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Abstract

Image-based estimation of camera trajectory, known as visual odometry (VO), has been a pop-
ular solution for robot navigation in the past decade due to its low-cost and widely applicable
properties. The problem of tracking self-motion as well as motion of objects in the scene using
information from a camera is known as multi-body visual odometry and is a challenging task.

The performance of VO is heavily sensitive to poor imaging conditions (i.e., direct sunlight,
shadow and image blur), which limits its feasibility in many challenging scenarios. Current VO
solutions can provide accurate camera motion estimation in largely static scene. However, the
deployment of robotic systems in our daily lives requires systems to work in significantly more
complex, dynamic environment. This thesis aims to develop robust VO solutions against two
challenging cases, underwater and highly dynamic environments, by extensively analysing and
overcoming the difficulties in both cases to achieve accurate ego-motion estimation. Further-
more, to better understand and exploit dynamic scene information, this thesis also investigates
the motion of moving objects in dynamic scene, and presents a novel way to integrate ego and
object motion estimation into a single framework.

In particular, the problem of VO in underwater is challenging due to poor imaging condi-
tion and inconsistent motion caused by water flow. This thesis intensively tests and evaluates
possible solutions to the mentioned issues, and proposes a stereo underwater VO system that
is able to robustly and accurately localize the autonomous underwater vehicle (AUV).

Visual odometry in dynamic environment is challenging because dynamic parts of the
scene violate the static world assumption fundamental in most classical visual odometry al-
gorithms. If moving parts of a scene dominate the static scene, off-the-shelf VO systems either
fail completely or return poor quality trajectory estimation. Most existing techniques try to
simplify the problem by removing dynamic information. Arguably, in most scenarios, the dy-
namics corresponds to a finite number of individual objects that are rigid or piecewise rigid,
and their motions can be tracked and estimated in the same way as the ego-motion. With this
consideration, the thesis proposes a brand new way to model and estimate object motion, and
introduces a novel multi-body VO system that addresses the problem of tracking of both ego
and object motion in dynamic outdoor scenes.

Based on the proposed multi-body VO framework, this thesis also exploits the spatial and
temporal relationships between the camera and object motions, as well as static and dynamic
structures, to obtain more consistent and accurate estimations. To this end, the thesis introduces
a novel visual dynamic object-aware SLAM system, that is able to achieve robust multiple
moving objects tracking, accurate estimation of full SE(3) object motions, and extract inherent
linear velocity information of moving objects, along with an accurate robot localisation and
mapping of environment structure. The performance of the proposed system is demonstrated
on real datasets, showing its capability to resolve rigid object motion estimation and yielding
results that outperform state-of-the-art algorithms by an order of magnitude in urban driving
scenarios.
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Chapter 1

Introduction and Contributions

I, robot
Don’t have the capacity
To dream about tomorrow
But I never spell a word wrong

Louis Shalako, "Mr. Robot", Selected Poems.

Sight is a human’s most highly developed sense. It is important for learning, using tools
and devices, moving about, and enjoying human endeavor. Vision stems from the eyes and
the brain functioning as an integrated system of awesome complexity. An image is sensed by
over a hundred million visual cells in each eye, processed in the retina and transmitted through
fibers in each optic nerve to the centres of vision in the brain. Each second the brain performs
about a hundred billion "floating point logical operations" to transform the two dimensional
image into symbols that encapsulate the solid reality of the three dimensional space. Modern
cameras work in the similar principle as our eyes do, whereas here imaging chips play the
role of visual cells. With these artificial eyes, researchers expect to endow robots the ability to
perceive the world visually as we humans do, by introducing ‘algorithms’ into robots’ brains
to process the imaging data.

For an autonomous mobile robot to move around in an unknown environment and perform
complex tasks, it needs in priority to know where it is and what the surrounding environment
looks like. These two basic tasks, originally coined as Simultaneous Localization And Map-
ping (SLAM) by Leonard and Durrant-Whyte [1991a], has been an active field of research for
more than three decades. Today, SLAM algorithms are a standard module on mobile robots,
which have been implemented using different sensor modalities, such as laser range finders,
sonars, or cameras. Visual SLAM, where the primary sensors are cameras, becomes a popular
solution in recent years, since camera sensors are small, low-cost, power efficient and ubiqui-
tous. SLAM (visual SLAM in particular) aims to obtain a global, consistent estimate of the
camera trajectory, as well as a map of the environment, via detecting previously visited area
and subsequently refining the whole trajectory (loop closure). If the goal is to incrementally
recover the camera trajectory with scene reconstruction, and potentially optimize only over a
partial trajectory and local map, we speak of Visual Odometry (VO) Nistér et al. [2004]. VO
only focuses on local consistency of the trajectory and the local map is used to reduce the drift
in the estimate of local trajectory, whereas SLAM is concerned with the global map consis-
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2 Introduction and Contributions

tency. This thesis mainly aims at developing visual odometry systems using stereo or RGB-D
cameras, with one of them being extended to a full visual SLAM system. In the rest of this
thesis I use the acronym VO/SLAM to refer to the combined subject domain comprising all
visual spatial awareness algorithms including visual odometry and visual SLAM algorithms.

1.1 Importance of Visual Odometry/SLAM for Robotics

In recent years, VO/SLAM technologies have been used in a wide variety of application do-
mains due to the simple, inexpensive and commonly reachable sensor configuration. Specifi-
cally, it is used for accurate camera pose estimation in augmented reality (AR) systems Com-
port et al. [2006]; Runz et al. [2018], where the configuration of these systems can be generic
items such as camera-mounted tablets or smart phones. Another typical example is navigation
for micro aerial vehicles (MAVs) Forster et al. [2014]; Qin et al. [2018]: small flying robots re-
quired light-weight on-board sensors, which makes camera sensor the most appealing option.
With the help of VO/SLAM techniques, MAVs are able to achieve self-navigation with low
drifts in attitude and position.

(a) Augmented reality. (b) DJI commercial MAVs. (c) NASA curiosity rover.

(d) Reef monitoring robot. (e) Dyson robotic vacuum cleaner. (f) Waymo autonomous car.

Figure 1.1: Examples of VO/SLAM applications.

Visual odometry/SLAM also plays a significant role in the field of robotic control and
navigation when no external reference signal is available. For instance, a stereo VO sys-
tem Moravec [1980a] is built for the NASA Mars exploration program in 1980, as an alter-
native to wheel odometry which is always affected by slippage in uneven terrains. The demand
for ocean exploitation requires autonomous underwater vehicles (AUVs) to be able to perform
self-localization in underwater environment Wirth et al. [2013]; Burguera et al. [2014]. Global
Positioning System (GPS) is a well-established technology for tracking and navigations. How-
ever, GPS-based systems are not useful indoors, or places covered by limited sky views, such
as forest or urban canyon, etc.
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Autonomous driving in urban scenarios represents the biggest real application to visual
odometry/SLAM nowadays. Autonomous vehicles could potentially use VO/SLAM systems
for mapping and understanding the world around them Ros et al. [2012]; Lategahn et al. [2011].
Field robots in agriculture, as well as drones, can use the same technology to independently
travel around crop fields Dong et al. [2017]; Cheein et al. [2011]. Other applications cover the
area of service, social and medical robots. This includes vacuum cleaning and lawn-mowing
robots for housekeeping, robot companions and assistants for elderly people, nano-robots for
minimally invasive surgeries (MIS), to name a few.

1.2 Visual Odometry/SLAM Challenges

The ability to sense the location of a camera, as well as the environment around it, without
knowing any data points beforehand is incredibly difficult. In particular, VO/SLAM algo-
rithms are sensitive to environmental changes such as lighting conditions, surrounding tex-
ture, dynamic factor and the presence of rain, snow, etc. Other conditions that lead to poor
tracking data are motion blur, shadows, visual similarity, degenerate configuration, and occlu-
sions. Along with these, some man-made errors are also brought into the data during image
acquisition and processing steps such as lens distortion and calibration, feature matching, tri-
angulation. Two real world examples that are highly challenging to visual odometry/SLAM
algorithms are underwater and dynamic scenes.

1.2.1 Underwater Scenario

Visual odometry/SLAM becomes a popular solution for localizing AUVs in underwater, since
it is a cost effective alternative to other sensors such as sonar. Nevertheless, unlike terrestrial
environment where traditional VO/SLAM algorithms work quite well, localization from vision
becomes more complex in underwater and state-of-the-art algorithms fail when the operating
conditions become too harsh. One of the main reasons causing failure is the poor imaging
condition. The light attenuation caused by the water medium shortens the visual perception
to limited distance. Besides, the propagation of light is backscattered by floating particles,
causing turbidity effects on the captured images. The water medium also cause the motion
of AUV to be inconsistent with oscillation, which makes it harder to estimate the motion and
brings motion blur to the image.

1.2.2 Dynamic Scenario

Dynamic scenes are quite common in the daily world we live. Moving creatures will come
along, no matter artificial or real, as long as there are human activities. Visual navigation
in non-static environments becomes challenging because the dynamic parts violate the static
scene assumption. If moving parts of a scene dominate the static scene, off-the-shelf VO/S-
LAM systems either fail completely or return poor quality trajectory estimation.

In most scenarios, the dynamics corresponds to a finite number of individual objects that
are rigid or piecewise rigid, and their motions can be tracked and estimated in the same way
as the ego-motion. The problem of simultaneously tracking self-motion and motion of objects
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in the scene using only cameras is known as multi-body visual odometry. Multi-body VO is
a challenging task because it requires the system to solve together the problems of motion
segmentation, multi-object tracking, and motion estimation. Each individual problem is still
an active research area in the community of computer vision and robotics.

1.3 Contributions

The scope of this thesis is to develop, test and evaluate visual odometry algorithms, that are
able to robustly localize the robot in two challenging scenarios: underwater and dynamic en-
vironments. For dynamic scenarios, the thesis further proposes to segment the dynamic scene
into multiple individual objects and track their motions. In the end, a single framework is
formulated to explore the spatial and temporal relationships between the camera and object
motions, as well as static and dynamic structures, to get more consistent and accurate esti-
mations. Overall, the contributions of this thesis are summarised as the following three main
parts:

• This thesis proposes a robust and effective stereo VO system, which overcomes the dif-
ficulties of poor imaging condition and inconsistent motion caused by water flow, and
accurately localizes the AUV. The thesis intensively tests and evaluates possible solu-
tions for three problems in underwater: feature association, inconsistent motion and
image enhancement, and carefully modified this system to accommodate the aforemen-
tioned challenging issues. Experimental results demonstrate that the proposed system
outperforms existing VO systems in underwater environment.

• This thesis proposes a novel way to model and estimate object motion, and introduces
a robust solution to achieve accurate ego and object motion estimation with consistent
track-ability for dynamic multi-body visual odometry. A compact and effective frame-
work is proposed leveraging recent advances in semantic instance-level segmentation
and accurate optical flow estimation. A novel formulation, jointly optimizing SE(3)
motion and optical flow is introduced that improves the quality of the tracked points
and the motion estimation accuracy. The proposed approach is evaluated on the vir-
tual dataset and tested on the real dataset, demonstrating its applicability to autonomous
driving applications.

• This thesis extends the second part to a full visual SLAM system, which integrates in-
formation about dynamic and static structures in the environment into a single estima-
tion framework, resulting in accurate robot pose and spatio-temporal maps estimation.
The system is able to achieve robust moving object tracking, accurate estimation of full
SE(3) pose change of dynamic objects with extraction of their linear velocity informa-
tion, as well as accurate robot localisation and mapping of environment structure. The
performance of the proposed system is demonstrated on both real indoor and outdoor
datasets. Results show consistent and substantial improvements over state-of-the-art al-
gorithms.
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1.4 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter 2 reviews related literature and provides context for the work presented.

• Chapter 3 introduces the necessary mathematical preliminaries, notations and problem
formulations required for later chapters.

• Chapter 4 describes a robust and effective stereo underwater VO system that addresses
the issues of feature association and motion inconsistency in underwater, and accurately
localizes the AUV.

• Chapter 5 details a novel multi-body visual odometry pipeline that solves the problem
of tracking of both ego and object motion in dynamic outdoor scenes.

• Chapter 6 presents a novel feature-based dynamic object-aware SLAM system, that is
able to localise the robot, estimate a full SE(3) pose change of moving objects and build
a full map of the environment containing both static and dynamic structure.

• Chapter 7 summarises the outputs of this thesis and offers concluding remarks.

1.5 Publication

This thesis is based on the following peer-reviewed publications:

1.5.1 Conferences

• Robust Visual Odometry in Underwater Environment.
Jun Zhang, Viorela Ila and Laurent Kneip.
2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, 2018, pp. 1-9.

• Multi-frame Motion Segmentation for Dynamic Scene Modelling.
Jun Zhang and Viorela Ila.
In the 20th Australasian Conference on Robotics and Automation (ACRA), 2018.

• Dynamic SLAM: The Need for Speed.
Mina Henein, Jun Zhang, Robert Mahony and Viorela Ila.
In IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 2123-
2129.

• Robust Ego and Object 6-DoF Motion Estimation and Tracking.
Jun Zhang, Mina Henein, Robert Mahony, and Viorela Ila.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020,
pp. 5017-5023.
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1.5.2 Journals

• VDO-SLAM: A Visual Dynamic Object-aware SLAM System.
Jun Zhang∗, Mina Henein∗, Robert Mahony and Viorela Ila.
ArXiv Preprint arXiv:2005.11052.
(∗ equal contribution)

1.5.3 Misc

Publicly available source code:

• Multiple Motion Tracking
https://github.com/halajun/multimot_track

• VDO-SLAM
https://github.com/halajun/VDO_SLAM

https://github.com/halajun/multimot_track
https://github.com/halajun/VDO_SLAM


Chapter 2

Literature Review

In this chapter, a brief introduction towards history of VO/SLAM is first presented, along
with the detailed reviews of modern geometric approaches. Then the proposed solutions for
underwater and dynamic environments in the literature are discussed.

2.1 History of VO/SLAM

The term VO was first used by Srinivasan et al. [1997] to define motion orientation of honey
bees. The history of VO, however, dates back to early works Moravec [1980b]; Lacroix et al.
[1999] motivated by the NASA Mars exploration program to provide all-terrain rovers with
the capability to measure their 6-degree-of-freedom (DoF) motion in the presence of wheel
slippage in uneven and rough terrains. In the following two decades, the research on VO was
led by NASA in preparation for the 2004 Mars mission Matthies and Shafer [1987]; Matthies
[1989]; Lacroix et al. [1999]; Olson et al. [2000]. But it is after the work Visual Odometry
from Nistér et al. [2004] was published that the study of VO becomes popular in the areas of
robotics and computer vision. The proposed methodology by Nister sooner became almost
‘golden method’ for feature-based VO, and is still frequently used in the front-end of visual
SLAM today.

According to Durrant-Whyte and Bailey [2006], the research on SLAM dates back to 1986,
when the idea of using estimation-theoretic methods for robot localization and mapping were
first discussed. Yet it was until 1995 that the structure of the SLAM problem, the convergence
result and the coining of the acronym SLAM were presented. Early SLAM works mostly relied
on odometry and laser/ultrasonic sensors as perception input, such as Leonard and Durrant-
Whyte [1991b] (with ultrasonic), and Gutmann and Konolige [1999] (with laser). The the-
oretical fundamental and prototype of traditional Bayesian filtering based SLAM framework
emerged in 1990s, and the notable work was from Thrun et al. [1998], as well as Dissanayake
et al. [2001] sooner.

Landmark work of bringing vision into SLAM came from A. Davison’s Mono-SLAM in
early 2000s Davison [2003]; Davison and Murray [2002]; Davison et al. [2007], which in some
way set the standard framework for traditional Bayesian filtering-based visual SLAM imple-
mentation. The problem of filtering-based SLAM lies in high computation effort that grows
quadratically with the number of landmarks increasing. In 2007, Georg Klein and David Mur-
ray proposed Parallel Tracking and Mapping (PTAM) Klein and Murray [2007], introducing
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an efficient keyframe-based Bundle Adjustment (BA) instead of Bayesian filtering for pose
and map refinement, outperforms Mono-SLAM and the like in both efficiency and accuracy.
As keyframes and map points are formulated as nodes in a graph and optimized to minimize
their measurement errors Kümmerle et al. [2011], keyframe-based map refinement with BA is
also referred as graph-based SLAM, which becomes a new standard framework and has great
influence in modern visual SLAM research.

(a) ORB-SLAM2. (b) OKVIS.

(c) DTAM. (d) LSD-SLAM.

(e) KinectFusion. (f) ElasticFusion.

Figure 2.1: Different feature-based (a,b), direct (c,d) and 3D point registration based (e,f)
VO/SLAM systems.
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2.2 State-of-the-art VO/SLAM

On the foundation laid by the predecessors, state-of-the-art systems keep making improvement
from perspectives of both theory and system engineering. According to different formula-
tions, they could be clustered into three categories: feature-based methods, direct methods,
and methods based on 3D point set registration.

2.2.1 Feature-based Methods

Featured-based methods process the raw image information into intermediate representations
such as feature points, lines, curves or planes to be used in the estimation as landmarks.
The estimation then only depends on the extracted features and normally a geometric cost
is used. Typical feature point based methods include ORB-SLAM Mur-Artal et al. [2015],
LIBVISO Geiger et al. [2011], OKVIS Leutenegger et al. [2015] and FOVIS Huang et al.
[2017], etc. In addition to points, other primitives such as lines Pumarola et al. [2017]; Sola
et al. [2012], curves Zhou et al. [2018] and planes Henein et al. [2017]; Hsiao et al. [2017]
have also been widely studied in VO/SLAM.

Feature-based methods are robust to brightness inconsistencies and large view-point changes
among consecutive frames. Nevertheless, feature extraction and matching bring considerable
computational cost. Besides, few features can be extracted and matched in low-texture and
blurring scenes, which could lead to losing track easily.

2.2.2 Direct Methods

Direct methods Comport et al. [2007, 2010] skip the feature extraction step and directly utilise
the raw sensor input such as image pixel intensity, and formulate the optimization cost as
photometric error, which has been proven to be more effective in textureless environments. One
of the seminal methods is DTAM Newcombe et al. [2011b], which is able to estimate a dense
depth map at each keyframe. However, the process of dense pixel points is computationally
expensive, resulting in dependency on GPU hardware to achieve real-time performance. LSD-
SLAM Engel et al. [2014] is another leading method in this category, which estimates depth at
pixels solely near image boundaries and recovers a ‘semi-dense’ map to speed up the process.
This thereby becomes the first direct visual SLAM system that can run in real-time on a CPU.
More recently, Engel et al. propose the direct sparse odometry (DSO) Engel et al. [2017]. In
DSO, sparse points with high intensity gradient are sampled across the whole image and used
for estimation. To handle imperfect brightness constancy, a photometric calibration pipeline is
introduced to recover the irradiance images and therefore increase the tracking accuracy.

One significant advantage of direct methods is that they can perform relatively dense 3D
reconstruction, and more image information is used in tracking. However, they become un-
stable in rapid light changing environment, as the brightness constancy assumption does not
always hold. Moreover, compared to geometric error, photometric error is highly non-linear
and non-convex, hence it requires good initialisation of map and camera poses to ensure con-
vergence.
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2.2.3 3D Point Registration based Methods

3D point set registration is a traditional problem that has been extensively investigated in the
computer vision community. Here, we only limit the discussion to the related VO/SLAM meth-
ods that process mainly rigid, geometric information. These methods are commonly based on
an iterative closest point (ICP) algorithm proposed by Besl and McKay [1992], which regis-
ters two 3D point sets through iterative minimization of the sum of square differences (SSD)
distances between spatial neighbours, and recover the transformation between the sets. One of
representative methods is KinectFusion Newcombe et al. [2011a]. The method proposes to rep-
resent the 3D structure of the environment in a voxel space. The 3D structure is reconstructed
by combining obtained depth maps in the voxel space, and camera motion is estimated by ICP
using an estimated 3D structure and the input depth map. The ICP algorithm and its close
derivatives Pomerleau et al. [2011, 2013] still represent the algorithm of choice for 3D point
registration based VO/SLAM Whelan et al. [2012, 2015]; Ireta Muñoz and Comport [2018]
today.

2.3 VO/SLAM in Underwater Environment

Acoustic sensors have been the first choice for underwater SLAM and navigation for a long
time. Using such sensors, e.g., Doppler Velocity Log (DVL), ultra-short baseline (USBL),
and multi-beam imaging sonar, many underwater navigation algorithms Leonard and Durrant-
Whyte [2012]; Snyder [2010]; Johannsson et al. [2010]; Rigby et al. [2006] have been devel-
oped. Acoustic positioning systems, however, require careful calibration of the sound velocity,
as they suffer from multipath Doppler effects and susceptibility to thermocline; they also have
a limited range and accuracy Wu et al. [2015].

Eustice et al. [2008] are among the first to present a successful use of visual information
as a complementary sensor for underwater robots localization. They use an Extended Infor-
mation Filter (EIF) to process dead-reckoning sensors and insert visual constraints based on
the 2D-2D matching of points coming from overlapping monocular images. Kim and Eustice
[2013] extended their work by adding loop-closure capability through the computation of a
visual saliency metric using SIFT Lowe [2004] features. However, in both methods the visual
information is only used to bound the localization drift using low-overlap imagery systems,
but their systems mainly rely on expensive navigational sensors.

Representative underwater monocular-based methods using cameras at high frame rate
are Shkurti et al. [2011] and Burguera et al. [2015]. In their approaches, they fuse visual
motion estimation in an Extended Kalman Filter (EKF) along with an IMU and a pressure
sensor. More recently, Creuze [2017] propose a monocular underwater localization method
that does not rely on an EKF framework but iteratively estimates ego-motion by integration
of optical flow measurements corrected by an IMU and a pressure sensor. This latter is used
to compute the scale factor of the observed scene. Many stereo-vision based systems are also
proposed to avoid scale ambiguity in monocular systems. Salvi et al. [2008] introduce a real-
time EKF-SLAM system that incorporates a sparsely distributed robust feature selection and
6-DOF pose estimation using only calibrated stereo cameras. Beall et al. [2011] present an ac-
curate 3D reconstruction on a large-scale underwater dataset by performing bundle adjustment
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(a) Selective SLAM.

(b) Beall et al. [2011].

Figure 2.2: Different underwater VO/SLAM systems.

over all cameras and a subset of features rather than using a traditional filtering technique. A
stereo SLAM framework named Selective SLAM (SSLAM) for autonomous underwater vehi-
cle localization is proposed in Bellavia et al. [2017]. The above-mentioned methods all achieve
accurate trajectory estimation in underwater environment. However, the typical problems in
underwater scenes: poor imaging quality and inconsistent motion, are not extensively studied
and evaluated in details.

2.4 VO/SLAM in Dynamic Environment

In the past two decades, the study of VO/SLAM for dynamic environments has become more
and more popular in the community, with a considerable amount of algorithms being proposed
to solve the dynamic VO/SLAM problems. Motivated by different goals to achieve, solutions
in the literature can be mainly divided into four categories.

The first category aims to explore robust SLAM against dynamic environments. Early
methods in this category (Hahnel et al. [2003]; Alcantarilla et al. [2012]; Tan et al. [2013])
normally detect and remove the information drawn from dynamic foreground, which is seen
as degrading the SLAM performance. More recent methods on this track tend to go further
by not just removing the dynamic foreground, but also inpainting or reconstructing the static
background that is occluded by moving targets. Bescos and Neira [2018] present dynaSLAM
that combines classic geometry and deep learning-based models to detect and remove dynamic
objects, then inpaint the occluded background with multi-view information of the scene. Simi-
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(a) Kundu et al. [2011]. (b) CoSLAM.

(c) CubeSLAM. (d) Judd et al. [2018].

Figure 2.3: Different dynamic VO/SLAM systems.

larly, a Light Field SLAM front-end is proposed by Kaveti and Singh [2020] to reconstruct the
occluded static scene via Synthetic Aperture Imaging (SAI) technics. Different from Bescos
and Neira [2018], features on the reconstructed static background are also tracked and used
to achieve better SLAM performance. The above state-of-the-art solutions achieve robust and
accurate estimation by discarding the dynamic information. However, we argue that this infor-
mation has potential benefits for SLAM if it is properly modelled. Furthermore, understanding
dynamic scenes in addition to SLAM is crucial for many other robotics tasks such as planning,
control and obstacle avoidance, to name a few.

Approaches of the second category performs SLAM and Moving Objects Tracking (MOT)
separately, as an extension to conventional SLAM for dynamic scene understanding (Wang
et al. [2007]; Kundu et al. [2011]; Reddy et al. [2015]; Bârsan et al. [2018]). Wang et al. [2007]
developed a theory for performing SLAM with Moving Objects Tracking (SLAMMOT). In
the latest version of their SLAM with detection and tracking of moving objects, the estimation
problem is decomposed into two separate estimators (moving and stationary objects) to make
it feasible to update both filters in real time. Kundu et al. [2011] tackle the SLAM problem
with dynamic objects by solving the problems of Structure from Motion (SfM) and tracking of
moving objects in parallel, and unifying the output of the system into a 3D dynamic map con-
taining the static structure and the trajectories of moving objects. Later in Reddy et al. [2015],
the authors propose to integrate semantic constraints to further improve the 3D reconstruction.
The more recent work Bârsan et al. [2018] present a stereo-based dense mapping algorithm in
a SLAM framework, with the advantage of accurately and efficiently reconstructing both static
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background and moving objects in large scale dynamic environments. The listed algorithms
above have proven that combining multiple objects tracking with SLAM is doable and applica-
ble for dynamic scene exploration. To take a step further by proper exploiting and establishing
the spatial and temporal relationships between the robot, static background, stationary and dy-
namic objects, we show in this thesis that the problems of SLAM and multi-object tracking are
mutually beneficial.

The third and most active category is object SLAM, which usually includes both static
and dynamic objects. Algorithms in this class normally require specific modelling and rep-
resentation of 3D object, such as point sets (Dharmasiri et al. [2016]; Henein et al. [2020]),
3D shape (Salas-Moreno et al. [2013]; Tateno et al. [2016]; Sucar et al. [2020]), surfel Runz
et al. [2018] or volumetric Xu et al. [2019] model, geometric model such as ellipsoid (Hossein-
zadeh et al. [2019]; Nicholson et al. [2018b]) or 3D bounding box (Yang and Scherer [2019];
Li et al. [2018, 2020]; Bescos et al. [2020]), etc., to extract high-level primitive (e.g., object
pose) and integrate into a SLAM framework. Salas-Moreno et al. [2013] is one of the earliest
works to introduce an object-oriented SLAM paradigm, which represents cluttered scene in
object level and constructs an explicit graph between camera and object poses to achieve joint
pose-graph optimisation. Later, Tateno et al. [2016] propose a novel 3D object recognition
algorithm to ensure the system robustness and improve the accuracy of estimated object pose.
The high-level scene representation enables real-time 3D recognition and significant compres-
sion of map storage for SLAM. Nevertheless, a database of pre-scanned or pre-trained object
models has to be created in advance. To avoid prebuilt database, representing objects using
surfel or voxel element in a dense manner starts to gain popularity, along with RGB-D cameras
becoming widely used. Runz et al. [2018] present MaskFusion that adopts surfel represen-
tation to model, track and reconstruct objects in the scene, while Xu et al. [2019] apply an
octree-based volumetric model to objects and build multi-object dynamic SLAM system. Both
methods succeed to exploit object information in a dense RGB-D SLAM framework, without
prior knowledge of object model. Their main interest, however, is the 3D object segmentation
and consistent fusion of the dense map rather than the estimation of the motion of the objects.

Lately, the use of basic geometric models to represent objects becomes a popular solu-
tion due to the less complexity and easy integration into a SLAM framework. In Quadric-
SLAM Nicholson et al. [2018b], detected objects are represented as ellipsoids to compactly
parametrise the size and 3D pose of an object. In this way, the quadric parameters are directly
constrained as geometric error and formulated together with camera poses in a factor graph
SLAM for joint estimation. Yang and Scherer [2019] propose to combine 2D and 3D object
detection with SLAM for both static and dynamic environments. Objects are represented as
high-quality cuboids and optimized together with points and cameras through multi-view bun-
dle adjustment. While both methods prove the mutual benefit between detected object and
SLAM, their main focus is on object detection and SLAM primarily for static scenarios. In
this thesis, we take this direction further to tackle the challenging problem of dynamic object
tracking within a SLAM framework, and exploit the relationships between moving objects and
agent robot, static and dynamic structures for potential advantages.

Apart from the dynamic SLAM categories, the literature of Multi-motion Visual Odom-
etry (MVO) is also crucial for dynamic VO/SLAM problems. Quite a few methods have
been proposed in the literature to estimate SE(3) motion of objects in a visual odometry or
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SLAM framework (Dewan et al. [2016]; Judd et al. [2018]; Huang et al. [2020]). Dewan
et al. [2016] present a model-free method for detecting and tracking moving objects in 3D Li-
DAR scans. The method sequentially estimates motion models using RANSAC Fischler and
Bolles [1981a], then segments and tracks multiple objects based on the models by a proposed
Bayesian approach. In Judd et al. [2018], the authors address the problem of simultaneous
estimation of ego and third-party SE(3) motions in complex dynamic scenes using cameras.
They apply multi-model fitting techniques into a visual odometry pipeline and estimate all rigid
motions within a scene. In later work, Huang et al. [2020] present ClusterVO that is able to
perform online processing for multiple motion estimations. To achieve this, a multi-level prob-
abilistic association mechanism is proposed to efficiently track features and detections, then a
heterogeneous Conditional Random Field (CRF) clustering approach is applied to jointly infer
cluster segmentations, with a sliding-window optimization for clusters in the end. While the
above proposed methods represent an important step forward to the MVO task, the study of
spacial and temporal relationships is not fully explored but is arguably important. Therefore,
by carefully considering the pros and cons in the literature of SLAM+MOT, object SLAM and
MVO, this thesis proposes a visual dynamic object-aware SLAM system that is able to achieve
robust ego and object motion tracking, as well as consistent static and dynamic mapping in a
novel SLAM formulation.



Chapter 3

Preliminaries

In this chapter, the preliminaries related to VO/SLAM problems are described. A brief intro-
duction of camera modelling and calibration is first presented. Then the formulation of VO
and SLAM problems are discussed, respectively, following the details of optimization-based
solutions towards the two problems. After that, Lie groups that are used in the optimization
methods for VO/SLAM are covered. Finally, a number of commonly-used optimization tools
for VO/SLAM are introduced.

3.1 Camera Modelling and Calibration

A camera model is a function that maps the 3D world onto a 2D image plane and is designed
to closely model a real-world physical camera. There are many camera models of varying
complexity, such as perspective camera, omnidirectional camera and spherical models. This
thesis only focuses on the basic and most common model: the perspective camera model.

3.1.1 Perspective Projection

Perspective is the property that objects that are far away appear smaller than closer objects,
which is the case with human vision and most real world cameras. The most used model for
perspective camera is the pinhole projection system, which assumes that the image is formed
by the intersecting light rays from the objects passing through the centre of lens with the
focal plane. Let m = [mx,my,mz,1]

> ∈ IE3, be the homogeneous coordinates of a 3D point
in the camera reference frame, and p = [u,v,1]> ∈ IE2 its projection onto the image plane in
homogeneous coordinates. The perspective projection equation that connects the 3D world and
the 2D image can be written as:

λ

u
v
1

= Km̃ =

 fu 0 cu

0 fv cv

0 0 1

mx

my

mz

 , (3.1)

where m̃ ∈ IR3 contains only the 3D point coordinate; λ is a depth factor, K is the intrinsic
calibration matrix and contains the intrinsic parameters: fu and fv are the focal lengths, and cu

and cv are the image coordinates of the projection centre. Note that, when the camera’s field
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of view is larger than 45 degree, the effects of the radial distortion may become visible and
can be modelled using a second or higher order polynomial Hartley and Zisserman [2003]. An
illustration of the perspective projection is demonstrated in Figure 3.1.

Figure 3.1: Illustration of the perspective projection camera model. Light rays from point
m intersect the image plane at point p when passing through the center of the projection.

3.1.2 Camera Calibration

The goal of calibration is to accurately measure the intrinsic and/or extrinsic parameters of the
camera system. In a multi-camera system (e.g., stereo and trinocular), the extrinsic parameters
describe the mutual position and orientation between each camera pair. Precise camera cali-
bration is very important for 3D interpretation of the image, reconstruction of physical world
and the robot’s interaction with the reality world.

The most popular method is via using a planar checkerboard-like pattern. To compute
the calibration parameters accurately, the user is required to take several pictures of the board
shown from different positions and orientations, to ensure that the field of view of the camera is
filled as much as possible. The intrinsic and/or extrinsic parameters are then estimated through
a least-square minimization method, where the input data are the 3D positions of the corners
of the squares of the board and their corresponding pixel coordinates in each image.

Many open source toolboxes are available for estimating the camera parameters, such as
the MATLAB camera calibration toolbox Bouguet [1996] and the C/C++ OpenCV calibration
library Bradski [2000].
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3.2 Formulation of Visual Odometry Problem

As discussed in Chapter 2, there are three classes of VO methods according to different for-
mulation: feature based, direct and 3D point set registration based methods. The proposed
algorithms in this thesis are all within the category of feature based, and more specifically,
point feature based method. In the following, therefore, only the formulation of this category
is covered.

Motion estimation is the core processing step performed for every image in a VO system.
Depending on the dimension of the feature correspondences used to estimate motion, there are
three different formulations: 2D to 2D, 3D to 3D and 3D to 2D.

Figure 3.2: An illustration of the Epipolar constraint. The two image frames are indicated
by their centres Ck−1 and Ck and the image planes. The two centres, the 3D point m and
its projections on both images lie in a common plane (Epipolar plane). The Epipolar plane
intersects each image plane where it forms lines (Epipolar line). The projection of m on image

plane k must be contained in the Epipolar line.

3.2.1 2D to 2D: Estimation from 2D Feature Correspondences

The geometric relations between two frames of a calibrated camera are described by Epipolar
geometry, as illustrated in Figure 3.2. The Epipolar constraint determines the Epipolar lines
between the 2D point p in image frame k-1 and its correspondence p′ ∈ IE3 in frame k. This
constraint can be formulated as:

p̃′ >Ep̃ = 0 , (3.2)
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where p̃ ∈ IR2 and p̃′ ∈ IR2 contain only the 2D coordinates; E is the essential matrix, which
contains the camera motion parameters up to an unknown scale factor for the translation and
is the following form:

E = [t]×R . (3.3)

Here R ∈ SO(3) is the rotation matrix, t = [tx, ty, tz]> ∈ IR3 is translation vector and [t]× is the
skew symmetric matrix that is given by:

[t]× =

 0 −tz ty
tz 0 ty
−ty tx 0

 . (3.4)

The essential matrix can be computed from 2D feature correspondences, and rotation and
translation are directly extracted from E. Detailed descriptions of different ways to solve the
essential matrix using the Epipolar constraint can be found in Longuet-Higgins [1981]; Zhang
[1998]; Nistér [2004].

3.2.2 3D to 3D: Estimation from 3D Point Correspondences

In this approach, the camera motion T ∈ SE(3) from frame k-1 to frame k is estimated via de-
termining the aligning transformation of two 3D point sets, which are normally obtained from
stereo or RGB-D sensors. The general solution of finding the transformation is by minimizing
the L2 distance

T∗ = argmin
T

n

∑
i
|m′i−Tmi| (3.5)

for all n 3D point correspondences. Here mi ∈ IE3 is a 3D point observed from camera frame
k-1, and m′i ∈ IE3 from frame k. According to Goldstein [1980], the minimal number of points
required to solve the above problem is n=3, which can be used for robust estimation in the
presence of outliers. For the case of n>3, one possible solution is to calculate the translation
as the difference of the centroids of the 3D point sets, and the rotation using singular value
decomposition (SVD). More details can be referred to Arun et al. [1987].

3.2.3 3D to 2D: Estimation from 3D Point and 2D Feature Correspon-
dences

Analogous to the 3D-to-3D approach, the camera motion T between frame k-1 and k is found
by formulating a non-linear least squares problem using 3D-to-2D correspondences, and solv-
ing the problem by minimizing the image re-projection errors:

T∗ = argmin
T

n

∑
i
|p′i−π(Tmi)| , (3.6)
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where π(·) is the projection function. The above problem is also known as a perspective
from n points (PnP) problem, and many different solutions have been proposed in the liter-
ature Moreno-Noguer et al. [2007]; Lepetit et al. [2009]; Kneip et al. [2011]. As described
in Fischler and Bolles [1981b], the minimum case involves three 3D-to-2D correspondences,
which is called perspective from three points (P3P). There are four solutions returned by P3P,
and they can be disambiguated with one or more additional corresponding points. In the 3D-
to-2D approach, P3P is the standard method for robust motion estimation in the presence of
outliers Fischler and Bolles [1981b].

3.3 Formulation of SLAM Problem

Due to the inherent noise in the sensor measurements, the problem of SLAM is normally
described by means of probabilistic formulation. Assume a robot moves in an unknown en-
vironment, generating a trajectory denoted as a set of random variables X = {xk | k ∈ T },
with T ⊂N+ the cardinality of the set. While moving, the robot acquires a set of odome-
try measurements O = {ok | k ∈ T } and perceptions of the environment Z = {z j | j ∈N }.
Solving the full SLAM problem consists of estimating the posterior probability of the robot’s
trajectory X and the map M = {mi | i ∈M } of the environment, given all the measurements
and an initial position x0:

p(X,M |O,Z,x0) . (3.7)

The initial position x0 defines the position of the map and can be chosen arbitrarily. The pose
xk and the odometry ok are normally represented as 2D or 3D transformations in SE(2) or
SE(3), while the map can be represented in different ways, such as spatially located landmarks,
occupancy grids, surface maps or raw sensor measurements.

3.3.1 SLAM as Dynamic Bayesian Network

Estimating the posterior given in (3.7) involves operation in high dimensional state space,
which would not be solvable if the SLAM problem does not have a well-defined structure. This
structure arises from commonly established assumptions, namely the static world assumption
and the Markov assumption.

One intuitive way to describe the structure is through the Dynamic Bayesian Network
(DBN). A Bayesian network is a graphical model that describes a stochastic process as a di-
rected graph illustrated in Figure 3.3. The graph has one node for each random variable in
the process, and a directed edge between two nodes models a conditional dependence between
them. Based on the directed graph, the joint probability model corresponding to this network
is given as:

p(X,M,O,Z,x0) = p(x0) ∏
k∈T

p(xk |xk−1,ok) ∏
j∈N

p(z j |xk,mi) , (3.8)

where p(x0) is a prior on the initial state, p(xk | xk−1,ok) is the state transition model and
p(z j |xk,mi) is the observation model.
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The transition model p(xk | xk−1,ok) is indicated as the two edges leading to xk and rep-
resents the probability that the robot at time k is in xk given that at time k− 1 it was in xk−1

and it acquired an odometry measurement ok. The observation model p(z j |xk,mi) models the
probability of performing the observation z j given that the robot is at location xk in the map. It
is represented by the arrows entering in z j. The exteroceptive observation z j depends only on
the current location xk of the robot and on the map that is observed at time k (mi in Figure 3.3).
Here it assumes that the data-association problem has been solved, i.e., the association between
the map M and the observation measurements Z is known.

Figure 3.3: Dynamic Bayesian Network formulation of the SLAM problem. The grey node
indicates an initial prior. Green nodes refer to the observed variables and white nodes the

hidden variables.

As is standard in the SLAM literature Smith et al. [1990]; Leonard et al. [1992]; Dis-
sanayake et al. [2001], Gaussian transition and observation models Maybeck [1982] is assumed
and defined by

xk = fk(xk−1,ok)+wk ⇔ p(xk |xk−1,ok) ∝ exp−1
2
|| fk(xk−1,ok)−xk||2Σk

, (3.9)

where fk(·) is a transition measurement model, and wk is normally distributed zero-mean pro-
cess noise with covariance matrix Σk, and

z j = h j(xk,mi)+ v j ⇔ p(z j |xk,mi) ∝ exp−1
2
||h j(xk,mi)− z j||2Σ j

, (3.10)

where h j(·) is a observation measurement model, and v j is normally distributed zero-mean
measurement noise with covariance Σ j. Here ||e||2Σ = e>Σ−1e is defined as the squared Maha-
lanobis distance given a covariance matrix Σ. The equations above model the robot’s behaviour
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in response to control input, and its sensors, respectively.

3.3.2 SLAM as Factor Graph

An alternative representation to the DBN is via the so-called ‘graph-based’ formulation of
the SLAM problem, that highlights the underlying spatial structure. A graph-based SLAM
approach constructs a simplified estimation problem by abstracting the sensor measurements.
These measurements are replaced by the edges in the graph which can then be considered as
parameters of the joint probability factors over the actual variables. This naturally leads to the
well known factor graph representation, a class of bipartite graphical models that can be used
to represent such factored densities Kschischang et al. [2001].

In a factor graph there are nodes for variables, edges for the probability factors defined on
them, and the graph structure expresses which variables are involved in each factor. The factor
graph for the example from Figure 3.3 is shown in Figure 3.4. As can be seen, there are factor
edges for both odometry measurements O and observation measurements Z.

Figure 3.4: Factor graph formulation of the SLAM problem. The white nodes represent
the actual variables. The edge with grey dot indicates an initial state, and the edges with green

dots refer to the observed measurements.

For a typical graph-based SLAM problem, only single and pairwise cliques (constraints)
are considered for succinct explanation. Given a set of variables Θ, which includes both the
robot’s poses and the map, the factor graph expression of the joint density over Θ can be
considered as:

p(Θ) = ∏
i

φi(θi) ∏
{i, j},i< j

ψi j(θi,θ j) , (3.11)

Normally the potentials φi(θi) encode a prior or a single measurement constraint at an variable
θi ∈ Θ, whereas the pairwise potentials ψi j(θi,θ j) refer to measurements or constraints that
involve the relationships between the variables θi and θi. Note that the second product is over
pairwise cliques {i, j} and is counted only once. The equivalence between equations (3.8)
and (3.11) can be readily established by taking

φ0(x0) ∝ p(x0) , (3.12)

ψ(k−1)k(xk−1,xk) ∝ p(xk |xk−1,ok) , (3.13)

ψki(xk,mi) ∝ p(z j |xk,mi) . (3.14)
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Based on the factor graph modelling, an optimal estimate for the set of variables given all
the measurements can be obtained. Specifically, given the observation measurements Z and
odometry measurements O, the goal is to recover the Maximum a Posteriori (MAP) estimate
for the entire trajectory X and the map M. Let Θ := (X,M) be the vector collecting all the
variables in X and M, the MAP estimate is obtained via maximizing the joint probability
p(X,M,O,Z,x0) from (3.8),

Θ∗ = argmax
Θ

p(X,M |O,Z,x0) = argmax
Θ

p(X,M,O,Z,x0)

= argmin
Θ
− log p(X,M,O,Z,x0) , (3.15)

which comes to the following non-linear least-squares problem combining (3.9) and (3.10),

Θ∗ := argmin
Θ

{
∑

k∈T
|| fk(xk−1,ok)−xk||Σk + ∑

j∈N
||h j(xk,mi)− z j||Σ j

}
(3.16)

Regarding the prior p(x0), it is assumed that x0 is given and hence is treated as a constant con-
straint. This is what is often done in practice: the origin of the coordinate system is arbitrary,
and thereby x0 can be fixed at the origin as well.

3.4 Optimization for VO/SLAM

As discussed in the previous two sections, both VO and SLAM are normally formulated as
non-linear least-squares problems and solved through optimization. In this section, basic pre-
liminaries regarding to optimization is introduced, along with classic solutions that are applied
to VO/SLAM problems.

3.4.1 Taylor Series

Let f : IR→ IR be an infinitely differentiable function. The power series

f (a)+
f ′(a)

1!
(x−a)+

f ′′(a)
2!

(x−a)2 + · · ·=
∞

∑
n=0

f (n)(a)
n!

(x−a)n (3.17)

is called the Taylor series of f at a. Here f (n)(a) denotes the n-th derivative of f evaluated at
the point a, and the derivative of order zero of f is defined to be f itself.

If f (x) is given by a convergent power series in an open disc centred at b in the complex
plane, it is said to be analytic in this disc. Thus for x in this disc, f is given by a convergent
power series:

f (x) =
∞

∑
n=0

an(x−b)n . (3.18)

Differentiating by x the above formula n times, then setting x = b gives:

f (n)(b)
n!

= an, (3.19)
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and hence the power series expansion agrees with the Taylor series. Thus a function is analytic
in an open disc centred at b if and only if its Taylor series converges to the value of the function
at each point of the disc.

The usage of the Taylor series for analytic function is important. For instance, the partial
Taylor polynomials of the series can be used as approximations of the function. These approx-
imations are good if sufficiently many terms are included. Approximations using the first few
terms can also make otherwise unsolvable problems possible for a restricted domain.

3.4.2 Multivariate Differentiation

Let f : IRn→ IRm be a function such that each of its first-order partial derivatives exists on IRn.
This function takes a point x ∈ IRn as input and produces the vector f(x) ∈ IRn as output. Then
the Jacobian matrix of f is defined to be an n×m matrix, denoted by Jf (or ∇f) as:

Jf :=
[

∂ f
∂x1

. . . ∂ f
∂xn

]
=


∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

. . . ∂ fm
∂xn

 . (3.20)

If all second partial derivatives of f exist and are continuous over the domain of the function,
then the Hessian matrix Hf of f is a square n×m× n matrix, which is the Jacobian matrix of
the gradient of the f function: H(f(x)) = J(∇f(x)).

3.4.3 Optimization Problem and Typical Solutions

An optimization problem is the problem of finding the best solution from all feasible solutions,
which can be represented in the following way:

- Given: a function F : IRn→ IR mapping from a vector onto a scalar field,

- Sought: an element x∗ ∈ IRn such that F(x∗) ≤ F(x) for all possible x ∈ IRn,

or in a simpler form as:
x∗ = min

x∈IRn
F(x) . (3.21)

The function F is normally called an objective function or cost function, and a feasible solution
that minimizes the objective function is called an optimal solution.

For a general scalar field F : IRn→ IR, there is no guarantee to find such a global minimum
in a finite number of steps, even if it is assumed to be infinitely differentiable. Therefore, most
proposed methods often focus on finding a local minima as actual solutions to the original
problem. A local minimum x∗ is defined as an element for which there exists some δ > 0 such
that

∀x ∈ IRn where ||x−x∗|| ≤ δ , (3.22)

the expression F(x∗)≤ F(x) holds; that is to say, on some region around x∗ all of the function
values are greater than or equal to the value at that element.



24 Preliminaries

3.4.3.1 Gradient Descent Method

The simplest way to find the local minimum of F is via gradient descent algorithm Nocedal
and Wright [2006]. The method is based on the observation that if F(x) is defined and differ-
entiable in a neighbourhood of a point x, then F(x) decreases fastest if one goes from x in the
direction of the negative gradient of F at x, i.e., −∇F(x). It follows that, if

x(k+1) = x(k)− γk∇F(x(k)), k ≥ 0 (3.23)

for γk ∈R+ small enough, then F(x(k+1))≤ F(x(k)). With this observation in mind, one starts
with a guess x(0) for a local minimum of F , and considers the sequence x(0), x(1), x(2),..., such
that

F(x(0)) ≥ F(x(1)) ≥ F(x(2)) ≥ ... , (3.24)

and if no such γk exists to satisfy the above condition, a desired local minimum is reached.
The gradient descent approach is a first-order iterative algorithm, easy to implement, and is
guaranteed to converge locally. However, the convergence rate can be low, especially close to
the minimum, as the gradient becomes quite small.

Figure 3.5: A comparison of Newton’s method (red) and gradient descent method (green)
for minimizing a function with small step sizes. Newton’s method uses curvature informa-

tion (i.e. the second derivative) to take a more direct route.

3.4.3.2 Newton’s Method

A more efficient approach is Newton’s method, which attempts to solve this problem by con-
structing a sequence {x(k)} from an initial guess x(0) that converges towards a minimum x∗ of
F by using a sequence of second-order Taylor approximations of F around the iteration point.
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The second-order Taylor expansion of F around x(k) is

F(x(k)+∆x) ≈ F(x(k))+∇F(x(k))∆x+
1
2

HF(x(k))∆x2 . (3.25)

The next iterate x(k+1) is defined so as to minimize this quadratic approximation in ∆x, with
x(k+1) = x(k)+∆x. If the second derivative is positive, the quadratic approximation is a convex
function of ∆x, and its minimum can be found by setting the derivative to zero.
Since

0 =
d

d∆x

(
F(x(k))+∇F(x(k))∆x+

1
2

HF(x(k))∆x2
)
= ∇F(x(k))+HF(x(k))∆x , (3.26)

the minimum is achieved for

∆x = −∇F(x(k))
HF(x(k))

. (3.27)

Putting everything together, Newton’s method performs the iteration

x(k+1) = x(k)+∆x = x(k)− ∇F(x(k))
HF(x(k))

. (3.28)

In contrast to the gradient descent method, Newton’s method converges especially fast in the
neighbourhood of the minimum. For high-dimensional problems, however, computing the
Hessian HF(x) is an expensive operation.

3.4.3.3 Gauss-Newton Method

The Gauss-Newton algorithm is used to solve non-linear least squares problems. Unlike New-
ton’s method, the Gauss-Newton algorithm can only be used to minimize a sum of squared
function values, but it has the advantage that second derivatives, which can be challenging to
compute, are not required.
Assume F to be of the following form:

F(x) = r(x)>Λr(x) , (3.29)

with r : IRn→ IRm,n ≥ m (often called residuals) a twice differentiable vector field, and Λ ∈
IRm×m being a symmetric, positive semi-definite matrix.
The first derivative of F is given by,

∇F(x) =
(
r(x)>ΛJr(x)

)>
+ Jr(x)>Λr(x) = 2 Jr(x)>Λr(x) , (3.30)

and the second derivative of F is obtained as,

HF(x) = Jr(x)>ΛJr(x)+HrΛr(x) , (3.31)
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with Hr being the Hessian tensor of r.
The Gauss-Newton method approximates the Hessian of F as

HF(x) ≈ Jr(x)>ΛJr(x) , (3.32)

which ignores the second-order derivative terms.
The above ∇F(x) and HF(x) are substituted into the recurrence relation (3.28) to obtain the
follow iterative equation:

x(k+1) = x(k)+∆x = x(k)−
(
Jr(x)>ΛJr(x)

)−1Jr(x)>Λr(x) . (3.33)

Convergence of the Gauss-Newton method is not guaranteed in all instances. The approxima-
tion of (3.32) may be valid in two cases, for which convergence is to be expected Wright and
Nocedal [1999]:

1. The residues in r are small in magnitude, at least around the minimum;

2. The functions of r are only "mildly" nonlinear, so that Hr is relatively small in magni-
tude.

3.4.3.4 Levenberg-Marquardt Method

As discussed above, the gradient descent method guarantees local convergence but suffers
poor performance close to the minimum. On the contrary, the Gauss-Newton method works
particularly well close to the minimum, but the cost may not decrease for convergence as the
quadratic approximation may not always be a good approximation if the start point is far off
the final minimum.
An alternative method to combine the advantages of both is the Levenberg algorithm which
interpolates gradient descent and Gauss-Newton by altering the normal equations as follows:(

Jr(x)>ΛJr(x)+λ I
)
∆x = −Jr(x)>Λr(x) , (3.34)

where λ is a damping ratio and I is the identity matrix.
The parameter λ > 0 steers the update vector ∆x towards the direction of the steepest descent.
As λ approaches zero, Levenberg method becomes the standard Gauss-Newton method. On
the other hand, if λ approaches infinity, the matrix

(
Jr(x)>ΛJr(x)+λ I

)
approaches a diago-

nal matrix with infinite trace. Thus, as λ → inf,

∆x = − 1
λ

Jr(x)>Λr(x) , (3.35)

and the Levenberg method becomes a gradient descent update.
The damping ratio is adjusted in each optimisation iteration. Only if the update x(k)+∆x re-
duces the cost (F(x(k)+∆x)� F(x(k))), the update is accepted, which indicates the algorithm
is approaching the local minimum and hence λ is reduced to strengthen the influence of Gauss-
Newton. However, if the update does not reduce the cost, it is rejected, and a larger λ (smaller
step size) and an update more oriented towards the steepest descent direction is attempted.
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A refinement of the Levenberg method is the Levenberg-Marquardt Method that changes
how the matrix

(
Jr(x)>ΛJr(x)+λ I

)
is defined. Specifically, instead of damping all parameter

dimensions equally with I, a scaled version of of the diagonal of the information matrix itself
can be added, and this matrix becomes:

Jr(x)>ΛJr(x)+λ diag(Jr(x)>ΛJr(x)) . (3.36)

As λ grows, ∆x also tends to wards a gradient descent update, but with each dimension scaled
according to the diagonal of the information matrix. This can lead to faster convergence than
the Levenberg damping term when some dimensions of the error surface have much different
curvature than others Madsen et al. [2004].

3.5 Lie Groups in VO/SLAM

In the optimisation methods presented in Section 3.4.3, the variables x to be optimized are
normally defined on Euclidean vector spaces IRn. Solving the VO/SLAM problems, however,
involves manipulation and estimation of 3D transformation in non-Euclidean spaces. Without
a coherent and robust framework for representing and working with 3D transformations, these
tasks can be onerous and intractable. Transformations must be composed, inverted, differenti-
ated and interpolated. Lie groups and their associated machinery (Lie algebra) address all of
these operations, and do so in a principled way, so that once intuition is developed, it can be
followed with confidence.

This section aims at revisiting the general update rule for optimization in non-Euclidean
spaces. For more details about the mathematical definition and derivation of Lie groups and
Lie algebra, the reader can refer to Blanco [2010]; Eade [2013].

3.5.1 Special Orthogonal Group SO(3)

The special orthogonal group SO(3) represents the group of 3D rotations by rotation matrix.
Composition and inversion in the group correspond to matrix multiplication and inversion. As
rotation matrices are orthogonal, inversion is equivalent to transposition.
The associated Lie algebra so(3) is a set of 3× 3 skew-symmetric matrices, which are con-
structed by three basis generator matrices corresponding to the derivatives of rotation around
each of the standard axes, evaluated at the identity:

G1 =

0 0 0
0 0 −1
0 1 0

 , G2 =

 0 0 1
0 0 0
−1 0 0

 , G3 =

0 −1 0
1 0 0
0 0 0

 . (3.37)

An element of so(3) is then represented as a linear combination of the generators:

ωωω× = ω1 G1 +ω2 G2 +ω3 G3 =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (3.38)
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where ωωω = [ω1 ω2 ω3]>, and ωωω× ∈ so(3) represents the skew symmetric matrix.
The exponential map that takes skew symmetric matrices to rotation matrices is simply the
matrix exponential over a linear combination of the generators:

exp : so(3)→ SO(3) , (3.39)

and has the closed form solution using Rogridues rotation formula:

exp(ωωω×) = I3 +
sinθ

θ
ωωω×+

1− cosθ

θ 2 ωωω
2
× . (3.40)

The exponential map yields a rotation by θ radians around the axis given by ωωω , and θ = ‖ωωω‖.
The inverse of the exponential map is the logarithm map going from an element R ∈ SO(3) to
an element in the Lie algebra so(3):

ln(R) =
θ

2sinθ
(R−R>) . (3.41)

The vector ωωω is then taken as the unique off-diagonal elements of ln(R).

3.5.2 Special Euclidean Group SE(3)

The special Euclidean group, SE(3), represents the group of rigid transformations in 3D space.
An element of rigid transformation T ∈ SE(3) is denoted as,

T =

(
R t
0> 1

)
(3.42)

with R ∈ SO(3) and t ∈ IR3.
The Lie algebra se(3)∈ IR6 is the set of 4×4 matrices corresponding to differential translations
and rotations (so(3)). There are thus six generators of the algebra:

G1 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,G2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,G3 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,

G4 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,G5 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ,G6 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (3.43)

Given (v ωωω)> ∈ IR6, an element of se(3) is represented as multiples of the generators:

v1 G1+ v2 G2+ v3 G3+ω1 G4 +ω2 G5 +ω3 G6 =

(
ωωω× v
0> 0

)
. (3.44)
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The exponential map from se(3) to SE(3) is the matrix exponential over a linear combination
of the generators:

exp : se(3)→ SE(3) , (3.45)

and has the closed form solution as:

exp
(

ωωω× v
0> 0

)
=

(
exp(ωωω×) Vv

0> 1

)
(3.46)

where
V = I3 +

1− cosθ

θ 2 ωωω×+
θ − sinθ

θ 3 ωωω× . (3.47)

The logarithm map of SE(3) can be operated by first finding ln(R) as in (3.41), then computing
v = V−1t.

3.5.3 Optimisation on SE(3)

The SE(3) in VO/SLAM optimisation problems can be solved naturally now. Generally, the
variables in a classical VO/SLAM problem include the camera/robot poses and point positions.
A camera pose lies in the non-Euclidean SE(3) space, therefore, it needs to be parameterised
using the Lie algebra explained in the last section. Assume an update as ∆x is performed
around the current variable x. The variable update formula now changes to a general form:

x(k+1) = x(k)+∆x =⇒ x(k+1) = x(k)�∆x . (3.48)

More in detail, for an SE(3) variable x, ∆x is in the tangent space se(3), and the update rule
becomes:

x(k+1) = x(k)�∆x =⇒ x(k+1) = x(k) · exp(∆x). (3.49)

Analogously, the Jacobian of a residue function r also needs to extend to the general form:

Jr(x) =
∂r(x�∆x)

∂ ∆x
|∆x=0 . (3.50)

3.6 General Optimisation Libraries for VO/SLAM

There are several existing libraries for solving non-linear least squares problems that are com-
monly defined in VO and SLAM communities. Those include g2o Kümmerle et al. [2011],
GTSAM Dellaert [2012], Ceres Agarwal et al. [2012] and SLAM++ Ila et al. [2017], etc.

Specifically, g2o (General Graph Optimization) is a C++ framework for performing the
optimization of non-linear least squares problems that can be embedded as a graph. The g2o
has the advantage of being easily extensible to a wide range of problems, and the current
implementation provides solutions to several variants of SLAM and bundle adjustment (BA)
problems. GTSAM (Georgia Tech Smoothing and Mapping) is graph-based framework imple-
mented in C++, which uses factor graph to model the non-linear least square problems, and
solves the problems using graphical algorithms. Ceres is also an open source C++ library for
modelling and solving large, complicated optimization problems, including non-linear Least
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Squares problems with bounds constraints and general unconstrained optimization problems.
SLAM++ is another general C++ framework for incremental maximum likelihood estimation.
This framework aims to maintain a sparse and scalable state representation for large scale map-
ping, to achieve fast matrix manipulation and arithmetic operations used in non-linear least
squares.

In this thesis, optimization problems are mainly solved using the g2o framework, including
camera pose refinement and bundle adjustment in Chapter 4, joint optic-flow and 6-DoF motion
estimation in Chapter 5, and graph optimization for dynamic SLAM in Chapter 6.



Chapter 4

Robust Visual Odometry in
Underwater Environments

The accurate estimation of pose and velocity of an autonomous underwater vehicle (AUV) is
critical to ensure the repeatability and validity of scientific data that is captured using sensors
onboard the AUV. A low-cost and effective way is by using stereo camera sensors to perform
visual odometry (VO). However, this is a difficult problem in underwater due to poor imaging
conditions and inconsistent motion caused by water flow. In this chapter, a robust and effec-
tive stereo underwater VO system is proposed to overcome aforementioned difficulties and
accurately localize the AUV. Experimental results demonstrate that the proposed pipeline out-
performs existing VO systems in underwater environments, as well as obtains a comparative
performance on the KITTI benchmark dataset Geiger et al. [2012].

4.1 Motivation

In recent years, the demand for exploration in underwater environments using autonomous
underwater vehicle is constantly increasing. Positioning sensors such as Doppler Velocity
Logs (DVL) or acoustic transponders like long baseline system (LBL) and ultra short baseline
system (USBL) are commonly used in localizing AUVs. Although these methods can provide
accurate pose estimation, they are very expensive and not easy to integrate or deploy in many
cases.

A cost effective alternative is to use visual sensors and perform visual odometry. This
technique is becoming very popular in computer vision and robotics Mur-Artal and Tardós
[2017]; Forster et al. [2014]; Engel et al. [2014], and provides a low-cost and effective solu-
tion to estimate the robot trajectory. Nevertheless, this becomes comparatively challenging in
underwater environments due to the following issues: a) As is demonstrated in Figure 4.1, the
imaging conditions in water are poor due to light attenuation, poor/artificial illumination, haze
and scattering. When the AUV operates in shallow water, scattering of the sun light is highly
problematic; b) Motion blur can also be present and is due to motion of the robot while the
camera shutter is open; c) The vehicle/camera’s motion is inconsistent with oscillation, espe-
cially in shallow underwater area, due to the water waves. All these problems greatly increases
the difficulty in estimating the robot location.

In this chapter, possible solutions of the mentioned problems are intensively tested and

31
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evaluated. A stereo underwater VO system is proposed, that is able to robustly and accurately
localize the AUV. The proposed system is built upon a popular visual-based localization system
in robotics called ORB-SLAM2 Mur-Artal and Tardós [2017]. Careful modifications are made
for this system to accommodate the above mentioned challenging conditions, and experimental
results demonstrate that the proposed pipeline outperforms existing VO systems in underwater
environments.

4.2 Datasets

Two underwater datasets will be tested and analysed in this chapter. One of them is called
Underwater Coral Dataset, which is a stereo video sequence dataset1 that is captured manually
over the undersea coral reef using a GoPro stereo rig. The video contains 2500 frames of
image size 1920× 1080. It starts at one marked place, and heads forward in the length of
approximately 60 meters to another marked spot, then turns back to its starting point. As is
shown in Figure 4.1 (a), this dataset is affected by certain level of hazing, and most of the
images are half invisible because of the camera viewing angle. The most challenging part of
this dataset is the inconsistent motion in most of the frames caused by the shallow water waves,
which not only results in motion blur that affects the feature extraction and matching, but also
makes any constant motion model assumption fail.

(a) (b)

Figure 4.1: Selected typical sample images. (a) The Underwater Coral Dataset and (b) The
Underwater Shipwreck Dataset.

The other dataset is the Underwater Shipwreck Dataset Li et al. [2016] that is also a stereo
dataset capturing around an underwater shipwreck by a GoPro stereo rig. This video (1800
frames in total and 1920×1080 in size) starts at the front of the shipwreck, and circles around
it for a lap. Although the camera motion in this dataset is relatively smoother comparing
to Underwater Coral Dataset, some parts of the image sequence are encountered with severe
shaking. The big obstacle in this dataset is the poor imaging condition that is caused by the
turbid water and light attenuation, leading to only a limited number of valid features being
detected and tracked in every frame. See Figure 4.1 (b).

1Collected by Dr. Feras Dayoub and Dr. Matthew Dunbabin from Queensland University of Technology.
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4.3 Pipeline

The state-of-the-art ORB-SLAM2 Mur-Artal and Tardós [2017] VO pipeline failed to work
with the tested underwater datasets due to the challenging problems discussed in Section 4.1,
see Figure 4.5 (b). Therefore, in this work, it is carefully evaluated and modified as follows.
Figure 4.2 shows the proposed visual odometry pipeline in comparison with the VO part of
ORB-SLAM2. In the feature extraction, three state-of-the-art feature techniques are experi-
mentally compared and analysed to find the optimal solution that is most robust against chal-
lenging image condition to conduct underwater visual odometry. Inconsistent motion is han-
dled by two techniques in feature association and motion estimation, respectively: a) Instead of
using constant motion model (in frame-to-frame tracking) to match features, an effective loop
search is performed between current left, right and previous left, right frames (quad matching)
to find the matchings. The proposed quad matching approach is simple, fast and not affected
by unpredictable motion. b) Rather than directly optimizing (motion-only bundle adjustment)
with motion model as initial value, a straightforward pose estimation from 2D to 3D corre-
spondences is conducted using P3P Kneip et al. [2013] with RANSAC to get an initial pose
for each new camera frame.

Figure 4.2: The visual odometry pipeline of ORB-SLAM2 (left) and the proposed (right).
Red rectangular boxes indicate the new added components.

Algorithm. 1 presents the pseudo code of the proposed VO pipeline. The algorithm inputs
the stereo images sequence I and outputs the camera poses X in the world coordinate system
(denoted with upper left index 0). For each incoming stereo frame {kIl , kIr}, where the lower
right indexs l and r stand for left and right images, feature extraction (denoted as Θ) is per-
formed with keypoints {kPl , kPr} and their descriptors {kDl , kDr} as outcome. They are then
used to perform stereo matching (Ψs) via Epipolar search, resulting in a set of 2D stereo cor-
respondences kCs. The first frame is initialized as the world coordinate frame and an initial
map M = kM is created with all the stereo correspondences via back-projection (π−1) using
intrinsic matrix K. The map M is maintained and updated in the proposed pipeline for the
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Algorithm 1 Proposed Visual Odometry Pipeline
Require: I = {1Il , 1Ir, ..., nIl , nIr}
Ensure: X = {0X1, ..., 0Xn}

1: for (k = 1; k ≤ n; k++) do
2: {kPl , kDl}←Θ(kIl), {kPr, kDr}←Θ(kIr) ;
3: kCs← Ψs(kPl , kDl , kPr, kDr) ;
4: if (k = 1) then
5: 0Xk = I4 ;
6: M = kM←Π−1(kCs,K, 0Xk) ;
7: continue ;
8: else
9: k−1Mtemp←Π−1(k−1S,dth,K, 0Ck−1) ;

10: kM← k−1M∪ k−1Mtemp ;
11: end if
12: k−1

kCq← Ψq(kM, k−1D, kD, k−1S, kS) ;
13: {0X̂k, kMinlier}← P3PRANSAC(k−1

kCq, kM) ;
14: 0X∗k ←Φ(k−1

kCq, kMinlier, 0X̂k) ;
15: M←M∪ kMinlier ;
16: end for
17: return X ;

purpose of performing local bundle adjustment (LBA). Furthermore, the LBA process is used
in outlier rejection process by removing the points with high re-projection error.
Except for the initialization, as shown in step 9 and 10, not all the stereo correspondences
(kCs) are used to to find the temporal correspondences k−1

kCq. Instead, only the union set of 1)
k−1M ∈M, the 3D points that can be found in frame Ii−1, and 2) a set of new back-projected
3D points Mtemp from Ii−1 that are obtained according to their depth values in increasing order
up to a pre-set depth threshold that is based on a coarse estimate of the scale of visibility in
underwater. In this way, only reliable 3D points are used and the motion estimation is more
robust and accurate.
Now, the 2D stereo features in k−1I are used to find their temporal correspondences in kI via
Quad matching (Ψq). Figure 4.3 and Algorithm 2 illustrates the details of quad matching,
which is the implementation of step 12 in Algorithm 1. For each frame step, stereo correspon-
dences are computed by Epipolar line search. Then each keypoint of stereo correspondence in
previous left and right frame performs a window search (W) in current left and right frame, to
get their optimal correspondences by comparing their descriptor distances (Ddist), respectively.
If their optimal correspondences happen to be the stereo correspondences in the current frame
(kci∗

s ∈ kCs), these four keypoints are accepted as a set of quad correspondences. The choice of
window size can not be too small to have insufficient correspondences, or too big to increase
the computational cost, as well as decrease the number of valid correspondences due to having
more false matches. As demonstrated in Figure 4.4, we empirically set it to 100x100 for all the
tested dataset in this chapter, which shows a reasonable balance between computational cost
and quantity of correspondences.
At the end of the loop (step 13 and 14 in Algorithm 1), a P3P estimation with RANSAC is
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Algorithm 2 Quad Matching
Require: :

1: k−1Cs=
{

k−1ci
s | k−1ci

s={k−1pi
l ,

k−1pi
r}
}

, stereo correspondence in k−1I;
2: kCs=

{
kci

s | kci
s={kpi

l ,
kpi

r}
}

, stereo correspondence in kI;
Ensure: k−1

kCq , temporal correspondences between k−1I and kI;
3: for (each k−1ci

s={k−1pi
l ,

k−1pi
r} ∈ k−1Cs) do

4: Sl ←W(kIl) , Sr←W(kIr);
5: kpi∗

l ={kpi
l ∈ Sl | Ddist(

kpi
l ,

k−1pi
l) is minimum};

6: kpi∗
r ={kpi

r ∈ Sr | Ddist(
kpi

r,
k−1pi

r) is minimum};
7: if (kci∗

s =(kpi∗
l , kpi∗

r ) ∈ kCs) then
8: k−1

kCq ← {k−1ci
s,

kci∗
s };

9: end if
10: end for
11: return k−1

kCq ;

performed to get an initial pose and inliers, and then a non-linear optimization (Φ) is applied
to refine the pose with all the inliers, which is based on Levenberg-Marquardt method imple-
mented in g2o Kümmerle et al. [2011].

In comparison, the VO pipeline in ORB-SLAM2 is demonstrated in Algorithm 3, where
the differences can be summarized as follows:

• During initialization, as no motion has been recovered yet, Bag-of-Words (BoW) match-
ing Gálvez-López and Tardos [2012] (Ψb) is utilized in the first two frame to accomplish
feature association in ORB-SLAM2 (Details of BoW construction are omitted for sim-
plification), see step 12 and 14 of Algorithm 3, whereas it is unnecessary in the proposed
pipeline.

• In the temporal matching step, a coarse current camera pose is calculated using constant
motion model T, then the temporal correspondences are found by projecting the selected
points kM into current frame kI and search locally (Ψp). Nevertheless, this becomes in-
valid in underwater environments because of the motion inconsistency caused by water
medium and the difficulty of AUV control in underwater. One possible solution would
be to integrate a constant acceleration model to predict a new motion model. However,
the matching step becomes complicated with additional parameters being introduced.
Instead, we propose a simple but effective Quad matching approach to find the corre-
spondences, which does not rely on motion model, hence being robust to unpredictable
motion.

• Only non-linear optimization is performed to recover the camera pose. In this case, the
result is easily affected by the initial value, i.e., coarse result computed from constant
motion model. If the motion model is not reliable, the optimization may not get the
optimal solution or even end up with failure. This has been observed from the experiment
that the system loses track easily only by non-linear optimization.
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Figure 4.3: Sketch map of the proposed quad matching method. Dashed square refers to
the search area, and S denotes the set of feature points found within the search area.

Figure 4.4: The performance of quad matching with regard to different window sizes.
The curves refer to number of quad correspondences, which corresponds to the left Y-axis.

The color bars refer to computational cost that is corresponding to the right Y-axis.

4.4 Experimental Results

In the following, qualitative evaluations of the proposed method on the two underwater datasets,
as well as quantitative results on KITTI dataset are demonstrated. Results of two state-of-the-
art methods are also shown for comparison.

4.4.1 Underwater Datasets

First, results of the proposed system performing visual odometry task on the Underwater Coral
Dataset is shown. As is illustrated in Figure 4.5 (a), the proposed method successfully re-
covers the whole camera trajectory, which is very close to the real trajectory, as well as the
3D structure. The proposed method is also compared with two state-of-the-art VO systems:
LIBVISO2 Geiger et al. [2011] and ORB-SLAM2 Mur-Artal and Tardós [2017]. For fair
comparison, the loop closure module (including global bundle adjustment) in ORB-SLAM2 is
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Algorithm 3 Visual Odometry pipeline in ORB-SLAM2
Require: I = {1Il , 1Ir, ..., nIl , nIr}
Ensure: X = {0X1, ..., 0Xn}

1: for (k = 1; k ≤ n; k++) do
2: {kPl , kDl}←Θ(kIl), {kPr, kDr}←Θ(kIr) ;
3: kCs← Ψs(kPl , kDl , kPr, kDr) ;
4: if (k = 1) then
5: 0Xk = I4 ;
6: M = kM←Π−1(kCs,K, 0Xk) ;
7: continue ;
8: else
9: k−1Mtemp←Π−1(k−1S,dth,K, 0Ck−1) ;

10: kM← k−1M∪ k−1Mtemp ;
11: end if
12: if (k = 2) then
13: k−1

kCq← Ψb(
kM, k−1D, kD, k−1S, kS) ;

14: {0Xk,T}←Φ(k−1
kCq, kM, 0X̂k) ;

15: else
16: 0X̂k = T 0Xk−1 ;
17: k−1

kCq← Ψp(kM, 0X̂k, k−1D, kD, k−1S, kS) ;
18: {0X∗k ,T}←Φ(k−1

kCq, kM, 0X̂k) ;
19: M←M∪ kM ;
20: end if
21: end for
22: return X ;

removed to make it a pure visual odometry system. Besides, all the shared parameters in the
proposed method and ORB-SLAM2 are set as the same, and the parameters in LIBVISO2 are
kept as the default setup. Figure 4.5 (b) shows that LIBVISO2 succeeds to run on the whole
dataset, but the trajectory (yellow colour) has drifted away from our trajectory, with the end
point being further away from the starting point. ORB-SLAM2 can only survive the first 60
frames (cyan colour), and even with reset, it loses track quickly.

Figure 4.6 (a) shows the whole trajectory and the 3D structure generated from the chal-
lenging Underwater Shipwreck Dataset using the proposed method. It can be seen that drift
accumulates all along the way, especially when the camera takes a turn and comes back from
the stern. Figure 4.6 (b) reveals the inlier distribution along the trajectory. This result intu-
itively shows the the drift correlates closely with the inlier number. As an example, at the end
of the turn (see the black bounding box), where the inlier numbers are lower, the drift of the
rotation becomes larger.

The tracking time on the two underwater datasets is around 2.8 seconds per frame when
run on an i7 quad-core 2.5Ghz laptop. This is mainly because of the high amount of feature
extraction and matching (see Section 4.5.1). This can be improved by employing a GPU-based
parallel implementation to achieve real-time performance.
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(a)

(b)

Figure 4.5: Qualitative results on Coral Dataset. (a) Camera trajectory (red) and the 3D
structure (green) produced by the proposed method. (b) Comparison of trajectories generated

by the proposed method (red), LIBVISO2 (yellow) and ORB-SLAM2 (cyan).

4.4.2 KITTI Dataset

In order to evaluate the proposed VO system, the three methods are also tested on the KITTI
benchmark dataset Geiger et al. [2012], which has ground truth trajectories. Table 4.1 demon-
strates the quantitative results of the three methods, where the Relative Pose Error Sturm et al.
[2012] of rotation (degree) and translation (meter) is computed, respectively. Overall, the pro-
posed method has comparable performance with original version of ORB-SLAM2, and better
performance than LIBVISO2. Figure 4.7 illustrates the absolute trajectories compared with
the ground truth trajectory. The results of the proposed method is quite close to ground truth
trajectory, while LIBVISO2 introduces larger drift to the estimates.

4.5 Discussions

Light is scattered by floating particles in the water, bringing turbidity effects on the captured
images, and it is also absorbed by the water itself, causing blur and loss of contrast. Addi-
tionally, the light attenuation generates perceived color distortions at different distances and
shorten the visual perception to limited distance, making the image less informative. To fur-
ther exploit valid underwater image information for the VO problem, two important modules
are analysed and discussed: feature extraction and image enhancement.
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(a) (b)

Figure 4.6: Qualitative results on Shipwreck Dataset. (a) Camera trajectory (red) and the
3D structure (green) for the shipwreck dataset, produced by the proposed method. (b) Color

bar showing the distribution of inlier number on the whole trajectory.

4.5.1 Feature Extraction

In underwater environments, feature should be carefully selected to be robust against poor
illumination, haze and scattering. SIFT Lowe [2004] feature is one of the highest quality
feature descriptors due to its strong invariance to scale, rotation, illumination change and noise.
However, it requires a large computational complexity which is a major drawback for real-
time applications such as visual odometry. SURF Bay et al. [2006] feature−an approximation
of SIFT−performs faster than SIFT without reducing much quality of the detected points.
Alternatively, ORB Rublee et al. [2011] is another efficient choice, which is a binary descriptor
requiring less complexity but is still highly distinctive.

Table 4.2: Comparison of average inlier number obtained by three feature techniques.

Feature Techniques SIFT SURF ORB Mean Value

Coral Dataset 128 111666999 134 144

Shipwreck Dataset 126 111222999 119 125

Time Cost (sec/frame) 2.98 2.53 000...444111 -

To analyse their performance on underwater images, the three feature techniques are tested
on the proposed visual odometry pipeline separately. More in details, FAST Rosten and Drum-
mond [2006] corners at 8 scale levels are detected uniformly distributed on the image. To en-
sure that enough features are obtained to track the camera, the number of detected features is
set to 6000 per image (in size 1920×1080) in both underwater datasets to increase possibility
of getting higher number of valid features against the bad imaging quality. Then SIFT, SURF
and ORB descriptors are extracted from these corners for comparison. during the matching
step, sub pixel correlation, orientation and scale consistency are also considered to remove
false correspondences.
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(a) KITTI-00 (b) KITTI-05

(c) KITTI-08 (d) KITTI-09

Figure 4.7: Trajectory results on part of the representative sequences of KITTI dataset.
Dashed line represents ground truth trajectory.

Their performance is evaluated by comparing the number of matched inliers, which are
obtained after the camera pose between subsequent frames is estimated using the correspon-
dences found by each type of descriptor. This is reasonable because, by getting more inliers,
the accuracy of pose estimation is higher. Table 4.2 presents the average inlier number acquired
by the tested feature technics on both underwater datasets, which intuitively show that SURF
techniques outperforms the other two, especially in the Underwater Coral Dataset. The mean
values between datasets shows the Coral Dataset obtains approximately 15% more inliers than
that of the Shipwreck Dataset. This accounts for the truth that the imaging condition in Ship-
wreck Dataset is poorer and less valid features can be used to track. In terms of computational
cost, however, the process of extracting SURF requires average 2.5 second per frame, which
is over 5 times more than ORB. This can be improved by applying GPU implementations for
acceleration.

A more detailed histogram distribution of the inlier number is demonstrated in Figure 4.8,
which reflects the characters of both datasets. Specifically, for instance, in (a) there are less
inliers at the beginning and towards the end, because the camera is heading forward and most
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of the scene during that time is half visible, while in the middle frames (1000-1500) the inliers
increase, as the camera is down-looking at the ground and taking a turn, so more features can
be detected and tracked. In (b), for another example, the frames between 600 and 1000 gets
lowest inliers among the whole sequence, when the camera is approaching the stern and turning
back. There is little structure in the scene to be tracked in this area. That is why the drift grows
quickly during that time, as shown in Figure 4.6 (b).

(a) (b)

Figure 4.8: Comparison of inliers number among the three feature techniques. (a) Un-
derwater Coral Dataset; (b) Underwater Shipwreck Dataset. The vertical axis refers to inlier

number, and the horizontal axis refers to frame index.

4.5.2 Image Enhancement

An extra experiment is conducted to compare different image enhancement algorithms that are
used to improve the turbid image quality before feature extraction, and see if more reliable
features can be extracted to estimate motion. Many image enhancement or dehazing meth-
ods have been proposed to tackle this problem in the literature. Here, three of the state of
the arts are selected to compare and evaluate how enhancing or dehazing techniques would
affect the visual odometry task. Concretely, contrast-limited adaptive histogram equalization
(CLAHE) Zuiderveld [1994] is a widely-used image contrast enhancement algorithm, which
divides the images into regions and performs local histogram equalization (HE) and reduces
noise by partially reducing the local HE. Underwater images and videos enhancement by fu-
sion (FUSION) Ancuti et al. [2012] is a fusion-based framework that blends different filters
to enhance underwater images. Dark channel prior dehazing (DCPD) He et al. [2011] method
is based on a kind of statistics of the haze-free outdoor images called dark channel prior. To-
gether with haze imaging model, the thickness of the haze can be directly calculated and finally
a high quality haze-free image can be recovered. For parameter setup, we set the clipping term
in CLAHE to 4.2, which shows reasonably good performance. The parameters in FUSION
and DCPD are kept the same as default.

Figure 4.10 shows a comparison of enhancement results on both underwater datasets. Qual-
itatively, all the tested algorithms have improved the visibility at different levels, compared
with the original image. More precisely, results of CLAHE and FUSION are brighter and have
larger visible regions, i.e., far away unclear structure becomes more clear. On the contrary,
the luminance becomes lower when applying DCPD, and not much visibility improvement is
obtained, but the structure details become finer.
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(a) (b)

Figure 4.9: Comparison of inliers number among the enhancement methods. (a) Underwa-
ter Coral Dataset; (b) Underwater Shipwreck Dataset. The vertical axis refers to inlier number,

and the horizontal axis refers to frame index.

To evaluate their performance on visual odometry, they are all applied to test the proposed
VO pipeline on both underwater datasets, separately. Note that many images of Underwater
Shipwreck Dataset become even worse after applying FUSION and DCPD methods, which
makes the system unable to extract sufficient features to track and fail in most cases. Therefore,
only the CLAHE is compared with the default in this dataset. Similar to feature techniques
comparison, the inlier number obtained in each frame are used as a comparative index. The
comparison of inlier number distribution is illustrated in Figure 4.9. It can be observed from
(a) that, in some parts of the dataset (for instance, 1-250, 251-500, etc.), CLHAE and FUSION
have increased the average inlier number, but in some other parts, they got even much less
inliers than the original (501-750, etc.). Similar trend can be observed in (b), as well. This
suggests that certain level of noise has been introduced when the image is enhanced using the
surveyed methods.

Table 4.3: Comparsion of qualtity results towards different enhancement methods.

Underwater Coral Dataset

Enhancement Techniques Oiginal CLAHE FUSION DCPD

Average Match Number 222444222 237 224 219

Average Inlier Number 111333555 134 129 123

Average Inlier Rate 0.5425 0.5538 000...555666111333 0.5429

Underwater Shipwreck Dataset

Enhancement Techniques Original CLAHE

Average Match Number 222555777 237

Average Inlier Number 111333555 131

Average Inlier Rate 0.5253 000...555555222777

Table 4.3 demonstrates the average values of the whole sequence. In particular, the average
matching number drops slightly after enhancement. This means that less extracted features
are qualified to be chosen in the proposed matching procedure despite the fact that the scene
visibility has been improved by enhancement. Therefore, I believe that enhancement measure



44 Robust Visual Odometry in Underwater Environments

should have introduced certain level of noise to the image and brought negative effect on the
completeness and uniqueness in feature descriptor. Overall, the results reveal the fact that
none of the approaches has significant contribution to the visual odometry task, though they do
increase the image visibility in accordance with the human’s observing experience.

Figure 4.10: Comparison of different image enhancement algorithms on the Coral (left)
and Shipwreck (right) datasets. (a) Original image. (b) Enhanced by CLAHE. (c) Enhanced

by FUSION. (d) Enhanced by DCPD.
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4.6 Conclusion

In this chapter, a robust and effective stereo underwater VO system is introduced to robustly
and accurately recover the camera motion. Careful analysis for each part of the proposed visual
odometry system is conducted, including image restoration, feature extraction and matching,
motion estimation, to explore possibility of improvement on the system in underwater environ-
ments. Experimental results indicate that the proposed system helps to achieve excellent per-
formance in localizing the camera in underwater and obtains satisfactory results in the KITTI
benchmark dataset by comparing to the state of the arts and the ground truth.

Nevertheless, there are problems that remain to be solved. One of them is how to improve
the underwater image quality for underwater visual odometry. The goal should be to increase
the number of valid corners to be detected, simultaneously preserve the completeness of their
features and avoid the increase of noise. Many image enhancement or dehazing methods has
been proposed and some are special designed for underwater environment. However, experi-
mental results has shown that most of them are not able to help effectively improving the task
of underwater localization. I believe it is worth to look into this specific problem and explore
for an effective solution.
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Chapter 5

Robust Ego and Object 6-DoF Motion
Estimation and Tracking

The problem of tracking self-motion as well as motion of objects in the scene using information
from a camera is known as multi-body visual odometry and is a challenging task. In this
chapter, a robust solution is proposed to achieve accurate estimation and consistent track-ability
for dynamic multi-body visual odometry. Specifically, a compact and effective framework
is constructed, which leverages recent advances in semantic instance-level segmentation and
accurate optical flow estimation. A novel formulation, jointly estimating SE(3) motion and
optic-flow is introduced to improve the quality of the tracked points and the motion estimation
accuracy. The proposed approach is evaluated on the virtual KITTI Dataset Gaidon et al. [2016]
and tested on the real KITTI Dataset Geiger et al. [2012], demonstrating its applicability to
autonomous driving applications.

5.1 Motivation

Visual odometry (VO) has been a popular solution for robot navigation in the past decade due
to its low-cost and widely applicable properties. Studies in the literature have illustrated that
VO can provide accurate estimation of a camera trajectory in largely static environment, with
relative position error ranging from 0.1% to 2% Scaramuzza and Fraundorfer [2011]. However,
the deployment of robotic systems in our daily lives requires systems to work in significantly
more complex, dynamic environments. Visual navigation in non-static environments becomes
challenging because the dynamic parts in the scene violate the motion model of camera. If
moving parts of a scene dominate, off-the-shelf visual odometry systems either fail completely
or return poor quality trajectory estimation. Earlier solutions proposed to directly remove the
dynamic information via robust estimation Tan et al. [2013]; Alcantarilla et al. [2012], however,
this information is valuable if it is properly used. In most scenarios, the dynamics corresponds
to a finite number of individual objects that are rigid or piecewise rigid, and their motions can
be tracked and estimated in the same way as the ego-motion. Accurate object motion estima-
tion and tracking becomes highly relevant in many applications, such as collision avoidance in
autonomous driving and robotic systems, visual surveillance and augmented reality.

In this chapter, a novel multi-body visual odometry pipeline is presented to address the
problem of tracking of both ego and object motion in dynamic outdoor scenes, assuming the

47
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Figure 5.1: Results of the proposed system on KITTI sequence 03. Camera and object
trajectory (left). Detected points on background and object body (top-right). Estimated object

speed (bottom-right).

targeted objects to be rigid or near rigid. The proposed pipeline leverages instance-level object
segmentation algorithms He et al. [2017] to robustly separate the scene into static background
and multiple dynamic objects. Recent advances in optic-flow estimation Ilg et al. [2017]; Sun
et al. [2018] provide good initial optical flow that can be used to maintain enough tracking
points on each object to accurately estimate motion. With this data, a new technique is pro-
posed to jointly refines the initial optical flow and estimate full 6-DoF motion of both the
camera and objects in the scene. A fully-integrated system is constructed, which is able to
robustly estimate and track self and object motions utilizing only visual sensors (stereo/RGB-
D). Arguably, the proposed work is the first to conduct an extensive evaluation of accuracy
and robustness of ego and object 6-DoF motion estimation and tracking, and demonstrates the
feasibility on real-world outdoor datasets. Note that, as the distance from camera increases,
the presence of an object in the scene becomes smaller when observed on image. Therefore,
the proposed method only processes objects up to a limited distance. Details can be found in
the experiment section.

5.2 Methodology

The setup of this work comprises a depth camera (stereo or RGB-D) moving in a dynamic
environment. Let kP = {kpi ∈R3} be a set of projected points into the image frame k, where
kpi = [ui, vi ,1]> represents the point location in homogeneous coordinates. The points are
either part of the static background kPs ⊆ kP or moving object kPo ⊂ kP.

Assuming that a depth map kD = {kdi ∈R} of frame k is provided, where kdi is the cor-
responding depth for each point kpi ∈ kP, the 3D point kmi ∈ R4 of kpi can be obtained via
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back-projection:

kmi =



mi
x

mi
y

mi
z

1


= π

−1(kpi) =



(ui− cu) · kdi/ fu

(vi− cv) · kdi/ fv

kdi

1


(5.1)

where π−1(·) is the inverse of projection function, ( fu, fv) the focal length and (cu,cv) the
principal point of the cameras.

The motion of the camera between frames k−1 and k and/or the motion of objects in the
scene produce an optical flow kΦ = {kφφφ

i ∈R2}, where kφφφ
i is the corresponding optical flow

for each point kpi and its correspondence k−1pi in frame k− 1, as demonstrated in Figure 5.2
(left) on image plane, and is given by:

kpi = k−1pi + k
φφφ

i (5.2)

Here the notation k−1pi and kpi are overloaded and also used to represent the 2D pixel coor-
dinates (IR2). kΦ can be obtained using off-the-shelf classic or learning-based methods. The
motions of the camera and objects in the scene are represented by pose change transformations
between two temporal states. The following subsections will describe the new approach to
estimate those.

Figure 5.2: Sketch maps of ego-motion obtained from static points (left), scene flow of
points on moving objects (center) and rigid motion of points on moving object (right).

Here blue dots represent static points, and red dots dynamic points.

5.2.1 Camera Motion Estimation

The camera motion between frame k−1 (lower left index) and k (lower right index) represented
in body-fixed frame k− 1 (upper left index) is denoted as k−1

k−1Tk ∈ SE(3). The image plane
points, associated with static 3D points k−1mi

k−1, observed at time k−1, by the projection onto
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the k image plane can now be computed by

kp̂i := π(kmi
k−1) = π(k−1

k−1T−1
k

k−1mi
k−1). (5.3)

Parameterize the SE(3) camera motion by elements ξξξ
∧
k ∈ se(3) the Lie-algebra of SE(3). That

is

k−1
k−1Tk = exp(k−1

k−1ξξξ
∧
k ) (5.4)

where k−1
k−1ξξξ k ∈R6 and the wedge operator is the standard lift into se(3). Combining (5.2) and

(5.3), and using the Lie-algebra parameterization of SE(3) the minimizing solution of the least
squares cost criteria is given by

k−1
k−1ξξξ

∗
k = argmin

k−1
k−1ξξξ k

ns

∑
i=1

ρh(||k−1pi + k
φφφ

i− kp̂i||2Σ1
) (5.5)

for all the visible 3D-2D static point correspondences (i = 1, ...,ns). Here ρh is the Huber
robust cost function, and Σ1 is covariance matrix associated to the re-projection threshold used
in initialization. The estimated camera motion is given by k−1

k−1T∗k = exp(k−1
k−1ξξξ

∗
k) and is found

using the Levenberg-Marquardt algorithm to solve for (5.5).

5.2.2 Moving Points Motion Estimation

This section aims to derive the motion model of 3D points on a rigid body in motion, explain
how this motion model is estimated.
The motion of the rigid body in body-fixed frame is given by Lk−1

k−1 Hk ∈ SE(3) as:

Lk−1
k−1Hk =

0 L−1
k−1

0Lk . (5.6)

where 0Lk−1, 0Lk ∈ SE(3) are the poses of the object in inertial frame at time k− 1 and k,
respectively. A point in its corresponding object frame is written as:

Lk mi
k =

0L−1
k

0mi
k . (5.7)

Substituting the object pose at time k from (5.6), this becomes:

0mi
k =

0Lk
Lk mi

k =
0Lk−1

Lk−1
k−1Hk

Lk mi
k . (5.8)

Note that for rigid body objects, Lk mi
k stays constant at Lmi, and Lmi = 0L−1

k
0mi

k =
0L−1

k+n
0mi

k+n
for any integer n ∈Z. Then, for rigid objects with n = −1, (5.8) becomes:

0mi
k =

0Lk−1
Lk−1
k−1Hk

0L−1
k−1

0mi
k−1 . (5.9)

Equation (5.9) is crucially important as it relates the same 3D point on a rigid object in motion
at consecutive time steps by a homogeneous transformation

0
k−1Hk := 0Lk−1

Lk−1
k−1Hk

0L−1
k−1 . (5.10)
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This equation represents a frame change of a pose transformation (Chirikjian et al. [2017]),
and shows how the body-fixed frame pose change Lk−1

k−1Hk relates to the global reference frame
pose change 0

k−1Hk ∈ SE(3). The point motion in global reference frame is then expressed as:

0mi
k =

0
k−1Hk

0mi
k−1 . (5.11)

Equation (5.11) is at the core of the proposed motion estimation approach, as it expresses
the rigid object pose change in terms of the points that reside on the object in a model-free
manner without the need to include the object 3D pose as a random variable in the estimation.
Note that, when formulating the motion estimation problem considering only two consecutive
frames, the motion in the inertial frame in (5.10) would be expressed in the image frame k−1,
and is denoted k−1

k−1Hk.
As shown in Figure 5.2 (right), a 3D point k−1mi

k−1 observed on a moving object at time
k−1, moves according to (5.11) to k−1m̂i

k =
k−1
k−1Hk

k−1mi
k−1. The projection of the estimated

3D point onto the image frame at time k is given by

kp̂i := π
(k−1

k−1T−1
k

k−1
k−1Hk

k−1mi
k−1

)
= π

(k−1
k−1Gk

k−1mi
k−1

)
(5.12)

where k−1
k−1Gk ∈ SE(3). Similar to the camera motion estimation, parameterise k−1

k−1Gk = exp
(k−1

k−1ζζζ
∧
k
)
,

with k−1
k−1ζζζ

∧
k the se(3) representation of k−1

k−1ζζζ k ∈R6, and find the optimal solution via minimiz-
ing

k−1
k−1ζζζ

∗
k = argmin

k−1
k−1ζζζ k

no

∑
i=1

ρh(||k−1pi + k
φφφ

i− kp̂i||2Σ1
) (5.13)

given all the 3D-2D point correspondences on an object (i = 1, ...,no). The motion of the object
points, k−1

k−1Hk =
k−1
k−1Tk

k−1
k−1Gk can be recovered afterwards.

5.2.3 Refining the estimation of the optical flow

Both, camera motion and object motion estimations rely on good image correspondences.
Tracking of points on moving objects can be very challenging due to occlusions, large rela-
tive motions and large camera-object distances. In order to ensure a robust tracking of points,
the technique proposed in this chapter aims at refining the estimation of the optical flow jointly
with the motion estimation:

{θθθ ∗, kΦ∗}=argmin
{θθθ ,kΦ}

n

∑
i=1

ρh(||k−1pi + k
φφφ

i− kp̂i||2Σ1
)

+ρh(||kφφφ
i− k

φ̂φφ
i||2Σ2

)

(5.14)

where {θθθ , kΦ} can be either {k−1
k−1ξξξ k, kΦs} for camera motion estimation, or {k−1

k−1ζζζ k, kΦo} for
the object motion estimation, with kΦs ⊆ kΦ and kΦo ⊂ kΦ. Here Σ2 is the covariance matrix
associated to initial optic-flow obtained using classic or learning-based methods.
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5.3 Implementation

In this section, a novel multi-motion visual odometry system is presented to robustly estimates
both camera and object motions. The proposed system takes stereo or RGB-D images as input.
If the input data is stereo images, the method in Yamaguchi et al. [2014] is applied to generate
the depth map D. The proposed pipeline is summarised in Figure 5.3 and contains three main
parts: image preprocessing, ego-motion estimation and object motion tracking.

Figure 5.3: Overview of the proposed multi-motion visual odometry system. Letters in red
colour refer to output for each blocks. {·} denotes multiple objects.

5.3.1 Image Preprocessing

There are two challenging aspects that this pipeline needs to fulfil. One is to separate static
background and objects, and the other is to ensure long-term tracking of dynamic objects. For
that, recent advances in computer vision technics for instance level semantic segmentation and
dense optical flow calculation is utilized in order to ensure efficient object motion segmentation
and good object tracking.

Instance-level semantic segmentation is used to segment and identify potentially movable
objects in the scene. Semantic information constitutes an important prior in the process of
separating static and moving object points, e.g., buildings and roads are always static, but cars
can be static or dynamic. Instance segmentation helps to further divide semantic foreground
into different instance masks, which makes it easier to track each individual object. Moreover,
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segmentation mask provides precise boundary of the object body that ensures robust tracking
of points on objects. In this chapter, we apply the open-source method Mask R-CNN He et al.
[2017] to obtain the instance segments of images. This method extends Faster R-CNN Ren
et al. [2016] by adding a Region of Interest alignment (RoIAlign) layer to predict object mask
together with existing framework for bounding box recognition. The high quality segmentation
of objects in general outdoor scenes, such as humans and vehicles, makes it a perfect pre-
processing tool for our task. For further details on the applied method, we refer the reader
to He et al. [2017].

The dense optical flow is used to maximize the number of track points on moving objects.
Most of the moving objects, they only occupy a small portion of the image. Therefore, using
sparse feature matching does not guarantee a robust feature tracking. The proposed approach
makes use of dense optical flow to considerably increase the number of object points. At the
same time, the proposed method enhances the matching performance by refining optical flow
jointly within the motion estimation process as presented in Section 5.2.3. In this chapter, a
recent off-the-shelf method, PWC-Net Sun et al. [2018], is used to generate initial optic-flow
map. The method learns a compact but effect CNN model by tightly integrating the principles
of pyramidal processing, warping and cost volume, to achieve high performance. We refer
readers to Sun et al. [2018] for more details.

The image preprocessing part of the pipeline generates the image mask Is, the depth Ds

and the dense flow Φs for the static background, and {Io,Do,Φo} for dynamic objects in the
scene, where {·} indicates multiple items.

5.3.2 Ego-motion Estimation

To achieve fast ego-motion estimation, a sparse feature set Ps is constructed in each frame.
Since dense optical flow is available, it is used to match the sparse features across frames. Note
that, those sparse features are only detected and matched on regions of the image other than
labelled objects. To ensure robust estimation, a motion model generation method is applied
for initialisation. Specifically, the method generates two motion models and compares their
inlier numbers based on re-projection error. One model is generated by propagating the previ-
ous camera motion, while the other by computing a new motion transform using P3P Ke and
Roumeliotis [2017] algorithm with RANSAC. The motion model that produces most inliers
is then selected for initialisation. As propagating motion is not available during initialization,
the model generated by P3P is used. Details of the motion model generator is demonstrated in
Algorithm 4.

5.3.3 Object Motion Tracking

The process of object motion tracking consists of three steps. The first step is to classify all
the objects into dynamic and static objects. Then, the dynamic objects across the two frames
is associated. Finally, individual object motion is estimated.
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Algorithm 4 Motion Model Generator
Require:

1: k−1M = {k−1mi
k−1 | i = 1, ...,N}: 3D points in frame k−1;

2: kP = {kpi | i = 1, ...,N}: corresponding 2D points in frame k;
3: Xa ∈ SE(3): prior motion model from frame k−1;
4: eth: a threshold of re-projection error;

Ensure:
5: k−1M∗ = {k−1m j

k−1 | j = 1, ...,n}: a subset of points in k−1;
6: kP∗ = {kp j | j = 1, ...,n}: its corresponding 2D subset in k;
7: X∗ ∈ SE(3): best motion model;

8: for (each k−1mi
k−1 ∈ k−1M and kpi ∈ kP) do

9: er← ComputeReprojectionError(k−1mi
k−1, kpi,Xa);

10: if (er < eth) then
11: k−1Ma ← k−1mi

k−1, kPa ← kpi;
12: end if
13: end for
14: na = |k−1Ma|: inlier number that fits Xa;
15: {k−1Mb, kPb,Xb}←SolveP3PRANSAC(k−1M, kP);
16: nb = |k−1Mb|: inlier number that fits Xb;
17: if (na > nb) then
18: {k−1M∗, kP∗,X∗}← {k−1Ma, kPa,Xa};
19: else
20: {k−1M∗, kP∗,X∗}← {k−1Mb, kPb,Xb};
21: end if
22: return {k−1M∗, kP∗,X∗} ;

5.3.3.1 Classifying Dynamic Object

Instance level object segmentation allows us to separate objects from background. Despite the
fact that the proposed algorithm is able to estimate the motions of all the segmented objects,
dynamic object classification helps reduce computational cost of the proposed system. This
is achieved using scene flow estimation as shown in Figure 5.2 (centre). More in detail, after
obtaining camera motion k−1

k−1Tk, the scene flow vector k−1fi describing the motion of a 3D point
k−1mi

k−1 between frame k−1 and k, can be calculated as Lv et al. [2018]:

k−1fi = k−1mi
k−1− (k−1

k−1Tk
kmi

k) . (5.15)

Unlike optical flow, the scene flow can directly decide whether the scene structure is moving
or not. Ideally, the magnitude of the scene flow vector should be zero for static 3D point. How-
ever, noise or error in depth and feature association complicates the situation in real scenarios.

To robustly tackle this, the scene flow magnitude of all the sampled points on each object is
computed, and separated into two sets (static and dynamic) via threshold. An object is recog-
nised dynamic if the proportion of ‘dynamic’ points is above a certain level, otherwise static.
Table 5.1 demonstrates the performance of classifying dynamic and static objects using this
strategy. Overall, the proposed approach achieves good accuracy among the tested sequences.
Notice that, in sequence 20, there are relatively high false negative cases. That is because most
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cars throughout the sequence, move slowly (nearly static) due to traffic jams.

Table 5.1: Performance of dynamic/static object classification over virtual KITTI dataset.

Sequence 01 02 06 18 20

Total Detection 1383 150 266 970 2091

Dynamic/Static 117/1266 73/77 257/9 970/0 1494/597

False Positive 3 0 9 0 3

False Negative 6 0 0 57 292

5.3.3.2 Dynamic Object Tracking

Instance-level object segmentation only provides labels frame by frame, therefore objects need
to be tracked between frames and their motion models propagated over time. To manage this,
optical flow is leveraged to associate point labels in across frames. For that, a finite tracking
label set L ⊂N is introduced and maintained, where l ∈L starts from l = 1, when the first
moving object appears in the scene. The number of elements in L increases as more objects
are being detected. Static objects and background are labelled with l = 0.

Ideally, for each detected object in frame k, the labels of all its points should be uniquely
aligned with the labels of their correspondences in previous frame k−1. However, in practice
this is affected by the noise, image boundary and occlusions. To overcome this, all the points
are assigned with the label that appears most in their correspondences from the last frame. For
a dynamic object, if the most frequent label in the previous frame is 0, it means that the object
starts to move, appears in the scene at the boundary, or reappears from occlusion. In this case,
the object is assigned with a new tracking label.

5.3.3.3 Object Motion Estimation

As mentioned before, objects normally appear in small sizes in the scene, which makes it dif-
ficult to get sufficient sparse features to track and estimate their motions robustly. Therefore,
the object point set Po is densified via sampling every 3rd pixel within object mask in practice.
Similar to the ego-motion estimation, an initial object motion model is generated for initiali-
sation using Algorithm 4. The model with most inliers is refined using (5.14) to get the final
object motion and the best point matchings.

5.4 Experiments

In this section, experimental results on two public datasets are demonstrated. Virtual KITTI
dataset Gaidon et al. [2016] is used for detailed analysis, which provides ground truth of
ego/object poses, depth, optical flow and instance level object segmentation. KITTI tracking
dataset Geiger et al. [2012] is used to demonstrate the applicability of the proposed algorithm
in real life scenarios. A learning-based method, Mask R-CNN He et al. [2017], is adopted to
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generate object segmentation in both datasets. The model of this method is trained on COCO
dataset Lin et al. [2014], and it is directly used without fine-tuning. A state-of-the-art method,
PWC-Net Sun et al. [2018], is used to obtain dense optical flow. The model is trained on Fly-
ingChairs dataset Mayer et al. [2016], and then fine-tuned on Sintel Butler et al. [2012] and
KITTI training datasets Geiger et al. [2012]. Feature detection is done using FAST Rosten and
Drummond [2006].

Pose change error is used to evaluate the estimated SE(3) motion, i.e., given ground truth
motion X and estimated X̂, where X ∈ SE(3) can be either camera or object motion. The
pose change error is obtained as: E = X̂−1 X. Translation error Et is computed as the L2

norm of translational component in E. Rotation error ER is measured as the angle in axis-
angle representation of rotation part of E. Object velocity error is also evaluated in this work.
According to Chirikjian et al. [2017], given an object motion H, the object velocity v can be
calculated as:

v = ||t− (I3−R) c|| , (5.16)

where R and t are the rotation and translation part of the motion of points in inertial frame. I3

is identity matrix and c is centroid of object. Then error of velocity Ev between estimated v̂
and ground truth v can be represented as: Ev = |v̂− v|. The optical flow is evaluated using end-
point error (EPE) Sun et al. [2014], that is defined as the Euclidean distance between estimated
and ground truth optical flow vectors,

Eep = ||φφφ est −φφφ gt || . (5.17)

Table 5.2: Average optical flow end-point error (EPE) of static background and objects in
S18-F124-134.

Static Obj1 Obj2 Obj3

Object Distance (m) − 7.52 16.52 24.67

Object Area (%) − 6.29 0.73 0.29

EPE X-axis (pix) 1.34 0.35 0.34 0.15

EPE Y-axis (pix) 0.27 0.24 0.22 0.18

5.4.1 Virtual KITTI Dataset

This dataset is used to analyse the influence of the optical flow and depth accuracy on the es-
timation of the ego and object motion. Moving objects appears scatteredly within a sequence,
which makes it hard to perform in-depth tests using the whole sequence. Therefore, a rep-
resentative set that contains multiple moving objects is selected for analysis. The set is part
of the Sequence 18 and the frame IDs are between 124 and 134 (denoted as S18-F124-134,
with ‘Sxx’ for sequence index and ‘Fxxx-xxx’ for frame indices). It contains 10 frames of the
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agent car with camera moving forward, and three observed vehicles. Two of them are moving
alongside in the left lane, with one closer to the camera and the other farther. The third car is
moving upfront and it is furthest from the camera.

Figure 5.4: Average error of rigid motion with regard to noise level of depth (top), and
to End-point Error of optical flow (bottom). Curves represent translation error that are
corresponding to left-Y axis, and bars represent rotation error that are corresponding to right-

Y axis.

Depth: Ground truth depth is corrupted with zero mean Gaussian noise, with σ following
standard depth accuracy of a stereo camera system expressed as Chang and Chatterjee [1992]:

σ =
z2

f ·b
·4d , (5.18)

where z is depth, f focal length, b baseline and ∆d the disparity accuracy. The baseline is
set to b = 0.5 m and control ∆d to get the noise level of depth. Normally, ∆d varies from
0.1 to 0.2 for a standard industrial stereo camera. Figure 5.4 (top) demonstrates the average
error of rigid motion over all selected frames. The results indicate that the proposed algorithm
is robust to depth noise within reasonable range. The translation error grows gradually with
the depth error for both camera and objects, but stays in low range (Et < 0.02m). Rotation
error fluctuates slightly but still in low range (ER < 0.04deg). Note that, the camera errors are
slightly worse than the object errors for most depth noise levels. As the motions of camera
are mainly in translation, we believe this is due to most static points of the background are
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distributed more distantly from the camera than the observed objects, and hence higher depth
noise is introduced to the static points according to (5.18).

Optical Flow: The ground truth optical flow is corrupted with zero mean Gaussian noise with
σ decided by the end-point error (EPE). Table 5.2 demonstrates the average EPE of PWC-
Net results for the static and object points among this sequence. Since the errors among
static background and objects are different, five intervals are set in increasing order and these
average errors are used as the middle value. As an example, for static points, σy is set to
[0.09 0.18 0.27 0.36 0.45].

As illustrated in Figure 5.4 (bottom) and Table 5.2, the camera and object 1 motion errors
are relatively low and stable for different EPEs. However, the motion errors of object 2 and 3
increase reaching nearly 0.09 meter in translation and 0.2 degree in rotation and this is mainly
because they are far away from the camera and occupy quite small area of the image (< 1%).
Consequently, the object motion estimation is sensitive to optical flow error if the objects are
not well distributed in the scene. To avoid unreliable estimation, the proposed system addresses
only objects within 25m, and 0.5% image presence.

S01-F225-235 (ego)

S01-F410-418 (obj)

S18-F124-134 (ego)

S18-F124-134 (obj1)

S18-F124-134 (obj2)

Avg End-point Error (pix)

0 0.07 0.14 0.21 0.28

Initial Optimized

Figure 5.5: Average end-point error between initial and optimized optical flow, among
different tested sets.

Overall Results: Now overall results without ground truth are shown. Because vKITTI does
not provide stereo images, generating depth map from stereo is not available. Instead, the
ground truth depth map is used with noise added using (5.18) and ∆d = 0.2.

As the objects in S18-F124-134 are mainly translating, two more sets with obvious rotation
is introduced. One of them (S01-F225-235) contains the agent car (camera) turning left into
the main street. The other (S01-F410-418) contains static camera observing one car turning
left at the crossroads. To prove the effectiveness of jointly optimising motion and optical flow,
two methods are set and compared: a baseline method that only optimises for motion (Motion
Only) using (5.5) for camera or (5.13) for object, and the improved method that optimises for
both motion and optical flow with prior constraint (Joint) using (5.14).

As demonstrated in Table 5.3, optimising for the optical flow jointly with the SE(3) mo-
tions improve the results, with approximately 300% for the camera motion, and 10-20% on
object motion. Moreover, the corresponding optical flow error after joint optimisation is also
reduced, see Figure 5.5.
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Table 5.3: Average error of object motions of different sets.

Motion only Joint

Et (m) ER (deg) Et (m) ER (deg)

S01-F225-235 Ego 0.0117 0.0354 000...000000444333 000...000333111000

S01-F410-418 Obj 0.0647 0.2811 000...000444777000 000...222222888666

S18-F124-134

Ego 0.0367 0.1012 000...000000555222 000...000333111555

Obj1 0.0169 0.1016 000...000111333222 000...000888000444

Obj2 0.1121 0.2720 000...111000000888 000...111999000777

5.4.2 Real KITTI Dataset

In KITTI tracking dataset, there are 21 sequences with ground truth camera and object poses.
For camera motion, the ego-motion error is calculated over all the sequences (12 in total) except
the ones that the camera is not moving at all. The results of a state-of-the-art method ORB-
SLAM2 Mur-Artal and Tardós [2017] is also generated for comparison. Figure 5.6 illustrates

Table 5.4: Average ego-motion error over 12 tested sequences.

PROPOSED ORB-SLAM2

Et (m) 000...000666444222 0.0730

ER (deg) 000...000555777333 0.0622

the camera trajectory results on four representative sequences. Compared with ORB-SLAM2,
the proposed method is able to produce smooth trajectories that are more consistent with the
ground truth, given the fact that the proposed method conducts only frame-by-frame tracking,
while ORB-SLAM2 integrates more complex modules, such as local map tracking and local
bundle adjustment. In particular, the result of Seq. 20 in Figure 5.6 (right) shows that ORB-
SLAM2 obtains bad estimates in first half of the sequence, mainly because this part contains
dynamic scenes of traffic on the highway. Nevertheless, the proposed algorithm is robust
against this case. Table 5.4 shows average motion error over all the 12 tested sequences. The
results prove the improved performance over ORB-SLAM2.

For object motion, the results of object velocity error among 9 sequences containing con-
siderable number of moving objects is demonstrated, since vehicle velocity is important in-
formation for autonomous and safety driving applications. As demonstrated in Table 5.5, the
number of tracks refers to how many frames those objects are being tracked. This indicates
the proposed pipeline is able to simultaneously and robustly track multiple moving objects for
long distances. The average velocity error Ev is computed over all the tracks among one or all
objects (see the second row in Table 5.5). Overall, the proposed method gets around 2-5km/h
error, which is considerably accurate for the velocity ranging from 11-55km/h.
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Figure 5.6: Top view of camera trajectories of four tested KITTI sequences, compared to
ORB-SLAM2 and ground truth.

Figure 5.7 demonstrates qualitative results of four of the KITTI sequences. The results
indicate that the proposed system is able to output the camera poses and dynamic tracks of
every detected moving object in the scene. Specifically, results of sequence 00 and 03 on the
left and the top right, both show the camera tracking two objects for long distance, which
corresponds to the results in Table 5.5. In sequence 04 (bottom), it shows the agent car turning
right, with the camera observing multiple cars upfront and on the other side of the street. A
similar case can be observed in the results of sequence 06 (bottom right).

The computational cost of the proposed algorithm is around 6fps when run on an i7 2.6Ghz
laptop. The main cost lies in denser points tracking on multiple objects. This can be improved
by employing parallel implementation to achieve real-time performance.

5.5 Conclusion

In this chapter, a novel framework to simultaneously track camera and multiple object motions
is presented. The proposed framework detects moving objects via combining instance-level
object segmentation and scene flow, and tracks them over frames using optical flow. The SE(3)
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Figure 5.7: Qualitative results of camera and objects trajectories of four tested KITTI
sequences. Red square refers to camera and colour dots refer to objects.

motions of the objects, as well as the camera are optimised jointly with the optical flow in a
unified formulation. The proposed approach is carefully evaluated on virtual KITTI dataset,
and demonstrate its effectiveness. Furthermore, extensive testing is performed on the real
KITTI dataset. The results show that the proposed method is able to obtain robust and accurate
camera trajectories in dynamic scene, and track the velocity of objects with high accuracy.
Further work will integrate the proposed motion estimation within a SLAM framework.

The proposed method, however, is limited by relying on learning-based techniques to rec-
ognize and segment potential moving objects, which can only handle pre-trained object cat-
egories. This can be a problem when objects are out of the object categories in training set
or the conditions are too far from the training setup. As the proportion of the non-segmented
moving objects increases, the possibility of system’s failure to track camera becomes higher.
A possible solution is to integrate IMU for robust camera pose recovery, which would be an
interesting direction for future work.



Chapter 6

VDO-SLAM: A Visual Dynamic
Object-aware SLAM System

Combining Simultaneous Localisation and Mapping (SLAM) estimation and dynamic scene
modelling can highly benefit robot autonomy in dynamic environments. Robot path planning
and obstacle avoidance tasks rely on accurate estimations of the motion of dynamic objects in
the scene.

This chapter presents VDO-SLAM, a visual object-aware dynamic SLAM system that ex-
ploits semantic information to enable motion estimation of rigid objects in the scene without
any prior knowledge of the objects shape or motion models. The proposed system is developed
based on the multi-body visual odometry introduced in Chapter 5 as an extension, aiming to
integrate dynamic and static structures in the environment into a unified estimation framework
and ensure more accurate robot pose and spatio-temporal map estimation. A simple but effec-
tive way to extract velocity estimates from object pose change of moving objects in the scene is
also provided as an important functionality for navigation in complex dynamic environments.
The performance of the proposed system is demonstrated on a number of real indoor and
outdoor datasets. Results show consistent and substantial improvements over state-of-the-art
algorithms.

6.1 Motivation

The ability of a robot to build a model of the environment, often called map, and to localise
itself within this map is a key factor in enabling autonomous robots to operate in real world
environments. Creating these maps is achieved by fusing multiple sensor measurements of the
environment into a consistent representation using estimation techniques such as Simultaneous
Localisation And Mapping (SLAM). SLAM is a mature research topic and have already rev-
olutionised a wide range of applications from mobile robotics, inspection, entertainment and
film production to exploration and monitoring of natural environments, amongst many oth-
ers. However, most of the existing solutions to SLAM rely heavily on the assumption that the
environment is predominantly static.

The conventional techniques to deal with dynamics in SLAM is to either treat any sensor
data associated with moving objects as outliers and remove them from the estimation process
(Hahnel et al. [2002, 2003]; Wolf and Sukhatme [2005]; Zhao et al. [2008]; Bescos and Neira

63
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Figure 6.1: Results of the proposed VDO-SLAM system. (Top) A full map including camera
trajectory, static background and moving object structure. (Bottom) Detected points on static
background and object body, and estimated object speed. Black circles represents static points,

and each object is assigned with a different colour.

[2018]), or detect moving objects and track them separately using traditional multi-target track-
ing approaches (Wang et al. [2003]; Miller and Campbell [2007]; Rogers et al. [2010]; Kundu
et al. [2011]). The former technique excludes information about dynamic objects in the scene,
and generates static only maps. Accuracy of the latter is dependent on the camera pose estima-
tion, which is more susceptible to failure in complex dynamic environments where the pres-
ence of reliable static structure is questionable. Increased applications of autonomous systems
to dynamic environments is driving the community to challenge the scene rigidity assumption,
also known as the static world assumption, that underpins most existing open-source SLAM
algorithms. In this chapter, we redefine the term “mapping” in SLAM to be concerned with
a spatiotemporal representation of the world, as opposed to the concept of a static map that
has long been the emphasis of classical SLAM algorithms. Our approach focuses on accurate
motion estimation of dynamic entities in the environment including the robot and other mov-
ing objects in the scene, this information being of high relevance in the context of robot path
planning and navigation in dynamic environments.

Literature of object motion estimation is mainly represented as image-based optical flow
(Yamaguchi et al. [2014]; Sun et al. [2010, 2018]; Ilg et al. [2017]) or 3D based scene flow es-
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timation (Vogel et al. [2013]; Menze and Geiger [2015]; Liu et al. [2019]; Jiang et al. [2019]).
Optical flow records the scene motion by estimating the velocities associated with the move-
ment of brightness patterns in an image. As it is characterized on image plane, optical flow
involves both camera and scene motion, which may fail in degenerate cases where the scene
motion is close to the camera motion. Scene flow, on the other hand, describes the 3D motion
field of a scene that is completely independent of the camera motion. As both methods are only
concerned with the motion of 2D image pixels or 3D points in the scene, they only describe
the linear translation of a pixel/point, lack the concept of collective behaviour of points motion
on a rigid object and fail to describe the full SE(3) motion of objects in the scene. Describing
the SE(3) motion of dynamic objects in the scene has not only proven to be more accurate and
robust as it incorporates the concept of rigidity of the moving objects, but also more computa-
tionally efficient as it eliminates the need to estimate for a different motion for each individual
point as is the case in optical and scene flow estimation. These unique features make SE(3)
object motion a perfect choice for solving a dynamic SLAM problem. In particular, SE(3)
object motion can be easily integrated into a SLAM optimisation problem, as an additive term
to the cost function, which in turn helps to robustly track objects and accurately estimate their
motions.

A typical SLAM system consists of a front-end module, that processes the raw data from
the sensors and a back-end module, that integrates the obtained information (raw and higher-
level information) into a probabilistic estimation framework. Simple primitives such as 3D
locations of salient features are commonly used to represent the environment. This is largely
a consequence of the fact that points are easy to detect, track and integrate within the SLAM
estimation problem.

Feature tracking has been more reliable and robust with the advances in deep learning to
provide algorithms that can reliably estimate the 2D optical flow associated with the apparent
motion of every pixel on an image in a dense manner. A task that is particularly important
for data association and that has been otherwise challenging in dynamic environments using
classical feature tracking methods.
Other primitives such as lines and planes (de la Puente and Rodríguez-Losada [2014]; Kaess
[2015]; Henein et al. [2017]; Hsiao et al. [2017]) or even objects (Mu et al. [2016]; Salas-
Moreno et al. [2013]; Yang and Scherer [2019]) have been considered in order to provide
richer map representations. Semantic information can provide important prior information in
identifying and tracking dynamic objects in the scene (Wang et al. [2007]; Gálvez-López et al.
[2016]). Advances in deep learning have provided algorithms that can reliably detect and seg-
ment classes of objects at almost real time (Girshick et al. [2018]; He et al. [2018]). Despite
recent developments in vision-based object detection and segmentation, the visual SLAM com-
munity has not yet fully exploited such information Nicholson et al. [2018a]. To incorporate
such information in existing geometric SLAM algorithms, either a dataset of 3D-models of
every object in the scene must be available a priori (Salas-Moreno et al. [2013]; Gálvez-López
et al. [2016]) or the front end must explicitly provide object pose information in addition to de-
tection and segmentation (Milan et al. [2016]; Byravan and Fox [2017]; Wohlhart and Lepetit
[2015]) adding a layer of complexity to the problem. The requirement for accurate 3D-models
severely limits the potential domains of application, while to the best of our knowledge, mul-
tiple object tracking and 3D pose estimation remain a challenge to learning techniques. There
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is a clear need for an algorithm that can exploit the powerful detection and segmentation ca-
pabilities of modern deep learning algorithms without relying on additional pose estimation or
object model priors, an algorithm that operates at feature-level with the awareness of an object
concept.

In this chapter, a novel feature-based stereo/RGB-D dynamic SLAM system, VDO-SLAM,
is proposed. The system is developed upon the previous multi-body VO framework as the
tracking front-end, by improving the robustness of feature and object tracking, and extending
it with a novel graph-based back-end to simultaneously localise the robot, map the static and
dynamic structure, and track motions of rigid objects in the scene. In summary, the contribu-
tions of this work are:

• a novel formulation to model dynamic scenes in a unified estimation framework over
robot poses, static and dynamic 3D points, and object motions.

• accurate estimation for SE(3) motion of dynamic objects that outperforms state-of-the-
art algorithms, as well as a way to extract objects’ velocity in the scene,

• a robust method for tracking moving objects exploiting semantic information with the
ability to handle indirect occlusions resulting from the failure of semantic object seg-
mentation,

• a demonstrable full system in complex and compelling real-world scenarios.

Arguably, this is the first full dynamic SLAM system that is able to achieve motion seg-
mentation, dynamic object tracking, and estimate the camera poses along with the static and
dynamic structure, the full SE(3) pose change and linear velocity extraction of every rigid ob-
ject in the scene, and be demonstrable in real-world outdoor scenarios (see Figure 6.1). The
performance of the proposed algorithm is demonstrated on real datasets, showing the capabil-
ity to resolve rigid object motion estimation and yield motion results that are comparable to
the camera pose estimation in accuracy and that outperform state-of-the-art algorithms by an
order of magnitude.

6.2 Methodology

In this section, a novel dynamic SLAM algorithm of jointly estimating the camera pose and
object motion, as well as the environment structure in a unified framework is explained. The
framework is represented as a factor graph, and formulated as a non-linear least squares opti-
mization problem.

In the tracking component of the proposed system, shown in Figure 6.4, the cost function
chosen to estimate the camera pose and object motion (described in Section 5.2.1 and Sec-
tion 5.2.2) is associated with the 3D-2D re-projection error and is defined on the image plane.
Since the noise is better characterised on image plane, this yields more accurate results for
camera localisation (Nistér et al. [2004]). Moreover, based on this error term, a novel formu-
lation to jointly optimise the optical flow along with the camera pose and the object motion is
introduced to ensure a robust tracking of points (described in Section 5.2.3). In the mapping
module, a 3D point error cost function is utilised to ensure best results of 3D structure and
object motions as described in Section 6.2.2.
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Figure 6.2: Notation and coordinate frames. Solid curves represent camera and object poses
in inertial frame; 0X and 0L respectively, and dashed curves their respective motions in body-
fixed frame. Solid lines represent 3D points in inertial frame, and dashed lines their projections

into image and camera frames.

6.2.1 Background and Notation

Coordinate Frames: Let 0Xk,0 Lk ∈ SE(3) be the robot/camera and the 3D object pose re-
spectively, at time k in a global reference frame 0, with k ∈ T the set of time steps. Note
that calligraphic capital letters are used in the notation to represent sets of indices. Figure 6.2
illustrates these pose transformations as solid curves.

Points: Let 0mi
k be the homogeneous coordinates of the ith 3D point at time k, with 0mi =[

mi
x,mi

y,mi
z,1
]> ∈ IE3 and i ∈M the set of points. A point in robot/camera frame is denoted

as:

Xk mi
k =

0 X−1
k

0mi
k . (6.1)

Define Ik the reference frame associated with the image captured by the camera at time k,
chosen at the top left corner of the image, and let Ik pi

k =
[
ui,vi,1

]
∈ IE2 be the pixel location

on image Ik corresponding to the homogeneous 3D point Xk mi
k, which is obtained via the

projection function π(·) as follows:

Ik pi
k = π(Xk mi

k) = K Xk mi
k , (6.2)

where K is the camera intrinsics matrix.
The camera and/or object motions both produce an optical flow Ik φφφ

i ∈ IR2 that is the displace-
ment vector indicating the motion of pixel Ik−1pi

k−1 from image frame Ik−1 to Ik, and is given
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by:

Ik φφφ
i = Ik p̃i

k− Ik−1pi
k−1 . (6.3)

Here Ik p̃i
k is the correspondence of Ik−1pi

k−1 in Ik. Note that, the same notation is overloaded to
represent the 2D pixel coordinates ∈ IR2. In this work, optical flow is used to find correspon-
dences between consecutive frames.

3D Point Motion on Object Body: The motion of a 3D point on a rigid body in inertial frame
is given by 0

k−1Hk ∈ SE(3), which is derived in Section 5.2.2 to express the rigid object pose
change in terms of the points that reside on the object without the need to know the object
3D pose. Here 0

k−1Hk represents the object point motion in global reference frame; for the
remainder of this document, this quantity is referred as the object pose change or the object
motion for ease of reading.

Figure 6.3: Factor graph representation of an object-aware SLAM with a moving object.
Black squares represent the camera poses at different time steps, blue squares represent five
static points, red squares represent the same dynamic point on an object (dashed box) at dif-
ferent time steps and green squares the object pose change between time steps. For ease of
visualisation, only one dynamic point is drawn here, however, at the time of estimation, all
points on a detected dynamic object are used. A prior unary factor is shown as a black cir-
cle, odometry binary factors are shown as orange circles, point measurement binary factors
as white circles and point motion ternary factors as magenta circles. A smooth motion binary

factor is shown as cyan circle.

6.2.2 Graph Optimisation

The proposed approach formulates the dynamic SLAM as a graph optimisation problem, to
estimate the camera poses and object motions, and build a global consistent map including
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static and dynamic structure. The dynamic SLAM problem is modelled as a factor graph as
the one demonstrated in Figure 6.3. The factor graph formulation is highly intuitive and has
the advantage that allows for efficient implementations of batch (Dellaert and Kaess [2006];
Agarwal et al. [2012]; Kümmerle et al. [2011]) and incremental (Kaess et al. [2011]; Polok
et al. [2013]; Ila et al. [2017]) solvers.

Four types of measurements/observations are integrated into a joint optimisation problem;
the 3D point measurements, the visual odometry measurements, the motion of points on a
dynamic object and the object smooth motion observations. The 3D point measurement model
error ei,k(

0Xk,0 mi
k) is defined as:

ei,k(
0Xk,0 mi

k) =
0 X−1

k
0mi

k− zi
k . (6.4)

Here z = {zi
k | i ∈M ,k ∈T } is the set of all 3D point measurements at all time steps, with

cardinality nz and zi
k ∈ IR3. The 3D point measurement factors are shown as white circles in

Figure 6.3.
The tracking component of the system provides a high-quality ego-motion via 3D-2D error
minimization, which can be used as an odometry measurement to constrain camera poses in
the graph. The visual odometry model error ek(

0Xk−1,0 Xk) is defined as:

ek(
0Xk−1,0 Xk) = (0X−1

k−1
0Xk)

−1 Xk−1
k−1Tk , (6.5)

where T = {Xk−1
k−1Tk | k ∈T } is the odometry measurement set with Xk−1

k−1Tk ∈ SE(3) and cardi-
nality no. The odometric factors are shown as orange circles in Figure 6.3.
The motion model error of points on dynamic objects ei,l,k(

0mi
k, 0

k−1Hl
k,0 mi

k−1) is defined as:

ei,l,k(
0mi

k, 0
k−1Hl

k,0 mi
k−1) =

0mi
k− 0

k−1Hl
k

0mi
k−1 . (6.6)

The motion of all points on a detected rigid object l are characterised by the same pose transfor-
mation 0

k−1Hl
k ∈ SE(3) given by (5.11) and the corresponding factor, shown as magenta circles

in Figure 6.3, is a ternary factor which is called the motion model of a point on a rigid body.
It has been proven that incorporating prior knowledge about the motion of objects in the scene
is highly valuable in dynamic SLAM (Wang et al. [2007]; Henein et al. [2020]). Motivated
by the camera frame rate and the physics laws governing the motion of relatively large ob-
jects (vehicles) and preventing their motions to change abruptly, the proposed work introduces
smooth motion factors to minimise the change in consecutive object motions, with the error
term defined as:

el,k(
0

k−2Hl
k−1, 0

k−1Hl
k) =

0
k−2Hl

k−1
−1 0

k−1Hl
k. (6.7)

The object smooth motion factor el,k(
0

k−2Hl
k−1, 0

k−1Hl
k) is used to minimise the change between

the object motion at consecutive time steps and is shown as cyan circles in Figure 6.3.

Let θθθ M = {0mi
k | i∈M ,k∈T } be the set of all 3D points. Parameterise the SE(3) camera

pose 0Xk by elements 0xk ∈ se(3) the Lie-algebra of SE(3):

0Xk = exp(0xk) , (6.8)
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and define θθθ X = {0xk
∨ | k ∈T } as the set of all camera poses, with 0xk

∨ ∈ IR6. Analogously,
parameterise the object motion 0

k−1Hl
k ∈ SE(3) by elements 0

k−1hl
k ∈ se(3) the Lie-algebra of

SE(3):

0
k−1Hl

k = exp( 0
k−1hl

k) , (6.9)

and define θθθ H = { 0
k−1hl

k
∨ | k ∈ T , l ∈L } as the set of all object motions, with 0

k−1hl
k
∨ ∈ IR6

and L the set of all object labels. Given θθθ = θθθ X ∪θθθ M ∪θθθ H as all the nodes in the graph, and
using the Lie-algebra parameterisation of SE(3) for X and H, i.e., substituting (6.8) in (6.4)
and (6.5), and substituting (6.9) in (6.6) and (6.7), the solution of minimizing all the least
squares costs is given by:

θθθ
∗ =argmin

θθθ

{ nz

∑
i,k

ρh
(
e>i,k(

0xk,0 mi
k)Σ−1

z ei,k(
0xk,0 mi

k)
)

+
no

∑
k

ρh
(

log(ek(
0xk−1, 0xk))

>Σ−1
o log(ek(

0xk−1, 0xk))
)

+
ng

∑
i,l,k

ρh
(
e>i,l,k(

0mi
k, 0

k−1hl
k,0 mi

k−1)Σ−1
g ei,l,k(

0mi
k, 0

k−1hl
k,0 mi

k−1)
)

+
ns

∑
l,k

ρh
(

log(el,k(
0

k−2hl
k−1, 0

k−1hl
k))
>Σ−1

s log(el,k(
0

k−2hl
k−1, 0

k−1hl
k))
)}

, (6.10)

where Σz is the 3D point measurement noise covariance matrix, Σo is the odometry noise
covariance matrix, Σg is the motion noise covariance matrix with ng the total number of ternary
object motion factors, and Σs the smooth motion covariance matrix, with ns the total number
of smooth motion factors. The non-linear least squares problem in (6.10) is solved using
Levenberg-Marquardt method.

6.3 System

In this section, a novel object-aware dynamic SLAM system is presented, which is able to
robustly estimates both camera and object motions, along with the static and dynamic structure
of the environment. The full system overview is shown in Figure 6.4, and is composed of three
main modules: image pre-processing, tracking and mapping.

The input to the system is stereo or RGB-D images. For stereo images, the depth informa-
tion is extracted by applying the stereo depth estimation method described in Yamaguchi et al.
[2014] to generate depth maps and the resulting data is treated as RGB-D.
Although this system was initially designed to be an RGB-D system, as an attempt to fully ex-
ploit image-based semantic information, a single image depth estimation is applied to achieve
depth information from monocular camera. The proposed ‘learning-based monocular’ system
is monocular in the sense that only RGB images are used as input to the system, while the
estimation problem is still formulated using RGB-D data, where the depth is obtained using
single image depth estimation.
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Figure 6.4: Overview of the proposed VDO-SLAM system. Input images are first pre-
processed to generate instance-level object segmentation and dense optical flow. These are
then used to track features on both static background structure and dynamic objects. Camera
poses and object motions initially estimated from feature tracks are then refined in a global
batch optimisation, and a local map is maintained and updated with every new frame. The
system outputs camera poses, static structure, tracks of dynamic objects, and estimates of their

pose changes over time.

6.3.1 Pre-processing

As the proposed system in this chapter is an extension of the multi-motion visual odometry
pipeline in Chapter 5, it shares the same image pre-processing component as described in
Section 5.3.1.

6.3.2 Tracking

The tracking component includes two modules; the camera ego-motion tracking and the object
motion tracking.

6.3.2.1 Feature Detection

To achieve fast camera pose estimation, a sparse set of corner features is detected and tracked
with optical flow. Different from the multi-motion VO pipeline, where features are only
matched between two consecutive frames, in the new proposed tracking module, inlier fea-
ture points that fit the estimated camera motion in each frame are saved into the map, and
continuously used to track correspondences in the coming frames. New features are detected
and added, if the number of inlier tracks falls below a certain level. These sparse features are
detected and tracked on static background, i.e., image regions excluding the segmented objects.

6.3.2.2 Camera Pose Estimation

The camera pose can be computed using (5.5) for all detected 3D-2D static point correspon-
dences (Section 5.2.1). To ensure robust estimation, a motion model generation method is
applied for initialisation. Specifically, the method generates two models and compares their
inlier numbers based on re-projection error. One model is generated by propagating the cam-
era previous motion, while the other by computing a new motion transform using P3P (Ke and
Roumeliotis [2017]) algorithm with RANSAC. The motion model that generates most inliers
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is then selected for initialisation. As propagating motion is not available during initialization,
the model generated by P3P is used.

6.3.2.3 Dynamic Object Tracking

The process of dynamic object tracking consists of two steps. In the first step, segmented
objects are classified into static and dynamic. Then the dynamic objects are associated across
pairs of consecutive frames. This process stays the same as described in the multi-motion
tracking front-end in Chapter 5. More details can be found in Section 5.3.3.

6.3.2.4 Object Motion Estimation

As mentioned above, objects normally appear in small portions in the scene, which makes it
hard to get sufficient sparse features to track and estimate their motions robustly. To overcome
this, denser object points are used by sampling every third point within an object mask, and
tracked across frames. Similar to the camera pose estimation, only inlier points that fit the
estimated object motion are saved into the map and used for tracking in the next frame. When
the number of tracked object points decreases below a certain level, new object points are
sampled and added. The same method that is discussed in Section 6.3.2.2 is used to generate
an initial object motion model.

6.3.3 Mapping

In the mapping component, a global map is constructed and maintained. Meanwhile, a local
map is extracted from the global map, which is based on the current time step and a window
of previous time steps. Both maps are updated via a batch optimisation process.

6.3.3.1 Local Batch Optimisation

A local map is maintained and updated in the system. The goal of the local batch optimisation
is to ensure accurate camera pose estimates are provided to the global batch optimisation. The
camera pose estimation has a big influence on the accuracy of the object motion estimation
and the overall performance of the algorithm. The local map is built using a fixed-size sliding
window containing the information of the last nw frames, where nw is the window size. Local
maps share some common information; this defines the overlap between the different windows.
Only the camera poses and static structure is optimized within the window size, as locally
optimising the dynamic structure does not bring any benefit to the optimisation unless a hard
constraint (e.g., a constant object motion) is assumed within the window. However, the system
is able to incorporate static and dynamic structure in the local mapping if needed. When a local
map is constructed, a factor graph optimisation is performed to refine all the variables within
the local map, and then update them back into the global map.

6.3.3.2 Global Batch Optimisation

The output of the tracking component and the local batch optimisation consists of the camera
pose, the object motions and the inlier structure. These are saved in a global map that is
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constructed with all the previous time steps and is continually updated with every new frame. A
factor graph is constructed based on the global map after all input frames have been processed.
To effectively explore the temporal constraints, only points that have been tracked for more
than 3 instances are added into the factor graph. The graph is formulated as an optimisation
problem as described in Section 6.2.2. The optimisation results serve as the output of the whole
system.

6.3.3.3 From Mapping to Tracking

Maintaining the map provides history information to the estimate of the current state in the
tracking module, as illustrated in Figure 6.4 with blue arrows going from the global map to
multiple components in the tracking module of the system. Inlier points from the last frame are
leveraged to track correspondences in the current frame and estimate camera pose and object
motions. The last camera and object motion also serve as possible prior models to initialise the
current estimation as described in Section 6.3.2.2 and 6.3.2.4. Furthermore, object points help
associate semantic masks across frames to ensure robust tracking of objects, by propagating
their previously segmented masks in case of ‘indirect occlusion’ resulting from the failure of
semantic object segmentation. See Figure 6.9.

6.4 Experiments

The proposed method is evaluated in terms of camera motion, object motion and velocity,
as well as object tracking performance. The evaluation is done on the Oxford Multi-motion
Dataset Judd and Gammell [2019] for indoor, and KITTI Tracking dataset Geiger et al. [2013]
for outdoor scenarios. Results of VDO-SLAM is also compared to the ones generated by two
state-of-the-art methods, MVO Judd et al. [2018] and CubeSLAM Yang and Scherer [2019],
to prove the better performance of the proposed system.

6.4.1 System Setup

A learning-based instance-level object segmentation method, Mask R-CNN He et al. [2018], is
adopted to generate object segmentation masks. The model of this method is trained on COCO
dataset Lin et al. [2014], and is directly used in this work without any fine-tuning. For dense
optical flow, a state-of-the-art method called PWC-Net Sun et al. [2018] is used. The model
is trained on FlyingChairs dataset Mayer et al. [2016], and then fine-tuned on Sintel Butler
et al. [2012] and KITTI training datasets Geiger et al. [2012]. To generate depth maps for
a ‘monocular’ version of the proposed system, a learning-based monocular depth estimation
method (MonoDepth2 Godard et al. [2019]) is applied. The model is trained on Depth Eigen
split Eigen et al. [2014] excluding the tested data in this chapter. Feature detection is done
using FAST Rosten and Drummond [2006] implemented in Rublee et al. [2011]. All the above
methods are applied using the default parameters.
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6.4.2 Error Metrics

A pose change error metric is used to evaluate the estimated SE(3) motion, i.e., given a ground
truth motion transform T and a corresponding estimated motion T̂, where T ∈ SE(3) could
be either a camera relative pose or an object motion. The pose change error is computed
as: E = T̂−1 T. The translational error Et is computed as the L2 norm of the translational
component of E. The rotational error Er is calculated as the angle of rotation in an axis-angle
representation of the rotational component of E. For different camera time steps and different
objects in a sequence, the root mean squared error (RMSE) is computed for camera poses
and object motions, respectively. The object pose change in body-fixed frame is obtained by
transforming the pose change 0

k−1Hk in the inertial frame into the body frame using the object
pose ground-truth

Lk−1
k−1Hk =

0 L−1
k−1

0
k−1Hk

0Lk−1. (6.11)

The object speed error is also evaluated in this work. The linear velocity of a point on the
object, expressed in the inertial frame, can be estimated by applying the pose change 0

k−1Hk

and taking the difference

v≈0 mi
k−0 mi

k−1 =
( 0

k−1Hk− I4
)0 mi

k−1

= 0
k−1tk− (I3− 0

k−1Rk)
0mi

k−1. (6.12)

To get a more reliable measurement, all points are used to calculate and take the average.
Define ck−1 := 1

n ∑mi
k−1 for all points on an object at time k−1. Then

v≈ 1
n

n

∑
i=1

( 0
k−1tk− (I3− 0

k−1Rk)
0mi

k−1
)

= 0
k−1tk− (I3− 0

k−1Rk) ck−1. (6.13)

Then the speed error Es between the estimated v̂ and the ground truth v velocities can be
calculated as: Es = |v̂|− |v|. For different objects tracked over temporal frames, the RMSE is
calculated as an error metric.

6.4.3 Oxford Multi-motion Dataset

The recent Oxford Multi-motion Dataset Judd and Gammell [2019] contains sequences from
a moving stereo or RGB-D camera sensor observing multiple swinging boxes or toy cars in
an indoor scenario. Ground truth trajectories of the camera and moving objects are obtained
via a Vicon motion capture system. Since results of real driving scenarios are evaluated on
KITTI dataset, only the swinging boxes sequences are chosen for evaluation. Table 6.1 shows
results compared to the state-of-the-art MVO Judd et al. [2018]. As MVO is a visual odometry
system without global refinement, the batch optimisation module is switched off in proposed
system for fair comparison. The pose change error metrics described in Section 6.4.2 are used
for evaluation.

Overall, the proposed method achieves better accuracy in 7 out of 10 error indexes for cam-
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Table 6.1: Comparison versus MVO Judd et al. [2018] for camera and object motion estima-
tion accuracy on the sequence of swinging_4_unconstrained sequence in Oxford Multi-motion

Dataset. Bold numbers indicate the better results.

Proposed MVO

Er(deg) Et (m) Er(deg) Et (m)

Camera 0.7709 0.0112 1.1948 0.0314

Top-left Swinging Box 1.1889 0.0207 1.4553 0.0288

Top-right Swinging and rotating Box 0.7631 0.0132 0.8992 0.0130

Bottom-left Swinging Box 0.9153 0.0149 1.4949 0.0261

Bottom-right Rotating Box 0.8469 0.0192 0.7815 0.0115

era pose estimation and motion estimation of the 4 moving boxes. In particular, our proposed
method achieves better accuracy in the estimation of camera pose (35%) and motion of the
swinging boxes, top-left (15%) and bottom-left (40%). We obtain slightly higher errors when
there is spinning rotational motion of the object observed, in particular the top-right swinging
and rotating box (in translation only), and the bottom-right rotating box. We believe that this
is due to using an optical flow algorithm that is not well optimised for self-rotating objects.
The consequence of this is poor estimation of point motion and consequent degradation of the
overall object tracking performance. Even with the associated performance loss for rotating
objects, the benefits of dense optical flow motion estimation is clear in the other metrics.

An illustrative result of the map output of the proposed algorithm on Oxford Multi-motion
Dataset is shown in Figure 6.5. Tracks of dynamic features on swinging boxes visually corre-
spond to the actual motion of the boxes. This can be clearly seen in the swinging motion of the
bottom-left box shown in purple in Figure 6.5.

6.4.4 KITTI Tracking Dataset

The KITTI Tracking Dataset (Geiger et al. [2013]) contains 21 sequences in total with ground
truth information about the camera and object poses. Among these sequences, some are not
included in the evaluation of the proposed system; as they contain no moving objects (static
only scenes) or only contain pedestrians that are non-rigid objects, which is outside the scope
of this work. Note that, as only rotation around Y-axis is provided in the ground truth object
poses, we assign zeros to the other two axes for the convenience of full motion evaluation.

6.4.4.1 Camera and Object Motion

Table 6.2 demonstrates results of both camera and object motion estimation in 9 sequences,
compared to CubeSLAM Yang and Scherer [2019], with results of 5 sequences provided by the
authors. An initial attempt to evaluate CubeSLAM with the default provided parameters was
conducted, however errors were much higher, and hence only results of the sequences provided
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Figure 6.5: Qualitative results of the proposed method on Oxford Multi-motion Dataset.
(Left) The 3D map including camera trajectory, static structure and tracks of dynamic points.
(Right) Detected points on static background and object body. Black colour corresponds to

static points and features on each object are shown in a different colour.

Figure 6.6: Accuracy of object motion estimation of the proposed method compared to
CubeSLAM (Yang and Scherer [2019]). The color bars refer to translation error that is cor-
responding to the left Y-axis in log-scale. The circles refer to rotation error, which corresponds

to the right Y-axis in linear-scale.

by the authors of CubeSLAM are reported after some correspondences. As CubeSLAM is for
monocular camera, results of a learning-based monocular version of the proposed method are
also computed (as mentioned in Section 6.3) for fair comparison.

Overall, both the proposed RGB-D and learning-based monocular methods obtain high
accuracy in both camera and object motion estimation. Compared to CubeSLAM, the RGB-
D version gets lower errors in camera motion, while the learning-based monocular version
slightly higher. We believe the weak performance of monocular version is because the model
does not capture the scale of depth accurately with only monocular input. Nevertheless, both
versions obtain consistently lower errors in object motion estimation. In particular, as demon-
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Table 6.2: Comparison versus CubeSLAM Yang and Scherer [2019] for camera and object
motion estimation accuracy on nine sequences with moving objects drawn from the KITTI

dataset. Bold numbers indicate the better result.

Proposed RGB-D Proposed Monocular CubeSLAM

Camera Object Camera Object Camera Object

seq Er(deg) Et (m) Er(deg) Et (m) Er(deg) Et (m) Er(deg) Et (m) Er(deg) Et (m) Er(deg) Et (m)

00 0.0533 0.0547 1.0648 0.0935 0.0738 0.0652 1.0707 0.1552 - - - -

01 0.0382 0.1230 0.6843 0.1423 0.1336 0.4165 1.2301 0.3514 - - - -

02 0.0182 0.0457 1.0197 0.2985 0.0352 0.0672 1.6849 0.4692 - - - -

03 0.0345 0.0811 0.3113 0.0912 0.0739 0.1197 0.3936 0.1622 0.0498 0.0929 3.6085 4.5947

04 0.0482 0.1114 0.6836 0.4517 0.1065 0.2767 1.5981 0.5334 0.0708 0.1159 5.5803 32.5379

05 0.0215 0.0933 0.3011 0.1124 0.0576 0.0414 0.1047 0.5844 0.2438 0.0696 3.2610 6.4851

06 0.0481 0.0186 0.7932 0.1158 0.0502 0.0261 2.1720 0.2403 - - - -

18 0.0214 0.0756 0.1422 0.1908 0.0861 0.0669 0.1866 0.4775 0.1944 0.0510 3.1876 3.7948

20 0.0271 0.1662 0.3047 0.0971 0.0688 0.3678 1.1639 0.3942 0.1348 0.1888 3.4206 5.6986

strated in Figure 6.6, the translation and rotation errors in CubeSLAM are all above 3 meters
and 3 degrees, with errors reaching 32 meters and 5 degrees in extreme cases respectively.
However, the translation errors of the proposed work vary between 0.1-0.3 meters and rota-
tion errors between 0.2-1.5 degrees in case of RGB-D, and 0.1-0.3 meters, and 0.4-3 degrees
in case of learning-based monocular, which indicates the object motion estimation of VDO-
SLAM achieves an order of magnitude improvements. In general, the results suggest that
point-based object motion/pose estimation methods is more robust and accurate than those
using high-level geometric models, probably due to the fact that geometric model extraction
could lead to losing information and introducing more uncertainty.
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Figure 6.7: Tracking performance and speed estimation. Results of object tracking length
and object speed for some selected objects (tracked for over 20 frames), due to limited space.
The colour bars represent the length of object tracks, which is corresponding to the left Y-axis.
The circles represent object speeds, which is corresponding to the right Y-axis. GT refers to

ground truth, and EST. refers to estimated values.
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Figure 6.8: Illustration of system output; a dynamic map with camera poses, static back-
ground structure, and tracks of dynamic objects. Sample results of VDO-SLAM on KITTI
sequences. Black represents static background, and each detected object is shown in a different
colour. Top left figure presents Sequence 01 with a zoom-in on the intersection at the end of
the sequence; top right figure presents Sequence 06 and bottom figure presents Sequence 03.

6.4.4.2 Object Tracking and Velocity

The performance of tracking dynamic objects is also evaluated, with results of object speed
estimation demonstrated, which is an important information for autonomous driving applica-
tions. Figure 6.7 illustrates results of object tracking length and object speed for some selected
objects (tracked for over 20 frames) in all the tested sequences. The proposed system is able
to track most objects for more than 80% of their occurrence in the sequence. Moreover, the
estimated objects speed is always consistently close to the ground truth.

6.4.4.3 Qualitative Results

Figure 6.8 illustrates output of VDO-SLAM for three of the KITTI sequences. The proposed
system is able to output the camera poses, along with the static structure and dynamic tracks
of every detected moving object in the scene in a spatio-temporal map representation.
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6.4.5 Discussion

Apart from the extensive evaluation in Section 6.4.4 and 6.4.3, detailed experimental results
are also provided in this section to prove the effectiveness of key modules in the proposed
system. Finally, the computational cost of the proposed system is discussed.

Table 6.3: The number of points tracked for more than five frames on the nine sequences of
the KITTI dataset. Bold numbers indicate the better results. Underlined bold numbers indicate

an order of magnitude increase in number.

Background Object

seq Motion Only Joint Motion Only Joint

00 1798 12812 1704 7162

01 237 5075 907 4583

02 7642 10683 52 1442

03 778 12317 343 3354

04 9913 25861 339 2802

05 713 11627 2363 2977

06 7898 11048 482 5934

18 4271 22503 5614 14989

20 9838 49261 9282 13434

6.4.5.1 Robust Tracking of Points

The graph optimisation explores the spacial and temporal information to refine the camera
poses and the object motions, as well as the static and dynamic structure. This process re-
quires robust tracking of good points in terms of both quantity and quality. This was achieved
by refining the estimated optical flow jointly with the motion estimation, as discussed in Sec-
tion 5.2.3. The effectiveness of joint optimisation is shown by comparing a baseline method
that only optimises for the motion (Motion Only) using (5.5) for camera motion or (5.13) for
object motion, and the improved method that optimises for both the motion and the optical
flow (Joint) using (5.14). Table 6.3 demonstrates that the joint method obtains considerably
more points that are tracked for long periods.

Using the tracked points given by the joint estimation process leads to better estimation of
both camera pose and object motion. An improvement of about 15% to 20% in translation and
rotation errors was observed over the nine sequences of the KITTI dataset shown above. See
Table 6.4.
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Table 6.4: Average camera pose and object motion errors over the nine sequences of the KITTI
dataset. Bold numbers indicate the better results.

Motion Only Joint

Er(deg) Et (m) Er(deg) Et (m)

Camera 0.0412 0.0987 0.0344 0.0854

Object 1.0179 0.1853 0.8305 0.1606

6.4.5.2 Robustness against Indirect Occlusion

The mask segmentation may fail in some cases, due to direct or indirect occlusions (illumina-
tion change, etc.). Thanks to the mask propagating method described in Section 6.3.3.3, the
proposed system is able to handle mask failure cases caused by indirect occlusions. Figure 6.9
demonstrates an example of tracking a white van for 80 frames, where the mask segmentation
fails in 33 frames. Despite the object segmentation failure, the proposed system is still able to
continuously track the van, and estimate its speed with an average error of 2.64 km/h across the
whole sequence. Notice that, speed errors in the second half of the sequence are higher due to
partial occlusions, and increased distance to the object getting farther away from the camera.

Figure 6.9: Robustness in tracking performance and speed estimation in case of semantic
segmentation failure. An example of tracking performance and speed estimation for a white
van (ground-truth average speed 20km/h) in Sequence 00. (Top) Blue bars represent a suc-
cessful object segmentation, and green curves refer to the object speed error. (Bottom-left) An
illustration of semantic segmentation failure on the van. (Bottom-right) Result of propagating

the previously tracked features on the van by the proposed system.
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Figure 6.10: Global refinement effect on object motion estimation. The initial (blue) and
refined (green) estimated speeds of a wagon in Sequence 03, travelling along a straight road,

compared to the ground truth speed (red).

6.4.5.3 Global Refinement on Object Motion

Initial object motion estimation (in the tracking component of the system) is independent be-
tween frames, since it is purely related to the sensor measurements. As illustrated in Fig-
ure 6.10, the blue curve describes an initial object speed estimate of a wagon observed for 55
frames in Sequence 03 of the KITTI tracking dataset. As seen in the figure, the speed esti-
mation is not smooth and large errors occur towards the second half of the sequence. This is
mainly caused by the increased distance to the object getting farther away from the camera,
and its structure only occupying a small portion of the scene. In this case, the object motion
estimation from sensor measurements solely becomes challenging and error-prone. Therefore,
a novel factor graph is formulated to refine the motions together with the static and dynamic
structure as discussed in Section 6.2.2. The green curve in Figure 6.10 shows the object speed
results after the global refinement, which becomes smoother in the first half of the sequence
and is significantly improved in the second half.

Figure 6.11 demonstrates the average improvement for all objects in each sequence of
KITTI dataset. With graph optimization, the errors can be reduced up to 39% in translation
and 55% in rotation. Interestingly, the translation errors in Seq.18 and Seq.20 increase slightly.
We believe it is because the vehicles keep alternating between acceleration and deceleration
due to the heavy traffic jams in both sequences, which strongly violates the smooth motion
constraint that is set for general cases.

6.4.5.4 Computational Analysis

Finally, the computational analysis of the proposed system is provided. The experiments are
carried out on an Intel Core i7 2.6 GHz laptop computer with 16 GB RAM. The object semantic
segmentation and dense optical flow computation times depend on the GPU power and the
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Figure 6.11: Improvement on object motion after graph optimization. The numbers in the
heatmap show the ratio of decrease in error on the nine sequences of the KITTI dataset.

CNN model complexity. Many current state-of-the-art algorithms can run in real time Bolya
et al. [2019]; Hui et al. [2020]. In this chapter, the semantic segmentation and optical flow
results are produced off-line as input to the system. The SLAM system is implemented in C++
on CPU. The computational time is shown in Table 6.5 for both datasets. Note that, for both
dataset, the maximum number of points to track on background and each object are 1200 and
800, respectively. In the local batch optimisation, the window size is set to 20 frames with an
overlap of 4 frames. The time cost of every system component is averaged over all frames,
and sequences, except for the dynamic object tracking and object motion estimation that are
averaged over the number of objects. Overall, the tracking part of the proposed system is
able to run at the frame rate of 5-8 fps depending on the number of detected moving objects,
which can be improved by employing parallel implementation. The runtime of the global batch
optimisation strongly depends on the amount of camera poses (number of frames), and objects
(density in terms of the number of dynamic objects observed per frame) present in the scene.

6.5 Conclusion

In this chapter, a novel dynamic feature-based SLAM system, VDO-SLAM, is presented,
which exploits image-based semantic information in the scene with no additional knowledge
of the object pose or geometry, to achieve simultaneous localisation, mapping and tracking
of dynamic objects. The system consistently shows robust and accurate results on indoor and
challenging outdoor datasets, and achieves state-of-the-art performance in object motion esti-
mation. I believe the high performance accuracy achieved in object motion estimation is due
to the fact that the proposed system is a feature-based system. Feature points remain to be the
easiest to detect, track and integrate within a SLAM system, and that require the front-end to
have no additional knowledge about the object model, or explicitly provide any information
about its pose.

An important issue to be addressed is the computational complexity of SLAM with dy-
namic objects. In long-term applications, different techniques can be applied to limit the
growth of the graph Strasdat et al. [2011]; Ila et al. [2010]. In fact, history summarisation/dele-
tion of map points pertaining to dynamic objects observed far in the past seems to be a natural
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Table 6.5: Runtime of different system components for both datasets. The time cost of every
component is averaged over all frames and sequences, except for the dynamic object tracking

and object motion estimation that are averaged over the number of objects.

Dataset Tasks Runtime (mSec)

KITTI

Feature Detection 16.2550

Camera Pose Estimation 52.6542

Dynamic Object Tracking (avg/object) 8.2980

Object Motion Estimation (avg/object) 22.9081

Map and Mask Updating 22.1830

Local Batch Optimisation 18.2828

OMD

Feature Detection 7.5220

Camera Pose Estimation 32.0909

Dynamic Object Tracking (avg/object) 7.0134

Object Motion Estimation (avg/object) 19.5280

Map and Mask Updating 30.3153

Local Batch Optimisation 15.3414

step towards a long-term SLAM system in highly dynamic environments.
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Chapter 7

Conclusion

Visual odometry and visual SLAM have been fundamental research topics in the robotics and
computer vision communities for more than two decades. As their application domains become
larger, we witness new challenging scenarios where application-specific conditions occur. This
drives us to develop more accurate, efficient and robust systems on the basis of new, tailor-made
theories and effective implementations.

7.1 Summary and Contributions

This thesis developed, tested and evaluated new visual odometry algorithms that are able to
robustly localize the robot in two challenging cases, underwater and dynamic environments.
The demonstrated results for both cases push the limits of current state-of-the-art in terms
of applicability, accuracy and robustness. Beyond that, to explore the valuable information
in dynamic environments, the thesis proposed to extract the multiple moving objects in the
scene, and track their motions separately. Furthermore, a unified framework was formulated
to exploit the spatial and temporal relations between the camera and object motions, as well as
the scene structures (static and dynamic), to achieve more consistent and accurate estimations.
A summary of the contributions is given in the following.

• A robust and effective stereo underwater visual odometry system is developed to be able
to accurately recover the camera motion and localize the AUV. Intensive analysis and
evaluation of components in the VO system, including image restoration, feature extrac-
tion and matching, as well as motion estimation, are performed to tackle the problems of
poor imaging quality and inconsistent motion in underwater scenes, and explore possi-
bility of improvement on the system in underwater environments. Experimental results
indicate the proposed system helps to achieve excellent performance in localizing the
AUV underwater. Benchmarking on the KITTI dataset demonstrates satisfactory quan-
titative results compared to the state-of-the-art.

• A novel way of modelling and estimating object motion is proposed, along with a brand
new dynamic multi-body visual odometry framework to simultaneously track camera
and multiple object motions. The proposed framework detects moving objects via com-
bining instance-level object segmentation and scene flow, and tracks them over frames
using optical flow. A novel unified formulation that jointly optimizes the SE(3) motions
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(camera or object) and the optical flow, is introduced to improve the quality of the tracked
points and the motion estimation accuracy. The proposed approach is carefully evaluated
on the virtual dataset and extensively tested on the real dataset. The experimental results
show that the proposed method is able to obtain robust and accurate camera trajectories
in dynamic scene, and track the velocity of objects with high accuracy.

• A full dynamic visual SLAM system is proposed as an extension of the multi-body VO
front-end, which integrates the static and dynamic structures of the environment into an
unified estimation framework. The full SLAM system is able to achieve robust moving
object tracking, accurate estimation of dynamic objects full SE(3) pose change, and ex-
tract velocity information of moving objects in the scene, as well as an accurate robot
localisation and mapping of static environment structure. The proposed system consis-
tently shows robust and accurate results on indoor and challenging outdoor datasets, and
establishes state-of-the-art performance in object motion estimation.

7.2 Future Work

The proposed algorithms in this thesis are certainly possible to be further refined. Discussions
on the potential improvements have already been provided in the conclusion part of each chap-
ter. In this section, the author would like to discuss about several potential projects that are
closely related to the proposed methods, and are meaningful and valuable, from a personal
perspective, for the research direction studied in this thesis, and the research community of
visual odometry and SLAM.

7.2.1 Features to Track on Moving Objects

Local features extraction and matching has been the subject of vast amounts of research in
computer vision and robotics areas. Several traditional hand-crafted feature techniques have
been discussed in Section 4.5.1. Over the past few years, new approaches based on Deep
Learning have become the research focus and started to outperform the traditional methods.

One of the representative work is LIFT Yi et al. [2016], a deep network framework im-
plementing the full feature extraction pipeline of detection, orientation estimation and feature
description. It has been proved to outperform the state-of-the-art methods due to its unified
optimization of each individual steps. To deal with feature association across images, Moo Yi
et al. [2018] introduces a deep architecture to learn to find good correspondences, given a set
of putative sparse matches and the camera intrinsics. Meanwhile, the relative pose between
images is also recovered using the selected good correspondences. The authors proved the
effectiveness of the pipeline against the cases of wide baselines, repetitive structure and illumi-
nation changes, compared with typical methods such as RANSAC Fischler and Bolles [1981b],
as demonstrated in Figure 7.1.

The above solutions only consider finding feature correspondences between two images,
and achieve better performance with static world assumption. Nevertheless, I believe the prob-
lem of consistently tracking good features in the scene, particularly on the moving objects for
a period of time steps, is important for VO/SLAM for high dynamic scenarios, but is also ex-
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(a) RANSAC (b) Method in Moo Yi et al. [2018]

Figure 7.1: A demo of matching 2k SIFT keypoints from a challenging image pair, with
inlier matches found with RANSAC (a) and the proposed approach in Moo Yi et al. [2018]
(b). The matches are drawn in green if they conform to the ground-truth Epipolar geometry,

and in red otherwise.

tremely challenging. Specifically, as illustrated in Figure 7.2 (a), only limited number of valid
correspondences can be found using traditional detecting and matching algorithms. Fewer fea-
tures are on the moving objects, leading to easily losing tracking of them within a few frames.
Considering this and the proposed solution in Moo Yi et al. [2018], an end-to-end learning
framework can be developed to find rich and good quality feature tracks (see Figure 7.2 (b)),
and simultaneously the motions of both the camera and objects. What’s more, an in-depth
analysis of the quantity and quality of the feature tracks that decides the optimal solution of
camera and object motion can be performed.

7.2.2 Pixel-wise Rigid Motions: Segment, Estimate and Track

As discussed in Section 5.3.3.1, scene flow is a strong constraint to decide whether the scene
is dynamic or static, and it is relied on the estimate of relative camera motion. Based on
these consideration, current state-of-the-art algorithms made their efforts to jointly solve the
problem of scene flow, relative pose, and motion segmentation, and make them benefit from
each others. For instance, in Taniai et al. [2017], the authors introduce an algorithm of multi-
frame scene flow estimation with motion segmentation. The primary contribution is that they
present a unified framework to compute dense disparity, optical flow and 6-DoF camera mo-
tion, as well as segment the foreground from background on consecutive frames. Similarly, Lv
et al. [2018] proposes a Rigid Transform Network to estimate relative camera transform and
rigid(background)/ non-rigid(foreground) regions. Then the relative camera pose is refined
with dense optical flow over the background region, and finally scene flow is calculated with
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(a) (b)

Figure 7.2: A sketch map of (a) typical matching results using traditional methods and
(b) possible matching results with the proposed idea. Note that lines of orange color refer
to correspondences on the background, while those of green color refer to correspondences on

the moving objects.

the refined pose.

The outlined methods above all focus on estimating scene flow with foreground and back-
ground separation. What can be done differently, is to estimate multiple rigid motions with
rigid objects and background separation. Combining with appearance cue (e.g., semantic in-
formation), rigid motion can act as important geometry cue for segmenting and tracking rigid
objects over multiple frames. Overall, the ideas can be summarized as a problem to be tackled:
given prior camera and object motions, optical flow and instance-level semantic segmentation
mask, is it possible to effectively fuse these cues to get pixel level segmentation of rigid mov-
ing objects, together with estimation of camera and object motions in new coming frame? This
problem is essentially an extension of the proposed framework in Chapter 5 towards dense,
pixel-wise level, with exploration of the inherent relationship for mutual improvement of the
sub-tasks. Note that the proposal of dense framework is considered for the reason that the
whole image region is fully exploited to offer richer information for dynamic scene modelling.
For instance, moving objects in the scene can be tracked consistently even they are distant from
the camera or partial-occluded, while this is quite hard to achieve using sparse features.

Formally, given a reasonable initialization, as shown in Figure 7.3, the camera pose, an
estimated mask (orange) of an object and its motion k−2

k−2Hk−1 from frame k−2 to k−1, assume
the object with a nearly constant motion, i.e.,

k−2
k−2Hk−1 ≈ k−1

k−1Hk = H . (7.1)

Given the ego-motion k−1
k−1Tk computed at k frame, the 3D structure of estimated mask is moved

via H and projected into the k frame image plane, resulting a projected mask (green). Besides,
a flow mask (blue) can be obtained with provided optical flow at frame k, as well as a semantic
mask (red) estimated using semantic segmentation method. With all the provided prior infor-
mation, the goal is to get an optimal segmentation mask and motion estimation of the rigid
object k−1

k−1Hk.
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Figure 7.3: A sketch map of analysing the motion and segmentation of one moving object
between two consecutive frames. Different mask color in the image region indicates the mask

is generated by a specific method.

To sum up, though the problem of moving object tracking (MOT) has been a popular topic
that is well studied, tracking of object in feature level still remains a challenging task due to
illumination change and occlusion, and it is a vita part for high-level scene understanding, e.g.,
static and dynamic object modelling. In addition, scene flow is a basic but essential information
for dynamic scene understanding. A lot of efforts have been made to improve accuracy, but
few has exploited its potential applications in real scenarios. Hence I believe it is of significant
value to go deeper into high-level dynamic scene modelling with rigid motion flow, building
and maintaining a map of static structure, as well as tracking dynamic objects.

7.3 Discussions

Finally, the author would like to discuss a number of interesting questions, which are highly
relevant to the topic of this thesis and the research community of VO and SLAM.

• Is it important to model dynamic information (motion, shape, etc.) in VO/SLAM
problems? The author considers that the answer is definitely yes. Regarding potential
benefits and applications, the problem of accurately identifying, tracking and estimating
the motion of objects in the scene is relevant in many scenarios. One important appli-
cation is in autonomous and safety driving systems that are required to robustly work in
high dynamic environments such as urban and highways. Estimating and modelling the
motion of the objects allows for accurate predictions, which provides essential informa-
tion in collision avoidance and planning in dynamic environments to ensure the safety
of drivers and pedestrians. Moreover, modelling dynamic information can also be used
to assist driver to monitor the surroundings and release driving fatigue. For example,
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self-adaptive cruise control, which is commonly equipped in modern cars, can adap-
tively adjust self-speed on highways and reduce operation from the driver, by accurately
tracking and estimating the distance and speed of a targeted vehicle. Other similar appli-
cations include visual assistance system for the blind and visual surveillance system for
security, etc. The benefits of modelling dynamic information can also be gained from
augmented reality, where real time modelling of the dynamic scene can provide oppor-
tunities in gaming and other AR applications. In current AR solutions, the simulated
characters can only interact with static structure, while mapping the dynamic scenes in
real time allows AR applications to show interactions with dynamic objects and enhance
the sense of reality.

• What is the best way to model objects in VO/SLAM problems? This is an interesting
open question that attracts the attention of many researchers in the SLAM community.
In the literature, many methods have been proposed using sparse Reddy et al. [2016];
Zou and Tan [2013] or dense points Runz et al. [2018]; Rünz and Agapito [2017]; Xu
et al. [2019] to represent objects, which can be easily obtained from sensors such as cam-
eras and Lidars, containing rich geometry information with relatively lower uncertainty.
However, sparse points does not guarantee robust or long-term tracking of objects, while
dense representation requires heavy computational and storage resources. Thanks to the
fast development of deep learning based semantic scene understanding and object track-
ing in the computer vision community, new object representations for visual SLAM start
to gain more popularity, such as 3D bounding box Yang and Scherer [2019]; Huang et al.
[2020] and quadric Nicholson et al. [2018b]; Hosseinzadeh et al. [2019]. The new high-
level entities has the advantage of compact formulation with lower memory cost, hence
ensuring high efficiency of mapping in SLAM. The obvious disadvantage, nevertheless,
lies in the lower accuracy in modelling the objects (pose/motion estimation) compared to
point-based methods, since less parameters imply higher uncertainty for model estima-
tion. To summarize, the author believes there is a clear need for a better representation
of objects in VO/SLAM problems, with careful consideration of the trade-off between
accuracy and computational cost.

• Can event camera sensors be used to solve the dynamic VO/SLAM problems? This
question is raised on the basis of the new emerging technology of event cameras for their
nature of capturing the dynamics of the scenes. Event cameras do not capture images
using a shutter as conventional cameras do. Instead, each pixel inside an event camera
operates independently and asynchronously, reporting changes in brightness as they oc-
cur, and staying silent otherwise. Because of the special mechanism, event cameras have
the advantages of high dynamic range and temporal resolution, thereby are free from mo-
tion blur. This makes event cameras better sensors for highly dynamic environments and
opens new research areas in dynamic ‘events’ tracking and event-based dynamic scene
modelling. Although a considerable amount of event-based VO/SLAM methods Censi
and Scaramuzza [2014]; Kueng et al. [2016]; Rebecq et al. [2017]; Vidal et al. [2018];
Mueggler et al. [2018]; Weikersdorfer et al. [2014]; Milford et al. [2015] and very few
approaches concerning dynamic scene understanding using event cameras Stoffregen
et al. [2019]; Falanga et al. [2020] have been proposed in the literature, no proposed
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solution has been found to tackle the dynamic VO/SLAM problem using event sensors.
However, the author believes, by fully exploiting the advantages of event cameras to
solve dynamic VO/SLAM problems, the potential benefits brought by the new sensors
will push the limits of the state-of-the-art towards a higher level in performance and a
wider domain of application.
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Appendix A

Appendix

A.1 Derivation on Jacobian Matrix of Joint Optic-flow and
Object Motion Cost

If a good initial guess is given, the numerical solution of Equation (5.14) can be obtained by
using Gauss-Newton or Levenberg-Marquart algorithms as discussed in Section 3.4.3. The
idea is to approximate the error function

ei(θθθ ,φφφ i) := k−1pi + k
φφφ

i− kp̂i , (A.1)

by its first order Taylor expansion around the current initial guess:

ei(θθθ +∆θθθ ,φφφ i +∆φφφ
i) ' ei(θθθ ,φφφ i)+ Jei(θθθ )∆θθθ + Jei(φφφ

i)∆φφφ
i , (A.2)

where Jei(θθθ ) and Jei(φφφ
i) are the Jacobians of ei(θθθ ,φφφ i) computed in θθθ and φφφ

i, respectively.

Assume G is the SE(3) element of θθθ , which can be either the camera motion k−1
k−1Tk in (5.3)

or the variant of object motion k−1
k−1Gk in (5.12). the Jacobian matrix Jei(θθθ ) could be obtained

using chains rule as

Jei(θθθ ) = JeJπJG . (A.3)

Since

kp̂i ' π(θθθ ) (A.4)

is a projection function of π(θθθ ), we can easily know that,

Je =
∂ei

∂π
|π=kp̂i = −1 . (A.5)
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The partial derivative of π regarding to the 3D point kmi
k−1 = Gk−1mi

k−1 is:

Jπ =
∂π

∂m
|m=kmi

k−1=Gk−1mi
k−1

=

 fu
mi

z
0 − fu·mi

x
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0 fv
mi

z
− fv·mi
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2

 . (A.6)

The third part of the Jacobian is the derivative of the 3D point kmi
k−1 with respect to the

transformation vector θθθ ∈ se(3), which can be found by Eade [2013]:

Jπ =
∂G
∂θθθ
|G=G(θθθ ),m=kmi

k−1
=
(
I3 | −m×

)
, (A.7)

where m× is the skew-symmetric matrix obtained using the Lie algebra generators for so(3)
(Equation (3.37)), and is given as,

m× =


0 −mi

z mi
y

mi
z 0 −mi
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−mi
y mi

x 0

 . (A.8)

Finally, multiplying all the sub Jacobian matrices, we have
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The calculation of Jacobian matrix Jei(φφφ
i) is straightforward, since the variable φφφ

i is a
linear vector. Given the error cost in (A.1), we have

Jei(φφφ
i) =

∂e
∂φφφ
|
φφφ=kφφφ

i = I2 . (A.10)

A.2 Derivation on Jacobian Matrix of Object Motion Model
Ternary Factor

Parameterise the object motion 0
k−1Hl

k ∈ SE(3) by elements of the Lie-algebra 0
k−1hl

k ∈ se(3),
the linearisation of the motion model error in (6.6) around the initial guess is,

ei,l,k(
0mi

k +∆mk, 0
k−1hl

k +∆h,0 mi
k−1 +∆mk−1) ' ei,l,k(

0mi
k, 0

k−1hl
k,0 mi

k−1)

+ Jei,l,k(
0mi

k)∆mk

+ Jei,l,k(
0

k−1hl
k)∆h

+ Jei,l,k(
0mi

k−1)∆mk−1 . (A.11)
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Each sub Jacobian matrix are derived as in the following.
The partial derivative of ei,l,k with respect to 0mi

k is

Jei,l,k(
0mi

k) =
∂e
∂m
|m=0mi

k
= I3 . (A.12)

Similar to (A.7), the derivative of the 3D point 0mi
k−1 with respect to the transformation vector

0
k−1hl

k ∈ se(3), which can be found as,

Jei,l,k(
0

k−1hl
k) =

∂e
∂h
|h= 0

k−1hl
k ,m=0mi

k−1
=
(
I3 | −m×

)
. (A.13)

Finally, the partial derivative of ei,l,k with respect to 0mi
k−1 is,

Jei,l,k(
0mi

k−1) =
∂e
∂m
|m=0mi

k−1,h= 0
k−1hl

k
= −RH , (A.14)

where RH ∈ SO(3) is the rotation part of 0
k−1Hl

k.
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