CNN-based small object detection and visualization
with feature activation mapping

Medhani Menikdiwela**, Chuong Nguyen*'*, Hongdong Li** and Marnie Shaw?
*Australian Centre of Excellence for Robotic Vision
fResearch School of Engineering, College of Engineering and Computer Science

Australian National University
Canberra ACT 2601, Australia

Email: firstname.lastname @anu.edu.au

fQuantitative Imaging, CSIRO Data61
Canberra ACT 2601, Australia
Email: chuong.nguyen@csiro.au

Abstract—Object detection is a well-studied topic, however
detection of small objects still lacks attention. Detecting small
objects has been difficult due to small sizes, occlusion and
complex backgrounds. Small objects detection is important in
a number of applications including detection of small insects.
One application is spider detection and removal. Spiders are
frequently found on grapes and broccolis sold at supermarkets
and this poses a significant safety issue and generates negative
publicity for the industry. In this paper, we present a fine-tuned
VGG16 network for detection of small objects such as spiders.
Furthermore, we introduce a simple technique called ‘feature
activation mapping” for object visualization from VGG16 feature
maps. The testing accuracy of our network on tiny spiders with
various backgrounds is 84%, as compared to 72% using fined-
tuned Faster R-CNN and 95.32% using CAM. Even though our
feature activation mapping technique has a mid-range of test
accuracy, it provides more detailed shape and size of spiders
than using CAM which is important for the application area. A
data set for spider detection is made available online.

Keywords—object detection, heat map, CNN, R-CNN, feature
activation map

I. INTRODUCTION

Although object detection has long been studied in com-
puter vision[7], [15]], detecting small-sized objects in an image
remains a challenging task [4], [11]. The difficulties involved
in small-object detection are multi-fold, but the main challenge
comes from the relatively-small size of an object in an image,
compared with its background, e.g. only 1-5% of pixels in
an image are occupied by the small object of interest. In
this paper we propose to adapt a simple network such as the
VGG16 for small object detection. We also introduce a new
visualization technique called “feature activation mapping” for
object localization once the object is detected.

Small object detection is important in various scenarios
including autonomous vehicles, mobile robots, agriculture and
tele-operation. In the agriculture scenario, we are particularly
interested in detecting redback spider on grapes or broccoli.
In the grape industry around Australia, screening of redback
spiders, one of the most venomous spiders to humans, remains
a major challenge. Grape inspection is mostly done while

978-1-5386-4276-4/17/$31.00 (© 2017 IEEE

grapes are being picked on farms. Although grape pickers are
trained to identify and remove grape bunches having spiders
or spider webs, there is still a significant chance of missing
them due to their small size and occlusion. Therefore, it would
be highly desirable to find an effective solution for removing
redback spiders from grapes and broccoli, without causing
damage to crops. A tentative method is to identify and separate
spider and non-spider grape bunches at the inspection or the
packaging stage by using deep networks [[10]]. Here we use the
well-known VGG16 network [20]. The network faces the same
challenges as humans when detecting spiders. As the insects
can be very small, i.e. a few pixels wide, their features are
likely to get lost after several convolution and pooling layers.
Their appearance changes depending on viewing angle and
distance and spiders can be occluded partially or completely
when deep inside grape bunches.

II. RELATED WORKS

Object detection has been significantly improved thanks to
recent advances in deep-learning. These include the Fast and
Faster R-CNN [[7]], [15]. A recent extension of R-CNN [5]]
focused on detecting small objects. The algorithm reached a
mean average precision accuracy of 23.5%. Although these
networks perform well, the training is very expensive and re-
quires a large set of image data. Contextual action recognition
also describes how to use R-CNN for more than one region
for classify objects [8]]. Furthermore, Jianan et al [11]] recently
introduced method called “perceptual GAN” for detecting
small objects including pedestrians and traffic signs. VGG16
network [20] was designed for object classification and has
been extended to perform various additional tasks [6], [12]. In
this paper, we aim to see how far this network can be adjusted
for this small object detection task.

One additional task is to locate the classified object by
visualizing what a network perceives. There are a number of
works on visualizing deep neural networks [[13[], [23], [24].
Zeiler et al [23]] used a deconvolutional network to visualize
layer outputs. Zhou et al [24]] used a network that can perform
both scene recognition and object localization in a single
forward-pass. Neither includes any fully connected layers to

the network structure. Therefore, conventional networks like
VGG [20]], AlexNET [9], GoogLeNet [21] need to replace
fully connected layers with a GAP (Global Average Pooling)
layer for the visualization. However, removing those layers
can reduce the classification accuracy. A recent visualization
method called “gradient-weight class activation mapping” does
not require any changes in the network [18].

Heat map is a visualization method that highlights features
learned by a deep neural network. There are several methods
to compute heat maps including “sensitivity analysis” based
on neural network partial derivatives [2], [19], deconvolutional
method [[16] and “layer-wise relevance propagation” algorithm
[1], [[17]. Maxime et al [14]] treated the last fully connected
layers as convolutions and introduced a global max pooling
layer. Alessandro et al [3] introduced an object localization
method which has negative examples generated from the
positive examples by covering the object with a bounding box.
The sensitivity analysis method by Wojciech et al [[16] does not
consider the direction of the gradient flow. The deconvolution
method network [[16] predicts neighboring pixels at deconvolu-
tional layers. Finally, the global average pooling layer by Zhou
et al [25] has also performed well on object visualization.

III. METHODOLOGY
A. Network architecture

Our network architecture is based on VGGI16, type of a
convolutional neural network(CNN) [20] as shown in Figure
[I] This network has 13 convolution layers with rectified linear
units, 5 pooling layers and 3 fully connected layers. VGG16’s
last fully connected layer of 1000 outputs is replaced by a
new layer with only 2 binary outputs for spider and non-spider
classes. An existing VGG16 model trained on the ImageNet
data set [[9] was fine-tuned on our new spider data set.

HHH HHmcscs H

VGG16

Pe [[F61] [fFZ] (78] [SF]
uPy uP1) uP|

\SUM

FEATURE ACTIVATION
MAP

Figure 1: Modified VGG16 network with additional up-
sampling layers to create a “feature activation map”.

B. Feature activation mapping

Our technique “feature activation mapping” is slightly
different from other visualization methods. The technique
generates a feature activation map by using both the high-level
and low-level feature maps. The standard VGG16 network
has five pooling layers so we up-sampled each pooling layer
output to the same resolution as the input image and summed
them to reconstruct a heat map. The neural network learns
different types of features at each layer. Low-level features
like edges are learned by top layers of the network and high-
level features like objects are learned by the bottom layers
of the network. Figure [2] displays the first nine feature
maps of every final convolutional and pooling layer [13],
[22]. The features of the spider are clearly displayed in the
first convolutional layers until the pool3 layer. Thereafter it
shows a yellow colored bright spot which represents the center
point of the spider. In addition, some of the spider feature
maps are almost blank at higher convolutional layers, which
may indicate the disappearing of the features of tiny objects.
Therefore combining feature maps from all pooling layers is
necessary to reconstruct a high resolution heat map. Figure [I]
shows the VGG16 network with modifications to generate the
heat map.

Feature maps H ,lc from a single layer [are summed to create
a layer heat map H'. The layer heat maps of all layers are
upsampled with corresponding factor R' to the same resolution
of input images and then summed together to produce the
overall heat map as expressed in Equation 1. L is 5 in our
network since we have selected all five pooling layers.

L

L K
H_ZHZ*R1_2<ZH,§>*31)
=1 k=1

=1 =

When an image is classified as a spider image, the heat
map is then used to visualize the spider location.

IV. NEW SPIDER DETECTION DATASET

Our dataset consists of spider images collected from
Google and Flicker. Given that one of the objectives was the
detection of tiny spiders, we used images where the scale of the
spider was 1-10% of the image size. We did not use any spider
images from the ImageNet dataset because in those images,
the scale of the spider is quite large compared with the back-
ground. Before data augmentation, the total number of images
was 400, of which 200 are spider images and 200 are non-
spider images. Non-spider images contain grapes, broccoli,
green vegetables and other backgrounds where spiders often
inhabit. Due to the relatively small number of spider images,
data augmentation was applied to generate more images. The
data augmentation was done by flipping and rotating the
images. For the task of small object detection, we used only
27 spider images out of 200 which had a scale of 1-5% of the
image size, as well as a similar amount of non-spider images
with various backgrounds. Sample images from the small-scale
spiders dataset are shown in the left column of figure [3]

We make spider detection dataset available at https://
tinyurl.com/ybzaycsf,

https://tinyurl.com/ybzaycsf
https://tinyurl.com/ybzaycsf

Al

(b) convl (c) pooll

(f) conv3

(a) input image

(d) conv2

(e) pool2

(g) pool3 (h) conv4 (i) pool4

(j) conv5 (k) pool5

Figure 2: First nine feature maps of some VGG16 layers.

V. EXPERIMENTS

Our initial training was only with spider and non-spider
images, irrespective of the scale of spiders. Therefore the
network was initially fine-tuned and tested on differently scaled
spider images, including 1-5% of the image size. At the testing
stage, some spider images were not detected as spiders for
two reasons: first, the scale of the spider was very small
compared to the image size, and second, the images had
complex backgrounds. After cropping the images, the network
was able to correctly detect spiders in those images. Figure [3]
shows such an image before and after cropping. The size of
the spider in the original image is quite small compared to the
background (about 2%) and the background is complex. But
in the image on the right, the size of the spider is increased
relative to the background (about 7%) and the background is
also not as complex as that on the left. Therefore we concluded
that scale and background complexity are major factors for
CNN based small object detection.

As a result, network fine-tuning was then performed with
different strategies to identify the most suitable strategy to

Figure 3: The spider is unsuccessfully detected on original
image is on the left, but successfully detected from the cropped
image on the right.

obtain improved results. We tried fine-tuning various layers, in
particular the final fully connected layer, all fully connected
layers and all layers including the convolutional layers. After
comparing training losses we found that the network performs
best when all the layers are fine-tuned because the training
loss approaches zero.

We also identified an issue that the network had reduced
capability to identify spiders with a scale of less than 5%
compared to the image size. Therefore we moved on to fine
tune our network on spider images with a scale 1-5%, on top
of the original weights which were trained on ImageNet.

After fine-tuning all the layers, we used the network to
classify small spiders and generated heat maps as a post-
processing stage.

For comparison, different networks with different methods
of localization and visualization were also fine tuned and
tested on the same dataset. Faster R-CNN [7]], [[15] classifies
spiders and locates them with a bounding box. Class activation
mapping (CAM) [25] classifies spiders and also generates heat
maps to localize them.

VGG16 was trained with spider and non spider images
with a scale of 1-5%. Input image size is 224 x 224 pixels.
After data augmentation, the number of spider images was 108
which were taken as positive examples and a similar number of
negative examples were used for the training. The training was
performed with 10000 iterations, or nearly 470 epochs. The
faster R-CNN network and CAM based network were also fine
tuned for two classes with above dataset. Those networks were
also fine tuned with a similar number of iterations as VGG16.
Since faster R-CNN performed well on object detection, we
decided to choose faster R-CNN for our comparison.

A. Classification results

The training and testing accuracy percentage comparison
with faster R-CNN and CAM is shown in Table 1. Testing
was based on 120 spider and non-spider images. The network
was validated with 20 spider and non-spider images. The
classification accuracy of our VGG16 network lies between
Faster R-CNN and CAM. Inferring a single image takes 0.25-
0.27 sec to get a binary output using VGG16 and 10-15 sec to

Table I: Training and testing accuracy comparison with Faster
R-CNN and CAM

Network [Training Accuracy [Testing Accuracy
VGG16 fine tuned on spiders 95.37% 84%
Faster R-CNN fine tuned on spiders 92% 2%
CAM with global pooling 98% 95.32%

visualize a feature activation map. Faster R-CNN takes 0.04-
0.6 sec to get a bounding box, while CAM takes 5-7 sec to
generate a heat map. At the testing stage, even though average
time to get a classification output is faster than faster R-CNN,
visualization is slower compared to CAM.

B. Visualization results

Visualization is useful to find the location of the spiders
when images are classified as spider images. Figures [M] and
[5] shows our feature activation maps of spider and non-spider
images respectively. The feature maps of our method in Figure
[] clearly show not only the center point of the spider but
also the features and the boundary lines of the spiders. While
CAM'’s heat maps show a single broad peak near the actual
location of the spiders, they do not indicate what size and shape
of the spider is being detected. According to the Figure [3
most of the time faster R-CNN has detected spiders accurately
but sometimes other objects with similar features were also
detected as a spiders.

Non spider feature activation maps in Figure [5] show
boundary lines of objects in the image (grapes, green leaves,
grass etc). Note that CAM’s non-spider images are not clear
compared to ours for two reasons: first, those images do not
show any boundary lines or features and, second, non spider
images also have several peaks which could be misunderstood
as spiders.

VI. CONCLUSION

We have shown that a simple network like VGG16 can be
fined-tuned to detect small objects, and that feature activation
mapping is a useful simple technique to visualize objects
detected in an image. This method has the ability to depict
the shapes of the objects. We used the object scale of 1-
5% of image size and trained our network with relatively
few training examples. We compared our network performance
with CAM and Faster R-CNN qualitatively and quantitatively.
Although the accuracy of our method is inferior to CAM, the
feature activation maps for our method show more detail of
shape and size of the spiders. The comparison provides useful
information for practitioners to select a suitable method for
their detection problem. We also make available our spider
detection dataset to facilitate future research work.

ACKNOWLEDGMENT

Authors would like to thank Australian Government Re-
search Training Program for funding this research. This re-
search was conducted by the Australian Research Council
Center of Excellence for Robotic Vision (CE140100016) http:
//www.roboticvision.org.

Y

Original image Ours CAM Faster R-CNN

Figure 4: Our positive (spider) feature activation maps in
comparison with CAM and Faster R-CNN. Compared with
CAM our feature activation maps have more details including
shapes and the boundary lines of the spiders.

REFERENCES

[1] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick
Klauschen, Klaus-Robert Miiller, and Wojciech Samek. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS one, 10(7):e0130140, 2015.

[2] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawan-
abe, Katja Hansen, and Klaus-Robert MAZller. How to explain indi-
vidual classification decisions. Journal of Machine Learning Research,

http://www.roboticvision.org
http://www.roboticvision.org

Original image

ours CAM

Figure 5: Our negative (non-spider) feature activation maps
in comparison with CAM. CAM’s non spider heat maps also
have peaks similar to spider heat maps and does not have any
object boundaries compared to ours

[3]

[4]

[5]

[6]

[7]

[8]

[91

11(Jun):1803-1831, 2010.

Loris Bazzani, Alessandra Bergamo, Dragomir Anguelov, and Lorenzo
Torresani. Self-taught object localization with deep networks. In Ap-
plications of Computer Vision (WACV), 2016 IEEE Winter Conference
on, pages 1-9. IEEE, 2016.

Sean Bell, C Lawrence Zitnick, Kavita Bala, and Ross Girshick. Inside-
outside net: Detecting objects in context with skip pooling and recurrent
neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2874-2883, 2016.

Chenyi Chen, Ming-Yu Liu, Oncel Tuzel, and Jianxiong Xiao. R-cnn
for small object detection. In Asian Conference on Computer Vision,
pages 214-230. Springer, 2016.

Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis
using convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 262-270, 2015.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1440-1448, 2015.

Georgia Gkioxari, Ross Girshick, and Jitendra Malik. Contextual action
recognition with r* cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1080-1088, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097-1105, 2012.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436-444, 2015.

Jianan Li, Xiaodan Liang, Yunchao Wei, Tingfa Xu, Jiashi Feng, and
Shuicheng Yan. Perceptual generative adversarial networks for small
object detection. arXiv preprint arXiv:1706.05274, 2017.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3431—
3440, 2015.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image
representations by inverting them. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 5188-5196,
2015.

Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. Is object
localization for free?-weakly-supervised learning with convolutional
neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 685-694, 2015.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91-99, 2015.

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian
Lapuschkin, and Klaus-Robert Miiller. Evaluating the visualization of
what a deep neural network has learned. IEEE transactions on neural
networks and learning systems, 2017.

Wojciech Samek, Grégoire Montavon, Alexander Binder, Sebastian
Lapuschkin, and Klaus-Robert Miiller. Interpreting the predictions of
complex ml models by layer-wise relevance propagation. arXiv preprint
arXiv:1611.08191, 2016.

Ramprasaath R Selvaraju, Abhishek Das, Ramakrishna Vedantam,
Michael Cogswell, Devi Parikh, and Dhruv Batra. Grad-cam: Why
did you say that? visual explanations from deep networks via gradient-
based localization. arXiv preprint arXiv:1610.02391, 2016.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
1IEEE conference on computer vision and pattern recognition, pages
1-9, 2015.

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod

Lipson. Understanding neural networks through deep visualization.
arXiv preprint arXiv:1506.06579, 2015.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In European conference on computer vision,
pages 818-833. Springer, 2014.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. Object detectors emerge in deep scene cnns. arXiv preprint
arXiv:1412.6856, 2014.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio
Torralba. Learning deep features for discriminative localization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2921-2929, 2016.

	Introduction
	Related works
	Methodology
	Network architecture
	Feature activation mapping

	New Spider detection dataset
	Experiments
	Classification results
	Visualization results

	Conclusion
	References

