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Abstract—Solar energy is seen as a sustainable and non-
depletable source of energy supply. Worldwide, large-scale solar
power infrastructure is being installed every day. Such structures
can suffer from many faults and defects that degrade their energy
output during their operational life. Detecting such faults and
defects requires regular inspection over physically large and dis-
tributed solar infrastructure. On-site manual human inspection
tends to be impractical, risky and costly. As such, replacing
humans with autonomous robotic aerial inspection systems has
great potential. In this work, we propose an unmanned aerial
vehicle (UAV) waypoint generation system that is specifically
designed for aerial inspection of solar infrastructure. Our system
takes into consideration the physical structure and the dynamic
nature of sun-tracking solar modules and generates waypoints
with the right camera viewing pose and drone orientation.
Statistical methods are used to generate a randomly selected
set of modules as a representation of the entire solar farm. The
set is guaranteed to satisfy a user-defined confidence level and
margin of error requirements. A path is generated to visit selected
modules in an optimal way by deploying the traveling-salesman
shortest path algorithm, allowing the vehicle to maximize battery
use. Illustrative flights and preliminary inspection results are
presented and discussed.

I. INTRODUCTION

Solar energy is a sustainable alternative source of energy to
fossil fuels and has the potential to make a major contribution
to the world’s energy needs [1]. In fact, the world’s overall
solar energy potential is around 5.6 gigajoules (GJ) (1.6
megawatt-hours (MWh)) per square meter per year, which
far exceeds total world energy demand [2]. For example, the
annual solar radiation falling on Australia is approximately 58
million petajoules (PJ), approximately 10 000 times Australia’s
annual energy consumption of 5772 PJ in 2007 [2]. Theoreti-
cally, if only 0.1% of the incoming radiation is converted into
usable energy at an efficiency of 10%, all Australia’s energy
needs could be supplied by solar energy [2].

The solar energy market is booming [3] and the cost of
the technology is decreasing. Large-scale deployment of solar
power facilities, especially in the 66 sunbelt countries, is
underway, and the rate of deployment will only increase. Fig. 1
illustrates both a photovoltaic (PV) farm and a concentrating
solar power (CSP) facility. While both PV and CSP plants
are designed to operate for 20∼30 years, field observations
show that systemic environmental factors such as soiling can
significantly degrade their performance. In addition, individual
PV modules may develop faults and defects. The identification
of such issues requires regular inspection over physically large
and distributed solar infrastructure (>10,000 modules).

For PV plants, the two common methods for inspection
are systemic performance testing and direct visual inspection
[4]. Performance testing monitors the electrical characteristics
of the module [5, 6]. Visual inspection is a non-invasive

Fig. 1: (a) Solar thermal and (b) solar photovoltaic installations.

and non-destructive method that uses visible, infrared and
hyper-spectral camera images to infer information about the
performance of the module. Visual inspection is particularly
well suited to the identification of physical damage and soiling.
Presently, on-site visual inspection is performed manually by
maintenance personnel on a regular basis [7], see Fig. 2.
Manual visual inspection suffers from being highly subjective
and results are difficult to reproduce [8]. Moreover, solar
power plants are often operated in inhospitable environments
(e.g. deserts), and manual inspection requires high safety
standards making it slow and expensive, sometimes requiring
a temporary shutdown of the facility. The development of
an autonomous robotic visual inspection system for solar
infrastructure offers the potential to provide up-to-date and
detailed information on the operational status of PV modules,
allowing operators to maximize value in the operation and
maintenance of the facility [9].

Due to their increased availability, cost-effectiveness, and
maneuverability, UAVs are a natural candidate for robotic
visual inspection of large-scale infrastructure [9]. Their agility
and ability to autonomously acquire and accurately register
sensor data from multiple sensing modalities (visible light,
thermal, near infra-red, hyperspectral, etc) is a key technical
capability that promotes them to be deployed for effective
long-term operation of renewable energy infrastructure.

For large-scale facilities, an inspection of each and every
panel on a regular basis may be infeasible. The size of
the facility precludes the drone visiting all modules during
every inspection and some sampling strategy will be required.
Furthermore due to the changing time of day and season that
a module is visited, between each flight, the waypoints will
change depending on the angle of the sun and the angle of the
modules. Thus, the path followed to visit the selected modules
will change for each flight and an automatic path planning
algorithms is crucial. Path planning is a well studied question
in robotics literature [10] and include randomly sample search
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Fig. 2: Manual inspections of PV solar farms.

algorithms such as particle swarm algorithms [11] and Di-
jsktraâs algorithm [12]. These algorithms are concerned with
finding the shortest path that leads to a given destination from a
known starting point. However, our problem is fundamentally
different. The nodes (modules) can be visited in any order but
have a fixed starting and ending point (the take-off point) and
a travel distance that should be minimized. To our knowledge,
[11] is the only closely related work. There, the authors used
particle swarm optimization (PSO) to plan a similar mission
using Bezier curves to generate smooth 2D paths. The solar
inspection application considered in the present work requires
3D paths and precise positioning for the inspection photos.

In this paper, we propose a reliable and cost-effective
method to inspect a portfolio of solar modules in a large solar
facility. We take into account key practical parameters during
mission planning, including the changing orientation of the
solar modules. We assume that there is an image processing
algorithm available that can take the images generated by the
inspection process and provide a measure of performance of
the panel with some uncertainty ε. We propose a statistical
sampling algorithm to identify a small subset of the total solar
modules to inspect that yields an estimate of performance for
the full solar field based on the inspected sample for a given
confidence level. We propose using a “travelling salesman
algorithm” to generate a minimum distance path that will
then visit all modules in the sample set in minimum time.
We allow the engineer to optimize between flight time (a
function of battery capacity) and inspection confidence by
quickly generating multiple sample strategies and associated
paths. The proposed suite of algorithms aims to provide highly
accurate inspection results with the lowest cost.

The remainder of this paper is structured as follows. In
section II, we highlight the importance of waypoint planning
for aerial inspection of solar farms. Our system model is
introduced in section III-A. Section IV discusses some con-
ducted experiments and real applications. The paper findings
and contributions are summarized in section V.

II. PRELIMINARIES

A. Surveying vs. Inspection

One should not confuse visual inspection with visual sur-
veying. Unlike surveying which is typically done from a high

altitude (∼50 meters), inspection is a more demanding process
and requires a higher level of data resolution. It requires an in-
depth analysis of solar modules which consequently enforces
the need for a closer view (∼5 meters) and more sophisticated
and high resolution imaging as well as accurate positioning
equipment to acquire the images. For example, with visual
surveying, small defects and other performance degradation
mechanisms (e.g., corrosion spots on heliostats) may be at
millimeter scale, and need at least a few pixels to resolve.
Closer and more detailed sensing by visual inspection has
much higher chances of detecting such faults. This argument
is also supported by field observation as well as the research
work in [13, 14] that studies the correlation between the flight
height and the ability of fault detection.

B. Waypoint Planning vs. Path Finding

Though very similar, waypoint planning is different from
path finding. For path finding, the 3D structure of travel in
a potentially dynamic environment is unknown, and routing
decisions are made one step at a time. Path (or waypoint) plan-
ning involves generation of a real-time path to the destination,
while avoiding obstacles and optimizing a given cost function
with kinodynamic constraints [15]. Path finding is better for
unknown environments, whereas path planning is more suited
to known environments.

In solar farms, where the GPS coordinates of each module
and man-made structure are known prior, waypoints can be
actually pre-planned before the UAV takes off. The challenge
here, however, is that at every waypoint, both the drone
and the equipped camera have to be correctly positioned in
order to take a good snapshot for the target module. Some
considerations include (a) avoidance of sun reflections, (b)
avoidance of the shadow of the drone on the module as this
may cause false alarms (especially with thermal cameras),
(c) the dynamic sun-tracking structure of the modules. More
importantly, the entire inspection process is heavily reliant
on the accuracy of the position of the drone, which can be
improved by using multiple GPS receivers at the drone and
by using a Real-Time Kinematic (RTK) positioning which
is orders of magnitude more precise. Positioning will be
discussed in more details in section III-F.

III. WAYPOINT PLANNING

A. System Model

In a typical UAV based inspection system for large-scale
solar farms, it is necessary to hover the UAV over (or close
to) solar modules and control the gimbal mounted camera that
takes snapshots to accurately identify the defects [11]. This
imposes the requirement of accurate 3D positioning.

Our system model is illustrated in Fig. 3. Given that the
waypoints have been planned and loaded, the UAV equipped
with one or multiple sensors vertically takes-off from a defined
position and lands at the same spot carrying out its mission.
Though it can be fully autonomous, a supervising pilot is
presently available to assist in the mission and ensure the
safety of the solar farm structure and close-by personnel.
Images acquired are uploaded to the processing center at the
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Fig. 3: Typical module configuration.

end of the flight. Generating the waypoints with the right drone
and camera parameters from the surveyed GPS locations of
the solar modules is a multivariate function depending on solar
module structure, dimensions and tracking configuration, sam-
pling policy, modules’ inspection order, imaging conditions,
and drone positioning. We use litchi [16] to interface waypoint
generation to the UAV flightplan and the waypoints are defined
in a compatible format1

wk =
[
xk yk zk φ1k φ2k φ3k

]
, (1)

where xk, yk, and zk are the longitude (decimal degrees),
latitude (decimal degrees), and altitude (meters), while φ1k, φ2k
and φ3k are the roll, pitch, and yaw angles (all in degrees) of
the camera orientation. These parameters are illustrated in Fig.
4. For the inspection task of solar modules, The roll φ1k of the
camera is set to 0 without loss of generality. The pitch angle φ2k
is defined in the interval [−90, 0]: When φ2k = 0, the camera
is parallel to the horizon, and when φ2k = −90, the camera is
looking downwards (normal to the ground). The recommended
φ2k value is 5◦ away from the module’s surface normal to
avoid sun reflections (a function of the elevation angle that, in
turn, is a function of the time of the day and the geographical
location). The yaw φ3k is chosen parallel to the module’s y-
axis, that is, lining the camera up in the longitudinal axis of
the module. In practice, the yaw command is often used as
a set point to the orientation of the quad, rather than a set
point to the gimbal on which the camera is mounted. The
longitude and latitude parameters are obtained from surveyed
data prior to the mission. A correction is added to account
for the installation terrain map, the support structure of the
module and the module’s configuration and elevation angle.
A second offset is added based on the time of day that the
image will be taken to account for the expected orientation
of the panel and locate the UAV in the desired position. The
orientation of the panel can be computed from the time of the

1We skip action parameters such as taking images as they are implicit to
the inspection process.

Fig. 4: The six parameters of each waypoint.

day. Should the tracking control of the panel be faulty, the
poor orientation of the panel is obvious from the image and
the image processing algorithm will note the panel as faulty.

B. Solar Module Configurations

Generating the exact waypoints needed for inspecting solar
modules is a challenging task. There are multiple module-
related parameters involved in the computation of the way-
points. For example, the sun-tracking nature of solar modules
makes it difficult to keep the same angle of view (AoV) for
all inspected modules and image and to keep φ2k away from
the direct sun reflection for all target modules.

As illustrated in Fig. 3, the module’s elevation angle is a
key parameter to determine the flight altitude that will give
an almost identical image. That is, the inspection altitude is
a function of the elevation angle2, which also determines the
highest tip of the module. Analytically, for a module of length
L and width W , the change in the altitude, ∆alt in meters,
with respect to the surveyed coordinates due to a non-zero
elevation angle, θ, is given by

∆alt =
W

2
sin(θ) (2)

C. Modules Sampling and Inspection Confidence

Solar farms typically have hundreds of thousands of in-
stalled modules. Even with a UAV, aerial inspection can take
a significant amount of time, though it is still way faster
than manual inspection. As such, and assuming that modules
are independent from each other, a reasonable action is to
randomly inspect a sample set of modules of size K to
represent the whole solar farm population of size N , while
being confident that the K modules represent the N modules
with some confidence level C ∈ [0, 1] and a given error margin
probability ε. To this end, K is calculated as [17]

K =

⌈
ξ

1 + ξ/N

⌉
, (3)

where
ξ =

z2p(1− p)
ε2

, (4)

and p ∈ [0, 1] is a proportionality constant, and z is the z-score
calculated as

z =
√

2Q(1− C); (5)

where Q(−) is the inverse complementary error function. To

2Extension to dual-axis trackers is straightforward.
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Fig. 5: (a) Full-search and (b) TSO waypoints planning for an
example heliostat field.

illustrate the usefulness of this sampling approach, imagine
a solar farm with N = 10, 000 modules, and we require a
confidence level C = 0.95 and an error probability ε = 0.05,
then one needs to randomly inspect K = 370 modules only.

D. Efficient Waypoint Planning

As UAVs typically fly well-above solar modules, which
are normally installed in flat and open areas, some research
work (e.g. [11]) considered flight planning without accounting
for vertical movement (fixed altitude). As such, waypoint
generation is regarded as 2D and obstacle-free [11]. However,
this planning is not suitable for inspection tasks since high-
resolution images require the vehicle to approach closely to
within 4 ∼ 5 meters from the surface of the module.

While the sampling approach mentioned earlier reduces the
number of modules to be inspected, the selection of the K
modules is still random. As such, the modules have to be
ordered to be inspected such that the flight time is minimal
while covering the maximum number of modules and using
the same set of batteries. Specifically, given a set of waypoints
w1, w2, ..., wK, it is necessary to find a parametric path in
R3 that passes through all K waypoints in the shortest and
optimal order. Two path planning methods are considered: (a)
full-search and (b) travelling-salesman path planning.

1) Full-Search: Full-search is conducted when an exact
detailed report is required for each module in the solar farm.
It is typically useful for small solar farms or to monitor the
installation of solar farms as it progresses. In such cases, the
full search is conducted across each row of modules. Switching
from one row to the next is done in a zigzag way. Fig. 5 (a)
illustrates a typical path planning for full-search inspection of
an example heliostat field.

2) Travelling Salesman Search: A sample of modules is
selected as a representation of the solar farm using a suitable
random algorithm. Base waypoints are generated for each
module. For each pair of waypoints, the distance between the
waypoints can be easily computed, and the resulting minimum
time path to visit all modules in the samples is well defined.
This problem can be solved using the travelling salesman
search optimization (TSO) [18]. The travelling salesman prob-
lem finds the cheapest solution (where the cost, in this case,
is the travel distance) and is not influenced by the inspection
order. Starting with the take-off point and ending in the same

Fig. 6: Recommended angle of inspection.

place, the optimizer returns the order in which modules should
be inspected. Finally, the precise set of waypoints is computed
based on adding the offsets (dictated as mentioned earlier by
the panel angle, sun position, clearance above the panel, etc)
to the base waypoints in order and computing the time-of-
day that each waypoint will be visited, based on an assumed
takeoff time. The final verification is to ensure that the flight
time does not exceed the battery capacity of the UAV. If the
path is too long then the sample number is reduced and the
algorithm recomputed. This is unlike standard robotic planning
algorithms that are interested in a path between two points
rather than a path that visits all points. Fig. 5 (b) illustrates a
TSO waypoint plan for a random set of heliostats.

E. Imaging and dataset generation

Cameras/sensors play a key role in the inspection process.
The inspection capability and the required flight altitude to
capture detailed module images are correlated [13, 14]. One
also needs to keep in mind avoiding normal-to-surface viewing
as sun reflections can saturate images and hence negatively
affect the inspection. The recommendation by FLIR [19] is
to stay within 5◦ ∼ 60◦ with respect to the module surface
normal for thermal images as in Fig. 6.

If camera resolution is a limitation and an image of the
entire module or mirror does not yield sufficient level of detail,
then multiple images of the same panel may be taken. In this
case, a waypoint is ”burst” into four, where each new waypoint
is centered at the middle of the four quadrants of the module.

F. Positioning and RTK

Field experiments show that there can be significant po-
sitioning errors from the drone’s GPS receiver(s) or gimbal.
The authors in [20] characterized this position noise as a white
Gaussian noise and assumed the position uncertainty at each
waypoint to be independent from the previous ones. That is,

ŵk ∼ G (µ, σ) , (6)

where G (µ, σ) is a Gaussian process with mean µ and
variance σ, which are respectively calculated as µ = E (ŵk)

and σ = E
[
(ŵk − µ) (ŵk − µ)

>
]
[20]. In (6), E(−) is the

expectation operator. Drift can be as severe as a few meters.
Based on our field observations, the drift can be also quasi-
static. While having multiple GPS receivers on the drone can
slightly alleviate this problem, even minor drift, of 20cm or
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Fig. 7: Experiments location at Vast Solar, New South Wales.

more, leads to unacceptable compromise of the image quality.
The solution to drift is two-fold.

1) Drift estimation and correction: Before taking off, one
can measure the amount of drift, e.g., by comparing a pre-
surveyed GPS reading vs. the drone’s current GPS reading
at the same landmark (such as the takeoff point). Then, all
waypoints can be shifted to account for this offset. This
approach doesn’t need any extra hardware but since GPS drift
is highly correlated to the satellite configuration that changes
regularly, these corrections are not stable in time.

2) RTK: Integration of Real-time Kinematics (RTK) system
in the Global Navigation Satellite System (GNSS) informa-
tion [21]. RTK uses a fixed receiver that sends out position
correction information to the drone based on a well-surveyed
base station. It performs a similar correction to GPS offset
mentioned above but is continuously (usually every 1 second)
updated during the flight instead of one time before take-
off. The accuracy of RTK is incomparable with that of GPS
receivers. RTK has been successfully used in UAV system to
geo-reference defective cells in [22].

IV. EXPERIMENTS AND APPLICATIONS

A. Hardware for experiments

The choice of different UAV properties and relative sensors
is essential in order to make the most appropriate inspection
platform. To test our waypoints generation procedure in real
flights, the DJI Matrice 600 [23], a powerful hex-copter that
is particularly designed for applications such as professional
photography and industrial inspections, was used.

The hex-copter was equipped with a DJI Zenmuse X5, a
high-resolution camera that is suitable for inspection applica-
tions with its 16-megapixel images.

B. Flight Missions and Dataset Collection

With the assistance of our industrial partners in Australia,
thousands of images were collected from several flight mis-
sions. However, unlike the first data collection for PV images
from the Williamsdale solar farm where waypoints planning
was done manually, at the Vast Solar Pilot Plant at Jemalong,
NSW, we utilized the provided surveyed heliostat locations
and used the presented waypoints generation algorithm to
autonomously control the drone and the camera to capture
images. The experimental field is shown in Fig. 7. As the
field sampling feature was not part of the algorithm at that
time, dataset collection during this first mission was done using
full search. The planned flight for this mission is shown in

Fig. 8: 3D mission plan for Vast Solar.

Fig. 8. The proposed “burst” imaging was also successfully
demonstrated in this mission.

During these test flights, the issue of GPS drifting was
first noted to be a critical positioning challenge that hinders
inspection accuracy, although pre-flight drift correction was
useful in alleviating it. The need for RTK based positioning
became evident.

To test the accuracy of RTK systems, we conducted a simple
experiment where the UAV was positioned over the takeoff
point without flying. Ideally, there should be zero change in
the altitude and longitude data. To analyze the positioning
error, location data were logged for around 15 minutes with the
drone’s standard GPS (no RTK), and in a second experiment
with RTK integration. The data from these two experiments
are shown in Fig. 9 and Table I summarizes the error statistics.

As indicated in Table I, the integration of RTK allows huge
positioning gain over standard GPS, which renders it suitable
for accurate positioning for inspection tasks. RTK will be
tested in real flights along with the field sampling method
and TSO waypoint planning to gather soiling data from our
future visits.

C. Application to PV Fault Inspection

PV modules have several types of defects that degrades their
ability to convert light into electricity. Some faults are visible
to the naked eye and some are not. As such, inspecting for
these faults requires multi-sensory (or multi-modal) data for
every model. In [24], we tackled the problem of multimodal
data registration for PV modules inspection by maximizing
mutual information between the two modalities. This approach
also accurately localizes each PV module with a sub-pixel
accuracy. The reader is referred to [24] for more details.

V. CONCLUSION

In this research, we presented a UAV waypoints generation
system that is specifically designed for aerial inspection of
solar infrastructure. The system accounts for the physical
structure and the dynamic nature of sun-tracking solar modules
and generates waypoints with the right inspection configu-
ration. Statistical sampling methods and TSO were used to
generate a set of representative waypoints that are efficiently
visited to study the status of solar farms within a user-
defined confidence level and margin of error. Illustrative flights
and preliminary PV and heliostats inspection results were
discussed as the first step of more elaborative future research.
In future work, we aim to include the terrain map as an input
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Fig. 9: RTK vs GPS position accuracy testing w.r.t. home location.
UAV is stationary on the ground.

to our waypoints planning algorithm and study using multiple
cooperative UAVs.
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TABLE I: Positioning error comparison with and without RTK.
Reading RTK (cm) GPS (cm) Gain

Longitude (avg) 12.07 87.57 7.26
Longitude (std) 3.24 39.21 12.10
Latitude (avg) 7.34 98.58 13.43
Latitude (std) 1.89 54.07 28.61
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