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Abstract— In this paper, we present a fast, non-iterative
approach to smooth a noisy input on the Special Euclidean
Group, SE(3) manifold. The translational part can be smoothed
by a simple Gaussian convolution. We then proposed a novel ap-
proach to rotation smoothing. Unlike existing rotation smooth-
ing methods using either iterative optimization methods or
stochastic filtering methods, our method allows direct compu-
tation of the smoothing result and allows parallelization of the
computation. Furthermore, we have done a comparative study
on Jia and Evans’s method published in 2014 [1], and shown
that our method can better smooth an input rotation sequence,
with shorter computational time. The smoothed camera path is
then used for video stabilisation, which shows fluid and smooth
camera motion.

I. INTRODUCTION

In recent years, cameras are becoming a staple sensor
on a robotics platform. This is due to the wide variety of
information that can be obtained purely from a sequence
of video captured by an onboard camera. For example, for
teleoperation [2][3][4], estimate position and scene recon-
struction [5], or surveillance [6].

As a result, the problem of video enhancement, e.g.
contrast enhancement, [7], encoding and compressing [8],
video stabilization [9], etc. has been studied with increas-
ing intensity. In many scenarios, such video enhancement
techniques are required to be implemented in real time [10]
with minimum computation [7] while sustaining high quality
result.

Our paper studies one of these problems, the video stabi-
lization problem, via rotation smoothing. The common way
to smooth a noisy Riemannian manifold is by specifying a
cost function, and using iterative method like gradient decent
[11], Newton’s method [12], Lagrangian Duality [13], or
Iteratively Reweighted Least Square [14], [15] to minimise
the cost function. On the other hand, there are also works
based on stochastic filtering methods [10], [16].

However, there are a number of drawbacks in iterative
cost reduction or optimisation. Iterative methods tend to
require a suitable initialisation for convergence, and the
number of iterations before convergence is not fixed for
different input. Thus, iterative methods may not guarantee
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a global convergence, and can be problematic for real-time
implementation.

In addition, the implementation of stochastic filtering
method requires an unbiased prior, which is not always
available in practice. Also, due to the lack of actual future
measurements, the output of stochastic filtering methods may
produce a result that deviates from the mean of the actual
motion more than methods that uses that extra information.

Unlike existing rotation smoothing methods using either
iterative optimization methods [1] or stochastic filtering
methods [10], [16], our method allows direct computation
of the smoothing result and allows parallelization of the
computation. As shown by a comparative study in our paper,
our proposed method achieves smoother result and shorter
computational time in comparison to the one proposed by
Jia and Evans [1].

It is also noted that the application of our rotation smooth-
ing method is not limited to video stabilization. In a robotics
system, there is a need to measure physical properties using
sensors, which are bound to have noise in their measure-
ments. There may also be actual perturbation in the physical
property being measured, which may mask out the actual
intended motion. The need to smooth pose (position and
orientation) data from the IMU is a commonly encountered
problem in the field of mobile robotics.

II. BACKGROUND

In signal processing community, there is a well known and
widely used method to smooth a vector (e.g. R3) signal, that
is, by convolving the noisy signal with a Gaussian kernel.

This is useful in smoothing the translational component, t,
in the SE(3) space. This can be done by a simple weighted
average of arithmetic mean , such that, for 3D translations,
ti ∈ R3, the cost minimising function can be defined as,
F(ti) :=

∑
j gj .ti+j . This equation can also be seen as a

convolution.
The other component of SE(3) group is the 3D rotation.

3D rotation lies in the Special Orthogonal Group, R ∈SO(3),
which requires special handling. The main focus of this paper
will be on proposing a fast, non-iterative approach to smooth
an input rotation sequence.

Two rotations can be averaged with different weighing
factor. The method to calculate the weighted average of two
rotation matrices is discussed in [17].

An alternative way is to use rotations in quaternion form in
finding the weighted average of two rotations, using a method
called slerp [18]. Slerp relies on linear interpolation on non-
unique quaternion representation (q=-q), which suffers from
rotation direction changing abruptly.



This means that the weighted average found using slerp
may not always lie on the shortest geodesic curve between
the two rotations. Thus, the weighted average using rotation
matrices produces more stable result.

On the other hand, an iterative algorithm to compute
the Geodesic L2 mean of multiple rotational matrices was
presented in [11], [19]. The rotation minimizing cost function

is, C(R) =
n∑

i=1

d∠(R,Ri)
2. Geodesic L2 Mean is also

known as the Karcher mean of rotations, or the geometric
mean [17].

In addition, Geodesic Lq Mean can be found by using
Iteratively Reweighted Least Square (IRLS) Method. IRLS
is also called Lq Weiszfeld Algorithm [14]. It is a method

that minimises the cost function, Cq(R) =
n∑

i=1

d∠(R,Ri)
q .

As the name suggests, it relies on the iterative Geodesic
L2 Mean algorithm by adding an extra reweighing factor,
wi = d∠(R,Ri)

q−2. This reweighing for different R and Ri

pair changes the gradient decent Geodesic L2 Mean method
to solve for Geodesic Lq Mean instead.

The distance, d∠(R,Ri) := (1/
√
2)||log(R−1Ri)||F ,

where || ∗ ||F is the Frobenius norm of the matrix, and the
scaling (1/

√
2) ensures that d∠(∗, ∗) represents the angular

distance between the two rotations.
When q = 1, the algorithm finds the Geodesic L1 Mean

solution, which is known to be more robust against outliers
in the input. However, Geodesic L1 mean computation is
also known to be slower than Geodesic L2 mean, and there
is also a possibility of the solution getting stuck when R is
equals to one of the input, Rj ∈ Ri. [14]

When R is equals to one of the input Rj , the weighing
factor, wj (in Algorithm 3) becomes 1

0 = ∞. Thus, all the
other weighing factors will be insignificant compared to the
weighing factor of Rj , and the small change in rotation, r
will become the identity matrix (solution is stuck).

We can partially overcome the slow convergence by choos-
ing 1 < q < 2, as discussed by [14]. However, this does not
solve the problem of solution getting stuck when R is equals
to Rj , because wj still approaches ∞ as R approaches Rj ,
albeit at a slower rate.

Like all iterative algorithm, there needs to be a good initial
estimate of R. As suggested by Aftab et al. [14], the initial
estimate can be found by Chordal L2 Mean, which has a
closed-form solution.

Chordal L2 Mean is defined as the rotation which min-
imises the cost, C(R) =

n∑
i=1

dchord(R,Ri)
2. It is also named

the projected or induced arithmetic mean. [17], [20]
The algorithm to compute Chordal L2 Mean is given

by [19], which uses Singular Value Decomposition (SVD)
instead of polar decomposition used in [17], [20]. Repro-
jecting the algebraic sum of the rotational matrices onto
the orthogonal SO(3) manifold is also called the Orthogonal
Procusthes Problem. [21] [22]

Another way to smooth an input sequence of Rotation
(Orientation) is to specify a cost function to minimise. Jia and

Evans [1] proposed a similar cost function as the equation
shown as follows.

min
{Ri}

N∑
i=1

d(R̃i, Ri) + α

N−1∑
i=1

d(Ri, Ri+1) (1)

Where,
d(∗, ∗) is any suitable distance metric in SO(3). (eg.

Geodesic L2, Geodesic L1, Chordal L2, Chordal L1, Quater-
nion L1, Quaternion L2, etc.) More information of different
distance metric can be found in [19].
α is the scalar factor controlling the smoothness of the

output trajectory (a trade-off against deviation from input -
the first summation term in the cost function)
R̃i is the input (measured) orientation at the ith instance
Ri is the smoothed orientation at the ith instance

III. PROPOSED METHOD

In this section, we propose some new methods to do
weighted average of rotations. These methods can be com-
bined with the Gaussian smoothing technique to smooth a
sequence of rotational matrix.

A. Pairwise Gaussian Weighted Average of 2n Vectors

A Gaussian filter kernel can be calculated using the
equation as follows.

G(t|µ, σ2) =
1√
2πσ2

e−
(t−µ)2

2σ2 (2)

For a discrete case, to ensure that the resulting filtered
signal has the same scale as the original, we can make sure
that the sum of all the elements of the kernel is 1 by a simple
normalisation.

Gnorm(t|µ, σ2) =
G(t|µ, σ2)∑
(G(t|µ, σ2))

(3)

The Gaussian Kernel values are calculated by using t with
equal spacing, centred around zero (µ = 0). For temporally
invariant Gaussian Kernel, the value of t is the time at each
measurements, and µ is the time of the middle entry of the
input (mean of Gaussian distribution).

We then introduce a method to rearrange a normalised
weighted sum of two vectors, into a form similar to the
equation of weighted average of two rotations (5).

A normalised weighted sum of two vectors (x1, x2) with
different weighing factor (g1, g2) is equivalent to the differ-
ence in value x2−x1 multiplied by the ratio of the weighing
factor of x2 to the total weighing factor, added to x1. The
result is included as follows.

1

g1 + g2
(g1x1 + g2x2) = x1 +

g2
g1 + g2

(x2 − x1)

= x1 + λ(−x1 + x2)
(4)

We propose that the weighted average of 2n vectors can be
decomposed into a sequence of pairwise averages. This will
be useful in the next Section. The operation can be illustrated
as shown in Fig. 1.



Fig. 1: 2n Averaging Tree

Each arrow in Fig. 1 shows a normalised weighted average
operation between two vectors. The updated weighing factor
of each average operation is the sum of the corresponding
weighing factors of that average.

This method is equivalent to a weighted averaging filter,
with window size of 2n, which is capable of smoothing an
otherwise noisy input vector (e.g. translational component of
SE(3)).

B. Gaussian Weighted Average of 2n Rotations

The weighted average of two rotations, which lies on the
shortest geodesic curve connecting the two rotations can be
calculated as follows.

RweightedAve = R1 exp(λ log(R
T
1 R2)) (5)

where, log(∗) is the matrix logarithm, and exp(∗) is the
matrix exponential. The exponential and logarithm of the
rotation group are also discussed in Moakher’s paper [17].

Note that the matrix logarithm and exponential method
shown above cannot be used directly on the SE(3) manifold,
because unlike SO(3), the result of the operation cannot be
guaranteed to remain on that manifold.

In the rest of this section, we propose a novel, generalised
method to perform weighted average of multiple rotations
deterministically.

In order to find a weighted average of rotations in a
window size of 2n, a method similar to that presented in
Section III-A may be used. Instead of vectors, each circle
(node) represents a rotation.

This is well defined because the weighted average of two
input rotations can be calculated exactly using (5).

Similar to weighted average of 2n vectors, only the ratio
of their corresponding weight matters. After each pairwise
average, their resulting weighing factor is equivalent to the
sum of their corresponding weights. Fig. 2 illustrates this
concept with an example.

With this generalised method in finding the weighted
average of 2n rotations, we can then do Gaussian filtering in
a similar way to the vector case (Section III-A).

Although in the case of averaging rotations, Bingham
Distribution is more appropriate due to the wrap around
effect, but as discussed in Kurz et al. [23], it was shown that
for standard deviation less than 11◦, Gaussian Distribution
is a good approximation.

It is also noted that there is a need to account for the delay
introduced by the filter, which is equivalent to 2n+1

2 , as can
be seen from the graph in Fig. 1. The resulting average is

Fig. 2: 2n Weighted Averaging Tree, with their weight, λ in (5) shown
below the nodes

thus a value for rotation between the forth and fifth values
used.

In order to reposition the averaged value to align to an
input time interval, we can do another average between
subsequent averaged value as shown in Fig. 3. This is
equivalent to an interpolation step of the two consecutive
rotation averages.

Fig. 3: 2n Averaging Tree with Value Reposition

The red circles are the values used and computed for
one time step after the blue circles, and the purple value is
the repositioned average (which is aligned to the fifth input
value).

By combining the proposed pairwise weighted average
of 2n rotations and the Gaussian Filter technique, we have
found a way to smooth a sequence of 3D rotation data.

It is noted that every layer (or level) contains completely
independent computations of pairwise rotation averaging.
Thus, they are parallelisable for faster computation. For
example, Fig. 3 shows window size of 9, and there are a
total of 15 pairwise averages, but after parallelisation, only
4 dependent levels are left (a potential for 3.75× shorter
computation time).

We can summarise the pairwise method in Algorithm 1 as
follows.

C. Gaussian Weighted Geodesic L2 Mean

We have also explored the possibility of using the Gaus-
sian weighing factors, gi when doing the iterative Geodesic
L2 distance minimisation. In essence, we just modify the 3rd

line of Algorithm 2 from [19] as follows.

D. Gaussian Weighted Geodesic Lq Mean

Similar to Weighted Geodesic L2 Mean, we can add an
extra weighing factor, gi to the Geodesic Lq Mean [14]. The
resulting algorithm is given in Algorithm 3.



Algorithm 1 Gaussian Weighted Pairwise Average on SO(3)

1: loop
2: parallel loop (Level 1)
3: Compute Rlvl1,i = R2i−1exp(gi log(R

T
2i−1R2i))

4: where i ∈ [1, N ], and N is half the window size
5: end parallel loop
6: parallel loop (Level 2)
7: Compute
8: Rlvl2,i = Rlvl1,2i−1exp(λi log(R

T
lvl1,2i−1Rlvl1,2i))

9: where λ is the updated weighing factor (Fig. 2)
10: end parallel loop
11: ... (more parallel loops until the last two averages)
12: end loop

Algorithm 2 Gaussian Weighted Geodesic L2 Mean on
SO(3)

1: Set R := Rmid. Choose a tolerance ε > 0
2: loop
3: Compute r :=

n∑
i=1

gi log(R
TRi)

4: if ||r|| < ε then
5: return R
6: end if
7: Update R := R exp(r)
8: end loop

E. Gaussian Weighted Chordal L2 Mean

Instead of a simple algebraic sum in the original Chordal
L2 Mean [19], we can do a weighted sum instead. The
proposed modification to Ce is as shown in Line 1 of
Algorithm 4.

The addition of Gaussian weighs to the rotation averaging
methods makes the algorithms more robust against averaging
large angular motion, because the weight given to the middle
entry of the window is higher than those further to the edges.
Thus, preserving the continuity of the smoothed motion.

The results using our Pairwise Average method, Jia and
Evan’s method, the Gaussian Weighted Geodesic L2 Mean
method, and other window-based methods discussed are

Algorithm 3 Gaussian Weighted Geodesic Lq Mean on
SO(3)

1: Set R := Rinitial. Choose a tolerance ε > 0
2: loop
3: Compute

4: r :=

(
n∑

i=1

gi wi log(R
TRi)

)
/ (
∑n

i=1 wi),

5: where, wi = (d∠(R,Ri))
q−2

6: if ||r|| < ε then
7: return R
8: end if
9: Update R := R exp(r)

10: end loop

Algorithm 4 Gaussian Weighted Chordal L2 Mean on SO(3)

1: Compute Ce =
n∑

i=1

gi Ri ∈ R3×3

2: Compute SVD, Ce = U D V T , where diagonal
elements of D is arranged in descending order

3: if det(UV T ) ≥ 0 then
4: R = UV T

5: else
6: R = U diag(1, 1,−1) V T

7: endif

presented and compared in Section IV.

IV. EXPERIMENTAL RESULT

A. Simulation

The simulated ground truth data is obtained by having
a combination of sinusoidal and constant change in each
’ZYX’ rotation angles (simulated smooth motion), then a
Gaussian noise with standard deviation of 0.1 radian is added
to each of the rotation angles. This is then transformed
into Rotation matrix using MATLAB’s in-build function,
angle2dcm to obtain the simulated noisy input.

To represent the smoothness of the rotation (orientation)
sequence, in Fig. 4 we plotted the relative rotational angle
(distance metric chosen) between consecutive orientations.
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(b) Zoom In

Fig. 4: Simulation Result of Relative Rotational Angle of Consecutive
Orientations, Window Size = 65, Standard Deviation = 8

From Fig. 4, we can see that our method has successfully
produce a smoothed orientation data (red) very close to the
ground truth (black).



In order to determine how close our Pairwise method
approximate Geodesic L2 mean, we can check the norm
of r in Line 3 of Algorithm 2. In Fig. 5, we can see that
the Pairwise average method is accurate up to a tolerance,
ε < 10−3, while Chordal L2 Mean method is up to 7 times
less accurate.
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Fig. 5: Simulation Result of Difference to Geodesic L2 Mean as Illustrated
by Norm of r in Algorithm 2, Window Size = 65, Standard Deviation = 8

Fig. 6 shows the simulation result by superimposing
previous frames onto the current frame to produce artificial
motion blur. More motion blur corresponds to a shaky video.

(a) 209

(b) 698

Fig. 6: Simulation Result at the Corresponding Frames using Our Pairwise
Average Method, where the Motion is Represented by Motion Blur

B. Video Stabilisation - Walking Sequence
In most mobile robotics systems, inertial measure unit

(IMU) is a crucial component for estimation of the robot’s
relative location and orientation. The IMU is also present in
most smartphones these days. In the following experiments,
the gyroscope in IMU is used to estimate the camera orien-
tation at each image frames.

By using the video sequence tested by Jia and Evans [1],
we compare our result in this subsection. Similar to their

method, we assume the input video sequence has undergone
rolling shutter rectification.

The camera is assumed to follow a pure rotational camera
model, and the difference between the smoothed and original
camera orientation is used to warp the input video by a
Homography (projective transformation).

We know that the Gaussian kernel’s standard deviation, σ
is related to the factor α in (1). Thus, we tune the σ until our
smoothed curve lies close to that obtained by Jia and Evans
method [1].
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Fig. 7: Relative Rotational Angle of Consecutive Orientations in Our
Pairwise Smoothing Result (Red) VS Jia and Evans’s Smoothing Result
(Black), and Other Window-based Smoothing Methods (Test Video in [1])

In Fig. 7, we can see that the result from our pairwise
method (Red) is smoother than Jia and Evans’s result (Black).
This could be due to the extra constraint included by Jia and
Evans to restrict the maximum angular deviation from the
input rotation, as can be seen from Fig. 8.
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Fig. 8: Rotational Angle Deviation from Input in Our Pairwise Smoothing
Result (Red), Jia and Evans’s Smoothing Result(Black), and Other Window-
based Smoothing Methods (Test Video in [1])

The maximum angular deviation is added to ensure that
the warped frame has an upper limit on the amount of black
border intruding into the view. This was done by reprojection
of the gradient to be within the set bound [1]. We did not
have this because we found that our method produces little,
instantaneous black border intrusion (< 5 continuous frames,
or < 0.167s) to justify the extra computation.

Fig. 9 contains a boxplot showing the perturbation rep-
resented by the relative angle (geodesic distance) between
consecutive orientations. From this figure, we can also see
that Jia and Evans method produces a result with higher
median than the other window-based methods that we have
proposed.
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Fig. 9: Boxplot Showing the Distribution of the Relative Angle between
Consecutive Orientations (Test Video in [1]). Red line is the median of
the distribution, top and bottom line of the box represents 75th and 25th
percentiles respectively, and red ”+” shows the outliers

From the third plot in Fig. 10, we can also see that our
method follows the mean of the input (blue curve) more
closely than Jia and Evans’s method.
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Fig. 10: Quaternion Representation of Input (Blue), Jia and Evans’s Result
(Green), and Our Pairwise Method (Red) (Test Video in [1])

We have also implemented the Pairwise Average method,
Geodesic L2 Mean, and Chordal L2 Mean in C++ to com-
pare the computational speed between the three smoothing
methods. These are included in parenthesis of the last column
in Table I.

The matrix operations in C++ are programmed with the
help of Eigen 3.2.4 library [24]. It is noted that the C++
implementation has lower precision than MATLAB’s im-
plementation, and the iterative Geodesic L2 Mean needs
a higher tolerance, ε, and setting a maximum number of
iterations for the program to converge.

In C++ implementation of Geodesic L2 Mean, ε = 10−3,
and maximum number of iterations is set to 6, whereas

TABLE I: Comparisons of Our Pairwise Method, Jia and Evan’s, Geodesic
L2, Geodesic L1, Geodesic L1.5 Mean, and Chordal L2 Mean on the
video used in [1]. The Geodesic L2 Distance is the Square of Relative
Rotational Angle between Consecutive Frames. Numbers in Parenthesis
is the Computation Time in C++ Implementation, Non-Parenthesised are
MATLAB Implementation

Geodesic L2 Distance Sum For 561 Frames

Relative Rotation Deviation from Input Comp. Time (s)

Input 1737.96 0 -
Pairwise Method 532.61 5382.8 4.23 (0.79)
Jia and Evans’s 559.96 6067.5 28.88
Geodesic L2 532.96 5367.3 4.50 (1.44)
Geodesic L1 657.89 3301.8 82.37
Geodesic L1.5 554.68 4550.2 34.88
Chordal L2 533.98 5322.9 1.21 (0.01)

MATLAB implementation has ε = 10−6 with no upper
bound on maximum number of iterations.

Fig. 11, Fig. 12 and Fig. 13 shows the feature trajectories
in the next 10 frames to visualise the difference in camera
motion after stabilization.

C. Video Stabilisation - Standing Sequence

Another experiment was conducted using a Sony Xperia
Z2 smartphone and its onboard gyroscope. A short video
is taken by a person at a T-junction making occasional
panning of the camera. This video represents a slightly
different camera motion, which examines videos with a
smaller magnitude camera shake than the previous video.

Different stabilization methods are tested, along with the
same parameters used for the previous video. Fig. 14 shows
the smoothness metric, while Fig. 15 shows the deviation
from the original path.
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Fig. 14: Relative Rotational Angle of Consecutive Orientations in Our
Pairwise Smoothing Result (Red) VS Jia and Evans’s Smoothing Result
(Black), and Other Window-based Smoothing Methods (Standing Sequence)

From Fig. 15, it is clear that Jia and Evan’s method has
overly compensated for the camera motion, since there are
large and wide peaks that corresponds to motion that are
not caused by noise but are removed by their method. On
the other hand, the other window-based averaging method
remove only the noisy camera motion.

Table II shows the comparison of the two performance
metrics between different rotation smoothing methods tested.

From Table II, we can again observe that although Jia
and Evan’s method produces a result that is smoother, it
deviates from the input camera motion a lot more than the
other window-based methods.
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Fig. 11: Video Stabilisation Input Video (used in[1]) at the Corresponding Frames

(a) 36 (b) 456 (c) 502

Fig. 12: Video Stabilisation Result with Our Pairwise Method at the Corresponding Frames

(a) 36 (b) 456 (c) 502

Fig. 13: Video Stabilisation Result with Jia and Evans’s Method at the Corresponding Frames
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Fig. 15: Rotational Angle Deviation from Input in Our Pairwise Smoothing
Result (Red), Jia and Evans’s Smoothing Result(Black), and Other Window-
based Smoothing Methods (Standing Sequence)

The resulting video from using Jia and Evan’s method also
look very similar to the one obtained using the window-based
method. However, Jia and Evan’s method has larger black
border intrusion for this video sequence.

Frame grab of the video is not included due to space lim-
itation, but the video will be included in the supplementary
material.

TABLE II: Comparisons of Our Pairwise Method, Jia and Evan’s, Geodesic
L2, Geodesic L1, Geodesic L1.5 Mean, and Chordal L2 Mean on the
standing video sequence. The Geodesic L2 Distance is the Square of Rela-
tive Rotational Angle between Consecutive Frames. Numbers in Parenthesis
is the Computation Time in C++ Implementation, Non-Parenthesised are
MATLAB Implementation

Geodesic L2 Distance Sum For 568 Frames

Relative Rotation Deviation from Input Comp. Time (s)

Input 159.87 0 -
Pairwise Method 98.43 419.17 4.87 (0.78)
Jia and Evans’s 72.51 3783.30 28.96
Geodesic L2 98.47 417.54 4.15 (1.46)
Geodesic L1 104.01 319.36 20.87
Geodesic L1.5 98.77 407.17 4.56
Chordal L2 98.49 416.74 1.63 (0.01)

V. CONCLUSION

In this paper, we have proposed a method to smooth a
noisy input in the Special Euclidean Group, SE(3). The
translational part of SE(3) can be smoothed by simple vector
convolution with a Gaussian Kernel, and we have proposed
an analogous method to smooth input rotation in the Special
Orthogonal Group, SO(3).

We have shown that the pairwise average method (Sec-



tion III-B) is superior to the method presented by Jia and
Evans [1] in rotation smoothing. The pairwise averaging
method presented is shown to closely approximates the
weighted L2 mean method (Section III-C), while being
approximately 1.8× faster in computation speed.

We have also proposed an alternative method that has a
much shorter computation time, called Gaussian Weighted
Chordal L2 Mean (Section III-E). Table I and II summarises
the experimental results between different rotation smoothing
methods.

Additionally, it was also showed that the pairwise method
successfully minimises both the relative orientation angle in
consecutive frame (smoothness metric), while maintaining
small deviation from the input rotation sequence. This is
a trade-off controlled by the Gaussian kernel’s standard
deviation, σ, similar to the scalar factor, α in (1) presented
in [1].

Due to the use of Gaussian Convolution, the method does
not introduce drift and scale changes (sum of weights =
1), and is temporally invariant. The pairwise computation
is also parallelisable, fast (≈ 1.4ms/data point), and have
deterministic computation time.

Unlike iterative method, it also does not require any initial
estimate, which may affect the convergence of the iterative
algorithm.

The method allows smoothing of a noisy motion in real-
time. One drawback of the proposed Pairwise Rotations
Averaging method is the delay introduced by the technique,
which is half the window length used in the convolution.

However, with the extra information about the future
motion, we can ensure that the solution will stay close to
the mean of the actual trajectory, as shown in the quaternion
plot (Fig. 10)

Finally, the video stabilisation output of the walking
sequence is illustrated in features trajectory shown in Fig. 12.
Videos of the stabilisation results and comparisons will also
be attached as supplementary material.

Future extension to this work include the use orientation
(rotations) input from other sources (e.g. visual odometry),
and compare the results with orientation obtained through the
IMU, and results using other video stabilisation methods.

Instead of using homography for the assumption of purely
rotating camera, we can also use spatially-varying warp to
synthesise novel views for the purpose of stabilizing a video
with large translational vibration, similar to those discussed
in [25] and [26].

In addition, since there are a lot of parallelisable opera-
tions, the proposed method may also be implemented on a
GPU for faster computation.
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