv∗(x, z) = λθu(x, z, σ∗(x, z)) + β(z)

∫
λθv∗(σ∗(x, z), z′)Q(z, dz′).

It follows that σ∗(λx, z) = λσ∗(x, z), that is, the optimal policy is homogeneous of degree

one. �

3.9.4.2. Local Contractions. Recall that the operators Tσ and T are as defined in (3.4)

and (3.5), respectively, with aggregator H given by (3.24).

Proof of Proposition 3.5.2. Define uj(x, z) := maxx′∈Γ(x,z) |u(x, z, x′)| if x ∈ Kj

and rj := supx∈Kj ,z∈Z uj(x, z). Since u is continuous and every Kj is compact, rj < ∞
for all j. For any initial state (x0, z0), we can find j such that x0 ∈ Kj. It follows from

Assumption 3.5.3 that |u(xt, zt, xt+1)| ≤ rj for all t ∈ N.

Choose any increasing and unbounded {mj} such that mj ≥ rj. Since Q is Feller, Tv is

continuous on every Kj for v ∈ cmS, where the space cmS is defined in Section 3.5.2. It

follows from Remark 1(a) of Matkowski and Nowak (2011) that T : cmS→ cS.

Since Γ(x, z) ⊂ Kj for all x ∈ Kj, we have on Kj

|(T nv)(x, z)− (T nw)(x, z)| ≤ sup
x′∈Γ(x,z)

β(z)

∫
|T n−1v(x′, z′)− T n−1w(x′, z′)|Q(z, dz′)

≤ sup
x′∈Kj

β(z)

∫
|T n−1v(x′, z′)− T n−1w(x′, z′)|Q(z, dz′)

≤ β(z)‖T n−1v − T n−1w‖j.

An inductive argument gives

|(T nv)(x, z)− (T nw)(x, z)| ≤ Ez
n−1∏
t=0

β(Zt)‖v − w‖j.
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Taking the supremum, we have ‖T nv − T nw‖j ≤ rβn‖v − w‖j. Since (β,Q) is eventually

discounting, T n is a 0-local contraction for some n ∈ N.26 Then it follows from Proposition

1 of Matkowski and Nowak (2011) that T has a unique fixed point v̄ in cmS. It can be

proved in the same way that T nσ is also a 0-local contraction and hence vσ is well defined

and finite for any initial state. Since we can find σ such that Tσv̄ = T v̄ by the measurable

maximum theorem, the optimality results follow from a similar argument to the proofs of

Theorem 3.2.1. �

3.9.5. Proofs for Section 3.6.

3.9.5.1. Alternative Discount Specifications. Here we sketch the proof of Theorem 3.2.1

for the alternative timing when the aggregator satisfies (3.27). Let {Zt} be a Markov

process generated by Q starting at z = Z0 and let βt = β(Zt+1). A similar argument to the

proof of Lemma 3.9.1 yields |T nσ v−T nσw| ≤ Ez
∏n

t=1 β(Zt+1)‖v−w‖, where Ez represents

expectation conditional on Z0 = z. Taking the supremum gives ‖T nσ v−T nσw‖ ≤ rβn‖v−w‖.
Similar result holds for the Bellman operator T . Therefore, both Tσ and T are eventually

contracting if rβn < 1 for some n ∈ N. The rest of the proof remains the same.

Proof of Proposition 3.6.1. Recall that the primitives are redefined as in foot-

note 18. Then the aggregator satisfies

|H(x, z, x′, v)−H(x, z, x′, w)| ≤
∫
β(z′)|v(x′, z′)− w(x′, z′)|Q̃(z, dz′).

Based on the discussion above, the eventual discounting condition remains the same. It

then follows from Proposition 3.4.1 that eventual discounting holds if and only if r(Lβ) < 1

and

r(Lβ) = lim
n→∞

(rβn)1/n = lim
n→∞

(
sup
z∈Z̃

Ẽz

n∏
t=1

β(Z̃t+1)

)1/n

where Ẽz represents conditional expectation under Q̃. Since Q̃ is induced by Q and

β(Z̃t+1) = bZt+1/Zt, we can write rβn = supz∈ZEzb
nZt. Then we have (bnza)

1/n ≤
(rβn)1/n ≤ (bnzb)

1/n, where za and zb are positive constants such that za < Zt < zb for all

t. Taking n→∞ gives r(Lβ) = b, so eventual discounting holds if and only if b < 1. �
26We say an operator T : cmS → cS is a 0-local contraction if there exists a β ∈ (0, 1) such that

‖Tf − Tg‖j ≤ β‖f − g‖j for all f, g ∈ cmS and all j ∈ N.
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3.9.5.2. Epstein-Zin Preferences. For ease of notation, we replace 1/ψ with ρ in what

follows. The definition of V and ‖f‖I are given in Section 3.6.2. Let the operators T and

Tσ be as defined in (3.4) and (3.5), respectively, with aggregator H given by (3.29). Let

T̃σ and T̃ be defined in the same way except that H is replaced by

H̃(x, z, c, v) =

{
c1−ρ + β(z)

[∫
v (R(z)(x− c), z′)Q(z, dz′)

]1−ρ
} 1

1−ρ

, (3.50)

which is a special case of H when γ = 0. We first prove a useful lemma.

Lemma 3.9.5. Tσv ≤ T̃σv and Tv ≤ T̃ v for all v ∈ V.

Proof. Since γ > 1, by Jensen’s inequality, we have[∫
v1−γ(x, z′)Q(z, dz′)

] 1
1−γ

≤
∫
v(x, z′)Q(z, dz′)

for all (x, z) ∈ S and v ∈ V. It follows that

(Tσv)(x, z) ≤
{
σ(x, z)1−ρ + β(z)

[∫
v [R(z) (x− σ(x, z)) , z′]Q(z, dz′)

]1−ρ
} 1

1−ρ

= (T̃σv)(x, z).

That Tv ≤ T̃ v can be shown in a similar way. �

A central result of this section is the following proposition, which guarantees that the

σ-value function vσ = limn(T nσ 0) is well defined and a fixed point of Tσ.

Proposition 3.9.6. Under Assumption 3.6.1, there exists a function v̂ : S → R+ given

by

v̂(x0, z0) := x0

 lim
n→∞

n−1∑
t=0

[
Ez0

t−1∏
i=0

β(zi)
1

1−ρR(zi)

]1−ρ


1
1−ρ

(3.51)

such that v̂ ∈ V and Tσ is a self map on [0, v̂] ⊂ V. The σ-value function is well de-

fined and is the least fixed point of Tσ on [0, v̂] ⊂ V. Furthermore, if σ satisfies that

infz∈Z σ(x, z)/x > 0 for all x > 0, then vσ is the unique fixed point of Tσ on [0, v̂] ⊂ V

and T nσ v → vσ for all v ∈ [0, v̂] ⊂ V.
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We first give two lemmas that are crucial to the proof of Proposition 3.9.6. The first

lemma shows that v̂ can indeed act as an upper bound function.

Lemma 3.9.7. v̂ ∈ V and Tσv̂ ≤ v̂ for all σ ∈ Σ.

Proof. Let v̂n(x0, z0) := x0An(z0)1/(1−ρ) where

An(z0) :=
n−1∑
t=0

[
Ez0

t−1∏
i=0

β(zi)
1

1−ρR(zi)

]1−ρ

.

By Proposition 3.4.1 and Assumption 3.6.1, we have

lim sup
n→∞

[
sup
z0∈Z

Ez0

t−1∏
i=0

β(zi)
1

1−ρR(zi)

] 1−ρ
n

= r(LR)1−ρ < 1,

where LR is as defined in (3.34). It follows from the root test that limnAn is well defined

and bounded on Z. Hence, v̂ = limn v̂n and it satisfies ‖v̂‖I = supx∈X,z∈Z |xA(z)/(1+x)| ≤
supz∈ZA(z) <∞. Therefore, v̂ ∈ V.

Next, we use the operator T̃σ defined above to show that Tσv̂ ≤ v̂. Since An is increasing in

n, by the Monotone Convergence Theorem, we have limn→∞(T̃σv̂n)(x0, z0) = (T̃σv̂)(x0, z0).

Write An(z0) =
∑n−1

t=0 Bt(z0). Since σ(x, z) ≤ x, it follows that

(T̃σv̂n)(x0, z0) ≤ x0

{
1 +

[
β(z0)

1
1−ρR(z0)Ez0An(z1)

1
1−ρ

]1−ρ
} 1

1−ρ

= x0

1 +

β(z0)
1

1−ρR(z0)Ez0

(
n−1∑
t=0

Bt(z1)

) 1
1−ρ
1−ρ


1

1−ρ

.

Since ρ ∈ (0, 1), by the Minkowski inequality, we have

(T̃σv̂n)(x0, z0) ≤ x0

{
1 +

n−1∑
t=0

[
β(z0)

1
1−ρR(z0)Ez0Bt(z1)

1
1−ρ

]1−ρ
} 1

1−ρ

.

Note that the following equation holds

β(z0)
1

1−ρR(z0)Ez0Bt(z1)
1

1−ρ = Bt+1(z0)
1

1−ρ
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by the Markov property. It follows that

(T̃σv̂n)(x0, z0) ≤ x0

{
1 +

n∑
t=1

Bt(z0)

} 1
1−ρ

= x0An+1(z0)
1

1−ρ = v̂n+1(x0, z0).

Taking n to infinity, we have T̃σv̂ ≤ v̂. By Lemma 3.9.5, Tσv̂ ≤ v̂. �

Lemma 3.9.8. Tσv ∈ V for all σ ∈ Σ and v ∈ V.

Proof. Evidently Tσv is measurable given σ ∈ Σ. To see that Tσv is bounded, we

have

(Tσv)(x, z) ≤
{
σ(x, z)1−ρ + β(z)

[∫
v [R(z) (x− σ(x, z)) , z′]Q(z, dz′)

]1−ρ
} 1

1−ρ

≤
{
x1−ρ + β(z)‖v‖1−ρ

I [1 +R(z)x]1−ρ
} 1

1−ρ ,

where the first inequality follows from Lemma 3.9.5 and the second inequality follows

from the fact that σ(x, z) ∈ [0, x] and |v(x, z)| ≤ ‖v‖I(1 + x) for all v ∈ V. Dividing both

sides by (1 + x) yields (assuming supz R(z) > 1)

‖Tσv‖I ≤ sup
z∈Z

{
1 + β(z)‖v‖1−ρ

I R(z)1−ρ} 1
1−ρ .

Since β and R are bounded, ‖Tσv‖I <∞. �

Proof of Proposition 3.9.6. It is apparent that Tσ0 ≥ 0. It follows from Lemma 3.9.7,

Lemma 3.9.8, and the monotonicity of Tσ that Tσ is a self map on [0, v̂] ⊂ V. Let {vn}
be a countable chain27 on [0, v̂] ⊂ V. Then both supn vn and infn vn are measurable and

bounded in norm by ‖v̂‖I . So [0, v̂] ⊂ V is a countably chain complete partially ordered

set. For any increasing {vn} ⊂ [0, v̂], it follows from the Monotone Convergence Theorem

that supn Tσvn = Tσ(supn vn). Hence, Tσ is monotonically sup-preserving. Then, by the

Tarski-Kantrovich Theorem,28 vσ := limn(T nσ 0) is the least fixed point of Tσ on [0, v̂] ⊂ V.

If σ satisfies that infz∈Z (σ(x, z)/x) > 0 for all x > 0, then there exists an α > 0 such

that σ(x, z) ≥ αx supz A(z) ≥ αv̂(x, z). Since Tσ0 = σ ≤ v̂, Tσ0 and v̂ are comparable.

27A set C ⊂ V is called a chain if for every x, y ∈ C, either x ≤ y or y ≤ x.
28See, for example, Becker and Rincon-Zapatero (2018) for a version of the theorem and related

definitions.
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Uniqueness and convergence then follow from Theorems 10 and 11 in Marinacci and

Montrucchio (2010). �

Recall from Section 3.6.2 that V̂ is all functions in V that are homogeneous of degree one

in x. The following lemma is useful in the proof of Proposition 3.6.2.

Lemma 3.9.9. For any v ∈ V̂, Tv ∈ V̂ and there exists a σ ∈ Σ homogeneous in x that

satisfies Tv = Tσv and infz σ(x, z)/x > 0 for all x > 0.

Proof. Pick v ∈ V̂ and we can write v(x, z) = xh(z) for some bounded measurable

h. Then (3.29) becomes

H(x, z, c, v) =

{
c1−ρ + β(z)R(z)1−ρ(x− c)1−ρ

[∫
h(z′)1−γQ(z, dz′)

] 1−ρ
1−γ
} 1

1−ρ

. (3.52)

Since c 7→ H(x, z, c, v) is continuous and (x, z) 7→ H(x, z, c, v) is measurable, by the

measurable maximum theorem, Tv is measurable and there exists a σ ∈ Σ such that

Tσv = Tv. Since c ≤ x in (3.52), a similar argument to the proof of Lemma 3.9.8 shows

that Tv is bounded in ‖ · ‖I .

In fact, σ(x, z) is the solution of the single variable optimization problem maximizing

c1−ρ + (x− c)1−ρf(z) over 0 ≤ c ≤ x where

f(z) := β(z)R(z)1−ρ
[∫

h(z′)1−γQ(z, dz′)

] 1−ρ
1−γ

.

It has closed-form solution σ(x, z) = x/(f(z)1/ρ + 1). Therefore, σ is homogeneous in

x and thus Tv = Tσv is also homogeneous in x. It follows that Tv ∈ V̂. Since f(z) is

bounded, infz σ(x, z)/x > 0. �

Proof of Proposition 3.6.2. By Lemma 3.9.9, there exists a σ such that Tσv̂ =

T v̂. It follows from Lemma 3.9.7 that Tσv̂ ≤ v̂ and hence T v̂ ≤ v̂. Then the monotonicity

of T implies that Tv ≤ v̂ for all v ∈ V̂. By Lemma 3.9.9 and the monotonicity of T ,

T n0 is an increasing sequence on V̂ bounded above by v̂. Therefore, the pointwise limit

v̄ := limn→∞(T n0) is well defined and is also in [0, v̂] ⊂ V̂.
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To see that v̄ is the value function, pick any σ ∈ Σ. Since T n0 is an increasing sequence

converging to v̄, v̄ ≥ T n0 ≥ T nσ 0. Taking n to infinity, it follows from Proposition 3.9.6

that v̄ ≥ vσ. Next we show that v̄ can be achieved by a feasible policy. Since T n0 ≤ v̄,

the monotonicity of T implies that T n+10 ≤ T v̄. Taking n to infinity yields v̄ ≤ T v̄. By

Lemma 3.9.9, there exists a homogeneous σ∗ ∈ Σ that satisfies the interiority condition

and Tσ∗ v̄ = T v̄. Then we have v̄ ≤ Tσ∗ v̄ and hence v̄ ≤ T nσ∗ v̄ by the monotonicity of Tσ∗ .

Taking n to infinity, it follows from Proposition 3.9.6 that v̄ ≤ vσ∗ . Since v̄ ≥ vσ for all

σ ∈ Σ, v̄ = vσ∗ . �

For the specification in De Groot et al. (2018) where the lifetime utility satisfies

U(Ct, Ct+1, . . .) =
{

(1− βt)C1−ρ
t + βt

[
EtU

1−γ(Ct+1, Ct+2, . . .)
] 1−ρ

1−γ
} 1

1−ρ
,

we can redefine the upper bound function to be

ṽ(x0, z0) := x0

 lim
n→∞

n−1∑
t=0

[
Ez0

t−1∏
i=0

β(zi)
1

1−ρR(zi) [1− β(zt)]
1

1−ρ

]1−ρ


1
1−ρ

.

Since β(zt) < 1, ṽ is bounded above by v̂ in (3.51). Then it can be shown that all the

above results hold for the new preference if Assumption 3.6.1 is satisfied. The proof is

omitted.

3.9.6. Analytical Expression for the Geometric Mean. Consider βt = exp(αZt)

where {Zt} obeys (3.21). An inductive argument shows that for all t ≥ 1,

Zt = (1− ρt)µ+ ρtZ0 + σε(εt + ρεt−1 + . . .+ ρt−1ε1). (3.53)

It follows that

n−1∑
t=0

Zt =

(
n− ρ(1− ρn)

1− ρ

)
µ+

1− ρn+1

1− ρ Z0 + σε

(
εn +

1− ρ2

1− ρ εn−1 + . . .+
1− ρn
1− ρ ε1

)
.

Exploiting the properties of log-normal distributions, we have

Ez exp

(
n−1∑
t=0

Zt

)
= exp

(
nµ− ρ(1− ρn)

1− ρ µ+
1− ρn+1

1− ρ z +
σ2
ε

2

n∑
t=1

mt

)
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where mt = (1− ρt)2/(1− ρ)2. Using the law of iterated expectations gives

E exp

(
n−1∑
t=0

Zt

)
= exp

(
(n+ 1)µ+

(1− ρn+1)2σ2
ε

2(1− ρ)2(1− ρ2)
+
σ2
ε

2

n∑
t=1

mt

)
.

Since mt → 1/(1− ρ)2,
∑
mt/n→ 1/(1− ρ)2. Therefore,

lim
n→∞

(
E

n−1∏
t=0

βt

)1/n

= exp

(
αµ+

α2σ2
ε

2(1− ρ)2

)
. (3.54)

Setting α = 1 gives (3.23). Setting µ = log(b) and α = 1/(1− 1/ψ) gives (3.35).

3.9.7. Necessity. In many settings, the eventual discounting condition cannot be

weakened without violating finite lifetime values. Here we briefly illustrate this point,

using the connection to spectral radii provided in Proposition 3.4.1.

Consider a standard dynamic program with lifetime rewards E
∑

t≥0 β
tπt given constant

β and reward flow {πt}. In this setting, β < 1 cannot be relaxed without imposing specific

conditions on rewards. For example, if there are constants 0 < a ≤ b such that the process

{πt} satisfies a ≤ πt ≤ b for all t, then we clearly have29

E

∑
t≥0

βtπt <∞ if and only if β < 1. (3.55)

Eventual discounting has the same distinction once we replace the constant β with a

process {βt} under standard regularity conditions. For example, if Z is compact and

βt = β(Zt) for some β ∈ bcZ and Q-Markov process {Zt}, then

Ez

∑
t≥0

t−1∏
i=0

βi πt <∞ if and only if r(Lβ) < 1. (3.56)

To see this, suppose first that r(Lβ) < 1. Since πt ≤ b, we have

Ez

∑
t≥0

t−1∏
i=0

βi πt ≤ b
∑
t≥0

Ez

t−1∏
i=0

βi ≤ b
∑
t≥0

sup
z
Ez

t−1∏
i=0

βi = b
∑
t≥0

rβt .

By Cauchy’s root convergence criterion, the sum
∑

t≥0 r
β
t will be finite whenever lim supt→∞(rβt )1/t <

1. This holds when r(Lβ) < 1 by Proposition 3.4.1.

29The equivalence in (3.55) is easy to see because, by the Monotone Convergence Theorem, we have
E
∑
t≥0 β

tπt =
∑
t≥0 β

t
Eπt and, moreover, 0 < a ≤ Eπt ≤ b.
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Now suppose instead that r(Lβ) ≥ 1. By compactness of Lβ, positivity of the function

β from Assumption 3.2.1 and the Krein–Rutman Theorem (see, e.g., Theorem 1.2 in Du

(2006)), there exists a positive function e ∈ bcZ such that Lβe = r(Lβ)e. Choosing γ > 0

such that γe ≤ 1, we have

Ez

∑
t≥0

t−1∏
i=0

βi πt ≥ aγ
∑
t≥0

Ltβe(z) = aγ
∑
t≥0

r(Lβ)te(z)

when Z0 = z. Since e > 0 and r(Lβ) ≥ 1, the sum diverges to infinity.



CHAPTER 4

Negative Discount Dynamic Programming

4.1. Introduction

This chapter focuses on a specific class of negative discount dynamic programming prob-

lems, in which the agent minimizes the present value of a sequence of losses with a negative

discount rate. Such problems cause technical difficulties because the Bellman operator is

expansive, instead of contractive as in the standard dynamic programming theory (Bert-

sekas, 2017; Stokey and Lucas, 1989).

To address this issue, we develop a general dynamic programming framework that can ac-

commodate such noncontractive models. We recover all standard dynamic programming

results under this framework, including convergence of the Bellman operator, existence

of an optimal policy, the principle of optimality, and monotonicity, convexity, and differ-

entiability of the value function. Using this framework, we are able to solve the negative

discount dynamic program and derive properties of its solution. Furthermore, we char-

acterize the solution with an Euler equation and an envelope condition, which provide

economic intuition and are crucial in developing key results in applications. We also give

a set of analogous results in the continuous-time setting.

As a second contribution, we show how to apply the theory of negative discount dynamic

programming to solve a range of competitive equilibrium problems related to production

networks, management layers within firms, and the size distribution of cities. Although

the equilibrium concepts in these models are static in nature, the recursive structures

in these problems allow us to transform them into dynamic programs. Moreover, each

problem features some kind of frictions, which can be represented by a negative discount

rate after the transformation.

When deriving fixed point properties of the Bellman operator, we draw on the theory

of monotone concave operators reviewed in Section 1.3. In particular, we use the fixed

69
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point result given in Du (1989) for monotone concave operators on Banach spaces. In

this sense, this paper is related to Ren and Stachurski (2018), who develop a general

framework for convex and concave dynamic programs using the same result. However, our

focus is on the negative discount dynamic programming problem, which is not discussed

in Ren and Stachurski (2018). We also provide new results on monotonicity, convexity

and differentiability of solutions. Our general dynamic programming framework is also

related to Bloise and Vailakis (2018), who study convex dynamic programs with recursive

utilities. Our interiority conditions are slightly stronger but are more suitable for the

negative discount dynamic programs we consider. We also provide a full set of optimality

results linking Bellman’s equation to existence and characterization of optimal solutions.1

In terms of applications of our dynamic programming framework, we first connect to the

production chain model developed in Kikuchi et al. (2018). Their model of production

chains can be transformed to a negative discount dynamic program after the index over

firms is reinterpreted as a time index. The negative discount rate corresponds to the

transaction costs between upstream and downstream firms. We show that competitive

equilibria in a version of the model can be recovered as solutions to the class of negative

dynamic programming problems we study. Similar reinterpretations are also applied to the

model of knowledge-based hierarchy within an organization treated in Garicano (2000),

Garicano and Rossi-Hansberg (2006), and Caliendo and Rossi-Hansberg (2012), and to

the city hierarchy model of Hsu et al. (2014). The negative “discount rate” stems from

the communication costs between layers of management in the former case and from the

transportation costs in the latter case.

The remainder of this paper is structured as follows. In Section 4.2, we introduce a

general dynamic programming theory that encompasses the negative discount dynamic

programming theory, and discuss its solution. In Section 4.3, we connect this discussion to

Coase’s theory of the firm and elaborate on the relationship between our model and other

1On a technical level, our optimality theory is related to other studies of dynamic programming
where the Bellman operator fails to be a contraction, such as Martins-da Rocha and Vailakis (2010) and
Rincón-Zapatero and Rodŕıguez-Palmero (2003). Our methods differ because even the relatively weak
local contraction conditions imposed in that line of research fail in our settings. The fixed point results
in this paper are related to those found in Kamihigashi et al. (2015), but here we also prove uniqueness
of the fixed point, as well as connections to optimality and shape and differentiability properties.
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related models. In Section 4.4 we extend our model to expand the scope of applications

to more complex networks while in Section 4.5 we show that our model can also be used

to understand organization of knowledge within a firm. In Section 4.6, we give analogous

results for the continuous-time setting and discuss applications. Most proofs are deferred

to the appendix.

4.2. Noncontractive Dynamic Programming

First we provide a general dynamic programming framework suitable for analyzing equi-

libria in production networks. Throughout this section, we state results in an abstract

setting and illustrate them with a fixed example related to minimizing a flow of losses

under negative discounting.

4.2.1. Set Up. Given a metric space E, let R(E) denote the set of real functions on

E and let C(E) be all continuous functions in R(E). Given g, h ∈ R(E), we write g ≤ h

if g(x) ≤ h(x) for all x ∈ E, and ‖f‖ := supx∈E |f(x)|.

4.2.1.1. An Abstract Dynamic Program. Let X be a compact metric space, referred to

as the state space. Let A be a metric space and let Γ be a nonempty, continuous, compact-

valued correspondence from X into A. We understand Γ(x) as the set of available actions

a ∈ A for an agent facing state x. Let gr Γ := {(x, a) : x ∈ X, a ∈ Γ(x)} be all feasible

state-action pairs. Let L be an aggregator function, which is a map from gr Γ×R(X) into

R, with the interpretation that L(x, a, w) is lifetime loss associated with current state x,

current action a and continuation value function w.

A pair (L,Γ) with these properties is referred to below as an abstract dynamic program.

The Bellman operator associated with such a pair is the operator T defined by

(Tw)(x) = inf
a∈Γ(x)

L(x, a, w) (w ∈ R(X), x ∈ X). (4.1)

A fixed point of T in R(X) is said to satisfy the Bellman equation.
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4.2.1.2. Example: Negative Discount DP. To illustrate the definitions above, we con-

sider an agent who takes action at in period t with current loss `(at). We can interpret

at as effort and `(at) as disutility of effort. Her optimization problem is, for some x̂ > 0,

min
{at}

∞∑
t=0

βt`(at) s.t. at ≥ 0 for all t ≥ 0 and
∞∑
t=0

at = x̂. (4.2)

Here and throughout the discussion of this optimization problem, we suppose that

β > 1, `(0) = 0, `′ > 0 and `′′ > 0. (4.3)

The convexity in ` encourages the agent to defer some effort. Negative discounting (β > 1)

has the opposite effect.2 We set xt+1 = xt − at with x0 = x̂, so xt represents “remaining

tasks” at the start of time t. The Bellman equation is

w(x) = inf
0≤a≤x

{`(a) + βw(x− a)}. (4.4)

The Bellman operator is

Tw(x) = inf
0≤a≤x

{`(a) + βw(x− a)}. (4.5)

If we set X := A := [0, x̂],

L(x, a, w) := `(a) + βw(x− a) and Γ(x) := [0, x], (ND)

then (L,Γ) in (ND) fits the definition of an abstract dynamic program, as given in Sec-

tion 4.2.1.1, and (4.5) is a special case of (4.1).

2The assumption `(0) = 0 cannot be weakened, since `(0) > 0 implies that the objective function is
infinite. Conversely, with the assumption `(0) = 0, minimal loss is always finite. Indeed, by choosing
the feasible action path a0 = x̂ and at = 0 for all t ≥ 1, we get

∑∞
t=0 β

t`(at) ≤ `(x̂). Also, given our
other assumptions, there is no need to consider the case β ≤ 1 because no solution exists. Because we
are minimizing loss, when β < 1 any proposed solution {at} can be strictly improved by shifting it one
step into the future (set a′0 = 0 and a′t+1 = at for all t ≥ 0). Furthermore, if β = 1, and a solution {at}
exists, then the increments {at} must converge to zero, and hence there exists a pair aT and aT+1 with
aT > aT+1. Since ` is strictly convex, the objective

∑
t `(at) can be reduced by redistributing a small

amount ε from aT to aT+1. This contradicts optimality.
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4.2.2. Fixed Point Results. The Bellman operator in (4.5) is not a supremum

norm contraction, due to the fact that β > 1.3 The production chain and network models

we consider also have this feature. Hence we introduce a set of conditions for an abstract

dynamic program that generate stability properties without requiring contractivity.

4.2.2.1. Stability Without Contractivity. Fix an abstract dynamic program (L,Γ) and

consider the following assumptions:

A1. (x, a) 7→ L(x, a, w) is continuous on gr Γ when w ∈ C(X).

A2. If u, v ∈ C(X) with u ≤ v, then L(x, a, u) ≤ L(x, a, v) for all (x, a) ∈ gr Γ.

A3. Given λ ∈ (0, 1), u, v ∈ C(X) and (x, a) ∈ gr Γ, we have

λL(x, a, u) + (1− λ)L(x, a, v) ≤ L(x, a, λu+ (1− λ)v).

A4. There is a ψ in C(X) such that Tψ ≤ ψ.

A5. There is a φ in C(X) and an ε > 0 such that φ ≤ ψ and Tφ ≥ φ+ ε(ψ − φ).

Assumptions A1–A3 impose some continuity, monotonicity and convexity. Assumptions

A4–A5 provide upper and lower bounds for the set of candidate value functions.

Although contractivity is not imposed, we can show that the abstract Bellman opera-

tor (4.1) is well behaved under A1–A5 after restricting its domain to a suitable class of

candidate solutions. To this end, let

I := {f ∈ C(X) : φ ≤ f ≤ ψ}.

Theorem 4.2.1. Let (L,Γ) be an abstract dynamic program and let T be the Bellman

operator defined in (4.1). If (L,Γ) satisfies A1–A5, then

1. T has a unique fixed point w∗ in I.

2. For each w ∈ I, there exists an α < 1 and M <∞ such that

‖T nw − w∗‖ ≤ αnM for all n ∈ N. (4.6)

3For example, let w ≡ 1 and g ≡ 0. Then Tw ≡ β > 1 while Tg ≡ 0. One consequence is that, if we
take an arbitrary continuous bounded function and iterate with T , the sequence typically diverges. For
example, if w ≡ 1, then, Tnw ≡ βn, which diverges to +∞.
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3. π∗(x) := arg mina∈Γ(x) L(x, a, w∗) is upper hemicontinuous on X.

Theorem 4.2.1 does not discuss Bellman’s principle of optimality. That task is left until

Section 4.2.4. Regarding π∗, which has the interpretation of a policy correspondence, an

immediate corollary is that π∗ is continuous whenever π∗ is single-valued on X.

4.2.2.2. Example: Negative Discount DP. Let (L,Γ) be defined by (ND) and suppose

the assumptions on β and ` in (4.3) are true. Let φ(x) := `′(0)x and ψ(x) := `(x) be the

boundary functions in A4–A5. Assumptions A1–A3 clearly hold. The condition Tψ ≤ ψ

in A4 also holds because, with ψ = `,

Tψ(x) = T`(x) = inf
0≤a≤x

{`(a) + β`(x− a)} ≤ `(x) + β`(0) = `(x). (4.7)

Under the auxiliary assumption `′(0) > 0, we show that A5 also holds. The details are in

the appendix (see Proposition 4.7.5). Hence, under these assumptions, the conclusions of

Theorem 4.2.1 are valid for the Bellman operator T defined in (4.5).

4.2.3. Shape and Smoothness Properties. We now give conditions under which

the solution to the Bellman equation associated with an abstract dynamic program pos-

sesses additional properties, including monotonicity, convexity and differentiability. In

what follows, we assume that X is convex in R and gr Γ is convex in X × A. We let

1. Ci(X) be all increasing functions in C(X) and

2. Cc(X) be all convex functions in C(X).

We assume that I defined above contains at least one element of each set.

4.2.3.1. Results. To obtain convexity and differentiability, we impose

Assumption 4.2.1. In addition to A1–A5, the abstract dynamic program (L,Γ) satisfies

the following conditions:

1. If w ∈ Cc(X), then (x, a)→ L(x, a, w) is strictly convex on gr Γ.

2. If a ∈ int Γ(x) and w ∈ Cc(X), then x→ L(x, a, w) is differentiable on intX.
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We can now state the following result.

Theorem 4.2.2. If Tw is strictly increasing for all w ∈ Ci(X), then w∗ is strictly in-

creasing. If Assumption 4.2.1 holds, then w∗ is strictly convex, π∗ is single-valued, w∗ is

differentiable on intX and

(w∗)′(x) = Lx(x, π
∗(x), w∗) (4.8)

whenever π∗(x) ∈ int Γ(x).

4.2.3.2. Example: Negative Discount DP. Using Theorem 4.2.2, we can derive prop-

erties of the negative discount dynamic program defined in (ND). In particular, we can

show that the fixed point w∗ of the negative discount Bellman operator T in (4.5) is

strictly increasing, strictly convex, and continuously differentiable on (0, x̂), and that π∗

is single-valued and satisfies the envelope condition

(w∗)′(x) = `′(π∗(x)) (0 < x < x̂). (4.9)

To obtain (4.9) from (4.8), we use the change of variable y = x− a to write

w∗(x) = min
0≤a≤x

{`(a) + βw∗(x− a)} = min
0≤y≤x

{`(x− y) + βw∗(y)}.

Differentiating the final term with respect to x and evaluating at the optimal choice

gives (4.9).

We provide a more detailed proof of (4.9) and proofs of other claims from this section in

Proposition 4.7.6 in the appendix. We rely on the convexity and differentiability of ` to

check Assumption 4.2.1.

4.2.4. The Principle of Optimality. If we consider the implications of the pre-

ceding dynamic programming theory, we have obtained existence of a unique solution to

the Bellman equation and certain other properties, but we still lack a definition of opti-

mal policies, and a set of results that connect optimality and solutions to the Bellman

equation. This section fills these gaps.
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Let Π be all π : X → A such that π(x) ∈ Γ(x) for all x ∈ X. For each π ∈ Π and

w ∈ R(X), define the operator Tπ by

(Tπw)(x) = L(x, π(x), w). (4.10)

This can be understood as the lifetime loss of an agent following π with continuation value

w. Let M be the set of (nonstationary) policies, defined as all µ = {π0, π1, . . .} such that

πt ∈ Π for all t. For stationary policy {π, π, . . .}, we simply refer it as π. Let the µ-value

function be defined as

wµ(x) := lim sup
n→∞

(Tπ0Tπ1 . . . Tπnφ)(x), (4.11)

where φ is the lower bound function in I. Note that wµ is always well defined. The agent’s

problem is to minimize wµ by choosing a policy in M. The value function w̄ is defined by

w̄(x) := inf
µ∈M

wµ(x) (4.12)

and the optimal policy µ̄ is such that w̄ = wµ̄. We impose the following assumption.

Assumption 4.2.2. In addition to A1–A5, the abstract dynamic program (L,Γ) satisfies

the following conditions:

1. If (x, a) ∈ gr Γ, vn ≥ φ and vn ↑ v, then L(x, a, vn)→ L(x, a, v).

2. There exists a β > 0 such that, for all (x, a) ∈ gr Γ, r > 0 and w ≥ φ,

L(x, a, w + r) ≤ L(x, a, w) + βr. (4.13)

Part 1 of Assumption 4.2.2 is a weak continuity requirement on the aggregator with

respect to the continuation value, similar to Assumption 4 in Bloise and Vailakis (2018).

Part 2 of Assumption 4.2.2 is analogous to the Blackwell’s condition, with the significant

exception that β in (4.13) is not restricted to be less than one.

Theorem 4.2.3. If Assumption 4.2.2 holds, then w∗ = w̄ and an optimal stationary policy

exists. Moreover, a stationary policy π is optimal if and only if Tπw̄ = Tw̄.
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Theorem 4.2.3 shows that the fixed point of the Bellman operator is the value function

and the Bellman’s principle of optimality holds. It immediately follows that any selector

of π∗ in Theorem 4.2.1 is an optimal stationary policy.

4.2.4.1. Example: Negative Discount DP. Consider again the negative discount dy-

namic program (L,Γ) defined in (ND), under the assumptions in (4.3). Both conditions

in Assumption 4.2.2 can be verified for (L,Γ). Part 1 of Assumption 4.2.2 is trivial in

this setting, since vn ↑ v pointwise clearly implies `(a) + βvn(x − a) → `(a) + βv(x − a)

at each (x, a) ∈ gr Γ. Part 2 also holds, since for any r > 0 and w ≥ φ, we have

L(x, a, w + r) = `(a) + βw(x− a) + βr = L(x, a, w) + βr.

Hence Theorem 4.2.3 applies. In fact, in this setting we can be more explicit, by setting

W (x) := min

{
∞∑
t=0

βt`(at) : {at} ∈ R∞+ and
∞∑
t=0

at = x

}
(4.14)

at each x ≥ 0. By construction, W (x̂) is the minimum cost in (4.2). To connect W

and the fixed point w∗, we first show that (4.14) is equivalent to (4.12) and then apply

Theorem 4.2.3. The details are in Proposition 4.7.9 in the appendix, which shows that W

is the solution to the Bellman equation (4.4), the principle of optimality holds, and there

exists a unique solution to (4.2) given by a∗t = π∗(xt), where the state process is governed

by xt+1 = xt − a∗t and x0 = x̂.

The envelope condition (4.9) now evaluates to

W ′(xt) = `′(a∗t ) (EN)

for all t ∈ Z, which links marginal value to marginal disutility at optimal action. Fur-

thermore, (EN) implies that the sequence {a∗t} satisfies4

`′(a∗t+1) = max

{
1

β
`′(a∗t ), `

′(0)

}
(EU)

4To see this, note that a∗t solves inf0≤a≤xt {`(a) + βw∗(xt − a)}. Since both ` and w∗ are convex,
elementary arguments show that either `′(a∗t ) = β(w∗)′(xt − a∗t ) or a∗t = xt. It follows from (EN) that
either `′(a∗t ) = β`′(a∗t+1) or a∗t+1 = 0, which is equivalent to (EU).
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for all t ∈ Z, which is akin to an Euler equation with a possibly binding constraint. In

the applications below we use (EN) and (EU) to aid interpretation and provide economic

intuition.

It follows immediately from (EU) that {a∗t} is a decreasing sequence. This concurs with

our intuition: future losses are given greater weight than current losses, so {a∗t} declines

over time.

4.2.5. Additional Results. Some additional results hold for the specific case of the

negative discount dynamic program introduced in Section 4.2.1.2. One result is a strong

form of convergence for the Bellman operator T from (4.5). In particular, iteration always

converges in finite time. The details are in Proposition 4.7.10 in the appendix. In addition,

we can treat the case `′(0) = 0, which has hitherto been excluded:

Proposition 4.2.4. When `′(0) = 0, a feasible sequence {a∗t} solves (4.2) if and only if

(EU) holds. This sequence is unique, decreasing, and satisfies a∗t > 0 for all t.

Proposition 4.2.4 shows that the Euler equation (EU) established above becomes a nec-

essary and sufficient condition for optimality in this case. In fact, (EU) can be reduced

to β`′(a∗t+1) = `′(a∗t ) when `′(0) = 0, which helps us derive analytical solutions for some

of the applications below.

As the above results suggest, the set of tasks will be completed in finite time if and only if

`′(0) > 0. Figure 4.1 provides an example, in which T nw converges to the fixed point w∗

in 5 iterations.5 When the agent never finishes in finite time, the corner solution a∗t = 0

never binds, and the optimality result in Proposition 4.2.4 can be established through

elementary arguments. The proof is in the appendix.

4.2.6. Possible Extensions. There are potential extensions to the negative discount

dynamic programming problem studied above. Here we suggest a few examples. Detailed

analysis of each case is left for future research.

5In this example, `(x) = e10x − 1, f(x) = `′(0)x = 10x, x̂ = 1, and β = 2.
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Figure 4.1. Convergence in finite steps when `′(0) > 0.

Example 4.2.1. Let the disutility function ` and discount factor β also depend on the

current state. Then the Bellman equation becomes

f(x) = min
0≤a≤x

{`(x, a) + β(x)f(x− a)} .

Example 4.2.2. We can introduce another choice variable t such that the Bellman equa-

tion is

f(x) = min
(a,t)∈Γ(x)

{`(a, t) + βf(x− a, t)} ,

where Γ(x) gives the set of available actions when facing state x. The model in Sec-

tion 4.4.2 belongs to this case.

Example 4.2.3. Instead of assuming additively separable loss, we can define an aggrega-

tor W : R2 → R such that the Bellman equation becomes

f(x) = min
0≤a≤x

W (a, f(x− a)) .

Then, (4.4) is a special case when W (a, z) := `(a) + βz.

4.3. Application: Production Chains

Now we turn to applications of Theorem 4.2.1 motivated by production problems. We

begin with a model of linear production chains similar to the one in Kikuchi et al. (2018).
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4.3.1. Set Up. Consider a large and competitive market with many price-taking

firms, each of which is either inactive or involved in the production of a single good.

To produce a unit of this good requires implementing a sequence of tasks, indexed by

s ∈ [0, 1]. A production chain is a collection of firms that implements all of these tasks

and produces the final good. Firms face no fixed costs or barriers to entry.

Let c(v) be the cost for any one firm of implementing an interval of tasks with length v.

We assume that c is increasing, strictly convex, continuously differentiable, and satisfies

c(0) = 0. (Unlike Kikuchi et al. (2018), we allow c′(0) = 0.) Firms face transaction costs,

as a wedge between price paid by the buyer and payment received by the seller.6 For

convenience, we assume that the transaction cost falls entirely on the buyers, so that, for

a transaction with face value f , the seller receives f and the buyer pays (1 + τ)f , where

τ > 0.7

Firms are indexed by integers i ≥ 0. A feasible allocation of tasks across firms is a

nonnegative sequence {vi} with
∑

i≥0 vi = 1. We identify firm 0 with the most downstream

firm, firm 1 with the second most downstream firm, and so on. Let bi be the downstream

boundary of firm i, so that b0 = 1 and bi+1 = bi− vi for all i ∈ Z. Then, profits of the ith

firm are

πi = p(bi)− c(vi)− (1 + τ)p(bi+1). (4.15)

Here p : [0, 1] → R+ is a price function, with p(t) interpreted as the price of the good at

processing stage t.

Definition 4.3.1. Given a price function p and a feasible allocation {vi}, let {πi} be

corresponding profits, as defined in (4.15). The pair (p, {vi}) is called an equilibrium for

the production chain if

1. p(0) = 0,

2. p(s)− c(s− t)− (1 + τ)p(t) ≤ 0 for any pair s, t with 0 ≤ t ≤ s ≤ 1, and

6This follows Kikuchi et al. (2018) and also studies such as Boehm and Oberfield (2018), where
frictions in contract enforcement are treated as a variable wedge between effective cost to the buyer and
payment to the supplier.

7For example, τf might be the cost of writing a contract for a transaction with face value f . This cost
rises in f because more expensive transactions merit more careful contracts. (There are other possible
interpretations for τ , some of which are touched on below.)
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3. πi = 0 for all i.

Condition 1 rules out profits for suppliers of initial inputs, which are assumed for conve-

nience to have zero cost of production. Condition 2 ensures that no firm in the production

chain has an incentive to deviate, and that inactive firms cannot enter and extract positive

profits. Condition 3 requires that active firms make zero profits, due to free entry and an

infinite fringe of potential competitors.

4.3.2. Solution by Dynamic Programming. Note that an equilibrium of the pro-

duction chain satisfies p(bi) = c(vi) + (1 + τ)p(bi − vi), which has the same form as the

Bellman equation (4.4). Moreover, iterating on this relation yields the price of the final

good

p(1) =
∑
i≥0

(1 + τ)ic(vi), (4.16)

which is analogous to (4.2). These facts motivate us to consider a version of the negative

discount dynamic program introduced in Section 4.2.1.2 where a (fictitious) agent seeks

to minimize
∑

i≥0(1 + τ)ic(ai) subject to
∑

i≥0 ai = 1. In other words, we specialize the

problem to one where x̂ = 1, ` = c and β = 1 + τ . By construction, any feasible action

path is also a feasible allocation of tasks in the production chain.

Since the assumptions in Section 4.2.1.2 are satisfied, we know that there exists a unique

solution {a∗i }. Let W be the corresponding value function given by (4.14). The next

proposition shows that the solution to this dynamic program is precisely the competitive

equilibrium of the Coasian production chain described above. In view of (4.16), it follows

that the equilibrium allocation also gives the minimum price for the final good.

Proposition 4.3.1. Let p = W and vi = a∗i for all i ∈ Z. Then the pair (p, {vi}) is an

equilibrium for the production chain.

One insight from this result is as follows. We know from Section 4.2.3.2 that the price

function is continuously differentiable on (0, 1) and, for firm with downstream boundary

bi,

p′(bi) = c′(vi), (4.17)
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which follows from the envelope condition (EN). Since vi is the optimal range of tasks

implemented in-house by firm i in equilibrium, this is an expression of Coase’s key idea:

the size of the firm is determined as the scale that equalizes the marginal costs of in-house

and market-based operations. This trade-off is further clarified in the Euler equation (EU),

which says that each firm achieves optimum when the cost of implementing an additional

task equals the cost of purchasing it from a supplier. The Euler equation (EU) also implies

that {vi} is decreasing. In other words, firm size increases with downstreamness. This

generalizes a finding of Kikuchi et al. (2018).

4.3.3. An Example. Suppose that the range of tasks v implemented by a given firm

satisfies v = f(k, n), where k is capital and n is labor. Given rental rate r and wage rate

w, the cost function is c(v) := mink,n{rk + wn} subject to f(k, n) ≥ v. Let us suppose

further that, as in Lucas (1978b), the production function has the form φ(g(k, n)), where

g has constant returns to scale and φ is increasing and strictly concave, with the latter

property due to “span-of-control” costs. To generate a closed-form solution, we take

g(k, n) = Akαn(1−α) and φ(x) = xη, with 0 < α, η < 1. The resulting cost function has

the form c(v) = κv1/η, where κ is a positive constant.

By Proposition 4.3.1, the optimal action path for the fictitious agent corresponds to the

equilibrium allocation of tasks across firms, and the value function is the equilibrium price

function. Since c′(0) = 0, Proposition 4.2.4 applies and the Euler equation (EU) yields

a∗i+1 = θa∗i for all i ∈ Z, where θ := (1 + τ)η/(η−1) < 1. From
∑∞

i=0 a
∗
i = 1 we obtain

vi = a∗i = θi(1− θ). Substituting this path into (4.14) gives the price function

p(x) = W (x) = κ (1− θ)(1−η)/η x1/η. (4.18)

As anticipated by the theory, p is strictly increasing and strictly convex.

Although this example lies outside the framework of Kikuchi et al. (2018), since c′(0) = 0,

we have replicated some of their key results. For example, we have found that the size of

firms increases from upstream to downstream (recall that upstream firms have larger i),

and that the price function is strictly convex due to the costly span of control. Intuitively,

firm-level span-of-control costs cannot be eliminated in aggregate due to transaction costs,
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which force firms to maintain a certain size. This leads to strict convexity of prices. If

firms have constant returns to management (η = 1), then the price function in (4.18)

becomes linear.

4.4. Application: Networks

In this section we treat more general network models. Unlike the linear production chains

discussed above, agents can interact with multiple partners. As before, our objective is

to apply the dynamic programming theory developed in Section 4.2.

4.4.1. Spatial Networks. The distribution of city sizes shows remarkable regular-

ity, as described by the rank-size rule.8 One early attempt to match the empirical city

size distribution is found in the central place theory of Christaller (1933). Hsu (2012)

formalizes Christaller’s theory in a model where a city hierarchy arises as a market equi-

librium, while Hsu et al. (2014) shows that the market equilibrium allocation is identical

to the social planner’s solution. In this section, we show how a model similar to that

of Hsu (2012) can be studied using the dynamic programming theory from Sections 4.2.

We then use the Euler equation and envelop condition to gain insights into how a city

hierarchy is formed.

Consider a government that opens competition for many developers to build cities to host

a continuum of dwellers of measure one. One developer can build a large city that hosts

everyone or build a smaller city and assign other developers to build “satellite cities” that

host the rest of the population. Further satellites can be built for existing cities until all

dwellers are accommodated. This chain of building layers of cities starts with a single

developer, who is assigned the whole population. Building satellite cities incurs extra

costs that are charged as an ad valorem tax on the payments to the developers. We can

think of the extra costs as costs of providing public goods that connect different cities

such as roads, electricity, water, telecommunication, etc.

Let developers be paid according to a price p : [0, 1] → R, which is a function of the

population assigned. Let the cost function of building and expanding a city be c : [0, 1]→
8See Gabaix and Ioannides (2004) and Gabaix (2009) for surveys.
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R and the tax rate be τ . Then, a developer assigned to host s dwellers maximizes profits

by solving

max
0≤t≤s

{p(s)− c(s− t)− (1 + τ)kp(t/k)} ,

where p(s) is the payment to the developer, c(s − t) is the cost of building a city of

population s − t, k is the number of satellite cities, and (1 + τ)kp(t/k) is the cost of

assigning population t/k to k satellites. In equilibrium, a city network is formed where

every dweller is accommodated and every developer makes zero profits. The equilibrium

price function satisfies

p(s) = min
0≤t≤s

{c(s− t) + (1 + τ)kp(t/k)} , (4.19)

which is a Bellman equation similar to (4.4) in Section 4.2.1.2. We let c(s) = sγ with

γ > 1. To emulate the bifurcation process in Hsu (2012) and Hsu et al. (2014), we let

k = 2.

We can formulate a dynamic programming problem similar to (4.2) and show that the

value function satisfies (4.19). Consider now the same problem from the perspective of a

social planner who minimizes the total cost of hosting the whole population with value

function

W (x) := min
{vi}

{
∞∑
i=0

(1 + τ)ikic(vi) : {vi} ∈ R∞+ and
∞∑
i=0

kivi = x

}
,

where vi is the size of cities on layer i. Since the assumptions in Section 4.2.1.2 are

satisfied, a similar argument to the proof of Proposition 4.2.4 gives the Euler equation

c′(vi) = (1 + τ)c′(vi+1). (4.20)

Using this equation, it can be shown with some algebra that vi = θi(1 − 2θ) if θ :=

(1 + τ)1/(1−γ) < 1/2 and the value function is W (s) = (1− 2θ)γ−1sγ. It is straightforward

to verify that p = W satisfies (4.19). Hence, the minimum value that can be achieved is

also the equilibrium price function under which no developer makes positive profits.
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Figure 4.2. Illustration of optimal city hierarchy.

The Euler equation (4.20) describes the emergence of optimal city hierarchy where each

developer expands a city to accommodate more dwellers until the marginal cost of ex-

panding equals the marginal cost of building and expanding satellite cities. An envelope

condition similar to (EN) also holds: if a developer is assigned s dwellers and delegate

t dwellers to satellite cities, the equilibrium is reached when p′(s) = c′(s − t). This

shows that the marginal value that a city provides must be equal to the marginal cost of

accommodating one more city dweller.

Figure 4.2 illustrates the optimal city hierarchy by placing cities according to Hsu (2012)

and Hsu et al. (2014), where Ci represents a city on layer i.9 It replicates the relative sizes

of cities on different layers as in Hsu (2012) and Hsu et al. (2014). Moreover, since the

number of cities doubles from one layer to the next, the rank of a city on layer i is 2i.

Hence, the city size distribution generated by our model follows a power law similar to

Hsu (2012). In fact, the rank and size of a city satisfy

ln(Rank) = − ln(1/2)

ln(θ)
ln(Size) + C,

where C is a constant determined by θ. When θ approaches 1/2, the slope approaches

one, which corresponds to the well-documented rank-size rule.

9We set γ = 1.2 and τ = 0.2.
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4.4.2. Snakes and Spiders. Modern production networks are characterized by pro-

cesses that are both sequential and non-sequential where firms assemble parts in no par-

ticular order. There are costs associated with extending each process and changes in those

costs affect how production networks are formed. Baldwin and Venables (2013) refer to

the sequential process as “snakes” and the non-sequential process as “spider”, and ana-

lyze how the location of different parts of a production chain is determined by unbundling

costs of production across borders. Here we show that the dynamic programming theory

developed in Section 4.2 can be used to solve a general production network, which can

replicate key results in the literature.

As in Kikuchi et al. (2018) and Yu and Zhang (2019), we consider a generalization of the

production chain model in Section 4.3, where each firm can also choose the number of

suppliers. The production chain then becomes a combination of “snakes” and “spiders”.

To account for costs of extending “spiders” we assume that firms bear an additive assembly

cost g that is strictly increasing in the number of suppliers, with g(1) = 0. Then for a

firm at stage s that subcontracts tasks of range t to k suppliers, the profits are

p(s)− c(s− t)− g(k)− (1 + τ)kp(t/k),

where p is the price function. Having multiple suppliers leads to another trade-off: firms

potentially benefit from subcontracting at a lower price but also have to pay additional

assembly costs.

We index the layers in the production network by i ∈ Z with layer 0 consisting only of

the most downstream firm. Let bi be the downstream boundary of firms on layer i, each

producing vi and having ki suppliers. Then the boundary of firms on the next layer is

given by bi+1 = (bi − vi)/ki. Similar to Definition 4.3.1, we call the triplet (p, {vi}, {ki})
an equilibrium for the production network if (i) p(0) = 0, (ii) p(s)− c(s− t)− g(k)− (1 +

τ)kp(t/k) ≤ 0 for all 0 ≤ t ≤ s ≤ 1 and k ∈ N, and (iii) πi = 0 for all i ∈ Z where

πi := p(bi)− c(vi)− g(ki)− (1 + τ)kp

(
bi − vi
ki

)
. (4.21)
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As in Section 4.3.2, we seek to find an equilibrium using dynamic programming methods.

Let p∗ be the solution to the following Bellman equation

p(s) = min
0≤t≤s
k∈N

{c(s− t) + g(k) + (1 + τ)kp(t/k)} . (4.22)

Let vi = bi− t∗(bi) and ki = k∗(bi) where t∗(s) and k∗(s) are the minimizers under p∗. Let

I be all continuous p such that c′(0)s ≤ p(s) ≤ c(s) for all s ∈ [0, 1]. Then we have the

following result similar to Proposition 4.3.1.

Proposition 4.4.1. If c′(0) > 0 and g(k) → ∞ as k → ∞, then (4.22) has a unique

solution p∗ ∈ I and (p∗, {vi}, {ki}) is an equilibrium for the production network.

In the appendix, we show that the production network model also fits in our general

dynamic programming framework developed in Section 4.2. In particular, assumptions

A1–A5 hold so that Theorem 4.2.1 can be applied to the Bellman equation (4.22). There-

fore, there exists a unique solution p∗ that can be computed by value function iteration.

We then prove that p∗ induces an equilibrium allocation. Theorem 4.2.2 can also be used

to show the monotonicity of p∗.

Figure 4.3 plots two production networks with different transaction costs, where each node

corresponds to a firm in the network and the one in the center is the most downstream

firm.10 The size of each node is proportional to the size of the firm, represented by the

sum of assembly and transaction costs. Figure 4.3 shows that more downstream firms

are larger and have more upstream suppliers. Comparing panels (A) and (B), we can

see that lower transaction costs increase the number of firms involved in the production

network, encouraging the expansion of snakes. This is in line with the model prediction

of Baldwin and Venables (2013) that decreasing frictions leads to a finer fragmentation of

the production. Also see Tyazhelnikov (2019) and Acemoglu and Azar (2020) for models

with similar features.

10We set c(v) = v1.5 and g(k) = 0.0001(k − 1)1.5.
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(a) τ = 0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) τ = 0.05

Figure 4.3. Examples of production networks.

4.5. Application: Knowledge and Communication

Many firms are characterized by a pyramidal structure, in which employees are organized

into management layers with each layer smaller than the previous one. These features

have been modeled in the pioneering work by Garicano (2000) and the following literature.

The key idea in Garicano’s theory of hierarchical organization of knowledge is a trade-off

between the cost of acquiring problem solving knowledge and the cost of communicating

with others for help. His model highlights the impact that information and communication

technology has on organizational design such as the number of management layers and

the scope of production of workers in each layer. In this section, we solve a version of

Garicano’s model using the dynamic programming theory from Section 4.2.

Consider a model where production of a firm requires its employees solve a set of problems

denoted by [0, 1]. Following Garicano (2000) (Section V.F), we suppose that there is a

market for knowledge within the firm and each management layer solves a profit maxi-

mization problem. Suppose that employees at management layer i are assigned problems

mi ∈ [0, 1]. They learn to solve zi at cost c(zi) and pass on the remainder mi+1 = mi− zi
to the next management layer i+ 1 for help. This incurs additional communication costs

τ that are proportional to the value of problems assigned to layer i+ 1. Let p : [0, 1]→ R

be the function of the value of problems in the internal market. Then, profits of the ith
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management layer are

π(mi, zi) = p(mi)− (1 + τ)p(mi − zi)− c(zi),

where p(mi) is the value of problems assigned to layer i, (1 + τ)p(mi − zi) is the cost of

communicating and assigning unsolved problems to the next layer, and c(zi) is the cost

of learning to solve zi.

Setting profits to zero and minimizing with respect to mi+1 yield the equation

p(mi) = min
mi+1≤mi

{c(mi −mi+1) + (1 + τ)p(mi+1)}.

This parallels the Bellman equation (4.4) in the negative discount dynamic programming

in Section 4.2.1.2.

Let n be the number of employees in a given layer, and suppose that n is related to learning

to solve z via z = f(n). In other words, for a given range of problems z, the number of

employees required to solve z is n = f−1(z). Assume that f is strictly increasing, strictly

concave, and continuously differentiable with f(0) = 0, and that c(z) = wn = wf−1(z)

for some wage rate w. Then the assumptions in Section 4.2.1.2 are satisfied if we let

` = c and β = 1 + τ . The Euler equation (EU) implies that the optimal sequence {zi} is

decreasing, so is the number of employees at each layer as ni = c(zi)/w. This replicates

Garicano’s result that the top management layer has the smallest number of employees

and each layer below is larger than the one above.

The Euler equation (EU) suggests that the pyramidal structure of the span of control

arises in equilibrium where each tier of management acquires knowledge up to the point

where the marginal cost of learning to solve problems within the tier equals the marginal

cost of communicating and assigning unsolved problems to the next layer. The envelope

condition (EN) implies p′(mi) = c′(zi), which says that, in equilibrium, the marginal value

of problems assigned to a management layer equals the marginal cost of learning to solve

problems within the tier.11

11This result is analogous to (4.17) for the production chain model and reminiscent of Coase’s theory
of the firm in the context of knowledge organization within a firm.
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(a) τ = 0.2 (b) τ = 0.4 (c) τ = 0.6

Figure 4.4. Optimal organizational structures.

Figure 4.4 plots the optimal organizational structures of three firms given by the model

above.12 Each node corresponds to one management layer, who asks the layer above for

help, and its size is proportional to the number of employees in that layer. As shown in

the graphs, each firm has a pyramidal structure and higher communication costs increase

the relative knowledge acquisition of lower layers and reduce the number of layers.

4.6. Continuous Time: Theory and Applications

Next we treat dynamic optimization in continuous time, giving results that parallel the

discrete time results in Section 4.2. We then show how such results can be connected to

production chains and the theory of the firm.

4.6.1. An Infinite Horizon Problem. The continuous time version of problem

(4.2) is

min
a(t)

∫ ∞
0

eρt`(a(t))dt (4.23)

subject to feasibility of a(t), which means that a : R+ → R+ has at most finitely many

points of discontinuity and satisfies
∫∞

0
a(t)dt = x̄.

Assumption 4.6.1. The constant ρ is strictly positive, while ` : R+ → R+ is continuously

differentiable, strictly increasing, strictly convex and satisfies `(0) = 0.

Positivity of ρ indicates that future losses are given more weight than current ones. The

conditions on ` are identical to those in (4.3).

12We set c(z) = z1.2 and m0 = 1.
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Now let us consider a recursive formulation, to parallel the discrete time results in Sec-

tion 4.2. Given a control a(t), the state path evolves according to ẋ(t) = −a(t) with

x(0) = x̄ and can be calculated by

x(t) = x̄−
∫ t

0

a(s)ds =

∫ ∞
t

a(s)ds. (4.24)

Similar to (4.14), we can also define the value function by

F (x) := min
a(t)

{∫ ∞
0

eρt`(a(t))dt : a(t) ≥ 0 and

∫ ∞
0

a(t)dt = x

}
, ∀x ∈ R+, (4.25)

which is the minimal cost when the amount of tasks to be completed is x. We then have

the following continuous time version of Theorem 3.2.1.

Theorem 4.6.1. If Assumption 4.6.1 holds, then

1. there exists a unique feasible solution a∗ to (4.23). It satisfies

a∗(t) = arg min
a≥0

{
eρt`(a) + λa

}
(4.26)

where λ is a constant uniquely determined by the feasibility constraint∫ ∞
0

a∗(t)dt = x̄. (4.27)

2. The optimal action a∗(t) is decreasing in t. Moreover,

C1. if `′(0) = 0, then `′(a∗(t)) = −λe−ρt and a∗(t) > 0 for all t; and

C2. if `′(0) > 0, then there is a finite T̄ such that a∗(t) = 0 for all t ≥ T̄ .

3. The value function F (x) is differentiable when x > 0, and it satisfies

− ρF (x) = inf
a≥0
{`(a)− F ′(x)a} (4.28)

with boundary condition F (0) = 0 and the optimal action a∗ at state x satisfies

− ρF (x) = inf
a≥0
{`(a)− F ′(x)a} = `(a∗)− F ′(x)a∗. (4.29)
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Equation (4.26) can be seen as the continuous time Euler equation. For example, if

`′(0) = 0, then, by C1 of Theorem 4.6.1, we have `′(a∗(t)) = −e−ρtλ, and hence

`′(a∗(t′)) = eρ(t−t′)`′(a∗(t)) for any t′ > t.

This is a continuous time version of (EU). Furthermore, if a∗ is an interior solution in

(4.29), we have F ′(x) = `′(a∗), which is similar to (EN) in the discrete case and gives an

envelope-like condition between the value function and the loss function. The proof can

be found in Appendix 4.7.5.1

Example 4.6.1. Consider again the case `(x) = xγ with γ > 1, previously considered

in discrete time. Since `′(0) = 0, Theorem 4.6.1 implies that a∗(t) = (−λe−ρt/γ)1/(γ−1).

Using (4.27) to pin down λ and substituting into the solution gives

a∗(t) = θx̄e−θt. where θ :=
ρ

γ − 1
. (4.30)

Combining (4.24) and (4.30), we have

x∗(t) =

∫ ∞
t

a∗(s)ds = x̄e−
ρ

γ−1
t.

Figure 4.5 illustrates the relationship between optimal action a∗(t) and the resulting state

path x∗(t) where we set γ = 2, ρ = 1, and x̄ = 1. Notice that the optimal action

a∗(t) decreases over time consistent with Theorem 4.6.1 and the state path is computed

according to (4.24).

Now the optimal action can be expressed as a∗ = ρx∗/(γ−1), which is always proportional

to the state. This relation demonstrates the trade-off between current loss and negatively

discounted future losses. If γ is large, the agent will choose to complete a smaller portion

of the remaining tasks each time because the loss function `(a) grows rapidly with a. On

the other hand, if ρ is large, the agent will try to complete the tasks faster because of the

greater weight given to future losses indicated by eρt. Plugging a∗ into (4.25) gives the

value function

F (x) =

(
ρ

γ − 1

)γ−1

xγ,
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Figure 4.5. Optimal action and optimal state path

which is increasing in the amount of tasks x. Also, given x, the value function is increasing

in the discount factor ρ. Although the agent will try to finish the tasks faster when ρ

increases, minimal cost is still larger.

4.6.2. An Application of the Continuous Time Theory. This section shows

how the continuous time negative discount dynamic programming results can be applied

to production chains and the theory of the firm. To begin, let us consider a version of

the Coasian production chain model in Section 4.3 that is essentially parallel except that

there is a continuum of firms.

Firms are indexed by i ∈ R+, with i = 0 being the most downstream firm. Let a(i) be

the range of tasks firm i chooses to implement and let p(i) be the price at which firm i

sells the partially completed good. The cost of producing a(i) is c (a(i)). To finish the

final product, a(·) has to satisfy
∫∞

0
a(i)di = 1. Buyers bear transaction costs, so firm i

pays τ di · p(i + di) for every unit purchased from firm i + di where τ > 0. Hence, the

total cost for firm i is

c(a(i))di+ (1 + τ di) · p(i+ di).
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In equilibrium, firms optimize and make zero profit, so any price function p(i) and optimal

production a∗(i) must satisfy13

0 = c(a∗(i)) + τp(i) + p′(i)

= min
a
{c(a(i)) + τp(i) + p′(i)} .

(4.31)

To utilize our continuous time theory in Section 4.6.1, we define a new price function

F : [0, 1]→ R+ by F (x(i)) := p(i), where x(i) corresponds to the stage14 at which firm i

sells its product.

Given differential equation (4.31), the equilibrium price function F , optimal production

a∗, and optimal path x∗ must satisfy

0 = c(a∗(i)) + τF (x∗(i))− F ′(x∗(i))a∗(i)

= min
a
{c(a(i)) + τF (x∗(i))− F ′(x∗(i))a(i)} ,

(4.32)

where we use the fact that (x∗)′ = −a∗. Since we assume that initial inputs have zero

cost, a boundary condition F (0) = 0 must also be satisfied.

To find the equilibrium price and optimal production function, we first suppose that

there is a social planner who minimizes the price of the final good p(0). By solving the

differential equation (4.31), we have

p(0) =

∫ ∞
0

eτic(a(i))di+ C,

where C is any constant. Therefore, the planner solves

min
a(i)

∫ ∞
0

eτic(a(i))di s.t. a(i) ≥ 0 and

∫ ∞
0

a(i)di = 1,

which is the same as problem (4.23) with x̄ = 1.

It follows from Theorem 4.6.1 that this problem has exactly one solution, the value func-

tion F (·) corresponding to the equilibrium price satisfies the differential equation (4.32)

and the boundary condition F (0) = 0, and the optimal production a∗(i) is decreasing in i,

13Here we write the equilibrium conditions in differential form.
14This is parallel to the state path (4.24) in Section 4.6.1. If the firms in the chain produce according

to a(·), the stage for firm i can be computed by x(i) =
∫∞
i
a(j)dj. For example, the stage for firm 0 is

x(0) =
∫∞
0
a(j)dj = 1.
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suggesting that firm size is increasing in downstreamness. Moreover, by the remarks after

Theorem 4.6.1, the solutions also satisfy F ′(x∗) = c′(a∗), a similar condition to (4.17) in

discrete time, which says that firms expand until the marginal cost of in-house production

equals the marginal cost of purchasing from a supplier.

4.6.3. Extension: A Finite Horizon Problem. Next we consider a finite horizon

version of the negative discount dynamic programming problem. We then show that this

problem also has applications in the study of equilibria in production chains.

The objective is to choose feasible action path a and a terminal date T to solve

min
a(t),T

∫ T

0

eρt`(a(t))dt+ L(T ) s.t. a(t) ≥ 0 and

∫ T

0

a(t)dt = x̄ (MLCF)

The terminal cost function L is assumed to be increasing, twice continuously differentiable,

and to satisfy L(t) → ∞ as t → ∞. Note that the time horizon itself is also a choice

variable.

Theorem 4.6.2. Let Assumption 4.6.1 hold and suppose, in addition, that `′(0) = 0. Let

λ and T ∗ be constants and let

a∗(t) := (`′)−1(−λe−ρt). (4.33)

If λ and T ∗ are such that
∫ T ∗

0
a∗(t)dt = x̄ and −λa∗(T ∗) − eρT ∗`(a∗(T ∗)) − L′(T ∗) = 0

both hold, then a∗ solves (MLCF) and a∗(t) is decreasing in t.

This theorem gives sufficient conditions for the control function to be optimal in the finite

horizon problem (MLCF). Compared with Theorem 4.6.1, there is an additional condition

involving L′(T ∗) because the agent is also choosing the terminal date in this problem. An

application that uses this theorem is discussed below.

In Fally and Hillberry (2018), a production chain for a single final product consists of

firms across multiple countries. We restrict our attention to a country that imports

an intermediate good and exports a partially finished product after sequential production

along the chain. As in Section 4.6.2, firms face transaction costs and diseconomies of scope
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and are indexed by i ∈ R+. Given the import price B and the amount of production to

be completed x̄, a social planner minimizes the price of the export good by choosing not

only the amount each firm produces a(i), but also the total “number” of firms I in this

country. Due to transaction costs, the price of the export good is∫ I

0

eτic(a(i))di+BeτI ,

where the first part is the total cost along the chain and the second part is from the

import price. The social planner’s problem is thus

min
a(i),I

∫ I

0

eτic(a(i))di+BeτI s.t. a(i) ≥ 0 and

∫ I

0

a(i)di = x̄.

To solve the planner’s problem, we can directly apply Theorem 4.6.2, which offers sufficient

conditions for the optimal solutions. We show in the appendix that all the conditions are

satisfied for the parameterizations in Fally and Hillberry (2018), and thus their proposed

solution is indeed optimal. Theorem 4.6.2 complements their necessity results in that it

provides a way to test the optimality of any solution. It is also able to deal with a wider

range of functional forms beyond what is discussed above. A more general version of

Theorem 4.6.2 can also be found in Appendix 4.7.5.2.

4.7. Appendix

4.7.1. Proofs for Section 4.2.

Proof of Theorem 4.2.1. By A1 and Berge’s theorem of the maximum, Tw is

continuous. Hence T maps C(X) to itself. It follows directly from A2 that T is isotone

on C(X), in the sense that u ≤ v implies Tu ≤ Tv. Conditions A4–A5 and the isotonicity

of T imply that, when φ ≤ w ≤ ψ, we have φ ≤ Tφ ≤ Tw ≤ Tψ ≤ ψ. In particular, T is

an isotone self-map on I.

The Bellman operator is also concave on I, in the sense that

0 ≤ λ ≤ 1 and u, v ∈ I implies λTu+ (1− λ)Tv ≤ T (λu+ (1− λ)v). (4.34)
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Indeed, fixing such λ, u, v and applying A3, we have

min
a∈Γ(x)

{λL(x, a, u) + (1− λ)L(x, a, v)} ≤ min
a∈Γ(x)

L(x, a, λu+ (1− λ)v)

for all x ∈ X. Since, for any pair of real valued functions f, g we have mina f(a) +

mina g(a) ≤ mina(f(a) + g(a)), it follows that (4.34) holds.

The preceding analysis shows that T is an isotone concave self-map on I. In addition, by

A4 and A5, we have Tψ ≤ ψ and Tφ ≥ φ + ε(ψ − φ) for some ε > 0. Since I is an order

interval in the positive cone of the Banach space (C(X), ‖·‖), and since that cone is normal

and solid, the first two claims in Theorem 4.2.1 are now confirmed via Theorem 2.1.2 of

Zhang (2013). The final claim is due to Berge’s theorem of the maximum. �

Proof of Theorem 4.2.2. The first part of the theorem follows directly from the

fact that Ci(X) is a closed subspace. The proof is omitted. To prove the strict convexity

of w∗, it suffices to show that Tw is strictly convex for all w ∈ Cc(X) since Cc(X) is

a closed subspace of C(X). Pick any x1, x2 ∈ X with x1 < x2 and any λ ∈ (0, 1).

Let xλ = λx1 + (1 − λ)x2. Pick any w ∈ Cc(X) and let πw : X → A be such that

(Tw)(x) = L(x, πw(x), w). It follows that

λ(Tw)(x1) + (1− λ)(Tw)(x2) = λL(x1, πw(x1), w) + (1− λ)L(x2, πw(x2), w)

> L(xλ, λπw(x1) + (1− λ)πw(x2), w)

≥ L(xλ, πw(xλ), w) = (Tw)(xλ),

where the first inequality holds because (x, a) 7→ L(x, a, w) is strictly convex and the

second inequality holds because gr Γ is convex. Therefore, w∗ is strictly convex. Strict

convexity of L then implies that π∗ is single-valued.

Since π∗(x) ∈ int Γ(x) and Γ is continuous, there exists an open neighborhood D of

x such that π∗(x) ∈ int Γ(y) for all y ∈ D. Define W (y) := L(y, π∗(x), w∗) for all

y ∈ D. Then W (y) ≥ w∗(y) for all y ∈ D and W (x) = w∗(x). Since W is convex

and differentiable on D, differentiability of w∗ and (4.8) then follow from Benveniste and

Scheinkman (1979). �
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We say that a dynamic programming problem has the monotone increase property if

−∞ < φ(x) ≤ L(x, a, φ) for all (x, a) ∈ gr Γ and Assumption 4.2.2 are satisfied. We state

two useful lemmas from Bertsekas (2013).

Lemma 4.7.1 (Proposition 4.3.14, Bertsekas (2013)). Let the monotone increase property

hold and assume that the sets

Γk(x, λ) := {x ∈ Γ(x) | L(x, a, T kφ) ≤ λ}

are compact for all x ∈ X, λ ∈ R, and k greater than some integer k̄. If w ∈ RX
+ satisfies

φ ≤ w ≤ w̄, then limn→∞ T
nw = w̄. Furthermore, there exists an optimal stationary

policy.

Lemma 4.7.2 (Proposition 4.3.9, Bertsekas (2013)). Under the monotone increase prop-

erty, a stationary policy π is optimal if and only if Tπw̄ = Tw̄.

Proof of Theorem 4.2.3. Theorem 4.2.1 implies that limn→∞ T
nφ = w∗. To prove

w∗ = w̄, it suffices to show that the conditions of Lemma 4.7.1 hold and φ ≤ w̄.

It follows from A5 that φ(x) ≤ (Tφ)(x) ≤ L(x, a, φ) for all (x, a) ∈ gr Γ. Therefore,

the monotone increase property is satisfied. Since T is a self-map on C(X), to check the

conditions of Lemma 4.7.1, it suffices to prove that the set

Γ(x, λ) := {x ∈ Γ(x) | L(x, a, w) ≤ λ}

is compact for any w ∈ C(X), x ∈ X, and λ ∈ R. Since a 7→ L(x, a, w) is continuous by

A1, L(x, · , w)−1 ((−∞, λ]) is a closed set. Since Γ is compact-valued, Γ(x, λ) is compact.

It remains to show that φ ≤ w̄. By A5 and the definition of T , we have for any µ =

(π0, π1, . . .) ∈ M, φ ≤ T nφ ≤ Tπ0Tπ1 . . . Tπnφ for all n ∈ N. Then by definition, φ ≤ wµ

for all µ ∈ M. Taking the infimum gives φ ≤ w̄ and there exists an stationary optimal

policy. Lemma 4.7.1 then implies that w∗ = w̄. The principle of optimality follows directly

from Lemma 4.7.2. �

4.7.2. Proofs for the Negative Discount Dynamic Program. Let F be the

set of increasing convex functions in I. Throughout the proofs, we regularly use the
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alternative expression for T given by

Tw(x) = min
0≤y≤x

{`(x− y) + βw(y)} (4.35)

Also, given w ∈ F, define

πw(x) = arg min
0≤a≤x

{`(a) + βw(x− a)}

and

σw(x) := arg min
0≤y≤x

{`(x− y) + βw(y)} = x− πw(x). (4.36)

These functions are clearly well-defined, unique and single-valued. Let σ = σw∗ and

π = πw∗ . Let η be the constant defined by

η := max {0 ≤ x ≤ x̂ : `′(x) ≤ β`′(0)}. (4.37)

We begin with several lemmas. The proof of the first lemma is trivial and hence omitted.

Lemma 4.7.3. We have η > 0 if and only if `′(0) > 0. If η < x̂, then `′(η) = β`′(0).

Lemma 4.7.4. If w ∈ F, then σw(x) = 0 if and only if x ≤ η.

Proof. First suppose that x ≤ η. Seeking a contradiction, suppose there exists a

y ∈ (0, x] such that `(x − y) + βw(y) < `(x). Since w ∈ F we have w(y) ≥ `′(0)y and

hence

βw(y) ≥ β`′(0)y ≥ `′(η)y.

Since x ≤ η, this implies that βw(y) ≥ `′(x)y. Combining these inequalities gives `(x −
y) + `′(x)y < `(x), contradicting convexity of `.

Now suppose that σw(x) = 0. We claim that x ≤ η, or, equivalently `′(x) ≤ β`′(0). To

prove `′(x) ≤ β`′(0), observe that since w ∈ F we have w(y) ≤ `(y), and hence

`(x) ≤ `(x− y) + βw(y) ≤ `(x− y) + β`(y) for all y ≤ x.

It follows that

`(x)− `(x− y)

y
≤ β`(y)

y
for all y ≤ x.
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Taking the limit gives `′(x) ≤ β`′(0). �

Proposition 4.7.5. If `′(0) > 0, then the conclusions of Theorem 4.2.1 are valid for the

Bellman operator T in (4.5).

Proof of Proposition 4.7.5. Let A = X = [0, x̂], Γ(x) = [0, x] and L(x, a, w) =

`(a)+βw(x−a). ConditionsA1–A3 obviously hold. ConditionA4 holds since min0≤a≤x{`(a)+

β`(x − a)} ≤ `(x). For condition A5, note that L(x, a, φ) = `(a) + β`′(0)(x − a). Then

Tφ = ` if x < η and (Tφ)(x) = `(η) + β`′(0)(x− η) if x ≥ η. For x < η, Tφ− φ = ψ − φ
so we can choose any ε ≤ 1. For x ≥ η,

(Tφ)(x)− φ(x) = `(η) + β`′(0)(x− η)− `′(0)x

= `(η)− `′(0)η + (β − 1)`′(0)(x− η)

≥ `(η)− `′(0)η = (ψ − φ)(η).

Since ψ − φ is increasing, we can choose any ε ≤ ε̄ where (ψ − φ)(η) = ε̄(ψ − φ)(x̂). The

proposition thus follows from Theorem 4.2.1. �

Proposition 4.7.6. The fixed point w∗ of the negative discount Bellman operator T in

(4.5) is strictly increasing, strictly convex, and continuously differentiable on (0, x̂). The

policy correspondence π∗ is single-valued and satisfies (w∗)′(x) = `′(π(x)).

Proof of Proposition 4.7.6. Consider the alternative expression for T in (4.35).

Since ` is strictly convex, (x, y) 7→ `(x− y) + βw(y) is strictly convex for all w ∈ Cc(X).

Hence, part 1 of Assumption 4.2.1 holds. Evidently Tw is strictly convex for all w ∈ F.

Next we show that Tw is strictly increasing for all w ∈ F. Pick any w ∈ F and x1 ≤ x2.

For ease of notation, let yi = σw(xi) for i ∈ {1, 2}. If y2 ≤ x1, then

(Tw)(x1) = `(x1 − y1) + βw(y1)

≤ `(x1 − y2) + βw(y2)

< `(x2 − y2) + βw(y2) = (Tw)(x2)
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where the first inequality holds since y2 is available when y1 is chosen and the second

inequality holds since ` is strictly increasing. If y2 > x1, we first consider the case of

x1 + y2 < x2. Then (Tw)(x2) > `(x1) + βw(y2) ≥ `(x1) ≥ (Tw)(x1). For the case of

x1 + y2 ≥ x2, we have 0 ≤ y′1 ≤ x1 < y2 where y′1 = x1 + y2− x2. Since w is not constant,

w ∈ F implies that w is strictly increasing. It follows that

(Tw)(x1) = `(x1 − y1) + βw(y1)

≤ `(x1 − y′1) + βw(y′1)

< `(x2 − y2) + βw(y2) = (Tw)(x2).

Therefore, T is a self-map on F and Tw is strictly increasing and strictly convex for all

w ∈ F. Theorem 4.2.2 then implies that w∗ is strictly increasing and strictly convex.

Since ` is differentiable, part 2 of Assumption 4.2.1 holds. Theorem 4.2.2 then implies that

w∗ is differentiable and (f ∗)′(x) = `′(x − σ(x)) whenever σ(x) is interior. Lemma 4.7.4

implies that w∗(x) = `(x) and thus (f ∗)′(x) = `′(x) when x ≤ η; when x > η, σ is interior

and (f ∗)′(x) = `′(x − σ(x)). Since σ is continuous, (f ∗)′ is continuous. Therefore, w∗ is

continuously differentiable on (0, x̂) and (f ∗)′(x) = `′(π(x)). �

The next lemma further characterizes π and σ.

Lemma 4.7.7. Let w ∈ F. If x1, x2 satisfy 0 < x1 ≤ x2, then σw(x1) ≤ σw(x2) and

πw(x1) ≤ πw(x2). Moreover, if x ≥ η, then πw(x) ≥ η; if x ≤ η, then πw(x) = x.

Proof. Pick any w ∈ F. Since ` and w are convex, the maps (x, a) 7→ `(a)+βw(x−a)

and (x, y) 7→ `(x − y) + βw(y) both satisfy the single crossing property. It follows from

Theorem 4′ of Milgrom and Shannon (1994) that πw and σw are increasing.

For the last claim, since πw is increasing, Lemma 4.7.4 implies that, if η ≤ x, then

πw(x) ≥ πw(η) = η − σw(η) = η; and if x ≤ η, then πw(x) = x− σw(x) = x. �

The following lemma characterizes the solution to (4.2) and is useful when showing the

equivalence between (4.2) and (4.4).
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Lemma 4.7.8. If {at} is a solution to (4.2), then {at} is monotone decreasing and aT+1 = 0

if and only if aT ≤ η.

Proof. The first claim is obvious, because if {at} is a solution to (4.2) with at < at+1,

then, given that β > 1, swapping the values of these two points in the sequence will

preserve the constraint while strictly decreasing total loss. Regarding the second claim,

since {at} is monotone decreasing, it suffices to check the case aT > 0. To this end,

suppose to the contrary that {at} is a solution to (4.2) with 0 < aT < η and aT+1 > 0.

Consider an alternative feasible sequence {ât} defined by âT = aT + ε, âT+1 = aT+1 − ε
and ât = at for other t. If we compare the values of these two sequences we get

∞∑
t=0

βt`(at)−
∞∑
t=0

βt`(ât) = βT [`(aT )− `(aT + ε)] + βT+1[`(aT+1)− `(aT+1 − ε)]

= εβT
{
−`(aT + ε)− `(aT )

ε
+ β

`(aT+1 − ε)− `(aT+1)

−ε

}
.

The term inside the parenthesis converges to

−`′(aT ) + β`′(aT+1) > −`′(η) + β`′(0) ≥ 0,

where the first inequality follows from aT ≤ η, aT+1 > 0 and strict convexity of `; and the

second inequality is by the definition of η. We conclude that for ε sufficiently small, the

difference
∑∞

t=0 β
t`(at)−

∑∞
t=0 β

t`(ât) is positive, contradicting optimality.

Finally we check the claim aT+1 = 0 =⇒ aT ≤ η. Note that if η = x̂ then there is

nothing to prove, so we can and do take η < x̂. Seeking a contradiction, suppose instead

that aT+1 = 0 and aT > η. Consider an alternative feasible sequence {ât} defined by

âT = aT − ε, âT+1 = ε and ât = at for other t. In this case we have

∞∑
t=0

βt`(at)−
∞∑
t=0

βt`(ât) = εβT
{
`(aT − ε)− `(aT )

−ε − β `(ε)− `(0)

ε

}
.

The term inside the parentheses converges to

`′(aT )− β`′(0) > `′(η)− β`′(0) = 0,



4.7. APPENDIX 103

where the final equality is due to η < x̂ and Lemma 4.7.3. Once again we conclude that

for ε sufficiently small, the difference
∑∞

t=0 β
t`(at)−

∑∞
t=0 β

t`(ât) is positive, contradicting

optimality. �

Proposition 4.7.9. For the negative discount dynamic program, the sequence {a∗t} de-

fined by x0 = x̂, xt+1 = xt − π∗(xt) and a∗t = π∗(xt) is the unique solution to (4.2).

Moreover, W = w∗.

Proof of Proposition 4.7.9. To show the equivalence between (4.2) and (4.4),

we first show that (4.2) is equivalent to w̄ = infµ∈Mwµ where wµ is as defined in (4.11).

Suppose that the optimal policy is µ = (π0, π1, . . .) and we let σt(x) = x − πt(x). Then

we have

w̄(x̂) = wµ(x̂) = `[π0(x̂)] + β`[π1σ0(x̂)] + β2`[π2σ1σ0(x̂)] + . . .

+ lim sup
t→∞

βk`′(0)σt−1σt−2 · · ·σ0(x̂). (4.38)

It is clear that w̄ is finite. Therefore, the optimal policy must satisfy σt → 0, otherwise

the last term in (4.38) would go to infinity. Let at = πtσt−1 . . . σ0(x̂). We claim that {at}
solves (4.2). Suppose not and the solution to (4.2) is {a′t}. Then by Lemma 4.7.8, a′t = 0

for all t > T for some T . Thus we can construct a policy µ′ that reproduces {a′t} and

gives a lower loss. This is a contradiction. Conversely, suppose that the solution to (4.2)

is {at}. Using the same argument, we can show that the policy that gives rise to {at} is

an optimal policy. Therefore, W = w̄.

Next we show that w∗ = w̄ using Theorem 4.2.3. That Assumption 4.2.2 holds was

shown in Section 4.2.4.1. It follows from Theorem 4.2.3 that w∗ = w̄, there exists an

stationary optimal policy, and the Bellman’s principle of optimality holds. Since π∗

satisfies Tπ∗w
∗ = Tw∗, π∗ is a stationary optimal policy.

Theorems 4.2.1 and 4.2.2 implies that π∗ is continuous and single-valued. It then follows

from the principle of optimality that {a∗t} is the unique solution to (4.2). �



104 4. NEGATIVE DISCOUNT DYNAMIC PROGRAMMING

Proposition 4.7.10. For all n ∈ N and increasing convex w ∈ I, we have

T nw(x) = w∗(x) whenever x ≤ nη.

Proposition 4.7.10 implies uniform convergence in finite time. In particular, for n ≥ x̂/η

we have T nw = w∗ everywhere on [0, x̂]. Note that this bound x̂/η is independent of the

initial condition w.

Proof of Proposition 4.7.10. It suffices to show that if f, g ∈ F, then T kf = T kg

on [0, kη]. We prove this by induction.

To see that T 1f = T 1g on [0, η], pick any x ∈ [0, η] and recall from Lemma 4.7.4 that

if h ∈ F and x ≤ η, then Th(x) = `(x). Applying this result to both f and g gives

Tf(x) = Tg(x) = `(x). Hence T 1f = T 1g on [0, η] as claimed.

Turning to the induction step, suppose now that T kf = T kg on [0, kη], and pick any

x ∈ [0, (k + 1)η]. Let h ∈ F be arbitrary, let πh be the h-greedy function, and let

σh(x) := x− πh(x). By Lemma 4.7.7, we have πh(x) ≥ η, and hence

σh(x) ≤ x− η ≤ (k + 1)η − η ≤ kη.

In other words, given function h, the optimal choice at x is less than kη. Since this is true

for both h = T kf and h = T kg, we have

T k+1f(x) = min
0≤y≤x

{`(x− y) + βT kf(y)} = min
0≤y≤kη

{`(x− y) + βT kf(y)}.

Using the induction step we can now write

T k+1f(x) = min
0≤y≤kη

{`(x− y) + βT kg(y)} = min
0≤y≤x

{`(x− y) + βT kg(y)}.

The last expression is just T k+1g(x), and we have now shown that T k+1f = T k+1g on

[0, (k + 1)η]. The proof is complete. �

Proof of Proposition 4.2.4. Since `′(0) = 0, (EU) is equivalent to β`′(a∗t+1) =

`′(a∗t ).
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Sufficiency. Let x∗0 = x̂ and x∗t = x∗t−1−a∗t−1 for t ≥ 1. Let {at} be any feasible sequence.

Let x0 = x̂ and xt = xt−1 − at−1. It suffices to prove that

D := lim
T→∞

T∑
t=0

βt[`(a∗t )− `(at)] ≤ 0.

Since ` is convex, we have

D = lim
T→∞

T∑
t=0

βt[`(x∗t − x∗t+1)− `(xt − xt+1)]

≤ lim
T→∞

T∑
t=0

βt`′(a∗t )(x
∗
t − xt − x∗t+1 + xt+1).

Since x0 = x∗0, rearranging gives

D ≤ lim
T→∞

T∑
t=0

βt(x∗t+1 − xt+1)[β`′(a∗t+1)− `′(a∗t )]− βT `′(a∗T )(x∗T+1 − xT+1).

Since β`′(a∗t+1) = `′(a∗t ), the summation is zero and βT `′(a∗T ) = `′(a∗0). We have

D ≤ − lim
T→∞

`′(a∗0)(x∗T+1 − xT+1).

Since {at} and {a∗t} are feasible, xT+1 and x∗T+1 go to zero when T → ∞. Therefore,

D ≤ 0.

Existence and Uniqueness. Since {a∗t} is feasible and satisfies β`′(a∗t+1) = `′(a∗t ) for

all t, we have

x̂ =
∞∑
t=0

a∗t =
∞∑
t=0

(`′)−1

(
1

βt
`′(a∗0)

)
=: g(a∗0),

where (`′)−1 is well defined on [0, limx→∞ `
′(x)] because ` is increasing, strictly convex, and

`′(0) = 0. Hence, g is well defined on R+ and g(a∗0) is continuous and strictly increasing

in a∗0. Since g(0) = 0 and g(x̂) > x̂, there exists a unique a∗0 > 0 such that {a∗t} satisfying

β`′(a∗t+1) = `′(a∗t ) is feasible, a∗t > 0 for all t, and {a∗t} is strictly decreasing. That {a∗t} is

an optimal solution then follows from the sufficiency part. Since ` is strictly convex, the

solution is unique.

Necessity. Since we have pinned down a unique solution of (4.2) which satisfies β`′(a∗t+1) =

`′(a∗t ), the condition is also necessary. �
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4.7.3. Proofs for Section 4.3.

Proof of Proposition 4.3.1. We must verify that (W, {a∗i }) satisfies Definition 4.3.1.

We first consider the case of `′(0) > 0. By Propositions 4.7.5 and 4.7.9, the value function

W is a solution to the Bellman equation (4.4), and hence satisfies

W (s) = min
0≤v≤s

{c(v) + (1 + τ)W (s− v)} for all s ∈ [0, 1]. (4.39)

By Proposition 4.7.6, it lies in the class F of increasing, convex and continuous functions

f : R+ → R+ such that c′(0)s ≤ f(s) ≤ c(s) for all s ∈ R+. In addition, with {xi} as the

optimal state process (see Proposition 4.7.9), we have,

W (xi) = {c(a∗i ) + (1 + τ)W (xi+1)} for all i ≥ 0. (4.40)

We need to show that 1–3 of Definition 4.3.1 hold when p = W and vi = a∗i for all i ∈ Z.

Part 1 is immediate because W ∈ F and all functions in F must have this property, while

Part 2 follows directly from (4.39). To see that Part 3 of Definition 4.3.1 also holds, let

bi = xi. By the definition of the state process, the sequence {bi} then corresponds to the

downstream boundaries of a set of firms obeying task allocation {a∗i }. The profits of firm

i are πi = W (bi)− c(a∗i )− (1 + τ)W (bi+1). By (4.40) and bi = xi, we have πi = 0 for all

i. Hence Part 3 of Definition 4.3.1 also holds, as was to be shown.

If `′(0) = 0, part 1 follows from the definition of the value function (4.14). By Proposi-

tion 4.2.4, for any t with 0 ≤ t ≤ 1, there exists a unique optimal allocation {a∗t,j} such that

W (t) =
∑

j β
j`(a∗t,j), and

∑
j a
∗
t,j = t. Since {s− t, a∗t,0, a∗t,1, . . .} is a feasible allocation at

stage s with t ≤ s ≤ 1, part 2 follows from the definition of the value function. To see part

3, let b0 = 1 and bi = bi−1 − a∗i−1. By Proposition 4.2.4, we have `′(a∗i ) = (1 + τ)`′(a∗i+1).

Since
∑∞

i=j a
∗
i = bj for all j, it follows again from Proposition 4.2.4 that {a∗i }∞i=j is an opti-

mal allocation for stage bj. Therefore, p(bi) =
∑∞

j=0(1+τ)jc(a∗i+j) = c(a∗i )+(1+τ)p(bi+1)

for all i. Hence, πi = 0 for all i. �

4.7.4. Proofs for Section 4.4.
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Proof of Proposition 4.4.1. To study this problem in the framework of Theo-

rem 4.2.1, we set X = [0, x̂], A = [0, x̂]×N, Γ(x) = [0, x]×N, and

L(x, a, w) = c(x− t) + g(k) + (1 + τ)kp(t/k) a = (t, k).

Since g(k) → ∞ as k → ∞, we can restrict Γ(x) to be [0, x] × {1, 2, . . . , k̄} so that Γ is

compact-valued. Under the conditions of Proposition 4.4.1, it can be shown that A1–A5

hold with ψ = c and φ(s) = c′(0)s (see Yu and Zhang (2019)). Then, Theorem 4.2.1

implies that the Bellman equation (4.22) has a unique solution p∗ in I, T np → p∗ for all

p ∈ I where

(Tp)(s) := min
0≤t≤s
k∈N

L(x, a, w),

and t∗ and k∗ exist. We need only verify that (p∗, {vi}, {ki}) given by vi = bi − t∗(bi),

ki = k∗(bi) and bi+1 = (bi − vi)/ki is an equilibrium, the definition of which is given in

Section 4.4.2.

Since p∗ ∈ I, p(0) = 0. Since p∗ satisfies (4.22), part (ii) of the definition is also satisfied.

To see that part (iii) holds, note that

p∗(bi) = c(bi − t∗(bi)) + g(k∗(bi)) + (1 + τ)k∗(bi)p
∗
(
t∗(bi)

k∗(bi)

)
= c(vi) + g(ki) + (1 + τ)kip

∗
(
bi − vi
ki

)
.

It follows that πi = 0 for all i ∈ Z where πi is as defined in (4.21). This completes the

proof. �

4.7.5. Proofs for Continuous Time Theory. Assumption 4.6.1 is imposed through-

out.

4.7.5.1. Proof of Theorem 4.6.1. In this section, we consider a relatively more general

problem:

min
x(t),a(t)

∫ ∞
0

g(t, x(t), a(t))dt (4.41)

subject to

ẋ(t) = f(t, x(t), a(t)), x(0) = x0, lim
t→∞

x(t) = x1, and a(t) ∈ U ⊂ R ∀t. (4.42)
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Throughout the appendix, we assume that f and g are continuously differentiable with

respect to x, a, and t, and a(·) is piecewise continuous. Define the Hamiltonian by

H(x(t), a(t), λ(t), t) = λ(t)f(t, x(t), a(t))− g(t, x(t), a(t)) (4.43)

and denote the partial derivatives of H by Hx, Ha, and Hλ. We have the following

theorem.15

Theorem 4.7.11. Consider problem (4.41) subject to (4.42). Assume there exists (x∗(t), a∗(t))

such that the cost function is finite. Suppose there exists (x∗(t), a∗(t)) satisfying (4.42)

and continuously differentiable λ(t) such that the following conditions hold:

1. λ̇(t) = −Hx(x
∗(t), a∗(t), λ(t), t) except at points of discontinuity of a∗(t);

2. H(x∗(t), a∗(t), λ(t), t) = maxa∈U H(x∗(t), a, λ(t), t) for all t;

3. H is jointly concave in x and a;

4. U is convex.

Then (x∗(t), a∗(t)) is a solution to problem (4.41). Moreover, if H is strictly concave in

x and a, (x∗(t), a∗(t)) is a unique solution.

Our continuous time problem (4.23) fits in this framework if we let g(t, x(t), a(t)) =

eρt`(a(t)), f(t, x(t), a(t)) = −a(t), U = [0,∞), x0 = x̄ > 0, and x1 = 0. The Hamiltonian

is thus

H(x(t), a(t), λ(t), t) = −λ(t)a(t)− eρt`(a(t)). (4.44)

It is easy to check that all the conditions in Theorem 4.7.11 are satisfied as long as there

exists a constant λ satisfying (4.26) and (4.27).

We shall prove that such λ indeed exists and is unique when `′(0) = 0. Since ` is increasing,

strictly convex, and continuously differentiable, h := (`′)−1 is well defined on an interval

[0,M) of R+, where M = lima→∞ `
′(a). Moreover, h is continuous, strictly increasing,

and ranges from zero to infinity. When −λe−ρt falls into the domain of h, (4.26) implies

that

a∗(t;λ) = h(−λe−ρt). (4.45)

15For more general versions of this sufficiency theorem, see, e.g., Acemoglu (2008).
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Because of the properties of h,
∫∞

0
a∗(t;λ)dt is strictly increasing and ranges from zero

to infinity. Therefore, there exists a unique λ such that (4.26) and (4.27) hold. It then

follows from Theorem 4.7.11 that a∗ in (4.26) is the unique solution to problem (4.23).

Part 1 of Theorem 4.6.1 for `′(0) > 0 can be proved in a similar way and we leave it to

the reader.

When `′(0) = 0, −λe−ρt is always in the domain of h. Therefore, a∗ is given by (4.45)

and is decreasing and strictly positive. When `′(0) > 0, 0 is not in the domain of h;

(4.26) implies that a∗ will become zero when t is large enough. This proves part 2 of

Theorem 4.6.1.

Define the value function V : [0,∞)×R→ R for problem (4.41) by

V (t, x) = inf
x(s),a(s)

∫ ∞
t

g(s, x(s), a(s))ds (4.46)

subject to

ẋ(s) = f(s, x(s), a(s)), x(t) = x, lim
s→∞

x(s) = x1, and a(s) ∈ U ⊂ R ∀s.

We have the following necessary conditions for optimality16.

Theorem 4.7.12. Suppose V (t, x) is differentiable with respect to t and x and there exists

(x∗(t), a∗(t)) that solves problem (4.41). Then V is the solution to the HJB equation

− Vt(t, x) = inf
a∈U
{g(t, x, a) + Vx(t, x)f(t, x, u)} (4.47)

with boundary condition limt→∞ V (t, x(t)) = 0 and (x∗(t), a∗(t)) satisfies

−Vt(t, x∗(t)) = inf
a∈U
{g(t, x∗(t), a) + Vx(t, x

∗(t))f(t, x∗(t), a)}

= g(t, x∗(t), a∗(t)) + Vx(t, x
∗(t))f(t, x∗(t), a∗(t)).

(4.48)

For discounted optimal control problems, if we can write g(t, x, a) = eρtg(x, a) and

f(t, x, a) = f(x, a), we can define the stationary value function by F (x) := V (0, x).

16For more general versions of this theorem, see, for example, Bressan and Piccoli (2007), Acemoglu
(2008), or Liberzon (2011)
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Then we have a stationary version of (4.47):

− ρF (x) = inf
a∈U
{g(x, a) + F ′(x)f(x, a)} . (4.49)

The differentiability of F follows from Theorem 7.17 of Acemoglu (2008). From part 1

we know that an optimal control exists, so we can apply Theorem 4.7.12. This concludes

part 3 of Theorem 4.6.1.

4.7.5.2. Production Chains in Continuous Time. Consider the general problem:

min
x(t),a(t),T≥0

∫ T

0

g(t, x(t), a(t))dt+ L(T ) (4.50)

subject to

ẋ(t) = f(t, x(t), a(t)), x(0) = x0, x(T ) = x1, and a(t) ∈ U ⊂ R ∀t. (4.51)

Assume L is twice continuously differentiable and L(t) → ∞ as t → ∞. Define the new

Hamiltonian by

H(x(t), a(t), λ(t), t) = λ(t)f(t, x(t), a(t))− g(t, x(t), a(t))− L̇(t). (4.52)

Since L(T ) can become arbitrarily large, we can find a large T̄ and choose T from [0, T̄ ]

without loss of generality. We have the following sufficiency theorem.

Theorem 4.7.13 (Seierstad (1984)). Consider problem (4.50) subject to (4.51) with U

bounded. Suppose for each δ ≤ T̄ there exists (xδ(t), aδ(t)) satisfying (4.51) and continu-

ously differentiable λδ(t) such that the following conditions hold:

1. λ̇δ(t) = −Hx(xδ(t), aδ(t), λδ(t), t) except at points of discontinuity of aδ(t);

2. H(xδ(t), aδ(t), λδ(t), t) = maxa∈U H(xδ(t), a, λδ(t), t) for all t;

3. H is jointly concave in x and a;

4. U is convex.

Moreover, suppose there is no other λδ such that the above conditions hold. Then, if

there exists T ∗ such that H(xδ(δ), aδ(δ), λδ(δ), δ) ≥ 0 for δ < T ∗ and H(xδ(δ), aδ(δ),

λδ(δ), δ) ≤ 0 for δ > T ∗. Then (xT ∗(·), aT ∗(·), T ∗) is a solution to problem (4.50).
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In problem (MLCF), g(t, x, a) = eρt`(a), f(t, x, a) = −a, and `′(0) = 0. Assume L(t) =

Beρt with B > 0 as in Fally and Hillberry (2018). Then, for any fixed δ, we have

aδ(t) = h(−λδe−ρt) where λδ satisfies that
∫ δ

0
aδ(t)dt = x̄. Since for λ 6= λδ, a that

minimizes H(xδ(t), a, λ, t) satisfies a = h(−λe−ρt) 6= aδ, there is no other λδ such that all

the conditions hold. Moreover, we have

H(xδ(δ), aδ(δ), λδ(δ), δ) = −λδaδ(δ)− eρδ`(aδ(δ))− ρBeρδ

d

dδ
H(xδ(δ), aδ(δ), λδ(δ), δ) = −dλδ

dδ
aδ(δ)− ρeρδ`(aδ(δ))− ρ2Beρδ

where dλδ
dδ

> 0 is the derivative given by applying the implicit function theorem on∫ δ
0
h(−λδe−ρt)dt = x̄. Therefore, H(xδ(δ), aδ(δ), λδ(δ), δ) is strictly decreasing in δ. If

we can find T ∗ such that H(xT ∗(T
∗), aT ∗(T

∗), λT ∗(T
∗), T ∗) = 0, then (xT ∗(·), aT ∗(·), T ∗)

is optimal. Therefore, the solutions given in Fally and Hillberry (2018) are optimal.





CHAPTER 5

Production Chains with Multiple Upstream Partners

5.1. Introduction

Over the past several centuries, firms have self-organized into ever more complex pro-

duction networks, spanning both state and international boundaries, and constructing

and delivering a vast range of manufactured goods and services. The structures of these

networks help determine the efficiency (Levine, 2012; Ciccone, 2002) and resilience (Car-

valho, 2007; Jones, 2011; Bigio and La’O, 2016; Acemoglu et al., 2012, 2015a) of the entire

economy, and also provide new insights into the directions of trade and financial policies

(Baldwin and Venables, 2013; Acemoglu et al., 2015b).

We consider a production chain model introduced by Kikuchi et al. (2018) that examines

the formation of such structures. They connect the literature on firm networks and

network structure to the underlying theory of the firm by Coase (1937). A single firm at

the end of the production chain sells a final product to consumers. The firm can choose

to produce the whole product by itself or subcontract a portion of it to possible multiple

upstream partners, who then make similar choices until all the remaining production is

completed. The main reason for firms to produce more in-house is to save the transaction

costs of buying intermediate products from the market. In fact, Coase (1937) regards

this as the primary force that brings firms into existence. An opposing force that limits

the size of a firm is the costs of organizing production within the firm1. A price function

governs the choices firms make and is determined endogenously in equilibrium when every

firm in the production chain makes zero profit.

Considering that all firms are ex ante identical, a notable feature of this model is its

ability to generate a production network with multiple layers of firms different in their

1One justification also mentioned in Kikuchi et al. (2018) is that firms usually experience diminishing
return to management: when a firm gets bigger it also bears increasing coordination costs. See also Coase
(1937), Lucas (1978b), and Becker and Murphy (1992).
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sizes and numbers of upstream partners. The source of the heterogeneity lies solely in

the transaction costs and firms’ different stages in the production chain. This feature

provides insights into the formation of potentially more complex structures in a production

network. Kikuchi et al. (2018) prove the existence, uniqueness, and global stability2 of

the equilibrium price function restricting every firm to have only one upstream partner.

In this case, the resulting production network consists of a single chain.

There are however, several significant weaknesses with the analysis in Kikuchi et al. (2018).

First, while they provide comprehensive results on uniqueness of equilibrium prices and

convergence of successive approximations in the single upstream partner case, they fail

to provide analogous results for the more interesting multiple upstream partner case,

presumably due to technical difficulties. Second, their model cannot accurately reflect

the data on observed production networks because their networks are always symmetric,

with sub-networks at each layer being exact copies of one another. Real production

networks do not exhibit this symmetry3. Third, they provide no effective algorithm for

computing the equilibrium price function in the multiple upstream partner case.

This paper resolves all of the shortcomings listed above. As our first contribution, we

extend their existence, uniqueness, and global stability results to the multiple partner case.

To avoid the technical difficulties faced in their paper, we employ a different approach

utilizing the theory of monotone concave operators, which enables us to give a unified

proof for both cases.

Theoretically, the concave operator theory ensures the global stability of the fixed point, so

the equilibrium price function can be computed by successive evaluations of the operator.

In practice, however, the rates of convergence can be different for different model settings.

This leads to unnecessarily long computation time in most cases. As a second contribution,

we propose an algorithm that achieves fast computation regardless of parameterizations

and is shown to drastically reduce computation time in our simulations.

2Mathematically, the equilibrium price function is determined as the fixed point of a Bellman like
operator (see Section 5.3). Globally stability means that the fixed point can be computed by successive
evaluations of the operator on any function in a certain function space.

3For instance, for a mobile phone manufacturer, most subcontractors who supply complicated com-
ponents like display or CPUs have multiple upstream partners of their own, while those who supply raw
materials usually do not (Dedrick et al., 2011; Kraemer et al., 2011).
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A third contribution of this paper is that we generalize the model to a stochastic setting.

In the original model, the equilibrium firm allocation is symmetric and deterministic: firms

at the same stage of production choose the exact same number of upstream partners. In

reality, each firm faces uncertainty in the contracting process and cannot always choose

the optimal number of partners. We model the number of upstream partners as a Poisson

distribution and let the firm choose its parameter, which can be seen as a search effort.

Using the same approach, we prove the existence and uniqueness of equilibrium price

function as well as the validity of the algorithm. We further use simulations to analyze

how production and transaction costs determine the shape of a production network. This

generalization provides a new source of heterogeneity in the equilibrium firm allocation

and can be a potential channel for future research on size distribution of firms.

Section 5.2 describes the model in detail. Section 5.3 introduces the monotone concave

operator theory and gives existence and uniqueness results. The algorithm is described in

Section 5.4. Section 5.5 generalizes the model, allowing for stochastic choices of upstream

partners. Section 5.6 concludes. All proofs can be found in the Appendix.

5.2. The Model

We study the production chain model with multiple partners in Kikuchi et al. (2018).

The chain consists of a single firm at the end of the chain which sells a single final

good to consumers and firms at different stages of the production, each of which sells an

intermediate good to a downstream firm by producing the good in-house or subcontracting

a portion of the production process to possibly multiple upstream firms. We index the

stage of production by s ∈ X = [0, 1] with 1 being the final stage. Each firm faces a

price function p : X → R+ and a cost function c : X → R+. Subcontracting incurs a

transaction cost that is proportionate4 to the price with coefficient δ > 1 for each upstream

partner and an additive transaction cost g : N→ R+ that is a function of the number of

upstream partners. The cost g can be seen as the costs of maintaining partnerships such

as legal expenses and communication costs.

4Here we follow Kikuchi et al. (2018). This transaction cost can be the cost of gathering information,
drafting contract, bargaining, or even tax, all of which tend to increase with the volume of the transaction.
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We adopt the same assumptions as in Kikuchi et al. (2018). For the cost function c, we

assume that c(0) = 0 and it is differentiable, strictly increasing, and strictly convex. In

other words, each firm experiences diminishing return to management as mentioned in the

introduction. This assumption is needed here because otherwise no firm would want to

subcontract its production. We also assume c′(0) > 0. For the additive transaction cost

function g, we assume that it is strictly increasing, g(1) = 0, and g(k) goes to infinity as

the number of upstream partners k goes to infinity. To summarize, we have the following

two assumptions.

Assumption 5.2.1. The cost function c is differentiable, strictly increasing, and strictly

convex. It also satisfies c(0) = 0 and c′(0) > 0.

Assumption 5.2.2. The additive transaction cost function g is strictly increasing, g(1) =

0, and g(k)→∞ as k →∞.

Therefore, a firm at stage s solves the following problem:

min
t≤s
k∈N

{c(s− t) + g(k) + δkp(t/k)} . (5.1)

In (5.1), the firm chooses to produce s − t in-house with cost c(s − t) and subcontract t

to k upstream partners. Since each subcontractor is in charge of t/k part of the product,

this results in a proportionate transaction cost δkp(t/k) and an additive transaction cost

g(k). Then the firm sells the product to its downstream firm at price p(s).

5.3. Equilibrium

Following Kikuchi et al. (2018), we consider the equilibrium in a competitive market with

free entry and free exit. The price adjusts so that in the long run every firm makes zero

profit. The equilibrium price function then satisfies

p(s) = min
t≤s
k∈N

{c(s− t) + g(k) + δkp(t/k)} . (5.2)
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Let R(X) be the space of real functions and C(X) the space of continuous functions on

X. Then we can define an operator T : C(X)→ R(X) by

Tp(s) := min
t≤s
k∈N

{c(s− t) + g(k) + δkp(t/k)} . (5.3)

The equilibrium price function is thus determined as the fixed point of the operator T .

5.3.1. Monotone Concave Operator Theory. Before proceeding to our main

result, we first introduce a theorem due to Du (1989), which studies the fixed point

properties of monotone concave operators on a partially ordered Banach space.

Let E be a real Banach space on which a partial ordering is defined by a cone P ⊂ E,

in the sense that x ≤ y if and only if y − x ∈ P . If x ≤ y but x 6= y, we write x < y.

An operator A : E → E is called an increasing operator if for all x, y ∈ E, x ≤ y implies

that Ax ≤ Ay. It is called a concave operator if for any x, y ∈ E with x ≤ y and any

t ∈ [0, 1], we have A (tx+ (1− t)y) ≥ tAx+(1−t)Ay. For any u0, v0 ∈ E with u0 < v0, we

can define an order interval by [u0, v0] := {x ∈ E : u0 ≤ x ≤ v0}. We have the following

theorem (see, e.g., Guo et al., 2004, Theorem 3.1.6 or Zhang, 2013, Theorem 2.1.2).

Theorem 5.3.1 (Du, 1989). Suppose P is a normal cone5, u0, v0 ∈ E, and u0 < v0.

Moreover, A : [u0, v0]→ E is an increasing operator. Let h0 = v0−u0. If A is an concave

operator, Au0 ≥ u0 + εh0 for some ε ∈ (0, 1), and Av0 ≤ v0, then A has a unique fixed

point x∗ in [u0, v0]. Furthermore, for any x0 ∈ [u0, v0], Anx0 → x∗ as n→∞.

This theorem gives a sufficient condition for the existence, uniqueness, and global stabil-

ity of the fixed point of an operator without assuming it to be a contraction mapping.

It is particularly useful in cases where we study a monotone concave operator but the

contraction property is hard or impossible to establish. This is the case in our model.

5A cone P ⊂ E is said to be normal if there exists δ > 0 such that ‖x + y‖ ≥ δ for all x, y ∈ P and
‖x‖ = ‖y‖ = 1.
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The operator T is not a contraction6 because the transaction cost coefficient δ is greater

than 1, but as will be shown below, T is actually an increasing concave operator.

Based on Theorem 5.3.1, we have the following theorem.

Theorem 5.3.2. Let u0(s) = c′(0)s, v0(s) = c(s), and [u0, v0] be the order interval on

C(X) with the usual partial order. If Assumptions 5.2.1 and 5.2.2 hold, then T has a

unique fixed point p∗ in [u0, v0]. Furthermore, T np→ p∗ for any p ∈ [u0, v0].

This theorem ensures that there exists a unique price function in equilibrium and it can

be computed by successive evaluation of the operator T on any function located in that

order interval7. Furthermore, as is clear in the proof (see Section 5.7.1), the existence

of the minimizers t∗(s) and k∗(s) can also be proved, although they might not be single

valued for some s.

5.3.2. Properties of the Solution. In the case where each firm can only have

one upstream partner, the equilibrium price function is strictly increasing and strictly

convex (Kikuchi et al., 2018). In this model, however, complications arise since firms at

different stages might choose to have different numbers of upstream partners. In fact,

the equilibrium price is usually piece-wise convex due to this fact. An example8 of the

equilibrium price function is plotted in Figure 5.1 where c(s) = e10s − 1, g(k) = β(k − 1)

with β = 50, and δ = 10. As is shown in the plot, the price function as a whole is

not convex, but it is piece-wise convex with each piece corresponding to a choice of k.

Monotonicity of p∗ remains true.

Proposition 5.3.3. The equilibrium price function p∗ : X → R+ is strictly increasing.

6To be more rigorous, T is not a contraction under the supremum norm, but it might be a contraction
in some other complete metric. In fact, Bessaga (1959) proves a partial converse of the Contraction
Mapping Theorem, which ensures that under certain conditions there exists a complete metric in which
T is a contraction. Also see Leader (1982); for the construction of such metrics, see Janos (1967) and
Williamson and Janos (1987). For an application of this theorem in the economic literature, see Balbus
et al. (2013). We wish to thank an anonymous referee for referring us to this literature.

7For the choice of the order interval we also follow Kikuchi et al. (2018).
8The parameterization here is merely chosen to highlight the shape of the price function and is not

economically realistic. The price is computed using a faster algorithm introduced in Section 5.4 with
m = 5000 grid points instead of successive evaluation of T .
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Figure 5.1. An example of equilibrium price function.
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Figure 5.2. Equilibrium price function when c(s) = e10s − 1 and g(k) =
β(k − 1).

As for comparative statics, we have some basic results also present in Kikuchi et al. (2018)

about the effect of changing transaction costs on the equilibrium price function. If either

transaction cost (δ or g) increases, the equilibrium price function also increases.

Proposition 5.3.4. If δa ≤ δb, then p∗a ≤ p∗b . Similarly, if ga ≤ gb, p
∗
a ≤ p∗b .

In Figure 5.2, we plot how the equilibrium price function changes when transaction cost

increases. The baseline model setting is the same as Figure 5.1. We can see that if δ or

β increases, the equilibrium price function also increases.

5.4. Computation

To compute an approximation to the equilibrium price function given δ, c, and g, one

possibility is to take a function in [u0, v0] and iterate with T . However, in practice we

can only approximate the iterates, and, since T is not a contraction mapping the rate of
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convergence can be unsatisfactory for some model settings. On the other hand, as we now

show, there is a fast, non-iterative alternative that is guaranteed to converge.

Let G = {0, h, 2h, ..., 1} for fixed h. Given G, we define our approximation p to p∗ via the

recursive procedure in Algorithm 1. In the fourth line, the evaluation of p(s) is by setting

p(s) = min
t≤s−h
k∈N

{c(s− t) + g(k) + δkp(t/k)} . (5.4)

In line five, the linear interpolation is piecewise linear interpolation of grid points 0, h, 2h, . . . , s

and values p(0), p(h), p(2h), . . . , p(s).

The procedure can be implemented because the minimization step on the right-hand side

of (5.4), which is used to compute p(s), only evaluates p on [0, s − h], and the values of

p on this set are determined by previous iterations of the loop. Once the value p(s) has

been computed, the following line extends p from [0, s− h] to the new interval [0, s]. The

process repeats. Once the algorithm completes, the resulting function p is defined on all

of [0, 1] and satisfies p(0) = 0 and (5.4) for all s ∈ G with s > 0.

Now consider a sequence of grids {Gn}, and the corresponding functions {pn} defined by

Algorithm 1. Let Gn = {0, hn, 2hn, . . . , 1} with hn = 2−n. In this setting we have the

following result, the proof of which is given in Section 5.7.2.

Theorem 5.4.1. If Assumptions 5.2.1 and 5.2.2 hold, then {pn} converges to p∗ uni-

formly.

The main advantage of this algorithm is that, for any chosen number of grid points, the

number of minimization operations required is fixed, and we can improve the accuracy of

this algorithm by increasing the number of grid points. For the iteration method, however,

Algorithm 1 Construction of p from G = {0, h, 2h, ..., 1}
p(0)← 0
s← h
while s ≤ 1 do

evaluate p(s) via equation (5.4)
define p on [0, s] by linear interpolation of p(0), p(h), p(2h), . . . , p(s)
s← s+ h

end while
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Figure 5.3. Computation time comparison for the two methods.

the rate of convergence is different for different model settings and to achieve the same

accuracy it usually requires longer computation time.

In Figure 5.3, we plot the computation time9 of successive iterations of T with p0 = c

(method 1) and Algorithm 1 (method 2) for ten different model settings when the number

of grid points is set to be m = 1000. The first and last five models are the same10 except

δ = 1.1 for the former and δ = 1.01 for the latter. In each model, we also compute

an accurate price function using Algorithm 1 with a very large number of grid points

(m = 50000) and compare it with results from both methods when m = 1000. We find

that the error from method 2 is comparable or smaller than that from method 1 in each

model. The algorithm achieves more accurate results at a much faster speed. As we can

see in Figure 5.3, method 2 completes the computation in around 3 seconds in each model

while the computation time of method 1 ranges from 7 seconds to more than 2 minutes.

The speed difference is especially drastic when δ is close to 1, since it takes T more

iterations to converge with smaller δ but the number of operations for the algorithm is

fixed. In model 1 with δ = 1.01, the algorithm is 40 times faster than successive iterations

of T !

9The computations were conducted on a XPS 13 9360 laptop with i7-7500U CPU. The program only
utilizes a single core.

10The cost function c and additive transaction cost function g for the five models are: (1) c(s) = e10s−1,

g(k) = k−1; (2) c(s) = es−1, g(k) = 0.01(k−1); (3) c(s) = es
2−1, g(k) = 0.01(k−1); (4) c(s) = s2 +s,

g(k) = 0.01(k − 1); (5) c(s) = es + s2 − 1, g(k) = 0.05(k − 1).
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5.5. Stochastic Choices

So far we have discussed the case in which each firm can choose the optimal number of

upstream partners according to (5.1). In reality, however, firms usually face uncertainty

when choosing their partners. The result is that some firms might choose fewer or more

partners than what is optimal. For instance, a firm might not be able to choose a certain

number of upstream partners due to regulation or failure to arrive at agreements with

potential partners. Conversely, the upstream partners of a firm might experience supply

shocks and fail to meet production requirements, causing it to sign more partners than

what is optimal and bear more transaction costs. In this section, we model this scenario

and incorporate uncertainty into each firm’s optimization problem.

We assume that each firm chooses an amount of “search effort” λ and the resulting number

of upstream partners follows a Poisson distribution11 with parameter λ that starts from

k = 1. In other words, the probability of having k partners is

f(k;λ) =
λk−1e−λ

(k − 1)!

when λ > 0. We also assume that when λ = 0, Prob(n = 1) = 1, that is, each firm

can always choose to have only one upstream partner with certainty. For example, if a

firm chooses to exert effort λ = 2.5, the probabilities of it ending up with 1, 2, 3, 4, 5

partners are, respectively: 0.08, 0.2, 0.26, 0.21, 0.13. One characteristic of the Poisson

distribution is that both its mean and variance increase with λ, which makes it suitable

for our model since the more partners a firm aims for, the more uncertainty there will be

in the contracting process.

Hence, a firm at stage s solves the following problem:

min
t≤s
λ≥0

{
c(s− t) +Eλk [g(k) + δkp(t/k)]

}
(5.5)

11Note that in the usual sense, if a random variable X follows the Poisson distribution, X takes values
in nonnegative integers. Here we shift the probability function so that k starts from 1.
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where Eλk stands for taking expectation of k under the Poisson distribution with parameter

λ. Specifically,

E
λ
k [g(k) + δkp(t/k)] =

∞∑
k=1

[g(k) + δkp(t/k)] f(k;λ).

Similar to Section 5.3, we can define another operator T̃ : C(X)→ R(X) by

T̃ p(s) := min
t≤s
λ≥0

{
c(s− t) +Eλk [g(k) + δkp(t/k)]

}
. (5.6)

As will be shown in Section 5.7.3, all of the above results still apply in the stochastic case

and we summarize them in the following theorem.

Theorem 5.5.1. Let u0(s) = c′(0)s, v0(s) = c(s). If Assumptions 5.2.1 and 5.2.2 hold,

then the operator T̃ has a unique fixed point p̃∗ in [u0, v0] and T̃ np→ p̃∗ for any p ∈ [u0, v0].

Furthermore, p̃n from Algorithm 1 converges to p̃∗ uniformly.

By Theorem 5.5.1, there exists a unique equilibrium price function p̃∗ and we can compute

it either by successive evaluation of T̃ or by Algorithm 1. The algorithm is particularly

useful here since it now takes much longer time to complete one minimization operation

with firms choosing continuous values of λ instead of discreet values of k.

Similarly, there exist minimizers t∗ and λ∗ so that firm at any stage s has an optimal

choice t∗(s) and λ∗(s). With the optimal choice functions, we can compute an equilibrium

firm allocation recursively as in Kikuchi et al. (2018). Specifically, we start at the most

downstream firm at s = 1 and compute its optimal choices t∗ and λ∗. Next, we pick a

realization of k according to the Poisson distribution with parameter λ∗ and repeat the

process for each of its upstream firm at s′ = t∗/k. The whole process ends when all the

most upstream firms choose to carry out the remaining production process by themselves.

Note that due to the stochastic nature of this model, each simulation will give a different

firm allocation.

In Figure 5.4, we plot some production networks for different model parameterizations

using the above approach. Each node represents a firm and the one at the center is the firm
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(a) β = 0.0005, δ = 1.05, θ = 1.2

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) β = 0.0005, δ = 1.1, θ = 1.2

 

 

 

 

 

 
   

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

(c) β = 0.0001, δ = 1.05, θ = 1.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d) β = 0.0005, δ = 1.05, θ = 1.15

Figure 5.4. Production networks with stochastic choices of upstream
partners

at s = 1. The size of each node is proportionate to the size12 of the corresponding firm.

The cost function is set to be c(s) = sθ and the additive transaction cost is g(k) = β(k−
1)1.5. Compared with production networks in Kikuchi et al. (2018), the graphs here are no

longer symmetric since even firms on the same layer can have different realized numbers

of upstream partners and thus different firm sizes. The prediction that downstream firms

are larger and tend to have more subcontractors, on the other hand, is also valid in our

networks.

Comparing (a) and (b), an increase in transaction cost makes firms in (b) outsource less

and produce more in-house, resulting in fewer layers in the production network. Similarly,

comparing (c) with (a), a decrease in additive transaction costs encourages firms at each

level to find more subcontractors. The results are more but smaller firms at each level

and fewer layers in the network. Comparing (d) with (a), the difference is a decrease in

12Here the firm size is calculated using its value added c(s− t∗) + g(k) where k is a realization of the
Poisson distribution with parameter λ∗.
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curvature of the cost function c, which makes outsourcing less appealing. The firms in

(d) tend to produce more in-house, resulting in a production network of fewer layers.

5.6. Conclusion

In this paper, we extend the production chain model of Kikuchi et al. (2018) to more

realistic settings, in which each firm can have multiple upstream partners and face un-

certainty in the contracting process. We prove the uniqueness of equilibrium price for

these extensions and propose a fast algorithm for computing the price function that is

guaranteed to converge.

The key to proving uniqueness of equilibrium price in this model is the theory of mono-

tone concave operators, which gives sufficient conditions for existence, uniqueness, and

convergence. This theory has been proven useful in finding equilibria in a range of eco-

nomic models as mentioned in the introduction and can potentially be applied to more

problems where contraction property is hard to establish.

Our model also has some predictions regarding the shape of production networks and the

size distribution of firms. In our extended model with uncertainty, we generate a series of

production networks (Figure 5.4) under different model settings. A notable observation

from this exercise is that increasing the proportionate transaction cost δ or decreasing the

additive transaction cost g will reduce the number of layers in a network. In the former

case, the cost of market transactions increases; this encourages vertical integration and

hence leads to larger firms along each chain. In the latter case, the cost of maintaining

multiple partners decreases; this discourages lateral integration and leads to more firms

in each layer. This prediction can potentially be tested with suitable choice of proxies for

δ and g.

Another observation is that different model settings lead to different size distributions of

firms. For example, smaller δ seems to lead to more extreme differences in firm sizes as

shown in the comparison between (a) and (b) in Figure 5.4. The underlying mechanism

is unclear in our model, which provides a possible channel for future research.
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A notable feature of our model is that firms are ex-ante identical but ex-post heteroge-

neous in equilibrium in terms of sizes, positions in a network, and number of subcon-

tractors. However, the cost function c and transaction costs δ and g are assumed to be

fixed throughout this paper. Introducing heterogeneity into these costs might offer richer

implications for firm distribution and industry policies. We also leave this possibility for

future research.

5.7. Appendix

5.7.1. Proofs from Section 5.3. Let U = N × [0, 1] equipped with the Euclidean

metric in R2 and X be equipped with the Euclidean metric in R. To simplify notation,

we can write T as

Tp(s) = min
(k,t)∈Θ(s)

fp(s, k, t)

where Θ : X → U is a correspondence defined by Θ(s) = N × [0, s], and fp(s, k, t) =

c(s− t) + g(k) + δkp(t/k).

Lemma 5.7.1. Tp ∈ C([0, 1]) for all p ∈ C([0, 1]).

Proof. We use Berge’s theorem to prove continuity. By Assumption 5.2.2, we can

restrict Θ to be Θ(s) = {1, 2, . . . , k̄} × [0, s] for some large k̄ ∈ N. Then Θ is compact-

valued.

To see Θ is upper hemicontinuous, note Θ(s) is closed for all s ∈ X. Since the graph of

Θ is also closed, by the Closed Graph Theorem (see, e.g., Aliprantis and Border, 2006, p.

565), Θ is upper hemicontinuous on X.

To check for lower hemicontinuity, fix s ∈ X. Let V be any open set intersecting Θ(s) =

{1, 2, . . . , k̄} × [0, s]. Then it is easy to see that we can find a small ε > 0 such that

Θ(s′) ∩ V 6= ∅ for all s′ ∈ [s− ε, s+ ε]. Hence Θ is lower hemicontinuous on X.

Because p ∈ C([0, 1]), fp is jointly continuous in its three arguments. By Berge’s theorem,

Tp is continuous on X. �
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Note that by Berge’s theorem, the minimizers t∗ and k∗ exist and are upper hemicontin-

uous.

Lemma 5.7.2. T is increasing and concave.

Proof. It is apparent that T is increasing. To see T is concave, let p, q ∈ C([0, 1])

and α ∈ (0, 1). Then we have

αTp(s) + (1− α)Tq(s) = min
(k,t)∈Θ(s)

αfp(s, k, t) + min
(k,t)∈Θ(s)

(1− α)fq(s, k, t)

≤ min
(k,t)∈Θ(s)

{αfp(s, k, t) + (1− α)fq(s, k, t)}

= min
(k,t)∈Θ(s)

{c(s− t) + g(k) + δk [αp(t/k) + (1− α)q(t/k)]}

= min
(k,t)∈Θ(s)

fαp+(1−α)q(s, k, t)

= T [αp+ (1− α)q] (s)

which completes the proof. �

Lemma 5.7.3. Tu0 ≥ u0 + ε(v0 − u0) for some ε ∈ (0, 1).

Proof. Define s̄ := max{0 ≤ s ≤ 1 : c′(s) ≤ δc′(0)}. Then we have

Tu0(s) = min
(k,t)∈Θ(s)

fu0(s, k, t)

= min
(k,t)∈Θ(s)

{c(s− t) + g(k) + δc′(0)t}

= min
t≤s
{c(s− t) + δc′(0)t}

=


c(s̄) + δc′(0)(s− s̄), if s ≥ s̄

c(s), if s < s̄

Since Tu0(s) > u0(s) for all s except at 0, we can find ε ∈ (0, 1) such that Tu0 ≥
u0 + ε(v0 − u0). �

Lemma 5.7.4. Tv0 ≤ v0.
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Proof. Choose k = 1 and t = 0. We have Tv0(s) ≤ c(s− 0) + g(1) + δc(0) = c(s) =

v0(s). �

Proof of Theorem 5.3.2. Since P = {f ∈ C(X) : f(x) ≥ 0 for all x ∈ X} is a nor-

mal cone, the theorem follows from the previous lemmas and Theorem 5.3.1. �

Proof of Proposition 5.3.3. We first show that T maps a strictly increasing func-

tion to a strictly increasing function. Suppose p ∈ [u0, v0] and is strictly increasing. Pick

any s1, s2 ∈ [0, 1] with s1 < s2. Let t∗ and k∗ be the minimizers of T . To simplify notation,

let t1 ∈ t∗(s1), t2 ∈ t∗(s2), k1 ∈ k∗(s1), and k2 ∈ k∗(s2). If t2 ≤ s1, then we have

Tp(s2) = c(s2 − t2) + g(k2) + δk2p(t2/k2)

> c(s1 − t2) + g(k2) + δk2p(t2/k2)

≥ Tp(s1).

If s1 < t2 ≤ s2, then t2 + s1 − s2 ≤ s1. Since p is strictly increasing, we have

Tp(s2) = c (s1 − (t2 + s1 − s2)) + g(k2) + δk2p(t2/k2)

> c (s1 − (t2 + s1 − s2)) + g(k2) + δk2p ((t2 + s1 − s2)/k2)

≥ Tp(s1).

Since c ∈ [u0, v0], by Theorem 5.3.2, T nc→ p∗ as n→∞. Furthermore, since c is strictly

increasing, it follows from the above result that p∗ is strictly increasing. �

Proof of Proposition 5.3.4. If δa ≤ δb, then Tap ≤ Tbp for any p ∈ [u0, v0]. Since

T is increasing by Lemma 5.7.2, we have T na p ≤ T nb p for any p ∈ [u0, v0] and any n ∈ N.

Then by Theorem 5.3.2, p∗a ≤ p∗b . The same arguments applies if ga ≤ gb. �

5.7.2. Proof of Theorem 5.4.1.

Lemma 5.7.5. The function pn is increasing for every n.
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Proof. As pn is piecewise linear, we shall prove it by induction. Since pn(0) = 0

and pn(hn) = c(hn), pn is increasing on [0, hn]. Suppose it is increasing on [0, s] for some

s = hn, 2hn, . . . , 1− hn, then we have

pn(s+ hn) = min
t≤s, k∈N

{c(s+ hn − t) + g(k) + δkpn(t/k)}

= c(s+ hn − t∗) + g(k∗) + δk∗pn(t∗/k∗)

where t∗ and k∗ are the minimizers. If t∗ ≤ s− hn, it follows from the monotonicity of c

that

pn(s+ hn) ≥ c(s− t∗) + g(k∗) + δk∗pn(t∗/k∗)

≥ min
t≤s−hn, k∈N

{c(s− t) + g(k) + δkpn(t/k)}

= pn(s).

If t∗ ∈ (s− hn, s], then s+ hn − t∗ ≥ hn. Because pn is increasing on [0, s], we have

pn(s+ hn) ≥ c[s− (s− hn)] + g(k∗) + δk∗pn[(s− hn)/k∗]

≥ min
t≤s−hn, k∈N

{c(s− t) + g(k) + δkpn(t/k)}

= pn(s),

which completes the proof. �

Lemma 5.7.6. The sequence {pn}∞n=1 is uniformly bounded and equicontinuous.

Proof. To see {pn} is uniformly bounded, note that for each n,

pn(s+ hn) = min
t≤s, k∈N

{c(s+ hn − t) + g(k) + δkpn(t/k)}

≤ c(s+ hn) + g(1) + δpn(0)

= c(s+ hn) ≤ c(1)

for all s = 0, hn, . . . , 1− hn.
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Due to Lemma 5.7.5, to see {pn} is equicontinuous, it suffices to show that there exists

K > 0 such that pn(s+hn)−pn(s) ≤ Khn for all n ∈ N and all s = 0, hn, 2hn, . . . , 1−hn.

Fix such n and s. If s = 0, pn(hn) − pn(0) = c(hn) ≤ c′(1)hn. If s ≥ hn, denote the

minimizers in the definition of pn(s) by t∗ and k∗, i.e.,

pn(s) = min
t≤s−hn, k∈N

{c(s− t) + g(k) + δkpn(t/k)}

= c(s− t∗) + g(k∗) + δk∗pn(t∗/k∗).

Since t∗ ≤ s, it follows that

pn(s+ hn) = min
t≤s, k∈N

{c(s+ hn − t) + g(k) + δkpn(t/k)}

≤ c(s+ hn − t∗) + g(k∗) + δk∗pn(t∗/k∗).

Hence,

pn(s+ hn)− pn(s) ≤ c(s+ hn − t∗) + c(s− t∗)

≤ c′(1)hn,

which completes the proof. �

Lemma 5.7.7. There exists a uniformly convergent subsequence of {pn}. Furthermore,

every uniformly convergent subsequence of {pn} converges to a fixed point of T .

Proof. Lemma 5.7.6 and the Arzelà-Ascoli theorem imply that pn has a uniformly

convergent subsequence. To simplify notation, let {pn} be such a subsequence and con-

verge uniformly to p̄. Because pn are continuous, p̄ is continuous. By Berge’s theorem,

T p̄(s) = min
t≤s, k∈N

{c(s− t) + g(k) + δkp̄(t/k)}

is also continuous. To see p̄ is a fixed point of T , it is sufficient to show that p̄ and T p̄

agree on the dyadic rationals ∪nGn, i.e.,

lim
n→∞

min
t≤s−hn
k∈N

{c(s− t) + g(k) + δkpn(t/k)} = min
t≤s, k∈N

{c(s− t) + g(k) + δkp̄(t/k)}

for every s ∈ ∪nGn.
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Fix ε > 0. Since pn → p̄ uniformly, there exists N1 ∈ N such that n > N1 implies that

pn(x) > p̄(x)− ε/(δk̄)

for all x ∈ [0, 1] where k̄ is the upper bound on the possible values of k. It follows that

for n > N1 we have

min
t≤s−hn
k∈N

{c(s− t) + g(k) + δkpn(t/k)} > min
t≤s−hn
k∈N

{c(s− t) + g(k) + δkp̄(t/k)} − ε

≥ min
t≤s
k∈N

{c(s− t) + g(k) + δkp̄(t/k)} − ε.

Therefore,

lim
n→∞

min
t≤s−hn
k∈N

{c(s− t) + g(k) + δkpn(t/k)} ≥ min
t≤s, k∈N

{c(s− t) + g(k) + δkp̄(t/k)} .

For the other direction, there exists N2 ∈ N such that n > N2 implies that

pn(x) < p̄(x) + ε/(2δk̄)

for all x ∈ [0, 1]. Then for n > N2 we have

min
t≤s−hn
k∈N

{c(s− t) + g(k) + δkpn(t/k)} < min
t≤s−hn
k∈N

{c(s− t) + g(k) + δkp̄(t/k)}+ ε/2.

Since c, g, p̄ are continuous and hn → 0, we can choose N3 such that n > N3 implies that

min
t≤s−hn
k∈N

{c(s− t) + g(k) + δkp̄(t/k)} < min
t≤s
k∈N

{c(s− t) + g(k) + δkp̄(t/k)}+ ε/2.

Hence, for n > max{N2, N3} we have

min
t≤s−hn
k∈N

{c(s− t) + g(k) + δkpn(t/k)} < min
t≤s
k∈N

{c(s− t) + g(k) + δkp̄(t/k)}+ ε.

This implies

lim
n→∞

min
t≤s−hn
k∈N

{c(s− t) + g(k) + δkpn(t/k)} ≤ min
t≤s, k∈N

{c(s− t) + g(k) + δkp̄(t/k)} .

Therefore, p̄ = T p̄. �
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Lemma 5.7.8. Every uniformly convergent subsequence of {pn} converges to p∗.

Proof. Let {pn} be the subsequence that converges uniformly to p̄. By Theo-

rem 5.3.2, to see p̄ = p∗, it suffices to show that p̄ is continuous and c′(0)x ≤ p̄(x) ≤ c(x)

for all x ∈ [0, 1]. Continuity is satisfied by the fact that each pn is continuous and pn → p̄

uniformly. To show the second one, we again prove this holds on ∪nGn, and it is sufficient

to show that c′(0)s ≤ pn(s) ≤ c(s) for all s ∈ Gn and all n ∈ N. It is apparent that

pn(s) ≤ c(s) (choose t = 0 and k = 1). We show pn(s) ≥ c′(0)s by induction. Suppose

pn(x) ≥ c′(0)x for all x ≤ s. Then we have

pn(s+ hn) = min
t≤s, k∈N

{c(s+ hn − t) + g(k) + δkpn(t/k)}

≥ min
t≤s, k∈N

{c′(0)(s+ hn − t) + g(k) + δc′(0)t}

= min
t≤s
{c′(0)(s+ hn − t+ δt)}

= c′(0)(s+ hn).

Since pn(0) = 0 ≥ c′(0) · 0, it follows that pn(s) ≥ c′(0)s. This concludes the proof. �

5.7.3. Proof of Theorem 5.5.1. Similar to Section 5.7.1, we can write the operator

T̃ in (5.6) as

T̃ p(s) = min
(λ,t)∈Θ̃(s)

{
c(s− t) +Eλk [g(k) + δkp(t/k)]

}
where Θ̃(s) = [0,∞)× [0, s]. Upon close inspection, all of the above lemmas still hold for

T̃ if we can restrict Θ̃(s) to be a compact set. To be more specific, Lemma 5.7.2 and 5.7.5

can be proved in the exact same way; Lemma 5.7.3, 5.7.4, 5.7.6, and 5.7.8 hold since each

firm can choose k = 1 with probability 1; Lemma 5.7.7 and 5.7.1 need the compactness

of Θ̃(s). To avoid redundancy, we omit the proofs and shall only show that there exists

an upper bound on the choice set of λ.

Let ν be the median of the Poisson distribution and denote the ceiling of ν (i.e., the least

integer greater than or equal to ν) by ν̄. Then we have

∞∑
k=ν̄

f(k;λ) ≥ 1

2
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by definition. It follows that the expectation of g(k)

E
λ
kg(k) =

∞∑
k=1

g(k)f(k;λ)

≥
∞∑
k=ν̄

g(k)f(k;λ)

≥ g(ν̄)
∞∑
k=ν̄

f(k;λ)

≥ 1

2
g(ν̄)

where the second inequality follows from Assumption 5.2.2. Choi (1994) gives bounds13

for the median of the Poisson distribution:

λ− ln 2 ≤ ν − 1 < λ+
1

3
.

So we have

E
λ
kg(k) ≥ 1

2
g(ν̄) ≥ 1

2
g(ν) ≥ 1

2
g(λ− ln 2 + 1).

Therefore, we can find λ̄ such thatEλkg(k) ≥ c(1) for all λ ≥ λ̄ and hence Θ(s) is essentially

[0, λ̄]× [0, s] which is a compact set.

13Since in our model k starts from 1, we write ν − 1 in the inequality.
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