
Linearization in Motion Planning under Uncertainty

Marcus Hoerger1,2, Hanna Kurniawati1, Tirthankar Bandyopadhyay2, and Alberto Elfes2

1 The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
{m.hoerger, hannakur}@uq.edu.au

2 CSIRO, Pullenvale, Brisbane, QLD 4069, Australia

Abstract. Motion planning under uncertainty is essential to autonomous robots.
Over the past decade, the scalability of such planners have advanced substantially.
Despite these advances, the problem remains difficult for systems with non-linear
dynamics. Most successful methods for planning perform forward search that re-
lies heavily on a large number of simulation runs. Each simulation run generally
requires more costly integration for systems with non-linear dynamics. Therefore,
for such problems, the entire planning process remains relatively slow. Not sur-
prisingly, linearization-based methods for planning under uncertainty have been
proposed. However, it is not clear how linearization affects the quality of the gen-
erated motion strategy, and more importantly where to and where not to use such a
simplification. This paper presents our preliminary work towards answering such
questions. In particular, we propose a measure, called Statistical-distance-based
Non-linearity Measure (SNM), to identify where linearization can and where it
should not be performed. The measure is based on the distance between the dis-
tributions that represent the original motion-sensing models and their linearized
version. We show that when the planning problem is framed as the Partially Ob-
servable Markov Decision Process (POMDP), the difference between the value
of the optimal strategy generated if we plan using the original model and if we
plan using the linearized model, can be upper bounded by a function linear in
SNM. We test the applicability of this measure in simulation via two venues.
First, we compare SNM with a negentropy-based Measure of Non-Gaussianity
(MoNG) —a measure that has recently been shown to be a suitable measure of
non-linearity for stochastic systems [1]. We compare their performance in mea-
suring the difference between a general POMDP solver [2] that computes motion
strategies using the original model and a solver that uses the linearized model
(adapted from [3]) on various scenarios. Our results indicate that SNM is more
suitable in taking into account the effect that obstacles have on the effectiveness
of linearization. In the second set of tests, we use a local estimate of SNM to
develop a simple on-line planner that switches between using the original and the
linearized model. Simulation results on a car-like robot with second order dynam-
ics and a 4-DOFs and 6-DOFs manipulator with torque control indicate that our
simple planner appropriately decides if and when linearization should be used.

Keywords: Motion planning, Motion planning under uncertainty, POMDP

1 Introduction
An autonomous robot must be able to compute reliable motion strategies, despite vari-
ous errors in actuation and prediction on its effect on the robot and its environment, and
despite various errors in sensing and its interpretation. Computing such robust strategies
is computationally hard even for a 3 DOFs point robot [4,5]. Conceptually, this prob-
lem can be solved in a systematic and principled manner when framed as the Partially

2

Observable Markov Decision Process (POMDP) [6]. POMDP represents the aforemen-
tioned errors as probability distributions, and estimates the system’s states (following a
sequence of actions and observations that the robot has performed and perceived) as a
probability distributions called beliefs. It then computes the best motion strategy with
respect to beliefs rather than with respect to single states, because the actual state is
uncertain due to errors in the system’s dynamics and sensing. Although the concept of
POMDP was proposed since early 1960 [7], only in recent years that POMDP starts to
become practical for robotics problems (e.g., [8,9]). This advancement is achieved by
trading optimality with approximate optimality for speed and memory. But even then,
in general, computing close to optimal strategies for systems with complex non-linear
dynamics remains relatively slow.

Several general POMDP solvers —one that does not restrict the type of dynam-
ics and sensing model of the system, nor the type of distributions used to represent
uncertainty— can now compute good motion strategies on-line with 1-10Hz update rate
for a number of robotics problems [2,10,11,12]. However, their speed degrades when
the robot has complex non-linear dynamics. To find a good strategy, these methods sim-
ulate the effect of many sequences of actions from different beliefs. A simulation run
generally invokes many numerical integrations, and more complex dynamics tends to
increase the cost of each numerical integration, which in turn significantly increases the
total planning cost of these methods. Of course, this cost will increase even more for
problems that require more or longer simulation runs, such as in problems with long
planning horizon.

Many linearization based methods have been proposed [3,13,14,15,16]. These meth-
ods evaluate the effect of many sequences of actions from different beliefs too, but uses
a linearized model of the dynamics and sensing for simulation, so as to reduce the cost
of each simulation run. Together with linearization, many of these methods assume that
each reachable belief must be a Gaussian distribution. This assumption improves the
speed of simulation further, because the subsequent belief after an action is performed
and an observation is perceived can be computed by propagating only the mean and co-
variance matrix. In contrast, the aforementioned general solvers use particle representa-
tion and therefore must compute the subsequent belief by propagating each particle. As
a result, the linearization-based planners require less time to simulate the effect of per-
forming a sequence of actions from a belief, and therefore can potentially find a good
strategy faster than the general method. However, it is known that linearization in con-
trol and estimation performs well only when the system’s non-linearity is “weak” [17].
The question is, what constitute “weak” non-linearity in motion planning under uncer-
tainty? Where will it be useful and where will it be damaging to use linearization (and
Gaussian) simplifications?

This paper presents our preliminary work to answer the above questions. We pro-
pose a measure of non-linearity, called Statistical-distance-based Non-linearity Mea-
sure (SNM), to help identify the suitability of linearization in a given problem of motion
planning under uncertainty. SNM is based on the total variation distance between the
original dynamics and sensing models, and their corresponding linearized models. It is
general enough to be applied to any type of motion and sensing errors, and any lineariza-
tion technique, regardless of the type of approximation to the true beliefs (e.g., with and

3

without Gaussian simplification). We showed that the difference between the value of
the optimal strategy generated if we plan using the original model and if we plan using
the linearized model, can be upper bounded by a function linear in SNM. Furthermore,
our experimental results (Section 6) indicate that compared to recent state-of-the-art
methods of non-linearity measures for stochastic systems, SNM is more sensitive to
the effect that obstacles have on the effectiveness of linearization, which is critical for
motion planning.

To further test the applicability of SNM in motion planning, we develop a simple
on-liner planner that uses a local estimate of SNM to automatically switch between
a general planner[2] that uses the original POMDP model and a linearization-based
planner (adapted from [3]) that uses the linearized model. Experimental results on a
car-like robot with acceleration control, and a 4-DOFs and 6-DOFs manipulators with
torque control indicate that this simple planner can appropriately decide if and when
linearization should be used and therefore computes better strategies faster than each of
the component planner.

2 Related work
Linearization is a common practice in solving non-linear control and estimation prob-
lems. It is known that linearization performs well only when the system’s non-linearity
is “weak” [17]. To identify the effectiveness of linearization in solving non-linear prob-
lems, many non-linearity measure have been proposed in the control and information
fusion community.

Many non-linearity measures (e.g., [18,19,20]) have been designed for determin-
istic systems. For instance, [18] proposed a measure derived from the curvature of
the non-linear function. The work in [19,20] compute the measure based on the dis-
tance between the non-linear function and its nearest linearization. A brief survey of
non-linearity measures for deterministic systems is available in [17].

Only recently more work on non-linearity measures for stochastic systems started to
flourish. For instance, [17] extends the measures in [19,20] to be based on the average
distance between the non-linear function that models the motion and sensing of the
system, and the set of all possible linearizations of the function.

Very recently, [1] proposes a different class of measures, which is based on the dis-
tance between distribution over states and its Gaussian approximation, called Measure
of Non-Gaussianity (MoNG), rather than based on the non-linear function itself. They
assume a passive stochastic systems, and computes the negentropy of the non-linear
function of the transformed belief — that is, the non-linearity measure of a belief is
computed as the negentropy between the subsequent beliefs and their Gaussian approx-
imations. Their results indicate that this non-Gaussianity measure is more suitable to
measure the non-linearity of stochastic systems, as it takes into account the effect that
non-linear transformations have on the shape of the transformed beliefs. This advance-
ment is encouraging and we will use this measure as a comparator of SNM. However,
for this purpose, this measure must be modified because our system is not passive, and
in fact, eventually, we would like to have a measure that can be used to decide what
strategy to use (e.g., to use a linearized or a general planner). The exact modifications
we made can be found in Appendix B.1

4

Despite the various non-linearity measures that have been proposed, most are not
designed to take into account the effect of obstacles to the non-linearity of the robotic
system. Except for MoNG, all of the aforementioned non-linearity measures will have
difficulties in taking into account the effect of obstacles, even when these effects are
embedded in the motion and sensing models. For instance, curvature-based measures
requires the non-linear function to be twice continuously differentiable, but the presence
of obstacles is very likely to break the differentiability of the motion model. Further-
more, the effect of obstacles is likely to violate the additive Gaussian error, required for
instance by [17]. Although MoNG can potentially take into account the effect of obsta-
cles, it is not designed to. The measure is based on the Gaussian approximation to the
subsequent belief. In the presence of obstacles this subsequent belief would have sup-
port only in the valid region of the state space, and therefore computing the difference
between this subsequent belief and its Gaussian approximation is likely to underes-
timate the effect of obstacles to the effectiveness of linearization. This is exactly the
problem we try to alleviate in our proposed non-linearity measure SNM.

Instead of adopting existing approaches in non-linearity measure, SNM adopts the
approach commonly used for sensitivity analysis[21,22] of Markov Decision Processes
(MDP) —a special class of POMDP where uncertainty is only in the effect of perform-
ing actions. It is based on the statistical distance measure between the true transition
dynamics and its perturbed versions. Linearized dynamics can be viewed as a special
case of perturbed dynamics, and hence this statistical distance measure can be applied
as a non-linearity measure too. We do need to extend these analysis, as they are gener-
ally defined for discrete state space and are defined with respect to only the dynamics
models (MDP assumes the state of the system is fully observable). Nevertheless, such
extensions are feasible and the generality of this measure could help decide which lin-
earization method to use.

3 Problem modelling
In this paper, we consider motion planning problems, in which a robot must move from
a given initial state to a state in the goal region while avoiding obstacles. The robot
operates inside deterministic, bounded, and perfectly known 2D or 3D environments
populated by static obstacles.

The robot’s dynamics and sensing are uncertain and are defined as follows. Let
S ⊂ Rn be the bounded n-dimensional state space, A ⊂ Rd the bounded d-dimensional
control space and O ⊂ Rl the bounded l-dimensional observation space of the robot.
The robot evolves according to a discrete-time non-linear stochastic system, which we
model in the general form st+1 = f (st ,at ,vt) where f is a known non-linear stochastic
dynamic system, st ∈ S is the state of the robot at time t, at ∈ A the control input at time
t, and vt ∈Rd is a random control error. At each time step t, the robot receives imperfect
information regarding its current state according to a non-linear stochastic function of
the form ot = h(st ,wt) where ot ∈O is the observation at time t and wt ∈Rd is a random
observation error.

We now define the motion planning under uncertainty problem for the above system
as a Partially Observable Markov Decision Process (POMDP) problem.

Formally, a POMDP is a tuple 〈S,A,O,T,Z,R,b0,γ〉. The notations S, A and O are
the state, action, and observation spaces. The notation T is a conditional probability

5

function p(s′ |s,a) (where s,s′ ∈ S and a ∈ A) that represents uncertainty in the ef-
fect of actions, while Z is a conditional probability function p(o|s,a) that represents
uncertainty on sensing. The notation R is the reward function, which depends on the
state–action pair and acts as an objective function. The notations b0 and γ ∈ (0,1) are
the initial belief and discount factor.

At each time-step, a POMDP agent is at a state s∈ S, takes an action a∈A, perceives
an observation o∈O, receives a reward based on the reward function R(s,a), and moves
to the next state. Now due to uncertainty in the results of action and sensing, the agent
never knows its exact state and therefore, estimates its state as a probability distribution,
called belief. The solution to the POMDP problem is an optimal policy (denoted as
π∗), which is a mapping π∗ : B → A from beliefs (B denotes the set of all beliefs,
which is called the belief space) to actions that maximizes the expected total reward
the robot receives, i.e., V ∗(b0) = maxa∈A

(
R(b,a)+ γ

∫
o∈O p(o|b,a)V ∗(τ(b,a,o))do

)
,

where τ(b,a,o) computes the updated belief estimate after the robot performs action
a ∈ A and perceived o ∈ O from belief b, and is defined as:

b′(s′) = τ(b,a,o)(s′) = η Z(s′,a,o)
∫

s∈S
T (s,a,s′)b(s)ds (1)

For our motion planning problem, S, A, and O of the POMDP problem is the same
as those of the robotic system (for simplicity, we use the same notation). The transition
T represents the dynamics model f , while Z represents the sensing model h. The reward
function represents the task’ objective, for example, high reward for goal states and low
negative reward for states that cause the robot to collide with the obstacles. The initial
belief b0 represents uncertainty on the starting state of the robot.

4 Statistical-distance-based Non-linearity Measure (SNM)
Intuitively, our proposed measure SNM is based on the total variation distance between
the effect of performing an action and perceiving an observation under the true dy-
namics and sensing model, and the effect under the linearized dynamic and sensing
model. The total variation distance distTV between two probability functions θ and θ ′

over a measurable space Ω is defined as distTV (θ ,θ
′) = supE∈Ω |θ(E)−θ ′(E)|. More

formally, SNM is defined as:

Definition 1. Let P = 〈S,A,O,T,Z,R,b0,γ〉 be the POMDP model of the system and
P̂ = 〈S,A,O, T̂ , Ẑ,R,b0,γ〉 be a linearization of P, where T̂ is a linearization of the
transition function T and Ẑ is a linearization of the observation function Z of P, while
all other components of P and P̂ are the same. Then, the SNM (denoted as Ψ) between
P and P̂ is Ψ(P, P̂) =ΨT (P, P̂)+ΨZ(P, P̂), where

ΨT (P, P̂) = sup
s∈S,a∈A

∣∣∣distTV (T (s,a,s′), T̂ (s,a,s′))
∣∣∣= sup

s,s′∈S,a∈A

∣∣∣T (s,a,s′)− T̂ (s,a,s′)
∣∣∣

ΨZ(P, P̂) = sup
s∈S,a∈A

∣∣∣distTV (Z(s,a,o), Ẑ(s,a,o))
∣∣∣= sup

s∈S,a∈A,o∈O

∣∣∣Z(s,a,o)− Ẑ(s,a,o)
∣∣∣

Note that SNM can be applied as both a global and a local measure. For local measure,
the supremum over the state s can be restricted to a subset of S, rather than the entire
state space. Also, SNM is general enough for any approximation to the true dynamics
and sensing model, which means that it can be applied to any type of linearization

6

and belief approximation techniques, including those that assume and those that do not
assume Gaussian belief simplifications.

We want to use the measure Ψ(P, P̂) to bound the difference between the expected
total reward received if the system were to run the optimal policy of the true model P
and if it were to run the optimal policy of the linearized model P̂. Note that since our
interest is in the actual reward received, the values of these policies are evaluated with
respect to the original model P (we assume P is a faithful model of the system). More
precisely, we want to show that:

Theorem 1. Let π∗ be the optimal policy of POMDP problem P= 〈S,A,O,T,Z,R,b0,γ〉
and π̂ be the optimal policy of its linearized version P̂ = 〈S,A,O, T̂ , Ẑ,R,b0,γ〉, where
T̂ is a linearization of the transition function T , Ẑ is a linearization of the observation
function Z of P. Suppose the spaces S, A, and O for both models are the same and all
represented as [0,1]n, [0,1]d , and [0,1]l , respectively, with n, d, and l are the dimen-
sions of the respective spaces. And, the reward function is Lipschitz continuous in S
with Lipschitz constant K. Then,

Vπ∗(b0)−Vπ̂(b0)≤ 2γ

(
Rmax

(1− γ)2 +
KC
√

n
1− γ

)
Ψ(P, P̂)

where Vπ(b) = R(b,π(b))+ γ
∫

o∈O Z(b,a,o)Vπ(τ(b,a,o))do and τ(b,a,o) is the belief
transition function as defined in (1) for the true model P. The notation C is a constant,
defined as C = 1+η1

η1η2
, where η1 and η2 are the normalization constants in the computa-

tion of τ(b,a,o) and its linearized version, respectively.

To prove this theorem, we first need to compute the upper bounds of two other
difference functions. First is the total variation distance between the beliefs propagated
under the true model P and under its linearized version P̂. More precisely,

Lemma 1. Suppose b′ = τ(b,a,o) and b̂′ = τ̂(b,a,o) are the belief transition functions
(as defined in (1)) for P and P̂, respectively. Then for any a ∈ A and any o ∈ O,

distTV (b′, b̂′) = sup
s∈S
|b′(s)− b̂′(s)| ≤ CΨ(P, P̂)

where C = 1+η1
η1η2

, and η1 and η2 are the normalization constants in the computation of
τ(b,a,o) and τ̂(b,a,o) respectively.

The second function is the difference between the observation function and its lin-
earized version, given a belief and an action. Slightly abusing the notation Z, we use
Z(b,a,o) and Ẑ(b,a,o) to denote the conditional probability density (mass) function of
perceiving observation o ∈ O after action a ∈ A is performed from belief b, under the
model P and its linearized version P̂. We want to show that:

Lemma 2. For any b ∈ B, a ∈ A, and o ∈ O, Z(b,a,o)− Ẑ(b,a,o) ≤ Ψ(P, P̂).

In addition, we need to show that the optimal value function is Lipschitz continuous
under the total variation distance, i.e.:

Lemma 3. Let P = 〈S,A,O,T,Z,R,b0,γ〉 be a POMDP problem where S is a metric
space with dimension n and |R(s,a)−R(s′,a)| ≤ K dist(s,s′) for any s ∈ S and a ∈ A.
Then, |V ∗(b)−V ∗(b′)| ≤ K

√
n distTV (b,b′).

7

The proofs for the above lemmas are available in Appendix A.
Now, we can show Theorem 1. For this purpose, we first divide the difference in the

expected total reward into two components:

Vπ∗(b0)−Vπ̂(b0) =
(

Vπ∗(b0)−V̂ (b0)
)
+
(

V̂ (b0)−Vπ̂(b0)
)

(2)

where V̂ (b0) is the optimal value of the linearized model P̂ when the belief is at b0.
We will start by computing an upper bound for the first component. Note that the

value Vπ∗ is the same as the optimal value V ∗ of the POMDP problem P, and therefore
we can compute the bound of the first component as:(

Vπ∗(b0)−V̂ (b0)
)
= max

a∈A

(
R(b0,a)+ γ

∫
o∈O

Z(b0,a,o)V ∗(b1)do
)
−

max
a∈A

(
R(b0,a)+ γ

∫
o∈O

Ẑ(b0,a,o)V̂ (b̂1)do
)

≤ γ max
a∈A

(∫
o∈O

Z(b0,a,o)V ∗(b1)− Ẑ(b0,a,o)V̂ (b̂1)do
)

= γ max
a∈A

(∫
o∈O

(
Z(b0,a,o)V ∗(b1)−Z(b0,a,o)V̂ (b̂1)

)
+(

Z(b0,a,o)V̂ (b̂1)− Ẑ(b0,a,o)V̂ (b̂1)
)

do
)

= γ max
a∈A

(∫
o∈O

(
Z(b0,a,o)

[
V ∗(b1)−V̂ (b̂1)

]
+[

Z(b0,a,o)− Ẑ(b0,a,o)
]

V̂ (b̂1)
)

do
)

(3)

Replacing the difference between Z and Ẑ in the last term of (3) with the upper bound
in Lemma 2 and assuming the volume of O is one, in addition to dividing the difference
[V ∗(b1)− V̂ (b̂1)] into two components (V ∗(b1)− V̂ (b1))+(V̂ (b1)− V̂ (b̂1)), allows us
to rewrite (3) as:(

Vπ∗(b0)−V̂ (b0)
)
≤ γ Ψ(P, P̂)

Rmax

1− γ
+ γ max

a∈A

(∫
o∈O

Z(b0,a,o)
[
V ∗(b1)−V̂ (b1)

]
do

+
∫

o∈O
Z(b0,a,o)

∣∣∣V̂ (b1)−V̂ (b̂1)
∣∣∣do
)

(4)

We bound the last term of the right-hand-side of (4) using Lemma 3 and rewrite (4) as:(
Vπ∗(b0)−V̂ (b0)

)
≤ γ

(
Ψ(P, P̂)

Rmax

1− γ
+KC

√
n Ψ(P, P̂)

)
+

γ max
a∈A

(∫
o∈O

Z(b0,a,o)
[
V ∗(b1)−V̂ (b1)

]
do
)

Since V ∗ is equivalent to Vπ∗ for any beliefs, the last term in the above equation is
essentially a recursion. Solving this recursion completes the upper-bound for the first
component of (2), i.e.:

8

(
Vπ∗(b0)−V̂ (b0)

)
≤ γ

(
Rmax

(1− γ)2 +
KC
√

n
1− γ

)
Ψ(P, P̂) (5)

Now, we compute the upper bound for the second component of (2) in a similar
manner:

V̂ (b0)−Vπ̂(b0) ≤
(

R(b0, π̂(b0))+ γ

∫
o∈O

Ẑ(b0, π̂(b0),o)V̂ (b̂1)do
)
−(

R(b0, π̂(b0))+ γ

∫
o∈O

Z(b0, π̂(b0),o)Vπ̂(b1)do
)

= γ

(∫
o∈O

Ẑ(b0, π̂(b0),o)V̂ (b̂1)−Z(b0, π̂(b0),o)Vπ̂(b1)do
)

= γ

(∫
o∈O

(
Ẑ(b0, π̂(b0),o)

[
V̂ (b̂1)−Vπ̂(b1)

]
+[

Ẑ(b0, π̂(b0),o)−Z(b0, π̂(b0),o)
]

Vπ̂(b1)
)

do
)

(6)

By dividing
[
V̂ (b̂1)−Vπ̂(b1)

]
into two components

(
V̂ (b̂1)−V̂ (b1)

)
,
(

V̂ (b1)−Vπ̂(b1)
)

and using similar arguments we made in (3)–(5), we can bound the second component
of (2) in the same way we did for its first component, i.e.:(

V̂ (b0)−Vπ̂(b0)
)
≤ γ

(
Rmax

(1− γ)2 +
KC
√

n
1− γ

)
Ψ(P, P̂) (7)

The sum of the right-hand-side of (5) and (7) yields the upper bound in Theorem 1.
The upper bound in Theorem 1 is relatively loose. However, the results in Section 6

indicate that this bound can be used as a sufficient condition to identify where lineariza-
tion should and should not be applied.

5 SNM-Planner: An Application of SNM for Planning
SNM-Planner is an on-line planner that uses SNM as a heuristic to decide whether a
general POMDP solver or a linearization-based motion planner should be used. The
general solver used is Adaptive Belief Tree (ABT)[2], while the linearization-based
method called Modified High Frequency Replanning (MHFR), which is an adaptation
of HFR[3]. HFR is designed for chance-constraint POMDPs, i.e., it explicitly mini-
mizes the collision probability, while MHFR is a POMDP solver where the objective is
to maximize the expected total reward. During run-time, at each step, SNM-Planner ap-
proximates the local value of SNM around the current belief b. This value and a given
threshold will then be used to decide whether to use ABT or MHFR to decide what
action to take from b. An overview of the algorithm is in Algorithm 1.

5.1 Approximating SNM

Given the current belief bi, SNM-Planner approximates the local value of SNM around
bi by approximating each component of SNM, i.e., ΨT and ΨZ , separately, using a sim-
ple Monte-Carlo approach. To approximate ΨT , SNM-Planner uses a Monte Carlo ap-
proach to construct a histogram representation of T (s,a,s′) in the support set of bi. For

9

Algorithm 1 SNM-Planner (initial belief b0, threshold µ , max planning time t, max
time to approximate SNM tm, #steps N, goal region G)

1: TABT ← InitializeABT (P)
2: TMHFR← InitializeMHFR(P)
3: tp← t− tm, i← 0
4: while si /∈ G and collided = False and i < N do
5: . si is the actual state at step-i. The system never knows si, but it knows if it is at a goal state.
6: Ψ ← approximatePsi(tm,bi)
7: if Ψ < µ then
8: a←MHFR(TMHFR, tp,bi)
9: else

10: a← ABT (TABT , tp,bi)
11: end if
12: executeAction(a)
13: o← getObservation(bi,a)
14: bt+1← τ(bi,a,o) . We use Sequential Importance Resampling [23]
15: i← i+1
16: end while

this purpose, SNM-Planner starts by sampling a set of state-action pairs (s,a), denoted
as U , where each s is a state sampled from bi and a is sampled uniformly at random
from the action space A. For each pair (s,a), SNM-Planner samples a set of L possible
next states according to T (s,a,s′) (denoted as X(s,a)) and another set of L possible next
states according to T̂ (s,a,s′) (denoted as X̂(s,a), where L is a given constant. It then con-
structs a histogram for each set of possible next states. Both histograms are constructed
with respect to the same discretization of the state space S. Suppose K is the number of
bins in this discretization, the approximate local value Ψ̂T (bi) can be approximated as:

Ψ̂T (bi)≈ max
(s,a)∈U

max
k∈[1,K]

1
L

∣∣∣nk
s,a− n̂k

s,a

∣∣∣ (8)

where nk
s,a is the number of elements in X(s,a) that lies in bin-k, while n̂k

s,a is the number
of elements in X̂(s,a) that lies in bin-k.

To approximate ΨZ around bi, the same procedure is performed. However, here,
SNM-Planner samples the observation from Z(s,a,o) and Ẑ(s,a,o). The histogram is
then constructed by discretizing the observation space O.

At a first glance, the above method seems rather inefficient, due to the large number
of histogram bins for high-dimensional state and observation spaces. However, three
problem properties significantly reduce the computation cost. First, often a large portion
of the histogram bins are empty and do not need to be considered, allowing for more
efficient data structures, such as associative maps. Second, since SNM-Planner is a
threshold-based method, as soon as the local approximation of SNM hits the threshold,
the computation can be stopped. In our experiments we have seen that when the robot
operates near obstacles where the local SNM is high, only a few state-action samples
are needed to exceed the threshold. Last, calculating Ψ̂T

s,a
(bi) and Ψ̂Z(bi) for different

states and actions is trivially parallelizable.

10

(a) Maze (b) Factory-1 (c) 6DOF-scenario

Fig. 1: Test scenarios for the different robots. The objects colored grey are obstacles,
while the green sphere is the goal region. (a) The car-like robot scenario. The purple
square represents the beacons, while the red square at the bottom left represents the
initial state. (b) The 4DOF-manipulator scenario. (c) The 6DOF-manipulator scenario.
For (b-c), the robot is shown in red color with yellow end-effector.

6 Experimental Results
6.1 Experimental Setup

Our experiment is two-fold: To test SNM and to test the planner as proposed in Sec-
tion 5. For our first objective, we compare SNM with a modified version of the mea-
sure of non-Gaussianity (MoNG) [1]. We use ABT as the general POMDP solver and
MHFR as the linearization-based POMDP solver. Details of MoNG modifications, as
well as ABT and MHFR are presented in Appendix B.

All algorithms are implemented in C++, while all experiments are conducted on
Intel Xeon E5-2650 CPUs with 16GB RAM. For the parallel construction of the RRTs
in MHFR, we utilize 8 CPU cores throughout the experiments. All parameters are set
based on preliminary runs over the possible parameter space, the parameters that gen-
erate the best results are then chosen to generate the experimental results. For the com-
parison between SNM and MoNG, we use a car-like robot with 2nd order control and a
4-DOFs manipulator with torque control. To test the proposed planner, we use these two
scenarios plus a scenario involving a 6-DOFs manipulator with torque control. Details
of these scenarios are as follows.
Car-like robot with 2nd Order Control. A nonholonomic car-like robot of size (0.12×
0.07) drives on a flat xy-plane inside a 3D environment populated by obstacles (Fig-
ure 1(a)). The robot must drive from a known start state to a position inside the goal
region (marked as a green sphere) without colliding with any of the obstacles.
The state of the robot at time t is defined as a 4D vector st = (xt ,yt ,θt ,υt) ∈ R4 where
xt ∈ [−1,1] and yt ∈ [−1,1] are the position of the center of the robot on the xy-plane,
θt ∈ [−3.14rad,3.14rad] is the orientation, and υt ∈ [0,0.2] is the linear velocity of
the robot. The initial state of the robot is(−0.7,−0.7,1.57rad,0), while goal region
is centered at (0.7,0.7) with radius 0.1. The control input at time t, at = (αt ,φt) is a
2D real vector consisting of the acceleration α ∈ [0,1] and the steering wheel angle
φ ∈ [−1rad,1rad]. The robot’s dynamics is subject to control noise vt = (α̃t , φ̃t)

T ∼
N(0,Σv). The robot’s transition model is

11

st+1 =
[
xt +∆ tυcosθt ; yt +∆ tυsinθt ; θ +∆ t tan(φt + φ̃)/0.11 ; υ +∆ t(αt + α̃)

]
where ∆ t is the duration of a time step and the value 0.1 is the distance between the
front and rear axles of the wheels.
The robot will enter a terminal state and receive a penalty of −500 if it hits an obstacle.
It will also enter a terminal state, but with a reward of 1,000 after reaching a goal
region. All other actions incur a cost of −1. The robot localizes itself with the help of
a velocity sensor mounted on the car and two beacons (marked with purple square in
Figure 1(a)). Suppose the beacons are located at (x̂1, ŷ1) and (x̂2, ŷ2). In our experiment,
the first beacon is at (−0.7,0.7) and the second beacon is at (0.7,−0.7) Then, the
signals the robot receives from these two beacons is a function of the distance to them,
with additive Gaussian noise wt . More formally, the robot’s observation model is:

zt =
[
1/((xt − x̂1)

2 +(yt − ŷ1)
2 +1);1/((xt − x̂2)

2 +(yt − ŷ2)
2 +1);υt

]
+wt

Fig. 2: The configuration of
the 4DOFs-manipulator.

4-DOFs and 6-DOFs Manipulator with torque con-
trol. We describe these robotic systems in a general
manner for a k-DOFs robot. This robot has k rota-
tional joints, with limits at each of their joint angles
and velocities, mounted on a static base. The manip-
ulator operates in an environment populated by ob-
stacles, and must move from the initial state to a
state where the end-effector lies inside the goal re-
gion, without colliding with any of the obstacles.
The environment scenarios for the 4-DOFs and 6-
DOFs are in Figure 1(b) and Figure 1(c), respec-
tively.
A state of the manipulator is defined as s = (θ , θ̇) ∈

R2k, where θ ∈ [−3.14rad,3.14rad] is the vector of joint angles and θ̇ ∈ [−3rad,3rad]
is the vector of rotational joint velocities. The rotational axes for the 4-DOFs manipu-
lator are presented in Figure 2. For the 6-DOFs manipulator, the rotational axis of the
first 4 joints are exactly the same as those of the 4-DOFs manipulator, and the addi-
tional two joints rotates around the Z axis. The mass of each link is 0.8kg. The control
input a ∈ A⊂Rk is the joint torques. The torque limits for the 4-DOFs manipulator are
(±20Nm/s,±20Nm/s,±10Nm/s,±10Nm/s), while the torque limits for the 6-DOFs
manipulator are (±20Nm/s,±20Nm/s,±20Nm/s,±10Nm/s,±10Nm/s,±10Nm/s).
The motion of the robot is disturbed by a k-dimensional error vector v ∼ N(0,Σv).
The dynamics of the manipulator are modelled using the well-known Euler-Lagrangian
formalism [24]. Note that although the error is Normally distributed, due to the non-
linearity of the dynamics, the resulting belief estimate will generally not be Normally
distributed. The initial state for both the 4DOFs and the 6DOFs manipulator is a state
where all joint angles and joint velocities are zero. When the robot collides with an
obstacle or with itself, it will move to a terminal state and receive a penalty of −500.
When its end-effector reaches a goal region, the robot will move to a terminal state too,
but it will receive a reward of 1000. All other actions incur a cost of −1. The robot
is equipped with two types of sensors. The first sensor measures the position of the
end-effector in the robot’s workspace. The second sensor measures the joint velocities.

12

Empty environment

eT = eZ SNM MoNG VABT(b0)−VMHFR(b0)
VABT(b0)

1.25 0.205 0.597 0.220
2.50 0.200 0.611 0.262
3.75 0.278 0.638 0.157
5.00 0.326 0.679 0.130

Maze scenario

eT = eZ SNM MoNG VABT(b0)−VMHFR(b0)
VABT(b0)

1.25 0.206 0.556 -0.660
2.50 0.213 0.675 -0.567
3.75 0.302 0.705 0.369
5.00 0.393 0.719 8.598

Table 1: The measure computed using SNM and MoNG, and the relative value differ-
ence between ABT and MHFR for the car-like robot in an empty environment, and in
the maze scenario for increasing eT and eZ .

Suppose g : R2k 7→ R3 is a function that maps the state of the robot to an end-effector
position in the workspace and wt ∼ N(0,Σw) is the error vector, then the observation
model is defined as zt = [g(st), θ̇t]+wt .

6.2 Testing SNM

In this set of experiments, we want to understand the performance of SNM compared
to existing non-linearity measures for stochastic systems in various scenarios. In partic-
ular, we are interested in the effect that motion and sensing errors have and the effect
that obstacles have on the effectiveness of SNM, compared to MoNG.

To this end, we perform experiments on the car-like robot and the 4-DOFs manipu-
lator, with increasing the motion and sensing error of these robotic systems, operating
in empty environments and environments populated by obstacles.

For experiments with increasing motion and sensing error, recall Section 6.1 that
the control and sensing errors are drawn from zero-mean multivariate Gaussian distri-
butions with covariance matrices Σv and diagonal entries (σ1, ...,σn). We then define
relative control error (denoted as eT) to be the percentage of the value range of the con-
trol inputs for each control dimension respectively. The square of the resulting values
are then the diagonal entries of Σv. The observation error (denoted as eZ) is defined in a
similar fashion.

To investigate how SNM and MoNG perform as the control and sensing errors in-
crease, we run experiments with multiple relative control and observation errors, rang-
ing between 1.25% and 5.0%. To investigate the effect of obstacles to each measure,
we ran each robotic system in an empty environment and in the environments as pre-
sented in Figure 1(a)-(b). For each scenario and each control-sensing error value (we set
eT = eZ), we ran 100 simulation runs using ABT and MHFR, respectively. Since both
ABT and MHFR are on-line planners, in each simulation run, each planner was allowed
a planning time of 1s per planning step for the car-like robot, and 2s per planning step
for the 4-DOFs manipulator. The average measures and value differences between ABT
and MHFR are presented in Table 1 and Table 2.

The results indicate that in all scenarios, both SNM and MoNG are sensitive to
an increase in the relative motion and sensing error. This increase generally resonates
well with the increase in the difference between the average total discounted reward re-
ceived if ABT were used and if MHFR were use, except for the case of the car-like robot
operating in an empty environment. In this particular scenario, the relative difference
between the general and the linearized solver decreases as the motion and sensing errors

13

Empty environment

eT = eZ SNM MoNG VABT(b0)−VMHFR(b0)
VABT(b0)

1.25 0.099 0.979 0.018
2.50 0.113 1.026 0.005
3.75 0.127 1.017 0.082
5.00 0.193 1.049 0.172

Factory-1 scenario

eT = eZ SNM MoNG VABT(b0)−VMHFR(b0)
VABT(b0)

1.25 0.556 0.968 0.389
2.50 0.529 1.071 0.882
3.75 0.604 1.094 0.889
5.00 0.638 1.108 1.239

Table 2: The measure computed using SNM and MoNG, and the relative value differ-
ence between ABT and MHFR for the 4-DOFs manipulator in an empty environment,
and in the factory-1 scenario for increasing eT and eZ .

increase. The reason is the performance of ABT decreases as the errors increase (simi-
lar as in the other three scenarios), but the performance of MHFR is almost unaffected.
Figure 3(left) presents the plot of the average total reward of ABT and MHFR for the
car-like robot operating in an empty environment. The performance of ABT decreases
because as the motion and sensing errors increases, more particles are needed to repre-
sents the stochastic uncertainty well, which means if planning time per step does not in-
crease, the quality of the generated strategy will decrease. The performance of MHFR is
almost unaffected because in terms of computation time, MHFR is almost unaffected, it
remains to use only the mean and covariance of the Gaussian distribution for planning.
Furthermore, in this scenario, the penalty of making a wrong estimate will only be a
longer route. Since the cost of a single action is−1 and due to the discount factor, the in-
crease in the path length have an almost negligible effect on the total discounted reward.

Fig. 3: Mean total discounted reward when no obsta-
cle is present.

Now, one may question
why then the difference in
value increases in the case of a
4-DOFs manipulator operating
in an empty environment? As
the plot in Figure 3(right) indi-
cated, in this scenario, the per-
formance of MHFR degrades
as the relative motion and sensing errors increases. The reason is although the envi-
ronment is empty, a 4-DOFs manipulator may have self-collision, and the increase in
the motion and sensing errors causes the robot to be more susceptible to self-collision.
Therefore, this scenario produces a similar trend to the test scenarios where obstacles
are present (i.e., the maze and factory-1 scenarios).

In terms of sensitivity on the effect of obstacles to the effectiveness of linearization,
both Table 1 and Table 2 indicate that SNM is more sensitive than MoNG. Overall, ob-
stacles significantly increase the difference between the average total discounted reward
if ABT were run and if MHFR were run. Similar to this trend, SNM shows significant
increase in its non-linearity measure when obstacles are introduced. However, the mea-
sures computed using MoNG are unaffected by the introduction of obstacles.

6.3 Testing SNM-Planner

In this set of experiments, we want to test the performance of SNM-Planner. To this end,
we tested our planner against the two component planners ABT and MHFR for three

14

different scenarios: The maze problem for the car-like robot, a 4-DOFs manipulator,
and a 6-DOFs manipulator (as shown in Figure 1). We fixed both eT and eZ to 2.5% in
these experiments. The SNM-threshold that is being used throughout these experiments
is 0.3 for the car-like robot and 0.4 for both manipulator scenarios. The planning time
that is being used for each algorithm is 1 sec per step for the car-like robot, 2 sec for
the 4-DOFs manipulator and 7 sec for the 6-DOFs manipulator. Note that for SNM-
Planner, the planning time per step consists of the time to approximate SNM and the
planning time for the individual component planners. We allow a maximum of 20% of
the total planning time per step for the approximation of SNM, while the other 80% is
used for the component planners.

Planner Car-like robot 4-DOFs manipulator 6-DOFs manipulator
ABT 128.59 ± 43.59 213.62 ± 64.68 737.23 ± 37.41
MHFR 141.39 ± 75.08 13.41 ± 116.76 265.39 ± 109.95
SNM-Planner 230.30 ± 70.56 382.62 ± 102.79 652.86 ± 69.48
Table 3: Mean total discounted reward +/- 95 % confidence interval over 100 simulation
runs. The proportion of using ABT in the car-like robot, 4-DOFs and 6-DOFs manipu-
lator scenarios are 29.53%, 36.13%, and 51.64% of the planning steps, respectively.

The results in Table 3 indicate that SNM-Planner can appropriately identify where
to run linearization and where to not run linearization with a small enough cost, such
that it can be used to generate motion strategies that are at least comparable to the
suitable method.

(a) ABT is selected (b) MHFR is selected (c) ABT is selected (d) MHFR is selected.

Fig. 4: Typical situations for the car-like robot and the 6DOFs-manipulator robot for
which the SNM is above and below the threshold

It is interesting to note that ABT is often selected when the robot operates in the
vicinity of the obstacles. Figure 4 illustrates typical beliefs where ABT is selected (in
the car-like robot and 6-DOFs manipulator scenarios). When the robot operates in the
vicinity of an obstacle, SNM is usually larger than in free areas. In these situations,
where careful planning is mandatory in order to avoid collisions, SNM-Planner prefers
to use ABT, while in free areas where a more coarse planning would suffice, SNM-
Planner prefers to use MHFR.

A critical aspect in SNM-Planner is how well can we approximate SNM in a limited
time (i.e., 0.2s, 0.4s, and 1.4s for the car-like robot, 4-DOFs manipulator, and 6-DOFs
manipulator, respectively). To understand this issue better, we tested the convergence
rate of SNM in the car-like robot and the 4-DOFs manipulator scenario with various
motion and sensing errors. For this purpose, we generate a trajectory for the maze and
factory-1 scenario, and for each belief in the trajectory, we perform 100 independent
Monte Carlo runs for different time limits to estimate the local value of SNM around the
belief. The average of these estimates when we use the various time limits are presented
in Figure 5.

15

0.0 2.5 5.0 7.5 10.0
time t in seconds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ψ
(t

)

% eT = eZ = 1.2

% eT = eZ = 2.5

% eT = eZ = 3.8

% eT = eZ = 5.0

0.0 2.5 5.0 7.5 10.0
time t in seconds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ψ
(t

) % eT = eZ = 1.2

% eT = eZ = 2.5

% eT = eZ = 3.8

% eT = eZ = 5.0

Fig. 5: Convergence to the true Ψ for the car-like robot
(left) and 4DOFs-manipulator (right).

As expected, the results
indicate that the size of
the state, action, and obser-
vation space significantly
influence the convergence
rate. The car-like robot can
converge to a good es-
timate faster than the 4-
DOFs robot. It is interest-
ing to note that the motion

and sensing errors have little to no effect on the convergence of our method. These re-
sults also indicate that the estimate we use for testing SNM-Planner would have been a
reasonable estimate, though not perfect, even though it takes very little time.

7 Summary and Future Work
This paper presents our preliminary work in identifying the suitability of linearization
for motion planning under uncertainty. To this end, we present a general measure of
non-linearity, called Statistical-distance-based Non-linearity Measure (SNM), which is
based on the distance between the distributions that represent the system’s motion–
sensing model and its linearized version. Comparison studies with one of state-of-the-
art methods for non-linearity measure indicate that SNM is more suitable in taking into
account obstacles in measuring the effectiveness of linearization.

We also propose a simple on-line planner that uses a local estimate of SNM to select
whether to use a general POMDP solver or a linearization-based solver for robot motion
planning under uncertainty. Experimental results indicate that our simple planner can
appropriately decide where linearization should be used and generates motion strategies
that are comparable or better than each of the component planner.

Future work abounds. For instance, the question for a better measure remains. Total
variation distance relies on computing a maximization, which is often difficult to esti-
mate. Statistical distance function that relies on expectation exists and can be computed
faster. How suitable are these functions as a non-linearity measure? Furthermore, our
upper bound result is relatively loose and can only be applied as a sufficient condition
to identify if linearization will perform well. It would be useful to find a tighter bound
that remains general enough for the various linearization and distribution approximation
methods in robotics.

References

1. Dunı́k, J., Straka, O., Šimandl, M.: Nonlinearity and non-gaussianity measures for stochastic
dynamic systems. In: Information Fusion (FUSION), IEEE (2013) 204–211

2. Kurniawati, H., Yadav, V.: An online POMDP solver for uncertainty planning in dynamic
environment. In: ISRR. (2013)

3. Sun, W., Patil, S., Alterovitz, R.: High-frequency replanning under uncertainty using parallel
sampling-based motion planning. IEEE Transactions on Robotics 31(1) (2015) 104–116

4. Canny, J., Reif, J.: New lower bound techniques for robot motion planning problems. In:
Foundations of Computer Science, 1987., 28th Annual Symposium on, IEEE (1987) 49–60

5. Natarajan, B.: The complexity of fine motion planning. The International journal of robotics
research 7(2) (1988) 36–42

16

6. Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially observable
stochastic domains. AI 101 (1998) 99–134

7. Drake, A.W.: Observation of a Markov process through a noisy channel. PhD thesis, Mas-
sachusetts Institute of Technology (1962)

8. Horowitz, M., Burdick, J.: Interactive Non-Prehensile Manipulation for Grasping Via
POMDPs. In: ICRA. (2013)

9. Temizer, S., Kochenderfer, M., Kaelbling, L., Lozano-Pérez, T., Kuchar, J.: Unmanned
aircraft collision avoidance using partially observable markov decision processes. Project
Report ATC-356, MIT Lincoln Laboratory, Advanced Concepts Program, Lexington, Mas-
sachusetts, USA (September 2009)

10. Silver, D., Veness, J.: Monte-Carlo Planning in Large POMDPs. In: NIPS. (2010)
11. Somani, A., Ye, N., Hsu, D., Lee, W.S.: DESPOT: Online POMDP planning with regular-

ization. In: NIPS. (2013) 1772–1780
12. Seiler, K., Kurniawati, H., Singh, S.: An online and approximate solver for pomdps with

continuous action space. In: ICRA. (2015)
13. Agha-Mohammadi, A.A., Chakravorty, S., Amato, N.M.: Firm: Sampling-based feedback

motion planning under motion uncertainty and imperfect measurements. IJRR (2013)
14. Berg, J., Abbeel, P., Goldberg, K.: LQG-MP: Optimized Path Planning for Robots with

Motion Uncertainty and Imperfect State Information. In: RSS. (2010)
15. Berg, J., Wilkie, D., Guy, S., Niethammer, M., Manocha, D.: LQG-Obstacles: Feedback

Control with Collision Avoidance for Mobile Robots with Motion and Sensing Uncertainty.
In: ICRA. (2012)

16. Prentice, S., Roy, N.: The belief roadmap: Efficient planning in linear pomdps by factoring
the covariance. In: Robotics Research. Springer (2010) 293–305

17. Li, X.R.: Measure of nonlinearity for stochastic systems. In: Information Fusion (FUSION),
2012 15th International Conference on, IEEE (2012) 1073–1080

18. Bates, D.M., Watts, D.G.: Relative curvature measures of nonlinearity. Journal of the Royal
Statistical Society. Series B (Methodological) (1980) 1–25

19. Beale, E.: Confidence regions in non-linear estimation. Journal of the Royal Statistical
Society. Series B (Methodological) (1960) 41–88

20. Emancipator, K., Kroll, M.H.: A quantitative measure of nonlinearity. Clinical chemistry
39(5) (1993) 766–772

21. Mastin, A., Jaillet, P.: Loss bounds for uncertain transition probabilities in markov decision
processes. In: CDC, IEEE (2012) 6708–6715

22. Müller, A.: How does the value function of a markov decision process depend on the transi-
tion probabilities? Mathematics of Operations Research 22(4) (1997) 872–885

23. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for
online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on signal processing
50(2) (2002) 174–188

24. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Volume 3.
Wiley New York (2006)

25. Kurniawati, H., Patrikalakis, N.: Point-Based Policy Transformation: Adapting Policy to
Changing POMDP Models. In: WAFR. (2012)

26. Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. International statistical
review 70(3) (2002) 419–435

27. Lavalle, S.M., Kuffner Jr, J.J.: Rapidly-exploring random trees: Progress and prospects. In:
Algorithmic and Computational Robotics: New Directions, Citeseer (2000)

17

Appendix A Proofs of Lemma 1 — Lemma 3

To prove Lemma 1 and Lemma 2, we need a notion of difference between the transition func-
tion T of the true POMDP model P and its linearized version T̂ in P̂. To this end, we define
the difference as: DS(s,a,s′) = T (s,a,s′)− T̂ (s,a,s′). We also need a similar notion of differ-
ence for the observation function. For this purpose, we define this difference to be: DO(s,a,o) =
Z(s,a,o)− Ẑ(s,a,o). Note that these two notion of differences are upper-bounded by the compo-
nents of SNM, i.e., DS(s,a,s′)≤ΨT (P, P̂) and DO(s,a,o)≤ΨZ(P, P̂) for any s,s′ ∈ S, a ∈ A, and
o ∈ O.

A.1 Proof of Lemma 1

Without loss of generality, let’s first compute |b′(s′)− b̂′(s′)| for state s′ ∈ S as:∣∣∣b′(s′)− b̂′(s′)
∣∣∣= 1

η1

(
Z(s′,a,o)

∫
s∈S

T (s,a,s′)b(s)ds
)
− 1

η2

(
Ẑ(s′,a,o)

∫
s∈S

T̂ (s,a,s′)b(s)ds
)

Replacing the linearized function T̂ and Ẑ with the notion of difference DS and DO allows us to
expand the right-hand-side of the above equation into:

=
1

η1η2

(
η2

(
Z(s′,a,o)

∫
s∈S

T (s,a,s′)b(s)ds
)
−η1

((
Z(s′,a,o)−DO(s′,a,o)

)∫
s∈S

(
T (s,a,s′)−DS(s,a,s′)

)
b(s)ds

))
Manipulating the algebra allows us to expand the above terms further into:∣∣∣b′(s′)− b̂′(s′)

∣∣∣ = 1
η1η2

(
(η2−η1)

∫
s∈S

b(s)T (s,a,s′)Z(s′,a,o)ds

+η1

∫
s∈S

b(s)
(
T (s,a,s′)−DS(s,a,s′)

)
DO(s′,a,o)ds+η1

∫
s∈S

b(s)Z(s′,a,o)DS(s,a,s′)ds
)

=
1

η1η2

(
(η2−η1)

∫
s∈S

b(s)T (s,a,s′)Z(s′,a,o)ds

+η1

∫
s∈S

b(s)T̂ (s,a,s′)DO(s′,a,o)ds+η1

∫
s∈S

b(s)Z(s′,a,o)DS(s,a,s′)ds
)

Using the upper bound of the differences, we can bound the above equation as:∣∣∣b′(s′)− b̂′(s′)
∣∣∣ ≤ 1

η1η2

(
(η2−η1)+η1ΨT (P, P̂)+η1ΨZ(P, P̂)

)
(9)

Let’s now compute the upper bound for the first term of the right-hand-side of the above equation:

η2−η1 =
∫

s′∈S

∫
s∈S

(
Ẑ(s′,a,o)T̂ (s,a,s′)−Z(s′,a,o)T (s,a,s′)

)
b(s)dsds′

=
∫

s′∈S

∫
s∈S

((
Z(s′,a,o)−DO(s′,a,o)

)(
T (s,a,s′)−DS(s,a,s′)

)
−Z(s′,a,o)T (s,a,s′)

)
b(s)dsds′

=
∫

s′∈S

∫
s∈S

(
T̂ (s,a,s′)DO(s′,a,o)−Z(s′,a,o)DS(s,a,s′)

)
b(s)dsds′

≤ΨZ(P, P̂)+ΨT (P, P̂) (10)

Substituting the term (η2−η1) in (9) with its upper bound as derived in (10) will yield the upper
bound in this lemma. 2.

18

A.2 Proof of Lemma 2

Given an observation o ∈ O, we can compute the difference in the observation function of the
true and linearized models after action a ∈ A is performed from belief b as:

Z(b,a,o)− Ẑ(b,a,o) =
∫

s′∈S

∫
s∈S

b(s)
(

Z(s′,a,o)T (s,a,s′)− Ẑ(s′,a,o)T̂ (s,a,s′)
)

dsds′

Replacing the linearized transition and observation function with the difference equation DS and
DO allows us to expand the right-hand-side of the above equation into:

Z(b,a,o)− Ẑ(b,a,o) =
∫

s′∈S

∫
s∈S

b(s)
(
Z(s′,a,o)DS(s,a,s′)+T (s,a,s′)DO(s′,a,o)−DS(s,a,s′)DO(s′,a,o)

)
dsds′

=
∫

s′∈S

∫
s∈S

b(s)
(
Z(s′,a,o)DS(s,a,s′)+

(
T (s,a,s′)−DS(s,a,s′)

)
DO(s′,a,o)

)
dsds′

=
∫

s′∈S

∫
s∈S

b(s)
(

Z(s′,a,o)DS(s,a,s′)+ T̂ (s,a,s′)DO(s′,a,o)
)

dsds′

Replacing DS and DO with their upper bounds and integrating the probabilities out will yield the
upper bound we want to prove, i.e.: Z(b,a,o)− Ẑ(b,a,o)≤ΨZ(P, P̂)+ΨT (P, P̂). 2.

A.3 Proof of Lemma 3

We know that if |R(s,a)−R(s′,a)| ≤ K dist(s,s′), then |V ∗(b)−V ∗(b′)| ≤ KdistW (b,b′), where
distW (b,b′) is the Wasserstein distance between beliefs b and b′ [25]. Using Lemma 1, we know
that distTV (b1, b̂1) ≤ CΨ(P, P̂). Since the Wasserstein distance between any two distributions
is upper bounded by a linear function of the total variation distance, i.e., distW (b,b′) ≤

√
n ·

distTV (b,b′)[26]. Then,
∣∣∣V̂ (b1)−V̂ (b̂1)≤ KC

√
n Ψ(P, P̂)

∣∣∣, which is Lemma 3. 2.

Appendix B Implementation Details of Relevant Algorithms

B.1 The Comparator Non-Linearity Measures

The measure of Non-Gaussianity (MonG) proposed in [1] is based on the negentropy between
the PDF of a random variable and its Gaussian approximation. Consider a n-dimensional random
variable x distributed according to PDF p(x). Furthermore, let x̂ be a Gaussian approximation
of x with PDF p̂, such that x̂ ∼ N(µ,Σx), where µ and Σx are the first two moments of x. The
negentropy between p and p̂ (denoted as J(p, p̂)) is then defined as

J(p, p̂) = H(p̂)−H(p)

H(p̂) =
1
2

ln [(2πe)n |det(Σx)|]

H(p) =−
∫

p(x) ln p(x)dx

(11)

where H(p),H(p̂) is the differential entropy of p and p̂ respectively. A (multivariate) nor-
mal distribution has the largest differential entropy amongst all distributions with equal first two
moments, therefore J(p, p̂) is always non-negative. In practice, since the PDF p(x) is not known
exactly in all but the simplest cases, H(p) has to be approximated.

In [1] this measure has originally been used to assess the nonlinearity of passive systems.
Therefore, in order to achieve comparability with SNM, we need to extend the Non-Gaussian

19

measure to general active stochastic systems of the form st+1 = f (st ,at ,vt). We do this by evalu-
ating the non-Gaussianity of distribution that follows from the transition function T (s,a,s′) given
state s and action a. In particular for a given s and a, we can find a Gaussian approximation of
T (s,a,s′) (denoted by TG(s,a,s′)) by calculating the first two moments of the distribution that
follows from T (s,a,s′).

Using this Gaussian approximation, we define the Measure of Non-Gaussianity as

MoNG(T,TG) = sup
s∈S,a∈A

[
H(T (s,a,s′))−H(TG(s,a,s′))

]
(12)

In order to approximate H(T (s,a,s′)), we employ a similar Monte-Carlo based approach as
discussed in Section 5.1.

Note that throughout the experiments conducted in this paper, we use observation functions
with additive Gaussian noise, which results in the conditional observation distribution that follows
from Z(s,a,o) being a translated Gaussian distribution, for which MoNG evaluates to 0 for any
state and action. Hence we only evaluate MoNG for the nonlinear transition functions.

B.2 Adaptive Belief Tree (ABT)
ABT is an on-line and anytime general POMDP solver that updates (rather than recomputes) its
policy at each planning step. Given the current belief bt , ABT constructs and maintains a belief-
tree by sampling episodes sequences of state–action–observation–reward tuples, starting from
bt using a generative model. Each node in the belief tree represents a belief, while an edge from
belief b to b′ means that there is an action a∈A and an observation o∈O, such that b′= τ(b,a,o).
Details of the method is in [2].

B.3 Modified High Frequency Replanning (MHFR)
The main difference between HFR and MHFR is that HFR is designed for chance constraint
POMDP, i.e., it explicitly minimizes the collision probability, while MHFR is a POMDP solver,
whose objective is to maximize the expected total reward. Similar to HFR, MHFR computes the
solution on-line and approximates bt by a Normal distribution N(s,Σ).

To decide the best action to perform from the initial belief b0 = N(s0,Σ0), MHFR computes
multiple trajectories from s0 to a goal state in parallel, using RRT [27]. To decide which trajectory
to follow, MHFR computes the expected total discounted reward of each trajectory, assuming
the most likely observation is perceived at every step and tracking the changes in the system’s
belief using KF. Once the best sampled trajectory is found, the first action a ∈ A is performed,
an observation o ∈ O is perceived, and an EKF is applied to compute the current belief b1 =
N(s1,Σ1) given the previous belief, the action performed, and the actual observation that the
system perceived. Now, to compute the action from b1, MHFR computes multiple trajectories
from s1 to a goal state using RRT, and uses LQG to adjust the best trajectory from b0. For each
of these trajectories (the newly sampled trajectories and the adjusted one), MHFR computes the
expected total discounted reward, so as to find the best trajectory to use from b1. Once the best
trajectory is found, the same procedure as above is performed, and the process repeats.

	Linearization in Motion Planning under Uncertainty-10pt
	Introduction
	Related work
	Problem modelling
	Statistical-distance-based Non-linearity Measure (SNM)
	SNM-Planner: An Application of SNM for Planning
	Approximating SNM

	Experimental Results
	Experimental Setup
	Testing SNM
	Testing SNM-Planner

	Summary and Future Work
	Appendix Proofs of Lemma 1 — Lemma 3
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Appendix Implementation Details of Relevant Algorithms
	The Comparator Non-Linearity Measures
	Adaptive Belief Tree (ABT)
	Modified High Frequency Replanning (MHFR)

