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Introduction 

This thesis builds on key recent developments in modelling climate change and 

energy through four papers (chapters). Many recent papers have discussed the 

importance of uncertainty in modelling the economics of climate change. The first 

paper thesis considers how a risk of tipping points, where there is abrupt and 

irreversible damage, impacts optimal tax policy for both carbon dioxide and 

methane. 

The ongoing transition to clean energy involves a shift of factors of production 

and researchers into the clean energy sector. Governments have a role in enabling 

and incentivising such a shift through various policy options including carbon taxes 

and research subsidies. The second paper discusses the relative performance of 

taxes and subsidies when only one of these instruments is available and how 

different modelling assumptions affect results.  

The substitutability between clean and dirty energy is an important factor in 

determining: the cost of a clean transition; the type, timing and extent of optimal 

policy; and the additional costs from suboptimal policy. The third paper examines 

the elasticity of substitution between renewable inputs in electricity and dirty inputs 

empirically and in a simple theoretical dispatch model, and discusses policy 

implications of decreasing substitutability as integrating intermittent inputs 

becomes more difficult as their share rises. 

The fourth paper is a shorter comment on multiple equilibria and the innovation 

framework of a prominent paper in this field (Acemoglu, Aghion, Bursztyn, & 

Hemous, 2012).   



5 
 

I. Chapter summaries 

Using different formulations of climate tipping points that trigger abrupt and 

irreversible damages, the first paper derives optimal environmental taxes in an 

analytically tractable model and depend on only a few parameters and a temperature 

projection. In a stylised approach, optimal taxes are constant as a ratio of income 

and are the sum of a deterministic damage component and a tipping risk component. 

If a tipping point may be triggered by temperature crossing a threshold, optimal 

tax-to-income ratios eventually fall and the price for short-lived methane emissions 

relative to long-lived carbon dioxide emissions should rise over time. 

The second paper considers a hypothetical choice between a carbon tax and a 

clean research subsidy. This paper argues that the absence of a non-energy sector 

has led some previous literature to find that subsidies outperform taxes. An 

integrated assessment model with endogenous technology is described. Numerical 

exercises find that a permanent global tax-only policy outperforms a permanent 

subsidy-only policy and this result is robust to many different parameter settings 

and assumptions. However, in the more optimistic case where optimal policy begins 

in 2050, the performances of subsidy-only and tax-only policies in the interim are 

closer. 

The third paper argues that a clean transition in electricity generation will likely 

be driven by variable renewable energy. The elasticity of substitution between wind 

and solar inputs and dirty inputs in electricity is estimated to be 3 or more by fitting 

an aggregate production function to OECD panel data. A high elasticity is 

consistent with detailed electricity models which also predict that the 

substitutability decreases as the share of clean inputs rises, as integrating 

intermittent energy supply becomes increasingly difficult. A simple dispatch model 

of electricity generation demonstrates this characteristic. Decreasing 

substitutability implies higher costs of a clean transition, greater costs from regions 
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transitioning sequentially rather than together, and a greater role for carbon taxes 

over research subsidies. 

The fourth paper discusses how the framework used to endogenise technology 

growth by Acemoglu et al. (2012) can exhibit increasing returns to research and 

hence multiple equilibria, including an unstable interior equilibrium. The paper 

discusses several methods to determine how a unique equilibrium might be 

specified. Alternative methods can produce substantially different results when the 

elasticity of substitution between clean and dirty inputs is high.  
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1. Optimal environmental taxes for a tipping climate 

By ANTHONY WISKICH* 

Using different formulations of climate tipping points that trigger 

abrupt and irreversible damages, optimal environmental taxes are 

derived in an analytically tractable model and depend on only a few 

parameters and a temperature projection. In a stylised approach, 

optimal taxes are constant as a ratio of income and are the sum of a 

deterministic damage component and a tipping risk component. If a 

tipping point may be triggered by temperature crossing a threshold, 

optimal tax-to-income ratios eventually fall and the price for short-

lived methane emissions relative to long-lived carbon dioxide 

emissions should rise over time. (JEL H23, O44, Q40, Q54, Q56, 

Q58) 

 Keywords: Climate change, tipping points, optimal policy, optimal taxes, 

global warming potential. 

 

* Wiskich: Centre for Applied Macroeconomic Analysis (CAMA), Crawford School of Public Policy, ANU College of 

Asia & the Pacific, Australian National University, J.G Crawford Building No. 132, Canberra, ACT 2601 Australia (e-

mail: twiskich@gmail.com). Acknowledgements. Helpful comments from Warwick McKibbin, David Stern, Frank Jotzo, 

Jack Pezzey, Reyer Gerlagh, Cameron Eren, Nicholas Rivers, Chris Wokker, Larry Liu, Martin Quaas, anonymous referees 

and audiences at the Australian National University, London School of Economics, Hamburg University, Institute for 

International Economic Studies and AERE, EAERE and EEA 2020 conferences. 

Potential effects from climate change include the risks of abrupt and irreversible 

events, referred to as tipping points. These events have been shown to have a 

material impact on optimal policy, and recent reviews have discussed the merits of 

using models that incorporate such uncertainty (Farmer, Hepburn, Mealy, & 
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Teytelboym, 2015; Lemoine & Rudik, 2017; Pindyck, 2013a, 2013b). A growing 

literature has examined tipping points in Integrated Assessment Models (IAMs) 

using various frameworks of uncertainty and tipping impacts.  

This paper adds to this literature by describing optimal environmental taxes under 

different tipping formulations using an analytically tractable economic model. Tax 

equations are derived which allow optimal tax paths to be calculated given a choice 

of formulation, a few parameters and a temperature projection. These parameters 

involve assumptions about the discount rate, damages from tipping events and how 

much the probability of tipping rises with each degree of warming. The equations 

are used to derive optimal taxes for both carbon dioxide and methane, first 

assuming exogenous temperature projections for illustration and second in a model 

with endogenous temperature. Two main approaches used in the literature to define 

the stochastic nature of tipping points are considered and discussed in depth: the 

threshold approach leads to a fall in the tax-to-income ratio in the long run 

(assuming temperature eventually starts falling) and a rising price for methane 

relative to carbon dioxide; and in the non-threshold approach optimal prices simply 

grow with output. Initial taxes in both frameworks are found to be broadly invariant 

to temperature projections and the welfare losses from using the wrong framework 

are discussed.  

Many papers have considered the risks of environmental catastrophe, going back 

to Cropper (1976) who assumes an unknown threshold of pollution which triggers 

a tipping point. Clarke and Reed (1994) consider a different method where the 

probability of tipping in a period, referred to as the hazard rate, is a function of 

pollution. The first formulation implies there is no risk of tipping occurring once 

temperature stabilises or falls in the long run. The second implies that tipping is 

certain to occur in the long run for any stabilisation of temperature with a non-zero 

tipping probability. As tipping risks likely lie somewhere in between these 
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extremes, both methods are considered in this paper and they are referred to as the 

threshold and non-threshold formulations.1  

An assessment of whether tipping points discussed in the literature map better to 

a threshold or non-threshold formulation is out of the scope of this paper, but both 

have been used extensively in the literature (see Table 1). A threshold formulation 

is akin to a phase transition in physics, such as a transition from liquid to gas, which 

occurs at a particular temperature (and pressure). Discussion of the likelihood of 

tipping events in the literature seems to map to threshold formulations: the collapse 

of Atlantic thermohaline circulation “probably requires more than 4OC warming”; 

the disappearance of the Greenland ice sheet “may occur at 0.8OC – 3.2OC (with 

best estimate 1.6OC)”; and collapse of the West Antarctic ice sheet “may be 

triggered at >4OC warming” (Lenton, 2013). However, referencing the triggering 

of events using warming levels is more convenient than doing so in a manner that 

maps to a non-threshold formulation. Further, when levels of warming are 

referenced, experts presumably have in mind a projection path such as the ranges 

Kriegler, Hall, Held, Dawson, and Schellnhuber (2009) provide to elicit views on 

the likelihood of a tipping event occurring. Lenton (2013) speculates that 

“Snowball Earth” glaciations that have occurred in the past were due to the 

combination of steady cooling and a stochastic cooling event such as a volcanic 

eruption. Such dependence on a stochastic event may map better to a non-threshold 

approach, likely with non-linear temperature dependence. Ultimately, we may 

never know the stochastic nature of tipping events that may be triggered by climate 

change, or at least not until after an event occurs. However, policymakers should 

be aware that the threshold and non-threshold formulations (and other sensitivities) 

can lead to different optimal policy paths as described in this paper. 

 

1
 Crépin and Nævdal (2020) discuss an approach which would account for delays between temperature and the hazard 

rate called inertia risk not considered in this paper. 



10 
 

Optimal climate policy involves pricing the emissions of greenhouse gases and, 

potentially, actions that can reduce global warming such as solar geoengineering. 

The timing of effects of these actions differs: while carbon dioxide is long-lived, 

methane decays relatively quickly. Under the current Intergovernmental Panel on 

Climate Change (IPCC) policy, the weights (prices relative to carbon dioxide) of 

greenhouse gases are constant based on a 100-year Global Warming Potential 

(GWP), independent of temperature outcomes. Such flat weights may be optimal, 

or close to optimal, in Integrated Assessment Models with a smooth damage 

function:2 this paper examines the optimal weights of the short-lived gas methane 

under a tipping risk.  

Section I describes a stylised framework that leads to a simple formula for the 

optimal carbon tax: tipping is assumed to lead to a fixed proportional damage to 

output,3 and future temperatures are restricted.4 This framework can be thought of 

as a variation to the model described in Golosov et al. (2014), who find a constant 

optimal tax-to-income ratio independent of economic growth and climate 

outcomes. This result occurs because assumptions imply a constant savings rate, so 

consumption is proportional to output, and damages are exponential-linear so that 

emissions lead to a linear reduction in log output and thus welfare. Golosov et al. 

(2014) assume that expected damage combines a fixed probability of 

severe/moderate damages which are linear in temperature. The tipping framework 

that I consider reverses these assumptions: the probability of tipping is linear in 

temperature and damage is a fixed proportion of output. Thus the risk of tipping 

 

2
 For example, the model described by Golosov, Hassler, Krusell, and Tsyvinski (2014) implies constant optimal tax-to-

income ratios independent of temperature outcomes, so the weights of short-lived gases would also be constant.  
3

 A collapse of major ice sheets leading to severe sea-level rise is an example of a shock that would have long-term and 

direct economic impacts. 
4

 An increasing temperature in the threshold formulation, and the less restrictive constraint in the non-threshold 

formulation that temperature does not fall far enough to remove the risk of a tipping event. 



11 
 

raises the tax, as found in previous theoretical and numerical papers,5 by adding a 

constant component to the optimal tax-to-income ratio (my first proposition). A 

deterministic damage component using the exponential-linear framework is also 

included for realism, whilst making identification of the component of the tax due 

to tipping risks straight forward. 

Removing the temperature restrictions means the optimal tax-to-income ratio will 

be lower in the long run (my second proposition), and dynamics are sensitive to the 

formulation adopted. Optimal taxes in the non-threshold formulation (hereafter 

non-threshold taxes) depend on the time when temperature falls sufficiently to 

remove the risk of tipping: if the risk of tipping persists for centuries the optimal 

tax-to-income ratios can be considered constant. However, for the threshold 

formulation, the risk of tipping may be a more temporary phenomenon depending 

on when peak temperature (the maximum level of projected warming) occurs. The 

threshold tax rises before peak temperature and following peak temperature the tax 

drops to the component corresponding to deterministic damages, as there is no risk 

of tipping. The sensitivity to peak temperature leads to rising weights of short-lived 

actions like methane.  

In section II, the general results are illustrated using numerical examples where 

temperature outcomes are exogenously set by two IPCC scenarios. This approach 

is simple while still allowing insights into the dynamics of taxes. While non-

threshold taxes are independent of temperature projections, the initial threshold tax 

is higher the sooner peak temperature occurs, but is independent of the temperature 

rise. Thus, higher temperature projections where peak temperature occurs in the 

distant future can lead to a lower initial optimal tax. For a temperature profile 

consistent with IPCC temperature targets of 1.5OC and 2OC, peak temperature 

 

5
 For example: Lontzek, Cai, Judd, and Lenton (2015); Van der Ploeg (2014); Lemoine and Traeger (2014); and Lemoine 

and Traeger (2016b). 
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likely occurs this century and the optimal weights of short-lived actions should be 

higher today and rise over coming decades.  

In section III a model with endogenous temperature is used to examine optimal 

temperature paths and the timing and interaction of methane abatement. As well as 

showing results in the tipping formulations, results for the commonly applied 

framework which imposes an upper limit on warming, referred to as the cost-

minimisation formulation, is shown as a comparison for policy-makers.6 Under 

cost-minimisation, including methane abatement naturally leads to a lower optimal 

carbon dioxide tax (and no change in peak temperature by construction), but in the 

tipping formulations there is little or no effect on the initial carbon dioxide price 

and peak temperature is lowered. Much of the literature investigating different 

gases suggests a low optimal weight of methane today based on cost-minimisation 

approaches, but results in this paper do not support this policy. In a simulation 

where tipping events have equal probabilities of having a threshold and non-

threshold nature, the key qualitative threshold results of lower long-run optimal tax 

ratios and an increasing methane weight before peak temperature persist. The 

welfare implications of various suboptimal policies are discussed, including the 

costs of maintaining a fixed methane weight (as under current policy) as discussed 

in IPCC (2014). 

Section IV discusses various sensitivities. First, I investigate increasing the 

degree of risk aversion implied by a logarithmic utility, adding to recent literature 

that applies Epstein-Zin utility to consider climate impacts and policy.7 I derive an 

approximate analytical solution to the optimal price and find that a risk aversion 

coefficient consistent with the literature leads to a small uplift in the tipping tax 

component. A power utility function with a higher coefficient of relative risk 

 

6
 Most previous papers only show results from one framework, with Goulder and Mathai (2000) an exception. 

7
References include Bretschger and Vinogradova (2018), Cai and Lontzek (2019), Olijslagers and van Wijnbergen (2019) 

and Traeger (2018). 
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aversion makes predictable changes to results in line with an increase in the 

discount rate. 

Second, a tipping event could lead to a change in the climate response rather than 

fixed damages, such as reduced absorption of carbon into the oceans discussed by 

Lenton et al. (2008) and considered by Lemoine and Traeger (2014). Increased 

sensitivity to temperature can act as a proxy for a change in the climate response: 

an exponential damages case examines the implications of both the probability of 

tipping and impacts being linear in temperature. Deriving optimal taxes is 

complicated by dependence on expected temperature levels, and a tipping event 

now changes the level of the tax-to-income ratio. For rising temperatures, the non-

threshold tax-to-income ratio grows while the threshold ratio may grow or shrink 

depending on the concavity of temperature outcomes. Solving for the tax under the 

possibility of multiple tipping points requires considering multiple future tipping 

eventualities when temperature is endogenous. However, by assuming that tipping 

can only occur once, as is often done in the literature, the tax can be derived using 

only temperature outcomes assuming tipping does not occur ex-post. This 

sensitivity has a differential welfare impact component to the optimal tax (Lemoine 

& Traeger, 2014), relating to the difference in the marginal welfare effect of the tax 

before and after tipping events, leading to lower weights of methane than under 

fixed damages.  

Third, while a few other papers consider the possibility of multiple tipping events 

like this paper,8 most studies consider the effect of a single tipping event. 

Unsurprisingly the tax is lower if only one tipping event can occur. Interestingly, 

in this case higher projected temperatures lead to a lower carbon tax today. 

Consider that a tipping event occurs at some future point, after which there is no 

further risk of tipping and hence no corresponding benefits from abatement today 

 

8
 See Bretschger and Vinogradova (2018), Lemoine and Traeger (2016b) and Tsur and Zemel (1998). 
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from the marginal hazard effect. As higher temperature outcomes increase the risk 

of tipping, the benefits of abatement today are lower from this “inevitability” effect 

and there is positive feedback between higher temperature outcomes and a lower 

carbon tax. 

Fourth, as tipping events may take time to become apparent I also investigate the 

effects of delayed impacts and learning on the optimal carbon price. A delayed 

tipping impact lowers today's tax due to discounting, but a delay in learning can 

boost future taxes. For example, in the threshold formulation with exponential 

damages, the tipping component of the tax persists beyond peak temperature until 

the risk that tipping has already occurred has gone. 

With logarithmic utility, tax-to-income ratios are not constant when the expected 

damage from tipping is not exponential-linear in temperature. A deterministic 

model with exponential-quadratic damages or some other exponential-nonlinear 

function would also lead to a non-constant tax-to-income ratio: Van der Ploeg, 2014 

discusses such sensitivity to the functional form of damages.9 The result that the 

weight of methane rises in the threshold approach is intuitive and would also apply 

with convex deterministic damages – if more damage is done at peak temperature 

and the temperature effect of methane at the peak is greater just before the peak, 

due to its short-lived nature, the weight will naturally be higher. However, 

quantitatively the rise will likely be much less in such a deterministic approach as 

changes in damages are smooth in contrast to the step-change in the marginal 

hazard effect in the threshold formulation.  

This paper adds to two main streams of literature: studies that consider optimal 

policy for carbon dioxide in IAMs; and studies that consider optimal policy across 

a range of greenhouse gases and actions such as geoengineering, sometimes using 

 

9
 The threshold formulation is comparable to a deterministic framework where damages depend on the rate of change of 

temperature. 
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a cost-minimisation framework. An example of the former which is close to this 

paper is Engström and Gars (2016), who use a similar framework to consider 

different types of tipping impacts with a threshold formulation but differ from this 

paper in at least three respects. First, the current paper considers both threshold and 

non-threshold formulations and considers methane as well as carbon dioxide. 

Second, this paper allows temperature to fall which has a large effect on the optimal 

tax in some instances, while Engström and Gars (2016) use a model where 

temperature cannot decrease and tipping is sure to occur in the long run. Third, I 

focus on optimal prices rather than rates of extraction and the green paradox which 

is the focus of their paper.10 A list of studies that consider tipping points is shown 

in Table 1, according to the threshold versus non-threshold formulations and fixed 

versus temperature-dependent damages.  

Differences between optimal policy for methane and carbon dioxide depend 

entirely on their different temporal effects on temperature. Nævdal (2006) 

considers the optimal regulation (not prices) of methane and carbon dioxide under 

a threshold tipping risk and finds a temporary boost in the ratio of methane to 

carbon dioxide stock above the steady-state, consistent with an increasing optimal 

methane weight in a decentralised model. Marten and Newbold (2012) find that the 

social cost of methane relative to carbon rises by up to 50% by 2050 in a 

deterministic model, due in part to their climate model where the marginal forcing 

of methane decreases slower than carbon with the increasing atmospheric stock. 

Other deterministic studies that consider methane include Waldhoff, Anthoff, Rose, 

and Tol (2011), Hope (2005) and Tol (1999). Finally, other relevant actions 

considered in the literature with different temporal characteristics include 

geoengineering (Goes, Tuana, and Keller (2011), Heutel, Moreno-Cruz, and 

 

10
 Scarcity rents have been marginal or non-existent historically (Hart & Spiro, 2011), and scarcity constraints on fossil 

energy extraction are unlikely to bind under optimal policy. 
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Shayegh (2018) and Bickel and Agrawal (2013)) and leakage rates and risks from 

carbon capture and sequestration (van der Zwaan & Gerlagh, 2009). 

While this paper considers the risks of tipping in a stochastic framework, the 

impact of tipping and the formulation of the hazard rate are themselves uncertain. 

Numerical exercises that incorporate Bayesian learning about climate sensitivity 

reach different conclusions about the effect of learning on the optimal carbon price. 

While Gerlagh and Liski (2018) find that the effect of learning on the carbon price 

is not significant over the next century and Leach (2007) finds that learning may 

take thousands of years, Hwang, Reynès, and Tol (2017) and Kelly and Tan (2015) 

find a material impact this century. In the current paper, the agent learns about the 

location of tipping points in the threshold formulation.11  

 

TABLE 1: APPROACHES ADOPTED BY PREVIOUS LITERATURE 

Hazard rate 

formulation 

Impacts of tipping cases 

Fixed impact 
Temperature-dependent or climate 

response impacts 

Threshold 

(Cropper, 1976; Engström & Gars, 2016; Tsur & Zemel, 

1998) 

(Engström & Gars, 2016; Keller, 

Bolker, & Bradford, 2004; Lemoine 
& Traeger, 2014; Lemoine & 

Traeger, 2016b) 

Non-threshold 

(Bretschger & Vinogradova, 2018; Cai, Judd, Lenton, 
Lontzek, & Narita, 2015; Cai & Lontzek, 2019; Clarke & 

Reed, 1994; Gerlagh & Liski, 2018; Lontzek et al., 2015; 

Polasky, De Zeeuw, & Wagener, 2011; Ren & Polasky, 
2014; Tsur & Zemel, 1998; van der Ploeg & de Zeeuw, 

2017, 2019)  

(Polasky et al., 2011; Van der Ploeg, 
2014; van der Ploeg & de Zeeuw, 

2019) 

 

I. Core model and optimal environmental taxes 

The core model uses 5 key assumptions found in Golosov et al. (2014) that lead 

to analytical tractability: logarithmic utility (i); full one-period depreciation of 

capital (ii); temperature is a linear function of historical actions (iii); an exponential 

 

11
 Learning that a tipping event has occurred has no effect on the optimal tax-to-income ratio under fixed damages and 

further possible tipping events, but does change the tax for exponential damages or single tipping event cases.  
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impact of temperature on output (iv); 12 and Cobb-Douglas production (v). A global 

representative household maximises the following in discrete time, for 

consumption 𝐶𝑡 and discount rate β: 

 (1)                        max𝔼0∑β𝑡𝑈(𝐶𝑡)

∞

𝑡=0

where 𝑈(𝐶𝑡) ∶= log(𝐶𝑡) . 

 

Temperature is a linear function of historical non-interacting actions 

𝑎 in period 𝑡, 𝐸𝑎𝑡, such as the use of energy releasing carbon dioxide emission 𝐸𝑐𝑡, 

(2)                              𝑇𝑡 =∑ ∑ 𝑇𝑡−𝑖
𝑎 𝐸𝑎𝑖

t

𝑖=−∞𝑎

where 𝑇𝑡−𝑖
𝑎 ∶=

𝜕𝑇𝑡
𝜕𝐸𝑎𝑖

. 

 

Deterministic damages are set by the parameter γ > 0 and stochastic damages 

from tipping by the function 𝑓𝑡 which I specify later. A multiplicative exponential 

damage function of atmospheric temperature 𝑇𝑡 above pre-industrial applies, and 

output is as follows: 

(3)           𝑌𝑡 =𝑒
−(γ𝑇𝑡+𝑓𝑡)𝐾𝑡

𝜅𝐹(𝑬𝑡)  with parameter 0 < 𝜅 < 1. 

 

Note that no restriction is placed on the function of energy 𝐹, with 𝑬𝑡 a vector of 

actions 𝐸𝑎𝑡. The sensitivity of optimal environmental taxes to these assumptions 

has been discussed by L Barrage (2014) and Rezai and Van der Ploeg (2015). 

Assumption (iii) can replicate the more complex climate-economy models well, 

although tipping impacts on climate feedback, such as a lower rate of 

decomposition of carbon dioxide, require a more complex framework. For the level 

 

12
 Strictly, Golosov et al. (2014) assume atmospheric carbon concentrations are a linear function of historical emissions, 

and an exponential impact of carbon concentration on output. 
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of damages considered in this paper, assumption (iv) leads to an approximately 

linear relationship between global damages and temperature, consistent with Burke, 

Hsiang, and Miguel (2015).13 The effect of higher risk aversion and non-

logarithmic utility is considered in section IV. 

Optimal taxes 

The social cost of carbon is equal to the optimal carbon tax and is derived using 

a Lagrangian method. The same derivation using Bellman equations for a specific 

framework is shown in Appendix A. The Lagrangian maximizes (1) subject to 

production and temperature constraints as follows: 

(4)        ℒ(𝐶𝑡, 𝐾𝑡 , 𝑬𝑡, 𝑇𝑡) = 𝔼0 {∑β𝑡 log 𝐶𝑡

∞

𝑡=0

 

   +∑λ𝑌𝑡

∞

𝑡=0

(𝑒−(𝛾𝑇𝑡+𝑓𝑡)𝐾𝑡
𝜅𝐹(𝑬𝑡) − 𝐶𝑡 − 𝐾𝑡+1)+∑λ𝑇𝑡 (𝑇𝑡 −∑ ∑ 𝑇𝑡−𝑖

𝑎 𝐸𝑎𝑖

t

𝑖=−∞𝑎

)

∞

𝑡=0

}. 

 

First-order conditions for C, T, K and 𝐸𝑎 are 

(5)        
β𝑡

𝐶𝑡
= λY𝑡, λ𝑇𝑡 = λY𝑡𝛾𝑌𝑡 + 𝔼t (∑λYt+𝑖

𝜕𝑓𝑡+𝑖
𝜕𝑇𝑡

𝑌𝑡+𝑖

∞

𝑖=0

), 

            𝔼t (λY𝑡+1𝜅
𝑌𝑡+1
𝐾𝑡+1

) = λY𝑡  and  λY𝑡𝑒
−(𝛾𝑇𝑡+𝑓𝑡)𝐾𝑡

𝜅𝐹′(𝑬𝑡) = 𝔼t (∑λ𝑇𝑡+𝑖𝑇𝑖
𝑎

∞

𝑖=0

) . 

 

 

13
 For damages up to around 10% of output, an exponential function is approximately linear. Burke, Hsiang, & Miguel, 

2015 find non-linear local responses to temperature but approximately linear losses at a global level. 
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A constant rate of savings is implied by the conditions for C and K. The multiplier 

for temperature equals marginal deterministic damages and the expected damages 

from tipping risks. The marginal gain from energy 𝐸𝑎 equals the future damages 

from temperature effects. The social cost of action a in units of the final good Λ𝑡
𝑎 

equals the sum of the future effects on temperature T𝑡
𝑎 multiplied by the 

temperature multiplier: 

(6)   Λ𝑡
𝑎 =

1

λY𝑡
𝔼t (∑λ𝑇𝑡+𝑖T𝑖

𝑎

∞

𝑖=0

)  and from (5) 

               =
C𝑡
𝛽𝑡
𝔼t(∑𝛽𝑡+𝑖T𝑖

𝑎 (
Y𝑡+𝑖
C𝑡+𝑖

γ + 𝔼t(∑𝛽𝑗
Y𝑡+𝑖+𝑗

C𝑡+𝑖+𝑗

𝜕𝑓𝑡+𝑖+𝑗

𝜕𝑇𝑡+𝑖

∞

𝑗=0

))

∞

𝑖=0

). 

 

Lemma 1: Given assumptions (i) to (v), the optimal tax-to-income ratio is given 

by 

 (7)        Λ̂𝑡
𝑎 ∶=

Λ𝑡
𝑎

Y𝑡
= Λ̂𝑑𝑒𝑡

𝑎 +∑𝛽𝑖T𝑖
𝑎𝔼t(∑𝛽𝑗

𝜕𝑓𝑡+𝑖+𝑗

𝜕𝑇𝑡+𝑖

∞

𝑗=0

)

∞

𝑖=0

 

                where Λ̂𝑑𝑒𝑡
𝑎 = 𝛽γΓ𝑎,   Γ𝑎 ∶=∑𝛽𝑖T𝑖

𝑎

∞

𝑖=0

. 

 

Equation (7) breaks down the optimal tax-to-income ratio into a component due to 

deterministic damages (Λ̂𝑑𝑒𝑡
𝑎 ) and a component due to the risk of tipping.  

Hazard rate 

Tipping occurs in each period with probability 𝑝𝑡, referred to as the hazard rate. 

An impact variable 𝐼𝑡 is zero if tipping does not occur in period t, and 𝛿 if tipping 
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occurs. I assume that multiple tipping events are possible, implying that the hazard 

rate is independent of whether events have already occurred, but no more than one 

event in a period which makes things easier in a discrete-time framework.14 The 

function 𝑓𝑡 is a function of temperature and previous impacts with parameter 𝜇 as 

follows: 

(8)    𝑓𝑡 = 𝑔(𝑇𝑡)∑𝐼𝑖

t−1

𝑖=0

 and 𝑝𝑡 = {
𝜇(𝑇𝑡 − �̅�𝑡)      if 𝑇𝑡 ≥ �̅�𝑡
0                   otherwise.

  

 

This paper assumes fixed damages (𝑔𝐹𝐷(𝑇𝑡) = 1) in this section and a sensitivity 

with exponential damages (𝑔𝐶𝑆(𝑇𝑡) = 𝑇𝑡) is discussed in section IV. Two methods 

of defining �̅�𝑡 are considered which are generally used in the literature: the values 

(�̅�𝑡, 𝜇) are (max
𝑘<𝑡
(𝑇𝑘) , 𝜇𝑇) for the threshold formulation and (𝑇𝑚𝑖𝑛, 𝜇𝑁) for the non-

threshold formulation, with 𝑇𝑚𝑖𝑛 parameterising the safe temperature below which 

there is no risk of tipping. Note the discontinuity in the temperature-derivative of 

the hazard rate at 𝑇𝑡 = �̅�𝑡. The derivative in (7) that determines the component of 

the tax due to tipping is 

(9)       𝔼𝑡 (
𝜕𝑓𝑡+𝑖+𝑗

𝜕𝑇𝑡+𝑖
) = 𝛿𝔼𝑡

{
 
 

 
 𝜕𝑔(𝑇𝑡+𝑖)

𝜕𝑇𝑡+𝑖
∑𝐼𝑡+𝑘

𝑖

𝑘=0

             if 𝑗 = 0

 𝑔(𝑇𝑡+𝑖+𝑗)∑
𝜕𝐼𝑡+𝑖+𝑘
𝜕𝑇𝑡+𝑖

j

𝑘=0

      if 𝑗 > 0.

 

 

 

14
 For the threshold approach, one can consider a prior probability function that is flat with temperature (with the caveat 

that not more than one event can occur each period). Multiple potential tipping points means that the expected number of 
tipping events increases without bound as temperature rises, and there is no updating the probability function if a tipping 

event occurs. 
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The top term is referred to as the differential welfare impact in Lemoine and 

Traeger (2014) and is proportional to the difference in the marginal welfare effect 

of the tax before and after tipping events. The bottom term is the marginal hazard 

effect and captures the marginal reduction in the risk of tipping by the tax. 

Fixed damages from tipping 

In the core model, tipping induces a fixed proportional impact on output. The first 

proposition considers a constraint on temperature outcomes such that 𝑇𝑡 > �̅�𝑡 for 

all 𝑡, implying increasing temperatures for the threshold formulation and future 

temperatures remaining above 𝑇𝑚𝑖𝑛 for the non-threshold formulation. 

 

Proposition 1: Given assumptions (i) to (v), 𝑇 > �̅� and fixed damages from 

tipping with multiple possible tipping events, the optimal tax-to-income ratio 

consists of a constant deterministic component and a constant tipping risk 

component given by 

(10)   Λ̂𝑇>�̅�,𝑡
𝑎  = Λ̂𝑑𝑒𝑡

𝑎 + Λ̂𝑇>�̅�
𝑎  where  Λ̂𝑇>�̅�

𝑎 = {

𝛽𝛿𝜇Γ𝑎   for threshold             
𝛽𝛿𝜇Γ𝑎

1 − 𝛽
   for non − threshold.

. 

 

Proof: With fixed damages, the differential welfare impact vanishes as 𝑔𝐹𝐷(𝑇𝑡) =

1 and the tipping tax-to-income component is  

(11)        ∑𝛽𝑖T𝑖
𝑎𝔼t(∑𝛽𝑗

𝜕𝑓𝑡+𝑖+𝑗

𝜕𝑇𝑡+𝑖

∞

𝑗=0

) =

∞

𝑖=0

∑𝛽𝑖T𝑖
𝑎𝔼t(∑𝛽𝑗∑

𝜕𝐼𝑡+𝑖+𝑘
𝜕𝑇𝑡+𝑖

j

𝑘=0

∞

𝑗=0

)

∞

𝑖=0
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= ∑𝛽𝑖T𝑖
𝑎𝔼t

{
 
 

 
 
𝜕𝐼𝑡+𝑖
𝜕𝑇𝑡+𝑖

+
𝛽

1 − 𝛽
(
𝜕𝐼𝑡+𝑖
𝜕𝑇𝑡+𝑖

+
𝜕𝐼𝑡+𝑖+1
𝜕𝑇𝑡+𝑖

)  for threshold  as 𝔼t (
𝜕𝐼𝑡+𝑖+𝑘
𝜕𝑇𝑡+𝑖

) = 0 𝑖𝑓 𝑘 > 1

∑𝛽𝑗
𝜕𝐼𝑡+𝑖+𝑗

𝜕𝑇𝑡+𝑖

∞

𝑗=0

   for non − threshold as 𝔼t (
𝜕𝐼𝑡+𝑖+𝑘
𝜕𝑇𝑡+𝑖

) = 0 𝑖𝑓 𝑘 > 0              

∞

𝑖=0

 

    = 𝛿∑𝛽𝑖T𝑖
𝑎

{
 
 

 
 𝜇𝑇 +

𝛽

1 − 𝛽
(𝜇𝑇 − 𝜇𝑇)  for threshold              

∑𝛽𝑗𝜇𝑁

∞

𝑗=0

                          for non − threshold 

∞

𝑖=0

 

= 𝛿∑𝛽𝑖T𝑖
𝑎 {

𝜇𝑇               for threshold              

∑𝛽𝑗𝜇𝑁

∞

𝑗=0

   for non − threshold 

∞

𝑖=0

 

 

Consider a marginal increase in temperature 𝑇𝑡+𝑖 which increases the chance of 

tipping in period 𝑡 + 𝑖 by 𝜇𝑑𝑇𝑡+𝑖. For the non-threshold formulation there is no 

effect on the chance of tipping in future periods so 
𝜕𝑓𝑡+𝑖+𝑗

𝜕𝑇𝑡+𝑖
= 𝜇𝑁 for all 𝑗 and the 

infinite sum leads to the denominator 1 − 𝛽. However, for the threshold 

formulation, the chance of tipping in period 𝑡 + 𝑖 + 1 is reduced by 𝜇𝑇𝑑𝑇𝑡+𝑖, so 

𝜕𝑓𝑡+𝑖+𝑗

𝜕𝑇𝑡+𝑖
= 0 for 𝑗 > 0 explaining the absence of the denominator 1 − 𝛽. Note that 

proposition 1 is unaffected by a tipping event occurring in the past. The discount 

parameter 𝛽 appears in the numerator as there is a lag of one period between a 

tipping event and damages. A greater delay of impacts (and learning) can be easily 

incorporated in this framework and is discussed in section IV.  

Now let us consider models that allow temperature to fall. In the very long run, 

climate models indicate that warming would decline in the absence of man-made 

emissions. Further, actions such as geoengineering can be used to reduce 

temperature. Consider the weak assumption that until period τ, 𝑇𝑡 > �̅�𝑡, and from 
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then on 𝑇𝑡 < �̅�𝑡. For the threshold formulation, this implies that temperature falls 

in the future and never rises back above the peak. For the non-threshold 

formulation, it implies that temperature falls below 𝑇𝑚𝑖𝑛 at some point and from 

then on remains below 𝑇𝑚𝑖𝑛. The optimal tax can be written as 

(12)        Λ̂𝑡
𝑎 = Λ̂𝑑𝑒𝑡

𝑎 + β𝛿

{
 
 

 
 𝜇𝑇 ( ∑ 𝛽𝑖T𝑖

𝑎

τ−t−1

𝑖=1

+
βτ−tTτ−t

𝑎

1 − β
)  for threshold              

𝜇𝑁 ∑ 𝛽𝑖T𝑖
𝑎

τ−t−1

𝑖=1

                           for non − threshold 

. 

 

Proposition 2: Assume 𝑇 > �̅� until period τ and 𝑇 < �̅� thereafter and fixed 

damages from tipping. The non-threshold tax-to-income ratio is close to flat but 

will decrease slightly as the risk of tipping eventually disappears. The threshold 

tax-to-income ratio will rise, provided the temperature effect is falling at peak 

temperature, and then fall to the deterministic level following the peak.  

 

The proof for non-threshold is straightforward: as time goes on, the number of 

summands in (12) falls and thus the tax-to-income ratio technically falls but can be 

considered flat for large τ. For threshold, the change in the tax-to-income ratio 

implied by (12) is ∆Λ̂𝜏−𝑡−1
𝑎 =

−β𝜏−𝑡∆T𝜏−𝑡−1
𝑎

1−β
, hence the tax ratio grows provided the 

temperature effect at peak temperature of action 𝑎 tomorrow is more than today. 

Assumed temperature responses are shown in Figure 8 – the temperature response 

peaks after 10 years for methane and 20 years for carbon dioxide, so threshold tax-

to-income ratios will grow provided peak temperature is more than 20 years in the 

future. 

Under both formulations, the proposition leads to an increasing weight of a short-

lived action as the sums in (12) are finite and a short-lived action is being compared 
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to long-lived carbon dioxide. The increase in the weight of methane depends on the 

extent of tipping impacts relative to deterministic damages from warming. 

 

Corollary 1: Assuming 𝑇 > �̅� until period τ and 𝑇 < �̅� thereafter and fixed 

damages from tipping, the optimal weight of a short-lived action will rise over time 

until period τ, then fall to the flat deterministic level thereafter. 

II. An illustration with exogenous temperature 

Most of the insights in this paper are clearly and simply shown using exogenous 

temperature outcomes. Optimal prices for short-lived methane are considered 

alongside carbon dioxide given IPCC temperature projections detailed in Stocker 

et al. (2013) and extrapolated to 2400. Deterministic damages are calibrated to 

correspond with a loss of 0.48% of GDP from 2.5OC warming (Nordhaus, 2008), 

leading to a deterministic component of the carbon dioxide tax-to-income ratio of 

0.00002. For a global decadal GDP in 2020 of US$1000 trillion, the deterministic 

tax component is $5.4 per tonne carbon dioxide in 2020 (US$20 per tonne carbon). 

Fixed damages from a tipping event are 10% of output in addition to deterministic 

damages, the annual discount rate is 1.5% as used in the DICE 2016R2 model and 

Tmin is set to 1 degree as used by Cai and Lontzek (2019). Hazard rate parameters 

𝜇𝑁 and 𝜇𝑇 are calibrated so that they both lead to around a 5% chance of tipping 

over the next 100 years, presuming temperature rises linearly by about 1OC. Values 

of around 𝜇𝑁 = 0.01 and 𝜇𝑇 = 0.05 deliver this outcome: the chance of tipping 

each decade rises in the non-threshold formulation and averages 0.5𝜇𝑁 per decade, 

while there is a constant 0.5% chance of tipping each decade in the threshold 

formulation. Lontzek et al. (2015) assume a larger value for 𝜇𝑁 of 0.025. 

Panel A in Figure 1 shows temperature projections for each IPCC scenario. Panel 

D shows the optimal carbon dioxide tax for the RCP2.6 projection. The non-
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threshold tax increases with output as proposition 1 describes, while the threshold 

tax drops after peak temperature following proposition 2. Panel E shows the same 

results as panel D as a ratio of income: this approach is used hereon as it makes 

identification of the tipping component of the tax easier. Panel F shows tax-to-

income results for the RCP4.5 projection: the non-threshold tax ratio is flat and the 

threshold tax ratio begins slightly lower but persists for longer as peak temperature 

occurs much later. Panels B and C show the weight of methane relative to carbon 

dioxide: non-threshold weights are constant while threshold weights rise before 

peak temperature. Optimal carbon dioxide/methane taxes in 2020 are $29/$50 for 

threshold and $33/$40 for non-threshold per tonne carbon dioxide equivalent in 

2020.15 

The main messages from this illustration are: non-threshold tax-to-income ratios 

are flat and independent of temperature projections; threshold carbon dioxide ratios 

are initially slightly higher the sooner peak temperature occurs, increase slightly 

and then drop following peak temperature; the calibration method to derive hazard 

rates leads to roughly similar initial non-threshold and threshold carbon dioxide 

taxes; and the threshold weight of methane should be higher today and increase if 

peak temperature occurs in coming decades. Note that the purpose of this section 

is to show what optimal policy looks like given an exogenous temperature 

projection. Thus, there is no link between the tax policies shown in Figure 1 and 

the temperature outcomes. For example, it may seem odd to the reader that the 

RCP2.6 scenario, which is likely only achievable with high carbon prices, has the 

same or similar starting optimal carbon price as the RCP4.5 scenario. One could 

consider that the different temperature projections are due to different assumptions 

of technology gains in clean energy or substitutability between clean and dirty 

 

15
 For comparison, Nordhaus (2017) finds a social cost of carbon of $44 (converting $31 in 2015 using 2010 $US) per 

tonne of carbon dioxide using the DICE-2016R2 model. 
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energy. The next section presents a more complex model that allows a link between 

policy and temperature outcomes. 

 

 

FIGURE 1: IMPLIED TAX, TAX-TO-INCOME RATIOS AND THE WEIGHT OF METHANE  FOR IPCC TEMPERATURE PROJECTIONS 

CO2=Carbon dioxide. Tax to GDP ratio in GtC. 

 

III. A model and numerical example with endogenous temperature 

This section uses a model with endogenous temperature to consider: the profile 

of optimal warming; the timing of the different actions of carbon dioxide and 

methane abatement; and interaction effects between these actions such as the 

change in the carbon dioxide price and the change in methane weight over time.  

Final output is a Cobb-Douglas specification of exogenous technology 𝐴𝑡, capital 

𝐾𝑡, final sector labour 𝑁𝑡, energy 𝐸𝑡, and a multiplicative exponential damage 

function of atmospheric temperature 𝑇𝑡 above pre-industrial, as follows: 

(13)                𝑌𝑡 = 𝑒
−(γ𝑇𝑡+𝑓𝑡)𝐴𝑡𝐾𝑡

𝜅𝑁𝑡
1−𝜅−𝜈𝐸𝑡

𝜈where 𝜅, 𝜈 > 0 and 𝜅 + 𝜈 < 1. 
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The abatement cost curve for methane abatement may be linear, which would 

imply a quadratic cost function (IEA, 2020). The costs of the proportion of methane 

abatement 𝑀𝑡 ∶= 1 −
𝐸𝑚𝑡

𝐸𝑚𝑡 𝑛𝑜 𝑎𝑏𝑎𝑡𝑒
 is parameterised by 𝜑 and included in the 

consumption function: 

(14)                 𝐶𝑡 = 𝑌𝑡 − 𝐾𝑡+1 − 𝜑𝑀𝑡
2𝑌𝑡. 

 

Energy 𝐸𝑡 is a composite isoelastic function of carbon dioxide-based energy 𝐸𝑐𝑡 

and clean energy, labelled r for renewable 𝐸𝑟𝑡, with parameter 𝜌 determining the 

elasticity of substitution 𝜎 =
1

1−𝜌
: 

(15)                                       𝐸𝑡 =(𝐸c𝑡
𝜌
+ 𝐸r𝑡

𝜌
)
1
𝜌. 

 

Carbon-dioxide energy contributes to carbon dioxide emissions. For simplicity, 

methane is not included in the output equation (13). Carbon dioxide and renewable 

sectors require only labour in production16 

(16)          𝐸𝑐𝑡 =𝐴𝑐𝑡𝑁𝑐𝑡  and 𝐸𝑟𝑡 =𝐴𝑟𝑡𝑁𝑟𝑡  where 𝑁𝑡 + 𝑁𝑐𝑡 + 𝑁𝑟𝑡 = 1. 

 

Carbon and renewable prices (𝑝i𝑡) are set by wages (𝑤𝑡) in the final sector, 

𝐴i𝑡𝑝i𝑡 = 𝑤𝑡 where 𝑤𝑡 =
𝑌𝑡(1−𝜅−𝜈)

𝑁𝑡
, leading to: 

(17)    
𝑝c𝑡
𝑌𝑡
= 𝐴c𝑡 (

𝜈

𝐸c𝑡
1−𝜌
𝐸𝑡
𝜌 − Λ̂𝑡

𝑐)=
𝑤𝑡
𝑌𝑡
 and 

𝑝r𝑡
𝑌𝑡
= 𝐴𝑟𝑡

𝜈

𝐸𝑟𝑡
1−𝜌
𝐸𝑡
𝜌=

𝑤𝑡
𝑌𝑡
. 

 

16
 This assumption is consistent with Golosov et al. (2014) and assists with model tractability, although energy sectors 

tend to be capital-intensive. 
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The optimal levels of methane abatement 𝑀𝑡 are set to equate the marginal 

benefits from reduced temperature with the marginal costs from (14): 

(18)       
1

λ0𝑡
∑λ𝑇𝑡+𝑖T𝑖

𝑚

∞

𝑖=0

= −2𝜑𝑀𝑡𝑌𝑡
𝜕𝑀𝑡
𝜕𝐸𝑚𝑡

𝑠𝑜  𝑀𝑡 =
𝐸𝑚𝑡 𝑛𝑜 𝑎𝑏𝑎𝑡𝑒Λ̂𝑡

𝑚

2𝜑
.  

Numerical Example 

Results for two simulations are discussed: the first only allows carbon abatement 

and the second also considers the effect of methane abatement. Projections show a 

future path where no tipping occurs, but the optimal tax considers uncertainty about 

the future. Details on how the model is solved are in Appendix D. 

Parameters are shown in Table 2. The maximum level of warming under cost-

minimisation is set at 2OC. Historical emissions for both carbon dioxide and 

methane go back a century and together induce warming in 2020 of 1.170C, in the 

range of IPCC estimates (IPCC, 2014), with methane contributing 0.290C. Methane 

emissions are assumed to be 16% of total emissions historically and remain 

constant in the future in the absence of a tax on methane, as methane emissions 

grow only weakly with income (Jorgenson & Birkholz, 2010). Between 2020 and 

2030, temperature rises by 0.22OC under Laissez-Faire. 

The technology parameter in the final sector grows at 1.3% per annum and 

renewable energy grows at 2%, following Golosov et al. (2014). Dirty energy is 

assumed to be mature and hence has no progress, implying a clean transition occurs 

without climate policy. The renewable input price is assumed to start at 3 times the 

carbon input price, close to the ratio of 2.7 used recently by Hart (2019). Most 

empirical estimates of the elasticity of substitution between clean and dirty energy 

range between 0.5 and 3 (Jo (2020), Papageorgiou, Saam, and Schulte (2017), Lanzi 

and Sue Wing (2011); Stern (2012) and Pelli (2012)) although higher 
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substitutability has been found in the electricity sector (Wiskich (2021d) and Stöckl 

and Zerrahn (2020)). Elasticities used in integrated assessment and macroeconomic 

models have ranged between 10 and 1 (Acemoglu et al. (2012), Hart (2019), 

Golosov et al. (2014), Greaker, Heggedal, and Rosendahl (2018), and Wiskich 

(2021b)). I use a value for 𝜎 of 2. Parameters 𝜅 and 𝜈 relating to the shares of capital 

and energy are set to 0.3 and 0.04 respectively, following Golosov et al. (2014). 

Complete abatement of methane is calibrated to cost 0.5% of GDP so 𝜑 = 0.005. 

This implies the marginal cost required for complete methane abatement in 2020 is 

2𝜑𝑀𝑌

(13.92)(3.67)
= 

2(0.005)1015

(13.92)(3.67)109
= US$196 per tonne carbon-dioxide-equivalent.17 

 

TABLE 2: CALIBRATION PARAMETERS 

𝑔𝐴0 
(%/year) 

𝑔𝐴c  
(%/year) 

𝑔𝐴r  
(%/year) 

𝛽  

(annual) 𝐴c/𝐴r 𝜎 𝜈 𝛿 

 

𝜅 

1.3 0 2 0.985 3 2 0.04 0.1 0.3 

         

Ec(-10:-1)+Em(-10:-1) (GtCe) 1015𝑌2020 ($) Tmin (
0C) 𝛾 𝜇𝑁 𝜇𝑇 𝜑  

[5,5,10,20,30,40,50,60,80,85] 1 1 0.0016 0.01 0.05 0.005  

 

The first row of Figure 2 shows the results for the cost-minimisation formulation 

outlined in Appendix B. The carbon dioxide tax-to-income ratio rises sharply and 

then falls as temperature peaks and then stabilises for a long period. Weights start 

low, as methane emissions today contribute less to a distant peak temperature, and 

rise as peak temperature approaches. Feedback from methane abatement reduces 

the carbon dioxide tax, reduces variation in the methane weight, and increases 

temperature marginally in coming decades as warming can be curtailed quickly 

using methane abatement. 

 

17
 For comparison, a price of US$60 per tonne carbon-dioxide-equivalent is estimated to lead to abatement of 15% in 

Agriculture(Manure Management), 59% in Coal Mines, 32% in Solid Waste, 47% in Oil and Gas and 8% in Wastewater . 

https://www.globalmethane.org/documents/gmi-mitigation-factsheet.pdf 

https://www.globalmethane.org/documents/gmi-mitigation-factsheet.pdf
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Results in the second row show increasing threshold tax-to-income ratios and an 

increasing methane weight up to peak temperature. Temperature stabilises for a 

prolonged period. Compared with the cost-minimisation approach: weights start 

much higher; the carbon dioxide tax is relatively unaffected by methane abatement 

and peak temperature is reduced. The third row shows a flat non-threshold carbon 

dioxide tax-to-income ratio, flat methane weights and a temperature that does not 

stabilise. Optimal carbon dioxide/methane taxes in 2020 are $11/$8 for cost-

minimisation, $25/$31  for threshold and $33/$40 for non-threshold per tonne 

carbon dioxide equivalent in 2020. 

Reflecting uncertainty of the stochastic nature of tipping events, Figure 3 shows 

results when tipping events have an equal probability of being a threshold or non-

threshold event: the rise in the weight of methane persists. However, the costs of 

assuming the wrong tipping formulation are relatively small: around $0.5 trillion 

equivalent variation shown in Table 3. Around two-thirds of the cost of using the 

optimal non-threshold tax in a threshold world is due to a higher-than-necessary 

tax. The remaining third ($0.16T) is due to the weight of methane being fixed, as 

is the case under current policy. The costs of following optimal taxes under a cost-

minimisation formulation are much greater, particularly when the true formulation 

is non-threshold, as are costs when methane abatement is excluded. 
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FIGURE 2: OPTIMAL CLIMATE POLICY IN A MODEL WITH ENDOGENOUS TEMPERATURE, WITH AND WITHOUT METHANE 

ABATEMENT.  

CO2=Carbon dioxide.  

 

TABLE 3: WELFARE LOSS FROM SUBOPTIMAL POLICIES 

True Tipping Formulation 
With methane abatement Without methane abatement 

Wrong 

formulation Cost Min 

Right 

formulation 

Wrong 

formulation Cost Min 

Non-threshold 0.0010% 
($0.4T) 

0.0072% 
($2.9T) 

0.0035% 
($1.4T) 

0.0044% 
($1.8T) 

0.0076% 
($3.1T) 

Threshold 0.0011% 

($0.5T) 

0.0030% 

($1.2T) 

0.0022% 

($0.9T) 

0.0031% 

($1.3T) 

0.0037% 

($1.5T) 

Loss as a % of optimal welfare (Equivalent Variation in 2020$US Trillion). “Wrong formulation” indicates optimal policy 

for non-threshold is adopted when the true formulation is threshold and vice versa. 
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FIGURE 3: OPTIMAL CLIMATE POLICY WITH AN EQUAL CHANCE OF THRESHOLD AND NON-THRESHOLD TIPPING EVENTS, WITH 

AND WITHOUT METHANE ABATEMENT.  

CO2=Carbon dioxide.  

VI. Sensitivities 

There are many uncertainties in this field and this section discusses the effect of 

the following changes to the framework: an increase in risk aversion; exponential 

damages where the post-tipping impact increases with temperature; limiting the risk 

of tipping to a single event; and a delay in tipping impacts. 

Dependence on risk aversion and the utility function 

A logarithmic power utility is commonly used and implies an intertemporal 

elasticity of substitution of unity. However, some papers disentangle time 

preferences and risk aversion as described by Epstein and Zin (1990). This 

approach allows compliance with risk aversion estimates in the literature without 

leading to excessively high risk-free discount rates. An increase in risk aversion 

over that implied by a logarithmic utility is achieved by adding an expectation term 

as shown in the Bellman equation: 

(19)    V(K, 𝐸, 𝑇) = max
𝐾,𝑇,𝐸

{𝑈(𝐶) +
𝛽

𝛼
log (𝔼(𝑒α𝑉

′
))}   with parameter 𝛼. 
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The inclusion of additional risk aversion in the value function leads to an increase 

in the tipping component of the tax, as outlined in the following remark with proof 

in Appendix A. 

 

Remark 1: For the non-threshold formulation and assuming a simple step 

function for temperature response, further risk aversion increases the tipping 

component of the tax-to-income ratio under fixed damages and 𝑇 > �̅� according to 

the following approximation: 

(20)      Λ̂𝐸𝑍  𝑇>�̅�
𝑎 small 𝛿α

→     Λ̂𝑑𝑒𝑡
𝑎 + Λ̂𝑇>�̅�

𝑎 (1 −
𝛼𝛿

2
) 

 

Traeger (2018) show that values of α ∈ [−1.2, −0.7] are consistent with relative 

risk aversion values between 10 and 6 found in the literature.18 The uplift 

approximation in (20) relies on small 𝛿α which is reasonable for the assumed 

parameter of 𝛿 = 0.1. The range of risk aversion uplift to match the literature then 

implies an uplift in the tipping tax component of between 3.5% and 6%. Such low 

values are consistent with some literature including Cai and Lontzek (2019) and 

Lemoine and Traeger (2016a). 

Further, the effect of a power utility function with a coefficient of relative risk 

aversion (CRRA) of 1.5, close to the value of 1.45 in the DICE 2016R2 model, 

exhibits predictable differences relating to an increase in the interest rate: optimal 

prices are lower; the weight of short-lived actions are higher; and the consumption 

ratio increases and is no longer flat but the dynamics are not material, as discussed 

in L Barrage (2014). Results for prices are shown in Figure 4. 

 

 

18
 The standard risk aversion coefficient defined in the Epstein-Zin setting is 1 −

𝛼

1−𝛽
. 
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FIGURE 4:COMPARISON OF A UTILITY FUNCTION WITH CRRA PARAMETER OF 1.5 WITH LOG UTILITY. 

CO2=Carbon dioxide. 

Exponential damages from tipping 

Now assume that a tipping event increases the sensitivity to temperature 

so 𝑔𝐶𝑆(𝑇𝑡) = 𝑇𝑡. This “exponential damages” case is calibrated so that 2 degrees of 

warming post-tipping leads to 10% damages (𝛿𝐸𝐷 = 𝛿/2), shown in Figure 5. 

 

 

FIGURE 5: DAMAGES AS A FUNCTION OF WARMING 
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The optimal tax-to-income ratio will now be affected by the occurrence of a tipping 

event as the marginal damages from temperature are increased: for a single tipping 

event, the deterministic part of the optimal tax-to-income ratio is boosted as 

follows: 

(21)    Λ̂𝑑𝑒𝑡 𝐸𝐷 𝑝𝑜𝑠𝑡−𝑡𝑖𝑝
𝑎 = Λ̂𝑑𝑒𝑡

𝑎 + 
Γ𝑎𝛽𝛿𝐸𝐷
1 − 𝛽

. 

 

The optimal tax will now be a function of expected temperature levels and (9) 

becomes 

(22)   𝔼𝑡 (
𝜕𝑓𝐸𝐷𝑡+𝑖+𝑗

𝜕𝑇𝑡+𝑖
) = 𝔼𝑡

{
 
 

 
 
∑𝐼𝐸𝐷𝑡+𝑘

𝑖

𝑘=0

                    if 𝑗 = 0

 𝑇𝑡+𝑖+𝑗∑
𝜕𝐼𝐸𝐷𝑡+𝑖+𝑘
𝜕𝑇𝑡+𝑖

j

𝑘=0

    if 𝑗 > 0.

 

 

Consider the restrictive assumption of 𝑇 > �̅� and a concave exogenous 

temperature projection. The differential welfare impact shown in the top of (22) 

increases in the non-threshold formulation with rising temperature and decreases in 

the threshold formulation as the probability of tipping in the future falls (as 

temperature increases in each period become smaller). The marginal hazard effect 

in the bottom of (22) increases in both formulations with rising temperatures. Thus, 

the non-threshold ratio rises while the threshold ratio depends on the concavity of 

the temperature projection.  

Figure 6 extends the numerical example in section II using the optimal tax-to-

income formula derived from (9), shown in Appendix A. Taxes now increase with 

increasing temperature projections for both carbon dioxide and methane. As the 

chance of tipping increases as time passes (provided a risk is present), the 
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differential welfare tax component tends to increase the optimal tax of carbon 

dioxide more than short-lived actions. Thus, the weights of methane are lower 

under exponential damages than under fixed damages. The key result of an 

increasing threshold methane weight persists and non-threshold taxes are roughly 

flat initially if temperature rises are constrained. 

In a model with multiple possible tipping events and endogenous temperature 

outcomes dependent on carbon taxes, different future outcomes of the stochastic 

variable need to be considered. However, by assuming that tipping can only occur 

once and, as before, it is irreversible, the optimal tax computation is greatly 

simplified as the tax only has a dependence on temperature outcomes conditional 

on tipping not occurring. Thus, although tipping can happen in any future period 

with a non-zero hazard rate ex-ante, the optimal tax can be determined by a single 

future outcome where tipping does not occur ex-post. 

 

Remark 2: If tipping only occurs once, the optimal tax can be calculated by 

temperature outcomes conditional on no tipping ex-post.  

 

While this result is not used in simulations in this paper, it could simplify 

modelling methods in future papers relative to previous papers that resort to 

complex numerical methods to handle multiple future states.19 The remark holds as 

the hazard rate and derivative become zero when tipping occurs and there is no 

further tipping risk. Thus both the marginal hazard effect and differential welfare 

impacts in (22) are only dependent on temperature outcomes conditional on no 

tipping ex-post. Engström and Gars (2016) take advantage of this result as they 

report that their numerical model with a more restrictive climate response is 

programmed with a simple one-state dynamic programming function. 

 

19
For example, Lemoine and Traeger (2014) and Lontzek et al. (2015). 
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FIGURE 6: EFFECT OF EXPONENTIAL DAMAGES COMPARED WITH FIXED DAMAGES ON THE TAX-TO-INCOME RATIO FOR 

CARBON DIOXIDE AND THE WEIGHT OF METHANE. 

One tipping event only 

What if only one tipping event can occur? Consider fixed damages as in section 

I, exogenous temperature outcomes and tipping has not yet occurred. The 

expectation at time t of the derivative of the hazard rate (𝑝𝑡+𝑖
𝑠𝑖𝑛𝑔𝑙𝑒

) at time t+i is 

reduced when only one tipping event is possible by the chance that tipping will 

have occurred between t and t+i as follows: 20 

 

20 Papers that use the threshold method typically assume one tipping event where the threshold lies in a given temperature 

range. As temperature rises and if tipping does not occur, the temperature range which contains the threshold contracts and 

the marginal risk of tipping rises. Consequently, the hazard rate rises as temperature increases. This paper assumes a constant 

marginal risk and hence this effect does not arise.  
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(23)      𝔼𝑡 (
𝜕𝑝𝑡+𝑖

𝑠𝑖𝑛𝑔𝑙𝑒

𝜕𝑇𝑡+𝑖
 | 𝑓𝑡 = 0) = 𝜇∏(1 − 𝔼𝑡(𝑝𝑡+𝑘))

𝑖−1

𝑘=1

≤ 𝜇 = 𝔼𝑡 (
𝜕𝑝𝑡+𝑖
𝜕𝑇𝑡+𝑖

 ) 

 

A lower tax (given some probability of tipping) in this framework results as 

∏ (1 − 𝔼𝑡(𝑝𝑡+𝑘))
𝑖−1
𝑘=1 ≤ 1. While this result is intuitive, consider the effect of 

temperature projections in the case of a single tipping event. As 𝔼𝑡 (
𝜕𝑝𝑡+𝑖

𝑠𝑖𝑛𝑔𝑙𝑒

𝜕𝑇𝑡+𝑖
) in (23) 

is reduced by the risk of tipping before period 𝑡 + 𝑖, the tax today is reduced by 

higher temperature projections which I call an “inevitability” effect. In a model 

with endogenous temperature, this effect would create positive feedback from 

lower taxes to higher temperature projections. As the risk of tipping is very low by 

assumption in the numerical examples, the effect of this sensitivity is tiny and hence 

not shown for brevity. 

 

Remark 3: For fixed damages, 𝑇 > �̅� and only one tipping event, the tax is lower 

the higher the projected temperature outcomes. 

Delayed impact 

A delay to tipping impacts and learning leads to discounting of the tipping 

component described in the following corollary to proposition 1. 

 

Corollary 2: Given the assumptions in proposition 1 and assuming a delayed 

impact from tipping by θ periods, the optimal tax-to-income ratio is 

(24)             Λ̂𝑇>�̅� 𝑑𝑒𝑙𝑎𝑦
𝑎 = Λ̂𝑑𝑒𝑡

𝑎 + 𝛽θ−1Λ̂𝑇>�̅�
𝑎  . 
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Figure 7, extending the numerical example in section II, shows a lower tax in the 

RCP2.6 temperature projection when impacts are delayed due to the discounting 

term 𝛽θ−1 in (24).21 The consequence of this delay is more nuanced in the 

exponential damages case: the initial tax is reduced due to discounting, but the 

delay in learning leads to the tipping component of the tax persisting well after peak 

temperature until the chance that a tipping event was triggered in the past is 

eliminated. 

 

 
 

FIGURE 7: EFFECT OF DELAYED IMPACTS ON THE OPTIMAL CARBON DIOXIDE TAX-TO-INCOME RATIO IN THE RCP2.6 

PROJECTION 

VI. Conclusion 

This paper examines the path of optimal environmental taxes under climate 

tipping risks. As the nature of such risks and the consequences of tipping are highly 

uncertain, several formulations are considered. The economic framework adopted 

has restrictive assumptions that allow an easy calculation of the optimal price path 

given a few parameters and expected temperature outcomes. Results are illustrated 

 

21
 A delay of 5 decades is shown, corresponding to an inital tipping component of around half of the case without delay 

with the assumed discount rate of 1.5% per annum. 
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using temperature projections under different IPCC scenarios and in a model with 

endogenous temperature outcomes.  

A key message of this paper is the decline in optimal environmental tax-to-

income ratios if there is a risk of tipping from temperature rising above a threshold. 

A declining carbon price-to-income ratio has been found in other studies: as a 

consequence of uncertainty in Cai and Lontzek (2019) and Daniel, Litterman, and 

Wagner (2019) and of directing technical change to clean energy in Acemoglu et 

al. (2012). Such a decline has implications for temperature and emissions outcomes 

and potentially on public perceptions of a carbon price. A tax that is much lower 

after peak temperature has passed may help people appreciate the objective of the 

tax and its temporary nature may alleviate public resistance.  

Another key message is that the weights of short-lived actions should rise given 

a threshold climate tipping risk. Papers have highlighted the suboptimality of the 

current policy of constant weights in a cost-minimisation formulation: this paper 

extends this analysis to a standard economic model maximising a discounted utility 

function. Reducing the time horizon that determines the weights of greenhouse 

gases relative to carbon dioxide from 100-years to correspond to the anticipated 

time of peak temperature may be a reasonable adjustment to current policy. Such 

an approach maintains (most of) the simplicity and transparency of the existing 

system. 

While this paper considers the risks of tipping in a stochastic framework, the 

model and associated parameters are assumed to be known a priori. The restrictive 

assumptions used in the economic framework do not allow precautionary capital 

formation considered in other papers,22 and exogenous productivity does not allow 

investigation of the link between climate policy and technical change. Finally, the 

assumption that temperature is a linear function of previous actions can replicate 

 

22
 For example, van der Ploeg and de Zeeuw (2017). 
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the more complex climate-economy models well, but tipping impacts on climate 

feedback, such as a lower rate of decomposition of carbon dioxide, require a more 

complex framework.  

 

APPENDIX A –DERIVATIONS 

BELLMAN DERIVATION OF PROPOSITION 1 FOR NON-THRESHOLD 

For simplicity assume a constant temperature effect for carbon T𝑗
𝑐 = T𝑐  𝑓𝑜𝑟 𝑗 ≥

1, as outlined in Matthews, Gillett, Stott, and Zickfeld (2009) and recently adopted 

by Dietz and Venmans (2019). Omitting time subscripts and signifying time 𝑡 + 1 

variables using prime, the value function is 

(𝐴. 1)  max𝔼0∑β𝑡𝑙𝑜𝑔(𝐶𝑡)

∞

𝑡=0

where 𝐶 = 𝑒−(𝛾𝑇+𝑓)𝐾𝜅𝐹(𝐸) − 𝐾′, 

               𝑇′ = 𝑇 + T𝑐𝐸  𝑎𝑛𝑑 𝑓′ = 𝑓 + 𝐼. 

(A. 2)       V(K, 𝐸, 𝑇) = max
𝐾,𝑇,𝐸

{𝑙𝑜𝑔(𝑌 − 𝐾′) + 𝛽 𝔼(V(𝐾′, 𝐸′, 𝑇′))} 

   = max
𝐾,T,𝐸

(log(𝑒−(𝛾𝑇+𝑓)𝐾𝜅𝐹(𝐸) − 𝐾′) + 𝛽 𝔼(V′)). 

 

Using a trial solution, we have: 

(𝐴. 3)       φ𝐾 log𝐾 + φ𝑇𝑇 + φ𝐸𝐸 + φ𝑓𝑓 

= max
𝐾,𝑇,𝐸

(log(𝑌 − 𝐾′) + 𝛽φ𝐾𝑙𝑜𝑔𝐾
′ + 𝛽φ𝑇𝑇

′ + 𝛽φ𝐸𝐸
′ + 𝛽φ𝑓(𝑓 + 𝜇𝛿𝐹𝐷𝑇)). 
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The first-order condition for capital leads to 𝐾′ =
𝛽φ𝐾

1+𝛽φ𝐾
𝑌, and substitution into 

(A.3) leads to 

(𝐴. 4)    φ𝐾 log𝐾 + φ𝑇𝑇 + φ𝐸𝐸 + φ𝑓𝑓 = log ((1 − 𝛽𝜅)𝑒
−(𝛾𝑇+𝑓)𝐾𝜅𝐹(𝐸)) 

   +𝛽φ𝐾(𝜅𝑙𝑜𝑔𝐾 + 𝑙𝑜𝑔𝐹 − (𝛾𝑇 + 𝑓)) + 𝛽φ𝑇𝑇
′ + 𝛽φ𝐸𝐸

′ + 𝛽φ𝑓(𝑓 + 𝜇𝛿𝐹𝐷𝑇). 

 

Equating terms for 𝑙𝑜𝑔𝐾, f and the first-order condition for T and E are 

(𝐴. 5)        𝑙𝑜𝑔𝐾: φ𝐾 = 𝜅 +  𝜅𝛽φ𝐾 𝑠𝑜 φ𝐾 =
𝜅

(1 − 𝛽𝜅)
. 

(𝐴. 6)    𝑓:  φ𝑓 = −1 − 𝛽φ𝐾 + 𝛽φ𝑓 𝑠𝑜 φ𝑓 =
−(1 + 𝛽φ𝐾)

1 − 𝛽
=

−1

(1 − 𝛽𝜅)(1 − 𝛽)
. 

(𝐴. 7)   𝐹𝑂𝐶 𝑇:  φ𝑇 = −(1 + 𝛽φ𝐾)𝛾 + 𝛽φ𝑇 + 𝛽φ𝑓𝜇𝛿 𝑠𝑜  

    φ𝑇 =
−(

𝛾
(1 − 𝛽𝜅)

+
𝛽𝜇𝛿

(1 − 𝛽𝜅)(1 − 𝛽)
) 

(1 − 𝛽)
=
−(𝛾 +

𝛽𝜇𝛿
(1 − 𝛽)

) 

(1 − 𝛽)(1 − 𝛽𝜅)
. 

(𝐴. 8)    𝐹𝑂𝐶 𝐸:  φ𝐸 =
𝐹′(𝐸)

𝐹(𝐸)
(1 + 𝛽φ𝐾) +  𝛽φ𝑇𝑇

𝑐. 

 

The shadow price of carbon energy φ𝐸 consists of the benefits for production and 

the negative externality from temperature increase. The latter term is the social cost 

of carbon expressed in consumption units and the non-threshold result in (10) using 

this simple temperature effect follows: 

(𝐴. 9)     
Λ𝑇≥�̅�
𝑐

 

𝐶
= −𝛽φ𝑇𝑇

𝑐and C = (1 − 𝛽𝜅)𝑌. 
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BELLMAN DERIVATION OF REMARK 1 

The value function is  

(𝐴. 10)  V = max
𝐾,𝑇,𝐸

(log ((1 − 𝛽𝜅)𝑒−(𝛾𝑇+𝑓)𝐾𝜅𝐹(𝐸)) +
𝛽

𝛼
log (𝔼t(𝑒

α𝑉′))) . 

 

The expected exponential of damages from tipping is 

(𝐴. 11)  𝔼t(𝑒
−αδ) = 𝑙𝑜𝑔[𝑝𝑒−𝛼𝛿 + 1 − 𝑝] = 𝑙𝑜𝑔[𝜇𝑇𝑒−𝛼𝛿 + 1 − 𝜇𝑇]  

           ~𝑙𝑜𝑔 [𝜇𝑇 (−𝛼𝛿 +
𝛼2𝛿2

2
) + 1]  𝑎𝑠 𝑒−𝛼𝛿~1 − 𝛼𝛿 +

𝛼2𝛿2

2
 

            ~𝜇δ𝑇𝛼 (−1 +
𝛼𝛿

2
). 

 

Using the same trial solution as the power utility case leads to a different equation 

for the temperature coefficient and the optimal tax-to-income ratio is therefore 

uplifted in (20):  

(𝐴. 12)    𝐹𝑂𝐶 𝑇: φ𝑇 = −(1 + 𝛽φ𝐾)𝛾 + 𝛽φ𝑇 + 𝛽φ𝑓𝜇𝛿 ( 1 −
𝛼𝛿

2
). 

DERIVATION OF OPTIMAL TAXES FOR EXPONENTIAL DAMAGES 

(A. 13)    ∑𝛽𝑖T𝑖
𝑎𝔼t(∑𝛽𝑗

𝜕𝑓𝐸𝐷𝑡+𝑖+𝑗

𝜕𝑇𝑡+𝑖

∞

𝑗=0

) 

∞

𝑖=0

 

                = ∑𝛽𝑖T𝑖
𝑎𝔼t (𝐼𝐸𝐷𝑡+𝑖 +∑𝛽𝑗∑𝑇𝑡+𝑖+𝑘

𝜕𝐼𝐸𝐷𝑡+𝑖+𝑘
𝜕𝑇𝑡+𝑖

j

𝑘=0

∞

𝑗=0

)

∞

𝑖=0
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                = ∑𝛽𝑖T𝑖
𝑎𝔼t {

𝐼𝐸𝐷𝑡+𝑖 + 𝛿𝐸𝐷𝜇𝑇𝑇𝑡+𝑖           for threshold                 

𝐼𝐸𝐷𝑡+𝑖 + 𝛿𝐸𝐷𝜇𝑁∑𝛽𝑗𝑇𝑡+𝑖+𝑗

∞

𝑗=0

   for non − threshold        

∞

𝑖=0

 

= 𝛿𝐸𝐷𝔼t

{
  
 

  
 𝜇𝑇 (∑𝛽𝑖T𝑖

𝑎(𝑇𝑀t+𝑖−1 − 𝑇𝑀𝑡−1)

∞

𝑖=0

+ ∑ 𝛽𝑖T𝑖
𝑎

τ−t−1

𝑖=0

𝑇𝑡+𝑖 + β
τ−tTτ−t

𝑎 ∑𝛽𝑖
∞

𝑖=0

𝑇𝜏+𝑖)

𝜇𝑁 (∑𝛽𝑖T𝑖
𝑎 ∑ (𝑇t+𝑗 − 1)

min (𝑖,τ′−t−1)

𝑗=0

∞

𝑖=0

+ ∑ 𝛽𝑖T𝑖
𝑎

τ′−t−1

𝑖=0

 ∑𝛽𝑗𝑇𝑡+𝑖+𝑗

∞

𝑗=0

)      

. 

                   where 𝑇𝑀𝑡 ≡ max
𝑖≤𝑡

𝑇𝑖 

 

APPENDIX B – COST-MINIMISATION 

 

Optimal weights of greenhouse gases are often considered in a cost-minimisation 

formulation where an upper bound of temperature or emissions concentration is 

exogenously imposed.23 Cost-minimisation can be considered as a peculiar case of 

a cost-benefit framework: utility is unaffected by temperature up to the maximum 

temperature level and becomes minus infinity if temperature rises above this level. 

The cost-minimisation approach used in section III sets a maximum temperature 

𝑇𝑚𝑎𝑥 exogenously and the optimal taxes minimise the costs of keeping below this 

level. While some papers set a maximum temperature at a point in time, this paper 

allows the model to endogenously determine the onset and end of peak temperature. 

Deterministic damages are included as in the stochastic tipping frameworks and the 

optimisation problem is then as described in (4) with the additional constraint that 

𝑇𝑡 ≤𝑇𝑚𝑎𝑥 . The optimal tax for action 𝑎 is simply the deterministic component plus 

 

23
 Cost-minimisation (also called cost-effectiveness) references include Manne and Richels (2001), O'Neill (2003), 

Aaheim, Fuglestvedt, and Godal (2006), and Johansson, Persson, and Azar (2006). A growing price ratio as a target stock of 
emissions is approached was perhaps first illustrated by Michaelis (1992). Shine (2009) criticises the current 100-year GWP 

used to weigh greenhouse gases. 



45 
 

a function of the Lagrange multipliers required to keep temperature at or below the 

maximum levels in each period, 𝜆𝑡
𝐶𝑀, as follows: 

(𝐵. 1)             Λ̂𝑡
𝑎𝐶𝑀 = Λ̂𝑑𝑒𝑡

𝑎 +∑𝛽𝑖𝜆𝑡+𝑖
𝐶𝑀

∞

𝑖=0

𝑇𝑖
𝑎. 

 

Assuming peak temperature occurs at period 𝜏 and temperature declines 

immediately afterwards, from (B.1) the optimal tax-to-income ratio for action 𝑗 is: 

(𝐵. 2)             Λ̂𝑡
𝑎𝐶𝑀 = Λ̂𝑑𝑒𝑡

𝑎 + 𝛽𝜏−𝑡λ̃𝜏
𝐶𝑀𝑇𝜏−𝑡

𝑎 . 

 

While the benefits of abatement are discounted in the cost-benefit approach due to 

the damages function, benefits are not in the cost-minimisation formulation and the 

optimal tax therefore increases much faster before peak temperature.  

 

APPENDIX C –CLIMATE MODEL 

 

The climate model in this paper is taken from Shine, Fuglestvedt, Hailemariam, 

and Stuber (2005) and described here. Many papers have assumed that the 

temperature response to a carbon dioxide pulse peaks after several decades which 

is inconsistent with recent physical science literature. In continuous-time, 

temperature dynamics are a function of radiative forcing 𝑅𝑡: 

(C. 1)               𝐻
𝑑𝑇𝑡
𝑑𝑡
 =𝑅𝑡 −

𝑇𝑡
𝜆
, 

 

where 𝐻 is the heat capacity of the system and 𝜆 is a climate sensitivity parameter. 

For carbon dioxide, radiative forcing and temperature responses at time 𝑡 after an 

emissions pulse (in discrete time) are  
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(𝐶. 2)               𝑅𝑡
𝑐 ∶=  

𝜕𝑅𝑡
𝜕𝐸𝑐0

 = 𝑎0 +∑𝑎𝑖𝑒
−
𝑡
𝛼𝑖  and

4

𝑖=1

 

(𝐶. 3)               𝑇𝑡
𝑐 ∶=

𝜕𝑇𝑡
𝜕𝐸𝑐0

=
𝐵𝑐
𝐻
{휁𝑎0 (1 − 𝑒

−
𝑡

) +∑
𝑎𝑖 (𝑒

−
𝑡
𝛼𝑖 − 𝑒

−
𝑡

)

(휁−1 − 𝛼𝑖
−1)

4

𝑖=1

}, 

 

where 𝑎𝑖 are coefficients which sum to 1, 𝛼𝑖 reflect gas lifetimes in years, 휁 is by 

definition the constant 𝜆𝐻 in years, and 𝐵𝑐 is the radiative forcing due to a 1-kg 

change in carbon dioxide. For methane (𝑎 = 𝑚) the equations are simpler: 

(𝐶. 4)                𝑅𝑡
𝑎   = 𝐵𝑎𝑒

−
𝑡
𝛼𝑎  and 

(𝐶. 5)                𝑇𝑡
𝑎  =

𝐵𝑗

𝐻(휁−1 − 𝛼𝑎−1)
(𝑒
−
𝑡
𝛼𝑎 − 𝑒

−
𝑡

) . 

 

Parameter values are shown in Table 4. The left panel of Figure 8 shows the 

radiative forcing from emissions pulses of carbon dioxide and methane normalised 

to the same initial forcing for ease of comparison.  

Before examining temperature responses, note that GWPs are used to weigh the 

climate effects of greenhouse gases. The GWP of a gas is the time-integrated 

radiative forcing from a pulse emission, relative to an equal mass of carbon dioxide, 

and thus resulting weights depend on the choice of time horizon. For example, 

methane has a 100-year GWP of 28 and a 20-year GWP of 84 (IPCC, 2014). The 

100-year GWP was adopted by the United Nations Framework Convention on 

Climate Change and its Kyoto Protocol and is now used widely as the default 

metric. The clearest recommendation for 100 years is that a significant fraction of 

carbon dioxide is removed from the atmosphere over this time scale (Fuglestvedt 
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et al., 2003), and this period also roughly corresponds to the anticipated maximum 

change in temperature (WMO, 1992). 

Temperature responses to pulse emissions are shown in the right panel of Figure 

8, normalised so that the non-discounted sum over a time horizon of 100 years is 

the same as for carbon dioxide, approximating the current policy of a 100-year 

GWP.24 These impulse functions are central to this paper and highlight the sharp 

temperature responses to methane relative to the carbon dioxide pulse.25  

When the discount rate is high, the weight of a short-lived action like methane is 

high due to the rapid temperature effect of a methane pulse relative to carbon 

dioxide. As the discount rate decreases, the optimal methane to carbon dioxide 

weight drops. This sensitivity to the discount rate has been discussed previously in 

the literature. As the GWP is approximately equal to the area under the temperature 

impulse responses shown in Figure 8, if the discount rate was zero and τ → ∞, the 

weight of a short-lived action would be less than 1 (the approximate value set by 

current policy). A discount rate of around 1% implies a weight of 1 for methane, 

and a discount rate of 1.5% as used in this paper leads to a weight above 1 as shown 

in.  

 

TABLE 4: CLIMATE MODEL PARAMETERS 

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝐵c 𝐵m 𝐵s 
0.1756 0.1375 0.1858 0.2423 0.2589 1.98 3.95𝐵c 17.97𝐵c 

        

𝐻 𝛼1 𝛼2 𝛼3 𝛼4 휁 𝛼m  

4.2 421.09 70.597 21.422 3.4154 10.65 12  

 

 

24
 A 100-year GWP is approximately equal to the area under the curve up to 100-years. 
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FIGURE 8: FORCING AND TEMPERATURE IMPACT FROM A PULSE EMISSION OF CARBON DIOXIDE AND METHANE. 

 

APPENDIX D – SOLVING THE ENDOGENOUS MODEL 

 

While solving the model without methane abatement use is simplified by a 

constant savings rate, including methane abatement implies optimal savings rates 

are no longer constant. Combining (14) and 
1

C𝑡
= 𝛽𝔼𝑡 (

1

C𝑡+1
𝜅
Y𝑡+1

K𝑡+1
) leads to: 

(D. 1)         
Y𝑡
C𝑡
= 1 +

𝜑𝑀𝑀𝑡
2𝑌𝑡

C𝑡
+ 𝜅𝛽𝔼𝑡 (

Y𝑡+1
C𝑡+1

). 

 

However, variation in the savings rate makes no material difference to the 

variables investigated. Solution steps for the cost-minimisation formulation are as 

follows. 

1. Manually choose a high estimate 𝜏 for the period where peak temperature starts. 

2. Run the model for 80 periods (800 years) multiple times in a loop assuming 

tipping does not occur. For each iteration: 

2.1 Estimate the carbon dioxide tax required to ensure the temperature does 

not rise following the peak temperature period.  

2.2 Calculate multipliers from these prices as described below.  

2.3 Calculate optimal prices from (B.2).  
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Stop iterating when optimal prices converge and the savings rate converges in the 

simulation with methane abatement. 

3. If temperature rises above 𝑇𝑚𝑎𝑥 before 𝜏, reduce 𝜏 by one period and repeat. 

Otherwise stop. 

 

Solving the model for the non-threshold formulation simply involves iterating to 

solve (12). The threshold formulation is easier to solve by numerically optimising 

welfare and the derived tax equations are used as a check. The step-change in the 

marginal hazard effect is smoothed with the following function: 

(𝐷. 2)               
1

𝑋
𝑙𝑜𝑔(1 + eX(T−T̅))

𝑋→∞
→   {T − T̅  if T − T̅ > 0 

0         if T − T̅ < 0
 

Handling temperature stabilisation 

Peak temperature multipliers are derived from the taxes needed to stabilize 

temperature: the carbon tax in the period before the end of peak temp is given by 

Λ̂𝑛−1
𝑐𝐶𝑀 = Λ̂𝑑𝑒𝑡

𝑐 +
λ̃𝑛𝑇1

𝑐

β𝑛−1
 which gives λ̃𝑛, the tax in the prior period is Λ̂𝑛−2

𝑐𝐶𝑀 = Λ̂𝑑𝑒𝑡
𝑐 +

λ̃𝑛−1𝑇1
𝑐

β𝑛−2
+
λ̃𝑛𝑇2

𝑐

β𝑛−2
 which gives λ̃𝑛−1 and so on. The choice of 𝜏 is determined through 

manual iteration as described above: for a high 𝜏, peak temperature occurs before 

this value, and thus the value of 𝜏 is reduced until it corresponds with peak 

temperature. Any further reduction in 𝜏 implies the tax in this period is higher than 

would be the case without the upper limit constraint applying (holding the tax in all 

other periods constant), implying suboptimality.  
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2. Environmental taxes versus research subsidies as suboptimal 

policy 

By ANTHONY WISKICH* 

Given a choice between a carbon tax and a clean research subsidy, 

which one performs better and under what conditions? This paper 

argues that the absence of a non-energy sector has led some previous 

literature to find that subsidies outperform taxes. An integrated 

assessment model with endogenous technology is described. 

Numerical exercises find that a permanent global tax-only policy 

outperforms a permanent subsidy-only policy and this result is robust 

to many different parameter settings and assumptions. However, in 

the more optimistic case where optimal policy begins in 2050, the 

performances of subsidy-only and tax-only policies in the interim are 

closer. (JEL O30, O44, Q54, Q56, Q58) 

Keywords: Climate change, directed technical change, optimal policy, energy. 

 

* Wiskich: Centre for Applied Macroeconomic Analysis (CAMA), Crawford School of Public Policy, ANU College of 

Asia & the Pacific, Australian National University, J.G Crawford Building No. 132, Canberra, ACT 2601 Australia (e-

mail: twiskich@gmail.com). Acknowledgments. Helpful comments from Warwick McKibbin, Chris Wokker, Nicholas 

Rivers, anonymous referees and audiences at the Australian National University, Institute for International Economic 

Studies and AERE and SEA 2020 conferences. 

The ongoing transition to clean energy involves a shift of factors of production 

and researchers into the clean energy sector. Governments have a role in enabling 

and incentivising a clean energy transition through various policy options including 

carbon taxes and research subsidies. However, global policy is difficult to achieve, 

and we are a long way from optimal policy. Thus, the relative performance of 
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suboptimal policy is important, at least until something approaching optimal policy 

can be achieved. This paper focuses on a hypothetical choice between taxes and 

subsidies. 

The first contribution is an explanation of why previous literature has reached 

different conclusions about whether taxes or subsidies alone are preferable. Fischer 

and Newell (2008) rank policies for reducing carbon dioxide emissions and 

promoting innovation and diffusion of renewable energy and put an emissions price 

first and research subsidy last. However, the importance of subsidies are 

emphasised in Acemoglu et al. (2012) and Acemoglu, Akcigit, Hanley, and Kerr 

(2016) and subsidies are found to outperform taxes in Greaker et al. (2018) and 

Lemoine (2017). More recently, Hart (2019) finds that emissions taxes are far more 

important than research subsidies. 

I argue that a key reason for different modelling results is the presence of a non-

energy sector, as many of these studies only consider clean and dirty intermediates 

or technologies in a “two-sector” approach. Such an approach exaggerates the cost 

of a clean transition. As the transformation of the economy to clean energy is 

limited to a small proportion of the economy, the costs of abatement in the two-

sector approach should be reduced by a factor approximately equal to the inverse 

of the share of output in the energy sector (25 in this paper) while the effects of 

damages are unchanged. This straightforward result has important implications for 

the optimal balance between subsidies and taxes. Taxes can distort production and 

direct clean research but at a cost.26 As the cost of distortion is exaggerated under 

a two-sector approach, subsidy-only policy is favoured.27 

 

26
 As found in Gerlagh, Kverndokk, and Rosendahl (2009) and Acemoglu et al. (2012), for example. 

27
 Pottier, Hourcade, and Espagne (2014) discuss the high costs of a clean transition in the model described by Acemoglu 

et al. (2012) and caution against use of a highly aggregated model. 
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This result would help explain why both Greaker et al. (2018) and Lemoine 

(2017), who do not include a non-energy sector, find subsidy-only policy can out-

perform a tax-only policy while Hart (2019) finds the opposite and includes a non-

energy sector. Hart argues that the difference in results is due to different model 

construction: that the model in Greaker et al. (2018) follows Acemoglu et al. (2012) 

where a corner solution is reached and only clean research occurs. This paper 

demonstrates that the important difference is the inclusion of non-energy both 

theoretically and numerically by comparing results in 2-sector and 3-sector models. 

The second contribution is an extension of the endogenous growth model 

described in Acemoglu et al. (2012). A non-energy sector is incorporated in 

addition to clean and dirty energy sectors, similar to Hart (2019), Hémous (2016) 

and Fried (2018). The ongoing clean transition has seen an increase in investment 

and research in both clean and fossil energy (IEA, 2014), and as the model allows 

movement of labour and researchers such an effect can be considered. Under 

optimal and tax-only policy, environmental disaster, defined as an ever-increasing 

use of dirty energy, is avoided. When only subsidies are available, their optimal 

application only avoids environmental disaster if the substitutability between clean 

and dirty energy is high enough. However, a novel result is that the movement of 

researchers between non-energy and energy implies disaster can be avoided 

suboptimally at the cost of economic growth.  

This paper introduces a novel functional form for considering stepping-on-toes 

which better represents decreasing returns to research due to overlapping research 

ideas. The commonly used functional form was described in Jones and Williams 

(1998) who applied it in a macroeconomic context where the research share is 

contained within reasonably restricted bounds. Some papers such as Hart (2019) 

have applied this form at a sectoral level where research may fall close to zero, 

leading to returns to research approaching infinity. While heterogeneous 

researchers may constitute a basis for such a functional form, I adopt a form more 
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in line with the concept of stepping-on-toes where the returns to research are finite 

as researchers approach zero. Sensitivity analysis shows that this can make a 

material difference to results. 

Parameter choices are based on a combination of previous literature and recent 

patent and research data. Parameter values are uncertain and hence this paper 

undertakes analysis using many different parameter choices for: the elasticity of 

substitution between clean and dirty energy; the elasticity of substitution between 

non-energy and energy; the extent of damage from climate change; the coefficient 

of relative risk aversion (and discount rate); the initial (long-run) clean energy 

share; the life of patents; the economic cost from applying a research subsidy due 

to misdirection of resources; spillovers to research from technology in other sectors; 

and the parameter choice of stepping-on-toes and functional form as discussed 

above.  

There are three mechanisms through which each sensitivity affects the relative 

performance of taxes and subsidies: changing the marginal costs of a tax as 

discussed above; changing the marginal benefits of a tax; and changing the initial 

tax required to direct clean research in the absence of subsidies. For example, an 

increase in the parameter of relative risk aversion (or equivalently the discount rate) 

reduces future benefits of abatement today, lowering the marginal benefits of a tax 

and hence favours subsidies. Thus a higher discount rate both lowers the optimal 

carbon tax and increases the relative performance of subsidies. In almost all 

scenarios except when a high coefficient of relative risk aversion is assumed, tax-

only policy performs better than subsidy-only policy. In the main scenario, subsidy-

only policy involves 3.3 times the utility loss of tax-only policy. 

The purpose of considering suboptimal policy options is to recognise that the 

implementation of optimal global policy is difficult, if not impossible in the short-

term, and thus provide policymakers with advice on which policy to focus on. 

Hassler, Krusell, Olovsson, and Reiter (2020) point out that we are far from optimal 
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policy at present: the average global carbon tax is negative due to coal subsidies. 

Difficulty in coordination demands research in such multi-region models.28 But the 

attainment of something approaching optimal coordinated policy may be possible 

in coming decades, which begs the question of what policy should be pursued in 

the interim in a single-region model. The role of subsidies is a short-term one in the 

sense that once clean technology is sufficiently advanced, clean energy dominates 

the dirty sector and attracts research without a subsidy. Therefore, the attainment 

of optimal policy after a delay improves the relative performance of subsidy-only 

policy in the interim and this is confirmed in every sensitivity conducted in this 

paper. In the main scenario when optimal policy is achieved in 2050, tax-only 

policy outperforms subsidy-only policy by a reduced factor of 1.9, and under many 

sensitivity combinations a temporary subsidy-only policy outperforms a temporary 

tax-only policy. 

The research question is close to that of Hart (2019). The calibration used by Hart 

(2019) is based on a combination of parameter choices and matching historical data 

and leads to a small role for subsidies, likely related to an extremely strong 

stepping-on-toes effect. In addition to explaining why previous literature have 

reached different conclusions, the current paper differs from Hart (2019) in several 

respects: a weaker stepping-on-toes parameter is considered; lower substitutability 

between non-energy and energy rather than Cobb-Douglas; a novel formulation for 

stepping-on-toes as described above; and the effect of parameter variation on the 

relative performance of suboptimal policies are more thoroughly examined. This 

paper supports the finding of Hart (2019) that tax-only policy outperforms subsidy-

only policy but is more optimistic about the relative performance of the latter, 

particularly if optimal policy is eventually reached.  

 

28
 Hémous (2016) is another example. 
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I. Model 

The model builds on Acemoglu et al. (2012)29. A representative household 

maximises 

(1)               ∑
1

(1 + 𝜌)𝑡
𝑢(�̂�𝑡)

∞

𝑡=0

 where 𝑢(�̂�𝑡) =
�̂�𝑡
1−𝜅

1 − 𝜅
 and �̂�𝑡 = 𝐷(𝑇𝑡)𝐶𝑡 

 

in discrete time, where 𝐶𝑡 is consumption, 𝐷 is a damage function of temperature 

𝑇𝑡 above pre-industrial levels, 𝜅 is a constant coefficient of relative risk aversion 

and 𝜌 is the discount rate. In the main scenario the damage function is an 

exponential function of temperature, 𝐷(𝑇𝑡) = 𝑒
−𝜃𝑇𝑡  where 휃 is a damage 

parameter, and the quadratic form assumed in the DICE 2016R2 model is 

considered as a sensitivity. Aggregate output at time 𝑡 is an isoelastic function of 

energy inputs 𝑌𝑒𝑡 and non-energy inputs 𝑌0𝑡, with elasticity of substitution 휀 and 

share parameter 𝛿𝑒: 

(2)              𝑌𝑡 = (𝛿𝑒

1

𝑌𝑒𝑡

−1

+ (1 − 𝛿𝑒)
1

𝑌0𝑡

−1

)
−1

. 

 

Total energy production 𝑌𝑒𝑡 is produced competitively using clean and dirty 

inputs, 𝑌𝑐𝑡 and 𝑌𝑑𝑡, according to an isoelastic function with an elasticity of 

substitution 𝜎: 

 

29
 Many other papers also build on Acemoglu et al. (2012) including Greaker and Heggedal (2012), Greaker et al. (2018), 

Acemoglu, Aghion, and Hémous (2014), Durmaz and Schroyen (2013), Van den Bijgaart (2017), Lemoine (2017) and 

Hémous (2016). 
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(3)               𝑌𝑒𝑡 = (𝑌𝑐𝑡

𝜎−1
𝜎 + 𝑌𝑑𝑡

𝜎−1
𝜎 )

𝜎
𝜎−1

. 

 

The environmental externality is caused by the production of the dirty input so 

that temperature evolves as follows: 

(4)                𝑇𝑡 = ∑ 𝑇𝑡−𝑢
𝑐 𝑌𝑑𝑢

t

𝑢=−∞

  where 𝑇𝑡−𝑢
𝑐 ∶=

𝜕𝑇𝑡
𝜕𝑌𝑑𝑢

. 

Details of the temperature response to dirty energy use are discussed in Appendix 

B. The inputs 𝑌𝑗𝑡 are produced using labour 𝐿𝑗𝑡 and a continuum of sector-specific 

intermediates: 

(5)                 𝑌𝑗𝑡 = 𝐿𝑗𝑡
1−𝛼∫ 𝐴𝑗𝑖𝑡

1−𝛼𝑥𝑗𝑖𝑡
𝛼  𝑑𝑖

1

0

, 

 

for parameter 0 < 𝛼 < 1, 𝐴𝑗𝑖𝑡 is the quality of intermediate of type 𝑖 used in sector 

𝑗 at time 𝑡 and 𝑥𝑗𝑖𝑡 is the quantity of this intermediate. Total labour supply is 

normalised to 1:  

(6)                 𝐿0𝑡 + 𝐿𝑒𝑡 = 1 where 𝐿𝑒𝑡 ∶= 𝐿𝑐𝑡 + 𝐿𝑑𝑡 . 

 

Intermediates are supplied by monopolistically competitive firms and cost 𝜓 

units of the final good which is normalised to 𝜓 ∶= 𝛼. Market clearing for the final 

good implies that 

(7)                𝐶𝑡 = 𝑌𝑡 − 𝜓∫ (𝑥𝑐𝑖𝑡 + 𝑥𝑑𝑖𝑡 + 𝑥0𝑖𝑡) 𝑑𝑖
1

0

− 𝜒𝑠𝑢𝑏𝑡. 
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where an economic cost of applying research subsidies 𝑠𝑢𝑏𝑡 due to misdirection of 

resources is specified by parameter 𝜒, following Acemoglu et al. (2016). For 

shadow prices of input j equal to the ratio of Lagrange multipliers for (5) and (7), 

𝑝𝑗𝑡 ∶=
λ𝑗𝑡

λ𝐶𝑡
, the first-order condition with respect to 𝑥𝑗𝑖𝑡 leads to 

(8)             𝑥𝑗𝑖𝑡 = (
𝛼𝑝𝑗𝑡

𝜓
)

1
1−𝛼

𝐴𝑗𝑖𝑡𝐿𝑗𝑡 . 

 

Combining (8) with (5) implies 

(9)              Y𝑗𝑡 = (
𝛼

𝜓
𝑝𝑗𝑡)

α
1−𝛼

𝐿𝑗𝑡𝐴𝑗𝑡 

 

where the average productivity in sector 𝑗 is  

(10)           𝐴𝑗𝑡 ∶= ∫ 𝐴𝑗𝑖𝑡

1

0

𝑑𝑖. 

 

The equalisation of wages sets the price of the non-energy sector and the relative 

prices of clean and dirty inputs as follows: 

(11)            𝑝0𝑡
1
1−𝛼 𝐴0𝑡 = 𝑝𝑐𝑡

1
1−𝛼 𝐴𝑐𝑡 = 𝑝𝑑𝑡

1
1−𝛼 𝐴𝑑𝑡 . 

 

Sector 𝑗 maximises pretax profit 

(12)            𝑝𝑗𝑡𝐿𝑗𝑡
1−𝛼∫ 𝐴𝑗𝑖𝑡

1−𝛼𝑥𝑗𝑖𝑡
𝛼

1

0

𝑑𝑖 − 𝑤𝑗𝑡𝐿𝑗𝑡 −∫ 𝜓𝑥𝑗𝑖𝑡

1

0

𝑑𝑖 
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where a subsidy of 1 − 𝛼 is applied to the use of all machines to account for 

monopoly distortions so that the post-subsidy price equals marginal cost 𝜓. This 

leads to the isoelastic inverse demand curve (8) and the profit-maximising price is 

a constant markup over marginal cost, 𝑝𝑗𝑖𝑡 =
𝜓

𝛼
. Pretax profit 𝜋𝑗𝑖𝑡 = (𝑝𝑗𝑖𝑡 −

𝜓)𝑥𝑗𝑖𝑡 = (
𝜓

𝛼
− 𝜓) 𝑥𝑗𝑖𝑡 and (8) imply 

(13)          𝜋𝑗𝑖𝑡 = (1 − 𝛼) (
𝛼

𝜓
)

α
1−𝛼
   𝑝

𝑗𝑡

1
1−𝛼𝐿𝑗𝑡𝐴𝑗𝑖𝑡 . 

 

Technology advances due to the research of scientists, and each scientist decides 

at the start of each period to direct their research. Scientists are successful in 

innovation in sector 𝑗 with probability 휂𝑗, where innovation increases the quality of 

intermediates by a factor 1 + 𝛾. The total number of scientists is normalised to 1: 

(14)            𝑠0𝑡 + 𝑠𝑐𝑡 + 𝑠𝑑𝑡 ≤ 1. 

 

I apply a stepping-on-toes effect which captures a duplication externality from 

research, leading to decreasing returns (Jones & Williams, 1998). The standard 

functional form for researchers 𝑠𝑗𝑡 and a sector diversity parameter 𝑠𝑗
𝐿𝑅, which in 

part determines the long-run research share, is 𝑅(𝑠𝑗𝑡) = (
𝑠𝑗𝑡

𝑠𝑗
𝐿𝑅)

𝜔

 where 0 < 𝜔 ≤

1.30 The denominator 𝑠𝑗
𝐿𝑅 is present to account for sector diversity: a single 

successful scientist has a lower impact on non-energy productivity as this sector is 

larger and more diverse than the clean energy sector. This standard functional form 

has the advantage of simplicity and can avoid corner solutions where no research 

occurs in a sector. 

 

30
 For example see Fried (2018). 
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However, the implied infinite returns to research as researchers approach zero (if 

𝜔 < 1) is not consistent with a duplication externality and may make a material 

difference to results under a complete transition between highly substitutable 

sectors as this paper discusses.31 Indeed, numerical exercises in this paper show that 

the standard form leads to lower taxes required to direct clean research and hence 

a greater disadvantage of subsidy-only policy relative to tax-only policy. Instead, I 

consider this standard form as a sensitivity and adopt the more complex form 

𝑅(𝑠𝑗𝑡) = 𝑎𝑙𝑛 (1 + 𝑏
𝑠𝑗𝑡

𝑠𝑗
𝐿𝑅) which is finite as research approaches zero and rises 

without bound but with first derivative approaching zero. Parameters 𝑎 and 𝑏 are 

calibrated so that 𝑅(𝑠𝑗
𝐿𝑅) = 1 and first derivative 𝑅′(𝑠𝑗

𝐿𝑅) = 𝜔 for comparability 

with the standard form. Kruse-Andersen (2019) use a similar stepping-on-toes form 

of (1 + 𝑠𝑗𝑡)
𝜒

 where 0 < 𝜒 ≤ 1. 

In addition, spillovers into sector 𝑗 from other sectors are included in the form 

(
𝐴𝑡

𝐴𝑗𝑡
)
𝜑

 for 0 < 𝜑 ≤ 1 and 𝐴𝑡  ∶= 𝛿𝑒(𝐴𝑐𝑡−1 + 𝐴𝑑𝑡−1)  + 𝛿0𝐴0𝑡−1 following Fried 

(2018). For long-run shares 𝑠𝑗
𝐿𝑅, with 𝑠0

𝐿𝑅 = 1 − 𝑠𝑒
𝐿𝑅 , productivity evolves 

according to: 

(15)           𝐴𝑗𝑡 = (1 + 𝛾휂𝑗𝑅(𝑠𝑗𝑡) (
𝐴𝑡
𝐴𝑗𝑡
)

𝜑

 ) 𝐴𝑗𝑡−1. 

 

There is no doubt that spillovers occur between sectors. Hart (2019) motivates 

this effect by imagining wind power in the year 1900 with windmills made of wood 

with cloth sails which are then not developed further until the year 2000: the 

knowledge developed in the intervening period would be a major help to 

 

31
 While a similar concern could be made for the Cobb-Douglas production form, the motivation for decreasing returns 

in this case is not a duplication externality. 
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researchers in clean energy. However, researchers would not be able to extract rents 

from all advances, such as simply using more recent material, and so I assume that 

researchers only extract a part of the gain from spillovers. A successful scientist 

obtains a one-period patent in the main scenario, following Acemoglu et al. (2012) 

and expected contemporaneous profits for a single scientist are  

(16)         Π′𝑗𝑡 = (1 + 𝑞𝑗𝑡)휂𝑅(𝑠𝑗𝑡) (
𝐴

𝐴𝑗
)

𝜑′

(1 + 𝛾)(1 − 𝛼) (
𝛼

𝜓
)

α
1−𝛼

𝑝
𝑗𝑡

1
1−𝛼𝐿𝑗𝑡𝐴𝑗𝑡−1  

 

where 0 < 𝜑′ ≤ 𝜑 and 𝑞𝑗𝑡 is a proportional research subsidy in sector 𝑗.32 Total 

pre-tax profits in a sector are then 𝑠𝑗𝑡Π
′
𝑗𝑡. As shown in (7), a cost to consumption 

of applying a research subsidy is assumed in proportion to the value of research 

subsidies. 

I also consider extended patent lifetimes (of life n periods) as a sensitivity 

following Greaker et al. (2018). Profits are discounted by a replacement rate 𝑧𝑗𝑡

∶= 휂𝑗𝑠′𝑗𝑡 which is the chance that an innovation will be superseded and hence 

profits become zero, and scientists’ discount rate which I approximate as 𝜌 + 𝛾휂 

where 휂 is the long-run growth in the economy: 

(17)           Π𝑗𝑡 =∑Π′𝑗𝑡+𝑘∏(
1− 𝑧𝑗𝑡+𝜋

1 + 𝜌 + 𝛾휂
)

𝑘

𝜋=1

𝑛

𝑘=0

. 

 

When a subsidy is used, the total subsidy expenditure 𝑠𝑢𝑏𝑡 = q𝑐𝑡
Π𝑐𝑡
′

1+q𝑐𝑡
 required 

to direct research is such that the critical profit ratio 
Π𝑐𝑡

Π0𝑡
 is 1. 

 

32
 Note that multiple equilibria may apply, and the derived tax or subsidy can be considered a lower bound for the required 

policy to direct a clean transition (Wiskich, 2021a). 
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To demonstrate differences in results between previous studies, a two-sector 

model is also used where research can occur in clean or dirty energy, described in 

Appendix C. 

II. Model characteristics 

There are three market failures in the economy: (i) the underutilisation of 

machines due to monopoly pricing; (ii) the environmental externality; and (iii) the 

knowledge externality in the technology frontier. Each can be corrected as follows: 

 

LEMMA 1: Excluding an economic cost of using research subsidies from the 

misdirection of resources, the socially optimal allocation can be implemented 

using: (i) a subsidy for the use of all machines (all proceeds from taxes/subsidies 

being redistributed/financed lump sum); (ii) a tax on dirty input (a “carbon” tax); 

and (iii) an innovation subsidy (or tax) to each of the energy sectors. 

 

Consider the carbon tax first. Let λ𝑇𝑡 be the Lagrange multiplier for (4). If utility 

is logarithmic in consumption, the first-order condition with respect to 𝑇 implies 

λ𝑇𝑡 = β
𝑡휃. Excluding misdirection costs from subsidies, the socially optimal tax Λ𝑡 

is equal to the social cost of carbon (in units of the consumption price), leading to 

a flat tax as a ratio of consumption. 

(18)         Λ𝑡 =
−1

λ𝐶𝑡
∑λ𝑇𝑡+𝑢T𝑢

𝑐

∞

𝑢=0

=
𝐶𝑡
β𝑡
휃∑β𝑡+𝑢T𝑢

𝑐

∞

𝑢=0

 𝑠𝑜 
Λ𝑡
𝐶
= 휃∑β𝑢T𝑢

𝑐

∞

𝑢=0

. 
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A subsidy for the use of all machines is required to boost the supply of machines 

so that the price is equal to the marginal cost.33 The knowledge externality can be 

corrected with a profits subsidy/tax to the clean energy sector (and dirty energy 

sector) following Acemoglu et al. (2012). Let λ𝐴𝑗𝑡 be the Lagrange multiplier for 

(15) and the first-order condition for technology gives: 

(19)         λ𝐴𝑗𝑡 = λ𝐶𝑡 (
𝛼

𝜓
)

𝛼
1−𝛼

(1 − 𝛼)𝑝𝑗𝑡
1
1−𝛼𝐿𝑗𝑡 + (1 + 𝛾휂𝑗𝑅(𝑠𝑗𝑡) (

𝐴𝑡
𝐴𝑗𝑡
)

𝜑

)λ𝐴𝑗𝑡+1 

 

The optimal research allocation is determined by the social gain from innovation 

𝛾휂𝑗λ𝐴𝑗𝑡𝐴𝑗𝑡−1. The social planner will assign researchers to energy sector 𝑗 when 

the following ratio exceeds 1 (until the ratio equals 1): 

(20)           

휂𝑗 (𝑠𝑗
𝐿𝑅 (1 + 𝛾휂𝑗𝑅(𝑠𝑗𝑡) (

𝐴𝑡
𝐴𝑗𝑡
)
𝜑

))

−1

∑ λ𝐶𝑢𝑝𝑗𝑢
1
1−𝛼𝐿𝑗𝑢𝐴𝑗𝑢𝑢≥𝑡

휂0 (𝑠0
𝐿𝑅 (1 + 𝛾휂0𝑅(𝑠0𝑡) (

𝐴𝑡
𝐴0𝑡
)
𝜑

))

−1

∑ λ𝐶𝑢𝑝0𝑢
1
1−𝛼𝐿0𝑢𝐴0𝑢𝑢≥𝑡

 

 

The focus of this paper is on suboptimal tax-only and subsidy-only policy. As 

well as distort production to account for the environmental externality, a tax alone 

can direct clean research but is less efficient at doing so than a subsidy. 

 

LEMMA 2: Directing technical change using a tax will distort labour allocation in 

the energy sector more than a subsidy for the same research allocation. The labour 

allocation is 

 

33
 This subsidy of (1 − 𝛼) is not a focus of this paper. For further details see Acemoglu et al. (2012). 
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(21)          
L𝑐𝑡
L𝑑𝑡

= (1 + 𝜏𝑡)
𝜎 (
𝐴𝑐𝑡
𝐴𝑑𝑡
)
−(1−𝜎)(1−𝛼)

 where 𝜏𝑡 ∶=
Λ𝑡
𝑝𝑑𝑡
. 

 

This result follows from combining the first-order conditions for wage-

equalisation (3) and prices (11) and applies to both optimal and constrained 

(second-best) approaches. The next proposition may help explain the different 

findings of previous studies on whether tax-only or subsidy-only policy is 

preferable. 

 

PROPOSITION 1: Removing substitutability options between non-energy and 

energy has the following effects. 

(1) The cost of a distortion in the energy sector to the macroeconomy is increased. 

(2) The performance of tax-only policy relative to subsidy-only policy is reduced 

if: (i) the tax required to direct clean research in the absence of subsidies is more 

than the optimal tax by a constant increment; and (ii) misdirection costs from the 

research subsidy are excluded. 

 

Part (1) results from the envelope theorem and holds for any positive elasticity of 

substitution between non-energy and energy. Consider a degree, however small, of 

substitutability between non-energy and energy inputs into final production. Then 

an infinitesimal reduction in energy input of dx leads to a 𝑠ℎ𝑟𝑒𝑑𝑥 fall in total output 

where 𝑠ℎ𝑟𝑒 is the share of energy in total output.34 

 

34
 Even if there is no substitutability between non-energy and energy in final output, the movement of labour inputs leads 

to the same result in both the short and long-run, as energy output is linear in labour so any reduction in energy sector output 

can be mitigated by a shift in labour from the non-energy sector. The result for the movement of researchers holds in the 

long-run, as in the limit that clean technology dominates and 𝜎 > 1, energy output is also linear in clean technology. 
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The dynamic nature of the model excludes an analytical proof of part (2), so 

strictly it is a conjecture. However, the reason for the result can be understood in a 

static approach. Assume that optimal policy involves clean research, which is 

typically the case in the literature, and that this research is binary so that it either 

occurs or does not. The top panel of Figure 9 shows the marginal costs and benefits 

of applying a tax. Marginal costs rise as the tax grows as is typically the case, while 

the marginal reduction in dirty energy output, considered a benefit due to the 

climate externality, falls. Consider optimal policy involving a tax and research 

subsidy: the tax is set as shown, leading to a surplus of area A, and the research 

subsidy ensures clean research occurs. Under tax-only policy, a higher tax is needed 

to direct clean research, leading to a welfare cost of area B relative to optimal 

policy. Under research-only policy, the welfare cost relative to optimal policy is 

area A as this surplus is not accessible without a carbon tax. 

 

 

However, before clean sources have dominated, output is less than linear in either technology so the aggregate costs are 

higher. 
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FIGURE 9: MARGINAL COSTS (MC) AND BENEFITS (MC) OF A CARBON TAX IN 2 AND 3 SECTOR MODELS 

 

Now consider a model with only 2 sectors (clean and dirty), shown in the bottom 

panel of Figure 9. As Proposition 1 outlines, the marginal cost is exaggerated in 

this case and thus the marginal cost line is steeper. As the substitutability between 

clean and dirty energy is high relative to the substitutability between non-energy 

and energy, the tax primarily affects the ratio of clean and dirty energy in the three-

sector model and so the marginal benefits line is similar under both models.35 Under 

tax-only policy, the additional tax increment required to direct clean research is the 

same by assumption. This leads to a larger area B representing the welfare cost of 

tax-only policy relative to optimal policy, and a smaller area A representing the 

welfare cost of research-only policy. Thus, in the 2-sector model, the optimal tax is 

 

35
 As energy demand is inelastic, a tax leads to a large shift in demand from dirty to clean energy and a small shift from 

energy to non-energy. 
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lower and subsidy-only policy is favoured for two reasons: the same tax increment 

needed to direct clean research comes at a higher cost; and the benefits of the 

optimal tax are lower, so the cost of subsidy-only policy are lower. 

The result in part (2) comes from the exaggerated macroeconomic cost as 

described in part (1), leading to steepening of the marginal cost curve while the 

marginal benefit curve is relatively unaffected. This holds when no misdirection 

costs from subsidies are considered, as assumed by Acemoglu et al. (2012). 

Including such a cost would raise the marginal benefit curve for the tax (as 

increasing the tax lowers the subsidy required to direct clean research) and hence 

the relative effect on suboptimal policy may differ. 

Due to the assumed low substitutability between non-energy and energy, the 

movement of researchers between sectors leads to the equalisation of 

productivities.  

 

LEMMA 3: Assume a clean transition where there is an equal chance of innovation 

in clean energy and non-energy 휂 ∶= 휂𝑐 = 휂0, long-run shares 𝑠0
𝐿𝑅 and 𝑠𝑐

𝐿𝑅 equal 

share parameters 𝛿0 and 𝛿𝑒 respectively and variables stabilise. Both non-energy 

and energy sectors asymptotically grow at the rate 𝛾휂 and productivities asymptote 

to each other. 

 

A proof is shown in Appendix D. Even under a clean transition where the clean 

share approaches 100%, dirty inputs may continue to grow in the long run and the 

following definition is useful for intuition. 

 

DEFINITION 1: An environmental disaster occurs if dirty energy inputs continue 

to increase in the long run. 

 

From (9), (11) and (22), long-run dirty inputs, with 𝐴𝑑𝑡 = 1 for simplicity, are:  
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(22)         Y𝑑𝑡
𝑡→∞
→  (

𝛼𝑝𝑐∞
𝜓
)

α
1−𝛼  𝐴𝑐∞

α+(1−𝜎)(1−α)𝐿𝑐∞
(1 + 𝜏∞)𝜎

. 

 

As (22) shows, increasing the carbon tax to infinity drives dirty input 𝑌𝑑𝑡 to zero 

and thus environmental disaster can always be avoided with a tax alone. But while 

possible, is disaster avoided under optimal policy settings? The following 

proposition describes the conditions that avoid disaster both under optimal and 

suboptimal policy. 

 

PROPOSITION 2: Assume an elasticity of substitution between clean and dirty 

energy 𝜎 > 1 and between non-energy and energy 휀 < 1. Then (i) environmental 

disaster is certainly avoided under optimal policy and tax-only policy, (ii) disaster 

is avoided under subsidy-only policy if 𝜎 >
1

1−𝛼
; and (iii) if 1 < 𝜎 <

1

1−𝛼
, disaster 

can be avoided under subsidy-only policy (although it is not optimal to do so) at 

the cost of long-run growth, which is (1 +
1

1−α
−𝜎

𝜎−ε
𝑠𝑒
𝐿𝑅)

−1

𝛾휂. 

 

The proof is in Appendix D. The movement of researchers between sectors 

increases the power of directed technical change alone to avert environmental 

disaster. The intuition is that while 𝐴𝑐𝑡
α+(1−𝜎)(1−α) rises when growth in 𝐴𝑐𝑡 is 

boosted and growth in 𝐴0𝑡 is reduced, labour in clean energy and the clean price 

are reduced which dominate in (22) and dirty energy inputs are reduced. 

Note that profits are proportional to 𝑝
𝑗𝑡

1

1−𝛼
𝐿𝑗𝑡

𝑠𝑗
𝐿𝑅 𝐴𝑗𝑡−1 from (16), while wage 

equalisation implies 𝑝
𝑗𝑡

1

1−𝛼𝐴𝑗𝑡 are equal between sectors from (11). As labour 

allocations approach their long-run shares and productivities grow at the same rate 
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from lemma 3, clean energy and non-energy profits equalise and therefore the long-

run subsidy approaches zero. 

 

REMARK 1: The profits subsidy to clean energy is positive if 
𝐿𝑐𝑡

𝑠𝑒
𝐿𝑅

𝐴𝑐𝑡−1

𝐴𝑐𝑡
>
𝐿0𝑡

𝑠0
𝐿𝑅

𝐴0𝑡−1

𝐴0𝑡
 

and negative if 
𝐿𝑐𝑡

𝑠𝑒
𝐿𝑅

𝐴𝑐𝑡−1

𝐴𝑐𝑡
<
𝐿0𝑡

𝑠0
𝐿𝑅

𝐴0𝑡−1

𝐴0𝑡
. In the long run, the subsidy approaches zero. 

III. Numerical results  

This section first discusses parameter choices shown in Table 5. Results for 

optimal policy as well as second-best policy when only a tax or subsidy is used are 

presented. Then I consider a more optimistic case where optimal policy is achieved 

in 2050, and only one instrument applies until then. Of course, there is an infinite 

number of possible suboptimal frameworks that could be considered, but this 

approach would seem to be of interest to policymakers and leads to a result that is 

quite different to the case where only one instrument is available permanently. 

Parameterisation 

My calibration approach is to set parameters based upon the literature, with some 

appeal to the data for stepping-on-toes, and check robustness using sensitivities. 

First, consider the size of the energy sector as a proportion of output. As indicated 

by proposition 1, this parameter is important in determining the relative 

performance of tax-only and subsidy-only policies. Golosov et al. (2014) assume a 

value of 0.04 while the DICE 2016R2 model uses a value of 0.05. A value of 0.04 

is in line with US values from the Energy Information Administration 

(Administration, 2012) which also projects this share to decline. The share should 

reflect the components of the economy that need to transform under a clean 

transition: for example, electricity grid costs should largely be excluded as a grid 

will be required with clean or dirty inputs. The main scenario uses a value of 0.04 
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and 0.05 is considered as a sensitivity, with quite different results despite the small 

change in value. 

Results are also highly sensitive to the chosen elasticities of substitution: for 

example, the climate policy needed to avoid environmental disaster depends on the 

substitutability between clean and dirty energy. Most empirical estimates of the 

elasticity of substitution between clean and dirty energy range between 0.5 and 3 

(Papageorgiou et al. (2017), Lanzi and Sue Wing (2011); Stern (2012) and Pelli 

(2012)) although higher substitutability has been found in the electricity sector 

(Wiskich (2021d) and Stöckl and Zerrahn (2020)). Elasticities used in integrated 

assessment and macroeconomic models have ranged between 10 and 1.36 I use a 

value of 3 in the main part of this paper and consider a lower value of 1.5 as a 

sensitivity. 

Substitutability between non-energy and energy allows for reductions in energy 

demand as the energy price rises. Kaufmann, Karadeloglou, and Di Mauro (2008) 

report an implied energy own-price elasticity in EIA scenarios of about -0.13. 

Hassler, Krusell, and Olovsson (2012) advocate a low elasticity of substitution 

between non-energy and energy in a model with endogenous technology, and this 

is my main approach. I choose a low elasticity of 0.1 for a discrete period of 5 years 

but consider a higher elasticity of 0.5 as a sensitivity.  

Regarding the climate model, historical emissions go back a century and induce 

warming at 2020 of 1.180C, within the range of IPCC projections (IPCC, 2014). 

The damage parameter is set so that every degree of warming leads to roughly 1% 

of output reduction. A linear relationship between global damages and temperature 

is consistent with Burke, Hsiang, & Miguel, 2015,37 although the magnitude of 

damage assumed is much less in the current paper. But the level of damage is 

 

36
 3 and 10 in Acemoglu et al. (2012), 4 in Hart (2019), about 1 in Golosov et al. (2014), 3 and 1.5 in Greaker et al. 

(2018). 
37

 For damages up to around 10% of output, an exponential function is approximately linear. 
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greater than typically assumed in economic models for a moderate temperature 

increase, and the quadratic form assumed in the DICE 2016R2 model is considered 

as a sensitivity where damages of 2.1% and 8.5% result from warming of 3°C and 

6°C respectively. 

Acemoglu et al. (2012) assume clean energy initially makes up 18% of total 

energy. On one hand, this is a high estimate as it includes hydro and nuclear power, 

while renewable energy that will likely drive the clean transition (wind and solar) 

constitutes a much smaller share. For example, Hart (2019) assumes an initial clean 

share of 5%. On the other hand, the long-run share of clean energy should arguably 

be used which, due to long-lived capital and recent advances in clean technology, 

would likely be materially higher than the current renewable share. Therefore I 

consider an initial share of 10% and a sensitivity where the initial clean share is 

18%. 

Each period is 5 years and the time discount rate is 1.5% per annum, consistent 

with Acemoglu et al. (2012) and the DICE 2016R2 model. The main utility function 

is logarithmic, consistent with Golosov et al. (2014), while a function with relative 

risk aversion parameter 𝜅 of 1.5 is considered as a sensitivity, close to the value of 

1.45 assumed in the DICE 2016R2 model. The share of machines in production is 

about equal to the share of capital at 1/3. 

Patents last one period (5 years) in the main scenario, consistent with Acemoglu 

et al. (2012), and 10 years in an extended patent lifetime sensitivity. As it is difficult 

for the government to identify which research projects should be supported, a 

distortionary cost is assumed with parameter 𝜒 set so a consumption cost of 10% 

of subsidy expenditure is applied, consistent with Acemoglu et al. (2016). A 

sensitivity excludes such misdirection costs. 

The diminishing returns parameter is set to 0.8, much greater than the value of 

0.19 used in Hart (2019) which would seem to make rapid advancement of clean 

energy extremely costly, but similar to values of 0.7 and 0.79 used in Greaker et al. 
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(2018) and Fried (2018). A high value seems appropriate to apply at a sectoral level 

and allows a rapid advancement of clean technology as seen over the past two 

decades. For example, the number of renewable energy patents has increased from 

around 36,000 per annum between 2000 and 2004 to over 400,000 per annum 

between 2010 and 2014 (IRENA, 2017). Such a measure is of course a rough proxy 

for technological advance, but it is consistent with tremendous advances in 

technology. Holding the effects of research spillovers constant, a stepping-on-toes 

parameter of 0.19 would require over a 400-fold increase in researchers to generate 

a 10-fold increase in research output over two 5-year periods. In contrast, a 

parameter close to 1 is consistent with around a 3-fold increase in researchers for 

such a gain, roughly consistent with the increase in the total OECD public 

renewable energy research budget over this period (IEA, 2014). A stepping-on-toes 

parameter of 0.9 is considered as a sensitivity, along with the standard functional 

form for stepping-on-toes as described in the previous section. 

The spillover parameter 𝜑 is assumed to be 0.5, consistent with Fried (2018) who 

uses the same functional form, and a sensitivity considers a higher value of 1. A 

difference in this paper is that the benefits of spillovers are not able to be captured 

fully by researchers. I consider that half of the benefits are captured (for small 

gains) so that 𝜑′ = 0.5𝜑. 

The initial price for dirty energy is set equal to the non-energy price. Due to limits 

in the amount of energy extractable from a given unit of fossil fuel, Hart (2019) 

imposes a limit of technical progress in dirty energy, noting that the best modern 

coal-fired power stations are at about 75% of the thermodynamic limit. This paper 

recognises this limit and the maturity of dirty energy by assuming a lower value for 

the chance of innovation success in dirty energy. For non-energy and clean energy 

the chance of success is 2% per annum, implying a long-run annual growth rate of 

𝛾휂0 = 𝛾휂𝑐 = 2% in a clean transition, but only 1% for dirty energy. Thus, this 

paper does not attempt to provide a structure that is consistent with the historical 
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development of clean and dirty energy: Hart (2019) uses a structure where historical 

advances in dirty energy were more fruitful as the frontier was further away, and 

Lemoine (2017) explores transitions between dirty inputs by assuming different 

qualities of resources which determine long-run input shares. However, projections 

of the clean share are broadly consistent with Hart (2019). Without climate policy, 

there is no material energy research for a few decades before clean research occurs 

– the clean share reaches 50% in around 2100, about the same time as in the climate-

change denial scenario in Hart (2019). Under optimal policy, the transition occurs 

quickly: after 50 years the clean share is around 90% in the main scenario although 

this takes a century in sensitivity s3 with low substitutability between clean and 

dirty energy: for comparison Hart (2019) finds it takes around 75 years under 

optimal policy. 

 

TABLE 5 — PARAMETER AND FUNCTIONAL ASSUMPTIONS.  

Parameter Main Value (sensitivity) 

Number of years in a period  5 

Discount rate 𝜌 0.015 (0.025) per annum 

Elasticity of substitution between non-energy and energy 휀 0.1 (0.5) 

Elasticity of substitution between clean and dirty 𝜎 3 (1.5) 

Share of machines in production 𝛼 1/3 

Size of innovation 𝛾 1 

Probability of success in clean and non-energy research 휂𝑐, 휂0 0.02 per annum 

Probability of success in dirty research 휂𝑑 0.01 per annum 

Patent lifetime 𝑛 5 (10) years 

Historical dirty energy use (GtC,1925,...,2015) 𝑌𝑑𝑡 [5,5,7.5,7.5,10,12.5,15,17.5,20,22.5,2

5,25,27.5,30,35,40,45,50,50] 
Initial production of clean energy (2015) 𝑌𝑐0 5.6 (8.8) 

Damage function 𝐷 𝑒−0.01𝑇𝑡 (1 − 0.00236𝑇𝑡
2) 

Subsidy misdirection cost parameter 𝜒 0.1 (0) 

Long-run share of researchers in energy and the share parameter 

for energy in final production 
𝑠𝑒
𝐿𝑅=𝛿𝑒 4% (5%) 

Diminishing returns to research parameter 𝜔 0.8 (0.9) 

Sectoral spillovers to research 𝜑 0.5 (1) 

Utility function - coefficient of relative risk aversion 𝜅 1 (1.5) 
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Numerical results 

Figure 10 shows results for the main scenario under optimal policy and 

suboptimal policy where only a tax or a subsidy is possible. Optimal policy involves 

a subsidy to clean energy in the first few decades and a carbon tax which is almost 

flat as a ratio of income. The starting tax in 2020$US is $60 per tonne carbon 

dioxide (panel A).38 This corresponds to a tax-to-consumption ratio of 0.000333 

per GtC which is higher than the ratio derived from (18) of 0.000316 due to the 

extra benefit of taxes from reducing subsidy misdirection costs (as lower subsidies 

are needed). Under tax-only policy, the tax is initially higher to direct clean 

research, and then drops below the optimal tax level because the combination of 

the optimal tax level and research spillovers lead to more clean research than is 

optimal after the first few decades. Panel B also demonstrates the potential for 

excessive clean research (when a carbon tax and research spillovers exist) as the 

clean subsidy under optimal policy falls below zero, similar to the effect described 

by Gerlagh, Kverndokk, and Rosendahl (2014).39 Without a tax available, a much 

higher subsidy is needed to direct clean research early on and the subsidy persists 

for longer. 

Both the clean research share and clean labour share exhibit a hump-shaped 

profile (panels C and D). There is a period of clean technology catch-up with the 

non-energy sector before clean energy and non-energy research shares asymptote 

to long-run shares.40 Panel E shows the high cost of tax-only policy initially, 

through lower consumption growth, and a long-run cost of subsidy-only policy due 

to greater damages from warming. As the effects of subsidies take time, the clean 

 

38
 For comparison, Nordhaus (2017) finds a social cost of carbon of $44 (converting $31 in 2015 using 2010 $US) per 

tonne of carbon dioxide using the DICE-2016R2 model. 
39

 A negative subsidy (a profits tax) applied to clean energy is not generally considered as a policy option. However, 

restricting the subsidy-only case to positive subsidies does not change the welfare result materially. 
40

 This stabilization of research shares is similar to that described in Lemoine (2017). Fried (2018) and Hémous (2016) 

also consider three-sector models but focus on different insights to this paper. 
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transition is slower under subsidy-only policy and hence warming is considerably 

higher (panel F).  

Consider the performance of suboptimal policy. Figure 11 shows how subsidy-

only policy compares with tax-only policy using the ratio of utility loss: a number 

over one means that tax-only policy is preferred. Reflecting the uncertainty in 

parameter values and at the risk of showing too much information, I include not 

only the main scenario and 9 sensitivities, but also combinations of 2 sensitivities 

to make 46 scenarios in total: the main scenario is shown circled in the sensitivity 

1 column; scenarios with only one sensitivity are circled in columns 2 to 10; and 

each combination of 2 sensitivities are shown by numbered data points (number y 

in column x combines sensitivities x and y).  

The top panel shows results for permanent suboptimal policy: subsidy-only 

policy leads to 3.3 times the utility loss of tax-only policy relative to optimal policy, 

and tax-only policy outperforms in most scenarios. Subsidies perform as well as 

taxes with the high coefficient of relative risk aversion (reflecting the higher 

effective discount rate) alone, and performs better than taxes when this sensitivity 

(s6) is combined with many others.  

There are three main considerations regarding different parameter choices 

corresponding to three effects to Figure 9: changing the marginal cost line; 

changing the marginal benefits line; and changing the tax required to direct clean 

research. First, the bigger the energy sector as a proportion of the economy the more 

subsidy-only policy is favoured and this is a key message of this paper. If the energy 

sector is assumed to be 5% of the economy (sensitivity s2) rather than 4%, tax-only 

policy outperforms by a factor of 1.9 instead of 3.3. Proposition 1 explains why a 

2-sector approach can exaggerate the performance of subsidy-only policy relative 

to tax-only policy (the marginal cost line is raised in Figure 9). For a comparison 

between 2 and 3-sector results, I consider the sensitivity without subsidy 

misdirection costs for comparability with previous literature. In the 3-sector model 
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in this sensitivity, subsidy-only policy leads to a utility loss that is 286% of the tax-

only policy, while in the 2-sector model this ratio is only 5% and so subsidy-only 

policy is preferred. 

Second, parameter choices that increase the (future) impact of climate change 

tend to favour tax-only policy, as the benefits of distorting production tend to 

increase (raising the marginal benefit line in Figure 9). Thus, low substitutability 

between clean and dirty energy (s3) improves the relative performance of tax-only 

policy while high substitutability between non-energy and energy (s4), quadratic 

(lower at moderate temperatures) damages (s5), a high coefficient of relative risk 

aversion with high interest rate (s6),41 and removing subsidy misdirection costs (s7) 

tend to improve the performance of subsidy-only policy. The dependence of the 

optimal carbon tax on the discount rate is well understood: this paper finds that the 

relative performance of taxes and subsidies is also highly dependent on the discount 

rate. 

Third, parameter choices implying a higher tax is required to direct clean research 

(in the absence of subsidies) improve the relative performance of subsidy-only 

policy (the dashed vertical line in Figure 9 is shifted to the right). Thus, while future 

temperatures are lower with a high initial clean share (s8), a lower tax is required 

to direct clean research and hence the relative performance of tax-only policy is 

improved. High research spillovers (s9) and the standard functional form for 

stepping-on-toes (s10) also lower the tax (and subsidy) required to direct clean 

research, favouring tax-only policy.42 A lower stepping-on-toes effect (not shown) 

reduces the loss of the “hump” of clean catch-up shown in the third panel of Figure 

10: this tends to increase the size of this hump and reduce optimal clean research 

 

41
 Increasing the time discount rate is not shown as it has a similar effect to the high coefficient of relative risk aversion 

sensitivity. 
42

 Returns to research are higher for low clean research shares in s10, so the effect is similar to higher spillovers for 

research. 
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initially, lowering the required tax hence favouring tax-only policy but only 

marginally. The initial tax required under extended patent life (not shown) is 

slightly higher: while a future shift to clean energy lowers the subsidy required to 

direct clean research, the initial tax needed is higher as the future tax falls which 

marginally favours subsidy-only policy.43 

As an example, the starting optimal tax in the main scenario is $60 per tonne 

carbon dioxide and the clean research share is 3.5%. With only a tax available, the 

starting tax rises to $143 which induces a clean share of 2.8% and tax-only policy 

outperforms subsidy-only policy. The combination of sensitivities using the DICE 

damage function (s5) and with a coefficient of relative risk aversion of 1.5 (s6), 

close to that of the DICE 2016R2 model, leads to a starting optimal tax of only $33 

per tonne and clean share of 2.7%. With only a tax available, the tax starts at only 

$29 and rises to $122 after a delay of 5 years, inducing a clean research share of 

2.0%. As the tax rises further as a proportion of the optimal level, subsidy-only 

policy is preferred in this scenario. 

I have shown combinations of two sensitivities as the effect of sensitivities are 

sometimes complex. For example, the quadratic damage function (s5) has lower 

damages for moderate temperature increases and hence this sensitivity tends to 

favour subsidy-only policy. However, when combined with low substitutability 

between clean and dirty energy (s3) with resulting higher future temperatures, tax-

only policy is favoured due to increasing marginal damages as temperature rises. 

Considering a more optimistic scenario where one instrument is used until 2050 

and then both are available, the relative performance of subsidy-only policy is 

improved in all sensitivity combinations: in the main scenario the utility cost 

 

43
 Extended patent lifetimes lead to a diminished role for subsidies, as found by Greaker and Heggedal (2012). This result 

is unsurprising as the knowledge externality that is corrected by the subsidy involves long-run gains from knowledge that 

are not captured in returns to investors over the patent life. Note that this paper assumes a constant number of researchers in 
aggregate, and thus the effect of changing patent life is through changing relative profits between sectors and not through 

changing aggregate research. 
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reduces from 3.3 to 1.9 times the cost of tax-only policy, and subsidy-only policy 

outperforms in many scenarios. As the cost of subsidy-only policy is spread over 

time while the cost of tax-only policy occurs early, the attainment of optimal policy 

in the long run improves the relative performance of subsidy-only policy. 

 

FIGURE 10: OPTIMAL AND PERMANENT SUBOPTIMAL POLICY RESULTS 
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Tax level in $2020 per tonne carbon dioxide. Clean subsidy is a proportion of profits. 

 

FIGURE 11: RATIO OF UTILITY COSTS (COMPARED WITH OPTIMAL POLICY, LOG SCALE) FOR SUBOPTIMAL SUBSIDY-ONLY 

POLICY AND TAX-ONLY POLICY. 

A number over one means tax-only policy outperforms subsidy-only policy. Results for every combination involving two 

sensitivities are shown (in duplicate). Sensitivities: 1=Main; s2=High energy share of output; s3=Low substitutability 
between clean and dirty energy; s4=High substitutability between non-energy and energy; s5=Quadratic climate damage; 

s6= High coefficient of relative risk aversion; s7=No subsidy misdirection costs; s8=High initial clean energy share; s9=High 

research spillovers; s10=Commonly-used stepping-on-toes functional form. 
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IV. Conclusion 

The model outlined in this paper incorporates endogenous technology and the 

free movement of workers and researchers between energy and non-energy sectors 

under a clean transition. The movement of researchers increases the power of policy 

to avert environmental disaster and leads to a period of intense research in the clean 

sector above the long-run share, as productivity in the clean sector catches up to the 

non-energy sector. This paper helps explain the differing results found in previous 

literature on the relative performance of tax-only and subsidy-only policies, and 

some drivers of relative performance are discussed using numerical examples. 

Permanent tax-only policy outperforms subsidy-only policy across a broad range 

of parameter assumptions, while a high discount rate favours subsidies. If optimal 

policy is eventually reached and suboptimal policy is only temporary, the relative 

performance of subsidy-only policy is closer to tax-only and performs better in 

some scenarios. 

Regarding limitations, the model is deterministic and hence the uncertainty of 

climate impacts, such as the risk of tipping points, are not considered. If tipping 

points are triggered by temperature rising above an unknown threshold, optimal 

policy may be stronger in the near term to limit the maximum level of warming 

(Wiskich, 2021c) – this would likely favour tax-only policy as a lower peak 

temperature is achievable than with subsidy-only policy. Further, physical capital 

is not included and hence precautionary capital formation considered in other 

papers is not present.  

Distortionary fiscal costs from pre-existing taxes are not considered. A recent 

paper finds that considering this effect in the US reduces the optimal tax below the 

Pigouvian level (Lint Barrage, 2020), which would probably improve the relative 

performance of subsidy-only policy. However, considering existing production 

subsidies to dirty energy including coal would improve the relative performance of 
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tax-only policy, as would raising other distortionary taxes to finance the research 

subsidies, so the net effect is unclear and could be investigated.  

An interesting extension would include research in less dirty technology such as 

natural gas. Although the model considers substitutability between non-energy and 

energy, energy savings through demand-side capital investment (such as making 

houses more energy efficient) or supply-side investment (such as making fossil 

power stations more efficient) are not explicitly included in the model and may also 

make an interesting extension. The lifetime of energy assets, which would reduce 

the potential for transition in the short term, could be considered. Finally, other 

suboptimal policy experiments might be considered. While this paper considers an 

optimistic future where optimal policy is eventually achieved, global policy 

coordination may deteriorate in the future instead which would further favour a 

carbon tax in the interim. The suboptimal nature of policy in this paper is the 

restriction of available instruments: it may be useful to weigh feasible magnitudes 

of tax-only and subsidy-only policies against each other.  

 

APPENDIX A – SOLVING THE NUMERICAL MODEL 

 

From (11) and the price equations 

(𝐴. 1)       𝑝𝑐𝑡
1−𝜎 + (𝑝𝑑𝑡(1 + 𝜏𝑡))

1−𝜎
= 𝑝𝑒𝑡

1−𝜎 

(𝐴. 2)       𝛿0𝑝0𝑡
1− + 𝛿𝑒𝑝𝑒𝑡

1− = 1 

 

each price can be derived given technologies, such as: 

(𝐴. 3) 𝑝0𝑡 = (𝛿0 + 𝛿𝑒 [(
𝐴0𝑡
𝐴𝑐𝑡
)
(1−𝜎)(1−𝛼)

+ (
𝐴0𝑡
𝐴𝑑𝑡
)
(1−𝜎)(1−𝛼)

(1 + 𝜏𝑡)
1−𝜎]

1−
1−𝜎

)

1
−1

. 
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First-order conditions for (2) lead to  

(𝐴. 4)       
𝑝0𝑡
𝑝𝑒𝑡

= (
𝛿0
𝛿𝑒
)

1

(
𝑌0𝑡
𝑌𝑒𝑡
)

−1

   and (9) leads to 

(𝐴. 5)       
𝑌𝑖𝑡
𝑌𝑗𝑡
= (

𝑝𝑖𝑡
𝑝𝑗𝑡
)

α
1−𝛼 L𝑖𝑡A𝑖𝑡

L𝑗𝑡A𝑗𝑡
. 

 

Labour input ratios can then be determined, such as  

(𝐴. 6)    
L0t
L𝑐𝑡
= (
𝐴0t
𝐴𝑐𝑡
)
(ε−1)(1−α) 𝛿0

𝛿𝑒
((1 + 𝜏𝑡)

1−𝜎𝐴𝑐𝑡
(1−σ)(1−α) + 1)

𝜎
𝜎−1    

 

and labour inputs are then derived from (6) and (21). Optimal taxes and subsidies 

are determined numerically to optimise welfare. 

 

APPENDIX B – CLIMATE MODEL 

 

Figure 12 shows the assumed temperature impact from a unit of carbon emissions 

from Shine et al. (2005). Many papers have assumed that the temperature response 

to a carbon pulse peaks after several decades (Gerlagh and Liski (2018) and the 

DICE 2013 model) which is inconsistent with recent physical science literature. In 

continuous-time, temperature dynamics are a function of radiative forcing 𝑅𝑡: 

(B. 1)                                           𝐻
𝑑𝑇𝑡
𝑑𝑡
 =𝑅𝑡 −

𝑇𝑡
𝜆
, 
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where 𝐻 is the heat capacity of the system and 𝜆 is a climate sensitivity parameter. 

For carbon, radiative forcing and temperature responses at time 𝑡 after an emissions 

pulse (in discrete time) are  

(𝐵. 2)                      𝑅𝑡
𝑐 ∶=  

𝜕𝑅𝑡
𝜕𝑌𝑑0

 = 𝑎0 +∑𝑎𝑖𝑒
−
𝑡
𝛼𝑖  and

4

𝑖=1

 

(𝐵. 3)              𝑇𝑡
𝑐 ∶=

𝜕𝑇𝑡
𝜕𝑌𝑑0

=
𝐵𝑐
𝐻
{휁𝑎0 (1 − 𝑒

−
𝑡

) +∑
𝑎𝑖 (𝑒

−
𝑡
𝛼𝑖 − 𝑒

−
𝑡

)

(휁−1 − 𝛼𝑖−1)

4

𝑖=1

}, 

 

where 𝑎𝑖 are coefficients which sum to 1, 𝛼𝑖 reflect gas lifetimes in years, 휁 is by 

definition the constant 𝜆𝐻 in years, and 𝐵𝑐 is the radiative forcing due to a 1-kg 

change in carbon dioxide. Parameter values are shown in Table 6. 

 

 

FIGURE 12: TEMPERATURE RESPONSES TO AN EMISSIONS PULSE  

 
TABLE 6: DETAILED CLIMATE MODEL PARAMETERS 

𝐵c 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 

1.98 0.1756 0.1375 0.1858 0.2423 0.2589 

      

𝐻 휁 𝛼1 𝛼2 𝛼3 𝛼4 

4.2 10.65 421.09 70.597 21.422 3.4154 
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APPENDIX C – TWO-SECTOR MODEL 

 

Consider energy output 𝑌𝑒𝑡 defined in (3) and consumption given by 

(𝐶. 1)          𝐶𝑡 = 𝑌𝑒𝑡 − 𝜓∫ (𝑥𝑐𝑖𝑡 + 𝑥𝑑𝑖𝑡) 𝑑𝑖
1

0

. 

 

Other equations are as given in section 1, with 𝐿𝑐𝑡 + 𝐿𝑑𝑡 = 1 for (6) and 𝑠𝑐𝑡 +

 𝑠𝑑𝑡 ≤ 1 for (14). 

 

APPENDIX D –PROOFS 

Lemma 3 

The elasticity of substitution between non-energy and energy is less than one (휀 >

1) and if long-run prices, labour and research allocations stabilise, from (20) 

𝑝𝑐𝑡
1

1−𝛼 L𝑐𝑡A𝑐𝑡

𝑠𝑐
𝐿𝑅 =

𝑝0𝑡
1

1−𝛼 L0𝑡A0𝑡

𝑠0
𝐿𝑅 . From (11), this implies that 

L0t

L𝑐𝑡
=
𝑠0
𝐿𝑅

𝑠𝑐
𝐿𝑅, and (A.6) 

becomes 

(𝐷. 1)      
𝑠0
𝐿𝑅

𝑠𝑐𝐿𝑅
= (
𝐴0t
𝐴𝑐𝑡
)
(ε−1)(1−α) 𝛿0

𝛿𝑒
 as 𝜎 > 1   

 

Since 
𝛿0

𝛿𝑒
=
𝑠0
𝐿𝑅

𝑠𝑐
𝐿𝑅 by assumption, we must have 

𝐴0𝑡

𝐴𝑐𝑡
= 1, 

L0t

L𝑐𝑡
=
𝛿0

𝛿𝑒
 and 𝑝ct = 𝑝0𝑡 = 1 

from (11) and (B.2).  

Proposition 2 

From (22) and if prices and labour and research allocations stabilise, the long-run 

growth in dirty inputs gY𝑑 = [ α + (1 − 𝜎)(1 − α)]gA𝑐 − 𝜎g𝜏. As 𝜏𝑡 =
Λ𝑡

𝑝𝑑𝑡
=
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Λ𝑡

𝑝𝑐𝑡𝐴𝑐𝑡
1−α (from (11) and setting 𝐴𝑑 = 1) and as the carbon tax grows with 

consumption gΛ = gC = gA𝑐 , then gY𝑑 < 0 if α + (1 − 𝜎)(1 − α) − 𝜎(1 − (1 −

α)) < 0 which reduces to 𝜎 > 1 which holds by assumption. Without a carbon tax, 

gY𝑑
𝑡→∞
→  [ α + (1 − 𝜎)(1 − α)]gA𝑐. 

 

Considering the suboptimal application of subsidies without a carbon tax, 

environmental disaster can still be avoided if 1 < 𝜎 <
1

1−α
. Labour in clean energy 

and the clean price are 

(𝐷. 2)        L𝑐𝑡 =
1

1 + (
𝐴0t
𝐴𝑐𝑡
)
(ε−1)(1−α) 𝛿0

𝛿𝑒

𝑡→∞
→  

𝛿e
𝛿0
(
𝐴0t
𝐴𝑐𝑡
)
(1−ε)(1−α)

 and 

(𝐷. 3)         𝑝𝑐𝑡
1− =

1

(
𝐴ct
𝐴0𝑡
)
(1−ε)(1−α)

𝛿0 + 𝛿𝑒

𝑡→∞
→  

1

𝛿0
(
𝐴0t
𝐴𝑐𝑡
)
(1−ε)(1−α)

 so 

(𝐷. 4)        gL𝑐
𝑡→∞
→  (1 − ε)(1 − α)(gA0 − gA𝑐) and gp𝑐

𝑡→∞
→  (1 − α)(gA0 − gA𝑐) 

 

Thus from (22) 

(𝐷. 5)     gY𝑑
𝑡→∞
→   

α

1 − α
gp𝑐 + [α + (1 − 𝜎)(1 − α)]gA𝑐 + gL𝑐  leading to 

(𝐷. 6)      gY𝑑 < 0 𝑖𝑓 gA𝑐 > (1 +

1
1 − α − 𝜎

𝜎 − ε
) gA0 . 
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Now 𝑠𝑒
𝐿𝑅gA𝑐 + (1 − 𝑠𝑒

𝐿𝑅)gA0 = 𝛾휂 so the long-run growth consistent with 

avoiding environmental disaster is 

(𝐷. 7)     g𝑌 = g𝐶 = gA0 ≤ (1 +

1
1 − α − 𝜎

𝜎 − ε
𝑠𝑒
𝐿𝑅)

−1

𝛾휂. 
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APPENDIX E –SENSITIVITY RESULTS 

 

TABLE 7 — RATIO OF UTILITY COSTS (COMPARED WITH OPTIMAL POLICY) FOR SUBOPTIMAL SUBSIDY-ONLY POLICY AND TAX-ONLY POLICY 

 (1) (s2) (s3) (s4) (s5) (s6) (s7) (s8) (s9) (s10) 

Main (1) 
3.3 1.9  8.4  2.0  2.4  1.0  2.9  4.8  7.3  4.6 

(1.9) (1.0)  (2.2)  (1.0)  (1.1)  (0.5)  (1.6)  (3.2)  (3.8)  (2.2) 

High energy share of output 𝛿𝑒 = 0.05 (s2) 
     5.0  1.1  1.6  0.6  1.6  2.8  3.8  2.6 

     (1.3)  (0.5)  (0.7)  (0.4)  (0.8)  (1.6)  (1.9)  (1.2) 

Low elasticity between clean and dirty 𝜎 = 1.5 (s3) 
5.0       3.7  16.9  1.5  6.8  9.7  3.1  12.9 

(1.3)       (1.1)  (2.3)  (0.6)  (1.7)  (2.6)  (1.1)  (3.1) 

High elasticity between non-energy and energy 휀 = 0.5 (s4) 
1.1  3.7       2.5  0.7  1.8  3.0  3.8  2.8 

(0.5)  (1.1)       (0.6)  (0.4)  (0.9)  (1.6)  (1.9)  (1.3) 

Quadratic climate damage from DICE-2016R2 (s5) 
1.6  16.9  2.5       0.9  2.1  3.2  3.3  3.2 

(0.7)  (2.3)  (0.6)       (0.4)  (0.8)  (1.6)  (1.5)  (1.3) 

High coefficient of relative risk aversion κ = 1.5 (s6) 
0.6  1.5  0.7  0.9       0.8  1.5  1.6  1.4 

(0.4)  (0.6)  (0.4)  (0.4)       (0.4)  (0.8)  (0.9)  (0.8) 

No- subsidy misdirection costs 𝜒 = 0 (s7) 
1.6  6.8  1.8  2.1  0.8       4.1  5.8  3.8 

(0.8)  (1.7)  (0.9)  (0.8)  (0.4)       (2.6)  (3.0)  (1.8) 

High initial clean energy share 𝛿𝑒 = 0.05 (s8) 
2.8  9.7  3.0  3.2  1.5  4.1       9.8  7.1 

(1.6)  (2.6)  (1.6)  (1.6)  (0.8)  (2.6)       (6.1)  (3.8) 

High research spillovers 𝜑 = 1 (s9) 
3.8  3.1  3.8  3.3  1.6  5.8  9.8       6.5 

(1.9)  (1.1)  (1.9)  (1.5)  (0.9)  (3.0)  (6.1)       (3.2) 

Commonly used stepping-on-toes functional form (s10) 
2.6  12.9  2.8  3.2  1.4  3.8  7.1  6.5  

(1.2)  (3.1)  (1.3)  (1.3)  (0.8)  (1.8)  (3.8)  (3.2)  

Results for permanent suboptimal policy are shown without brackets, and results for temporary suboptimal policy where optimal policy is achieved in 2050 are bracketed. A number 

greater than 1 means tax-only policy outperforms subsidy-only policy. Results for every combination involving two sensitivities are shown (in duplicate)
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3. Substitutability between clean and dirty electricity generation 

under a clean transition 

By ANTHONY WISKICH*  

A clean transition in electricity generation will likely be driven by 

variable renewable energy. The elasticity of substitution between 

wind and solar inputs and dirty inputs in electricity is estimated to be 

3 or more by fitting an aggregate production function to OECD panel 

data. Such a high elasticity is consistent with detailed electricity 

models which also predict that the substitutability decreases as the 

share of clean inputs rises, as integrating intermittent energy supply 

becomes increasingly difficult. A simple dispatch model of electricity 

generation demonstrates this characteristic. Decreasing 

substitutability implies higher costs of a clean transition, greater 

costs from regions transitioning sequentially rather than together, 

and perhaps a greater role for carbon taxes over research subsidies. 

(JEL O33, Q40, Q41, Q42) 

Keywords: Elasticity of substitution; climate change; energy; electricity; 

production function. 
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Responding to climate change almost certainly involves transitioning the global 

economy from dirty to clean energy. The substitutability between these inputs is an 

important factor in determining: the cost of this transition; the type, timing and 

extent of optimal policy; and the additional costs from suboptimal policy. The 

electricity generation sector is particularly important as it has the highest levels of 

greenhouse gas emissions and electrification may allow other sectors to transition 

away from dirty fuels, such as in transport. Variable renewable energy (VRE) wind 

and solar will likely drive the clean transition in electricity. This paper: (i) 

empirically finds an elasticity of substitution of 3 or more between VRE and dirty 

energy using panel OECD data; (ii) finds a high but decreasing elasticity is derived 

from electricity dispatch models and presents a stylised version of such a model 

that provides a micro foundation for decreasing substitutability; and (iii) discusses 

some policy implications of a decreasing elasticity. 

The first contribution builds on the empirical approach described in Papageorgiou 

et al. (2017) and fits an isoelastic production function of electricity output to OECD 

panel data. Wind and solar, which are enabling most of the clean transition in 

electricity, are found to have a high elasticity of 3 or above with dirty electricity 

generation. Such a high elasticity is robust to different specifications and exceeds 

previous empirical estimates of 2 between clean and dirty electricity inputs 

(Papageorgiou et al., 2017)44; 1.6 between fossil-fuel and renewable energy (Lanzi 

& Sue Wing, 2011); and around 0.5 for the electricity sector (Pelli, 2012). However, 

recently Stöckl and Zerrahn (2020) derive some elasticity estimates of around 10 

and such a high elasticity has been assumed in integrated assessment models that 

use an isoelastic function of clean and dirty inputs (Acemoglu et al., 2012; Greaker 

& Heggedal, 2012).45  

 

44
 In an extension using non-parametric estimation methods Malikov, Sun, and Kumbhakar (2018) find that the 

substitutability may not be that strong 
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There are many reasons for less than perfect substitutability between VRE and 

dirty energy, such as geography, market distortions and the costs of integrating 

intermittent supply. The empirical analysis allows all these factors to drive results 

in some form but comes with many limitations. Regressions use capital costs as 

independent variables: as electricity assets are long-lived and capital costs are sunk, 

dirty capital will persist provided it remains profitable operationally which likely 

bias the empirical estimates. Further, the clean transition is still at an early stage so 

the estimation of substitutability at high clean shares is challenging.46 Electricity 

dispatch models arguably give a better prediction of substitutability at high clean 

shares as they anticipate the impact of the variable nature of VRE.  

The second contribution applies electricity dispatch models to the question of 

substitutability: a high but decreasing elasticity is derived from electricity papers 

describing regional models of electricity. The fall in elasticity relates to the 

increasing difficulty of integrating intermittent sources as the clean share rises, with 

the extent and timing dependent on storage and flexibility in demand.47 While this 

phenomenon is well understood, this paper is the first to my knowledge which 

derives estimates of the elasticity of substitution from integration costs reported in 

such models. 

Stöckl and Zerrahn (2020) also derive elasticity estimates from a dispatch 

electricity model for Germany and find similarly high substitutability which 

decreases with the VRE share. Some studies impose a changing elasticity between 

clean and dirty energy aggregates in model exercises. Mattauch, Creutzig, and 

 

46
 Unfortunately, few economies have high shares of clean energy that can help determine how the elasticity between 

clean and dirty inputs might change as the share of clean energy rises. Regions that do have high clean shares generally take 

advantage of endowments that may not be transferable to other countries, such as hydro resources. 
47

 Electricity is not easily storable and demand varies hour by hour and day by day, which increases the total system costs 

and means the optimal supply consists of a mix of technologies with different fixed and variable cost ratios. VRE sources 

wind and solar increase the variation in demand that must be met by dispatchable generation: one part of the integration costs 

associated with VRE. At low clean shares the cost is relatively low, implying a high elasticity between clean and dirty 
generation. As the clean share increases, the utilisation rates of dispatchable generation decrease and curtailment of 

intermittent generation occurs, further increasing costs, so substitutability will likely fall. 
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Edenhofer (2015) investigate an increasing elasticity of substitution as a proxy for 

the temporal consideration of a gradual increase in energy infrastructure. In 

contrast, the decreasing substitutability described in this paper is linked with the 

share of clean energy and reflects long-run considerations of supply and demand. 

Gerlagh and Lise (2005) consider a “hump-shaped” symmetric elasticity of 

substitution between clean and dirty inputs that decreases towards 1 as either input 

dominates. Other models include greater sectoral detail which implies a changing 

effective elasticity between clean and dirty aggregates: Golosov et al. (2014) 

differentiate between fuel inputs coal, gas/oil and renewables; McKibbin and 

Wilcoxen (1999) and models included in the EMF 27 and EMF 22 international 

comparison exercises have even more sectoral detail. 

A simple cost-minimising48 electricity dispatch (supply-side) model is described 

to provide a micro-foundation and help identify the determinants of substitutability 

in electricity, building on Wiskich (2014). This dispatch model reflects the range 

of integration costs reported in the electricity literature. Ambec and Crampes (2019) 

describe a similar model consisting of intermittent and reliable energy sources and 

storage, assuming one type of reliable energy and no variability in demand for 

electricity: in contrast, variable electricity demand is central to my model. The 

dispatch model suggests a high elasticity (over 4) for clean shares below about 50 

per cent, with an elasticity of around 1 beyond this share.  

The third contribution is a discussion of the policy implications of decreasing 

substitutability. The most obvious implication is that the costs of a clean transition 

will be higher if substitutability falls, so a model that assumes a constant elasticity 

calibrated from empirical estimates using data points at low clean shares will tend 

to understate the transition cost. Therefore, climate policies in general need to be 

 

48
 The effects of market power discussed by Acemoglu, Kakhbod, and Ozdaglar (2017), Genc and Reynolds (2019) and 

Samano, Bahn, and Sarkis (2019) are not included for simplicity.  
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bigger given the same level of warming, or warming will be higher given the same 

level of policy intervention. Higher temperature outcomes have been found to lead 

to a greater optimal carbon tax-to-income ratio, which would likely result in smaller 

optimal research subsidies (Wiskich, 2021c). 

Suboptimal policy considerations and the role of carbon taxes and research 

subsidies are receiving growing interest in the literature (Acemoglu et al. (2012), 

Greaker et al. (2018), Lemoine (2017), Hart (2019), Wiskich (2021b) and Hassler 

et al. (2020)). Coordinated international action is needed to deliver optimal climate 

policy – a common carbon price between regions helps ensure that global 

abatement occurs at the lowest cost - and two identical regions should undertake 

the clean transition at the same rate according to a stylised model. However, some 

regions have far more stringent climate policies than others and are further down 

the clean transition path. Decreasing substitutability can magnify the cost of this 

suboptimal action as differences in the marginal costs of abatement become higher 

if regions act sequentially, making it more important for regions to act in a 

coordinated way. Further, subsidy-only policy cannot distort production and this 

limitation becomes more important the greater the rise in future temperature: thus 

decreasing substitutability increases the performance of tax-only policy relative to 

subsidy-only policy. 

I. An empirical investigation of substitutability 

This section stands on the shoulders of Papageorgiou et al. (2017) who estimate 

the elasticity of substitution between clean and dirty inputs in electricity generation 

and other sectors directly from aggregate production functions. The current paper 

focuses on the substitutability between dirty energy and VRE, rather than a clean 

energy aggregate dominated by hydro and nuclear. The tremendous growth of VRE 

over recent years allows insights into this question. This paper also diverges in 
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methodology and questions the robustness of the estimated elasticity of 2 by 

Papageorgiou et al. (2017) in electricity. 

Figure 13 shows that the clean transition over the past decade has been driven by 

wind and solar generation. In 2020, wind and solar reached 9% of global 

generation, twice as high as in 2015, displacing generation share from dirty 

generation (and nuclear generation). Further, the potential for hydro uptake is 

limited by geography. Consequently, this paper focuses on the substitutability 

between VRE and dirty energy which is presumed to be the critical factor in the 

clean transition, rather than consider a clean energy aggregate including hydro and 

nuclear. 

 

 

FIGURE 13: GLOBAL GENERATION SHARES FROM COAL AND LOW-CARBON SOURCES, 1971-2020 

Source: Global Energy Review 2020. 

 

Rather than identify the elasticity of substitution through responses in energy 

inputs to price changes, the estimation is based on the aggregate production 

function combining an input measure for VRE and a measure for dirty inputs. Such 

an approach does not require consideration of prices or regional policies which may 

induce VRE investment through price or quantity mechanisms. However, the 

approach assumes input-augmenting technological change to be neutral. For the 
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main specification used by Papageorgiou et al. (2017) where input measures are 

generation capacity, this assumption means equal trends in the capacity factors 

(output in gigawatt-hours per unit of capacity) of capital, absent the effect of 

integrating VRE itself. This paper uses a cost-adjusted measure of dirty capacity 

and the data indicates that there has been no significant trend in capacity factors 

over the time range. However, the capacity factor of VRE has increased 

significantly due to technology gains, which could bias the estimate of the 

elasticity. The main specification uses the VRE output in gigawatt hours which 

should mitigate this bias. Labour costs are excluded as they are a minor part of 

generation costs and likely not substitutable. 

Using output in VRE rather than capacity might raise a concern of endogeneity 

through simultaneity. However, wind and solar generation depends on the weather 

and hence cannot respond to demand. Further, given inelastic demand for 

electricity, any variation in annual generation per unit of VRE will be balanced by 

a change in dirty dispatchable generation, provided output is not traded, which 

should limit correlation with the error term. A final concern with using output is 

the potential effect that VRE has on itself: for high VRE shares curtailment may 

occur and the quality of additional sites may fall materially. However, for most of 

the data, it is unlikely curtailment is an issue. For dirty capacity, electricity 

generation assets are long-lived and take years to build, so there is little risk of 

endogeneity between these regressors and the error term. For example, capital 

stocks are unable to adjust to a demand shock in a year. Papageorgiou et al. (2017) 

consider a Cobb Douglas function of capital and fuel for dirty energy as a 

robustness check. As dirty energy is dispatchable, there is likely a strong correlation 

between fuel inputs and the error term as dispatchable dirty generation is worked 
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harder (greater fuel input) under a demand shock. For this reason, in addition to 

simplicity, fuel is excluded in my main specification.49  

A challenge with focussing on VRE is how to treat other clean generation 

technologies: hydro, nuclear and to a lesser extent geothermal and tidal. The main 

regressions in this paper subtract generation from these sources from the 

independent output variable, allowing identification of the substitutability between 

VRE and dirty energy. This method excludes effects from substitution between 

VRE and other clean sources, which may bias results.  

For parameters 𝜓 and 0 < 𝜔 < 1, country i, year t, output 𝑌𝑖𝑡, VRE output 𝑌𝐶𝑖𝑡 

and dirty capital 𝐾𝐷𝑖𝑡, consider the levels equation: 

(1)          𝑙𝑛𝑌𝑖𝑡 = 𝑎𝑖 + 𝑏𝑡 +
1

𝜓
𝑙𝑛(𝜔𝑖𝑌𝐶𝑖𝑡

𝜓 + (1 − 𝜔𝑖)𝐾𝐷𝑖𝑡
𝜓) + 휀𝑖𝑡.   

 

Note that total output is simply the sum of clean and dirty outputs by definition 

(𝑌𝑖𝑡 = 𝑌𝐶𝑖𝑡 + 𝑌𝐷𝑖𝑡). If dirty output and capital were to approach zero, then clean and 

total output must equalise which creates a restriction that can be imposed as shown 

in (2). Country and time dummies (𝑎𝑖and 𝑏𝑡) are brought into the logarithm and 

multiply the dirty measure only and the omega terms (𝜔𝑖) are removed, so that as 

𝐾𝐷𝑖𝑡 → 0 we have 𝑙𝑛𝑌𝑖𝑡 → 𝑙𝑛𝑌𝐶𝑖𝑡 + 휀𝑖𝑡. I leave the error term outside of the 

production function, rather than enforce the strict equality of 𝑌𝑖𝑡 = 𝑌𝐶𝑖𝑡 when 𝑌𝐷𝑖𝑡 =

0, so that the error continues to represent aggregate shocks.  

(2)          𝑙𝑛𝑌𝑖𝑡 =
1

𝜓
𝑙𝑛(𝑌𝐶𝑖𝑡

𝜓 + e𝑎𝑖+𝑏𝑡𝐾𝐷𝑖𝑡
𝜓) + 휀𝑖𝑡.   

 

 

49
 It is unclear how big a problem endogeneity is in this case, as our parameter of interest is the elasticity in the CES 

production function. 
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The elasticity of substitution is derived as 𝜎 = 1/(1 − 𝜓). The dependent 

variable of electricity output is measured as generation in gigawatt-hours 

(excluding hydro, nuclear, geothermal and tidal). As electricity demand is inelastic, 

this measure should accurately reflect output in the sector although it excludes 

reliability and electricity grid considerations. Capital is measured by generation 

capacity in megawatts (MW) adjusted for cost differences, as described in the data 

section below.  

Six alternative specifications are used for robustness and to provide further 

insight. A limitation of the approach is that the long-lived and lumpy nature of 

capital may bias the elasticity estimate. Early adopters of VRE such as Denmark 

have had more time for dirty capital stocks to adjust and may therefore provide a 

better estimate. Thus, the first alternative specification weights each country by the 

number of years that VRE generation exceeds 1% of total generation. Second, fuel 

is combined with capital for the dirty input (𝐾𝐷𝑖𝑡 → 0.7𝐾𝐷𝑖𝑡 + 0.3𝐹𝐷𝑖𝑡), assuming 

fuel (𝐹𝐷) makes up 30% of total costs. Third, nuclear is combined with dirty energy 

as nuclear may perform a similar baseload role to coal. Fourth, results are shown 

for countries with low hydro shares, as countries with a high hydro share might 

have lower costs of integration of VRE. Fifth, the VRE measure becomes solar and 

wind capital rather than output and so regression equation (3) is used. Finally, all 

clean capital is included which is comparable with results from Papageorgiou et al. 

(2017). 

 

(3)          𝑙𝑛𝑌𝑖𝑡 = 𝑎𝑖 + 𝑏𝑡 +
1

𝜓
𝑙𝑛(𝜔𝑖𝐾𝐶𝑖𝑡

𝜓 + (1 − 𝜔𝑖)𝐾𝐷𝑖𝑡
𝜓) + 휀𝑖𝑡.   
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Data 

Data is taken from the International Energy Agency (IEA) Electricity Information 

Statistics. The data has 36 countries and includes the years 1995 to 2018. As noted 

by Papageorgiou et al. (2017), Luxembourg is excluded due to the high amount of 

traded electricity in this market. The key reason for less than perfect substitutability 

between VRE and dirty energy is a reduction in dirty capital utilisation rates 

resulting from meeting inelastic demand: a high level of electricity trade breaks this 

link. Also, Iceland is excluded as generation is almost entirely hydro and 

geothermal (>99.9%) which are omitted from the main regression. The share of 

solar and wind generation in each region is shown in Figure 19 in Appendix A.  

To reflect differences in the cost of capital, capacity is adjusted according to 

overnight costs listed in the EIA Annual Energy Outlook (AEO) 2021. Coal 

capacity is valued at 3 times the cost of all other dirty capacities: most of the non-

coal dirty capital is gas generation, and this factor is roughly consistent with the 

overnight costs of Ultra-supercritical coal and Combined Cycle gas generation. The 

IEA data has some gaps in the capital stock breakdown for different technologies. 

Data from Global Coal Plant Tracker is used to fill in gaps for Belgium, Canada, 

Germany, Spain, Netherlands and Slovakia.50 In the specifications using VRE 

capacity as an input, raw capacity is used for wind and solar as their overnight costs 

are similar, while nuclear, hydro and geothermal are uplifted by factors of 5,2 and 

2 respectively for the specification using the clean aggregate. For the specification 

that includes fuel use, the fuel input is simply the sum of all fuel sources in 

terajoules. Final capacity and fuel inputs are scaled so that average generation per 

unit of capacity/fuel across the entire dataset equals one: this scaling does not affect 

 

50
 Global Energy Monitor, January 2021 

 https://globalenergymonitor.org/projects/global-coal-plant-tracker/summary-data/ 

 

https://globalenergymonitor.org/projects/global-coal-plant-tracker/summary-data/
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elasticity estimates but means that the value of 𝜔 should be close to 0.5 for strong 

substitutes which provides a useful check. The data is comprised of main electricity 

generators which sell output to third parties and a small component (7% of total) 

for autoproducers that produce electricity for their own use.  

Results 

Results for the main specification, for both nonlinear least squares in levels and 

first differences, are shown in Table 8. The levels regressions all indicate an 

elasticity of 10 or more, while there is greater variation for the difference 

regressions with the elasticity varying between 1.6 and 5.7. The difference 

regression in column 8 seems more unstable when regions are removed or the time 

range of the regression is altered: the 𝜓 estimate changes from 0.492 to 0.955 when 

Sweden is omitted. Consequently, the preferred regressions correspond to columns 

4 and 6 which are also the preferred models according to Akaike Information 

Criterion (AIC), with elasticity estimates of 20 and 5.7.  

Standard errors are robust and clustered at the country level.51 Papageorgiou et 

al. (2017) use bootstrapped errors and discard generated data which lead to 

estimates of 𝜓 greater than 1. While this approach ensures consistency with the 

isoelastic functional form in the generated data, it does not seem to be a 

conservative method to derive the standard error and not applying this restriction 

can lead to very high errors for 𝜓 when bootstrapping.52 This paper tests the 

robustness of the central estimates in the preferred regressions in three ways, shown 

in Figure 14.53 First, each region is excluded, making 34 estimates: all are 

 

51
 As the elasticity is a nonlinear function of 𝜓, note that confidence intervals are not symmetric around the implied 

estimate of 𝜎. For example, for the central estimate of 𝜎 of 3.4, the 95% confidence interval is the range (1.4, ∞) 
52

 Consider an estimate for 𝜓 just under 1. Rejecting generated data which lead to an estimate of 𝜓 greater than 1 means 

the derived standard error is likely very small by construction and so 𝜓 is significantly different from 0 (corresponding to an 

elasticity of 1).  
53

 The 𝜓 estimate displayed is restricted to be a maximum of 1, consistent with an isoelastic function. 
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reasonably tightly distributed around the central estimate. Second, 34 estimates are 

shown when the regression is undertaken on each region individually, leading to a 

much wider distribution. This is to be expected due to the limited number of data 

points, with some regions having little adoption of solar and wind, and the true 

elasticity will likely differ substantially between regions. Third, 8 estimates show 

results when the starting year is changed from 1995 to 2000 inclusive or the ending 

year is changed from 2018 to 2015 inclusive (labelled 

>95,>96,>97,>98,>99,<18,<17,<16): this makes little difference to results. 

The levels method is more efficient when the errors are serially uncorrelated 

while the difference method is more efficient when the residuals follow a random 

walk (Wooldridge, 2010). The lumpy nature of capital investment and slow 

dynamics due to long-lived capital would lead to dependence of the error on 

historical values of independent variables. Indeed, there is strong serial correlation 

in the residuals in the levels but not in the difference method. However, statistical 

tests reject the presence of unit roots in levels residuals. As there is no clear reason 

to prefer one method over the other, results for both are reported.  

Table 9 shows results for alternative specifications which also use VRE output 

as the clean measure. Estimates when countries are weighted by the number of 

years where VRE generation exceeds 1% of total generation (columns 1 and 5), 

when fuel is included in the dirty cost measure (columns 2 and 6), and when 

countries with a high hydro share are omitted (columns 4 and 8) are all within one 

standard error of the main estimates. Including nuclear capital with dirty capital 

leads to greater variation in the estimates, with the elasticity estimate in the levels 

regression reduced to 3.6 and the first difference regression implying perfect 

substitutability by restricting 𝜓 to a maximum of 1. 

Table 10 shows results for other specifications which use clean capital rather than 

output as a cost measure. The levels specifications including all country and time 

dummies (𝑎𝑖, 𝑏𝑡 and 𝜔𝑖) outperforms according to the AIC criterion and are 
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therefore shown. Columns 1 and 3 show that using VRE capital rather than output 

leads to elasticity estimates of around 4, perhaps indicating that any bias from an 

increasing capacity factor for VRE is minor. Using a clean aggregate leads to very 

different elasticity estimates of 1.6 and 11.9. Papageorgiou et al. (2017) report a 

robust elasticity estimate of 2 undertaking similar regressions of clean and dirty 

energy substitutability in electricity. However, while Papageorgiou et al. (2017) 

note that Luxembourg is excluded, their results are determined from regressions 

which include Luxembourg: excluding Luxembourg using their data changes the 

estimates for 𝜓 from 0.46 to 2.05 for the levels regression and from 0.49 to 1.80 for 

the first difference regression.  

Considering all specifications, the following conclusion is drawn: VRE has a high 

elasticity with dirty inputs – an elasticity of 3 or above seems appropriate. Such a 

high value is consistent with the dispatch models discussed in the next section, with 

Stöckl and Zerrahn (2020) and with the intended regressions in Papageorgiou et al. 

(2017). However, it exceeds estimates of 1.6 from Lanzi and Sue Wing (2011) and 

around 0.5 from Pelli (2012). I see four reasons that could explain the differences 

in estimates between the supply approach adopted in this paper and estimates from 

changes in input shares induced by price changes (the price approach), used by Pelli 

(2012).  

First, the supply approach imposes an isoelastic production function across all 

input ratios: an elasticity less than 1 means that total output goes to zero if one input 

approaches zero. As many data points have zero or very low VRE input shares, it 

is unlikely that the supply approach will lead to an estimate less than 1. The price 

approach does not have this property as the next example demonstrates. 

Consider a hyperthetical: VRE and dirty inputs (and total output) do not change 

in a region despite price falls in VRE. The price approach sees no change in input 

shares with the falling VRE price and finds an elasticity of zero, while the supply 

approach cannot determine an elasticity as there is no change in supply measures. 



100 
 

 

If price falls had no effect until VRE became “competitive”, then estimates using 

the price approach might increase over time. Thus, the second reason is that a more 

recent estimate using the price approach may be higher due to the rapid gains in 

VRE technology and adoption in recent years. 

Now extend the hyperthetical to another region which increases its share of VRE 

as the VRE price falls, say with an elasticity of 2. The price approach finds an 

elasticity estimate of about 1 (between 0 and 2), but the supply approach finds an 

elasticity estimate of 2 as the region which experiences no VRE adoption has only 

one point and thus errors are zero and independent of the estimated elasticity. Thus, 

the third reason is that the supply approach puts a higher weight on regions which 

have undergone a greater change in VRE inputs, which probably have a higher 

elasticity.  

The fourth reason relates to the long-lived nature of generation assets: reductions 

in dirty capital to long-run levels (due to the uptake of VRE) may take many years 

as plants may continue to operate until their end-of-life or until refurbishment costs 

are required. In the price approach this adjustment delay likely biases the elasticity 

downwards, as the change in input shares are lower than the long-run change. But 

in the supply approach the direction of bias is less clear and is likely upwards. As 

the elasticity parameter is determined by the curvature (second derivative) of data 

points rather than the slope (first derivative) as in the price approach, delays in 

adjustment may reduce the convexity of data points and hence the estimated 

elasticity. To illustrate, consider constant output as VRE inputs increase from 1 to 

2 to 3 and long-run dirty inputs change from 10 to 9 to 9. The fact that 9 dirty inputs 

are still needed despite the increase in VRE input from 2 to 3 leads to convexity 

and hence a finite long-run elasticity. But if dirty inputs change from 10 to 9.5 to 9 

due to adjustment delays, there is no convexity and the supply method will find 

perfect substitutability between VRE and dirty inputs. The electricity dispatch 
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models discussed in the next section consider the implied long-run substitutability 

between VRE and dispatchable generation. 

 

TABLE 8 —MAIN NONLINEAR ESTIMATIONS 

 Levels  First difference 

 1 2 3 4  5 6 7 8 

𝝍 0.924*** 0.899*** 0.932*** 0.949***  0.743*** 0.802*** 0.380*** 0.492*** 

 (0.0921) (0.166) (0.0721) (0.114)  (0.113) (0.149) (0.0806) (0.170) 

          

Time 
dummies 

No Yes No Yes  No Yes No Yes 

Country 
dummies 

No No Yes Yes  No No Yes Yes 

Regressors 2 25 35 58  2 25 35 58 

𝝈 13 10 15 20  3.9 5.1 1.6 2.0 

Log-

likelihood -273.8 -262.2 348.8 423.7 

 

570.0 606.3 587.8 620.0 
Obs 806 806 806 806  772 772 772 772 

Regions 34 34 34 34  34 34 34 34 

***, ** and * indicates significance at the 1%, 5% and 10% levels. Standard errors in parentheses. Implied 

elasticity of substitution 𝜎 from the estimate of 𝜓. 

 

 

FIGURE 14: ROBUSTNESS CHECKS FOR THE PREFERRED REGRESSIONS 
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“Main” shows the central estimates for levels and difference regressions and standard error, with 𝜓 ≤ 1. “Exclude 1” shows  

𝜓 estimates when one region is excluded. “Only 1” shows 𝜓 estimates for each country individually. “Time” shows results 

when the starting year is changed to 1996 to 2000 inclusive or ending year is 2015 to 2017 inclusive. 

 

TABLE 9 —NONLINEAR ESTIMATIONS FOR ALTERNATIVE SPECIFICATIONS USING VRE GENERATION 

 Levels  First difference 

 Weighted Fuel Nuclear + 
Dirty 

Low 
Hydro 

 Weighted Fuel Nuclear + 
Dirty 

Low 
Hydro 

 1 2 3 4  5 6 7 8 

𝝍 1.063*** 0.990*** 0.721*** 0.986***  0.678*** 0.858*** 1.423*** 0.799** 

 - (0.121) (0.154) (0.176)  - (0.210) (0.249) (0.325) 

          

Regressors 58 58 58 58  25 25 25 25 

𝝈 ∞ 100 3.6 71  3.1 7.0 ∞ 5.0 

Obs 806 806 806 542  772 772 772 519 

Regions 34 34 34 23  34 34 34 23 

***, ** and * indicates significance at the 1%, 5% and 10% levels. Standard errors in parentheses. Implied 

elasticity of substitution 𝜎 from the estimate of 𝜓. Time and country dummies included in levels regression. Time 

dummies included in First difference regressions. 

 

TABLE 10 — NONLINEAR ESTIMATIONS FOR ALTERNATIVE SPECIFICATIONS USING CLEAN CAPITAL 

 Levels  First difference 

 VRE Clean  VRE Clean 
 1 2  4 5 

𝝍 0.745*** 0.386*  0.780*** 0.916*** 
 (0.0736) (0.221)  (0.171) (0.147) 

      

Time dummies Yes Yes  Yes Yes 

Country dummies Yes Yes  No No 

Country 𝝎 dummies Yes Yes  No No 

Regressors 90 90  25 25 

𝝈 3.9 1.6  4.5 11.9 

Obs 806 806  772 772 
Regions 34 34  34 34 

***, ** and * indicates significance at the 1%, 5% and 10% levels. Standard errors in parentheses. LL is Log 

Likelihood. 

II. Substitutability according to electricity dispatch models 

This section considers substitutability between VRE and dirty generation in two 

parts. The first considers some literature on regional electricity models with 

detailed generation types that can extrapolate the costs of integrating intermittent 

sources at high VRE shares. The second develops a simple electricity dispatch 

model broadly consistent with this literature that helps our understanding of 

substitutability dynamics and determinants.  
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For VRE (clean) inputs 𝑌𝑐 and dirty inputs 𝑌𝑑 and the marginal rate of technical 

substitution between VRE and dirty inputs 𝑀𝑅𝑇𝑆𝑐𝑑, the elasticity of substitution is 

given by: 

(3)          𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =
d ln (

𝑌𝑐
𝑌𝑑
)

dln(𝑀𝑅𝑇𝑆𝑐𝑑)
=
d ln (

𝑌𝑐
𝑌𝑑
)

dln (
𝑝𝑐
𝑝𝑑
)
=
d ln (

𝑌𝑐
𝑌𝑑
)

dln (
𝑝𝑐
𝑝𝑑
)
=
d (
𝑌𝑐
𝑌𝑑
)
𝑌𝑐
𝑌𝑑

⁄

d(
𝑝𝑐
𝑝𝑑
)
𝑝𝑐
𝑝𝑑
⁄

 

 

where the last two equalities result if the ratio of prices reflects the ratio of the 

marginal increases in output from a change in input. This section seeks to identify 

potential changes in elasticity as the VRE share increases, requiring sources to show 

the marginal changes in inputs with changes in input prices at different input shares. 

Results from regional electricity models 

Several papers use electricity dispatch models, typically calibrated to a region, to 

discuss the costs of integrating VRE inputs into the residual (dirty) system. Such 

integration costs vary with the share of VRE and can be used to infer an indicative 

elasticity of substitution. For the ratio of VRE to dirty energy, 𝜆 ∶=
𝑌𝑐

𝑌𝑑
, integration 

costs (𝑝𝑖𝑛𝑡) can be added to the price of VRE (𝑝𝑐) to create a metric called the 

system price of VRE (𝑝𝑠𝑐): 

(4)         𝑝𝑠𝑐(𝜆) ∶= 𝑝𝑐(𝜆) + p𝑖𝑛𝑡(𝜆) 

 

where all the prices are marginal long-run costs so that effects on utilisation, and 

thus the proportion of fixed and variable costs, are considered.54 An optimal 

 

 
54

 Such long-run marginal costs are often referred to as levelised costs of electricity. 
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quantity of VRE generation occurs when the system price of VRE equals the price 

of the conventional (dirty without VRE) system: 

(5)         𝑝𝑠𝑐(𝜆
∗) = 𝑝𝑑(0). 

 

A definition of integration costs and proof of (5) is in Appendix B. As an 

example, if the cost of dirty energy was $60 per megawatt-hour (MWh) and the 

cost of VRE was $40/MWh, the optimal level of VRE would be such that 

integration costs were $20/MWh. As the price of VRE changes relative to dirty 

energy, the degree to which VRE inputs change depends on how integration costs 

vary with the VRE input share. Consider a fixed price for dirty and a shift in VRE 

price ∆𝑝𝑐, induced by technological change or policy such as a renewable subsidy.55 

For (4) to hold, the VRE share adjusts until the change in integration cost (∆𝑝𝑖𝑛𝑡) 

balances ∆𝑝𝑐 and the elasticity is then derived from (3).56  

I extract integration costs from three studies. Hirth, Ueckerdt, and Edenhofer 

(2015), hereafter HUE, report long-run wind profile costs from a survey of 30 

publications.57 The data is limited to wind generation shares up to 40 per cent and, 

as they show the line of best fit, is naturally linear. Ueckerdt et al. (2013), hereafter 

UHLE, report system costs for wind and profile costs of solar. As optimal policy 

could include both technologies, I construct a combined integration cost described 

in Appendix B. Elliston, Riesz, and MacGill (2016), hereafter ERM, report average 

energy cost profiles for different shares of renewable energy up until a 100 per cent 

 

55
 The important point is not whether the clean or dirty price changes, but the change in relative prices. 

56
 I assume that changing the clean share does not in itself influence the price of clean energy supply, therefore ignoring 

the fact that 𝑝𝑐(𝑤) will likely be a decreasing function of 𝑤 as the most productive VRE sites are used first, implying the 

inferred elasticity is an overestimate. 
57

 Profile costs are the dominant integration cost (HUE, Ueckerdt, Hirth, Luderer, and Edenhofer (2013)) and relate to 

the impact of timing of generation: for example, the utilisation rates of dispatchable generation decrease as VRE increases. 
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share, for a low and high gas price of $3 and $9 per GJ. I use the low gas price and 

convert these average costs to integration costs, described in Appendix B.  

All integration costs are combined in the first panel of Figure 15. While there is 

a significant range of estimates, integration costs increase as the VRE share rises 

and gradients tend to increase at high (above 50 per cent) VRE shares, where this 

data exists. Inferred elasticities are shown in the second panel of Figure 15. 

Although there is a considerable variation between papers, elasticities tend to 

decrease as the VRE share increases.58 

A key reason for the decreasing elasticity discussed in the literature is the 

increasing rate of curtailment with the share of VRE. Curtailment can be reduced 

using storage technology, demand-side measures and integration between regions 

with different temporal VRE characteristics. The studies include assumptions of 

storage options that help balance supply and demand. For example, ERM find that 

pumped storage hydro and concentrating solar thermal help reduce costs at high 

clean shares. Therefore, consideration of storage at high clean shares is important. 

 

 
FIGURE 15: COMBINED INTEGRATION COST ESTIMATES AND INFERRED ELASTICITIES 

Notes: Integration costs are in units of the average cost of the conventional system (𝑝𝑑(0)). 

 

58
 High elasticities for very small or high VRE shares relate to large changes in the ratio of inputs as one input becomes 

very small. 
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A simple electricity dispatch model 

This section develops a simple electricity dispatch model that forms a micro 

foundation for substitutability by considering the profile costs of VRE. The market 

is structured to minimise the total cost of meeting demand. Two high-level types of 

generation exist: dirty which is dispatchable and VRE (clean). The profile of 

demand is assumed to be fixed: it is common to consider the load duration curve 

(LDC) which shows the (hourly) demand for a year in descending order. Figure 16 

gives an example for Denmark (which has a high level of wind generation) from 

the IEA: demand is approximately linear and this profile is common across regions. 

Residual demand (the demand that is not met by wind power) is shown in the lower 

line. 

  

FIGURE 16: LOAD DURATION CURVE AND RESIDUAL DEMAND IN DENMARK, 2008 

Source: IEA analysis, Figure 21 of (Vos, 2012). 

 

A stylised linear LDC is a common assumption and is a good approximation to 

the LDC in Figure 16: for duration x such that 0 ≤ x ≤ 1, the LDC is assumed to 

be LDC(𝑥) = 2 − x in Figure 17.  

Dirty dispatchable generation—Production consists of three types of dirty 

dispatchable generation – base (B), intermediate (I) and peak (P) - as used in 
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Wiskich (2014) and Ueckerdt et al. (2015). Each technology is characterised by a 

fixed and variable cost. Given fixed costs 𝐹𝐵 > 𝐹𝐼 > 𝐹𝑃 and variable costs 𝑉𝐵 <

𝑉𝐼 < 𝑉𝑃, the cost of production given capacity factor 𝑋 is the sum of fixed costs and 

variable cost: 𝐹 + 𝑋𝑉. The generation of each type is shown in the shaded areas in 

the top of Figure 17.  

Peak capacity is only used a small proportion of the time; when the capacity 

factor is low (𝑋 < 𝑋1) and the fixed cost dominates the total cost. Intermediate 

capacity is used around half of the time on average and base capacity is used almost 

all the time when the capacity factor is high (𝑋 > 𝑋2).
59 Capacity factors 𝑋1 and 𝑋2 

depend on fixed and variables costs as follows: 

(6)                𝐹𝑃 + 𝑋1𝑉𝑃 = 𝐹𝐼 + 𝑋1𝑉𝐼    (Peak to Intermediate) 

                      𝐹𝐵 + 𝑋2𝑉𝐵 = 𝐹𝐼 + 𝑋2𝑉𝐼   (Intermediate to Base). 

 

Clean variable generation—Intermittency of clean generation lowers and 

changes the shape of the residual LDC (RLDC) faced by dispatchable generation, 

as shown empirically in Figure 16 and in the model at the bottom of Figure 17. The 

key effects of intermittent generation include reduced utilisation of base and peak 

generation, and increased/decreased capacity of peak/base generation. The RLDC 

derivation generalises an approach that I have previously used (Wiskich, 2014).60 

The key assumption is a uniform distribution of variable generation with a 

minimum supply proportion of 𝑚.61 The RLDC (7) describes the effect of 

 

59 Total fixed costs are 𝑋1𝐹𝑃 + (𝑋2 − 𝑋1)𝐹𝐼 + (2 − 𝑋2)𝐹1 and total variable costs are 
𝑋1
2

2
𝑉𝑃 + (

(𝑋2−𝑋1)
2

2
+ (𝑋2 −

𝑋1)𝑋1)𝑉𝐼 + (1 + (1 − 𝑋2)𝑋2 +
(1−𝑋2)

2

2
)𝑉𝐵.  

60
 Ueckerdt et al. (2015) also use a RLDC approach but assume the quadrilateral shape shrinks and distorts in such a way 

to match the variable generation supply and demand data. 
61

While this assumption is not a good fit for all regions, the general shape of the RLDC resembles many regions, is 

simple, and different values of parameter 𝑚 can be considered. 
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intermittent generation which varies uniformly between 𝑚𝑊 (0 ≤ 𝑚 ≤ 1) and 𝑊. 

Let 𝑊′ ∶= (1 − 𝑚)𝑊, then we have 

(7)  𝑅𝐿𝐷𝐶 = max (0, 𝑌)  where 𝑌 = {
𝑌1     𝑥 < 𝑋𝑇                   
𝑌2    𝑋𝑇 < 𝑥 < 1 − 𝑋𝑇
𝑌3      𝑥 > 1 − 𝑋𝑇          

 

            𝑌1 = 2 −𝑚𝑊 −√2𝑊′𝑥                                                   

            𝑌2 = {
2 −𝑚𝑊 −

𝑊′

2
− 𝑥       𝑊′ < 1

1.5 − 𝑚𝑊 −𝑊′𝑥         𝑊′ > 1

        and 𝑋𝑇 = {

𝑊′

2
      𝑊′ < 1        

1

2𝑊′
    𝑊′ > 1.        

 

            𝑌3 = 1 −𝑊 +√2𝑊′(1 − 𝑥)             

 

Consider the case where 𝑚 = 1 so clean generation consistently generates 𝑊 

units of electricity. Thus 𝑋𝑇 = 0 and the RLDC is simply the LDC straight line 

lowered by 𝑊. For 𝑚 < 1, the variability of generation between 𝑚𝑊 and 𝑊 

implies different functions 𝑌1 and 𝑌3 for the peak load and minimum load areas of 

the curve, with 𝑌1(0) = 2 −𝑚𝑊 corresponding to 𝐿𝐷𝐶(0) = 2 lowered by the 

minimum intermittent generation 𝑚𝑊 and 𝑌3(1) = 1 −𝑊 corresponding to 

𝐿𝐷𝐶(1) = 1 lowered by the maximum intermittent generation 𝑊. The quadratic 

forms of 𝑌1 and 𝑌3 follow from the assumption of a uniform distribution between 

𝑚𝑊 and 𝑊 which is uncorrelated with aggregate demand. That is, intermittent 

supply can be considered as a random number between 𝑚𝑊 and 𝑊 for every point 

in time. When clean energy is high enough such that 𝑊 > 1, curtailment occurs as 

𝑌3(1) < 0. In other words, when maximum intermittent generation occurs at 

minimum demand, excess supply occurs and the excess is assumed to be wasted. 
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FIGURE 17: GENERATION SUPPLY (TOP) AND THE EFFECT OF VRE ON RESIDUAL DEMAND (BOTTOM) 

 

Calibration of the model is discussed in Appendix B. Figure 18 shows clean 

shares for a typical dispatch model simulation and a fitted “trimodal” isoelastic 

function with three elasticity regimes (see (8) below for the functional form of a 
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similar “bimodal” function). The x-axis depicts the ratio of VRE and dirty input 

prices: as the price of VRE falls, or a carbon tax increases the dirty price, the share 

of VRE rises. The value of 𝑚 is assumed to be zero and the availability of storage, 

which is found to be an important consideration in the literature reviewed above, is 

omitted. However, the key profile of a decreasing elasticity when clean shares 

become very high is consistent when a higher value of 𝑚 or storage are 

considered.62  

 

 

FIGURE 18: COMPARISON OF THE ESTIMATED TRIMODAL FUNCTION (DASHED LINES) WITH DISPATCH MODEL RESULTS 

 

The sharp fall in elasticity is largely due to the curtailment of intermittent supply. 

The switch point of around 50 per cent suggested by the model is increased by 

storage (not shown) and as 𝑚 increases (Appendix C). Also, considering different 

carbon emission intensities of peak, intermediate and base generation would likely 

imply a higher switch share in terms of emissions as coal typically fits into the base 

generation category which is displaced first by VRE. 

While the “trimodal” function matches the output from the dispatch model well, 

a bimodal function would also do a reasonable job and is an easy way of 

 

62
 A simple representation of storage was simulated but is omitted for brevity. As one would expect, storage is 

complementary to VRE generation and increases the elasticity with dirty energy and raises the switch point. 
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incorporating decreasing substitutability in a model with an isoelastic function 

between clean and dirty energy. While other production functions exhibit a 

decreasing elasticity (for example, Sato and Hoffman (1968) and Revankar (1971)), 

the bimodal approach benefits from conceptually clarity and simplicity: the three 

key parameters - low and high share elasticities and the switch point where the 

elasticity changes – all have a clear conceptual interpretation.  

Finally, it is worth noting that most countries have a low share of VRE in 

generation and hence a panel regression like the one undertaken in the previous 

section is mostly analysing data points in the leftmost section of Figure 18, with 

𝜎1 = 4.7. This value is comparable with the estimates in the previous section. A 

natural question is how well the regression specifications used in section I perform 

when applied to output from this dispatch model where the “true” elasticity is 

known. It turns out that including fuel costs is important to identify the elasticity 

from the dispatch model output. While the dispatch model is stylised, this result 

indicates a potential limitation in the main empirical specification in section I which 

considers capital costs but misses the effects of fuel use. Perhaps the weight 

assigned to the specification that includes fuel costs in section I, which happens to 

estimate an elasticity of 7 or more, should increase. In any case, results in both 

sections are consistent in indicating a high elasticity at low clean shares, and the 

main message of this section is that the substitutability will decrease as the clean 

transition progresses. 

III. Consequences of decreasing substitutability 

This section discusses some consequences of decreasing substitutability, 

including higher costs of a clean transition, greater costs from regions transitioning 

sequentially rather than together, a potentially higher optimal carbon tax and lower 
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clean research subsidy, and an increase in the performance of tax-only policy versus 

subsidy-only policy. 

Higher costs of a clean transition 

The most obvious consequence of a decreasing elasticity is that the transition to 

clean energy becomes more difficult as the clean share rises, increasing costs. As 

empirical estimates of the elasticity tend to be based on data points with low clean 

shares, analysis using an isoelastic function based on these estimates may 

underestimate the costs of transition.  

Regions should transition in parallel 

A decreasing elasticity implies a greater cost of regions transitioning to clean 

energy sequentially rather than in parallel. Consider two identical regions: it is 

optimal for them to transition together when the elasticity of substitution between 

clean and dirty energy is constant, or equivalently a carbon price should be uniform 

between them. Transitioning sequentially has a higher cost due to cheaper 

abatement options not being used. A decreasing elasticity tends to magnify this 

effect and is demonstrated using the following model. 

For dirty energy in region 𝑖 of 𝐷𝑖 and elasticity of substitution 𝜎, output in two 

regions 𝑌1 and 𝑌2 is as follows: 

(8)   𝑌𝑖 = 𝐴(𝛽𝐷𝑖
1−1/σ + 1)

σ
σ−1          

   where 𝜎, 𝐴, 𝛽 = {

𝜎1, 1,1                                                                  𝑖𝑓 𝐷𝑖 > �̅�

𝜎2, (𝐷�̅�
𝜎1−1
𝜎1 + 1)

𝜎1
𝜎1−1

−
𝜎2
𝜎2−1

, 𝐷�̅�
1
𝜎2
−
1
𝜎1              𝑖𝑓 𝐷𝑖 < �̅�.  

 

 

A similar production function is described in Antony (2009) and builds on Jones 

(2003): I refer to this function as a bimodal isoelastic function as it allows for a 
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shift in the elasticity of substitution at a particular switch point �̅�. Assume that pre-

transition dirty energy use is 𝐷1 = 𝐷2 = 0.05, high and low isoelastic cases with 

elasticities 3 and 1.5, and a bimodal case where 𝜎1 = 3, 𝜎2 = 1.5 and �̅� = 0.025 

corresponding to a fall in elasticity when 50% abatement is achieved in a region. 

Consider the costs of 25% and 50% global abatement, where abatement is either 

uniform in both regions (the parallel case) or skewed such that only one region 

undertakes abatement (the sequential case).  

The costs of the transition are shown in Table 11. The cost of abatement falls as 

the elasticity of substitution increases, and the additional cost from a skewed 

approach also falls as the elasticity increases.63 Key results are in columns 5 and 6 

showing the extra cost from an uneven abatement across the two regions. For the 

bimodal case, results for a 25% reduction correspond with the high isoelastic case 

as the region abating 50% still has high substitutability. However, for deeper 

abatement, the additional cost of a sequential approach is boosted above both 

isoelastic cases as regional abatement is more difficult above 50%. 

 

TABLE 11: COSTS OF SUBOPTIMAL SEQUENTIAL APPROACH TO ABATEMENT 

 
25% abatement 50% abatement 

Increase in cost from 

sequential transition 
 Parallel Sequential Parallel Sequential 25% 

abatement 

50% 

abatement (𝐷1, 𝐷2) (0.0375,0.0375) (0.025,0.05) (0.025,0.025) (0,0.05) 

 1 2 3 4 5 6 

CES 1.5 6.8% 7.5% 15.0% 29.3% 9.5% 96.0% 

CES 3 2.7% 2.9% 5.8% 7.6% 5.5% 32.8% 

Bimodal 3 & 1.5 2.7% 2.9% 5.8% 12.5% 5.5% 118.0% 

 

The optimal carbon tax may be higher, reducing clean research subsidies 

 

63
 While absolute costs are exaggerated, the purpose of this simple model is to demonstrate that there can be additional 

costs in a sequential approach with a decreasing elasticity. 
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What might a decreasing elasticity mean for the profile and relative magnitudes 

of carbon taxes and clean research subsidies? An integrated assessment model with 

endogenous technical change could investigate this question but is beyond the 

scope of this paper. Instead, the likely consequence is discussed qualitatively. 

While Golosov et al. (2014) find that the optimal carbon tax-to-income ratio is 

constant and independent of temperature outcomes, it is arguable that the optimal 

carbon price would increase with higher projected temperatures. For example, the 

optimal tax would rise with temperature outcomes in the model used in (Acemoglu 

et al., 2012) due to the convexity in the damage function and in another paper, I 

show that higher temperature outcomes can boost the optimal tax when the risk of 

tipping points (triggering abrupt and irreversible damage) are considered (Wiskich, 

2021b). With a higher tax, a lower subsidy would probably be required as the tax 

itself incentivises clean research (Fried, 2018). 

For suboptimal policy, tax-only is favoured over subsidy-only 

While climate change has been known for some time, optimal policy is difficult 

to achieve so it is useful to weigh second-best policy options. In the model 

framework with a carbon tax and clean research subsidy, an obvious consideration 

is when only one instrument is available. Under these models, a clean research 

subsidy is often temporary as clean research eventually dominates dirty research 

with technology advances. The limitation of subsidy-only policy is that it cannot 

distort production and this limitation becomes more important the greater the rise 

in future temperature, so a fall in substitutability tends to lower the effectiveness of 

this policy. As the cost of tax-only policy derives from the higher-than-optimal tax 

needed to direct clean research in the short term, an increase in the optimal tax 

lowers the additional tax increment required to direct clean research. Thus, the 

performance of a tax-only policy is likely improved relative to a subsidy-only 

policy. 
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III. Conclusion 

The elasticity of substitution between clean and dirty electricity generation is a 

central parameter in determining the costs and optimal policy settings in a clean 

transition. This transition is being driven by the adoption of the variable renewable 

energy technologies wind and solar, and this paper produces the first empirical 

evidence for the substitutability between these technologies and dirty generation. 

A high elasticity is found, consistent with micro dispatch models of electricity 

which predict that the elasticity will decrease as the clean share rises. A dispatch 

model is described to demonstrate this characteristic, mostly resulting from the 

difficulty in incorporating intermittent sources in meeting inelastic demand. 

Finally, the policy implications of decreasing substitutability are discussed. 

The econometric and dispatch model approaches have limitations. The 

substitutability at different clean shares is not investigated, largely due to the 

absence of data points with high VRE shares. As many data points have very low 

VRE shares, an elasticity estimate greater than one is a natural consequence of 

using an isoelastic production function: an elasticity less than one would imply 

output would be zero if VRE input was zero. Further, the approach likely 

overestimates the long-run elasticity of substitution, whereas an estimation 

approach using prices likely underestimates the elasticity, perhaps explaining low 

previous estimates in the literature. Detailed electricity dispatch models capture the 

well-understood nature of electricity markets at a micro level, but it is difficult to 

understand how generalisable results are across regions and how complex the 

dispatch model needs to be. For example, the simple dispatch model assumes that 

supply is met at the lowest cost – distortions such as market power are not 

considered. 

Future empirical research could investigate substitutability in sub-national 

markets and the emissions intensities of dirty technologies could be considered. 
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The effects of decreasing substitutability could be quantitatively investigated: 

models with an isoelastic function between clean and dirty energy inputs could 

easily be modified to include a bimodal function for example. Studies could 

examine the interaction between decreasing substitutability and uncertainty in 

environmental damages, including tipping points, and the elasticity dynamics itself 

could be modelled under uncertainty.  

 

APPENDIX A – FURTHER EMPIRICAL DATA 

 

Figure 19 shows the solar and wind generation for each region as a share of total 

generation excluding Nuclear, Hydro, Geothermal and Tidal. 

 

 

FIGURE 19: VRE SHARES EXCLUDING NUCLEAR, HYDRO, TIDAL AND GEOTHERMAL 
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APPENDIX B – INTEGRATION COSTS EXTRACTION AND CONVERSION 

 

This section discusses integration costs and the proof of (5), and discusses further 

details of extracting integration costs from the literature. 

Integration costs and proof of (5) 

UHLE define total integration costs (𝐶𝑖𝑛𝑡) as the extra cost in the residual system 

imposed by VRE. However, this definition excludes curtailment costs64, defined as 

excess VRE generation that is wasted times the VRE price (𝑝𝑐). To understand this 

exclusion, note that if a unit of VRE is added and (in the extreme case) all its output 

is curtailed, the residual system is unaffected. Like UHLE and other papers, I wish 

to include the costs of curtailment as an integration cost, and therefore I add 

curtailment costs (𝐶𝑐𝑢𝑟𝑡) to the definition of level integration costs. For constant 

total supply (Y̅) made up of VRE (𝑌𝑐) and dirty (residual) supply (𝑌𝑑) and marginal 

integration costs (𝑝𝑖𝑛𝑡), level integration costs are: 

(A. 1)            𝐶𝑖𝑛𝑡(𝜆) = 𝐶𝑑(𝜆) −
𝑌𝑑(𝜆)

Y̅
 𝐶𝑑(0) + 𝐶𝑐𝑢𝑟𝑡(𝜆, 𝑝𝑐) 

where 𝑝𝑖𝑛𝑡 ∶=
𝜕𝐶𝑖𝑛𝑡
𝜕𝑌𝑐

 and �̅� = 𝑌𝑐 + 𝑌𝑑 . 

 

Thus, integration costs are the extra costs of the residual system over a 

conventional one (without VRE), plus curtailment costs. Curtailment costs vary not 

only with the VRE share but also with the price of VRE.65 Total costs (𝐶𝑡𝑜𝑡) are the 

 

64
 Although curtailment costs are excluded in the definition in UHLE’s methodology section, they are included as an 

integration cost in their results. 
65

 This complicates the conceptual framework, as ideally we would be able to define integration costs relative to the price 

of a conventional system and independently of the VRE price. When curtailment applies, the inferred elasticity only applies 

for the assumed VRE price and thus should only be taken as indicative. 
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sum of non-curtailed VRE costs (𝐶𝑐), curtailment costs and residual costs, and using 

(A.1) can be written as the sum of VRE costs, integration costs and conventional 

system costs: 

(A. 2)             𝐶𝑡𝑜𝑡 = 𝐶𝑐 + 𝐶𝑖𝑛𝑡 +
𝑌𝑑

Y̅
 𝐶𝑑(0). 

 

Optimality implies that the quantity of VRE generation minimises total costs: 

(A. 3)            
𝜕𝐶𝑐
𝜕𝑌𝑐

+
𝜕𝐶𝑖𝑛𝑡
𝜕𝑌𝑐

+
𝜕

𝜕𝑌𝑐
(
𝑌𝑑

Y̅
𝐶𝑑(0)) = 0. 

 

As Y̅ is constant we have 
𝜕𝑌𝑑

𝜕𝑌𝑐
= −1 and marginal integration costs are the 

difference between the average price of a conventional system minus the price of 

VRE, consistent with (3): 

(A. 4)  p𝑖𝑛𝑡(𝜆
∗) = 𝑝𝑑(0) − 𝑝𝑐(𝜆

∗)  where 𝑝𝑐 ∶=
𝜕𝐶𝑐
𝜕𝑌𝑐

 and 𝑝𝑑(0) ∶=
𝐶𝑑(0)

Y̅
. 

 

For a positive price 𝑝𝑐 > 0, (A.4) indicates that the integration cost is bounded 

above by the conventional price under optimal conditions when no climate 

externality is considered. However, the integration price 𝑝𝑖𝑛𝑡(𝜆) ∶=
𝜕𝐶𝑖𝑛𝑡

𝜕𝑌𝑐
 is not 

bounded from above under suboptimal conditions, such as setting a predetermined 

VRE share, as used in the literature showing integration costs.  

Extracting integration costs from the literature 
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UHLE report system costs for wind up to a 40 per cent generation share and 

profile costs for solar up to a 25 per cent share.66 By assuming profile costs are 

independent of each other and using the AEO solar/wind cost ratio, a combined 

integration cost of both wind and solar is derived.67  

ERM report average energy cost profiles for a low and high gas price of $3 and 

$9 per gigajoule. I use the low gas price (a similar profile is derived from the high 

gas price) and derive (marginal) integration costs, then fit a cubic polynomial to 

smooth this line and ensure it is non-decreasing with the clean share.68 Average 

costs are based on constant prices, and the increase in the average price with 

renewable share may be due to both a higher price for clean energy over dirty 

energy, and to integration costs: 
𝜕𝐶𝑡𝑜𝑡

𝜕𝐸𝑣𝑟𝑒
= 𝑝𝑐 − 𝑝𝑑(0) + 𝑝𝑖𝑛𝑡. Thus, if integration 

costs are zero, the slope of the average cost simply reflects a higher price of clean 

energy. I assume integration costs are close to zero when the clean share is zero and 

hence approximate the difference in prices (𝑝𝑐 − 𝑝𝑑(0)) by the slope of the average 

price at a zero clean share.  

 

APPENDIX C – DISPATCH MODEL ADDITIONAL DETAILS 

 

Generation shares of technologies that could be considered as base, intermediate 

and peak vary between regions. These shares can also vary within regions over time 

as prices change: a lower gas price might expand the generation share of 

intermediate, for example. Further, the availability of wind and solar resources, and 

the correlation of these sources with peak demand, varies between regions.  

 

66
 UHLE report that solar system costs start for zero penetration at double the cost of wind. Capital costs have changed 

significantly in recent years and costs are projected to continue to decline. Projected capacity-weighted system costs for new 

generation resources entering service in 2022 are 48 $/MWh and 59.1 $/MWh for wind (onshore) and solar respectively 
(Annual Energy Outlook 2018). These costs imply solar costs 23 per cent higher than wind. 

67
 The combined costs have been smoothed with a cubic polynomial. 

68
 Non-decreasing integration costs ensure that the VRE share increases as the renewable price falls and the inferred 

elasticity is positive. 
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Rather than model one region or set of fuel prices, results for a range of different 

configurations are considered. Dispatch model simulations consider multiple 

values 𝑋1 ∈ (0.05,0.1,0.15) and 𝑋2 ∈ (0.75,0.85,0.95) which, in the absence of 

intermittent generation, correspond to peak generation shares of 0.08 per cent, 0.3 

per cent and 0.8 per cent and base generation shares of 70 per cent, 76 per cent and 

81 per cent. 𝑋1 and 𝑋2 are derived in two ways: the first by altering fixed costs and 

the second by altering variable costs, leading to 18 simulations.69 The base capital 

share is around 50 per cent greater than the combined intermediate and peak capital, 

consistent with the OECD data used in section I. 

For high VRE shares, residual costs tend to be dominated by fixed capacity costs. 

As the maximum load is 𝑌1(0) = 2 −𝑚𝑊, each additional unit of 𝑊 lowers the 

maximum load by 𝑚𝑊 and so residual capacity is reduced by 𝑚. Thus, integration 

costs at high VRE shares are highly sensitive to 𝑚. A small value of m close to zero 

would be consistent with the RLDC profile in UHLE, but values above 0.2 might 

be appropriate for some regions based on Ueckerdt et al. (2017). I consider the 

results for the extreme values of 𝑚 = 0 and 𝑚 = 0.3, making 36 simulations in 

total. While no amount of intermittent generation can obviate residual generation 

when m is zero, for 𝑚 = 0.3 no residual generation is required if W >
2

𝑚
= 6.67.70 

Consider generation costs71 for coal, combined cycle gas turbines and renewables 

of $70, $55 and $50/MWh (IEA 2015). Thus, a reasonable cost estimate for dirty 

(fossil fuel) is $60/MWh, implying a clean to dirty price ratio of 
Pc

Pd
=
50

60
= 0.83. I 

show clean generation shares for a wide range of price ratios from one to 0.3 in 

Figure 20 for all simulations. In dollar terms with a fixed dirty cost of $60/MWh, 

 

69
 The simulation shown in Figure 18 corresponds to 𝑋1 = 0.1 and 𝑋2 = 0.85 with fixed costs altered. 

70
 This result is in the absence of storage which can reduce the amount of VRE required to obviate residual generation 

substantially.  
71

 Levelised costs without carbon costs. 
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the clean price range is $60/MWh to $18/MWh, or with a fixed clean price of 

$50/MWh, the range of dirty prices (which would include a carbon price) is 

$50/MWh to $167/MWh. The simulations are split into two halves: calibrating by 

varying fixed costs results in a wider spread than varying variable costs, but the 

general profiles of results are similar. 

Integration costs are derived using (A.4) and are shown in the first panel of Figure 

21, along with the upper and lower bounds from the literature taken from panel 1 

of Figure 15.72 The dispatch model can replicate the range of integration costs for 

different clean shares and leads to a decreasing elasticity shown in the second panel.  

 

 
FIGURE 20: SIMULATION RESULTS FOR RATES OF VRE SHARES AS THE PRICE OF VRE INPUTS DECREASE 

 

 

72
 As discussed above, integration costs are a function of the clean price due to curtailment. Consistent with the electricity 

model literature discussed in section I, the integration costs are calculated based on a fixed clean price for comparison: I use 

a value of 0.65 midway between the bounds of the simulations of 1 and 0.3. 
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FIGURE 21: MARGINAL INTEGRATION COSTS AND INFERRED ELASTICITY FOR ALL SIMULATIONS 

Notes: Integration costs are in units of the average cost of the conventional system (𝑝𝑑(0)), and are calculated based on a 

fixed clean to dirty price ratio of 0.65. 
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4. A comment on innovation with multiple equilibria and “The 

Environment and Directed Technical Change” 

By ANTHONY WISKICH* 

The framework used to endogenise technology growth by Acemoglu 

et al. (2012) can exhibit increasing returns to research and hence 

multiple equilibria, including an unstable interior equilibrium. This 

paper discusses several methods to determine how a unique 

equilibrium might be specified. Alternative methods can produce 

substantially different results when the elasticity of substitution 

between clean and dirty inputs is high. (JEL O33, O44, Q54, Q56, 

Q58) 

Keywords: Climate change, directed technical change, innovation policy. 

 

* Wiskich: Centre for Applied Macroeconomic Analysis (CAMA), Crawford School of Public Policy, ANU College of 

Asia & the Pacific, Australian National University, J.G Crawford Building No. 132, Canberra, ACT 2601 Australia (e-

mail: twiskich@gmail.com). Acknowledgements. I thank Warwick McKibbin, David Stern, Chris Wokker and anonymous 

referees for helpful suggestions.  

The paper by Acemoglu et al. (2012), hereafter AABH, is prominent in the 

literature and many subsequent papers have built on or analysed their work.73 The 

model considers just two sectors (clean and dirty) and optimal policy relies on both 

a carbon tax and a research subsidy. Increasing returns to research can arise due to 

 

73
 For example, Greaker and Heggedal (2012), Greaker et al. (2018) , Pottier et al. (2014) , Acemoglu et al. (2014), 

Wiskich (2021b), Durmaz and Schroyen (2013), Van den Bijgaart (2017), (Hémous, 2016), Lemoine (2017) and (Hart, 2019). 
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market size effects, which encourages innovation towards the larger input sector 

(Acemoglu, 2002), leading to multiple equilibria.74  

The focus of this paper is the specification of a unique equilibrium and thus the 

extent of climate policy required to direct clean research. Under optimal policy in 

AABH, clean research is directed through a research subsidy with no cost of funds 

(subsidies can be financed through lump-sum taxation which does not involve any 

distortion). Thus, although the optimal subsidy depends on how equilibria are 

specified, this has no economic consequence. However, an economic effect would 

arise if a cost of funds was assumed as in (Acemoglu et al., 2016). AABH also 

discuss the welfare costs of using only a carbon tax. In this case, the specification 

of equilibria does have an economic effect which I explore in section 2. The 

discussion in this paper is relevant for any analysis with increasing returns to 

research, including papers examining the relative performance of tax-only and 

subsidy-only policy in a clean transition.75 

Section 1: Equilibria and optimal policy with increasing returns to research 

Consider profits Π in two sectors clean (c) and dirty (d) which exhibit increasing 

returns to research, with clean research of 𝑠 and dirty research of 1 − 𝑠 as shown 

in Figure 22. At first glance, a unique equilibrium would seem to be at the 

intersection of the profit lines. But this interior equilibrium is dynamically unstable 

as a change in the research share leads to a positive feedback on profits which would 

then drive research allocation towards one of the corner solutions, where all 

research is undertaken in one sector. 

 

74
 As discussed in (Pottier, 2014). 

75
 Multiple equilibria can be avoided with a stepping-on-toes effect, which introduces decreasing returns to research. 
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Of course this internal equilibrium could be implemented by a social planner and 

could also be an outcome in laissez-faire if, for example, there was uncertainty in 

future market shares and scientists have different guesses of what the share will be. 

This equilibrium could be decentralised using complex market mechanisms which 

create a variation in profits, such as giving different research subsidies to different 

scientists. However, the results would be peculiar: for example, as a research 

subsidy increases, clean profits Π𝑐 increase which shifts the intersection to the left 

and so the share of clean research decreases. Thus, it seems reasonable to assume 

that this unstable equilibrium will not arise in a decentralised approach. 

 

FIGURE 22: INCREASING RETURNS FROM RESEARCH 

 

Alternatively, consider the conditions under which the corner solutions arise. One 

method is to assume that scientists (or their employers) coordinate, recognise the 

externality from the research conducted by other scientists on their expected profits 

and thus allocate themselves to achieve maximum expected profits with perfect 

foresight. This calculation involves the ratio 
Π𝑐(1)

Π𝑑(0)
: if 

Π𝑐(1)

Π𝑑(0)
> 1 (as shown in Figure 

22) all research is in clean energy, and if 
Π𝑐(1)

Π𝑑(0)
< 1 all research is in dirty. If 

Π𝑐(1)

Π𝑑(0)
=

1 the equilibrium could be determined to be the same as the previous period, 

introducing path-dependence. 
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Such path-dependence could be taken further: consider all research is in dirty 

initially and researchers face profit outcomes shown in Figure 22. A plausible 

assumption is that, while researchers have an incentive to shift to clean research en 

masse, all research remains in dirty as the marginal researcher is not incentivized 

to switch to clean research as Π𝑑(0) > Π𝑐(0).  

Now consider the extent of subsidy (or carbon tax) required to direct clean 

research. Figure 23 shows pre-subsidy profits for clean Π′𝑐 and dirty Π𝑑 such that 

all research is in dirty without policy (Π𝑑 > Π′𝑐) , and outlines three methods of 

determining the subsidy required to direct clean research completely, lifting clean 

profits to Π𝑐.
76  

 

 

FIGURE 23. THREE METHODS OF DETERMINING THE SUBSIDY REQUIRED TO DIRECT CLEAN RESEARCH  

 

The Lower method in the first panel corresponds to 
Π𝑐(1)

Π𝑑(1)
= 1. A slightly higher 

subsidy would imply that, when 𝑠 = 1, the marginal researcher is not incentivized 

to switch to dirty research. However, researchers have an incentive to shift to dirty 

 

76
 A single profit line for dirty research is shown for clarity and is consistent with a clean subsidy – dirty profits may 

change when a carbon tax is applied. 
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research en masse, or remain there if the initial research allocation is all dirty. Thus, 

this equilibrium seems reasonable in providing a lower bound to the subsidy 

required to direct clean research.  

The second ‘Extreme Upper’ panel shows a symmetric solution where the critical 

ratio 
Π𝑐(0)

Π𝑑(0)
= 1 applies to direct clean research. A larger subsidy is required and, 

even if the subsidy is reduced marginally, clean research is still more profitable 

than dirty when 𝑠 > 0: the subsidy is the minimum required to induce the marginal 

researcher to switch to clean research when 𝑠 = 0. Such a high subsidy could 

conceivably be required to induce a switch to clean research from a prior state of 

dirty research, but should not be needed once clean research dominates dirty 

research. Further, if subsidies are costly or have even a small administrative burden, 

the government would have an incentive to keep subsidies as low as possible. Thus, 

this equilibrium may be appropriate to use for a period if path-dependence is 

considered and dirty research initially is dominant. While the critical ratio in the 

Lower method consists of functions where 𝑠 = 1, the critical ratio in the Extreme 

Upper method consists of a counterfactual where 𝑠 = 0. Thus the way policy is 

fixed between the counterfactuals becomes important – in AABH the subsidy 𝑞 is 

a proportion of profits and the tax 𝜏 is ad valorem, so these are assumed to be fixed 

in the numerical results in section 2. 

The third panel assumes an equilibrium where scientists (or their employers 

coordinate and allocate themselves to achieve maximum expected profits. This 

calculation involves the ratio 
Π𝑐(1)

Π𝑑(0)
= 1. As Π𝑑(0) > Π𝑑(1) this equilibrium is 

Nash. Any reduction in subsidy from this level would mean that researchers are all 

better off undertaking dirty research than clean research. I label this method as 

‘Upper’ as I consider it a reasonable upper bound in a model without path-

dependence. The downside of this method is greater complexity in the profit 
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calculation because the critical ratio now involves different values of 𝑠 in the 

numerator and denominator.  

The next section examines how important these different methods are for 

numerical results in the AABH framework. 

Section 2: Implications for results in the AABH innovation framework 

AABH do not specify which equilibrium should apply when multiple equilibria 

exist and make different assumptions in their numerical simulations. For first-best 

policy simulations, AABH use the critical ratio 
Π𝑐(𝑠)

Π𝑑(𝑠)
= 1 when 𝑠 > 0 (the Lower 

case for 𝑠 = 1). As discussed above, different specification methods imply different 

subsidies are required to direct technical change but have no economic impact as 

there is no costs of funds. However, for tax-only scenarios, the welfare costs differ 

between the methods as the tax is used to direct technical change as well as shift 

production. AABH tax-only results are consistent with the Extreme Upper corner 

equilibrium, implying a large tax needed to direct clean research. 

Table 12 shows the welfare costs of tax-only policy for the different elasticities 

of substitution and discount rates as used by AABH. The welfare loss is reduced 

under the Upper method and even more so under the Lower method. A path-

dependent method is also shown where a large tax (Extreme Upper) is required to 

first shift researchers from dirty to clean energy and then a lower tax (Lower) is 

required from then on. The most important determinant of the difference in results 

is the elasticity: the higher the elasticity, the greater the slope of the profit lines 

shown in Figure 23 and hence the greater separation between required policies to 

direct clean research. No matter which method is used, the welfare loss is smaller 

when the elasticity is high as a smaller tax is required to direct technical change. 

The effect of the discount rate depends on the timing of clean research. For the high 

elasticity case where clean research occurs immediately, a high discount rate 
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increases welfare costs under second best as greater weight is placed on earlier 

periods where a higher tax is imposed. For the low elasticity case, clean research is 

delayed when the discount rate is high and the associated loss at this time is 

therefore reduced, leading to a lower welfare loss.77 

 

TABLE 12— WELFARE COSTS OF RELYING SOLELY ON A CARBON TAX 

Elasticity of substitution 10 3 

Discount rate 0.001 0.015 0.001 0.015 

𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑈𝑝𝑝𝑒𝑟 (AABH) 1.02 1.66 1.92 1.48* 

𝑈𝑝𝑝𝑒𝑟 0.54 0.91 1.84 1.48** 

𝐿𝑜𝑤𝑒𝑟 0.22 0.37 1.65 1.30 

𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑈𝑝𝑝𝑒𝑟 if s𝑡−1 = 0, 𝐿𝑜𝑤𝑒𝑟 if s𝑡−1 = 1 0.65 1.09 1.71 1.36 

Notes: Percentage reductions in utility relative to first-best policy. Utility is a discounted CRRA function of 

consumption with separable preferences in environmental quality as described in AABH. *AABH report a value 

of 3.15 due to an apparent programming error. **Extreme Upper critical ratio applies – see Appendix for details. 

 

In summary, this paper discusses different rationales for choosing conditions for 

equilibria when multiple equilibria exist, as found in the framework used by 

AABH. The alternative methods can produce substantially different results when a 

high elasticity of substitution between clean and dirty inputs is assumed. 

 

APPENDIX  – SPECIFICATIONS USING THE AABH INNOVATION FRAMEWORK 

 

For subsidy 𝑞𝑡, carbon tax 𝜏𝑡, probability of innovation success η where 

innovation increases the quality of a machine by a factor 1 + 𝛾, average 

productivity 𝐴𝑗𝑡 with �̅�𝑡 ∶=
𝐴𝑐𝑡
𝐴𝑑𝑡

 and 𝜑 ∶= (1 − 𝛼)(1 − 𝜎) where 𝜎 is the elasticity 

of substitution between the two sectors and 𝛼 is the share of income spent on 

machines, sectoral profits follow from AABH (B.3), (A.16), (7) and (16) with 

policy: 

 

77
 A programming error mean that AABH miss this finding and they conclude that a high discount rate increases the 

welfare loss under both elasticities. 
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(𝐴. 1)  Π𝑐𝑡(𝑠) = Z𝑡(1 + 𝑞𝑡)휂(1 + 𝜏𝑡)
𝜎𝐴𝑐𝑡−1,  Π𝑑𝑡(𝑠) = Z𝑡휂(𝑋𝑡�̅�𝑡−1)

1+𝜑𝐴𝑑𝑡−1  

with Z𝑡 ∶=
(
𝛼
𝜓)

α
1−𝛼 (1 + 𝛾)(1 − 𝛼)

(1 + (1 + 𝜏𝑡)1−𝜎�̅�𝑡
𝜑
)
1
𝜑(�̅�𝑡

𝜑
+ (1 + 𝜏𝑡)𝜎)

 and �̅�𝑡 =
(1 + 𝛾η𝑠)�̅�𝑡−1
1 + 𝛾η(1 − 𝑠)

. 

 

Critical ratios for the three methods for tax-only policy are as follows:  

(𝐴. 2)  𝐿𝑜𝑤𝑒𝑟                     
Π𝑐𝑡(1)

Π𝑑𝑡(1)
=
(1 + 𝜏𝑡)

𝜎

1 + 𝛾η
(
𝐴𝑐𝑡
𝐴𝑑𝑡
)
−𝜑

|
𝑠 = 1

. 

(𝐴. 3)  𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑈𝑝𝑝𝑒𝑟   
Π𝑐𝑡(0)

Π𝑑𝑡(0)
= (1 + 𝜏𝑡)

𝜎(1 + 𝛾η)1+𝜑 (
𝐴𝑐𝑡−1
𝐴𝑑𝑡−1

)
−𝜑

. 

(𝐴. 4)  𝑈𝑝𝑝𝑒𝑟                     
Π𝑐𝑡(1)

Π𝑑𝑡(0)
= (1 + 𝜏𝑡)

𝜎𝑀�̅�𝑡−1
 −𝜙
 where 

   𝑀 = (
(1 + 𝛾η)𝜙(1 + 𝜏𝑡)

𝜎 + �̅�𝑡−1
𝜙

(1 + 𝜏𝑡)𝜎 + (1 + 𝛾η)𝜙�̅�𝑡−1
𝜙
)(

(1 + 𝛾η)𝜙 + (1 + 𝜏𝑡)
1−𝜎�̅�𝑡−1

𝜙

1 + (1 + 𝜏𝑡)1−𝜎(1 + 𝛾η)𝜙�̅�𝑡−1
𝜙
)

1
𝜙

. 

 

Note that for a high tax 𝜏, clean profits tend to exhibit decreasing returns to 

research as the price effect dominates the market size effect. In the case where 𝜎 =

3 and the discount rate is 1.5% (final column of Table 12), clean research is delayed 

and a large tax is needed to direct clean research. As such Π𝑐𝑡(1) < Π𝑐𝑡(0) and the 

tax required to direct clean research using the Upper critical ratio is more than under 

the Extreme Upper method, so the Extreme Upper tax is selected for both methods. 
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Conclusion 

Uncertainty of the impacts of global warming can have a large effect on optimal 

policy. The risk of tipping points that trigger abrupt and irreversible damages is an 

important example, and effects on the optimal carbon dioxide tax depend upon the 

probability of tipping, impacts and temperature projections. Methane is short-lived 

relative to carbon dioxide, and the risk of tipping may be important for determining 

optimal weights. If the probability of tipping is a smooth linear function of 

temperature, the optimal weights are flat, consistent with current policy. But if 

tipping events are triggered when temperature rises above unknown thresholds, the 

weights of short-lived actions should rise over time. 

Permanent tax-only policy outperforms subsidy-only policy across a broad range 

of parameter assumptions, while a high discount rate favours subsidies. If optimal 

policy is eventually reached and suboptimal policy is only temporary, the relative 

performance of subsidy-only policy is closer to tax-only and performs better in 

some scenarios. 

The elasticity of substitution between solar,wind and dirty inputs in electricity 

generation is a central parameter in determining the costs and optimal policy 

settings in a clean transition. A high elasticity of 3 or more is found empirically, 

broadly consistent with micro dispatch models of electricity which predict that the 

elasticity will decrease as the clean share rises.  

Increasing returns to research can lead to multiple equilibria, and several methods 

can determine how a unique equilibrium might be specified. Alternative methods 

can produce substantially different results when the elasticity of substitution 

between clean and dirty inputs is high.   
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