
A Foundation for the Development
of Programming Languages for

Real-Time Systems

Javad Ebrahimian Amiri

A thesis submitted for the degree of
Doctor of Philosophy

The Australian National University

April 2021

DRAFT – 22 April 2021

© Javad Ebrahimian Amiri 2021

DRAFT – 22 April 2021

Except where otherwise indicated, this thesis is my own original work.

Javad Ebrahimian Amiri
22 April 2021

DRAFT – 22 April 2021

DRAFT – 22 April 2021

to Mahboubeh, Hirad and my Parents

DRAFT – 22 April 2021

DRAFT – 22 April 2021

Acknowledgements

I would like to express my deepest appreciation to my supervisor, Steve, for giving
me the opportunity of doing a PhD, and making this hard and stressful journey
enjoyable and more efficient by creating a friendly and positive atmosphere. For me,
he is a role model of how a great supervisor should be.

I am also extremely grateful to my advisers Michael and Tony, for continuously
supporting me throughout my PhD with their knowledge and patience. This work
would hardly be possible without their insightful comments and suggestions.

Special thanks to Kunshan, Yi and John, for their high-quality works that provided
the necessary foundations of this thesis.

I’d like to acknowledge the efforts of other µVM team members, specially Isaac
for being very helpful even after his graduation.

Thanks also to all other members of the Computer Systems Research Group
for their constructive comments and warm encouragement at the HDR monitoring
sessions.

I would like to express my gratitude to those who have supported me financially:
the Australian National University, the Australian Government and Data61 (formerly
NICTA).

I am deeply indebted to my parents who supported me selflessly throughout my
life and education.

And most of all, I owe my deepest gratitude to my spouse Mahboubeh. The
completion of my dissertation would certainly not be possible without her patience,
encouragement and personal support.

vii

DRAFT – 22 April 2021

DRAFT – 22 April 2021

Abstract

Real-time systems have grown considerably in both diversity and popularity, and
the demand for real-time software has never been higher. In contrast, the choice of
programming languages used to develop these systems has mostly remained limited
to decades-old languages, namely Ada and C/C++, and more recently real-time
Java. We postulate that the main reason for this mono-culture is the difficulty of
developing new programming languages for real-time systems, due to their strict
correctness requirements.

Wang et al. [2015] argue that implementing even general-purpose languages is
not easy, and is the source of many problems in today’s languages. They propose the
Micro Virtual Machine (µVM) as a minimal abstraction layer to relieve the challenges
of implementing a managed language, and design a µVM specification named Mu.
Compared to conventional language VMs, a µVM is minimal and low-level. We
claim this makes a µVM an appealing platform for the development of programming
languages for real-time systems, as it allows supporting a wide range of languages
for diverse real-time systems. It also makes correct implementation and formal
verification of the platform easier, which is vital for many real-time systems.

Prior to this thesis, there was only one concrete µVM specification [Mu, 2018].
However, Mu is not designed for real-time systems and lacks some essential features.

My thesis is that a real-time-enabled micro virtual machine can provide
an efficient and usable foundation for the development of programming
languages suitable for building real-time software.

The first high-level contribution of this thesis is the design of RTMu, a µVM
instance targeting programming languages for real-time systems. We build on the Mu
specification and propose a set of modifications to its abstractions over concurrency
and memory management to make it suitable for real-time systems.

The second contribution is the confirmation of the implementability of the RTMu’s
abstractions. For this purpose, we build a performant implementation of the RTMu
specification, based on a performant implementation of Mu.

The third contribution is the design of a real-time extension to RPython, to make
it a viable language for real-time systems, named RT-RPython. We implement RT-
RPython on top of RTMu and evaluate its performance through the Collision Detec-
tion benchmark suite [Kalibera et al., 2009].

This thesis is a proof of concept, establishing the use of µVMs to build new
high-quality programming languages for real-time systems. It also provides an em-
pirical demonstration of performance and predictability for µVMs in the real-time
domain. We believe that RTMu can help in tackling the current lack of diversity in
programming languages for real-time systems.

ix

DRAFT – 22 April 2021

x

DRAFT – 22 April 2021

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Scope and Contributions . 3
1.4 Thesis Outline . 4

2 Background and Related Work 5
2.1 Real-Time Systems . 5

2.1.1 External Environment . 6
2.1.2 Threads . 6
2.1.3 Memory . 8
2.1.4 Safety Requirements . 8
2.1.5 Operating Systems . 9

2.2 Programming Language Implementation 9
2.2.1 Execution . 10
2.2.2 Concurrency . 11
2.2.3 Garbage Collection . 11

2.3 Programming Languages for Real-Time Systems 11
2.3.1 SPARK . 12
2.3.2 RTSJ . 12
2.3.3 SCJ . 13
2.3.4 RT-POSIX . 14

2.4 The Mu Micro Virtual Machine . 15
2.5 Summary . 19

3 RTMu: A Micro Virtual Machine for Real-Time Systems 21
3.1 Key RTPL Features . 21
3.2 Scope . 23
3.3 Design . 24

3.3.1 Architecture . 24
3.3.2 Type System . 25
3.3.3 Compiler Backend . 26
3.3.4 Memory Management . 26

xi

DRAFT – 22 April 2021

xii Contents

3.3.5 Concurrency . 32
3.3.6 Clock and Timers . 36
3.3.7 Unsafe Native Interface . 38
3.3.8 Client Interface . 38

3.4 Summary . 38

4 RTMu Implementation 39
4.1 Rust . 39
4.2 Zebu . 40
4.3 RTZebu . 41

4.3.1 Compiler Backend . 41
4.3.2 Threads and Scheduling . 41
4.3.3 Synchronization . 44
4.3.4 Memory . 44
4.3.5 Time . 46
4.3.6 Technical Challenges . 46

4.4 Summary . 47

5 RT-RPython: A Python-like Language for Real-Time Systems 49
5.1 RPython . 49

5.1.1 Application Programming in RPython 49
5.1.2 Real-Time Programming in RPython 50

5.2 Real-Time Extensions . 51
5.2.1 Memory Management . 51
5.2.2 Concurrency . 54
5.2.3 Time . 55

5.3 Implementation . 55
5.3.1 The RPyMu Translation Process 57
5.3.2 RT-RPython Extensions . 57

5.4 Summary . 58

6 Evaluation 61
6.1 The Collision-Detection Benchmark . 61

6.1.1 Implementation in RT-RPython . 62
6.1.2 Non-Goal . 63

6.2 Test Setup . 65
6.2.1 RT-RPython . 65
6.2.2 JamaicaVM . 65
6.2.3 Hotspot-11 . 66
6.2.4 Workloads . 66

6.3 Metrics . 67
6.3.1 Measurement Method . 67

6.4 Results . 68
6.4.1 Computation Time . 68

DRAFT – 22 April 2021

Contents xiii

6.4.2 Release Jitter . 69
6.4.3 Release Miss Rate . 77

6.5 Summary . 79

7 Conclusion 83
7.1 Future Work . 84

7.1.1 A Real-Time Garbage Collector . 84
7.1.2 Integrated WCET Analysis . 85
7.1.3 A Formally-Verified Implementation 85
7.1.4 Optimizations . 85

Bibliography 87

Appendixes 95

DRAFT – 22 April 2021

xiv Contents

DRAFT – 22 April 2021

List of Figures

1.1 A µVM is a minimal language-neutral abstraction layer over concur-
rency, compilation, and garbage collection. The bulk of the language-
dependent features are implemented by the language-specific client
VM, through Mu’s abstractions. Contrarily, macro VMs such as vari-
ants of Java VM, provide many language-specific features. This means
there will be less to do by the new client languages. However, this
raises critical issues such as the semantics gap (e.g. different object
layout and thread model) between the new client languages and the
original one (e.g. Java) [Wang, 2018]. 2

2.1 Execution times of two benchmarks on ten different programming
languages according to the measurements of [(alias?)]. 10

2.2 A Mu client, e.g. a managed language, builds Mu IR bundles and loads
them to Mu to be executed. This can either happen ahead of time or
at run time. It can also read and modify the internal state of the VM.
In case of any non-trivial events, the Mu runtime traps to the client to
handle it. All of the communication between Mu and the client is done
through the Mu API. 16

3.1 RTMu memory is divided into five areas, each serving a range of
higher level memory managers. Among them, stacks, the garbage
collected heap and immortal (static or global) areas are common in non-
real-time managed languages. For real-time languages, we add EMM
and Regions which are highly flexible and may be used to implement
a range of manual and semi-automatic memory managers. In the
figure, an object is a typed fixed-size entity, while a region is a fixed-
size container for objects. (Instructions marked by a star have hybrid
versions which allocate objects with variable-length (hybrid) types.) . . 27

3.2 The RTMu Scheduler consists of a number of (static) priority levels. For
each level, the scheduler keeps a queue of ready tasks. The position
of a new ready task in the queue depends on the scheduling policy at
that priority level. For RR and FIFO, the new task is always the last
in the queue, and for EDF, tasks with smaller deadlines are inserted
closer to the queue head. 33

xv

DRAFT – 22 April 2021

xvi LIST OF FIGURES

6.1 CD is a single periodic task with a period and deadline equal to T.
The ith release of CD is expected to occur at tr

i . For this release to meet
deadline, its response time (Ri) must be less than its deadline (T). Re-
sponse time (Ri) equals the sum of release delay (Di) and computation
time (Ci). Computation time (Ci) is the time from the ith actual start
time (ts

i) of the task, to its ith completion time (tc
i). 67

6.2 Computation times for the COL workload. RT-RPython outperforms
JamaicaVM in both average-case computation time (1.206 ms vs. 1.355 ms)
and worst-case computation time (3.157 ms vs. 11.486 ms). Also, both
real-time VMs (RT-RPython and JamaicaVM) perform significantly
slower than the non-real-time VM (Hotspot JVM-11) in the average-
case, while they achieve better worst-case computation times. 70

6.3 Computation times for the NOInn workload. RT-RPython outper-
forms JamaicaVM in the worst-case computation time (1.540 ms vs.
2.501 ms), and JamaicaVM achieves a better average-case computation
time (0.545 ms vs. 0.582 ms). Also, both real-time VMs (RT-RPython
and JamaicaVM) perform significantly slower than the non-real-time
VM (Hotspot JVM-11) in the average-case, while they achieve better
worst-case computation times. 71

6.4 Overhead of the RT-RPython reference write barriers. RT-RPython
emits write barriers on all RTMu store operations where the source
operand is of reference type. The write barrier checks the memory
area for the source and destination operands, and throws an exception
if the destination has a longer lifetime, because it leads to dangling
references to objects in scopes. ucRT-RPython is an implementation
of RT-RPython that does not emit write barriers to check reference
lifetimes. Comparing the computation times of ucRT-RPython to the
default RT-RPython shows that optimizing our trivial implementation
of the reference write barriers should significantly improve both the
average- and worst-case computation times of the benchmarks. 72

6.5 Release jitter for the COL workload (Period=10 ms). Because the min-
imum release delays for all VMs in the figure are zero, their release
jitter is equal to their maximum release delay. RT-RPython outperforms
JamaicaVM in release jitter (1.250 ms vs. 9.965 ms). It also performs
significantly more predictably than the Hotspot JVM. Although the
release jitter for JamaicaVM is very close to Hotspot, the mean and
standard deviation values of the diagrams show that JamaicaVM rarely
creates delayed releases, while for Hotspot, release delays are almost
evenly distributed throughout a period. This diagram demonstrates the
higher predictability of RT-RPython in creating periodic releases, com-
pared to JamaicaVM. It also shows how unpredictable a non-real-time
VM can be on the same measure. 74

DRAFT – 22 April 2021

LIST OF FIGURES xvii

6.6 Release jitter for the NOInn workload (Period=4 ms). Because the min-
imum release delays for all VMs in the figure are zero, their release
jitter is equal to their maximum release delay. RT-RPython outperforms
JamaicaVM in release jitter (1.113 ms vs. 3.999 ms). It also performs
significantly more predictably than the Hotspot JVM. Although the
release jitter for JamaicaVM is very close to the Hotspot JVM, the mean
and standard deviation values of the diagrams show that JamaicaVM
rarely creates delayed releases, while for Hotspot, release delays are
distributed throughout a period. Confirming Figure 6.5, this diagram
demonstrates the higher predictability of RT-RPython in creating peri-
odic releases, compared to JamaicaVM and the Hotspot JVM. 75

6.7 Comparison of the release delays in the COL workload to an empty
workload (NOP) on JamaicaVM. Although the release jitter of NOP is
slightly better (lower) than COL, its standard deviation and the 99.9
percentile are worse (higher). This indicates that the high release jitter
of JamaicaVM is not caused by the features used by COL, with the
exception of clock and timer which are also used by NOP. 76

6.8 Computation time of an empty workload (NOP). The computation time
of the NOP workload shows the delay that JamaicaVM’s clock imposes
on all time measurements. The maximum delay is 80.6 µs which is
negligible compared to JamaicaVM’s release jitter. This demonstrates
that the inaccuracy of JamaicaVM’s clock is not an effective element in
the benchmark’s metrics. 76

6.9 Implementing the waitForNextPeriod() function as a timed wait op-
eration on a POSIX condition variable (JamaicaVM’s approach), or
a nanosleep() function call (RT-RPython’s default approach), lead to
very similar periodic release delays in both workload. This suggests
that the high release jitter of JamaicaVM is not a result of how the
waitForNextPeriod() function is implemented in JamaicaVM. 78

6.10 This figure shows three scenarios for a periodic task that starts at time
zero, and has a period of 4 ms. The release jitter for scenario-1 where
the periodic task doesn’t miss any releases is 2.5 ms which is higher
than the other two scenarios. In such cases where there are missed
releases, release jitter does not reflect the predictability of releases,
because it overlooks critical parts of the information. For instance, the
period from 8 ms to 12 ms in scenario-2, and the period from 8 ms to
16 ms in scenario-3 are not reflected in release jitter. Thus, release jitter
may be misleading in the presence of release misses. 79

DRAFT – 22 April 2021

xviii LIST OF FIGURES

6.11 Inter-release times for COL and NOInn workloads (outliers /∈ [0.1%,
99.9%]). The CD task’s period is 10 ms in COL and 4 ms in NOInn. Ide-
ally, the time between two subsequent releases (inter-release time) of
CD should always be 10 ms and 4 ms respectively. In practice, various
elements including the programming language runtime add unpre-
dictability to task release times. Comparing the maximum and the
standard deviation of inter-release time for RT-RPython to JamaicaVM
in both workloads shows that RT-RPython is adding significantly less
unpredictability. Despite the larger maximum inter-release time of Ja-
maicaVM compared to Hotspot, its standard deviation is smaller, and
its 0.1 percentile is much closer to the period, which shows periodic
releases are created with less variation in JamaicaVM. Finally, Hotspot
is the only VM in which the average inter-release time is not equal to
the period. This means periods generated by Hotspot are not accurate
on average. 80

1 JamaicaVM provides two garbage collectors: A real-time GC and a
stop-the-world GC (STW-GC in the figure). JamaicaVM’s real-time
garbage collector is an incremental, parallel and concurrent mark-
sweep GC (INC-GC in the figure). We run the RTSJ version of the
CDj benchmark on JamaicaVM with both GCs, to test the effect of the
choice of GC on an application that uses only the immortal and scoped
memory. We also run the Java version of the CDj benchmark that uses
heap as its allocation context, on JamaicaVM with real-time GC, to
compare its predictability to scoped memory. STW-GC and INC-GC
show very similar results, except in the inter-release time of the NOInn

workload, where INC-GC has better worst-case behaviour. Hence, we
chose to use the INC-GC in our evaluation. Finally, the Java version
of the benchmark shows the best average-case performance, but its
worst-case behaviour in the computation time of the NOInn workload
indicates its inferiority to using scoped memory with INC-GC. 96

2 Hotspot-11 provides four garbage collector options: serial GC, parallel
GC, garbage-first (G1) GC, and ZGC. Among them, ZGC is specifically
designed for low pause times (under 10 ms). The computation times
and inter-release times of both workloads confirm that ZGC is outper-
forming other GCs. Therefore, we use Hotspot JVM with ZGC in our
evaluations. 97

DRAFT – 22 April 2021

List of Tables

2.1 The Mu type system is simple and low-level, and consists of primitive-
numerical, aggregate, reference and miscellaneous data types. These
low-level types combine to support the implementation of a managed
language type system. For instance, the int type in Python can be
implemented using Mu’s int<n>, struct<T1 T2 ...> and ref<T> types. 17

3.1 RTMu adds new data types, required for its new real-time features. . . 25
3.2 Instructions added by RTMu. RTMu adds several instructions to sup-

port implementation of the common memory managers in RTPLs and
more. The first seven instructions serve region-based memory, like
RTSJ scoped memory. The next five instructions mainly target manual
dynamic memory, like malloc and free in C. The last instruction checks
whether a reference is located in a region and returns a regionref or
NULL. 28

3.3 RTMu provides instructions to create, initialize and manage real-time
threads and their attributes. 34

3.4 RTMu provides futex as a mutual exclusion lock that supports PIP or
PCP. PIP is the default protocol. To switch to PCP, the priority ceiling
must be set to a value other than the lowest RTMu priority (platform-
dependant). Also, resetting to the lowest RTMu priority will switch
back to PIP. 35

3.5 An RTMu condition variable is a synchronization primitive that allows
multiple threads to wait for a condition. Similar to POSIX condition
variables, each RTMu condition variable is associated with an RTMu
futex which must be locked before waiting on the condition variable,
and unlocked after returning from the wait operation. A signal op-
eration unblocks the highest priority thread waiting on the condition
variable. 35

3.6 The new clock and timer methods in RTMu include one basic operation
to read the clock, and four basic operations to manage timers. 37

5.1 To support the proposed memory management scheme in RT-RPython,
the operations in this table are added. The first three operations change
the current allocation context to a new one. The fourth operation re-
verts the allocation context to the previous one. The last two operations
create a new scope or delete an already created scope. 52

xix

DRAFT – 22 April 2021

xx LIST OF TABLES

5.2 RT-RPython prevents the storing of references to objects in scoped
memory in the global or heap areas. It also prevents the storing of
references to objects in scopes with shorter lifetimes. RT-RPython does
not enforce any restrictions on EMM, as it expects the application
developer to use the EMM correctly. 53

5.3 RT-RPython provides various functions to manage thread attributes.
Normally, it starts by creating a new attribute object using Attr() or
reusing a previously created object (e.g. by calling get_thread_attr()).
Then, the object is monitored and updated using the functions in the
last two rows of this table. At the end, set_thread_attr() is called to
apply the updated attribute on the destination thread. 54

5.4 RT-RPython Mutex is a mutual exclusion primitive that supports the
PIP and PCP. It provides three variants of lock(), and one unlock()
method. It also provides the setpc() method to activate PCP or update
the ceiling priority, and the unsetpc() method to switch back to PIP.
Before using a new mutex, the initialize() method must be called. . 55

5.5 RT-RPython ConditionVariable is a synchronization construct that al-
lows multiple threads to wait for a condition. Each condition variable
is associated with a mutex lock that must be acquired before any wait,
signal, or broadcast operation, and released after their completion. . . 56

5.6 The RT-RPython AtomicInt type represents an atomic integer. It pro-
vides a basic set of atomic operations. 56

5.7 RT-RPython provides a basic set of functions to work with the clock
and timers. The client can get/set the current time, suspend (sleep)
the current thread for a certain amount of time, and create/delete and
set/unset timers that schedule calls to handler functions. 56

6.1 A summary of COL and NOInn workloads. 67
6.2 Release Miss Rate on the Tested VMs. RT-RPython is the only VM that

does not miss any releases on any of the workloads. JamaicaVM misses
23 out of 1 000 000 releases in the COL workload, which has a period
of 10 ms. The number of misses rises to 69 per 1 000 000 releases in the
NOInn workload which has a smaller period of 4 ms. The release miss
ratio for Hotspot JVM is 4504 times higher than JamaicaVM in the COL
workload, and 1236 times higher in the NOInn workload. 79

DRAFT – 22 April 2021

Chapter 1

Introduction

This thesis proposes a new foundation to address the current lack of diversity in
programming languages for real-time systems. For this, we design, implement and
evaluate the first micro virtual machine targeting real-time systems.

1.1 Motivation

A real-time system is a computer system in which the logically correct output must
obey a timing constraint, often called a deadline. In addition to timeliness, real-
time applications have other requirements, including throughput and reliability, at
various levels of intensity. A soft real-time application like a video player demands
high throughput, and missing deadlines only leads to reduced quality. In such
systems, validation can often be done by running them a certain number of times
with representative inputs and monitoring their performance and output. On the
other hand, in hard real-time applications such as flight control systems, which
are safety-critical, timing is paramount, and efficiency is secondary. The software
subsystems in such applications are typically required to undergo rigorous testing
and a level of formal verification.

Programming languages and their compilers and runtimes play a vital role in the
compliance of real-time systems to their requirements and have been the subject of
research since the 1960s. Many programming languages were developed or adapted
for real-time systems. For instance, Stoyenko [1992] surveys around seventy such
languages and goes so far as to estimate that ‘the number of languages designed for
or used in real-time programming is in the high hundreds or low thousands’ (as of 1992),
and goes on to state that Ada was created by the U.S. Department of Defense due
to concerns with maintaining ‘over 1,000 languages’. Clearly, only a few of those
languages have survived. Currently, the choice of language for real-time systems is
predominantly limited to Ada and C/C++, and more recently, real-time Java [Burns
and Wellings, 2009]. This seems surprising given the diversity and popularity of
real-time systems, and the flourishing ecosystem of general-purpose languages.

One may argue that this low diversity means that the current choices are good
enough. This is analogous to the argument that all programs can be written in ma-
chine code or the C language. This means although real-time systems are being

1

DRAFT – 22 April 2021

2 Introduction

Operating System

PL’s Libraries PL’s VM

Managed Programming Language

Operating System

PL’s Libraries
PL’s VM

Managed Programming Language

micro VM

(a) Macro VM design

Operating System

PL’s Libraries PL’s VM

Managed Programming Language

Operating System

PL’s Libraries
PL’s VM

Managed Programming Language

micro VM

(b) Micro VM design

Figure 1.1: A µVM is a minimal language-neutral abstraction layer over concurrency, compi-
lation, and garbage collection. The bulk of the language-dependent features are implemented
by the language-specific client VM, through Mu’s abstractions. Contrarily, macro VMs such
as variants of Java VM, provide many language-specific features. This means there will be less
to do by the new client languages. However, this raises critical issues such as the semantics
gap (e.g. different object layout and thread model) between the new client languages and the
original one (e.g. Java) [Wang, 2018].

developed using the currently available languages, more choices can still have signif-
icant benefits. For instance, a high-quality managed languages such as Java is safer
than C [Schoeberl et al., 2016] and can improve productivity and reusability [Pizlo
et al., 2010a]. Hence, real-time software can be developed at a lower cost with higher
reliability.

Part of the problem may be related to the level of reliability demanded of real-
time language implementations. For example, it may be tolerable for a widely-used
scripting language to crash or misbehave occasionally, but car brakes must always
work. We believe that this explains why there is such a paucity of real-time languages,
even while general-purpose languages have flourished.

Wang et al. [2015] argue that implementing even general-purpose languages is
not easy. They claim that difficulty of implementation is the source of many problems
(broken semantics, poor performance) in today’s languages. Attacking this source
problem, they propose the concept of the Micro Virtual Machine (µVM) as a thin
abstraction layer over the three most challenging parts of implementing a managed
language, namely: concurrency, compilation, and garbage collection. A schematic
comparison of µVMs to conventional macro VMs is depicted in Figure 1.1. Wang
[2018] proposes a particular µVM design instance called Mu, having a concrete spec-
ification, and Lin [2019] establishes its practicability through the implementation of
real-world managed languages.

1.2 Problem Statement

We argue that using a µVM instance, such as a real-time version of Mu (RTMu),
to develop managed languages for real-time systems will help tackle the current

DRAFT – 22 April 2021

§1.3 Scope and Contributions 3

monoculture of real-time languages for two reasons. First, it will relieve the difficulty
and reduce the cost of developing new real-time languages. Second, it will bring the
benefits of managed languages to the real-time domain [Bollella and Gosling, 2000].

This argument gives rise to a question, which we try to answer in this thesis:
‘What is a suitable µVM design for real-time systems, and how can we verify its suitability?’

In this thesis, we design, implement and evaluate RTMu. To ameliorate the
complexity, we build on the Mu µVM specification and its high-performance imple-
mentation (Zebu). The determinative design property of RTMu, borrowed from Mu,
compared to alternative VMs, is its minimality. This makes RTMu suitable for a wide
range of languages, which can cover diverse real-time systems. In addition, the mini-
mality of RTMu eases its implementation and will aid the task of formal verification.
RTMu’s amenity to formal verification helps in building a reliable platform, particu-
larly for real-time systems which need rigorous testing and more formal validation
such as safety-critical systems.

1.3 Scope and Contributions

In this section, we identify the scope of this thesis and our contributions.

RTMu Design The first goal of this thesis is to present a design for RTMu, which
respects the design principles of a µVM, including minimality, and provides the
necessary abstractions, as explained in Section 3.1. We do not claim to cover all
real-time software systems.

Our contributions are:

1. Identification of core language features that distinguish real-time languages,

2. Design of the first µVM for real-time language implementation,

3. Specification of IR extensions to support real-time languages,

4. Specification of other runtime changes to support real-time languages,

5. Description of how to use the new primitives to conform to the requirements of
a variety of real-time applications.

The ultimate goal of RTMu is to introduce a reliable platform that is flexible enough
to serve as a target for a broad range of real-time systems.

RTZebu Implementation The second high-level goal of this thesis is to provide
a performant and predictable implementation of the RTMu specification. It is not
our goal to produce an implementation that can compete with highly developed,
commercially used languages such as Ada, C or the Real-Time Specification for Java
(RTSJ). Instead, we want to demonstrate its possibility by reaching a reasonable
performance bar.

DRAFT – 22 April 2021

4 Introduction

RTZebu is based on an existing performant implementation of Mu in Rust, named
Zebu. Our main contribution by reaching this goal is to demonstrate that RTMu ab-
stractions are feasible, mostly as light-weight wrappers around Real-Time Operating
Systems’ (RTOS) services.

RT-RPython and Evaluation This thesis proposes RTMu as an efficient and usable
foundation for the development of programming languages suitable for building
real-time software. We evaluate our claims as follows:

• Usability: We modify RPython and create RT-RPython as a language suitable
for building real-time software. Then, we implement RT-RPython on top of
RTMu to demonstrate its capability in implementing a real-world programming
language for real-time systems.

• Efficiency: We implement an existing, standard real-time benchmark in RT-
RPython and compare its average and worst-case performance to a commercially
available implementation of RTSJ, and a recent version of Java.

We designed RTMu to cover a wide range of real-time applications and be verifi-
able. However, it is out of scope to evaluate these properties in this thesis. We only
aim to provide an indicative, rather than comprehensive, evaluation of RTMu and
RT-RPython.

1.4 Thesis Outline

Chapter 2 discusses background material on µVM and real-time programming lan-
guages which led to the current RTMu design. Chapter 3 presents the design of
RTMu, a µVM on which managed programming languages for real-time systems can
be developed. Chapter 4 discusses the important aspects of our high-performance
implementation of RTMu, named RTZebu. Chapter 5 introduces RT-RPython, a lan-
guage based on RPython for real-time systems, and explains how we implement
RT-RPython on RTMu. Chapter 6 describes how we evaluate the performance of
RT-RPython, presents the results of our evaluations, and argues its efficiency. Finally,
Chapter 7 concludes the thesis and points out future work.

DRAFT – 22 April 2021

Chapter 2

Background and Related Work

Real-time systems are flourishing in number and diversity. From tiny in-body sensors
to huge planes and industrial machines, real-time computer systems are increasingly
ubiquitous. However, the programming languages for these systems suffer from a
lack of diversity, while programming languages in the general-purpose domain are
proliferating.

Addressing this issue requires recognizing its sources, which is what the first two
sections of this chapter elaborate. We start with an introduction to real-time systems
and the key concepts (e.g. protocols and algorithms) dedicated to their program-
ming. This helps in realizing what makes real-time systems unique. Next, we briefly
present some of the main challenges in implementing general-purpose programming
languages. We mention what makes the situation even more challenging in real-time
systems.

The last two sections of this chapter provide background information which in-
formed the current design of RTMu. We discuss the most influential programming
languages in the real-time domain. Indeed, these languages are the only survivors
of the long history of real-time languages. Finally, we explain the µVM concept and
introduce Mu, the µVM specification used as the basis for the RTMu design.

2.1 Real-Time Systems

A real-time system is any computer system where the correctness of its operation is
dependent on both the logical and temporal correctness of the delivered response
[Burns and Wellings, 2009]. Real-time systems consist of one or more real-time tasks.
The temporal correctness constraint of a real-time task is often specified as a deadline,
by when the task’s outputs should be ready. Assuming a single-task system, the
worst-case execution time (WCET) of the real-time task should be less than its deadline,
to fulfil the correctness requirement. This is in contrast to non-real-time tasks, where
average-case execution time (ACET) is the main concern.

Real-time tasks are classically divided into three categories according to how
severe the consequences of missing a deadline are: hard real-time tasks which will
cause total failure if a deadline is missed, with potentially catastrophic results; firm
real-time tasks which are useless after they pass the deadline; and soft real-time tasks

5

DRAFT – 22 April 2021

6 Background and Related Work

which will lose usefulness gradually after they pass the deadline. However, this
categorization is too simplistic, and there are other works such as [Jensen et al., 1985]
in the literature which try to overcome the limitations of this taxonomy.

In the rest of this section, we briefly discuss some of the key differences between
real-time and non-real-time (general-purpose) systems.

2.1.1 External Environment

Real-time systems are employed in diverse environments, from under the oceans
(e.g. in submarines) to higher layers of the atmosphere (e.g. in satellites). A real-
time system often has to respond to real-world events. It monitors its environment
through sensor(s), processes the data, and produces outputs that may change its
environment through actuators. A speed camera, for example, observes the speeds of
the passing cars using a number of sensors, processes whether any car is going over
the speed limit, and finally acts by taking a picture of that car. On the other hand,
most general-purpose computers work in very similar environments which includes
humans and/or other computers. Frequent use of various sensor and actuator devices
in real-time systems, compared to the much less diverse I/O devices in general-
purpose systems, highlights the importance of proper support for working with I/O
devices in their software platforms.

2.1.2 Threads

Most of today’s software applications consist of a number of tasks that are imple-
mented as threads. While this is true for both real-time and general-purpose systems,
their approaches to managing threads are significantly different. General-purpose
systems often aim to provide fairness between threads and to improve the average
throughput. In contrast, the most important goal in real-time systems is to maintain
analyzability (predictability) and ameliorate the worst-case behaviour. The rest of this
section discusses some of the key aspects of multi-threading in real-time systems.

Task Types

The most common type of task in real-time systems is periodic. These tasks are
released at regular intervals called a period and have a deadline that is often equal to
their period. Periodic tasks are often time-critical and must finish before their deadline
for the correct operation of the whole system [Shin and Ramanathan, 1994]. Another
common task type in real-time systems is aperiodic. These tasks are released as a
result of an event, such as an error or a hardware interrupt, and may or may not have
a deadline. In any case, these tasks should not jeopardize the deadlines of other tasks
in the system.

DRAFT – 22 April 2021

§2.1 Real-Time Systems 7

Scheduling

Multi-threaded general-purpose applications are often developed without any as-
sumption about how the threads are scheduled. Under the hood, threads are often
scheduled using First-In-First-Out (FIFO) or Round-Robin (RR) algorithms (and their
variants) by the underlying operating system. These applications work correctly as
long as they are provided with a fair share of the system resources.

In contrast, designing a real-time application includes analysis of its timing be-
haviour, which is affected by thread scheduling. For instance, to design a hard
real-time system, WCETs of tasks are estimated, and schedulability analysis is per-
formed to prove meeting all deadlines. The scheduling is often performed by the
underlying real-time operating system, but the real-time application developer needs
to be able to control scheduling to achieve the desired timing.

Scheduling is one of the most investigated research topics in the real-time domain
[Davis and Burns, 2011a; Bambagini et al., 2016]. Many scheduling algorithms have
been designed, each targeting a range of real-time applications. In principle, most of
these algorithms are based on or closely related to two algorithms: earliest deadline
first (EDF) which dispatches the task with the closest deadline, and rate monotonic
(RM) which dispatches the task with the smallest period. EDF is a dynamic-priority
scheduling algorithm as the relative priorities of tasks may change at run time. On a
single-processor computer, EDF is an optimal algorithm, meaning that if EDF cannot
schedule a set of tasks, that set is not schedulable with any other algorithms. RM is
an optimal fixed-priority algorithm. It has a lower schedulable utilization compared
to EDF (69.3 % vs. 100 %) [Liu and Layland, 1973], but it also has less scheduler
overhead.

Synchronization

The use of priority-based scheduling in real-time systems rises a new problem in
synchronization of threads that happens when a high-priority thread waits to acquire
a lock held by a low-priority thread. In this case, any medium-priority thread may
preempt the running low-priority thread, and indirectly postpone the wakeup of
the high-priority thread. This issue is called unbounded priority inversion, because
medium-priority threads are delaying the dispatch of the high-priority thread despite
its higher priority.

Sha et al. propose two solutions to eliminate the unbounded priority inversion
problem [Sha et al., 1990]. The first is to temporarily raise the priority of the lock’s
owner to the high-priority task’s priority when the high-priority task blocks. As a
result, the low-priority task will not be preempted by medium-priority tasks. The
priority of the lock owner is restored to its base value as soon as it releases the lock.
This solution is called the Priority Inheritance Protocol (PIP).

The second solution, called the Priority Ceiling Protocol (PCP), defines a priority
ceiling for each resource (lock), that is equal to the highest priority of any task which
may lock that resource. When a task is blocked on a lock, the priority of the lock
holder will be raised to the ceiling value of the lock, and this solves the unbounded

DRAFT – 22 April 2021

8 Background and Related Work

priority-inversion problem. The advantage of PCP over PIP is that it avoids deadlocks
that happen as a result of incorrect nesting of critical sections. However, it is harder
to implement, and most platforms (e.g., Ada, RTSJ and RT-POSIX) employ simplified
variants of PCP instead of the original protocol.

2.1.3 Memory

The choice of memory management in a real-time application affects its WCET sig-
nificantly. On one end of the spectrum is static memory allocation that adds no run
time overhead, but does not use memory efficiently. Alternatively, manual memory
allocation/de-allocation, such as the malloc and free in C, has minimal average- and
worst-case overhead, and can use the memory space very efficiently if exploited prop-
erly. The drawback of manual memory management is that it is error-prone, and
this gets worse as the system scales up. Finally, there is automatic memory manage-
ment, such as garbage collection (GC), which is easy to use and eliminates memory
management errors, such as dangling references and memory leaks. GC has some
potential shortcomings for being used in real-time applications: it may increase the
WCET of applications, e.g. by introducing pauses or increasing the ACET; it is more
complicated for the language implementer (not for the application developer) than
other memory management alternatives, and hence harder to verify; and it has a
memory space overhead. A number of works such as Bacon et al. [2003], Chang
and Wellings [2010] and Pizlo et al. [2010b] considerably improve GC for real-time
systems. However, some hard real-time systems will not use GC due to its potential
delays [Burns and Wellings, 2009].

An alternative approach, named scoped memory, is used by the real-time specifica-
tion for Java (RTSJ) to provide automatic memory reclamation. A scope is a memory
pool with special lifetime charactristics where objects can be allocated. To allocate on
a scope, a thread has to enter the scope. It is possible for multiple threads to enter
a scope at the same time and use it as their allocation context. When all threads
exit a scope, the memory associated with that scope is free to be reused. To prevent
dangling references to objects in scopes, RTSJ enforces rules that forbid references
from memory areas with longer lifetimes to objects in scopes with shorter lifetimes.
Scoped memory does not impose the pause times of GC, and it has lower runtime
overhead, at the cost of a more complicated programming model and not being able
to use all Java libraries.

2.1.4 Safety Requirements

Many hard real-time computer systems are used in critical roles where failure can
negatively affect human lives or lead to severe financial/environmental loss. Such
systems are called safety-critical. For example, the computers that control brakes or
airbags in a car can directly impact the passengers’ safety, causing injury or even
death.

The software in safety-critical systems is required to undergo strict validation and

DRAFT – 22 April 2021

§2.2 Programming Language Implementation 9

certification processes. For example, the software in airborne systems and equipment
must conform to the standards specified in RTCA [2011] or EUROCAE [2011], to be
approved for commercial use. To be eligible for the highest levels of assurance in
such software safety standards, the application may only use a very restricted set of
features available in languages such as Java and their libraries [Henties et al., 2009].
For instance, all safety-critical tasks in a system may only run as periodic handlers
with private time-slices in one underlying thread. They may also be required to only
use static memory allocation. More instances of such limitations are presented in
Sections 2.3.1 and 2.3.3.

2.1.5 Operating Systems

Real-time systems are diverse and so are their operating systems. For example, there
exist real-time systems for industrial robotics [Lippiello et al., 2007] and automation
[Doukas and Thramboulidis, 2011] that use real-time variants of Linux. Other real-
time applications use a small set of services from highly-configurable executives such
as RTEMS, or even operate with no operating system.

Despite the huge diversity, there are requirements that are common to many
real-time operating systems (RTOS). Among them is that RTOS service delays must
be bounded, regardless of the current system state (e.g., the number and states of
tasks). This not only requires the correct choice of algorithms, but also an efficient
implementation that has minimal non-preemptive critical sections (e.g., negligible
interrupt disable time). Another common requirement of RTOSs is that they should
be highly configurable, so that real-time applications are not burdened with unused
features. Finally, like other software used in real-time systems, RTOSs are subject to
various levels of validation and certification, which may enforce limitations on RTOS
features. For example, in safety-critical systems, multitasking is only possible if the
RTOS guarantees space and time partitioning. This allows each task to be verified
separately, making verification of the whole system much easier.

2.2 Programming Language Implementation

Many of today’s programming languages suffer critical issues like very poor perfor-
mance and hard to reason about semantics. For instance, as shown in Figure 2.1, even
some popular programming languages like Python and PHP may be up to 100 times
slower than C. Wang [2018] argue that many of these issues can be traced back to
the difficulty of properly implementing these languages. They identify three major
concerns, namely execution (compilation), concurrency, and garbage collection, that
contribute to the complexity.

Implementing an appropriate language gets even more difficult and costly when
considering the requirements of real-time systems. For instance, the safety require-
ments of these systems, may add strict validation procedures or safety-certification
to the language’s development, which makes the whole process even more time-
consuming and expensive. This is probably the most important reason why the

DRAFT – 22 April 2021

10 Background and Related Work

Figure 2.1: Execution times of two benchmarks on ten different programming languages
according to the measurements of [LangBenchGame].

real-time community has been so reluctant to accept new languages.

2.2.1 Execution

Programming languages may be interpreted, ahead-of-time (AOT) compiled, just-
in-time (JIT) compiled, or a mix of these. While an interpreter reads, decodes and
executes the program source-code or byte-code at run time, a compiler produces
machine code that is directly executed on the processor. Compared to compiled
languages, an interpreted language has the advantages of ease of implementation
and program portability, yet it lacks efficiency as it has to perform extra processing
before accomplishing any operation.

Implementing an efficient compiler requires detailed knowledge of the target
architecture. In AOT compilers, machine code is fully generated before run time, and
a platform-dependant executable is produced. JIT compiled languages defer machine
code generation to run time, when they compile the program on the user’s machine.
This allows distribution of the program in a machine-independent way.

JIT compilation introduces the new challenge of considering the run-time over-
head of compilation. To minimize this overhead, JIT compilers start by quickly
generating sub-optimal code, and then detect and optimize frequently executed code.
For this purpose, the language runtime is required to utilize advanced language
implementation techniques such as a proper profiling mechanism, and on-stack re-
placement (OSR) to quickly transition to the optimized code. In addition, compilation
gets even more complicated when it is combined with concurrency and GC.

DRAFT – 22 April 2021

§2.3 Programming Languages for Real-Time Systems 11

2.2.2 Concurrency

Concurrent programming models such as multi-threading provide programmers
with tools to write correct concurrent applications. However, when it comes to
running these applications on modern multi-core processors, certain properties, such
as sequential consistency1, cannot be assumed to be true anymore.

While absence of sequential consistency may lead to hard to reason about results
on parallel hardware, enforcing it unconditionally is inefficient. The first attempt to
enable solving this problem was the Java 1.5 memory model [Manson et al., 2005],
followed by the C++11 memory model [Boehm and Adve, 2008]. A memory model
describes the relation between threads and memory, to clarify which instruction
reorderings can legally be done by the compiler optimizer or inside the processor.
The language compiler is responsible for generating the instruction sequences that
comply with the language memory model on each supported platform.

2.2.3 Garbage Collection

Garbage collection has been used in many modern programming languages since
its first appearance in LISP [McCarthy, 1960]. The difficulty of implementing a
high-performance GC has persuaded many language implementers to start language
development with naive GCs [Wang, 2018], which not only degrades the overall
performance, but is also very hard to upgrade to high-performance collectors [Jibaja
et al., 2011].

A high-performance GC needs support from the compiler. The compiler should
provide features such as stack maps to identify object references in stacks, and write
barriers to monitor writes to reference fields. A high-performance GC may also use
parallel hardware to run parallel and concurrent GC algorithms. In this case, it
interacts with the memory model. It also relies on the compiler to insert yieldpoints
to handle handshaking between application and GC threads.

2.3 Programming Languages for Real-Time Systems

Numerous programming languages have been built or adapted for real-time systems.
However, only Ada, real-time Java, and C are widely used today. In this section, we
review Ada SPARK, the Real-Time Specification for Java (RTSJ), Safety-Critical Java
(SCJ), and C with Real-Time POSIX (RT-POSIX), as a representative set of RTPLs that
cover a diverse range of real-time systems. The differences between these languages
and their general-purpose counterparts inspire the design of RTMu.

1An execution of concurrent threads is called sequentially consistent if its result is the same as an
execution where all operations from all threads are executed in a specific sequential order.

DRAFT – 22 April 2021

12 Background and Related Work

2.3.1 SPARK

SPARK is a subset of Ada for the development of high-integrity software [Barnes,
1997]. To satisfy the stringent reliability demands of such applications, it provides
the tools to support various verification methods, from unit testing to formal proof of
application properties. To enable this, SPARK restricts the hard-to-analyze features of
Ada, including concurrency, memory management and synchronization [McCormick
and Chapin, 2015]. SPARK supports multitasking through the Ravenscar tasking
profile (a subset of tasking features) for high-integrity real-time programs, introduced
by Burns et al. [1998]. The most important properties of this profile from the point of
view of a real-time language developer are:

• No allocation or deallocation of objects and tasks at run time is allowed.

• Tasks are non-terminating with no user-defined attributes or dynamic priority.

• The dispatching algorithm within a priority level is FIFO.

• Non-preemptive scheduling is also allowed.

• Locking supports the Priority Ceiling Protocol (PCP).

If RTMu is to be able to emulate SPARK’s facilities, it will need to satisfy the
following requirements: First, RTMu should provide an immortal memory area which
allows allocation of objects, but is only deleted when the program finishes. Such an
area could efficiently implement SPARK’s static memory allocation. Second, RTMu
should provide static priority scheduling. To support SPARK’s scheduling, the RTMu
scheduler does not need to support changing thread priority at run time. Third, the
synchronization primitive in RTMu should support PCP.

2.3.2 RTSJ

RTSJ [Bollella and Gosling, 2000; RTSJ, 2018] is a specification for a type-safe Java-
based managed programming language for large-scale real-time embedded systems
that may co-locate hard-, soft- and non-real-time code. Language VMs such as FijiVM
[Pizlo et al., 2009] and JamaicaVM [Siebert, 2010] are implementations of the RTSJ
specification. RTSJ has been used in and proven adequate for many serious real-world
applications such as Avionics, Automotive, industrial IoT and other critical embedded
real-time applications [Sharp et al., 2003; Armbruster et al., 2007; AicasWebPage].

RTSJ introduces several enhancements over Java, mostly in the area of concurrency
and memory management:

• The scheduler supports 28 levels of priority, compared to only 10 levels in Java.
Within each level, First-In-First-Out (FIFO) and Round-Robbin (RR) are possible.

• Additional schedulers may be added besides FIFO and RR.

DRAFT – 22 April 2021

§2.3 Programming Languages for Real-Time Systems 13

• Real-Time (RT) and No-Heap Real-Time (NHRT) threads are added. RT threads
have higher priority than normal threads. NHRT threads are RT threads which
do not use the heap.

• Heap, scoped and immortal memory areas are available. No specific Garbage
Collection (GC) algorithm is specified, but its effects on preempting real-time
tasks should be characterized by the RTSJ implementations.

• Threads may choose to only use the scoped memory, or both the heap and
scoped memory at the same time. In the former case, GC should not impose
any interference.

• Scopes may be allocated on specific areas of the physical memory.

• Raw access to physical memory is possible.

• Synchronization mechanisms utilize PIP, or optionally PCP to tackle priority
inversion.

The set of features required to implement RTSJ is a superset of what is needed by
other languages in this study, because RTSJ tries to cover a diverse range of real-time
systems, while others such as SPARK and SCJ are more specialized.

If RTMu is to be able to emulate RTSJ’s facilities, it will need to satisfy the follow-
ing requirements:

• The static priority scheduler of RTMu should support changing thread attributes
at run time.

• Synchronization primitives of RTMu should support PIP and PCP.

• RTMu should provide a garbage collected heap with analyzable preemption
effects.

• RTMu should provide memory areas that can be created and deleted at run
time.

• RTMu should support raw access to and allocation on physical memory.

2.3.3 SCJ

SCJ is a certifiable RTSJ-based language for safety-critical real-time systems. It is
designed to comprise the minimal set of features for safety-critical systems [TheOpen-
Group, 2017]. This minimality causes its programming model to be considerably
different from the normal Java. Compared to other real-time programming languages,
SCJ is fairly new and still under research and development.

There are three compliance levels in SCJ. Level 0 is the most restricted one, called
the cyclic executive model. It consists of a sequence of missions, running on one
processor. A mission is a set of Periodic Event Handlers (PEH). Each PEH has a

DRAFT – 22 April 2021

14 Background and Related Work

dedicated private memory area, which is entered and exited at each release, and may
create new ones. Private memory areas can be entered and exited but not shared
with other PEHs. All PEHs share a mission memory and the immortal memory, but
are not allowed to use synchronized methods.

Level 1 is also a sequence of missions. Each mission is a set of PEH and Aperi-
odic Event Handler (APEH) objects that may run concurrently. Event handlers are
managed by a fixed-priority preemptive scheduler with at least 28 levels of priority.
Each event handler may have a static processor affinity set. Level 1 event handlers
can access the same types of memory areas as level 0 PEHs. They may also use
synchronized methods.

Level 2 starts with a single mission but may create additional concurrent missions.
In addition to PEHs and APEHs, each mission may contain No-Heap Real-Time
Threads (NHRT). The private scoped memory of a NHRT is entered when it runs and
exited when the run method returns. In addition to synchronized methods, level 2
applications may use Object.wait() and Object.notify().

Schoeberl et al. [2017] summarize recent efforts on SCJ implementations, analysis
tools and sample real-world applications. They state that it is difficult to learn pro-
gramming in SCJ, due to its new programming model. In addition, its object oriented
nature imposes a performance overhead which can make handlers with small periods
infeasible.

From an application programmer’s point of view, SCJ’s abstractions are signifi-
cantly different from those of RTSJ. However, from the RTMu’s point of view, SCJ’s
abstractions can be implemented using a subset of the low-level tools required to
implement RTSJ. A potential exception is the multi-level scheduler in SCJ, which
looks different from the conventional priority-based schedulers, as in RTSJ. However,
SCJ’s scheduler can still be implemented on top of a scheduler that can implement
the RTSJ’s scheduler.

Although SCJ does not directly drive RTMu’s abstractions, it has a critical implica-
tion to its design: RTMu has to be configurable, meaning that RTMu implementations
should allow their client languages to include/exclude features based-on their target
systems. Most importantly, a client like SCJ should be able to assume that it is not
burdened by the complexities of GC.

2.3.4 RT-POSIX

Programming real-time systems in C is often done through RTOS interfaces. Many
common RTOS implementations, such as RT-Linux, conform to the base POSIX stan-
dard and its real-time extensions (POSIX.1b), which are now merged in a single
standard document [IEEE and TheOpenGroup, 2018]. Hence, RT-POSIX is com-
monly used for writing real-time applications. To summarize its implications for
RTMu’s design, RTMu’s abstractions over concurrency and time are largely inspired
by RT-POSIX, as it helps minimizing the implementation complexity, by keeping the
abstractions close to the RTOS level.

DRAFT – 22 April 2021

§2.4 The Mu Micro Virtual Machine 15

2.4 The Mu Micro Virtual Machine

Mu is a µVM specification that facilitates the development of high-performance man-
aged programming languages for a wide range of applications. It was first introduced
by Wang et al. [2015], and the concrete specification is available online [Mu, 2018]. Mu
abstracts over three basic language implementation challenges, namely concurrency,
the compiler backend and memory management, and lets language implementers
focus on higher level issues. Mu has a number of design principles:

• Mu observes minimalism, meaning that many features and optimizations are
deferred to higher layers, as long as doing so does not jeopardize viability or
efficiency of the three main functionalities.

• Mu assumes that language implementations (µVM clients) are trusted. Unnec-
essary overhead is thus avoided by excluding extra protection layers.

• Mu IR is modeled on LLVM IR, treating it as a baseline from which Mu diverges
only when essential.

• Mu is a specification with well defined behavior, admitting multiple compliant
implementations.

Architecture The high-level architecture of a managed language based on Mu is
depicted in Figure 2.2. Although not drawn to scale in the figure, Mu is only a thin
abstraction layer. The client does the bulk of the job of implementing a managed
language on top of Mu’s abstractions, which deal with the most difficult concerns.

A Mu client translates the source code or bytecode of an application to Mu IR, and
uses the Mu client interface (API) to build and load IR bundles into a Mu instance.
An IR bundle is the unit of code the client sends to Mu. It contains many Mu top-
level entities, including a: type, function signature, constant, global cell, function, or
exposed function. These bundles are then compiled to machine code. For example,
the MuPy project presented by Zhang [2015], implements the RPython language
[RPyDoc] as a client of Mu. In MuPy, application source code in RPython is first
translated to an intermediate control flow graph (CFG) representation, with low-level
types and instructions. Then, the types and instructions in the CFG representation
are translated to Mu IR. Following that, the Mu API is used to build and load a Mu
IR bundle from the translated CFG. Finally, Mu compiles the bundle to machine code
and produces an executable.

Mu instances are expected to support Just-In-Time (JIT) compilation, which allows
efficient IR submission and compilation at run time, but ahead-of-time (AOT) compi-
lation and interpretation are also possible. For instance, the RPython client discussed
in the previous paragraph performs AOT compilation. Mu clients can also use the
Mu API to inspect and modify the state of the Mu instance, including contents of
memory and threads/stacks, at run time. In addition, a Mu instance may trap to the
client for handling of events that it cannot directly manage.

DRAFT – 22 April 2021

16 Background and Related Work

Source-/Byte- Code

Client AOT

Mu Libs

Client Runtime

API

Client Context(s)

IR Bundles

Load/Build IR Bundle

Client
States

Mu Runtime

Unhandled Event

OS

Mu Libs

Read/Modify States

Trap

Client

Mu

Figure 2.2: A Mu client, e.g. a managed language, builds Mu IR bundles and loads them to
Mu to be executed. This can either happen ahead of time or at run time. It can also read and
modify the internal state of the VM. In case of any non-trivial events, the Mu runtime traps to
the client to handle it. All of the communication between Mu and the client is done through
the Mu API.

DRAFT – 22 April 2021

§2.4 The Mu Micro Virtual Machine 17

Table 2.1: The Mu type system is simple and low-level, and consists of primitive-numerical,
aggregate, reference and miscellaneous data types. These low-level types combine to support
the implementation of a managed language type system. For instance, the int type in Python
can be implemented using Mu’s int<n>, struct<T1 T2 ...> and ref<T> types.

Type Description

int<n> n-bit fixed-size integer
float IEEE754 32 bit floating point
double IEEE754 64 bit floating point
uptr<T> Untraced pointer to a memory location

ufuncptr<sig> Untraced pointer to a native function

struct<T1 T2 ...> Structure with fields T1 T2 ...

hybrid<F1 F2 ... V> A hybrid with fixed and variable parts

array< T n> Fixed-size array of same type elements

vector<T n> Vector of same type elements

ref<T> Reference to a heap object

iref<T> Internal reference to a memory location

weakref<T> Weak reference to a heap object

funcref<sig> Reference to a Mu function

stackref Opaque reference to a Mu stack

threadref Opaque reference to a Mu thread

framecursorref Opaque reference to a Mu frame cursor

irbuilderref Opaque reference to a Mu IR builder

tagref64 64 bit tagged reference
void Void type

Type System Mu provides a simple low-level type system with reference types to
support precise garbage collection. The types supported by Mu appear in Table 2.1,
are categorized into four groups: (1) Primitive numerical types including int, float,
double, uptr and ufuncptr, which are not traced by the GC, (2) Composite types
including struct, hybrid, array and vector, which consist of smaller components, and
are used to define new data types, (3) Reference types including ref, iref, weakref,
threadref, stackref, framecursorref and irbuilderref, which are traced by the GC
and can only be created as a result of specific Mu instructions, and (4) Miscellaneous
types including tagref64 and void.

Although the current Mu type system is capable of implementing a managed
language type system, it lacks some of the basic data types required by the additional
features of RTPLs. These data types are explained in Section 3.3.2.

Concurrency A thread is the unit of concurrency in Mu. To run, each thread must
be bound to a stack as its execution context. It is also possible to unbind a thread from
its stack and rebind it to another stack. This is the SwapStack operation [Dolan et al.,
2013]. SwapStack enables implementation of language features such as co-routines and

DRAFT – 22 April 2021

18 Background and Related Work

language-defined user-level thread scheduling. Mu threads are typically implemented
as native threads scheduled by the operating system, and run concurrently. However,
for the sake of flexibility, the Mu specification does not force how Mu threads are
bound to the operating system threads. It is up to the Mu implementation to choose
a proper thread mapping.

To implement diverse synchronization primitives, Mu provides a basic tool that
is similar to the Linux futex and can easily be mapped to it. The client uses the Mu
futex and Mu atomic operations to implement higher-level primitives such as mutexes,
condition variables, and message queues. In addition, Mu has a well-defined C11-like
memory model. It is the client’s responsibility to use the provided memory orderings
to synchronize multi-threaded programs.

Most real-time systems require more control over the behaviour of multi-threaded
programs, beyond what Mu provides. We discuss the necessary additional concur-
rency abstractions in Section 3.3.5.

Memory Management Mu’s memory consists of a garbage-collected heap, a global
memory area, and the stack area. The garbage collector automatically handles alloca-
tion and reclamation of fixed or variable sized objects on the heap. Global memory
is allocated statically, and lives throughout the program’s lifetime. The stack area
accommodates stacks which may be created or deleted manually.

Garbage collection is an integral part of Mu’s memory management. However, it is
too complex for some real-time systems, and imposes intolerable pauses or overhead
for many of them. In Section 3.3.4, we discuss an alternative approach that is suitable
for a wide range of real-time applications.

Compiler Backend The compiler backend of Mu translates Mu IR to machine code.
Following the minimality principle, and because of the importance of language-
specific optimizations [Castaños et al., 2012], Mu expects most optimizations to be
performed by the client. While some optimizations (e.g., register allocation) must
be done close to the machine, language-neutral optimizations are often much less
important than language-specific ones, and those must be performed within the
higher layers of the client, where enough knowledge about client language semantics
is available.

For a real-time system, a compiler backend aiming at optimizing worst-case exe-
cution time (WCET) rather than average-case performance may seem desirable. How-
ever, not all real-time systems can afford the level of complexity in such a backend.
Also, µVM design principles argue against adding new features, in favor of preserv-
ing minimality. We discuss our recap of these challenges and the current RTMu
backend design in Section 3.3.3.

Unsafe Native Interface The Mu Unsafe Native Interface (UNI) provides support
for direct interaction between Mu IR and native programs such as OS system calls.
This is usually necessary for managed languages. For instance, C# provides support

DRAFT – 22 April 2021

§2.5 Summary 19

for directly calling C functions. The JVM on the other hand, prohibits direct inter-
action. Thus, Java applications have to use JNI and endure a heavyweight C-Java
boundary overhead.

Real-time systems often require a high level of control over their outside world,
including the other pieces of software on the system and the physical environment.
Hence, the UNI is necessary in developing RTPLs, mainly because it helps to im-
plement a means of interaction with system software, such as the RTOS kernel and
device drivers. Using this interface, the RTPL primitives are able to control other
software elements and I/O devices.

Implementation and Evaluation Currently, there are two open-source implementa-
tions of the Mu specification: a reference implementation which acts as a proof of
implementation [Wang, 2018], and a high-performance implementation [Lin, 2019],
which is still under development. To demonstrate the capability of Mu in supporting
a real-world language as a client, some experiments are reported by Wang [2018].
A portion of the PyPy project’s RPython framework has been retargeted from C to
Mu, which was able to execute the RPySOM interpreter and the core of the PyPy
interpreter on a Mu implementation. Some early work on supporting GHC has also
been done.

2.5 Summary

RTMu is designed based on the Mu specification and inspired by real-time program-
ming languages (RTPL) and real-time operating systems (RTOS). In this chapter, we
presented the background material for this thesis. We introduced our target domain,
real-time systems, and discussed some of their key differences to non-real-time sys-
tems. Next, we briefly explained the main challenges in implementing programming
languages, including the ones for real-time systems. Then, to review the language
features specific to real-time systems, we surveyed a representative set of RTPLs that
cover a diverse range of real-time systems. We also introduced Mu and explained the
key aspects which require further attention from the viewpoint of a RTPL developer.
The next chapter presents the design of RTMu and discusses how the information in
this chapter influenced the design.

DRAFT – 22 April 2021

20 Background and Related Work

DRAFT – 22 April 2021

Chapter 3

RTMu: A Micro Virtual Machine
for Real-Time Systems

In this chapter, we present the design of RTMu, a concrete specification for the first
micro virtual machine (µVM) on which managed programming languages for real-
time systems can be developed1. The goal of our design is to make the advantages
of correct managed languages far more accessible in the real-time domain. We build
on a previously published µVM specification, named Mu, and propose a set of
modifications to its abstractions over concurrency and memory management to make
it suitable for real-time systems.

The first two sections of this chapter (3.1 and 3.2) address the high level aspects of
the design. Sections 3.3.1 and 3.3.3 present the parts which mostly reuse the Mu ab-
stractions, with slight changes where necessary. Sections 3.3.4, 3.3.5 and 3.3.6 explain
our new abstractions over memory management, concurrency and time. Finally, we
summarize the design in Section 3.4.

This chapter is based-on work originally published at VMIL-2019 [Amiri et al.,
2019], and subsequently refined as a result of the experience implementing the spec-
ification. The contributions of this chapter are: (1) identification of core language
features that distinguish real-time languages, (2) design of the first µVM for real–
time language implementation, (3) specification of IR extensions to support real-time
languages, (4) specification of runtime changes to support real-time languages, (5) de-
scription of how to use the new primitives to conform to the requirements of a variety
of real-time applications.

3.1 Key RTPL Features

Considering the Real-Time Programming Languages (RTPL) in Section 2.3 and many
more, RTPLs can be divided into three main categories, based on the range of real-
time systems they target: (1) high-integrity systems, (2) resource-constrained systems,
and (3) other systems, often as part of a large-scale real-time system.

1Existing real-time Java VMs such as FijiVM [Pizlo et al., 2009] and JamaicaVM [Siebert, 2010] are all
macro VMs.

21

DRAFT – 22 April 2021

22 RTMu: A Micro Virtual Machine for Real-Time Systems

In high-integrity systems, such as the safety-critical software systems in a car or
an airplane, reliability is the most important requirement. From a language design
perspective, reliability should be investigated at two levels. First, it should be pos-
sible to verify various aspects of an application written in the language. To achieve
this, languages such as SPARK relinquish hard-to-analyze language features such
as pointer types and dynamic object allocation, in favor of analyzability. Second, it
should be possible to verify the language and its toolchain, which again means that
simplicity is essential for the language design and implementation.

Languages for high-integrity systems may trade ease of programming, perfor-
mance and efficiency for higher levels of verifiability. For instance, Schoeberl et al.
[2017] report that the three level programming model of SCJ is not easy to learn.
They also mention that the performance overhead of SCJ may make tasks with small
periods infeasible. Additionally, writing an application as a set of PEHs with only
static memory allocation is not an efficient way of using processing and memory
resources.

In real-time systems with resource constraints—such as limited processing power,
small memory, or a limited energy source—the language footprint is the most critical
issue. So, languages may overlook ease of use and verifiability to consume resources
more efficiently. In such systems, the C programming language is often used, since
its runtime has a minimal computational and spatial footprint. In less constrained
cases, managed languages such as SCJ may also be used.

Large-scale systems often consist of a number of real-time tasks with various
requirements. Languages such as RTSJ, which target these systems, should supply a
wealth of features including:

a. Static-priority scheduling algorithms, including the priority-based scheduling
available in most RTOSs, and the Rate-Monotonic (RM) algorithm, that are the
most popular scheduling choices in real-time systems, due to their availability
and simplicity.

b. Dynamic-priority scheduling algorithms, such as the Earliest Deadline First
(EDF), that are known to have better schedulable utilizations in some real-time
systems.

c. Avoiding the unbounded priority inversion problem by supporting the Priority
Inheritance Protocol (PIP), or avoiding both the unbounded priority inversion
and the deadlock problems by supporting variants of the Priority Ceiling Proto-
col (PCP).

d. Automatic memory management through real-time GC, often accompanied by
other easier-to-analyze and more predictable memory management techniques,
such as scoped memory.

e. Access to physical memory addresses, to work with I/O devices, or on plat-
forms with multiple types of memory.

f. Tools to monitor and manage time.

DRAFT – 22 April 2021

§3.2 Scope 23

These features reduce the cost and difficulty of implementing and maintaining large-
scale real-time applications, but they increase the language size and hamper verifi-
cation. As a result, such languages are not often used in high-integrity or resource-
constrained systems, despite being easier to program and less error-prone.

3.2 Scope

RTMu is a concrete µVM specification designed to facilitate development of correct
programming languages for real-time systems, including implementing new real-
time languages or reimplementing existing ones. RTMu is language-neutral, and
addressing language-level concerns such as adherence to specific safety standards
is outside its scope. In this section, we specify the range of real-time programming
languages covered by this design.

Requirements and Constraints To satisfy the requirements of real-time systems,
RTPLs provide various features which are often not available in general-purpose
languages. RTMu should supply the necessary low-level abstractions to implement
these features.

In summary, RTMu must provide the following additional features:

• Concurrency:

– Threads whose attributes indicate their timing and resource access con-
straints.

– Control by the client over thread execution contexts and their mutual effects
by setting thread attributes.

– A scheduler that accommodates the client in building static and dynamic
priority schedulers common in real time programming languages, including
SCJ, RTSJ, RT-POSIX and SPARK Ada.

– Inter-thread communication primitives that support prevention of unlimited
priority inversion and deadlock.

• Memory management:

– A choice of automatically managed (garbage-collected), semi-automatic, and
manual memory management on the same real-time system.

– A garbage collector that does not affect threads that do not access the heap.
– Control over allocation and access for specific physical memory addresses.

• Other:

– Basic tools for time measurement and time-triggered events.

Considering the already-demonstrated capability of Mu in implementing real-
world languages, we will argue that the above features will cover the additional
requirements of real-time systems and make RTMu capable of supporting the imple-
mentation of real-world RTPLs such as RTSJ.

DRAFT – 22 April 2021

24 RTMu: A Micro Virtual Machine for Real-Time Systems

Configurability Some of the features required by RTSJ, such as dynamic memory
allocation and dynamic-priority scheduling, are not necessary when implementing
languages such as SCJ and SPARK. Thus, RTMu is designed so that unused features
will not burden such RTPLs. For instance, it is possible for a client language to
completely ignore GC, or even to only use static memory allocation, and to do so
without penalty.

Assumptions Following Mu, we assume the high-level language implementation
(the client) is trusted, and that it will emit well-defined code for the RTMu runtime to
execute. RTMu implementations are then permitted to omit dynamic safety checks,
such as those for array bounds violations or null pointer dereferences, avoiding
the related overheads or avoiding duplicating them in cases where the high-level
language performs the check.

Non-Goals In this chapter, we are presenting the design of a reliable foundation to
facilitate the emergence of new high-quality real-time managed languages to increase
the breadth of the RTPL ecosystem. To narrow the scope of this design, we declare
some non-goals. First, preserving minimality, this design drops support for popular
general-purpose language features like JIT compilation, interpretation and dynamic
class loading, which can introduce huge delays or make timing and correctness anal-
ysis of real-time applications very hard. Second, we do not address WCET analysis
in this work: we do not require or prescribe a timing model for the underlying hard-
ware, nor the IR instructions themselves. Third, we do not address concerns such
as disabling unbounded loops and recursion, and calculating application memory
requirements, because these can effectively be handled at language or application
level, and it is against the minimality design principle of µVM, which is mentioned in
Section 2.4, to put such features inside RTMu. These are interesting objectives but lie
beyond the scope of this work.

3.3 Design

Like Mu, RTMu provides low-level abstractions over concurrency, the compiler back-
end and memory management, and is designed to be minimal and formally verifiable.
RTMu aims to support a wide range of real-time systems, including high-integrity
systems. In the rest of this chapter, we explain RTMu’s design, and when applica-
ble, we will argue that our design decisions are minimal and sufficient for RTMu’s
purpose.

3.3.1 Architecture

RTMu-based managed language implementations follow the same high-level archi-
tecture as Mu, as depicted in Figure 2.2. The major difference is that RTMu only
supports AOT compilation which means there will be no IR load/build through

DRAFT – 22 April 2021

§3.3 Design 25

Table 3.1: RTMu adds new data types, required for its new real-time features.

Type Description

timerref References to timers

regionref References to explicitly managed memory regions

attrref References to thread attributes

futexref References to futexes

condvarref References to condition variables

the API at run time. Also, the RTMu runtime manages two new memory areas in
addition to the heap, immortal memory, and stacks: regions and explicitly managed
memory (EMM).

3.3.2 Type System

The RTMu type system reuses the whole Mu type system and adds five types to
support newly added features for real-time systems. The added types are shown in
Table 3.1.

To support the basic time management primitives of RTMu, we add the timerref
type to identify timers. Time values in RTMu are 64 bit integers, representing nano-
seconds. These two types and their usage are explained in Section 3.3.6.

RTMu provides memory regions which can be created and destroyed dynamically.
The client may build an arbitrary number of memory regions. To identify these
regions, we add the regionref type.

To create a RTMu thread, the client needs to initialize its attributes. Inspired by
the struct pthread_attr_t type from POSIX threads, and to simplify the relevant in-
structions’ arguments, we add the attrref type to refer to an object that encapsulates
all of these attributes. An instance of this type can only be interpreted and modified
using the provided RTMu instructions.

RTMu adds a new futexref type, instead of reusing the 32 bit futex word from
Mu, which was designed to be easily mapped to the Linux futex. The new type makes
it easier to implement the RTMu futex on top of the wide range of platforms used in
real-time systems. Finally, we add the condvarref type to identify RTMu condition
variables.

Rationale

RTMu’s new types cover all of its new operations. Given the already demonstrated
capability of Mu’s type-system in supporting modern managed languages, and the
fact that RTMu does not exclude any of the Mu types, we argue that RTMu’s type-
system is sufficient to implement new real-time managed languages or reimplement
existing ones, as long as RTMu’s abstractions over concurrency, memory and compiler
are also sufficient.

DRAFT – 22 April 2021

26 RTMu: A Micro Virtual Machine for Real-Time Systems

RTMu reuses existing Mu types in its new operations as much as possible, and
introduces new types only where essential. For instance, RTMu reuses the Mu int<n>
type to represent time value, priority, deadline and processor id. The new RTMu
types in Table 3.1 (except futexref) are used to identify RTMu-specific entities which
do not fit any existing type. Also, the addition of futexref is crucial for RTMu’s
portability. Hence, we argue that RTMu’s type-system is minimal because excluding
any type will lead to loss of expressiveness.

3.3.3 Compiler Backend

The RTMu system is responsible for executing the IR code given to it by the client.
Since we do not support the Mu system’s API for dynamic addition of code to
an already running system, an RTMu implementation is permitted to support only
ahead-of-time compilation of such IR to machine code. (Indeed, our RTMu design
does not in principle prevent an implementation from interpreting IR directly.)

As mentioned earlier, supporting or performing any form of WCET-analysis is an
explicit non-goal of this design, so we expect the execution engines of existing Mu
implementations could be used in RTMu implementations. As the following sections
explain, our changes to the RTMu IR are at the level of adding new entry-points for
controlling the runtime system, rather than changing “computational” facilities.

3.3.4 Memory Management

Memory management in RTMu provides the following basic types of memory areas
which can be used by the client to construct more sophisticated memory managers:

– stacks,

– garbage collected heap,

– explicitly managed memory area,

– regions, and

– immortal memory area.

A summary of these memory areas and the operations a client can perform on them
is shown in Figure 3.1. Each of these areas is explained separately in the following
paragraphs. Among these memory areas, the explicitly managed memory (EMM)
and regions are not already available in Mu. We borrow the other areas from Mu and
modify them to suit the requirements of RTMu.

A detailed list of new memory operations of RTMu is depicted in Table 3.2. All
of these instruction act on the new EMM and regions.

DRAFT – 22 April 2021

§3.3 Design 27

Stacks Heap ImmortalEMM

RTMu Memory

stack

NewSt ack

object

Al l ocA*

object object

New*
. gl obalregion

Del et eRegi on
NewRegi on/
NewRegi onPA

object object

RAl l oc*

EDel et e

Regions

EAl l oc* /
EAl l ocPA*

Ki l l St ack

Figure 3.1: RTMu memory is divided into five areas, each serving a range of higher level
memory managers. Among them, stacks, the garbage collected heap and immortal (static or
global) areas are common in non-real-time managed languages. For real-time languages, we
add EMM and Regions which are highly flexible and may be used to implement a range of
manual and semi-automatic memory managers. In the figure, an object is a typed fixed-size
entity, while a region is a fixed-size container for objects. (Instructions marked by a star have
hybrid versions which allocate objects with variable-length (hybrid) types.)

DRAFT – 22 April 2021

28
RTM

u:A
M

icro
V

irtualM
achine

for
R

eal-Tim
e

System
s

Table 3.2: Instructions added by RTMu. RTMu adds several instructions to support implementation of the common memory managers in
RTPLs and more. The first seven instructions serve region-based memory, like RTSJ scoped memory. The next five instructions mainly target
manual dynamic memory, like malloc and free in C. The last instruction checks whether a reference is located in a region and returns a
regionref or NULL.

Operation Description

regionref NewRegion (int<64> size) Allocate a new region with size number of bytes.

regionref NewRegionPA (int<64> size, uptr<void> addr) Allocate a new region with size number of bytes at the specified physical memory
address.

void CollectRegion (regionref regref) Delete all objects allocated in regref.

void DeleteRegion (regionref regref) Delete the region pointed by regref and all objects it contains.

void BindRegion (regionref regref) Disable swap-out to disk for the region pointed by regref.

void UnBindRegion (regionref regref) Re-enable swap-out to disk for the region pointed by regref.

ref<T> RAlloc/RAllocHybrid (regionref regref, T) Allocate a fixed/variable-size object of type T on the region regref.

ref<T> EAlloc/EAllocHybrid (T) Allocate a fixed/variable-size object of type T on the EMM space.

ref<T> EAllocPA/EAllocHybridPA (T, uptr<void> addr) Allocate a fixed/variable-size object of type T at the specified physical memory ad-
dress.

void EDelete (ref<T> obj) Delete the object pointed by obj from the EMM space.

void BindObject (ref<T> obj) Disable swap-out to disk for the EMM object pointed by obj.

void UnBindObject (ref<T> ptr) Re-enable swap-out to disk for the EMM object pointed by ref.

regionref RefToReg (ref<T> obj) Return the region where obj is located, or NULL if not in Regions area.

D
R

A
FT

–
22

A
pril2021

§3.3 Design 29

Garbage-Collected Heap The RTMu’s garbage collected heap is an automatically
managed memory area like the garbage collected heap in RTSJ. The RTMu specifica-
tion does not stipulate any particular GC algorithm. Instead, RTMu implementations
should choose the right GC for their purpose and account for its effects on tasks that
do not use the heap. Although this is not straightforward to achieve, it has already
been shown to be possible in a wide range of real-time systems [Sharp et al., 2003].
Additionally, RTMu enables the client to build a language with no GC support. In
this case, the language is not affected by any of the complexities of GC.

Stacks A stack in RTMu is the context of activations of functions. Allocating on a
stack is done using AllocA T or AllocAHybrid T instructions, which return a reference
of type iref<T>. The returned reference is traced by the GC because the object it points
to may contain direct or indirect references to heap objects. In RTMu, the client may
create tasks which do not use the heap to avoid complexities and delays. Such tasks
should not experience any interference from the GC (e.g. through scanning the task’s
stack).

Explicitly Managed Memory The EMM area of RTMu provides low-level primitives
to implement memory managers, which support both allocation and deletion, at the
granularity of an object. For instance, the malloc and free functions in C can be built
using this memory area.

The EMM area allows allocation of typed fixed-sized objects. The client may use
the two variants of the EAlloc instruction to directly allocate objects in the EMM.
These objects may be deleted using the EDelete instruction.

By default, the EAlloc instruction allocates in RTMu’s virtual address space, and
the underlying OS handles the virtual to physical address mapping. By default, noth-
ing prevents the OS memory manager from swapping the memory page(s) holding
the object out to secondary storage such as the hard-disk. Some real-time applications
need to avoid the unpredictability and overhead of the page swapping in RTOSs like
RT-Linux. So, RTMu adds the BindObject instruction to bind an object to the main
memory. The client may later use the UnBindObject instruction to allow swapping to
happen again.

Real-time applications may also require direct access to specific addresses in phys-
ical memory, for instance to do memory-mapped I/O, or to handle platforms with
more than one type of memory. To enable this, RTMu adds the EAllocPA instruction
to allocate an object at the client-specified address.

Availability and behavior of memory management instructions such as BindObject
is tightly dependent on the underlying RTOS memory manager. If an RTOS does not
provide virtual memory management or swapping, the BindObject instruction will
have no effect. Also, if an RTOS restricts the access to physical memory or specific
physical addresses, the affected RTMu instruction will not be available.

DRAFT – 22 April 2021

30 RTMu: A Micro Virtual Machine for Real-Time Systems

1 class SomeList {
2 SomeList next;
3 }
4

5 outer_scope.enter();
6 SomeList head = new SomeList();
7 ...
8 ScopedMemory inner_scope = new ScopedMemory(const_size);
9 inner_scope.enter();

10 SomeList tail = new SomeList();
11 head.next = tail; // exception

Listing 3.1: Simplified RTSJ code that tries to create a reference from an object (head)
allocated in an outer (older) scope to an object (tail) allocated in an inner (younger)
scope. RTSJ disallows such references, requiring the RTSJ VM to detect and trigger
an exception at the point of the assignment.

Regions The regions area is a part of the RTMu memory space in which the client
may allocate and delete fixed-size contiguous pieces of memory, each called a region.
Creating a new region in the regions area is done by calling one of the two vari-
ants of the NewRegion instruction. The created region may be deleted by calling the
DeleteRegion instruction. It is also possible to delete all objects contained in a region
using the CollectRegion intrinsic. In this case, the memory used by the region is not
reclaimed. To allocate an object inside a region, RTMu provides the two variants of
the RAlloc instruction. The allocated objects are deleted only when the client deletes
or collects the containing region. The RTMu regions can be used to implement mem-
ory managers such as the variants of scoped memory in RTSJ, mission and private
memories in SCJ and the unbounded containers in SPARK.

Deleting a region may lead to dangling references to objects inside the region.
RTMu provides the RefToReg intrinsic, which takes a reference to an object and
returns a reference to its containing region, or NULL if the conversion is not valid (e.g.
the input is a heap object). The client can use this instrinsic to check for dangling
references, allowing the implementation of semantics like those for RTSJ’s scoped
memory. Listing 3.1 shows a scenario in RTSJ where an exception is thrown to
indicate a potential dangling reference. A translation of this scenario to RTMu IR is
depicted in Listing 3.2.

As explained for EMM objects, the client may need to bind and unbind regions
to main memory. For this, RTMu adds the BindRegion and UnBindRegion instructions.
It is also possible to allocate a region at a specific physical memory address through
the NewRegionPA instruction.

Similar to the stack, the client may allocate objects with or without references
to the heap, in a region. An RTMu implementation is responsible for guaranteeing
that a task using regions with no references to the heap is not affected by the GC.
Additionally, the GC must have access to all the required data to collect heap garbage
correctly and leave no dangling references.

DRAFT – 22 April 2021

§3.3 Design 31

1 regionref _inner_scope = NewRegion (const_size)
2 // client-written function to keep scopes and update current_scope
3 Call push_scope (_inner_scope)
4 iref<ref<SomeList_t>> _head_next = GetFieldIRef <_headref, 0>
5 ref<SomeList_t> _tail = RAlloc (current_scope, SomeList_t)
6 // check lifetimes
7 regionref _dest = RefToReg (_head_next)
8 regionref _src = RefToReg (_tail)
9 // client-written function to quantify scope lifetimes

10 age_t _dest_age = Call scope_age (_dest)
11 age_t _src_age = Call scope_age (_src)
12 // allowed if src will live equal or longer
13 int<1> is_allowed = cmpOp::UGE _src_age _dest_age
14 Branch2 is_allowed store_block exc_block
15 exc_block:
16 Throw some_exception
17 store_block:
18 Store <<ref<SomeList>> _head_next, _tail

Listing 3.2: A translation of the last four lines of the RTSJ code in Listing 3.1 into
(compact) RTMu IR code. This shows how a client can use the low-level memory
management instructions of RTMu to provide a higher-level memory management
feature required by a real-time language, namely preventing dangling references in
scoped regions.

Immortal Memory The immortal memory area is the preferred tool to implement
memory managers which do not need to delete objects. It is more efficient than other
memory areas, as it keeps less information and is simpler. The immortal memory
area can be used to implement the global memory in C, the immortal memory in
RTSJ and SCJ, and the bounded containers in SPARK.

Configurability

Client languages such as SCJ and SPARK should be able to assume that they are not
burdened by the complexities of GC. Hence, RTMu implementations must guarantee
that a client without New/NewHybrid instructions is not affected by the GC (e.g., GC-
related read/write barrier code must not be emitted). As RTMu only supports AOT
compilation, this can be done by simple static analysis at compile-time.

A client language may want to support safety-critical and non-safety-critical real-
time tasks at the same time. In such a language, there may be three types of tasks:
(1) low-priority tasks that use New/NewHybrid instructions, (2) medium-priority tasks
that allocate on alternative areas (e.g. scopes) but refer to heap objects, and (3) safety–
critical tasks that do not refer to heap objects, and assume that they are not burdened
by the complexities of GC. To support such a language, RTMu implementations are
responsible for performing the required analysis based-on their choice of GC.

DRAFT – 22 April 2021

32 RTMu: A Micro Virtual Machine for Real-Time Systems

Rationale

RTMu’s memory instructions are designed to be sufficient for implementing the mem-
ory managers in the real-time languages we surveyed. In this section, we mentioned
some of the popular ones including the garbage-collected heap and scoped memory
in RTSJ, malloc and free in C, and static memory allocation in SPARK and SCJ. We
demonstrate this capability by designing and implementing a comprehensive memory
manager for RT-RPython, our new real-time language, explained in Section 5.2.1.

The memory instructions of RTMu are minimal for two reasons: First, if we remove
any of these instructions, RTMu will lose its ability to implement at least one of the
memory areas in our list of surveyed real-time programming languages. Second, all of
these instructions represent low-level operations with no overlapping functionalities.
The only exception is the CollectRegion instruction which might be replaced with
deleting the target region and creating a new one. However, this can be inefficient
compared to a single CollectRegion instruction.

3.3.5 Concurrency

RTMu makes several necessary amendments to the concurrency primitives of Mu for
real-time systems. It grants more control over thread attributes and scheduling param-
eters, so that the client can implement various scheduling algorithms. Also, some new
features, essential in real-time applications, are added to Mu’s basic synchronization
primitives.

RTMu provides the client with a basic two-step scheduler which enables the
implementation of a wide range of static and dynamic-priority scheduling algorithms.
The RTMu scheduler consists of a certain number of priority levels. Threads may be
added to each priority level or removed from it at run time. RTMu implementations
are allowed to put an upper-bound on the number of threads at each priority level.
In the common case of running on top of a RTOS such as RT-Linux or RTEMS, both
the maximum number of priority levels and the number of tasks at each level depend
on the limitations of the underlying RTOS scheduler. 2 In the first step, the scheduler
finds the highest priority level with at least one ready-to-run task. If there is more
than one thread at that priority level, the second scheduler step selects a thread
to run based on the chosen scheduling policy. The choice of scheduling policies
includes Round Robbin (RR), First In First Out (FIFO) and Earliest Deadline First
(EDF). The first two policies can be used to implement fixed priority scheduling, the
most popular scheduling approach in real-time systems [Burns and Wellings, 2009].
The last one is a foundation for the development of dynamic priority scheduling
algorithms, including EDF itself. The schematic structure of the scheduler and how it
imposes scheduling policies is depicted in Figure 3.2.

To enable the scheduler, RTMu adds three attributes to threads. (1) The priority
attribute is a number between zero (the highest priority) and the number of sched-

2It is possible for an RTMu implementation to implement its own scheduler without these limitations.
That will introduce implementation challenges which are outside the scope of this chapter which is on
the RTMu specification.

DRAFT – 22 April 2021

§3.3 Design 33

Priority 0
(Highest)

Priority 1

Priority 2

Priority Pmax - 3

Priority Pmax - 2

Priority Pmax – 1
(Lowest)

…
.

St
at

ic
 P

rio
rit

y

DPTearliest_deadline DPTlatest_deadline….

SPTentered_first SPTentered_last…. SPTNEW

DPTNEW

?

Option 1: Dynamic Priority Scheduling
(EDF)

Option 2: RR or FIFO

Secondary Priority

Figure 3.2: The RTMu Scheduler consists of a number of (static) priority levels. For each level,
the scheduler keeps a queue of ready tasks. The position of a new ready task in the queue
depends on the scheduling policy at that priority level. For RR and FIFO, the new task is
always the last in the queue, and for EDF, tasks with smaller deadlines are inserted closer to
the queue head.

uler’s priority levels minus one (the lowest priority). Tasks at higher priority levels
are dispatched earlier. (2) The affinity attribute is an opaque data type indicating the
processing nodes on which the current threads may run. The structure of the data is
platform-dependant and can only be modified using the relevant RTMu instructions.
(3) The deadline is an integer (time value), used to decide the dispatch sequence of
threads at a priority level with EDF scheduling policy. The thread with the smallest
deadline is dispatched first.

RTMu thread attributes are encapsulated in a new type named attrref. When
a client creates a new real-time thread, they must pass the initial attributes of the
thread as an object of this type. The internal structure of the attrref type is platform-
dependent. Modifying objects of this type is only possible through the provided
RTMu instructions.

To implement synchronization primitives, RTMu provides three basic tools in-
cluding futex, condition variables and atomic operations. The RTMu futex is a fast
mutual exclusion lock which supports the PIP or PCP. Similar to the RT-Linux futex,
the contention-free case in RTMu futex can be handled at the user-level. The RTMu
condition variable is a priority-aware synchronization primitive that allows multiple
threads to wait for a condition. RTMu’s atomic operations are borrowed from Mu
without any change. As with Mu, RTMu clients are responsible for implementing
higher-level language-specific synchronization mechanisms, such as protected objects,
message queues or monitors using futex, condition variable and atomic operations.
All of RTMu’s concurrency related instructions are shown in Tables 3.3, 3.4 and 3.5.

RTMu is designed to conform to RTOSs’ concurrency primitives, to allow light-
weight implementation of the above-mentioned properties. If the RTOS does not

DRAFT – 22 April 2021

34 RTMu: A Micro Virtual Machine for Real-Time Systems

Table 3.3: RTMu provides instructions to create, initialize and manage real-time threads and
their attributes.

Instruction Description

attrref NewAttr Create a new thread attributes object

void DeleteAttr (attrref a) Delete a thread attributes object and reclaims
its memory

void AttrSetPriority
(attrref a, int<64> p)

Set the priority field of a thread attributes ob-
ject

int<64> AttrGetPriority
(attrref a)

Get the priority field of a thread attributes ob-
ject

void AttrSetDeadline
(attrref a, int<64> dl)

Set the deadline field of a thread attributes
object

int<64> AttrGetDeadline
(attrref a)

Get the deadline field of a thread attributes
object

void AttrSetCPU
(attrref a, int<64> n)

Add processor node n to the active processors
of a thread attributes object

void AttrClearCPU
(attrref a, int<64> n)

Remove processor node n from the active pro-
cessors of a thread attributes object

void AttrZeroCPU
(attrref a)

Remove all processor nodes from the active
processors of a thread attributes object

bool AttrIsSetCPU
(attrref a, int<64> n)

Check whether processor node n is in the ac-
tive processors of a thread attributes object

threadref NewRTThread
(attrref a, stackref s,
threadLocalClause,
newStackClause, excClause)

Create a new thread with the specified argu-
ments

void ThreadSetAttr
(threadref t, attrref a)

Update the current attributes of a thread to a

attrref ThreadGetAttr(threadref t) Return the current attributes of a thread

void ThreadSetPriority
(threadref t, int<64> p)

Set the priority of a thread

int<64> ThreadGetPriority
(threadref t)

Get the current priority of a thread

void ThreadSetDeadline
(threadref t, int<64> dl)

Set the deadline of a thread

int<64> ThreadGetDeadline
(threadref t)

Get the current deadline of a thread

void ThreadSetCPU
(threadref t, int<64> n)

Add processor node n to the active processors
of a thread

void ThreadClearCPU
(threadref t, int<64> n)

Remove processor node n from the active pro-
cessors of a thread

bool ThreadIsSetCPU
(threadref t, int<64> n)

Check whether processor node n is in the ac-
tive processors of a thread

DRAFT – 22 April 2021

§3.3 Design 35

Table 3.4: RTMu provides futex as a mutual exclusion lock that supports PIP or PCP. PIP is
the default protocol. To switch to PCP, the priority ceiling must be set to a value other than
the lowest RTMu priority (platform-dependant). Also, resetting to the lowest RTMu priority
will switch back to PIP.

Instruction Description

futexref NewFutex Create a new futex

void DeleteFutex (futexref ftx) Delete a futex

void LockFutex (futexref ftx) Lock a futex, blocks if the futex is already
locked

void TimedLockFutex
(futexref ftx, int<64> dur)

Lock a futex, blocks for at most dur nano-
seconds

void UnlockFutex (futexref ftx) Unlock a futex
void SetPCFutex
(futexref ftx, int<64> p)

Set the priority ceiling of a futex

int<64> GetPCFutex (futexref ftx) Get the current priority ceiling of a futex

Table 3.5: An RTMu condition variable is a synchronization primitive that allows multiple
threads to wait for a condition. Similar to POSIX condition variables, each RTMu condition
variable is associated with an RTMu futex which must be locked before waiting on the
condition variable, and unlocked after returning from the wait operation. A signal operation
unblocks the highest priority thread waiting on the condition variable.

Instruction Description

condvarref CondVarNew Create a new condition variable

void CondVarDelete (condvarref cv) Delete a condition variable
void CondVarWait
(condvarref cv, futexref ftx)

Wait on a condition variable

void CondVarTimedWait
(condvarref cv, futexref ftx,
int<64> dur)

Wait on a condition variable for at most dur
nano-seconds

void CondVarSignal (condvarref cv) Signal one of the threads waiting on a condi-
tion variable

void CondVarBroadcast
(condvarref cv)

Signal all threads waiting on a condition vari-
able

DRAFT – 22 April 2021

36 RTMu: A Micro Virtual Machine for Real-Time Systems

supply the needed foundation, RTMu may not be able to provide some of its features.
For instance, RT-Linux and RTEMS support EDF only for threads at the highest level
of priority. Thus, an RTMu implementation on RT-Linux may choose not to provide
EDF at all priority levels if the complexity or overhead is too high.

Rationale

Scheduling multi-processor real-time systems consists of two problems [Davis and
Burns, 2011b]: (1) allocation of tasks to processors, and (2) assigning priority to order
the execution of jobs (e.g. one release) of tasks in the system. For the allocation
problem, RTMu provides an API to control tasks’ affinities throughout the system
run time. For the priority assignment problem, RTMu provides APIs to assign static
and dynamic priority to tasks, both of which may be changed throughout the system
run time. Hence, RTMu provides sufficient abstractions to support the key scheduling
algorithms in the multi-processor real-time systems’ domain.

RTMu’s abstractions over task scheduling do not dictate any higher-level schedul-
ing algorithms such as RM and EDF (the notion of deadline in RTMu is only a number
to represent dynamic priority in general, and is not limited to deadline as a time).
Rather, they provide a minimal set of tools to implement these algorithms, and a wide
range of alternatives.

3.3.6 Clock and Timers

Timeliness is a vital part of a real-time application’s mission. Thus, any language for
such systems should provide a toolset for managing time. There are two types of
tools for this purpose [Burns and Wellings, 2009]: (1) tools to measure the passage of
time (e.g., the Calender package in Ada and the Clock class in RTSJ), and (2) tools to
schedule events at specific times (e.g., delay in Ada and sleep in RTSJ). To support
the implementation of these two types of tools, RTMu provides low-level abstractions
over clock and timers.

All time-related RTMu instructions are mentioned in Table 3.6. There is one
instruction to read the current system clock value as a 64 bit integer representing the
number of nano-seconds. The other four instructions create, monitor, modify and
delete timers which can be used to manage Time-Triggered (TT) events. Additionally,
RTMu adds the timerref type to identify timers. As an example of implementing
high-level language features on RTMu, the pseudo-code for creating a periodic task
using a RTMu timer is shown in Listing 3.3.

Rationale

The time-related instructions of RTMu are designed to include a minimal set of the
time-management facilities of RTOSs such as RT-Linux and RTEMS. We argue that
these low-level instructions are sufficient for implementing higher-level language ser-
vices, because they cover both types of tools mentioned in Section 3.3.6.

DRAFT – 22 April 2021

§3.3 Design 37

Table 3.6: The new clock and timer methods in RTMu include one basic operation to read the
clock, and four basic operations to manage timers.

Method Description

int<64> GetTime () Return the current system time

timerref NewTimer () Create a new timer and returns a handle
void SetTimer
(timerref tmr, int<64> tm,
funcref fn, ref<void> arg)

Activate the timer tmr to call fn(arg) after
an interval tm

void CancelTimer (timerref tmr) Deactivate the timer tmr

void DeleteTimer (timerref tmr) Delete the timer tmr

1 Fn parent():
2 // the period is 1 millie-second
3 int<64> _period = 1_000_000; // nano-seconds
4 stackref _stack = NewStack (entry);
5 Call init_thread (_stack, _period);
6

7 Fn entry(ref<void> arg)
8 BEGIN:
9 Call wait (self.cond);

10 // THREAD BODY GOES HERE
11 Branch BEGIN
12

13 // initialize the periodic thread
14 Fn init_thread(stackref _stack, int<64> _period)
15 attrref _attr = NewAttr ();
16 threadref _thread = NewRTThread (_stack, _attr);
17 timerref _timer = NewTimer (); // not started yet
18 ref<void> arg = RefCast (_thread)
19 // call wake_thread periodically
20 SetTimer (_timer, _period, wake_thread, arg);
21

22 Fn wake_thread(ref<void> arg)
23 threadref _thread = RefCast (arg)
24 Call wake(_thread.cond);

Listing 3.3: Simplified RTMu IR code that creates a periodic thread. A parent function
creates a new stack for the periodic thread’s entry function. Then, the init_thread
function initializes the thread and binds it to the stack. Next, the parent thread creates
a timer to periodically call wake_thread. At each period, this function sends a signal
to wake the periodic thread, which will run the thread body.

DRAFT – 22 April 2021

38 RTMu: A Micro Virtual Machine for Real-Time Systems

3.3.7 Unsafe Native Interface

As mentioned in Section 2.1.1, working with I/O devices is a critical part of many real-
time systems, and any language targeting these systems needs to provide a proper
support for it. To enable this, RTMu borrows the Unsigned Native Interface (UNI) of
Mu, which allows direct interaction between RTMu IR and native programs such as
OS system calls. Using UNI and RTMu’s new instructions for working with physical
memory addresses, mentioned in Section 3.3.4, RTPLs are able to implement features
such as writing new Interrupt Service Rountines (ISR) and interacting with device
drivers.

3.3.8 Client Interface

Compared to the client interface in a non-real-time µVM such as Mu, the RTMu API
is more restricted. It mainly allows the client to build and load IR code bundles. How-
ever, this cannot happen at run time because RTMu only supports AOT compilation.
The API may also provide tools such as KeepAlive clauses for debugging purposes,
provided that it does not affect the run-time behaviour when not debugging.

Due to the removed support for JIT compilation, the RTMu API does not provide
features such as accessing and manipulation of the states of µVM memory, threads
and stacks. It also does not support run-time optimizations.

3.4 Summary

In this chapter, we presented the design of RTMu, a µVM on which managed pro-
gramming languages for real-time systems can be developed. RTMu is designed
based on an existing non-real-time µVM specification named Mu. To design RTMu,
we first extracted a set of key features that distinguish real-time and non-real-time
programming languages. Then, we proposed a minimal set of changes to Mu’s ab-
stractions over concurrency and memory management, plus a new abstraction over
time management, to make it suitable for implementing real-time languages. We also
justified the minimality of our proposed changes, and their sufficiency for implement-
ing RTPLs.

In the next chapter, we present our implementation of the RTMu specification as
the first step towards demonstrating its viability.

DRAFT – 22 April 2021

Chapter 4

RTMu Implementation

Our first step in demonstrating the viability of the RTMu specification is to provide
an implementation of RTMu. We build on a high-performance implementation of
the Mu specification in Rust [RustTeam], named Zebu [Lin, 2019], and extend it in
compliance with RTMu. We call the new implementation RTZebu. The source code
for RTZebu is available on ANU Gitlab [RTZebuGit, 2021].

RTZebu is an implementation of the RTMu specification on RT-Linux. Although
RT-Linux is not the RTOS of choice for all real-time systems, it is sufficient for the goal
of this thesis which is to demonstrate the possibility of an efficient implementation of
the RTMu specification. We acknowledge that there are other more popular RTOSs
such as seL4 [Klein et al., 2009], RTEMS and FreeRTOS, which outperform RT-Linux
in certain aspects such as lower worst-case delays, less memory footprint and higher
reliability. Implementing RTMu on them means it will be usable on a wider range of
real-time systems, specially the hard real-time ones. However, these RTOSs provide
considerably less OS level services than RT-Linux and implementing RTMu on them
demands a very substantial engineering effort unrelated to the core objectives of this
thesis. Hence, it did not fit in the timeline of this thesis and we do not discuss the
implementation of RTMu on these RTOSs in this chapter.

We start this chapter with an introduction to Rust, as our language of choice for
high-performance VM implementation. Then, we briefly present Zebu as the basis for
the RTZebu implementation. Finally, we mention the key aspects and challenges in
the RTZebu implementation.

4.1 Rust

Rust is a systems programming language that aims to bring together the low-level
control and efficiency of C and C++, and the safety features of higher-level languages.
Rust’s design has three major principles [Turon, 2015b,a]:

1. memory-safety without garbage collection,

2. concurrency without data races (thread-safety), and

3. abstraction without overhead.

39

DRAFT – 22 April 2021

40 RTMu Implementation

Rust achieves all of these through its rules of object ownership, lifetimes and reference
borrowing, which are verified by a powerful compile-time safety checker. This shifts
as much as possible of the safety burden to compile time and eliminates the run-time
overhead. All these benefits may sometimes come at the cost of Rust’s expressiveness
[Lin, 2019] and its longer than usual learning curve.

In addition to its safe world with no data races and no memory faults, Rust
provides an unsafe world, where programmers may use unsafe code, such as raw
pointers and external functions at their own risk, provided that they wrap it in an
unsafe block or function. If used properly, unsafe Rust can be a powerful tool to
fine-tune performance and compensate for Rust’s restrictions.

4.2 Zebu

Zebu VM [Lin, 2019] is an efficient implementation of the Mu µVM specification
in Rust. It consists of three tightly-coupled major components, namely a garbage
collector, threads, and compiler, corresponding to the the key Mu abstractions.

The GC in Zebu is an implementation of the Immix garbage collector [Black-
burn and McKinley, 2008] that supports parallel (thread-local) allocation and parallel
collection. It was the first Zebu component to be written in Rust, and served as a
proof-of-concept for the usability of Rust as a language for high-performance virtual
machine implementation. Lin et al. [2016] report that their GC implementation in
Rust, with only 4 % unsafe code, is less than 1 % slower than the same GC imple-
mented in C, and it significantly outperforms the popular Boehm-Demers-Weiser
(BDW) collector implemented in C [Boehm et al., 1991].

Mu threads in Zebu are implemented using the std::thread::spawn() function
from Rust’s standard library. Each Rust standard thread maps to a native OS thread.
For instance in Linux, Rust threads are implemented using pthreads. After creating
a new thread, Zebu does a SwapStack from the default thread stack to the Mu stack
bound to the new Mu thread.

The Zebu’s compiler is designed in alignment with the Mu requirements of mini-
mality, efficiency, and flexibility. The only major optimizations included in the com-
piler are instruction selection and register allocation, which cannot be done by the
client. Most of the IR-level optimizations are deferred to clients or optimizer libraries,
to preserve minimality and verifiability. The compiler also supports two simple code
patching mechanisms to allow efficient implementation of dynamic languages. For
introspection of execution state, Zebu builds a stack map and a call-site table to
support zero-cost exception handling and stack introspection with KeepAlives. Per-
formance evaluation of the Zebu compiler backend using micro-benchmarks shows a
slowdown of 2 % to 25 % compared to LLVM, which is reasonable considering Zebu’s
minimalism and comparative immaturity [Lin, 2019].

DRAFT – 22 April 2021

§4.3 RTZebu 41

4.3 RTZebu

RTZebu is our implementation of the RTMu specification in Rust, demonstrating
the feasibility of RTMu’s abstractions. In the rest of this chapter, we briefly discuss
two interesting aspects of RTZebu: (a) how most abstractions are implemented as
light-weight wrappers around RTOS services, and (b) when and why we had to
violate Rust’s safety.

4.3.1 Compiler Backend

To implement the compiler backend of RTZebu, we reuse the AOT compiler of Zebu
and add two categories of changes.

First, we add the support for the new RTMu types mentioned in Table 3.1. All of
these new types are opaque reference types, and they share most of their properties,
including size, alignment, and register group, with existing opaque reference types,
such as threadref and stackref. The RTZebu runtime abstracts all these types as
Address, as proposed by Lin et al. [2016].

Second, we modify the compiler to translate the new RTMu IR operations. These
new operations work on the RTZebu runtime. To emit code for them, the compiler
needs to know the runtime entry point for each of these operations. It also needs to
know the input argument types for these operations. Thus, we add new runtime entry
points and their argument types to RTZebu, following the same structure previously
implemented for Zebu.

4.3.2 Threads and Scheduling

Rust provides two interfaces for creating new threads. The first one is by calling
the std::thread::spawn() function, and specifying the thread body as a Rust closure
or an object of a type that implements the std::ops::FnOnce and std::marker::Send
traits. In this case, the thread is created with the default attributes. The second one is
through the std::thread::Builder type which allows configuring the name and stack
_size parameters of a new thread, before it is spawned. At the time of writing this
thesis, Rust does not provide any other safe interfaces for creating and configuring
threads.

Zebu uses the std::thread::spawn() function to create its threads. All new Zebu
threads (created using NewThread) swap to their bound Mu stack (created using
NewStack) as soon as they start, so Zebu does not need to change the stack sizes.
Additionally, the Mu specification does not require configuration of any other thread
attributes, and Rust’s safe interfaces are sufficient for Zebu. On the other hand,
the RTMu specification provides the instructions mentioned in Table 3.3 to control
thread attributes and scheduling. However, most of these instructions cannot be
implemented in safe Rust.

One solution is to use Rust’s libc crate [TheRustProjectDevelopers, 2020] which
provides raw foreign function interface (FFI) bindings to system libraries. For exam-

DRAFT – 22 April 2021

42 RTMu Implementation

ple, to implement the RTMu ThreadSetPriority instruction, libc for Linux provides
the following unsafe function and its input argument types:

pub unsafe extern "C" fn pthread_setschedprio(
native: pthread_t,
priority: c_int

) -> c_int

The first argument of this function is the target thread’s id, assigned by the pthread_
create() function when the thread is created. However, this id is not known to the
application when the thread is created using the safe Rust interface.

A workaround to this problem is that each RTZebu thread calls the pthread_self
() function from libc to save its pthread id as soon as it starts. Because each Rust
thread is mapped to one pthread, any future operations to change a RTZebu thread’s
attributes can be translated to a relevant function from libc, with the saved pthread
id as one of its arguments.

While the previous workaround enables assigning a RTZebu thread’s attributes
after it starts, it does not allow creating threads with custom attributes as required
by the NewRTThread instruction of RTMu. To support this, we need to switch from the
safe Rust thread interfaces to the unsafe libc::pthread_create() function that takes
the initial thread attributes as an argument.

In theory, using libc bindings should be sufficient for implementing RTMu thread-
ing instructions. However, at the time of writing this thesis, the Rust libc crate for
Linux does not provide bindings for all of the pthread related functions required
by our implementation. For instance, to modify the priority and scheduling pol-
icy of a thread attribute object, pthread_attr_setschedparam() and pthread_attr_
setschedpolicy() are respectively required, but libc lacks bindings to these functions.
Hence, we need to declare them as extern "C" functions.

Complexity

All runtime entry points for the thread management instructions in Table 3.3, except
the NewRTThread instruction, are implemented in a similar way to the example in List-
ing 4.1. The entry point function, e.g. muentry_thread_set_priority() in Figure 4.1a,
is platform-independent and consists of three steps: (1) initial processing of the in-
put arguments which often includes unsafe access to input data through pointers or
Addresses, (2) calling a platform-dependant function, e.g. sys_thread_set_priority()
in Figure 4.1b, to perform the main operation, and (3) returning the operation’s re-
sult or checking its outcome. The platform-dependant function includes calling a
libc or external function, accompanied by platform-dependant processing of input
arguments and/or a return value.

Dynamic Priority Scheduling

As explained in Section 3.3.5, RTMu implementations may choose not to support the
EDF scheduling algorithm, if the underlying platform (e.g. RTOS) does not provide

DRAFT – 22 April 2021

§4.3 RTZebu 43

1 pub type MuPriority = SysPriority;
2

3 #[no_mangle]
4 pub extern "C" fn muentry_thread_set_priority(
5 muthread: *mut MuThread,
6 priority: u64
7) {
8 let tid = {
9 // null means the calling thread

10 if muthread.is_null() {
11 let mut cur_thread = MuThread::current_mut();
12 cur_thread.sys_thread_id
13 } else {
14 unsafe { (*muthread).sys_thread_id }
15 }
16 };
17 assert_neq!(tid, 0);
18 // call the platform-dependant function
19 let res = sys_thread_set_priority(tid, priority as MuPriority);
20 assert_eq!(res, MU_SUCCESS);
21 }

(a) The runtime entry function for the ThreadSetPriority instruction processes the input arguments,
calls the platform-dependant function to set the target thread’s priority, and checks its outcome.

1 pub type SysThreadID = libc::pthread_t;
2 pub type SysPriority = libc::c_int;
3 pub type SysResult = libc::c_int;
4

5 pub fn sys_thread_set_priority(
6 native: SysThreadID,
7 priority: SysPriority
8) -> SysResult {
9 let sch_param = libc::sched_param {

10 sched_priority: priority
11 };
12 unsafe {
13 libc::pthread_setschedparam(
14 native,
15 MU_DEFAULT_SCHED_POLICY,
16 &sch_param as *const libc::sched_param
17)
18 }
19 }

(b) The POSIX-specific function to update a thread’s priority.

Listing 4.1: An implementation of a sample thread-related instruction of RTMu. All thread
management instructions of RTMu, except NewRTThread, are implemented similarly. They
are translated to a call to a platform-independent entry function at run time. The entry
function calls a platform-dependant function to perform the main operation. Note that this is
only a sample implementation and does not consider any specific requirements such as the
guarantee for no exception in some hard real-time systems.

DRAFT – 22 April 2021

44 RTMu Implementation

EDF or any other dynamic priority scheduling algorithms, and a correct and efficient
implementation of EDF on the platform is not possible.

RTZebu is currently only implemented on top of RT-Linux which provides EDF
only at the highest priority level. As shown in Figure 3.2, supporting EDF at a static
priority level requires controlling the order of threads in the queue of ready threads
at that priority level, but RT-Linux does not provide any interfaces to efficiently
manage this order (the order is always FIFO). Besides, other RTOS services may
inherit this limitation. For instance, the implementation of PIP in RT-Linux’s PI-futex,
prioritizes threads with deadlines over all other threads. Consequently, RTZebu does
not support EDF at all priority levels.

4.3.3 Synchronization

In the initial RTMu design [Amiri et al., 2019], the only synchronization primitive
was the priority inheritance (PI-) futex which exposed all PI-aware operations of the
RT-Linux futex. During the implementation of RTZebu, we changed it to the current
design which includes PI-futex as a fast user-level PI-aware mutex lock, plus a PI-
aware condition variable (explained in Section 3.3.5, and Tables 3.4 and 3.5). The
main reason behind this decision is that the PI-aware operations of the RT-Linux
futex are specifically designed for implementing POSIX’s PI-mutex and PI-condition-
variable. In contrast, the normal Linux futex is more flexible and does not target any
particular higher-level primitives. Besides, the new PI-futex and PI-condition-variable
are portable and easier to use.

Complexity

We implement the RTMu PI-futex using the PI-aware operations of the RT-Linux
futex. For each 32 bit futex word, we keep an instance of the AtomicU32 type from the
std::sync::atomic module of the Rust’s standard library. The uncontended fast-path
is mapped to a user-level call to the AtomicU32::compare_exchange() function. The
slow-path that includes blocking or unblocking threads are implemented using a
futex system-call.

We implement the RTMu PI-condition-variable using pthread’s PI-aware condition
variable. For each RTMu condition variable, we maintain two objects: an object of
type libc::pthread_cond_t which is the internal mutex of the condition variable,
and an object of type libc::pthread_mutex_t. Each condition variable instruction in
Table 3.5 maps to one relevant pthread mutex or condition variable function.

4.3.4 Memory

RTZebu implements all five RTMu memory areas, mentioned in Section 3.3.4. The
only major limitation with RTZebu’s memory management that we are aware of is
that real-time garbage collection (RTGC) is not implemented for RTZebu’s heap, as it
is an explicit non-goal of this thesis. Thus, it does not address RTGC-related concerns
such as avoiding fragmentation.

DRAFT – 22 April 2021

§4.3 RTZebu 45

Allocating Memory

Implementing RTMu’s NewRegion and EAlloc family of instructions requires dynamic
allocation of memory blocks with various sizes. Rust allows this through the unsafe
interfaces of the std::alloc module of the standard library. At the time of writing
this thesis, the std::alloc module relies on the default operating system allocator
(e.g. malloc() on Unix) to implement its functionalities.

On RT-Linux, allocating memory expands the address space without immediately
allocating physical memory pages. Each time a memory page is touched for the first
time, a page-fault occurs and the kernel maps physical pages then. This may lead to
more efficient usage of the physical memory space. However, on a real-time system,
this may cause additional delay throughout the system’s runtime.

Rust’s std::alloc module as well as the RT-Linux malloc() function do not pro-
vide any means for the application to avoid this lazy allocation. To solve this issue
for the NewRegion instruction, we had to switch to the lower-level mmap() function 1

which allows populating page tables for a mapping, so that later accesses will not be
delayed by page-faults. All RTZebu threads run in a single address space. The client
RTPL or their application developers are responsible for correctly using the shared
addresses.

Regions

We implement the RAlloc family of instructions as bump pointer allocation inside a
region. This includes checking the region limit, updating the free space pointer, and
returning the newly allocated object’s address. To collect the memory region object,
we simply reset the free space pointer to the region start.

To implement the RefToReg instruction, we keep a vector of tuples protected by
a read-write lock. Each region has an entry in the vector which includes its starting
address and size. To find the region, we do a linear search over the vector entries.
This works efficiently as long as the number of active regions in the system is small,
as is the case for our evaluations in Chapter 6. For more complicated cases, this needs
to be further optimized as it directly affects the performance of some write barriers
(e.g. the one explained in Section 5.3.2).

Reference Types

In the initial RTMu design in [Amiri et al., 2019], we used untraced pointers (e.g. uptr
<T>) as the result type for RAlloc and EAlloc family of instructions. The rationale for
this design was to maintain an untraced world where GC did not scan memory areas
that were not affected by traced allocation, in addition to the traced world where the
GC is allowed to scan any memory areas.

1As one of the examiners stated, bounding the WCET of the mmap() function is almost impossible.
While this is a true concern in hard real-time systems, it is not an issue in the context of this thesis
where all implementations and testings are performed on RT-Linux.

DRAFT – 22 April 2021

46 RTMu Implementation

In practice, using two separate reference types introduces complexities specially
on the language implementer’s side. For example, the client language may need to
create up to 2n copies of a function, where n is the number of the function’s input
and output arguments with reference types. Thus, in the current RTMu design, we
use references (e.g. ref<T>) as the result type for all object allocation instructions.

4.3.5 Time

Rust’s standard library provides the std::time module which allows safely measuring
time in the nano-second scale. In Unix, this module relies on the clock_gettime()
system call and reads the CLOCK_MONOTOIC clock. We implement RTMu’s GetTime and
SetTime instructions using this module in safe Rust.

Implementing a timer as required by the RTMu specification is possible in Rust
using the timer crate. For each new timer, this crate creates two threads. A scheduler
thread that maintains and runs call-backs, and a communication thread that handles
the communication between the scheduler thread and the caller thread.

The way the timer crate implements a timer is not suitable for real-time systems,
mainly because the two timer handler threads are created regardless of the attributes
of the caller thread. For instance, if a high-priority real-time thread creates a timer,
the timer handler threads run at the RTOS’s default thread priority, and may be
delayed by lower-priority threads or their timer handler threads. This may introduce
unpredictability to the timing behaviour of a high-priority task, and is often not
desirable.

To avoid the above problem, we implement the timer instructions of RTMu using
the POSIX per-process timer. We did this in unsafe Rust through the system-call
wrappers of the libc crate.

4.3.6 Technical Challenges

RTZebu is written in Rust, a young and quickly evolving programming language.
New features are frequently being added to Rust, and new opportunities are created
to improve our implementation. For instance, the #[global_allocator] attribute
which became stable in Rust-1.28.0, enabled a considerably cleaner implementation
of the Rust object dumper and loader (rodal) used by RTZebu. Existing features
are also being constantly enhanced. For example, the implementation of the std::
collections::HashMap type was changed since Rust-1.36.0 to improve its performance.
For RTZebu, this meant rodal would need to be updated to work on Rust-1.36.0
and any newer releases. In summary, Rust’s rapid changes improved the language
and allowed us, and looks likely to allow us to achieve higher-quality performant
implementations, but they also significantly lengthened the development cycle of
RTZebu, as more maintenance was required to keep-up with the changes over time.

DRAFT – 22 April 2021

§4.4 Summary 47

4.4 Summary

In this chapter we presented our implementation of the RTMu specification, named
RTZebu. We enumerated the key features of Rust, the programming language used
for the implementation of RTZebu. We introduced Zebu, the high-performance im-
plementation of the Mu µVM specification, as the starting point for RTZebu. Finally,
we described the RTZebu implementation in Rust, including how most RTMu oper-
ations are implemented as lightweight wrappers around RTOS services, and why
we had to frequently use unsafe Rust, specially to implement the concurrency re-
lated operations of RTMu. In the next chapter, we explain a new real-time language
we designed and implemented on RTZebu to demonstrate the expressiveness of the
RTMu’s abstractions.

DRAFT – 22 April 2021

48 RTMu Implementation

DRAFT – 22 April 2021

Chapter 5

RT-RPython: A Python-like
Language for Real-Time Systems

To demonstrate the expressiveness of RTMu’s abstractions, we propose a new man-
aged language named RT-RPython and implement it on top of RTMu. RT-RPython
is based on the RPython language [RPyDoc], modified to suit the requirements of a
range of real-time systems targeted by the real-time specification for Java [RTSJ, 2018].

In this chapter, we first briefly introduce RPython, focusing on the aspects that
need to be changed to become suitable for real-time systems. Then we elaborate our
proposed changes and illustrate how they are implemented on top of RTMu.

The main contributions of this chapter are the design of RT-RPython as a high-level
managed language for real-time systems, and the demonstration of its implementabil-
ity on RTMu.

5.1 RPython

RPython is an ahead-of-time compiled restricted subset of Python-2, which mainly
acts as an efficient framework to generate JIT compilers from interpreters of dynamic
programming languages. The restrictions enable static typing and compile-time
optimization of RPython programs. RPython is a part of the PyPy project [PyPyDoc]
and has also been used for other languages such as SOM, Racket and Erlang.

RPython is designed to target multiple backends, but officially it only provides
a C backend. The work of building a Mu backend for RPython (MuPy) was started
by Zhang [2015], with the goal of supporting the wide range of RPython’s client
languages on top of Mu. At the time writing this thesis, the core PyPy interpreter
which is written in RPython could be compiled on MuPy.

5.1.1 Application Programming in RPython

RPython was designed as a restricted language specifically for implementing PyPy,
however it can be used for application programming with some limitations. The most
restrictive properties of RPython from an application programmer’s point of view
are:

49

DRAFT – 22 April 2021

50 RT-RPython: A Python-like Language for Real-Time Systems

1 def to_int(input):
2 return int(input)
3

4 f = to_int(1.0) # input argument is inferred as float
5 s = to_int(’1’) # error: cannot unify float and string

(a) Types of all input arguments of all user-defined functions must be mappable to exactly one
type at compile time. The input arguments’ types are inferred on the first call to the function, seen
by the compiler. Any subsequent calls that violate these types will raise a compile error.

1 def func(i):
2 if i == 0:
3 return 0 # return variable is inferred as integer
4 else:
5 return ’1’ # error: cannot unify integer and string

(b) Types of all variables in a function, including the return variable, must be mappable to exactly
one type at compile time. Each variable’s type is inferred the first time it is seen by the compiler.

Listing 5.1: Examples of compile errors caused by RPython variable restrictions. Both exam-
ples are valid programs in Python.

• RPython variables can only contain values of at most one type in each control
flow point. This means that the valid Python codes in Listing 5.1 will not
compile in RPython, because the type for their input arguments or return value
cannot be inferred at compile time.

• Global variables and static class members are constants in RPython. The only
way to have mutable global or static data is to wrap it in a class and create a
global/static instance of the class.

• Many of the special class methods of Python-2, including __hash__(), compari-
son operators (e.g. __eq__()), binary operators (e.g. __add__()) and __str__()
are ignored.

RPython provides libraries to compensate for some of these limitations. For instance,
the r_dict library allows creating dictionaries with custom hashing and equality
functions, while this is done by overloading __hash__() and __eq__() methods in
Python.

5.1.2 Real-Time Programming in RPython

RPython is a garbage collected language. Garbage collectors, especially the ones
not designed for real-time systems, can negatively affect the timing behaviour of
applications. For instance, a garbage collector may pause the whole application or
preempt high priority tasks, which is not desirable. Although there exist garbage
collectors for real-time languages, such as the real-time specification for Java (RTSJ),
even these do not provide the required level of guarantees for some hard real-time
systems. In Section 5.2.1, we propose a set of changes to RPython’s memory manager
to make it suitable for a wide range of real-time applications.

DRAFT – 22 April 2021

§5.2 Real-Time Extensions 51

RPython supports multi-threading, but threads must hold the Global Interpreter
Lock (GIL) before they are executed. This means there is no true concurrency in
RPython. Consequently, there is no need for inter-thread synchronisation primitives
such as locks or condition variables. This level of support for multi-threading is
insufficient for many real-time systems. We address this issue in Section 5.2.2.

5.2 Real-Time Extensions

RT-RPython is a high-level managed language for real-time systems, aiming at the
same range of applications targeted by the RTSJ. Hence, we design RT-RPython
abstractions over memory and concurrency, analogous to the same abstractions in
RTSJ.

RT-RPython is designed to demonstrate that RTMu’s abstractions are capable of
implementing a comprehensive set of real-time language features, including the RTSJ
scoped memory. Thus, it inherits some of the limitations of RTSJ, such as not being
compatible with many of the existing Python and RPython libraries. However, this
does not mean that all real-time languages implemented on RTMu will have the same
issue, because the language designer can choose not to expose specific RTMu features,
including the regions.

5.2.1 Memory Management

The user manageable memory in RT-RPython consists of four types of areas: the heap,
global memory, explicitly managed memory (EMM), and scoped memory. Among
them, the heap and global memory are directly borrowed from RPython, which
already implements both. The heap is the default allocation area in RT-RPython, and
is garbage collected. The global memory includes the global application data and
static class members. As in RPython, all data in RT-RPython’s global memory is
immutable.

RT-RPython’s EMM is a new memory area which allows explicit allocation and
reclamation of memory at the granularity of an object. It is similar to malloc() and
free() in C.

The next new area is RT-RPython’s scoped memory. It includes a number of fixed-
sized scopes, which are created at the client’s request. The client may allocate objects
in each scope, but can only delete the whole scope. Each scope has a reference counter
that is increased when a thread enters the scope and decreased when a thread exits.
Every time the reference counter becomes zero, all objects in the scope are collected.
The scoped memory in RT-RPython is inspired by the scoped memory in RTSJ.

Design Choices There are various ways to co-locate multiple memory area types
in a language. For example, RTSJ, explained in Section 2.3.2, maintains a stack of
allocation contexts 1 for each schedulable object. The area on top of the stack is called

1The internal representation of an allocation context is implementation-defined. In our current
implementation of RT-RPython, each memory area is represented by an internal handle.

DRAFT – 22 April 2021

52 RT-RPython: A Python-like Language for Real-Time Systems

Table 5.1: To support the proposed memory management scheme in RT-RPython, the opera-
tions in this table are added. The first three operations change the current allocation context
to a new one. The fourth operation reverts the allocation context to the previous one. The last
two operations create a new scope or delete an already created scope.

Operation Description

enter_heap() Push the heap onto the caller thread’s area stack

enter_emm() Push the EMM to the caller thread’s area stack

enter_scope(scp: Ref<Scope>) Push the scope referenced by scp onto the caller
thread’s area stack

exit_area() Pop the last memory area from the caller thread’s
area stack

new_scope(size: int)
-> Ref<Scope>

Create a new scope of size number of bytes

delete_scope(scp: Ref<Scope>) Delete the scope and reclaims its memory

the current allocation context. Using the new operator allocates objects in the current
allocation context. It is also possible to allocate objects in other allocation contexts
in the area stack by calling the newInstance and newArray methods of the target
area.

For the sake of simplicity, we choose to minimize the syntactical extensions of
RT-RPython. Every thread in RT-RPython has a thread-local area stack, with the heap
as its first element. A thread may then enter or exit various memory areas including
the heap, the EMM and any available scope. Memory allocation is performed in the
area on top of the area stack. New memory operations in RT-RPython are listed in
Table 5.1. Also, sample code for allocating/deallocating an object on any of these
areas is shows in Listing 5.2.

To prevent dangling references, we adapt the single parent rule and the reference
restrictions of RTSJ [RTSJ, 2018] for RT-RPython as follows. Each scope with a non-
zero reference count has a non-negative rank which reflects the number of unique
scopes on the area stack, before the scope was first entered. Scopes may be entered
multiple times by the same thread, but their rank is assigned only on the first entry,
or on any entry that changes its reference count from zero to one. The parent of a
scope X is the scope Y on the current area stack, if rank of X equals rank of Y plus
one. The single parent rule of RT-RPython requires all referenced scopes on all area
stacks to have exactly one parent at a time. This implies that each scope can only
have one rank at a time, even if it is entered by multiple threads. The referencing
rules of RT-RPython are summarized in Table 5.2. These rules preserve the integrity
of references as long as the client uses the EMM correctly.

DRAFT – 22 April 2021

§5.2 Real-Time Extensions 53

1 class T:
2 pass
3

4 def test():
5 obj = T()

(a) The heap is the default allocation context. An
object allocated on the heap is automatically re-
claimed by the GC.

1 class T:
2 pass
3

4 def test():
5 enter_emm()
6 obj = T()
7 obj.delete()

(b) EMM: The object is freed when its delete
method is explicitly called.

1 class T:
2 pass
3

4 def test():
5 scp = new_scope(16)
6 enter_scope(scp)
7 obj = T()
8 exit_area()

(c) Scopes: The object is collected when the scope’s
reference count reaches zero (e.g. after exiting the
current area).

Listing 5.2: Sample code for allocating an object on each of the three available allocation
contexts in RT-RPython.

Table 5.2: RT-RPython prevents the storing of references to objects in scoped memory in the
global or heap areas. It also prevents the storing of references to objects in scopes with shorter
lifetimes. RT-RPython does not enforce any restrictions on EMM, as it expects the application
developer to use the EMM correctly.

Reference to Object in

Stored in Global/Heap EMM Scopes

Global/Heap Permit Permit Forbid

EMM Permit Permit Permit

Scopes Permit Permit Permit from higher or same rank

DRAFT – 22 April 2021

54 RT-RPython: A Python-like Language for Real-Time Systems

Table 5.3: RT-RPython provides various functions to manage thread attributes. Normally, it
starts by creating a new attribute object using Attr() or reusing a previously created object
(e.g. by calling get_thread_attr()). Then, the object is monitored and updated using the
functions in the last two rows of this table. At the end, set_thread_attr() is called to apply
the updated attribute on the destination thread.

Operation Description

Attr()-> Ref<Attr> Create a new thread attributes object and re-
turns a reference

delete_attr(Ref<Attr>) Delete the specified thread attribute object

set_thread_attr
(Ref<Thread>, Ref<Attr>)

Update the attributes of the specified thread

get_thread_attr(Ref<Thread>)
-> Ref<Attr>

Return the current attributes of the specified
thread

set_attr_priority(Ref<Attr>, Int) Set the priority field of the attribute object
get_attr_priority(Ref<Attr>)

-> Int
Return the current priority field of the attribute
object

set_attr_cpu(Ref<Attr>, Int) Add the specified cpu id to the current attribute
isset_attr_cpu(Ref<Attr>, Int)

-> Bool
Check whether the specified cpu id is in the cur-
rent attribute

clear_attr_cpu(Ref<Attr>, Int) Remove the specified cpu id from the current
attribute

zero_attr_cpu(Ref<Attr>) Remove all cpu ids from the current attribute

5.2.2 Concurrency

Threads and Parrallel Execution

RT-RPython supports parallel execution of threads. To create a new thread, the client
should call the following function:

start_new_rt_thread(
entry_function: Func, thread_attributes: Ref<Attr>, *arguments

) -> Ref<Thread>

The first argument is the thread entry function. The new thread calls entry_function
(*arguments) when it starts execution. The *arguments enables giving an arbitrary
number of inputs to the thread. The second argument is used to specify attributes of
the new thread, including its priority and affinity. Table 5.3 shows the RT-RPython
functions provided for this purpose.

Inter Thread Communication

In a language that supports truly concurrent threads, thread synchronization primi-
tives are essential. In RT-RPython, we add three basic forms of synchronization. First,
we add Mutex which serves as a fast user-level mutual exclusion lock supporting

DRAFT – 22 April 2021

§5.3 Implementation 55

Table 5.4: RT-RPython Mutex is a mutual exclusion primitive that supports the PIP and PCP.
It provides three variants of lock(), and one unlock() method. It also provides the setpc()
method to activate PCP or update the ceiling priority, and the unsetpc() method to switch
back to PIP. Before using a new mutex, the initialize() method must be called.

Operation Description

mtx = Mutex() Create a new PI mutex

mtx.initialize() Initialize a PI mutex

mtx.lock() Lock the mutex

mtx.trylock() Lock themutex if it is currently unlocked, or immediately throw
an exception

mtx.timedlock(t: Int) Lock the mutex before t nano-seconds or throws an exception

mtx.unlock() Unlock the mutex

mtx.setpc(pc: Int) Set a priority ceiling for the mutex; Activates PCP if required

mtx.unsetpc() Deactivate PCP for the mutex; Switch to PIP

the Priority Inheritance Protocol (PIP). When there is no contention over a Mutex,
locking and unlocking is done by user-level atomic operations. In case of contention,
the RTOS kernel is involved to block and unblock threads. For the PIP to work
correctly, RT-RPython only allows the locker thread to unlock it. Second, we add
ConditionVariable as a mechanism that allows multiple threads to wait for occur-
rence of a condition. Priority is inherited from the waiting threads to the thread which
signals the condition. Third, we add AtomicInt which represents a 64 bit integer with
basic atomic operations. Details of these primitives are shown in Tables 5.4, 5.5 and
5.6.

5.2.3 Time

To manage time, RT-RPython provide three basic tools. The first one is a high-
resolution clock which measures time in nano-seconds. The second is the sleep
operation that puts the calling thread to sleep for a certain number of nano-seconds.
The third is the timer that calls a handler function at a designated time or periodically.
Details of the time management operation are shown in Table 5.7. The accuracy of
these operations depends on the underlying platform, including the RTOS kernel and
hardware.

5.3 Implementation

We use RPython with the Mu backend (RPyMu) as the starting point for the imple-
mentation of RT-RPython. Details of the RPyMu implementation are explained by
Zhang [2015]. Here, we introduce the RPyMu translation process, and briefly explain
how we change it to support the RT-RPython extensions.

DRAFT – 22 April 2021

56 RT-RPython: A Python-like Language for Real-Time Systems

Table 5.5: RT-RPython ConditionVariable is a synchronization construct that allows multi-
ple threads to wait for a condition. Each condition variable is associated with a mutex lock
that must be acquired before any wait, signal, or broadcast operation, and released after their
completion.

Operation Description

cv = ConditionVariable() Create a new PI condition variable

cv.initialize() Initialize a new PI condition variable

cv.wait(mtx: Ref<Mutex>) Wait for a signal on the condition variable
cv.timedwait
(mtx: Ref<Mutex>, t: Int)

Wait for a signal on the condition variable; Throw an
exception if not signalled within t nano-seconds

cv.signal() Signal the highest priority thread waiting on the con-
dition variable

cv.broadcast() Signal all threads waiting on the condition variable

cv.delete() Delete the condition variable and reclaims its memory

Table 5.6: The RT-RPython AtomicInt type represents an atomic integer. It provides a basic
set of atomic operations.

Operation Description

ai = AtomicInt() Create a new atomic integer

ai.load()-> Int Load the current value of the atomic integer

ai.store(new_val: Int) Store a new value into the atomic integer

ai.compare_exchange
(current_val: Int, new_val: Int)

Store the new_val into the atomic integer if
its current value equals current_val

Table 5.7: RT-RPython provides a basic set of functions to work with the clock and timers. The
client can get/set the current time, suspend (sleep) the current thread for a certain amount of
time, and create/delete and set/unset timers that schedule calls to handler functions.

Operation Description

get_time_ns()-> Int Get the current time value in nano-seconds

set_time_ns(new_time: Int) Set (update) the current time value

sleep_ns(duration: Int) Suspend the calling thread for the specified
number of nano-seconds

new_timer()-> Ref<Timer> Create a new timer

delete_timer(tmr: Ref<Timer>) Delete a timer and free its memory

arm_timer(tmr: Ref<Timer>,
handler_func: FUNC, duration: Int,
period: Int, *args)

Set ‘tmr‘ to call ‘handler_func(*arg)’ af-
ter ‘dur’ nano-seconds, and every ‘prd’ nano-
seconds after that

disarm_timer(tmr: Ref<Timer>) Cancel a previously set timer ‘tmr’

DRAFT – 22 April 2021

§5.3 Implementation 57

5.3.1 The RPyMu Translation Process

The process of translating RPython code in RPyMu consists of seven tasks, of which
the first three are common between the Mu and C backends. First, the annotator task
gets the control flow graphs of the program and infers the general type information of
variables. It also finds and annotates the functions called in the program code. Second,
the rtyper specializes the general type and operation information from the annotator,
producing close-to-C types and their methods. Third, the backendopt task performs
some optional optimizations such as inlining and no-op removal, and transforms
exceptions and garbage collection to C-compatible implementations. Fourth, the
mutyper task maps the types, values and operations to their Mu equivalents. Fifth,
the optimize_mu task removes some useless operations. Sixth, the database_mu
task builds a database of all global information, including types, constants, external
functions, global cells, graphs, and function references. Seventh, the compile_mu task
uses the Mu IR Builder to generate and load a Mu bundle (explained in Section 2.4).
The compile_mu task also allows making a boot image of the loaded bundle.

5.3.2 RT-RPython Extensions

Our first step to implement the real-time extensions, proposed in Section 5.2, is to
add the new RTMu constructs (e.g. types, instructions and intrinsics) from Section
3.3, to RPyMu. Therefore, for each new RTMu type, we add a new RPython type
(e.g. class Thread for threadref). Also, for each new instruction or intrinsic, we add
a dummy RPython function. The names of these RPython types and functions are
reserved words in RT-RPython.

mutyper The new types and functions go through the first three translation tasks
as before. To this point, we only make some modifications to avoid unwanted opti-
mizations (e.g. removal of arguments and inlining) of RT-RPython constructs. The
mutyper task is where the mapping of RT-RPython types and dummy functions to
their real RTMu counterparts is done.

Mapping to RTMu types is always a simple one-to-one translation. For exam-
ple, the Ptr<GCStruct Thread> and Ptr<GCStruct Region> types from the RT-RPython
rtyper are respectively mapped to threadref and regionref in RTMu. This is also
true for most of the dummy functions. For instance, new_timer() and get_time_ns()
are directly mapped to aNewTimer and GetTime instructions in RTMu. Other dummy
functions map to more than one instruction or intrinsic. For example, start_new_rt_
thread() maps to a NewStack intrinsic and a NewRTThread instruction in the simplest
case.

Code Generation We reuse the optimize_mu and database_mu translation tasks of
RPyMu without any change. For the compile_mu task, we add the logic to generate
code for the newly added instructions and intrinsics. We also modify the RPyMu IR

DRAFT – 22 April 2021

58 RT-RPython: A Python-like Language for Real-Time Systems

1 Fn rtmu_allocate_<T>() -> ref<T>:
2 int ca = rtmu_get_current_area()
3 ref<T> res
4 if ca == HEAP:
5 res = New T
6 elif ca == EMM:
7 res = EAlloc T
8 else:
9 regionref reg = rtmu_get_current_scope()

10 res = RAlloc reg, T
11 Ret res

Listing 5.3: Simplified RTMu IR code for allocator functions. For each type
T, we generate a new allocator function. This function executes the correct
allocation instruction depending on the current allocation area. Calls to these
functions may be inlined by the RTMu AOT compiler to reduce the overhead.
The rtmu_get_current_area() and rtmu_get_current_scope() helper functions are
written in RT-RPython and provide a bridge between user code (in RT-RPython) and
RTMu IR code at run time.

generator for New, NewHybrid and Store instructions to support the requirements of
RT-RPython.

For each ‘New T‘ or ‘NewHybrid T‘ instruction, we replace it with a call to an al-
locator function for type T. The function performs a run-time check for the current
allocation context. Depending on the result, one of these instructions: New, RAlloc,
EAlloc, or their hybrid counterparts is executed. The simplified RTMu IR code for
allocator functions is shown in Listing 5.3.

For the Store instruction, we consider a special case when the new value to be
stored is of RTMu ref type. In this case, we emit a write barrier to check whether this
store instruction adheres to RT-RPython reference integrity rules. The barrier finds
the memory areas containing the source and destination objects. If the destination
area has a longer lifetime compared to the source area, an exception is thrown to
indicate an illegal assignment. The simplified RTMu IR code for these barriers and a
helper function is shown in Listing 5.4.

5.4 Summary

We developed RT-RPython, a high-level managed language for real-time systems. It
is based on RPython and inherits its limitations [RPyDoc]. To keep the implementa-
tion complexity reasonable given the constraints of a PhD thesis, we choose to only
address the restrictions, such as GIL-based multi-threading, which are essential in
programming real-time systems, and leave the rest untouched. In the next chapter, we
demonstrate RT-RPython’s expressiveness, performance and predictability through
implementing and evaluating a real-time benchmark.

DRAFT – 22 April 2021

§5.4 Summary 59

1 Fn rtmu_ltchk_store_<T1>_<T2>(
2 dst: T1,
3 src: T2
4):
5 iref<void> dst_vir = RefCast dst
6 ref<void> src_vr = RefCast src
7 Call rtmu_check_lifetime(dst_vir, src_vr)
8 Store dst, src
9 Ret

(a) This function performs the lifetime checked store operation. It casts the operands and calls a type-
neutral function to check the lifetimes. If the checker function returns successfully, the Store instruction
is executed.

1 Fn rtmu_check_lifetime(
2 dst: iref<void>,
3 src: ref<void>
4):
5 rs = RefToReg src
6 // if src is in heap, emm, or immortal, its lifetime is infinite
7 if rs != Null:
8 rd = RefToReg dst
9 // if dst’s lifetime is infinite

10 if rd == null:
11 Throw LifeTimeException
12 // if both src and dst are in scopes
13 ds = Call get_area_depth(rs)
14 dd = Call get_area_depth(rd)
15 if dd < ds:
16 Throw LifeTimeException

(b) This function compares the lifetimes of the source and destination arguments and throws an
exception if the source has a shorter lifetime.

Listing 5.4: Simplified RTMu IR code for RT-RPython write barriers and the reference life-
time checker function. When the source operand in a Store instruction is a reference, we
replace the Store instruction with a call to a function. The name of the function to call is
rtmu_ltchk_store_<T1>_<T2>(), which depends on types of the source and destination
operands.

DRAFT – 22 April 2021

60 RT-RPython: A Python-like Language for Real-Time Systems

DRAFT – 22 April 2021

Chapter 6

Evaluation

Performing a comprehensive evaluation of a real-time programming language would
require implementing a wide range of real-time applications, followed by defining
and measuring various criteria. However, most real-world real-time applications
are not publicly available. Besides, there is a lack of open-source real-time bench-
marks, and the available ones are often micro-benchmarks that mostly evaluate the
primitives of the underlying RTOS without giving much useful information about
the language. Hence, for our evaluation of RT-RPython we chose to implement a
real-time application benchmark suite proposed by Kalibera et al. [2009].

In this chapter, we first introduce the Collision Detection (CDx) benchmark. Then,
we explain CDrr, our implementation of CDx in RT-RPython, and identify its differ-
ences to the CDx implementation in RTSJ (CDj). Finally, we compare the performance
results of CDrr to CDj, and argue that RT-RPython establishes RTMu as an efficient
foundation for the development of programming languages suitable for building
real-time software. We acknowledge that the CDx benchmark suite does not evaluate
every aspect of RT-RPython such as the explicitly managed memory, and that using
more real-time benchmarks could provide a more comprehensive evaluation if they
were available to us.

6.1 The Collision-Detection Benchmark

The Collision Detection (CDx) benchmark suite, published by Kalibera et al. [2009],
is a configurable open-source real-time application benchmark that targets various
RTSJ and Java VMs. The main components in the CDx benchmark are an air traffic
simulator (ATS), that generates radar frames, and a collision detector (CD), which is a
periodic task that implements an aircraft collision detection algorithm. The algorithm
includes two steps, reduction and collision checking, which both mostly consist of
floating-point calculations. The ATS task runs in advance and generates the radar
frames for all CD periods. At each period, the CD task processes the designated
frames. The sequential execution of these tasks means the choice of scheduling
algorithm does not affect the benchmark results 1.

1CDx supports running ATS and CD in parallel, only for debugging.

61

DRAFT – 22 April 2021

62 Evaluation

Details of the ATS and CD tasks can be found in Kalibera et al.’s paper. Here,
we only highlight the language features required to implement these tasks. Some of
these language features are only common in real-time applications:

• concurrent threads (to run ATS and CD),

• ability to control thread priority,

• periodic threads,

• PI condition variable, PI mutex, atomics and join to synchronize threads,

• high-resolution and accurate clock to measure performance metrics,

• high-resolution and accurate sleep function to implement waiting for the next
period which happens every 4 to 500 milliseconds,

• scoped and immortal memory areas.

Some other features such as file I/O, strings, exception handling, classes and in-
heritance, and data structures (e.g. list, dictionary and set) are commonly used in
non-real-time applications as well.

6.1.1 Implementation in RT-RPython

To implement the CD benchmark in RT-RPython (CDrr), we tried to transliterate the
RTSJ implementation (CDj) to RT-RPython syntax. However, as the two languages
are not identical, slight structural modifications were inevitable. In this section, we
enumerate these changes and reason why the benchmark implementation is still valid
with the changes.

Loops CDj uses C-style for-loops, as in Listing 6.1a, to implement running code
a certain number of iterations. The visually closest translation of this for-loop in
RT-RPython is a Python-style for-loop as in Listing 6.1b. However, the semantically
closest translation of a C-style for-loop in RT-RPython is a while-loop with a counter,
as in Listing 6.1c. In CDrr, we choose to use the semantically closer alternative, as
we found that using a Python-style for-loop leads to considerable run-time overhead,
because it iterates over the output of a range() function, and that is much more
complicated than the simple counter in the C-style for-loop.

Globals and Statics As mentioned in Section 5.1.1, global and static variables are
immutable in RPython, and RT-RPython inherits the same restriction. In contrast,
CDj uses mutable static class members frequently. Our solution to this conflict is to
change static class members to non-static members wherever they don’t have to be
static, otherwise, we put them in a wrapper class. Therefore, while the wrapper object
is still immutable, the wrapped object may be mutated. This adds an additional level
of indirection compared to RTSJ, and may cost some overhead. In CDrr, access to
these variables does not occur in the performance-critical path.

DRAFT – 22 April 2021

§6.1 The Collision-Detection Benchmark 63

1 for(int i = 0; i < MAX; i++){
2 // code
3 }

(a) C-style for-loop in RTSJ

1 for i in range(MAX):
2 # code

(b) Python-style for-loop

1 i = 0
2 while i < MAX:
3 # code
4 i += 1

(c) Python while-loop with a counter

Listing 6.1: Loops with a certain number of repetitions are written as C-style for-loops in
RTSJ. The visually closest equivalent of C-style for-loop in RT-RPython is the Python-style
for-loop, but the semantically closest equivalent is the while-loop with a counter.

Threads and Synchronization As shown in Listing 6.2, RT-RPython and RTSJ use
syntactically different approaches for configuring and creating a thread. However,
the outcome and features are the same. In addition, CDj uses Java monitors for
synchronization, whereas CDrr uses condition variables.

Array of Bytes In CDj, allocating and processing byte-arrays are done frequently.
In RTSJ, an array of size bytes can simply be created by writing new byte[size].
But in RT-RPython, a byte-array can only be created using the bytearray(s) function,
and the input to this function can only be a string. So, creating the same array in
RT-RPython can be written as bytearray(b’\x00’ * num_of_bytes), which is a slower
operation.

Special Class Methods As mentioned in Section 5.1.1, many of the special class
methods of Python are not honoured in RT-RPython, which means the default special
methods are used even if we overload them. As a result, translating the overloaded
operators of CDj to their equivalent in RT-RPython is not sufficient for them to work
in CDrr. We also need to explicitly call the overloaded operators wherever they are
used. For example, if we overload the __eq__ method of a class, we should write
the statement obj1 == obj2 as obj1.__eq__(obj2) for objects of that class. In other
words, these special methods are treated as normal object methods.

6.1.2 Non-Goal

The current implementation of RT-RPython does not come with a real-time GC, as
it depends on RTZebu’s memory management which does not currently include a
real-time GC implementation. It has not been a goal of this thesis to design and
implement a real-time GC for RTZebu.

DRAFT – 22 April 2021

64 Evaluation

1 // definition of a new realtime thread
2 public class MyThread extends RealTimeThread {
3 public MyThread(SchedulingParameters sp, ...) {
4 super(sp, ...)
5 // constructor code
6 }
7 ...
8 public void run() {
9 // thread body

10 }
11 }
12 ...
13 PriorityParameters pp = new PriorityParameters(PRIORITY);
14 // running the thread
15 final MyThread new_thread = new MyThread(pp, ...);
16 new_thread.start()

(a) In RTSJ, any real-time thread must extend the RealTimeThread class or one of its children (e.g.
NoHeapRealTimeThread). The run method of the new class is used by the start method as the thread
body.

1 def run():
2 # thread body
3 ...
4 a = new_attr()
5 set_attr_priority(a, PRIORITY)
6 # running the thread
7 start_new_rt_thread(run, a)

(b) In RT-RPython, creating a thread needs an entry point, and a thread attribute object. The entry
point can be a function or a static class method, and does not need to be named run.

Listing 6.2: Creating a thread with a specific priority in RTSJ and RT-RPython.

DRAFT – 22 April 2021

§6.2 Test Setup 65

6.2 Test Setup

To evaluate the performance of RT-RPython as a real-time language, we compare
CDrr (explained in Section 6.1.1) to CDj on JamaicaVM-8.3 as a RTSJ implementation.
We also run CDj on Java-11 (Hotspot JVM-11) to highlight the difference between a
non-real-time language that is highly optimized for average-case performance, and
real-time languages.

We run all tests on a 64 bit Kubuntu-18.04.3 PC. The Linux kernel version is
4.19.23-SMP with PREEMPT-RT real-time patch. The processor on this machine is a
quad-core Intel Core-i7 4790, clocked at 3.6 GHz. The machine also has 24 GB of dual
channel DDR3-1600 RAM.

6.2.1 RT-RPython

We test two implementations of RT-RPython. The original one (RT-RPython) that
emits write barriers to check the referencing rules in Table 5.2, is evaluated in this
chapter. The second one (ucRT-RPython) does not perform these checks. We report
ucRT-RPython’s results in Figure 6.4. Comparing these two implementations, we can
estimate the overhead of write barriers. More efficient implementation and emission
of these write barriers in the future can help us reduce the performance gap.

6.2.2 JamaicaVM

JamaicaVM is a commercial hard real-time implementation of RTSJ by aicas, that
targets a wide range of embedded and real-time systems including automotive, IoT
and other critical embedded systems [AicasWebPage]. It claims to be capable of
running standard Java code in real-time embedded systems through its deterministic
real-time GC. We compare the predictability of JamaicaVM’s real-time GC against its
scoped memory in Appendix Figure 1.

To enable fine-grained control over the scheduling in Java code, JamaicaVM per-
forms a one-to-one mapping of Java threads to native RTOS threads [Siebert, 1999].
For the real-time GC of RTSJ, JamaicaVM implements an incremental mark-sweep GC
that can run concurrently with the application, and may use multiple CPUs to run GC
work in parallel [Siebert, 2010]. It also provides a stop-the-world GC, for applications
that require better average-case performance and have no real-time constraints [Aicas,
2019].

The workloads we use for our evaluations (introduced in Section 6.2.4) do not
use the garbage-collected heap; they use scoped memory regions for all dynamic
allocations. However, the choice of GC may still affect the performance results. So,
we compare the results of the two JamaicaVM GCs in Appendix Figure 1, and choose
to use JamaicaVM with the real-time (incremental) GC in our evaluation, because of
its more predictable behaviour.

DRAFT – 22 April 2021

66 Evaluation

A limitation JamaicaVM is not an open-source VM and we only have access to the
documents published on aicas’s website [AicasWebPage] (including JamaicaVM’s user
manual and some research papers). Additionally, our academic-use-only license does
not include all of JamaicaVM’s development tools (e.g. JamaicaTrace) which might
help us extract more information about the timing behaviour of the benchmark. As
a result, we are unable to present detailed analysis of JamaicaVM’s results in some
of our tests. We contacted aicas for more information (e.g., about the relatively high
release jitter), but at the time of writing this thesis, we have not received any response.

6.2.3 Hotspot-11

Hotspot JVM-11 is the most recent stable (LTS) release of Java virtual machine by
Oracle at the time of writing. It provides four garbage collectors, each with different
performance characteristics [Oracle, 2018]:

(1) The serial GC is a single-thread generational collector which is suitable for
single-processor machines or applications with a small amount of data (e.g. less
than 100 MB).

(2) The parallel GC is a multi-thread generational collector optimized for through-
put. It is suitable for applications with medium to large amount of data that
run on multi processors.

(3) The Garbage-First (G1) GC is a generational, incremental, parallel, mostly con-
current, stop-the-world, and evacuating collector which aims at achieving high
throughput while maintaining small pause times with high probability.

(4) The ZGC is a new experimental collector which aims at small pause times (e.g.
less than 10 ms) on small to very large heap sizes (e.g. 100 MB to multi-TB).

We compare the real-time performance of all these GCs in Appendix Figure 2, and
choose to use Hotspot JVM-11 with ZGC in our evaluation.

6.2.4 Workloads

CDj comes with many predefined workloads, and tools to generate new workloads.
It also provides a number of configuration options such as memory noise parameters,
workload size and complexity, memory area sizes, and dumping debug information.

CDrr can run any workload from CDj. However, we only evaluate using the two
main workloads from [Kalibera et al., 2009], named COL and NOI. These workloads
are summarized in Table 6.1. As mentioned in Section 6.1.2, RT-RPython does not
provide a real-time GC. Consequently, we use our version of the NOI workload, called
NOInn, which is different from the original one in that it does not generate any noise
to test the real-time garbage collection, on all tested VMs.

DRAFT – 22 April 2021

§6.3 Metrics 67

Table 6.1: A summary of COL and NOInn workloads.

COL NOInn
Period 10 ms 4 ms
Collisions YES NO

Number of Aircraft 40 20

Duration 100 s 80 s

Figure 6.1: CD is a single periodic task with a period and deadline equal to T. The ith release
of CD is expected to occur at tr

i . For this release to meet deadline, its response time (Ri) must
be less than its deadline (T). Response time (Ri) equals the sum of release delay (Di) and
computation time (Ci). Computation time (Ci) is the time from the ith actual start time (ts

i) of
the task, to its ith completion time (tc

i).

6.3 Metrics

Many real-time systems are also control systems. In control theory, sampling and
actuation are expected to happen periodically at highly deterministic times [Åström
and Wittenmark, 1997]. In practice, timing predictability of sampling and actuation
are degraded, respectively because of the jitter in the release times of the control task
(release jitter), and the variations in its computation times. Timing unpredictability leads
to control performance degradation and even instability [Marti et al., 2001]. Therefore,
release time and computation time are two critical metrics to evaluate the performance
of an implementation of a real-time task. We explain these in more detail now.

6.3.1 Measurement Method

Like other benchmarks in the CDx family, CDrr has a periodic real-time task named
CD. To evaluate the performance of CD, we use release jitter and computation time as
our metrics (the same metrics as proposed by Kalibera et al. [2009]). To explain how
we measure these metrics, we use the notations in Figure 6.1 that show the important
milestones in the lifetime of a periodic task.

Release jitter is the amount of fluctuation in the actual release times of the CD task.

DRAFT – 22 April 2021

68 Evaluation

Ideally, all task instances are released at their designated release times:

∀i ∈ {1..total number of release} : tr
i = ts

i

Where tr
i is the expected time of the ith release of the task, and ts

i is the actual start
time. In practice, the release times of a periodic task like CD vary due to factors such
as system timer accuracy, RTOS service overheads (e.g. scheduling), and the language
VM overheads (e.g. GC). Hence, the release delay (Di) is always non-negative:

∀i ∈ {1..total number of release} : Di = tr
i − ts

i ≥ 0

Yet, it may still be tolerable as long as the release delay is predictable. So, we measure
(absolute) release jitter as the difference between the maximum and the minimum
measured release delays [Buttazzo and Cervin, 2007], because it shows the domain
within which the delay changes:

release jitter = max(Di)−min(Di)

Computation time is the total time a task is actively being run. For a single task
application like CD, the computation time of the ith release of the task (Ci) is the time
between the actual start time of the task (ts

i) and its completion (tc
i):

Ci = tc
i − ts

i

In practice, preemptions may occur between the start and completion times, for
various reasons such as background RTOS services and collecting garbage by the
language VM. In real-time systems, RTOSs and language VMs are expected to put
tight bounds on preemptions unless they are servicing the current task. In addition
to RTOS and the language runtime, processors introduce unpredictability (e.g., due
to cache hit/miss, branch mis/prediction) to the computation time too.

6.4 Results

In this section, we compare the computation times and release jitter of the CD task,
with both COL and NOInn workloads, on RT-RPython, JamaicaVM-8.3 and Hotspot-
11. For each combination of VMs and workloads, the reported results are obtained
from repeating the benchmark 100 times. This means the CD task is run 1 000 000
times with the COL workload, and 2 000 000 times with the NOInn workload.

6.4.1 Computation Time

COL In the COL workload, the CD task is released periodically every 10 ms. Since
CD’s deadline and period are equal, the task must finish 10 ms after its expected
release time in order to meet its deadline.

Figure 6.2 shows the distributions of the computation times for the COL workload.

DRAFT – 22 April 2021

§6.4 Results 69

In this workload, the average-case computation time (ACCT) for RT-RPython is 11.0 %
less than JamaicaVM (1.206 ms vs. 1.355 ms), its 99.9-percentile is 8.9 % less (2.066 ms
vs. 2.341 ms), and its worst-case computation time (WCCT) is 72.5 % less (3.157 ms vs.
11.486 ms).

The better performance of RT-RPython in this test may partly be related to the
additional features provided by JamaicaVM, such as the real-time GC. Although we
limit our benchmarks to use the features available in RT-RPython (most importantly,
the garbage collected heap is not used), some of the unused features may impose
static overhead. For instance, even if the application does not use the heap, the
compiler may still emit some GC code (e.g. read/write barriers). This emphasizes
the importance of the configurability demanded by the RTMu specification.

Finally, Java has the lowest ACCT, as expected from one of the most extensively
optimized general-purpose managed languages. It also has the highest WCCT, mainly
because of the long pauses caused by its GC. It is worth mentioning that the JVM
used in our tests is configured to use ZGC which is a low-latency GC designed to
limit pauses to under 10 ms [Oracle, 2018] (our tests reported in Appendix Figure 2
confirm ZGC as the most predictable GC in Hotspot JVM-11). On the other hand, a
real-time managed language avoids such pauses at the cost of ACCT.

NOInn Figure 6.3 shows the distributions of the computation times for the NOInn

workload. In this workload, the ACCT for RT-RPython is 6.8 % higher than Ja-
maicaVM (0.582 ms vs. 0.545 ms) and its 99.9-percentile is 10.9 % higher (1.024 ms
vs. 0.923 ms), while its WCCT is 38.4 % lower (1.540 ms vs. 2.501 ms).

We argue that the slowdown in ACCT is acceptable mainly for these reasons:

1. RTZebu’s compiler backend relinquishes some optimizations in favour of mini-
mality.

2. RT-RPython’s write barriers may considerably benefit from further optimiza-
tions. The ACCT of ucRT-RPython (RT-RPython without write barriers) in Fig-
ure 6.4 reflects the relative immaturity of RT-RPython compared to JamaicaVM,
in particular: it shows an upper-bound on the potential improvement from the
reference check optimization.

3. RT-RPython’s RTMu IR generation still needs further optimizations.

4. RTZebu’s compiler backend (mostly borrowed from Zebu) is under-developed,
and would benefit from more engineering and research effort (Lin [2019] enu-
merates some potential improvements).

Regarding the WCCT, the same argument from the COL workload still applies here.
Also, Java has the best ACCT and worst WCCT, just as in the COL workload.

6.4.2 Release Jitter

As explained in Section 6.3.1, release jitter is defined as the difference between the
highest and the lowest release delays. Figures 6.5 and 6.6 show the distributions of

DRAFT – 22 April 2021

70 Evaluation

Figure 6.2: Computation times for the COL workload. RT-RPython outperforms JamaicaVM
in both average-case computation time (1.206 ms vs. 1.355 ms) and worst-case computation
time (3.157 ms vs. 11.486 ms). Also, both real-time VMs (RT-RPython and JamaicaVM) per-
form significantly slower than the non-real-time VM (Hotspot JVM-11) in the average-case,
while they achieve better worst-case computation times.

DRAFT – 22 April 2021

§6.4 Results 71

Figure 6.3: Computation times for the NOInn workload. RT-RPython outperforms JamaicaVM
in the worst-case computation time (1.540 ms vs. 2.501 ms), and JamaicaVM achieves a better
average-case computation time (0.545 ms vs. 0.582 ms). Also, both real-time VMs (RT-RPython
and JamaicaVM) perform significantly slower than the non-real-time VM (Hotspot JVM-11)
in the average-case, while they achieve better worst-case computation times.

DRAFT – 22 April 2021

72 Evaluation

Figure 6.4: Overhead of the RT-RPython reference write barriers. RT-RPython emits write
barriers on all RTMu store operations where the source operand is of reference type. The
write barrier checks the memory area for the source and destination operands, and throws an
exception if the destination has a longer lifetime, because it leads to dangling references to
objects in scopes. ucRT-RPython is an implementation of RT-RPython that does not emit write
barriers to check reference lifetimes. Comparing the computation times of ucRT-RPython to
the default RT-RPython shows that optimizing our trivial implementation of the reference
write barriers should significantly improve both the average- and worst-case computation
times of the benchmarks.

DRAFT – 22 April 2021

§6.4 Results 73

the release delays for the COL and NOInn workloads where the periods of the CD task
are 10 ms and 4 ms respectively. According to the figures, RT-RPython outperforms
JamaicaVM in the release jitter in both workloads (1.250 ms vs. 9.965 ms in COL,
and 1.113 ms vs. 3.999 ms in NOInn). This demonstrates the higher predictability of
RT-RPython in creating periodic releases, compared to JamaicaVM.

An unexpected point seen in Figures 6.5 and 6.6 is that the release jitter for
JamaicaVM (a real-time language VM) is very close to Hotspot JVM (a non-real-time
language VM) in both workloads (9.965 ms vs. 9.997 ms in COL, and 3.999 ms vs.
4.000 ms in NOInn). However, considering the mean and standard deviation values,
JamaicaVM rarely creates delayed releases, while for Hotspot JVM, release delays are
more evenly distributed throughout a period. This demonstrates that JamaicaVM is
more predictable in creating periodic releases compared to the Hotspot JVM.

As discussed in Section 6.4.1, the overhead of JamaicaVM’s unused features,
especially the real-time GC, may partly be responsible for the unpredictability in
JamaicaVM’s timing behaviour. This holds true for the higher release jitter of Ja-
maicaVM compared to RT-RPython. To check this, we modified the periodic task
(CD) to have an empty body, and left the rest of the benchmark unchanged. This en-
sures that the benchmark does not require any of the JamaicaVM’s runtime features
(e.g. GC). We call the modified benchmark NOP. Figure 6.7 compares the release
delay results from running NOP with the COL workload to the original benchmark
with the same workload. The comparison does not show any significant change to
the release jitter of the periodic task. This confirms that the jitter is not caused by the
features used by the original benchmark, with the exception of clock and timer which
are also used by NOP. We conducted experiments to determine the role of the clock
and timer in this jitter.

Clock To assess the effect of clock on the release jitter of JamaicaVM, we measured
the computation times of NOP. The main body of NOP consists of getting the start
time (actual release time) and the completion time, without any other instructions
in between. So, it only includes the clock related part of the benchmark. According
to Figure 6.8, the maximum computation time for NOP is 0.0806 ms. This is a negli-
gible amount of time compared to the reported release delays. Hence, the potential
inaccuracy of JamaicaVM’s clock is not a determinant factor. This applies to all other
performance metrics reported for JamaicaVM in this thesis.

Timer To check whether JamaicaVM’s implementation of waitForNextPeriod() is
causing the high release jitter, we employed tracing tools (e.g. strace and ftrace in
Linux) to extract the underlying timer-related system calls or library calls used by
JamaicaVM. We found pthread_cond_timedwait() (timed wait on a POSIX condition
variable) to be the underlying library call. Thus, we reimplemented RT-RPython’s
wait_for_next_period() function (equivalent to waitForNextPeriod() in RTSJ) using
the pthread_cond_timedwait() function and compared it to the default implementa-
tion using the nanosleep() function. According to the results in Figure 6.9, the two
RT-RPython implementations achieve similar results which indicates that the high

DRAFT – 22 April 2021

74 Evaluation

Figure 6.5: Release jitter for the COL workload (Period=10 ms). Because the minimum release
delays for all VMs in the figure are zero, their release jitter is equal to their maximum release
delay. RT-RPython outperforms JamaicaVM in release jitter (1.250 ms vs. 9.965 ms). It also
performs significantly more predictably than the Hotspot JVM. Although the release jitter
for JamaicaVM is very close to Hotspot, the mean and standard deviation values of the
diagrams show that JamaicaVM rarely creates delayed releases, while for Hotspot, release
delays are almost evenly distributed throughout a period. This diagram demonstrates the
higher predictability of RT-RPython in creating periodic releases, compared to JamaicaVM. It
also shows how unpredictable a non-real-time VM can be on the same measure.

DRAFT – 22 April 2021

§6.4 Results 75

Figure 6.6: Release jitter for the NOInn workload (Period=4 ms). Because the minimum release
delays for all VMs in the figure are zero, their release jitter is equal to their maximum release
delay. RT-RPython outperforms JamaicaVM in release jitter (1.113 ms vs. 3.999 ms). It also
performs significantly more predictably than the Hotspot JVM. Although the release jitter for
JamaicaVM is very close to the Hotspot JVM, the mean and standard deviation values of the
diagrams show that JamaicaVM rarely creates delayed releases, while for Hotspot, release
delays are distributed throughout a period. Confirming Figure 6.5, this diagram demonstrates
the higher predictability of RT-RPython in creating periodic releases, compared to JamaicaVM
and the Hotspot JVM.

DRAFT – 22 April 2021

76 Evaluation

Figure 6.7: Comparison of the release delays in the COL workload to an empty workload
(NOP) on JamaicaVM. Although the release jitter of NOP is slightly better (lower) than COL,
its standard deviation and the 99.9 percentile are worse (higher). This indicates that the high
release jitter of JamaicaVM is not caused by the features used by COL, with the exception of
clock and timer which are also used by NOP.

Figure 6.8: Computation time of an empty workload (NOP). The computation time of the
NOP workload shows the delay that JamaicaVM’s clock imposes on all time measurements.
The maximum delay is 80.6 µs which is negligible compared to JamaicaVM’s release jitter.
This demonstrates that the inaccuracy of JamaicaVM’s clock is not an effective element in the
benchmark’s metrics.

DRAFT – 22 April 2021

§6.4 Results 77

release jitter of JamaicaVM is not a result of how the waitForNextPeriod() function
is implemented in JamaicaVM.

The above experiments demonstrate that the high release jitter of JamaicaVM is
not caused by clock measurement errors, or the inaccuracy of the underlying RTOS
timer facility.

6.4.3 Release Miss Rate

As shown in Figure 6.1, the ith release of a periodic task has a time window which
starts with its expected release time (tr

i) and ends with its deadline which is often
equal to the i + 1th expected release time of the periodic task (tr

i+1). If the release is
not created in this time window, it is called a missed release.

Table 6.2 shows that RT-RPython is the only VM that does not miss any releases
in any of the workloads. Next is JamaicaVM that misses 0.0023 % of the releases
in the COL workload and 0.0069 % in the NOInn. Finally, the Hotspot JVM misses
10.36 % of releases in the COL workload and 8.53 % in the NOI. Hence, the release
miss ratio of the Hotspot JVM is 4504 times higher than JamaicaVM in the COL
workload, and 1236 times higher in the NOInn workload. This confirms our argument
in Section 6.4.2, that JamaicaVM is dramatically more predictable in creating periodic
releases compared to the Hotspot JVM.

Inter-Release Time

When there are release misses in a VM, reporting its release delays/jitter can often be
misleading, because it ignores critical parts of the periodic task’s timeline. Figure 6.10
depicts three execution scenarios for a periodic task with a period of 4 ms. The
scenario with no missed release has the highest release jitter, followed by a scenario
with one missed release, and the best release jitter belongs to the scenario where two
releases are missed. Here, reporting only the release jitter is misleading, because it
overlooks the frequency or pattern of missing releases.

Therefore, as an alternative to reporting release delays, and to complement it,
we report the inter-release times of all VMs in Figure 6.11. Compared to release
delays, inter-release times do not ignore the missed releases. They also reflect how
these misses are distributed throughout the benchmark execution. For instance, an
execution with two consecutive release misses is depicted differently from another
execution with two release misses that happen separately, because they will lead to
different inter-release times.

The inter-release times in Figure 6.11 uncover a new critical point in our VM
comparison: that the Hotspot JVM is the only VM in which the average inter-release
time is not equal to the period. This means the periodic releases generated by Hotspot
JVM are not accurate even in the average-case. Additionally, while inter-release times
in JamaicaVM are distributed over a wider range compared to Hotspot JVM, the 0.1
and 99.9 percentiles in JamaicaVM show that it creates a significant portion of releases
close to their expected release times. Finally, the result confirms that periodic task

DRAFT – 22 April 2021

78 Evaluation

Figure 6.9: Implementing the waitForNextPeriod() function as a timed wait operation
on a POSIX condition variable (JamaicaVM’s approach), or a nanosleep() function call
(RT-RPython’s default approach), lead to very similar periodic release delays in both work-
load. This suggests that the high release jitter of JamaicaVM is not a result of how the
waitForNextPeriod() function is implemented in JamaicaVM.

DRAFT – 22 April 2021

§6.5 Summary 79

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

D=2 D=1 D=3 D=2.5 D=1.5 D=0.5

Scenario-3
Jitter=1.5

Scenario-2
Jitter=2

Scenario-1
Jitter=2.5

Time

Figure 6.10: This figure shows three scenarios for a periodic task that starts at time zero,
and has a period of 4 ms. The release jitter for scenario-1 where the periodic task doesn’t
miss any releases is 2.5 ms which is higher than the other two scenarios. In such cases where
there are missed releases, release jitter does not reflect the predictability of releases, because
it overlooks critical parts of the information. For instance, the period from 8 ms to 12 ms in
scenario-2, and the period from 8 ms to 16 ms in scenario-3 are not reflected in release jitter.
Thus, release jitter may be misleading in the presence of release misses.

Table 6.2: Release Miss Rate on the Tested VMs. RT-RPython is the only VM that does not
miss any releases on any of the workloads. JamaicaVM misses 23 out of 1 000 000 releases
in the COL workload, which has a period of 10 ms. The number of misses rises to 69 per
1 000 000 releases in the NOInn workload which has a smaller period of 4 ms. The release miss
ratio for Hotspot JVM is 4504 times higher than JamaicaVM in the COL workload, and 1236
times higher in the NOInn workload.

COL NOInn
RT-RPython 0 % 0 %
JamaicaVM-8.3 0.0023 % 0.0069 %
Hotspot JVM-11 10.36 % 8.53 %

releases are more predictable in RT-RPython, compared to the other VMs.

6.5 Summary

In this chapter, we presented our evaluation of RT-RPython as a real-time program-
ming language. We chose an existing real-time application benchmark suite targeting
Java and RTSJ, and explained its implementation in RT-RPython. Then, we compared
the performance results of RT-RPython to JamaicaVM (as an RTSJ implementation)
and Hotspot (a highly-optimized non-real-time language VM). We used computation
time and release jitter as the measurement metrics. Although RT-RPython does not
provide all of JamaicaVM’s features (e.g. real-time GC), we tried to keep the com-
parison as fair as possible by only using their common features in our tests (e.g. the
benchmark does not allocate to the garbage collected heap).

DRAFT – 22 April 2021

80 Evaluation

Figure 6.11: Inter-release times for COL and NOInn workloads (outliers /∈ [0.1%, 99.9%]). The
CD task’s period is 10 ms in COL and 4 ms in NOInn. Ideally, the time between two subsequent
releases (inter-release time) of CD should always be 10 ms and 4 ms respectively. In practice,
various elements including the programming language runtime add unpredictability to task
release times. Comparing the maximum and the standard deviation of inter-release time for
RT-RPython to JamaicaVM in both workloads shows that RT-RPython is adding significantly
less unpredictability. Despite the larger maximum inter-release time of JamaicaVM compared
to Hotspot, its standard deviation is smaller, and its 0.1 percentile is much closer to the period,
which shows periodic releases are created with less variation in JamaicaVM. Finally, Hotspot
is the only VM in which the average inter-release time is not equal to the period. This means
periods generated by Hotspot are not accurate on average.

DRAFT – 22 April 2021

§6.5 Summary 81

Our measurements show that RT-RPython outperforms JamaicaVM in most test
scenarios, including the average and worst-case computation time, release jitter, and
release miss rate. The only exception is the average-computation time on the NOInn

workload where JamaicaVM slightly outperforms RT-RPython. By comparing the per-
formance results of RT-RPython to JamaicaVM (as a commercial real-time language
VM), we do not aim to prove RT-RPython’s high efficiency. Rather, we believe that
these results for RT-RPython on aircraft collision detection workloads demonstrate
that RTMu, as a real-time µVM, can provide an efficient foundation for the development
of programming languages suitable for building real-time software.

DRAFT – 22 April 2021

82 Evaluation

DRAFT – 22 April 2021

Chapter 7

Conclusion

Real-time systems have grown considerably in both diversity and popularity, and
the demand for real-time software has never been higher. In contrast, the choice of
programming languages used to develop these systems has mostly remained limited
to decades-old languages, namely Ada and C/C++, and more recently real-time Java.
This seems surprising given the diversity and popularity of real-time systems, and
the flourishing ecosystem of general-purpose languages. In fact, many programming
languages were developed or adapted to build real-time software, but only a few
survived. This suggests the need for diverse programming languages in real-time
systems.

We postulate that the main reason for this monoculture is the difficulty of develop-
ing new programming languages for real-time systems, due to their strict correctness
requirements. Therefore, we propose using a new µVM to relieve the difficulty and
reduce the cost of implementing new languages for real-time systems. A µVM is
minimal and low-level, which allows supporting a wide range of languages for di-
verse real-time systems. Its minimality also makes correct implementation and formal
verification of the platform easier, which is vital for many real-time systems.

So, we try to answer the following question in this thesis: ’What is a suitable µVM
design for real-time systems, and how can we verify its suitability?’

As an answer to the first part of the question, we design RTMu, the first µVM
instance targeting programming languages for real-time systems. To arrive at this
design, we studied an extensive range of programming languages built or adapted
for real-time systems, and extracted a set of key features that distinguish real-time
and non-real-time languages. With an existing µVM specification, named Mu, as the
starting point, and the goal of supporting the implementation of these key features,
we propose a set of modifications to Mu’s abstractions over concurrency and memory
management, and reuse its compiler backend. Given the already-demonstrated ca-
pability of Mu in implementing real-world managed languages, we argue that these
changes make RTMu capable of implementing new real-time languages or reimple-
menting existing ones.

To confirm the feasibility of the RTMu’s abstractions, we build a performant imple-
mentation of the RTMu specification, named RTZebu, based on Zebu, a performant
implementation of Mu. We use Rust, a thread-, memory-, and type-safe language to
implement RTZebu, and discuss some interesting points in implementing a language

83

DRAFT – 22 April 2021

84 Conclusion

VM (or other system software) for real-time systems in a safe language.
To answer the second part of the question, ’how can we verify its suitability?’, we

demonstrate that RTMu ’can provide an efficient and usable foundation for the development
of programming languages suitable for building real-time software’.

We design a real-time programming language, RT-RPython as a real-time exten-
sion to RPython, a fully static dialect of Python. To demonstrate the usability of RTMu,
we implement RT-RPython on top of RTMu. We also reimplement the Collision Detec-
tion benchmark suite, a real-time application benchmark originally targeting Java and
RTSJ VMs, in RT-RPython to show that RT-RPython is ’suitable for building real-time
software’.

Finally, we demonstrate RTZebu’s efficiency as a foundation for implementing
real-time programming languages. We run the collision detection benchmark on
RT-RPython and compare its real-time performance to JamaicaVM (a commercial
implementation of RTSJ). RT-RPython outperforms JamaicaVM in both the average-
and worst-case for all performance metrics, with one exception where JamaicaVM
performs marginally better. We conclude that RT-RPython is efficient, and the occa-
sional lack of efficiency is not inherent to the RTMu design, rather a sign that more
research and engineering effort is required.

In summary, this thesis presents our design and implementation of RTMu, a
µVM that acts a proof of concept, establishing the use of µVMs to build new high-
quality programming languages for real-time systems. It also provides an empirical
demonstration of performance and predictability for µVMs in the real-time domain.
The source code developed as part of this thesis are open-sourced under the Apache
License, Version 2.0. We believe that RTMu can help in tackling the current lack of
diversity in programming languages for real-time systems.

7.1 Future Work

This thesis and its products, including the RTMu specification (Chapter 3), RTZebu
(Chapter 4), and RT-RPython (Chapter 5) may be followed by a wide range of research
topics, from low-level compiler backend optimizations to design and implementation
of new real-time languages. Here, we only mention some of the topics we were most
concerned about throughout doing this thesis.

7.1.1 A Real-Time Garbage Collector

It has been an explicit non-goal of this thesis to design and implement a real-time
garbage collector (RTGC) for RTZebu. However, RTGC is an essential part of the
RTMu specification.

There has been much work on designing RTGCs that ensure short pauses and pre-
dictable minimum mutator utilization, and much progress has been made [Jones et al.,
2011]. RTGCs are already available in RTSJ implementations such as JamaicaVM
[AicasWebPage] and FijiVM [Pizlo et al., 2009, 2010b]. Thus, while design and imple-
mentation of a RTGC for RTZebu may benefit a rich literature, there are still interest-

DRAFT – 22 April 2021

§7.1 Future Work 85

ing challenges when we take RTMu’s requirements (as mentioned in Section 3.3.4)
into account.

7.1.2 Integrated WCET Analysis

Schedulability analysis is an essential part of designing a hard real-time system, and
WCET analysis of the tasks in the system is an integral component of schedulability
analysis. The literature on real-time systems offers an abundance of research on
estimating the WCET of time-critical tasks, and a number of commercial WCET
analysis tools are also available [Wilhelm et al., 2008].

Supporting WCET analysis at the RTMu IR level has the major benefit of being
portable which will hugely simplify supporting WCET analysis of applications in all
of RTMu’s client languages. Related work such as [Bernat et al., 2000; Frost et al.,
2011] has already been done on WCET analysis of Java bytecode. Another major
benefit of supporting WCET analysis at the RTMu IR level is that it may enable
WCET-aware optimizations in the compiler backend. Here, a closely related work
is the WCET-aware register allocation published by Falk et al. [2011] which reports
significant improvements to the average- and worst-case performance of the tested
tasks.

7.1.3 A Formally-Verified Implementation

Feasibility of building formally verified implementations is a key design goal for
RTMu (and Mu), which makes it suitable for highly reliable systems. As stated in
Section 2.1.4, many real-time systems are safety-critical and are required to undergo
strict validation and certification processes. Hence, a formally verified implemen-
tation of RTMu is an appealing foundation for the development of programming
languages for real-time systems, specially the safety-critical ones. It also helps widen
the adaptation of RTMu in the real-time systems domain which will ultimately lead
to improvement in the language diversity in this domain.

7.1.4 Optimizations

Following Mu’s principle of minimality, the only optimizations performed by the
compiler backend of RTZebu (Section 4.3.1) are register allocation and instruction
selection. Other important optimizations are expected to be implemented at the
RTMu’s client level. While RTZebu is capable of achieving reasonable performance
according to our evaluations (Chapter 6), it may still benefit further research and
engineering effort, specially on the compiler backend. Besides, the RT-RPython client
of RTZebu may significantly benefit optimizations to its RTMu IR generation. Hence,
further studies on adding or refining optimizations in the RTZebu’s compiler backend,
and on top of it, as IR optimizer libraries, are both essential and effective in improving
the performance of RTMu’s clients.

DRAFT – 22 April 2021

86 Conclusion

DRAFT – 22 April 2021

Bibliography

The Computer Language Benchmarks Game. https://benchmarksgame-team.pages.
debian.net/benchmarksgame/. (cited on pages xv and 10)

Aicas, 2019. JamaicaVM 8.3-User Manual Java Technology for Critical Embedded
Systems. Technical report. https://www.aicas.com/download/manuals/JamaicaVM-8.
3-Manual.pdf. (cited on page 65)

AicasWebPage. JamaicaVM | aicas.com. https://www.aicas.com/wp/solutions/
jamaicavm/. (cited on pages 12, 65, 66, and 84)

Amiri, J. E.; Blackburn, S. M.; Hosking, A. L.; and Norrish, M., 2019. Designing
a low-level virtual machine for implementing real-time managed languages. In
Proceedings of the 11th ACM SIGPLAN International Workshop on Virtual Machines
and Intermediate Languages (VMIL) (Athens, Greece, Oct. 2019). doi:10.1145/3358504.
3361226. (cited on pages 21, 44, and 45)

Armbruster, A.; Baker, J.; Cunei, A.; Flack, C.; Holmes, D.; Pizlo, F.; Pla, E.; Proc-
hazka, M.; and Vitek, J., 2007. A real-time Java virtual machine with applications
in avionics. ACM Transactions on Embedded Computing Systems, 7, 1 (2007), 5:1–5:49.
doi:10.1145/1324969.1324974. (cited on page 12)

Bacon, D. F.; Cheng, P.; and Rajan, V. T., 2003. A real-time garbage collector with
low overhead and consistent utilization. In Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL) (New Orleans,
Louisisana, USA, Jan. 2003). doi:10.1145/640128.604155. (cited on page 8)

Bambagini, M.; Marinoni, M.; Aydin, H.; and Buttazzo, G., 2016. Energy-aware
scheduling for real-time systems: A survey. ACM Trans. Embed. Comput. Syst., 15, 1
(Jan. 2016). doi:10.1145/2808231. https://doi.org/10.1145/2808231. (cited on page 7)

Barnes, J., 1997. High integrity Ada: the SPARK approach. Addison-Wesley Professional.
(cited on page 12)

Bernat, G.; Burns, A.; and Wellings, A. J., 2000. Portable worst-case execution
time analysis using Java byte code. In Proceedings of the 12th Euromicro Conference on
Real-Time Systems (ECRTS) (Stockholm, Sweden, Jun. 2000). IEEE Computer Society.
doi:10.1109/EMRTS.2000.853995. (cited on page 85)

Blackburn, S. M. and McKinley, K. S., 2008. Immix: a mark-region garbage collector
with space efficiency, fast collection, and mutator performance. In Proceedings of

87

DRAFT – 22 April 2021

https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://www.aicas.com/download/manuals/JamaicaVM-8.3-Manual.pdf
https://www.aicas.com/download/manuals/JamaicaVM-8.3-Manual.pdf
https://www.aicas.com/wp/solutions/jamaicavm/
https://www.aicas.com/wp/solutions/jamaicavm/
http://dx.doi.org/10.1145/3358504.3361226
http://dx.doi.org/10.1145/3358504.3361226
http://dx.doi.org/10.1145/1324969.1324974
http://dx.doi.org/10.1145/640128.604155
http://dx.doi.org/10.1145/2808231
https://doi.org/10.1145/2808231
http://dx.doi.org/10.1109/EMRTS.2000.853995

88 Bibliography

the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI) (Tucson, AZ, USA, Jun. 2008). doi:10.1145/1375581.1375586. (cited on page
40)

Boehm, H. and Adve, S. V., 2008. Foundations of the C++ concurrency memory
model. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) (Tucson, AZ, USA, Jun. 2008). doi:10.1145/1375581.
1375591. (cited on page 11)

Boehm, H.; Demers, A. J.; and Shenker, S., 1991. Mostly parallel garbage collection.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) (Toronto, Ontario, Canada, Jun. 1991). doi:10.1145/113445.
113459. (cited on page 40)

Bollella, G. and Gosling, J., 2000. The real-time specification for Java. IEEE
Computer, 33, 6 (2000), 47–54. doi:10.1109/2.846318. (cited on page 3)

Bollella, G. and Gosling, J., 2000. The real-time specification for java. Computer,
33, 6 (2000), 47–54. doi:10.1109/2.846318. (cited on page 12)

Burns, A.; Dobbing, B.; and Romanski, G., 1998. The Ravenscar tasking profile
for high integrity real-time programs. In Proceedings of the Ada-Europe International
Conference on Reliable Software Technologies, vol. 1411 of Lecture Notes in Computer
Science (Uppsala, Sweden, Jun. 1998), 263–275. Springer. doi:10.1007/BFb0055011.
(cited on page 12)

Burns, A. and Wellings, A. J., 2009. Real-Time Systems and Programming Languages -
Ada, Real-Time Java and C / Real-Time POSIX, Fourth Edition. International computer
science series. Addison-Wesley. ISBN 978-0-321-41745-9. (cited on pages 1, 5, 8, 32,
and 36)

Buttazzo, G. and Cervin, A., 2007. Comparative assessment and evaluation of jitter
control methods (Loria, Nancy, France, Mar. 2007), 163–172. (cited on page 68)

Castaños, J. G.; Edelsohn, D.; Ishizaki, K.; Nagpurkar, P.; Nakatani, T.; Oga-
sawara, T.; and Wu, P., 2012. On the benefits and pitfalls of extending a statically
typed language JIT compiler for dynamic scripting languages. In Proceedings of
the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA) (Tucson, AZ, USA, Oct. 2012), 195–212.
doi:10.1145/2384616.2384631. (cited on page 18)

Chang, Y. and Wellings, A. J., 2010. Garbage collection for flexible hard real-time
systems. IEEE Transactions on Computers, 59, 8 (2010), 1063–1075. doi:10.1109/TC.
2010.13. (cited on page 8)

Davis, R. I. and Burns, A., 2011a. A survey of hard real-time scheduling for multipro-
cessor systems. ACM Comput. Surv., 43, 4 (Oct. 2011). doi:10.1145/1978802.1978814.
https://doi.org/10.1145/1978802.1978814. (cited on page 7)

DRAFT – 22 April 2021

http://dx.doi.org/10.1145/1375581.1375586
http://dx.doi.org/10.1145/1375581.1375591
http://dx.doi.org/10.1145/1375581.1375591
http://dx.doi.org/10.1145/113445.113459
http://dx.doi.org/10.1145/113445.113459
http://dx.doi.org/10.1109/2.846318
http://dx.doi.org/10.1109/2.846318
http://dx.doi.org/10.1007/BFb0055011
http://dx.doi.org/10.1145/2384616.2384631
http://dx.doi.org/10.1109/TC.2010.13
http://dx.doi.org/10.1109/TC.2010.13
http://dx.doi.org/10.1145/1978802.1978814
https://doi.org/10.1145/1978802.1978814

Bibliography 89

Davis, R. I. and Burns, A., 2011b. A survey of hard real-time scheduling for
multiprocessor systems. ACM Computing Surveys, 43, 4 (2011), 35:1–35:44. doi:
10.1145/1978802.1978814. (cited on page 36)

Dolan, S.; Muralidharan, S.; and Gregg, D., 2013. Compiler support for
lightweight context switching. ACM Transactions on Architecture and Code Opti-
mization, 9, 4 (Jan. 2013), 36:1–36:25. doi:10.1145/2400682.2400695. (cited on page
17)

Doukas, G. S. and Thramboulidis, K., 2011. A real-time-Linux-based framework for
model-driven engineering in control and automation. IEEE Transactions on Industrial
Electronics, 58, 3 (2011), 914–924. doi:10.1109/TIE.2009.2029584. (cited on page 9)

EUROCAE, 2011. Software considerations in airborne systems and equip-
ment certification: ED12C. Technical report. https://eshop.eurocae.net/
eurocae-documents-and-reports/ed-12c/#. (cited on page 9)

Falk, H.; Schmitz, N.; and Schmoll, F., 2011. WCET-aware register allocation based
on integer-linear programming. In Proceedings of the 23rd Euromicro Conference
on Real-Time Systems (ECRTS) (Porto, Portugal, Jul. 2011), 13–22. IEEE Computer
Society. doi:10.1109/ECRTS.2011.10. (cited on page 85)

Frost, C.; Jensen, C. S.; Luckow, K. S.; and Thomsen, B., 2011. WCET analysis of
Java bytecode featuring common execution environments. In Proceedings of the 9th
International Workshop on Java Technologies for Real-time and Embedded Systems (JTRES)
(York, United Kingdom, Sep. 2011). doi:10.1145/2043910.2043916. (cited on page
85)

Henties, T.; Ag, S.; Hunt, J.; Locke, D.; Nilsen, K.; Na, A.; Schoeberl, M.; and

Vitek, J., 2009. Java for safety-critical applications. Electronic Notes in Theoretical
Computer Science - ENTCS, (01 2009). (cited on page 9)

IEEE and TheOpenGroup, 2018. IEEE Standard for Information Technology–Portable
Operating System Interface (POSIX(R)) Base Specifications, Issue 7. IEEE Std 1003.1-
2017 (Revision of IEEE Std 1003.1-2008) - Redline, (2018), 1–6900. (cited on page 14)

Jensen, E.; Locke, C.; and Tokuda, H., 1985. Time-driven scheduling model for real-
time operating systems. In Unknown Host Publication Title, 112–122. IEEE. (cited on
page 6)

Jibaja, I.; Blackburn, S. M.; Haghighat, M. R.; and McKinley, K. S., 2011. Deferred
gratification: engineering for high performance garbage collection from the get
go. In Proceedings of the ACM SIGPLAN workshop on Memory Systems Performance
and Correctness (MSPC) (San Jose, CA, USA, Jun. 2011), 58–65. doi:10.1145/1988915.
1988930. (cited on page 11)

Jones, R. E.; Hosking, A. L.; and Moss, J. E. B., 2011. The Garbage Collection Hand-
book: The art of automatic memory management. Chapman and Hall / CRC Applied

DRAFT – 22 April 2021

http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1145/2400682.2400695
http://dx.doi.org/10.1109/TIE.2009.2029584
https://eshop.eurocae.net/eurocae-documents-and-reports/ed-12c/#
https://eshop.eurocae.net/eurocae-documents-and-reports/ed-12c/#
http://dx.doi.org/10.1109/ECRTS.2011.10
http://dx.doi.org/10.1145/2043910.2043916
http://dx.doi.org/10.1145/1988915.1988930
http://dx.doi.org/10.1145/1988915.1988930

90 Bibliography

Algorithms and Data Structures Series. CRC Press. ISBN 978-1-4200-8279-1. (cited
on page 84)

Kalibera, T.; Hagelberg, J.; Pizlo, F.; Plsek, A.; Titzer, B. L.; and Vitek, J., 2009.
Cdx: a family of real-time Java benchmarks. In Proceedings of the 7th International
Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES), ACM
International Conference Proceeding Series (Madrid, Spain, Sep. 2009), 41–50. ACM.
doi:10.1145/1620405.1620412. (cited on pages ix, 61, 62, 66, and 67)

Klein, G.; Elphinstone, K.; Heiser, G.; Andronick, J.; Cock, D.; Derrin, P.; Elka-
duwe, D.; Engelhardt, K.; Kolanski, R.; Norrish, M.; Sewell, T.; Tuch, H.; and

Winwood, S., 2009. Sel4: Formal verification of an os kernel. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09 (Big Sky,
Montana, USA, 2009), 207–220. Association for Computing Machinery, New York,
NY, USA. doi:10.1145/1629575.1629596. https://doi.org/10.1145/1629575.1629596.
(cited on page 39)

Lin, Y., 2019. An efficient implementation of a micro virtual machine. Ph.D. thesis, The
Australian National University. doi:1885/158122. (cited on pages 2, 19, 39, 40,
and 69)

Lin, Y.; Blackburn, S. M.; Hosking, A. L.; and Norrish, M., 2016. Rust as a
language for high performance GC implementation. In Proceedings of the ACM
SIGPLAN International Symposium on Memory Management (ISMM) (Santa Barbara,
CA, USA, Jun. 2016). doi:10.1145/2926697.2926707. (cited on pages 40 and 41)

Lippiello, V.; Villani, L.; and Siciliano, B., 2007. An open architecture for sensory
feedback control of a dual-arm industrial robotic cell. Industrial Robot, 34, 1 (2007),
46–53. doi:10.1108/01439910710718441. (cited on page 9)

Liu, C. L. and Layland, J. W., 1973. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM, 20, 1 (1973), 46–61. doi:
10.1145/321738.321743. (cited on page 7)

Manson, J.; Pugh, W.; and Adve, S. V., 2005. The Java memory model. In Proceed-
ings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL) (Long Beach, CA, USA, Jan. 2005). doi:10.1145/1040305.1040336.
(cited on page 11)

Marti, P.; Villa, R.; Fuertes, J. M.; and Fohle, G., 2001. On real-time control tasks
schedulability. In Proceedings of the 2001 European Control Conference (ECC) (Porto,
Portugal, Sep. 2001), 2227–2232. (cited on page 67)

McCarthy, J., 1960. Recursive functions of symbolic expressions and their com-
putation by machine, part I. Communications of the ACM, 3, 4 (1960), 184–195.
doi:10.1145/367177.367199. (cited on page 11)

DRAFT – 22 April 2021

http://dx.doi.org/10.1145/1620405.1620412
http://dx.doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
http://dx.doi.org/1885/158122
http://dx.doi.org/10.1145/2926697.2926707
http://dx.doi.org/10.1108/01439910710718441
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/1040305.1040336
http://dx.doi.org/10.1145/367177.367199

Bibliography 91

McCormick, J. W. and Chapin, P. C., 2015. Building High Integrity Applications with
SPARK. Cambridge University Press. doi:10.1017/CBO9781139629294. (cited on
page 12)

Mu, 2018. The specification of Mu. https://gitlab.anu.edu.au/mu/mu-spec. (cited on
pages ix and 15)

Oracle, 2018. HotSpot Virtual Machine Garbage Collection Tuning
Guide. https://docs.oracle.com/en/java/javase/11/gctuning/available-collectors.
html{#}GUID-F215A508-9E58-40B4-90A5-74E29BF3BD3C. (cited on pages 66 and 69)

Pizlo, F.; Ziarek, L.; Blanton, E.; Maj, P.; and Vitek, J., 2010a. High-level pro-
gramming of embedded hard real-time devices. In Proceedings of the 5th European
Conference on Computer Systems, EuroSys ’10 (Paris, France, 2010), 69–82. Associa-
tion for Computing Machinery, New York, NY, USA. doi:10.1145/1755913.1755922.
https://doi.org/10.1145/1755913.1755922. (cited on page 2)

Pizlo, F.; Ziarek, L.; Maj, P.; Hosking, A. L.; Blanton, E.; and Vitek, J., 2010b.
Schism: fragmentation-tolerant real-time garbage collection. In Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI) (Toronto, Ontario, Canada, Jun. 2010). doi:10.1145/1806596.1806615. (cited
on pages 8 and 84)

Pizlo, F.; Ziarek, L.; and Vitek, J., 2009. Real time Java on resource-constrained
platforms with Fiji VM. In Proceedings of the 7th International Workshop on Java Tech-
nologies for Real-Time and Embedded Systems (JTRES), ACM International Conference
Proceeding Series (Madrid, Spain, Sep. 2009). doi:10.1145/1620405.1620421. (cited
on pages 12, 21, and 84)

PyPyDoc. PyPy documentation. https://doc.pypy.org/en/latest/introduction.html{#}.
(cited on page 49)

RPyDoc. RPython Documentation. https://rpython.readthedocs.io/en/latest/index.html.
(cited on pages 15, 49, and 58)

RTCA, 2011. Software considerations in airborne systems and equipment certification:
DO-178C. Technical report, RTCA. https://standards.globalspec.com/std/1459138/
RTCA%20DO-178. (cited on page 9)

RTSJ, 2018. Realtime and Embedded Specification for Java. https://www.aicas.com/download/
rtsj/rtsj_76.pdf. (cited on pages 12, 49, and 52)

RTZebuGit, 2021. RTZebu VM (a fast implementation of RTMu Micro VM). https:
//gitlab.anu.edu.au/mu/mu-impl-fast/-/tree/rtmu-dev. (cited on page 39)

RustTeam. Rust Programming Language. https://www.rust-lang.org/. (cited on page
39)

DRAFT – 22 April 2021

http://dx.doi.org/10.1017/CBO9781139629294
https://gitlab.anu.edu.au/mu/mu-spec
https://docs.oracle.com/en/java/javase/11/gctuning/available-collectors.html{#}GUID-F215A508-9E58-40B4-90A5-74E29BF3BD3C
https://docs.oracle.com/en/java/javase/11/gctuning/available-collectors.html{#}GUID-F215A508-9E58-40B4-90A5-74E29BF3BD3C
http://dx.doi.org/10.1145/1755913.1755922
https://doi.org/10.1145/1755913.1755922
http://dx.doi.org/10.1145/1806596.1806615
http://dx.doi.org/10.1145/1620405.1620421
https://doc.pypy.org/en/latest/introduction.html{#}
https://rpython.readthedocs.io/en/latest/index.html
https://standards.globalspec.com/std/1459138/RTCA%20DO-178
https://standards.globalspec.com/std/1459138/RTCA%20DO-178
https://www.aicas.com/download/rtsj/rtsj_76.pdf
https://www.aicas.com/download/rtsj/rtsj_76.pdf
https://gitlab.anu.edu.au/mu/mu-impl-fast/-/tree/rtmu-dev
https://gitlab.anu.edu.au/mu/mu-impl-fast/-/tree/rtmu-dev
https://www.rust-lang.org/

92 Bibliography

Schoeberl, M.; Dalsgaard, A.; Hansen, R.; Korsholm, S.; Ravn, A.; Rivas, J.;
Strøm, T.; Søndergaard, H.; Wellings, A.; and Zhao, S., 2016. Safety-critical java
for embedded systems. Concurrency and Computation: Practice and Experience, 29 (12
2016). doi:10.1002/cpe.3963. (cited on page 2)

Schoeberl, M.; Dalsgaard, A. E.; Hansen, R. R.; Korsholm, S. E.; Ravn, A. P.;
Rivas, J. R. R.; Strøm, T. B.; Søndergaard, H.; Wellings, A. J.; and Zhao, S., 2017.
Safety-critical Java for embedded systems. Concurrency and Computation: Practice
and Experience, 29, 22 (Nov. 2017). doi:10.1002/cpe.3963. (cited on pages 14 and 22)

Sha, L.; Rajkumar, R.; and Lehoczky, J. P., 1990. Priority inheritance protocols: An
approach to real-time synchronization. IEEE Transactions on Computers, 39, 9 (1990),
1175–1185. doi:10.1109/12.57058. (cited on page 7)

Sharp, D. C.; Pla, E.; and Luecke, K. R., 2003. Evaluating mission critical large-scale
embedded system performance in real-time Java. In Proceedings of the 24th IEEE
Real-Time Systems Symposium (RTSS) (Cancun, Mexico, Dec. 2003), 362–365. IEEE
Computer Society. doi:10.1109/REAL.2003.1253283. (cited on pages 12 and 29)

Shin, K. G. and Ramanathan, P., 1994. Real-time computing: a new discipline of
computer science and engineering. Proceedings of the IEEE, 82, 1 (1994), 6–24. (cited
on page 6)

Siebert, F., 1999. Hard real-time garbage-collection in the Jamaica virtual machine. In
Proceedings of the 6th International Workshop on Real-Time Computing and Applications
Symposium (RTCSA) (Hong Kong, China, Dec. 1999). IEEE Computer Society. doi:
10.1109/RTCSA.1999.811198. (cited on page 65)

Siebert, F., 2010. Concurrent, parallel, real-time garbage-collection. In Proceedings of
the 9th International Symposium on Memory Management (ISMM) (Toronto, Ontario,
Canada, Jun. 2010). doi:10.1145/1806651.1806654. (cited on pages 12, 21, and 65)

Stoyenko, A. D., 1992. The evolution and state-of-the-art of real-time languages.
Journal of Systems and Software, 18, 1 (1992), 61–83. doi:10.1016/0164-1212(92)90046-M.
(cited on page 1)

TheOpenGroup, 2017. Safety-Critical Java Technology Specification. https://jcp.org/
aboutJava/communityprocess/edr/jsr302/index4.html. (cited on page 13)

TheRustProjectDevelopers, 2020. libc - crates.io: Rust Package Registry. https:
//crates.io/crates/libc. (cited on page 41)

Turon, A., 2015a. Abstraction without overhead: traits in Rust. https://blog.rust-lang.
org/2015/05/11/traits.html. (cited on page 39)

Turon, A., 2015b. Fearless Concurrency with Rust. https://blog.rust-lang.org/2015/04/
10/Fearless-Concurrency.html. (cited on page 39)

DRAFT – 22 April 2021

http://dx.doi.org/10.1002/cpe.3963
http://dx.doi.org/10.1002/cpe.3963
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/REAL.2003.1253283
http://dx.doi.org/10.1109/RTCSA.1999.811198
http://dx.doi.org/10.1109/RTCSA.1999.811198
http://dx.doi.org/10.1145/1806651.1806654
http://dx.doi.org/10.1016/0164-1212(92)90046-M
https://jcp.org/aboutJava/communityprocess/edr/jsr302/index4.html
https://jcp.org/aboutJava/communityprocess/edr/jsr302/index4.html
https://crates.io/crates/libc
https://crates.io/crates/libc
https://blog.rust-lang.org/2015/05/11/traits.html
https://blog.rust-lang.org/2015/05/11/traits.html
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html
https://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

Bibliography 93

Wang, K., 2018. Micro Virtual Machines: A Solid Foundation for Managed Language
Implementation. Ph.D. thesis, Australian National University. doi:1885/147871. (cited
on pages xv, 2, 9, 11, and 19)

Wang, K.; Lin, Y.; Blackburn, S. M.; Norrish, M.; and Hosking, A. L., 2015.
Draining the swamp: Micro virtual machines as solid foundation for language
development. In 1st Summit on Advances in Programming Languages (SNAPL), vol. 32
of LIPIcs (Asilomar, CA, USA, May 2015), 321–336. doi:10.4230/LIPIcs.SNAPL.2015.321.
(cited on pages ix, 2, and 15)

Wilhelm, R.; Engblom, J.; Ermedahl, A.; Holsti, N.; Thesing, S.; Whalley, D. B.;
Bernat, G.; Ferdinand, C.; Heckmann, R.; Mitra, T.; Mueller, F.; Puaut, I.;
Puschner, P. P.; Staschulat, J.; and Stenström, P., 2008. The worst-case execution-
time problem - overview of methods and survey of tools. ACM Transactions on
Embedded Computing Systems, 7, 3 (2008), 36:1–36:53. doi:10.1145/1347375.1347389.
(cited on page 85)

Zhang, J. J., 2015. MuPy : A First Client for the Mu Micro Virtual Machine. Honours
thesis, Australian National University. (cited on pages 15, 49, and 55)

Åström, K. J. and Wittenmark, B., 1997. Computer-controlled systems: theory and
design (3 ed.). Prentice-Hall. ISBN 0-13-314899-8. (cited on page 67)

DRAFT – 22 April 2021

http://dx.doi.org/1885/147871
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.321
http://dx.doi.org/10.1145/1347375.1347389

94 Bibliography

DRAFT – 22 April 2021

Appendix

Appendixes

This chapter consists of figures that complement the main thesis chapters as follows:

(1) Figure 1 (referred in Section 6.2.2) presents our evaluation of the real-time
performance of JamaicaVM’s real-time garbage collector and its implementation
of scoped memory. This figure justifies the JamaicaVM configuration we used
in our evaluation.

(2) Figure 2 (referred in Section 6.2.3) presents our evaluation of the real-time per-
formance of the garbage collectors available in Hotspot-11. This figure justifies
our decision to use Hotspot with ZGC in our evaluation.

95

DRAFT – 22 April 2021

96 Appendixes

Figure 1: JamaicaVM provides two garbage collectors: A real-time GC and a stop-the-world
GC (STW-GC in the figure). JamaicaVM’s real-time garbage collector is an incremental,
parallel and concurrent mark-sweep GC (INC-GC in the figure). We run the RTSJ version of
the CDj benchmark on JamaicaVM with both GCs, to test the effect of the choice of GC on an
application that uses only the immortal and scoped memory. We also run the Java version
of the CDj benchmark that uses heap as its allocation context, on JamaicaVM with real-time
GC, to compare its predictability to scoped memory. STW-GC and INC-GC show very similar
results, except in the inter-release time of the NOInn workload, where INC-GC has better
worst-case behaviour. Hence, we chose to use the INC-GC in our evaluation. Finally, the
Java version of the benchmark shows the best average-case performance, but its worst-case
behaviour in the computation time of the NOInn workload indicates its inferiority to using
scoped memory with INC-GC.

DRAFT – 22 April 2021

97

Figure 2: Hotspot-11 provides four garbage collector options: serial GC, parallel GC, garbage-
first (G1) GC, and ZGC. Among them, ZGC is specifically designed for low pause times
(under 10 ms). The computation times and inter-release times of both workloads confirm
that ZGC is outperforming other GCs. Therefore, we use Hotspot JVM with ZGC in our
evaluations.

DRAFT – 22 April 2021

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Scope and Contributions
	Thesis Outline

	Background and Related Work
	Real-Time Systems
	External Environment
	Threads
	Memory
	Safety Requirements
	Operating Systems

	Programming Language Implementation
	Execution
	Concurrency
	Garbage Collection

	Programming Languages for Real-Time Systems
	SPARK
	RTSJ
	SCJ
	RT-POSIX

	The Mu Micro Virtual Machine
	Summary

	RTMu: A Micro Virtual Machine for Real-Time Systems
	Key RTPL Features
	Scope
	Design
	Architecture
	Type System
	Compiler Backend
	Memory Management
	Concurrency
	Clock and Timers
	Unsafe Native Interface
	Client Interface

	Summary

	RTMu Implementation
	Rust
	Zebu
	RTZebu
	Compiler Backend
	Threads and Scheduling
	Synchronization
	Memory
	Time
	Technical Challenges

	Summary

	RT-RPython: A Python-like Language for Real-Time Systems
	RPython
	Application Programming in RPython
	Real-Time Programming in RPython

	Real-Time Extensions
	Memory Management
	Concurrency
	Time

	Implementation
	The RPyMu Translation Process
	RT-RPython Extensions

	Summary

	Evaluation
	The Collision-Detection Benchmark
	Implementation in RT-RPython
	Non-Goal

	Test Setup
	RT-RPython
	JamaicaVM
	Hotspot-11
	Workloads

	Metrics
	Measurement Method

	Results
	Computation Time
	Release Jitter
	Release Miss Rate

	Summary

	Conclusion
	Future Work
	A Real-Time Garbage Collector
	Integrated WCET Analysis
	A Formally-Verified Implementation
	Optimizations

	Bibliography
	Appendixes

