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Ray-Space Epipolar Geometry for Light Field
Cameras

Qi Zhang, Qing Wang, Senior Member, IEEE, Hongdong Li, and Jingyi Yu,

Abstract—Light field essentially represents rays in space. The epipolar geometry between two light fields is an important relationship
that captures ray-ray correspondences and relative configuration of two views. Unfortunately, so far little work has been done in
deriving a formal epipolar geometry model that is specifically tailored for light field cameras. This is primarily due to the
high-dimensional nature of the ray sampling process with a light field camera. This paper fills in this gap by developing a novel
ray-space epipolar geometry which intrinsically encapsulates the complete projective relationship between two light fields, while the
generalized epipolar geometry which describes relationship of normalized light fields is the specialization of the proposed model to
calibrated cameras. With Plücker parameterization, we propose the ray-space projection model involving a 6×6 ray-space intrinsic
matrix for ray sampling of light field camera. Ray-space fundamental matrix and its properties are then derived to constrain ray-ray
correspondences for general and special motions. Finally, based on ray-space epipolar geometry, we present two novel algorithms, one
for fundamental matrix estimation, and the other for calibration. Experiments on synthetic and real data have validated the
effectiveness of ray-space epipolar geometry in solving 3D computer vision tasks with light field cameras.

Index Terms—Ray-Space Epipolar Geometry; Ray-Space Fundamental Matrix; Light Field Camera; Plücker Parameterization.
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1 INTRODUCTION

L IGHT field camera (LFC) such as Lytro [1] and
Raytrix [2] can record spatial and angular information

of rays in 3D space. Based on the angular sampling of light
rays, advanced multiple-view 3D vision problems such as
structure-from-motion (SfM), light field stitching, and more
robust SLAM have been investigated (e.g., [3], [4], [5],
[6] [7], [8], [9], [10], [11], [12], [13]). To facilitate these multi-
view light fields based 3D applications, it is desirable to
have a unified geometric framework that encapsulates two
view ray-ray correspondences, just like the conventional
two-view epipolar geometry for the conventional pinhole
camera. However, so far, little work has been done along
this line of research for light field cameras. Although an LFC
can be treated as an array of pinhole cameras, repeatedly
applying the traditional epipolor geometry to each individ-
ual sub-aperture images remains a unduly onerous task.
Moreover, given that the viewpoints of an LFC are regularly
arranged on a planar grid, treating each sub-aperture as a
pinhole camera is unable to capture the more natural ray-ray
relations among different LFCs. It is much desirable to have
a dedicated “epipolar geometry” theory between two light
fields that can uniformly constrain ray-ray correspondence
and compute projection matrices for light fields, and this is
the central motivation of this paper.
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Existing LFC models [14], [15] mostly define the projec-
tion from an arbitrary point in 3D space (passing through
micro-lens) to the corresponding pixel on the sensor, but
only focused on monocular LFC. A reliable mathematical
mechanism is necessary to uniformly describe ray transfor-
mations with intrinsic and extrinsic parameters. The Plücker
coordinate explicitly provides a homogeneous parameteri-
zation for rays to effectively formulate ray-ray correspon-
dence, whose performance has been verified in generalized
epipolar geometry [3], [16]. However, generalized epipolar
geometry [16] only defines the relationship of normalized
light fields (calibrated LFCs). It is crucial to generalize this
model to comprehensively describe complete projective ge-
ometry of light fields including intrinsic parameters. To in-
trinsically explore the complete projective geometry of light
fields, LFC projection model and intrinsic parameters suited
for Plücker parameterization are indispensable. Dansereau
et al. [17] describe pixel-ray correspondences and present a
4D intrinsic matrix. However, their model has redundancy
and dependency, which makes the Plücker representation
impossible. Zhang et al. [15] propose anther state-of-the-art
projection model, which provides independent and effective
intrinsic parameters for the Plücker representation (as also
verified in the shorter version of our work [18]).

To our knowledge, the shorter version of our work [18]
is the first to intrinsically explore ray-ray correspondence
and generalize a ray-space fundamental matrix from [16]
for multi-view light fields instead of normalized light
fields. This paper significantly extends [18] with the ray-
space epipolar geometry based on the proposed ray-space
projection model, along with properties and corollaries of
the proposed fundamental matrix, just as what has been
developed for traditional pinhole cameras. We also present
an efficient fundamental matrix estimation algorithm.
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Our main contributions are:
1) The ray-space epipolar geometry among light field cam-

eras is exploited based on ray-space projection model.
2) The properties of ray-space fundamental matrix are elu-

cidated with Plücker parameterization, both for general
and special motions.

3) Two novel algorithms, including fundamental matrix es-
timation and light field camera calibration, are proposed
to verify the proposed epipolar geometry.

2 RELATED WORK

2.1 LFC Projection Model
Since the hand-held LFC is put forwarded by Ng [19],
many research groups [14], [15], [17], [18], [20], [21] have
extensively explored various projection models for LFCs. In
general, the LFC models can be roughly divided into three
categories.

Dansereau et al. [17] first propose a 12-free-parameter
LFC model, corresponding the recorded pixels to the rays
outside the camera. They derive a 4D decoding matrix for
ray sampling. However, the 4D intrinsic matrix has redun-
dancy and dependency, which results in irregular rays sam-
pling during the calibration and rectification. It is difficult to
uniformly describe ray sampling with intrinsic parameters
and ray transformation with extrinsic parameters (as also
verified in [7]).

Different from the calibration based on corner features
of sub-aperture images, Bok et al. [14] utilize line features
which are directly extracted from raw data to calibrate
an LFC. They formulate a 6-parameter coupling geometric
projection model with clear physical meaning for an LFC to
relate the scene point to raw data. Taken the point projec-
tion into consideration, the coupling of intrinsic parameters
confronts a significant challenge to linearly express the ray
sampling and transformation.

More recently, Zhang et al. [15] propose a 6-parameter
multi-projection-center (MPC) model with clear physical
meaning for LFCs, including traditional and focused LFCs.
A 3D projective transformation is deduced to describe the
relationship of geometric structure between light filed and
camera coordinate frames. The projections of an LFC on
planes and conics are also explored under MPC model [22],
[23]. Considering the independence of intrinsic parameters
and advantages of Plücker parameterization, it is convincing
to uniformly describe ray sampling and transformation with
the Plücker parameterization. Consequently, based on the
MPC model, a ray-space projection model is proposed to
correspond the ray recorded by an LFC to the ray in space
in a shorter version of our work [18], which also verifies the
convenience and effectiveness of Plücker parameterization.

2.2 Generalized Epipolar Geometry
Epipolar geometry is proposed to constrain image points
correspondence and reconstruct camera geometry for tra-
ditional cameras over the decades [24]. In order to conve-
niently represent image point and estimate relation among
cameras, Grossberg and Nayar [25] first define the image
pixel as the light from a cone around a ray and propose
a generalized camera model. Pless [16] then simplifies this

model so that it only includes the definition of ray that
the pixel samples. A general linear framework is proposed
to describe any cameras as an unordered collection of
normalized rays which are obtained from sensor elements
via calibration. The correspondences between normalized
rays need to be established with the assumption that these
rays intersect at a single scene point. Then, the generalized
epipolar geometry is proposed to constrain normalized ray-
ray correspondences with Plücker parameterization and
prior calibration. The generalized epipolar geometry is the
projective geometry for calibrated cameras which only relies
on the relative pose. Sturm [26] introduces a hierarchy of
general camera model. In this framework, 17 corresponding
normalized rays are sufficient to solve linearly for pose
estimation. Li et al. [27] carry out a pose estimation based on
the generalized epipolar constraint. This can also be applied
to estimate the motion of calibrated LFCs.

Guo et al. [8] propose a ray-space motion matrix to estab-
lish normalized ray-ray transformation for motion estima-
tion. Moreover, Johannsen et al. [3] extend the generalized
epipolar constraint into point-ray constraint. A linear math-
ematical framework is built from the relationships between
scene geometry and normalized rays for motion estima-
tion. In summary, the existing methods utilize generalized
epipolar geometry to describe the projective geometry of
normalized light fields (calibrated LFCs), which only relies
on the relative pose. However, an LFC essentially records
the scenes via light fields instead of normalized light fields.
It is incomprehensive to describe the complete projective
geometry of LFCs without considering intrinsic parameters.
Consequently, similar to the traditional epipolar geometry
for image point-point correspondence, it is essential to
uniformly define the ray-space epipolar geometry for light
field ray-ray correspondences through generalizing from
[16]. It depends on intrinsic parameters and relative pose,
and widely extends applications for multi-view light fields,
whereas generalized epipolar geometry is specialized to
estimate motion with pre-calibration.

2.3 Fundamental Matrix

Fundamental matrix has gained increasing attention since
the seminal work presented by Higgins [28]. Hartley [29]
presents a fundamental matrix estimation algorithm from
arbitrary seven correspondences according to the rank-2
constraint and solves the cubic polynomial equation. Barath
[30] estimates the fundamental matrix in two views from
five correspondences with some assumptions, i.e. co-planar
three correspondences and arbitrary two correspondences.
In order to improve numerical stability for fundamental
matrix estimation, a simple normalized transformation of
corresponding point is involved [31]. Zhou et al. [32] pro-
pose a normalization algorithm to estimate the fundamental
matrix from at least three plane homographies. Moreover,
many existing methods utilize fewer correspondences to
estimate fundamental matrices with strict constraints. (e.g.
known principle points [33], calibrated camera [34], [35],
and special camera motion [24], [36]).

A seemingly straightforward choice for fundamental
matrix of two light fields is to consider it as a direct ex-
tension of that for a monocular pinhole camera. Treating
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sub-aperture images independently, however, creates larger
image sets, and defies the aim that light field essentially
represents rays which are regularly recorded by an LFC.
Therefore, it is essential to exploit the ray-space epipolar
geometry of two light fields and propose a ray-space funda-
mental matrix specifically designed for LFCs.

3 RAY-SPACE PROJECTION MODEL

3.1 The Multi-Projection-Center Model
LFCs, especially those micro-lens array based, represent an
innovative departure from the traditional pinhole camera.
With the shifted views, an LFC maps 3D space to many
sub-aperture images, which produces 4D light field. The ray
in 4D light field is parameterized in a relative two-parallel-
plane coordinates [37], where Z = 0 denotes the view plane
and Z = f for the image plane. In this parameterization, the
normalized physical ray is described as r = (s, t, x, y)> in
term of specific (e.g., meter) dimension. The ray r intersects
with the view plane at projection center (s, t, 0)>. The pair
(x, y) is the intersection of the ray r with the image plane,
but it is relative to (s, t, f)> which is the origin of image
plane. The (x, y, f)> describes the direction of ray. Then, ac-
cording to the MPC model [15], a 3D point X=(X,Y, Z)>

is mapped to the pixel (x, y)> in the image plane,

Z

 xy
1

=
 f 0 0 −fs

0 f 0 −ft
0 0 1 0



X
Y
Z
1

 . (1)

This is analogous to classical projective camera model with
projection center at (s, t, 0)> and principal axis paralleling
to the Z-axis.

The ray l = (i, j, u, v)> captured by an LFC in light
field coordinate frame is transformed into a normalized
undistorted physical ray r in camera coordinate frame by
a homogeneous decoding matrix D ∈ R5×5 [15],

s
t
x
y
1

=

ki 0 0 0 0
0 kj 0 0 0
0 0 ku 0 u0
0 0 0 kv v0
0 0 0 0 1



i
j
u
v
1

 , (2)

where (ki, kj , ku, kv, u0, v0) are intrinsic parameters of an
LFC. (ki, kj) are scale factors for s and t axes in the view
plane and (ku, kv) for x and y axes in the image plane
respectively. In addition, (−u0/ku,−v0/kv)> represents the
principal point in the sub-aperture image.

3.2 Ray-Space Intrinsic Matrix
According to the MPC model, an LFC is assumed as an
array of pinhole cameras. In this framework, a light field
is described as a set of sub-aperture images recorded by a
collection of perspective cameras. In order to simplify the
discussion of geometric analysis in multiple light fields, the
pixel captured by an LFC is generalized and simplified to a
ray [16], [19]. The light field essentially represents all rays
as a whole. Consequently, we need a new mechanism to
describe arbitrary rays in 3D projective space. The Plücker
parameterization provides convenience to mathematically

formulate concise and efficient correspondence equations
(e.g., rotation and translation). In addition, the Plücker co-
ordinate is also a homogeneous parameterization to unam-
biguously represent a ray in 3D projective geometry. We will
briefly review the core theory leading the equations for ray-
space projection model.

With the introduction of Plücker parameterization, the
ray is mathematically represented by a pair of vectors
(m>, q>)> ∈ R6, named moment and direction vectors re-
spectively. Moreover, the moment vector denotesm=X×q,
for an arbitrary point X on the ray. Further, as mentioned
above, the physical ray r=(s, t, x, y)> in 3D space contains
directional sampling (x, y)> and positional sampling (s, t)>

of the ray. Therefore, with the simplicity that the interval
between two-parallel-plane f is set to unit, the moment
vector and direction vector of r are defined as [38],{

m=(s, t, 0)>×(x, y, 1)> = (t,−s, sy − tx)>

q=(x, y, 1)>
, (3)

where R=(m>, q>)> is a Plücker coordinate.
Substituting Eq. (2) into Eq. (3), there is a transformation

caused by the intrinsic parameters (ki, kj , ku, kv, u0, v0).
Then the ray-space intrinsic matrix (RSIM) K ∈ R6×6 is
established to describe the relationship between the ray
L = (n>,p>)> in light field coordinate frame and the
normalized undistorted physical ray R = (m>, q>)> in
camera coordinate frame with the Plücker parameterization,

[
m
q

]
=


kj 0 0 0 0 0
0 ki 0 0 0 0

−kju0 −kiv0 kikv 0 0 0
0 0 0 ku 0 u0
0 0 0 0 kv v0
0 0 0 0 0 1


︸ ︷︷ ︸

=:K

[
n
p

]
, (4)

which needs to satisfy the condition ku/kv = ki/kj . (u, v)>

is pixel coordinate extracted from sub-aperture image at the
view coordinate (i, j)>. Then, n = (i, j, 0)>× (u, v, 1)> =
(j,−i, iv − ju)> and p = (u, v, 1)> represent the moment
and direction vectors respectively.

Besides, the RSIM is abbreviated to a 3×3 lower trian-
gular matrix Kij and a 3×3 upper triangular matrix Kuv .
Given that moment vector also implies the 3D points lying
on the ray, two corollaries of RSIM are derived.

Corollary 1. Block intrinsic matrices Kij and Kuv are orthog-
onality, i.e. KijK

>
uv=K

>
ijKuv=kikvI .

Corollary 2. Suppose two corresponding 3D points Xd and X
lying on L and R respectively, Xd and X are related by Xd =
1

kikj
K>ijX = ku

ki
K−1uvX , which is the same as 3D perspective

transformation in MPC model [15].

3.3 Ray-Space Projection Matrix

In general, considering Xw denotes a point in the world
coordinate frame, the transformation between the world and
camera coordinate frames is described by a rotation matrix
R ∈ SO(3) and a translation vector t = (tx, ty, tz)

> ∈ R3,
formulated as X = RXw + t. Consequently, the Plücker
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Fig. 1. RSP model and fundamental matrix among LFCs.

transformation can be formulated according to generalized
epipolar geometry [16],

Rw=

[
R> E>

O3×3 R>

]
R, (5)

where E = [t]×R is the essential matrix and [ · ]× refers
to the vector cross product [24]. R = (m>, q>)> and
Rw = (m>w , q

>
w )
> are expressed the rays in the camera

and world coordinate frames respectively. Subsequently,
according to Eqs. (3) and (4), the homogeneous ray-space
projection matrix (RSP) P can be written as,

Rw=

[
R> E>

O3×3 R>

]
K︸ ︷︷ ︸

=:P

L, (6)

which refers to the transformation between L in light field
coordinate frame and Rw in the world coordinate frame as
shown in Fig. 1.

Furthermore, for arbitrary Plücker ray R, it satisfies the
self-constraint R>ΩR=0 [39],

R>
[
O3×3 I
I O3×3

]
R=0, (7)

where Ω refers to the Klein quadric that contains all rays
with Plücker parameterization in 5D projective space P5. As
shown in Eq. (7), a Plücker ray indicates a point on Klein
quadric in P5. Let L, R and Rw denote the same ray in
different coordinate frames and relate to each other under
RSIM K and RSP P , as shown in Fig. 1. According to Eq.
(7) and Corollary 1, we thereafter obtain a corollary of RSP,

Corollary 3. The projections of Klein quadricΩ under RSIMK
and RSPP are equal to Klein quadric up to a scale, i.e.P>ΩP =
K>ΩK=kikvΩ.

Remarks. The presences of K and P may be expressed by
saying that a quaric transforms invariantly. Moreover, the
scale can be ignored due to the homogeneity of Plücker rays.

4 RAY-SPACE EPIPOLAR GEOMETRY

In essence, RSP model is a unified framework that considers
all rays collected by the LFC as a whole. We derive the

dedicated multi-view geometry relationship for LFCs, just
as what has been developed for the traditional perspective
cameras. The ray-space epipolar geometry is the 5D in-
trinsically complete projective geometry between two light
fields. It is independent of scene structure and only depends
on the RSIM and relative pose. The ray-space fundamental
matrix F encapsulates this intrinsically complete projective
geometry and is unchanged by projective transformation.

4.1 Ray-Space Fundamental Matrix

In order to constrain the ray-ray correspondences between
two LFCs, the ray-space fundamental matrix F is proposed,

Corollary 4. The ray-space fundamental matrix satisfies the
constraint L>FL′ =0 for any ray-ray correspondences L↔L′
in two light fields.

Proof. Given RSP matrices for two LFCs, the second camera
coordinate frame is assumed as the world coordinate frame
as shown in Fig. 1,

P =

[
R> E>

O3×3 R>

]
K, P ′=

[
I O3×3

O3×3 I

]
K ′. (8)

Suppose two intersecting rays Rw = (m>w , q
>
w )
> and

R′w=(m′w
>, q′w

>)> are captured by two LFCs respectively.
Rw and R′w satisfy q>wm

′
w+m>wq

′
w = 0 [39], or in bilinear

form R>wΩR′w = 0. Let L and L′ denote the rays captured
by the first and second LFCs respectively. We then derive a
geometry constraint between L and L′ under projections P
and P ′, i.e. L>FL′=0,

L>P>
[
O3×3 I
I O3×3

]
P ′L′=0, (9)

where F is uniquely generated by a pair of RSP matrices
(P ,P ′), and L is conjugate to L′ with respect to F .

Besides, substituting Eq. (8) into Eq. (9), F is partitioned
into 2×2 block matrices,

F =

[
O F12

F21 F22

]
=

[
O K>ijRK

′
uv

K>uvRK
′
ij K>uvEK

′
uv

]
, (10)

where Fij is a 3×3 block matrix.
Consequently, Eq. (9) is restated,

p>F21n
′+p>F22p

′+n>F12p
′=0. (11)

For a valid correspondence, all rays in both light fields must
come from the same scene point, as shown in Fig. 1.

Subsequently, according to Eq. (10) and Corollary 1, two
important constraints of F are deduced for the sake of F
computation as follows,
1) Orthogonal Constraint. F21 and F12 are orthogonal, i.e.
F>12F21=F

>
21F12=λI .

2) Singular Constraint. F22 is singular, in fact of rank 2.
Remarks. F has 17 degrees of freedom: F has 26 indepen-
dent non-zero elements (27−1, one for global scale); however
F also satisfies the orthogonal and singular constraints
which decreases the degrees of freedom to 17, (26−9−1+1, 9
for orthogonal constraint, 1 for singular constraint, the last
+1 for unknown factor λ).
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Considering that n is the moment vector, Eq. (11) can
also be derived to indicate the fundamental matrix between
arbitrary sub-aperture images of two light fields,

p>
(
F21

[
(i′, j′, 0)>

]
×
+F22−

[
(i, j, 0)>

]
×
F12

)
p′=0,

(12)
whereF22 indicates the fundamental matrix between central
views of two light fields.

Moreover, according to Eq. (9) and Corollary 3, we now
turn to another crucial corollary of F , that the matrix may
be used to determine the RSP matrices of two light fields.

Corollary 5. Suppose PT is a RSP matrix representing a
homogeneous ray-ray transformation, the ray-space fundamental
matrices corresponding to the pairs of RSP matrices (P ,P ′) and
(PTP ,PTP

′) are the same.

Remarks. Despite that a pair of RSP matrices uniquely
determines F from Eq. (9), the converse is not true. It is easy
to observe that RSP matrices can be computed from the fun-
damental matrix up to a projective ambiguity. It can also be
applied for scene reconstruction and projective rectification.
In addition, if F is the ray-space fundamental matrix of a
pair of LFCs (P ,P ′), then F> is the fundamental matrix of
the pair in the opposite order (P ′,P ).

4.2 Ray-Space Epipolar Geometry

The ray-space epipolar geometry between two light fields
is essentially the geometry of two ray bundles in P3. Ac-
cording to Eq. (7), all rays with Plücker parameterization
satisfy self-constraint of Klein quadric Ω in P5, which is
also a special case of Grassmann manifold. Subsequently,
the relation between the 4-dimensional ray in P3 and the
point of Ω in P5 is bijective correspondence, as shown in
Fig. 2. The set of rays {L} intersecting at the single point is
called a ray bundle. A Klein quadric carries a 3-parameter
family of 2-dimensional subspaces (epipolar hyperplanes) in
P5, which corresponds to ray bundles in P3.

It is interesting to note that the “epipolar line” for an
LFC is epipolar hyperplane, symbolized by Π . The ray-
space fundamental matrix F is the algebraic representation
of epipolar geometry for LFCs. Consequently, we have
considered the mapping L′ 7→ Π defined by F . In other
words, the ray L which is equivalent to the points on the
Klein quadricΩ lies on the epipolar hyperplaneΠ mapped
from L′ by F in P5 (i.e. L>Π =0), as shown in Fig. 2. F is
a perspective correlation which maps points to hyperplane on
Klein quadric in P5. F represents a mapping between two
2-dimensional subspaces, and hence is a full rank matrix.
The full rank F means that there is inverse mapping which
also relates ray to hyperplane.

Geometrically, for any ray L′, Π = FL′ is the cor-
responding epipolar hyperplane, as shown in Fig. 2. L
also lies on the same epipolar hyperplane, which refers to
L>FL′ = 0. This ensures that F can be estimated from
ray-ray correspondences. Besides, Eq. (9) also proves that
F is independent of scene structure, and can be determined
uniquely from RSP matrices.

In summary, the definition and properties of ray-space
fundamental matrix F are briefly summarized as follows,

Klein Quadric

Epipolar Hyperplane

=Π F

F{ } { }

5

3

Fig. 2. Ray-space epipolar geometry. The ray bundles {L} and {L′} of
pointX in light field 1 and 2 are marked by red and orange respectively.
They are also points on Klein quadric in P5. The epipolar hyperplane
Π = FL′ refers to a hyperplane on Klein quadric in P5. It is mapped
from L′ by F . The corresponding ray L lies on Π, that is L>FL′=0.

Definition 1. The ray-space fundamental matrix F between
two light fields is a unique 6 × 6 full rank homogeneous matrix
which satisfies,

L>K>
[
O3×3 R
R E

]
K ′︸ ︷︷ ︸

=:F

L′ = 0, (13)

for all ray-ray correspondences L↔L′.

1) F is a full rank matrix with 17 degrees of freedom.
2) F is estimated from ray-ray correspondences L>FL′=0.
3) Π = FL′ is the epipolar hyperplane on Klein quadric

corresponding to L′ in P5. Similarly, Π ′ =F>L is the
epipolar hyperplane corresponding to L.

4) F is uniquely computed from RSP matricesF=P>ΩP ′.
Remarks. Eq. (13) could be thought of as the generalization
of previous work [16] in which the assumption of calibrated
LFC is removed. Specifically, Eq. (13) intrinsically constrains
the ray-ray correspondences among light fields and encap-
sulates the ray-space epipolar geometry, whereas the gener-
alized epipolar constraint [16] only defines the relationship
of motion among normalized light fields (calibrated LFCs).
Consequently, the ray-space fundamental matrix is a basic
algebraic entity of multi-view light fields. The properties of
the ray-space fundamental matrix also provide the theoreti-
cal basis for developing multi-view applications.

4.3 Special Cases of Fundamental Matrix

Certain special motions, or the constant intrinsic parame-
ters, allow the ray-space fundamental matrix to be simpli-
fied. We will discuss two cases: pure translation and pure
rotation. The ’pure’ indicates that there is no change in the
intrinsic parameters.
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Pure translation. Suppose the motion of the LFC is a pure
translation with no rotation (R = I) and no change in the
intrinsic parameters (K =K ′). According to Eq. (13) and
Corollary 1, we formulate

Ft=

[
O3×3 I
I ku

ki

[
K−1uv t

]
×

]
, (14)

where Ft has only 3 degrees of freedom. Moreover, a special
property of Ft is deduced, namely, F>t ΩFt=FtΩF

>
t =Ω.

Pure rotation. In this case, the motion is a pure rotation
with no translation (t=0) and constant intrinsic parameters
(K=K ′). According to Eq. (13) and Corollary 1, we simplify
the fundamental matrix,

FR=

[
O3×3 K−1uv RKuv

K>uvRK
−>
uv O3×3

]
, (15)

where FR has only 9 degrees of freedom. Similarly, orthog-
onality ofR and Corollary 1 derive a special property of FR,
that is F>RΩFR=FRΩF

>
R =Ω.

General motion. The pure translation and pure rotation give
additional insight into the general motion. The general mo-
tion is decomposed into pure rotation and pure translation.
According to Eqs. (7), (14) and (15), we have,

F ∼ FtΩFR, (16)

where ∼ refers to equality up to a scale. The analysis
of such cases is important, firstly because special motions
are frequently occurring in practice, secondly because the
fundamental matrix has a simplified form for convenient
computation.

5 APPLICATIONS

We implement two different applications based on the pro-
posed ray-space epipolar geometry: ray-space fundamental
matrix estimation and LFC calibration.

5.1 Ray-Space Fundamental Matrix Estimation
The ray-space fundamental matrix is independent of scene
structure. However, it can be estimated by ray-ray corre-
spondences from same scene point alone, without requiring
knowledge of intrinsic and extrinsic parameters.

5.1.1 Linear Initialization
Using Kronecker product operator ⊗, Eq. (11) can be sim-
plified, (

p> ⊗ n′>,p> ⊗ p′>,n> ⊗ p′>
)
f=0, (17)

where f =
(
~F21, ~F22, ~F12

)>
refers to a 27-vector. ~Fij is a

9-vector made up of the entries of block matrix Fij in row-
major order.

Given a set of n ×m ray-ray correspondences with
Plücker parameterization,

{Li}i=1,...,n ←→
{
L′j
}
j=1,...,m

, (18)

where Li and L′j are from the same scene point but are
recorded in different light fields. Eq. (17) is stacked as a
homogeneous set of linear equations Af =0. Hence, f can

only be linearly solved with a scale, only if there are at least
26 ray-ray correspondences. The solution is the generator of
the right null-space of A.

However, F computed by Eq. (17) is not satisfied with
two important constraints of the ray-space fundamental
matrix, that is, orthogonal and singular constraints. Taken
singularity and orthogonality into consideration, the most
useful method to correct F is the singular value decompo-
sition (SVD) [24]. We then take two independent stages to
enforce these constraints.

First, F21 and F12 generate the ray-space fundamental
matrix F if the translation t equals to zero according to
Eq. (10). The singular values of F21 and F12 are same.
Specifically, consider U12D12V

>
12 and U21D21V

>
21 denoting

the SVD factorization of F12 and F21 respectively, where
the main diagonal elements of D21 and D12 represent the
singular values of F12 and F21. Consequently, we use the
average of singular values to refine F21 and F12 to satisfy
orthogonal constraint.

Second, F22 is the fundamental matrix between central
sub-apertures based on Eq. (12). Similarly, we decompose
F22 into U22D22V

>
22 by SVD factorization. Hence, we use

zero to replace the minimal singular value in D22 so that
F22 is corrected to enforce singular constraint.

In order to accurately and robustly estimate F , it is
essential to implement a proper normalization algorithm
specifically designed for ray-space. Similarly, according to
Eq. (4), we use translations and scale factors to normalize
rays so that the centroidal axis of the reference rays is at the
principal axis and the RMS geometric distance of these rays
from the principal axis is equal to

√
2.

Overall, the algorithm just described is the essence of
a method called the normalized 26-ray algorithm for the
initialization of F , as shown in Alg. 1.

5.1.2 Non-Linear Optimization

The initial solution is then refined via nonlinear optimiza-
tion. Similar to symmetric epipolar error of traditional
fundamental matrix, we minimize the geometrically more
meaningful symmetric epipolar error,

#point∑ #rayL∑
i

#rayR∑
j

∣∣∣L>i FL′j∣∣∣
 1∥∥∥FL′j∥∥∥ +

1

‖F>Li‖

 , (19)

where ‖ ·‖ denotes L2 norm, {Li}#rayL ↔ {L′j}#rayR is
the ray-ray correspondences of each point. Compared with
algebraic distance Eq. (13), Eq. (19) minimizes the distance
of a ray from its projected epipolar hyperplane with clear
geometry definition. According to Eqs. (12) and (19), the tra-
ditional symmetric epipolar distance between two images is
a special case of the proposed symmetric epipolar distance.
More importantly, once the fundamental matrix is estimated
by the normalized 26-ray algorithm, Eq. (19) can be the
standard for outliers detection within a RANSAC frame-
work. In order to minimize the above nonlinear function
Eq. (19), we utilize Levenberg-Marquardt algorithm based
on the trust region reflective method [40] with the help of
MATLAB’s lsqnonlin function. The proposed fundamental
matrix estimation algorithm within a RANSAC framework
is illustrated in Alg. 1.
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Algorithm 1 Ray-Space Fundamental Matrix Estimation.
Input: Ray-ray correspondences {L} ↔ {L′}.
Output: Ray-space fundamental matrix F .

1: while nc ≤ #Count do
2: (L̃, L̃′) = NormalizeRays(L,L′,T ,T ′) . Eqs. (4),(27)
3: F̃ = EstimateFundamentalMatrix(L̃, L̃′) . Eq. (17)
4: EnforceOrthogonalConstraint(F̃ )
5: EnforceSingularConstraint(F̃ )
6: F = DenormalizeFundamentalMatrix(F̃ ,T ,T ′)
7: d = ComputeSymEpipolarError(F ,L,L′) . Eq. (19)
8: DetectInliers(d 6 t)
9: end while

10: Optimization(F ) . Eq. (19)

5.2 Light Field Camera Calibration

To further verify the effectiveness of ray-space epipolar
geometry, we propose an LFC calibration algorithm based
on the point-ray constraint established by the ray-space
fundamental matrix.

5.2.1 Point-Ray Constraint

In 3D projective geometry, a point Xw in the world coor-
dinate frame can be described as the intersection of Rw =
(m>w , q

>
w )
> with the plane Z = Zw. Rw is captured by an

LFCP . Given two rays intersecting atXw and paralleling to
Xw-axis and the Yw-axis respectively. Therefore, according
to the ray-space epipolar geometry, we establish a constraint
between Xw and the corresponding ray L captured by an
LFC P ,[

0 Zw −Yw 1 0 0
−Zw 0 Xw 0 1 0

]
︸ ︷︷ ︸

=:M(Xw)

ΩP

[
n
p

]
=0, (20)

whereM is a 2×6 measurement matrix, representing the ray
bundle of Xw on the plane Z =Zw. That means Eq. (20) is
also the ray-space fundamental matrix which is determined
by a pair of RSP matrices (I,P ). Consequently, Eq. (20) can
be used to linearly estimate RSP matrix P of an LFC.
Remarks. The point-ray constraint is first provided by Jo-
hannsen et al. [3] for pose estimation with calibrated LFCs.
Compared with them, Eq. (20) introduces the proposed
RSIM to intrinsically describe point-ray constraints of light
fields. Meanwhile, points of M in Eq. (20) are accurate
checkerboard corners in the world coordinate frame for
calibration. Inversely, reconstructed points in [3] for pose
estimation are sensitive to small noises, due to the LFC ultra-
small baseline. LFC pose estimation via point-ray constraint
turns out to be unstable. Consequently, point-ray constraint
is suitable to linearly calibrate an LFC instead of pose
estimation.

5.2.2 Linear Initialization

Without loss of generality, there is an assumption that the
checkerboard is on the planeZw = 0 in the world coordinate
frame, which leads to a simplified form of Eq. (20),[

1 0 −Yw
0 1 Xw

]
⊗
[
n> p>

]
~Hs = 0, (21)

where ~Hs is an 18× 1 matrix stretched on row from the
simplified homogeneous ray-space fundamental matrixHs.
Subsequently, Hs denotes a 3×6 matrix only using intrinsic
and extrinsic parameters,

Hs =

 r>1 −r>1 [t]×
r>2 −r>2 [t]×
O1×3 r>3

[ Kij O3×3
O3×3 Kuv

]
, (22)

where ri is the i-th column vector of rotation matrix R.
In order to derive intrinsic parameters, we abbreviate

with [h1,h2,01×3]
> the first three and with [h3,h4,h5]

>

the second three columns of hs respectively. hi denotes the
row vector (hi1, hi2, hi3). Utilizing the orthogonality of r1
and r2, we have

h1K
−1
ij K

−>
ij h>2 = 0

h1K
−1
ij K

−>
ij h>1 = h2K

−1
ij K

−>
ij h>2 .

(23)

It is noting that K−1ij K
−>
ij is a symmetric matrix which

contains only 5 distinct non-zero elements. Consequently,
Eq. (23) is rewritten as two homogeneous equations. It can
be solved only if there are at least four such equations (from
two positions). Once K−1ij K

−>
ij is obtained up to a scale,

K̂uv is then linearly computed based on Corollary 1 and
Cholesky factorization [41]. Furthermore, the rest intrinsic
parameters and extrinsic parameters of different poses can
be obtained as follows,

λ =
1

2

(∥∥∥K̂uvh
>
1

∥∥∥+ ∥∥∥K̂uvh
>
2

∥∥∥) ,
τ = 1/

∥∥∥K̂−>uv h
>
5

∥∥∥ ,
r1 =

α

λ
K̂uvh

>
1 , r2 =

α

λ
K̂uvh

>
2 , r3 = r1 × r2,

t = (G>G)−1(G>g),

G = (−[r1]×,−[r2]×)>, g = (τK̂uvh
>
3 , τK̂uvh

>
4 )
>,

Kij = λτK̂−>uv ,

(24)

where ‖·‖ denotes L2 norm, α denotes a sign function which
is determined by tz because it must be positive (i.e. the
checkerboard is put in front of the LFC).

5.2.3 Non-Linear Optimization
Similar to [15], only radial distortion is considered. The
undistorted coordinate (x̃, ỹ)> is rectified by the distorted
coordinate (x, y)> under the view (s, t)>,{

x̃ = x+ (k1r
2
xy + k2r

4
xy)(x− b1) + k3s

ỹ = y + (k1r
2
xy + k2r

4
xy)(y − b2) + k4t

, (25)

where r2xy=(x− b1)2 + (y − b2)2.
The initial solution computed by the linear method is

refined via nonlinear optimization. Instead of minimizing
the distance between checkerboard corners and rays [17]
and the re-projection error in traditional multi-view geom-
etry [24], we define a ray-ray cost function to acquire the
nonlinear solution,

#pose∑
p=1

#point∑
n=1

#view∑
i=1

∥∥∥d(R̃′w,i(P,kd,Rp, tp),Rw(Xw,n)
)∥∥∥,

(26)
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where R̃′w,i is the projected ray from Li based on Eq. (6),
followed by the distortion model Eq. (25). Rw denotes the
rays of Xw on the checkerboard as shown in Eq. (20). P
represents intrinsic parameters, kd is distortion vector and
Rp, tp are extrinsic parameter at each position, 1≤p≤P .

Moreover, the ray-ray distance d (R,R′) is geometrically
described as the point-point distance on Klien quadric ac-
cording to ray-space epipolar geometry,

d (R,R′)=
∣∣R>ΩR′∣∣
‖q×q′‖

=

∣∣m>q′+q>m′∣∣
‖q×q′‖

. (27)

Eq. (26) is a nonlinear objective function which can be
solved using Levenberg-Marquardt algorithm based on the
trust region reflective method [40]. In addition, R is param-
eterized by Rodrigues formula [42]. MATLAB’s lsqnonlin
function is utilized to implement the optimization. The LFC
calibration algorithm is summarized in Alg. 2.

Algorithm 2 Light Field Camera Calibration.
Input: Checkerboard corners Xw,

Corresponding rays L.
Output: Intrinsic parameter P = (ki, kj , ku, kv, u0, v0),

Distortion vector kd=(k1, k2, k3, k4, b1, b2),
Extrinsic parameters Rp, tp, (1 6p 6P ).

1: for p = 1 to P do
2: Ps = EstimateProjectionMatrix(Xw,L) . Eq. (21)
3: end for
4: B = EstimateMatrix(Ps) . Eq. (23)
5: (ku, kv, u0, v0) = CalculateKuv(B)
6: for p = 1 to P do
7: (Rp, tp) = CalculateRT (Hs, ku, kv, u0, v0) . Eq. (24)
8: end for
9: (ki, kj) = CalculateKij(K̂ij) . Eq. (24)

10: Optimization(P,kd,
⋃P

p=1(Rp, tp)) . Eq. (26)

6 EXPERIMENTS

We evaluate the performance of ray-space fundamental
matrix estimation and light field camera calibration on both
simulated and real light fields.

6.1 Experiments on Fundamental Matrix Estimation
6.1.1 Simulated Data
In order to evaluate the performance of the proposed
fundamental matrix estimation method, two experiments
have been undertaken. We simulate a realistic LFC close
to Lytro Illum, whose intrinsic parameters are listed as
ki = kj = 3.6e−4, ku = kv = 2.0e−3, u0 = 0.54, and
v0 =0.36. The rotation angles between a light field pair are
randomly generated from −30◦ to 30◦, while the translation
is randomly chosen in the box [0, 0.2]3. The depth of scene
points ranges from 0.2m to 0.8m.

Performance w.r.t. the noise level. In the first experi-
ment, we generate a pair of light fields with Gaussian noise
to examine the noise resilience on the proposed algorithm.
We add Gaussian noise varying from 0.1 to 1.5 pixels with a
0.1 pixels step to light fields. For each noise level, we carry
out 150 independent trials with different combinations, in-
cluding input scenarios, linear methods and motion types.
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Fig. 3. Relative errors of ray-space fundamental matrix on simulated
data with different levels of noise.

Fig. 3 illustrates the mean relative errors of F which are
computed by the Frobenius norm on three camera motions.
It verifies the noise resilience of our algorithm that errors
increase almost linearly with the levels of noise.

The left column of Fig. 3 summaries the relative errors
with three different initialization methods on the input
scenario of 20 points and 20 ray-ray correspondences. It
can be seen that the introduction of normalization leads
the smaller relative errors, which verifies the effectiveness
of the proposed ray normalization. The orthogonal and
singular constraints also improve the accuracy of the initial
solution. Especially, the errors reduce obviously on the pure
rotation due to the enforcement of orthogonal constraint.
Yet, the errors on pure translation are almost constant with
the singular correction. It also indicates that the orthogo-
nal constraint effectively improves the performance of our
algorithm compared with singular constraint.

Meanwhile, the right column of Fig. 3 shows the relative
errors of normalized 26-ray algorithm with different input
scenarios. When the noise is fixed, the errors decline with
the number of correspondences (i.e. points×ray-ray corre-
spondences), which exhibits the numerical stability of our
algorithm.

In addition, generalized epipolar geometry is a special
case of the proposed model to calibrated cameras. To further
investigate the noise resilience of the proposed algorithm,
another experiment is conducted on relative pose estima-
tion compared with state-of-the-art method proposed by
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Fig. 4. Comparisons of relative pose estimation using ray-space funda-
mental matrix and state-of-the-art method by Johannsen et al. [3].

Johannsen et al. [3]. Similarly, a pair of light fields with
Gaussian noise (varying from 0.1 to 1.5 pixels) is generated
with random motion. To illustrate the influence of rays for
point reconstruction, 150 independent trials with the input
scenario of 30 points and 20 ray-ray correspondences are
performed. The normalized 26-ray algorithm is first used
to estimate ray-space fundamental matrix. The relative pose
is then decomposed from F with the help of ground-truth
intrinsic parameters according to Eq. (13). Meanwhile, the
calibrated ray-ray correspondences is computed according
to Eq. (2) for the relative pose estimation of [3]. Error metrics
are angular differences from the ground truth in degrees
for the estimated rotation and translation. Fig. 4 shows
the mean rotation and translation errors of the proposed
method and state-of-the-art [3] respectively.

Note that all algorithms are initialization methods. The
proposed method provides better results with fewer errors,
but state-of-the-art [3] is difficult to obtain. On one hand,
as discussed in Sec. 5.2.1, the point-ray constraint is used
to estimate LFC pose in [3]. However, considering the small
baseline of an LFC, 3D point reconstruction in a light field
is very sensitive to noise. Thus, [3] results in larger errors,
especially translation errors, with the increasing noise levels.
It is evident that point-ray constraint is suitable for cali-
bration with the introduction of RSIM, that is Eq. (20). On
the other hand, ray-space epipolar geometry intrinsically
constrains ray-ray correspondences of light fields instead of
calibrated point-ray constraints. It verifies the robustness of
the proposed method on relative pose estimation.

6.1.2 Real Scenes
To further substantiate the proposed fundamental matrix
estimation method, experiments on real scene light fields
are performed. We utilize 4 datasets of multiple light fields
captured by Lytro Illum, including public datasets “Flow-
ers” and “Trees” [43], and self-captured datasets “Toys”
and “Books”. Each of the public datasets contains different
scenes captured by different cameras, with between 5 to
7 light fields of each scene. In contrast, we also utilize a
Lytro Illum to collect two datasets, each of which includes
17 and 30 multi-view light fields respectively. The datasets
include indoor and outdoor complex environments. The set
of “Books” is also a special case of pure translation.

Besides, since there is no calibration data provided by
the public datasets, we directly use Lytro Power Tools [1]
instead of the proposed calibration method to rectify the
raw data to an undistorted light field with 11×11×541×376
samples. For the ray feature extraction, we extract sparse

TABLE 1
Mean and Maximum RMS Symmetric Epipolar Errors with 80 Random

Pairs of Light Fields (Unit: pixels).

Trees (399) Flowers (719) Toys (17) Books (30)

8-pointC mean 0.3011 0.4250 0.1526 0.1059
max 1.1729 8.0772 0.2442 0.1574

7-pointC mean 0.2898 0.2808 0.1663 0.1181
max 0.4692 0.5107 0.2161 0.1811

5-pointC mean 2.6567 2.1223 1.7706 0.4803
max 13.2227 17.3187 4.7503 0.8772

OursC mean 0.2791 0.2741 0.1567 0.1808
max 0.4037 0.4729 0.1906 0.2275

Ours mean 0.5739 0.3197 0.2450 0.3848
max 0.9729 0.5332 0.2805 0.4347

Inlier (%) mean 57.45 57.33 59.46 61.70

The superscript C indicates the errors between central views.
The N in the parentheses indicates the number of light fields.

TABLE 2
RMS Symmetric Epipolar Errors between Sub-Aperture Images of

Dataset “Toys” with 80 iterations (Unit: pixels).

1st LF 2nd LF

(-3, -3) (0, -3) (3, -3) (-3, 0) (0, 0) (3, 0) (-3, 3) (0, 3) (3, 3)

(-3, -3) 0.1707 0.2077 0.2303 0.1718 0.2246 0.2087 0.1822 0.1844 0.2216
(0, -3) 0.1691 0.1986 0.1781 0.1748 0.2068 0.2023 0.1844 0.2110 0.2294
(3, -3) 0.2110 0.1821 0.1754 0.2065 0.2265 0.2095 0.1833 0.2511 0.2231
(-3, 0) 0.1632 0.1917 0.2178 0.1536 0.1739 0.2076 0.1658 0.1530 0.1664
(0, 0) 0.1969 0.2021 0.2474 0.1738 0.1567 0.1979 0.1868 0.1804 0.1812
(3, 0) 0.1790 0.1828 0.1745 0.1869 0.1969 0.1917 0.1855 0.1827 0.1673
(-3, 3) 0.1966 0.2188 0.2348 0.1618 0.1985 0.2231 0.1468 0.1600 0.1649
(0, 3) 0.1962 0.2176 0.2487 0.1561 0.1665 0.2093 0.1695 0.1708 0.1615
(3, 3) 0.1912 0.2141 0.2142 0.1743 0.1786 0.1874 0.1583 0.1532 0.1558

images point from every sub-aperture image within LF by
DoG (Difference of Gaussian) and match the central sub-
aperture image with other sub-aperture images by SIFT [44].
Taken the regular and planar arrangement of sub-aperture
images into consideration, the matched features are filtered
according to the invariant depth. We then generate a ray
bundle within the light field. We obtain the ray-ray cor-
respondences between two light fields through matching
center views of each light field.

After extracting ray-ray correspondences of light fields,
we estimate their ray-space fundamental matrix. In a sense,
the proposed method is, to our knowledge, the first attempt
to generalize and estimate a ray-space fundamental matrix
between two light fields. Consequently, the proposed algo-
rithm is quantitatively compared with 8-point, 7-point and
5-point algorithms through treating the LFC as an array
of pinhole cameras. The 8-point algorithm [24] is provided
by MATLAB’s estimateFundamentalMatrix function. The 7-
point algorithm [24] is coded by ourselves. The 5-point
algorithm [30] is run by their latest released code.

Given that the considerable number of light fields in each
dataset, we randomly choose two light fields and estimate
the ray-space fundamental matrix for 80 instances. Tab. 1
summarizes the mean and maximum of the root mean
square (RMS) symmetric epipolar errors for 80 instances.
As mentioned in Sec. 5.1, the traditional symmetric epipolar
distance is equivalent to the proposed symmetric epipolar
distance of central views. We hence compare with tradi-
tional baseline methods applied to ray-ray correspondences



10

(a) Trees (b) Flowers

(c) Toys (d) Books

Fig. 5. The results of the proposed meothod combined with a RANSAC
framework. Each pair of light field contains 50 random inliers of ray-ray
correspondences.

of the central sub-aperture images, as shown in Tab. 1. For
the mean errors of central views, the proposed method pro-
vides a similar even smaller results compared with those of
baseline methods except on dataset “Books”. Those results
show the effectiveness of the proposed method. The result
on dataset “Books” performs worse because of the special
motion. As mentioned in Sec. 4.3, the degrees of freedom of
F reduces to 3 for pure translation motion. The high dimen-
sional ray features with noise will make the solution com-
plex compared with traditional baseline methods. Since the
proposed method uses the only central sub-aperture images
for internal ray feature extraction, taken errors introduced
by the feature extraction into consideration, the results are
acceptable. Moreover, the performance of the maximum
errors demonstrates the robustness of the proposed method.

Tab. 1 also illustrates the errors of the proposed method
applied to light fields. The errors of the proposed method
are slightly higher compared with baseline methods applied
to central views. This discrepancy can also be observed in
[14], [15] and relates to astigmatism and field curvature
that affect micro-lens based LFCs. Once we compute the
ray-space fundamental matrix, we measure the root mean
square (RMS) symmetric epipolar errors between arbitrary
sub-aperture images on dataset “Toys”, as shown in Tab. 2.
We can observe the distribution of error is homogeneous
and similar to the distribution of field curvature.

As mentioned in Sec. 5.1, the symmetric epipolar dis-
tance can be used to discard the outliers based on a
RANSAC framework, as shown in Tab. 1. Fig. 5 shows
light field pairs from each dataset with ray-ray correspon-
dences of 50 random inliers. Fig. 5 illustrates the ray-ray
correspondence on the central view of the first light field
and arbitrary views of the second light field. It can be
seen that the results seem good: the ray features within
the light field maintain the depth invariance and the ray-
ray correspondences lie on the same position in the first
(central) and second (surround) light fields. As shown in
Fig. 5, the reason why the performance of the proposed

Back Focus Front Focus

1s
t L

F
2n
d 

LF
1s
t L

F
2n
d 

LF

Fig. 6. The refocus results of projective rectified light field.

method is worse on dataset “Books” is too much co-planar
points.

In order to further verify the performance of the pro-
posed fundamental matrix, we propose another application
of the fundamental matrix. Suppose the RSP matrix of the
second LFC equals an identity matrix, we recovery the
RSP matrix of the first LFC according to Corollary 5 and
the estimated fundamental matrix. Then multi-view light
fields may be resampled and rectified in the same coordinate
frame up to a projective ambiguity. Fig. 6 shows the refocus
results of the projective rectified light field. All results have
verified the effectiveness and robustness of the proposed
fundamental matrix.

6.2 Experiments on Light Field Camera Calibration

6.2.1 Simulated Data

In order to evaluate the performance of the proposed LFC
calibration algorithm, we also simulate an LFC, whose
intrinsic parameters are summarised as ki = 2.4e−4, kj =
2.5e−4, ku=2.0e−3, kv =1.9e−3, u0=−3.2 and v0=−0.32,
similar to [15]. The checkerboard is a pattern with a 12×12
grid of 3.51mm cells.

Performance w.r.t. the noise level. In this experiment,
we employ the measurements of 3 poses and 7×7 views to
verify the robustness of calibration algorithm. The rotation
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Fig. 7. Performance evaluation of intrinsic parameters on the simulated
data with different levels of noise.

angles of 3 poses are (6◦, 28◦,−8◦), (12◦,−10◦, 15◦) and
(−5◦, 5◦,−27◦) respectively. Gaussian noise with zero mean
and a standard deviation σ is added to the projected image
points. We vary σ from 0.1 to 1.5 pixels with a 0.1 pixel step.
For each noise level, we perform 150 independent trials. The
estimated intrinsic parameters are evaluated by the average
of relative errors with ground truth. As shown in Fig. 7,
the errors almost linearly increase with noise level. For
σ=0.5 pixels which is larger than normal noise in practical
calibration, the relative errors of intrinsic parameters and
absolute errors of principle points are less than 0.25% and
0.24 pixel respectively, which demonstrates the robustness
of the proposed method to high noise level.

Performance w.r.t. the number of poses and views.
This experiment investigates the performance with respect
to the number of poses and views. We vary the number of
poses from 3 to 10 and the number of views from 3×3 to
7×7. For each combination of pose and view, by adding a
Gaussian noise with zero mean and a standard deviation
of 0.5 pixel, 200 trails with independent checkerboard poses
are conducted. The rotation angles are randomly generated
from −30◦ to 30◦. The average relative errors of calibra-
tion results with increasing measurements are shown in
Fig. 8. The relative errors decrease with the number of
poses. Meanwhile, when the number of poses is fixed, the
errors reduce with the number of views. In particular, when
#pose≥ 4 and #view≥ 4 × 4, all relative errors are less
than 0.5%, which further exhibits the effectiveness of the
proposed calibration method.

6.2.2 Real Data

To further substantiate the proposed light field calibra-
tion method, we compare the proposed method in ray re-
projection error and re-projection error with state-of-the-arts
on real light fields, including DPW by Dansereau et al. [17],
BJW by Bok et al. [14] and MPC by Zhang et al. [15]. The
datasets include light field datasets (Lytro) released by DPW
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Fig. 8. Relative errors of intrinsic parameters on simulated data with
different numbers of poses and views.

TABLE 3
RMS Ray Re-Projection Errors (Unit: mm).

A B C D E

DPW [17] 0.0835 0.0628 0.1060 0.1050 0.3630
MPC [15] 0.0810 0.0572 0.1123 0.1046 0.5390
Ours 0.0705 0.0438 0.1199 0.0740 0.2907

and light field datasets1 (Lytro and Illum) released by MPC.
The sub-aperture images are easy to be decoded by raw

data. We improve the preprocessing of raw data described
in [17] to obtain sub-aperture images. The preprocess of
raw data begins with demosaicing after alignment of micro-
lens array. Then, the vignetting raw data is refined in
accordance with white image. Finally, normalized cross-
correlation (NCC) of the white images is used to locate the
centers of micro-lens images and estimate the average size
of micro-lens images. It can be utilized for resampling and
sub-aperture image extraction.

We firstly conduct calibration on the datasets collected
with DPW [17]. For a fair comparison, the middle 7× 7
sub-apertures are utilized. Tab. 3 summarizes the root mean
square (RMS) ray re-projection error. Compared with DPW
which employs 12 intrinsic parameters, the proposed ray-
space projection model only employs a half of parame-
ters but achieves smaller ray re-projection error except on
dataset C. Given that the errors exhibited in DPW are

1. http://www.npu-cvpg.org/opensource
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TABLE 4
Mean Re-Projection Errors (Unit: pixel).

A B C D E

DPW [17] 0.2284 0.1582 0.1948 0.1674 0.3360
BJW [14] 0.3736 0.2589 - - 0.2742
MPC [15] 0.2200 0.1568 0.1752 0.1475 0.2731
Ours 0.1843 0.1245 0.1678 0.1069 0.1383

TABLE 5
RMS Ray Re-Projection Errors of Optimizations without and with

Distortion Rectification (Unit: mm).

Illum-1 Illum-2 Lytro-1 Lytro-2

Optimized
without
Rectification

DPW [17] 0.5909 0.4866 0.1711 0.1287
BJW [14] - - - -
MPC [15] 0.5654 0.4139 0.1703 0.1316
Ours 0.5641 0.4132 0.1572 0.1237

Optimized
with
Rectification

DPW [17] 0.2461 0.2497 0.1459 0.1228
BJW [14] 0.3966 0.3199 0.4411 0.2673
MPC [15] 0.1404 0.0936 0.1400 0.1124
Ours 0.1294 0.0837 0.1142 0.0980

minimized in its own optimization (i.e., ray re-projection
error), we additionally evaluate the performance in mean re-
projection error with DPW and BJW. As exhibited in Tab. 4,
the errors of the proposed method are obviously smaller
than those of DPW and BJW, which further verifies the
effectiveness of nonlinear optimization (i.e. the cost function
in Eq. (26)).

Unlike the core idea of DPW, BJW conducts the calibra-
tion on the raw data directly instead of sub-aperture images.
It poses a significant challenge to obtain line feature accu-
rately which is extracted from raw data to estimate an initial
solution of intrinsic parameters. The light field data for
calibration must be out of focus to make the measurement
detectable. Therefore, as shown in Tab. 4, several datasets,
i.e. C and D by [17], can not be estimated by BJW.

In order to comprehensively compare with DPW, BJW
and MPC, we also carry out calibration on the datasets
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Fig. 9. Pose estimation results of the datasets captured by MPC.

(a) ‘C’: 128.0mm, ‘V’: 97.5mm (b) ‘2’: 147.5mm, ‘0’: 102.0mm

Fig. 10. Measurements between specific points by rulers.

TABLE 6
Quantitative Comparison of Different Calibration Methods (Unit: mm).

‘C’ ‘V’ ‘2’ ‘0’

Ruler 128.0 97.5 147.5 102.0

DPW [17] 124.3 (2.89%) 100.2 (2.77%) 145.7 (1.22%) 106.6 (4.51%)
BJW [14] 120.6 (5.78%) 106.8 (9.54%) 151.9 (2.98%) 103.4 (1.37%)
MPC [15] 127.5 (0.39%) 97.0 (0.51%) 144.9 (1.76%) 103.6 (1.57%)
Ours 127.4 (0.47%) 97.0 (0.51%) 145.9 (1.08%) 103.6 (1.57%)

The relative error is indicated in parentheses.

captured by MPC [15]. Tab. 5 lists the RMS ray re-projection
errors compared with DPW, BJW and MPC at two calibra-
tion stages. As exhibited in Tab. 5, the proposed method
obtains smaller ray re-projection errors on the item of op-
timization without rectification compared with DPW and
MPC. Furthermore, it is more important we achieve small
errors once the distortion is introduced in the optimization.
According to the item of optimization with rectification,
the proposed method outperforms DPW, BJW and MPC.
Consequently, such optimization results substantiate that
our 6-parameter ray-space projection model is effective to
describe sampling of an LFC. Fig. 9 demonstrates the results
of pose estimation on datasets of MPC.

In order to verify the effectiveness of geometric recon-
struction of the proposed method compared with state-
of-the-art methods, we capture four light fields in real
scenes and reconstruct several specific corner points and
estimate the distances between them. As shown in Tab. 6,
the estimated distances between the reconstructed points
are nearly equal to those measured lengths from real objects
by rulers (see Fig. 10). For these four measurement exam-
ples, the relative errors of distance between reconstructed
points demonstrate the performance of the proposed model
compared with state-of-the-art methods.

7 CONCLUSION

The paper has presented a unified framework for intrinsic
epipolar geometry for LFCs. Specifically, we have derived
ray-space projection matrix and ray-space epipolar geome-
try by using Plücker parameterization. We have reached a
novel 6×6 ray-space fundamental matrix, which generalizes
the conventional 3×3 fundamental matrix for pinhole cam-
eras and the generalized epipolar constraint for calibrated
LFCs. The ray-space fundamental matrix is a basic algebraic
entity of multi-view light fields, of which the properties
have been derived. We have provided effective algorithms
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to compute this ray-space epipolar geometry as well as LFC
calibration, and demonstrated the benefits of applying such
ray-space epipolar geometry for various light field based
multi-view geometry computations.

Extensive experiments are conducted on synthetic and
real light field data, which confirm the effectiveness and
robustness of the proposed framework. In the future, we
will research projective rectification from the ray-space fun-
damental matrix. Future work may also include developing
minimal solvers for computing ray-space camera pose and
metric reconstruction using light field cameras.
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