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Abstract—Given multi-view correspondences, it has been
shown that 3D non-rigid structure can be recovered through
factorization based techniques. However, establishing reliable
correspondences across multi-view images of non-rigid struc-
ture is not an easy task. Existing methods solve multi-view
correspondences and 3D non-rigid structure in sequel, which
cannot exploit the crossover constraints in each sub-problem
(i.e., constraints in non-rigid structure has not been enforced
in establishing multi-view correspondences and verse vise). In
this paper, we present a unified framework to simultaneously
solve for multi-view correspondences and non-rigid structure.
We formulate the problem by using the Partial Permutation
Matrices (PPMs) and aim at establishing multi-view correspon-
dences while simultaneously enforcing the low-rank constraint
in non-rigid structure deformation. Additionally, our method
can handle outliers and missing data elegantly under the same
framework. We solve the simultaneous non-rigid structure and
correspondences recovery problem via the Alternating Direction
Method of Multipliers (ADMM). Experimental results on both
synthetic and real images show that the proposed method achieves
state-of-the-art performance on both sparse and dense non-rigid
reconstruction problems.

I. INTRODUCTION

Recently, non-rigid structure-from-motion (NRSfM) has re-
ceived considerable attention from the computer vision com-
munity. A great number of methods have been established, and
most of the existing methods can be roughly classified as sin-
gle view template-based methods (e.g. [27], [25]) and multi-
view correspondence-based methods (e.g. [3],[37],[5],[8]).
Template-based methods generally assume a known 3D tem-
plate (e.g. a mesh model) of the non-rigid surface and a
set of 3D-to-2D correspondences between that image and
another one for which the 3D shape is known. Multi-view
correspondence-based methods make use of intra-frame (and
often sparse) 2D feature point correspondences to simultane-
ously recover camera motion and non-rigid shape.

While achieving considerable success on benchmark data
sets, these existing approaches generally assume 2D-3D or
2D-2D correspondences can be readily established, which
is not true in practical applications. Actually, establishing
correspondences across images containing non-rigid deforma-
tion is an active research area (e.g., [35], [38], [33], [40]).
Additionally, even though these methods tolerate mismatches
to some extent, their performance will degrade dramatically
with the increase of mismatches. When there are repetitive
patterns in the images, the problem becomes even harder.

Recently, in the area of single view template-based surface
reconstruction, there have been attempts to simultaneously
solving for 3D-2D correspondences and non-rigid shape. Shaji
et al.[29] solved the joint optimization problem by a branch-
and-bound algorithm. Furthermore, Sánchez-Riera et al.[28]
presented an approach to simultaneously solve for 2D-3D
correspondences, camera pose and non-rigid shape of the
surface, where priors on the camera pose and non-rigid shape
were modeled with the Gaussian Mixture Model (GMM).
However these strategies cannot simply be extended to NRSfM
where multi-view 2D-2D correspondences are desired.

In this paper, we move a further step and remove the need
for multi-view correspondences in recovering 3D non-rigid
structure. Under our new formulation, the input is a collec-
tion of feature points from multiple images and the outputs
are 3D non-rigid structure and multi-view correspondences.
Specifically, we search for non-rigid structure and a reordering
of feature point positions such that the deformable shapes
satisfy the low rank constraint in the linear combination model
[3] (other models such as union of subspaces [41] can also
be used) while the reordered feature point position matrix
fulfils the imaging constraint. Therefore, under our formu-
lation, constraint in non-rigid structure helps in establishing
multi-view correspondences while multi-view correspondences
further constrain deformation of non-rigid structure. In this
way, we can achieve both better 3D non-rigid reconstruction
and multi-view correspondences. Additionally, our formulation
can handle outliers and missing data elegantly under the same
framework.

To the best of our knowledge, this is the first approach to
address the problem of simultaneous multi-view correspon-
dences and non-rigid structure reconstruction from multi-view
images. Our main contributions are stated as: 1)

1) Given the input of feature points in each image, our
new framework simultaneously recovers multi-view cor-
respondences and 3D non-rigid structure;

2) Constraints in non-rigid structure and multi-view cor-
respondences are simultaneously enforced, thus better
conditioning both problems;

3) Outliers and missing data in feature point position
measurements are handled elegantly under the same
framework.



II. RELATED WORK

Here, we briefly review existing work on both non-rigid
reconstruction from multi-view correspondences and multi-
view feature point matching.

Non-rigid structure from motion factorization: Bregler
et al.[3] introduced the linear combination model to represent
non-rigid/deformable shapes, resulting in a matrix factoriza-
tion framework to camera motion and non-rigid structure
recovery. Since then, researchers have been actively applying
the factorization framework to various non-rigid reconstruction
problems. However, a seminal work by Xiao et al.[37] showed
that the problem is indeed ill-posed or under-constrained. To
deal with the underlying ambiguity, Xiao et al.[37] suggested
to add “basis constraints”, resulting in a closed-form solution
to NRSfM. With the same spirit of adding extra priors to
regularize an otherwise under-constrained problem, different
priors have been introduced, e.g.Gaussian prior on the shape
coefficients [34], special shape priors [7], and temporally
smooth deformation prior [2]. Recently, Dai et al.[5] showed
that by enforcing the low rank constraint properly (on the
reshuffled shape matrix rather than original shape matrix),
non-rigid factorization problem can be solved efficiently with-
out any ambiguity. To handle increased complexity in long
sequence motion capture, Zhu et al.[41] represented non-
rigid deformation by using union of subspaces rather than
sum of subspaces, which simultaneously doing clustering and
non-rigid reconstruction. Other attempts toward complex non-
rigid motion include separable spatiotemporal priors [30],
Procrustean normal distribution [19], and Procrustean Markov
process [20].

Recently, there have been attempts to formulating non-
rigid reconstruction in a machine learning framework, e.g.,
by using diffusion map [31] or spatially-smooth mapping
[16]. However, the requirements for training data sets are not
always fulfilled in practical applications. Meanwhile, another
more recent trend in NRSfM is to extend the sparse non-
rigid reconstruction techniques to dense scenario where spatial
constraint has been utilized to regularize the problem [11].

Non-rigid matching: Multi-view correspondences based
non-rigid structure reconstruction require establishing 2D-
2D correspondences across multiple images. For dense non-
rigid reconstruction, optical flow and its extensions have
been utilized to achieve dense motion estimation [12][26].
For sparse non-rigid reconstruction, there are recent work
such as [33][35][38] and [40] that recast non-rigid feature
correspondence as a graph matching problem. To remove
outliers in measurements, Ransac [10] has also been used [36].
However Ransac-like approaches quickly become impractical
as the number of transformation parameters or graph nodes
increases. A most recent work by Collins and Bartoli [4]
proposed to resolve that difficulty in 2D-3D matching by de-
tecting incorrect correspondences using the isometry constraint
directly in 3D.

Our work in building correspondences is most related to
[39] and [17], where sparse and low-rank decomposition

model is used to find feature correspondences. In this paper,
we show how problem-specific knowledge (for example low-
rank condition in reshuffled non-rigid 3D shape) can help in
finding correspondences.

III. FORMULATION

In this section, we formulate the problem of simultaneous
multi-view correspondences and 3D non-rigid reconstruction
as the search for 3D non-rigid structure and a reordering of
the feature points such that the non-rigid structure satisfies the
low-rank constraint under the linear combination model and
the reordered feature point coordinate matrix relates to the
non-rigid structure via image model (affine transformation in
our case).

Factorization based non-rigid structure from motion aims at
factorizing the multi-view image measurement matrix W as the
product of camera motion (projection) matrix M and a non-rigid
shape matrix S, such that W = MS. In real world application,
rigid structure usually makes the dominant component in the
scene, therefore, camera motion estimation can be solved by
utilizing rigid structure in the scene (i.e. by using rigid factor-
ization [32]). For the rest of the paper, we generally assume
the camera motions M have been recovered. We will leave the
problem of simultaneous camera motion, non-rigid structure
and multi-view correspondences for future work. Note that
with recovered camera motion, the remaining problem seems
similar to the trajectory reconstruction problem [24]. However,
we claim that under our problem formulation, we use the
inherent structure constraint in non-rigid deformation rather
than treating each trajectory independently.

Prerequisite: More specifically, we consider a monocular
camera observing a non-rigid structure. Under an affine camera
model, the image measurement mij = [uij , vij ]

T and 3D point
Sij on the deformable shape are related by the camera motion
Ri as:

mij = RiSij , (1)

where Ri ∈ R2×3 denotes the first two rows of the i-th camera
rotation. The coordinates of the 2D image points observed at
frame i are given by: Mi = RiSi, where Mi = [mi1 · · · miP ]
and Si = [Si1 · · · SiP ]. Use this representation, and stack all
the F frames of measurements and all the P points in a matrix
form, we reach:

M =

 R1S1
...

RF SF

 =

 R1
. . .

RF


 S1

...
SF

 = RS, (2)

where R = blkdiag(R1, · · · , RF ) ∈ R2F×3F expresses the
camera motion matrix.

Under the low-order linear combination model, the non-
rigid shape Si ∈ R3×P can be expressed as a linear combi-
nation of K shape bases Bk ∈ R3×P with time-varying shape
coefficients cik as: Si =

∑K
k=1 cikBk. Therefore, the non-rigid

shape matrix S is low rank as rank(S) ≤ 3K.
In [5], Dai et al. proposed to enforce the low rank constraint

in the reshuffled deformable shape rather than S directly, which



re-arranges the rows of S that correspond to X,Y , and Z
coordinate separately, and in an F × 3P block matrix form,

S] = g(S) = [PX PY PZ ](I3 ⊗ S). (3)

where PX , PY , PZ ∈ RF×3F are row-selection matrices (of
0-1 values, similar to a row-permutation matrix) 1 The low
order constraint in the linear combination model has been
equivalently expressed in the low rank condition on S] rather
than the low rank condition on S.

Modeling correspondences: In the absence of point corre-
spondences across frames, simply stacking up of all the feature
point position matrices {Mi}Fi=1 does not yield valid point
trajectories. However, there exists a reordering of the columns
of the position matrix in each frame that yields coherent point
trajectories.

We utilize the Partial Permutation Matrices (PPMs) to model
the reordering of point positions, which has been widely used
in modeling correspondences [22], [21], [39]. Here, we denote
Pf ∈ {0, 1}Nf×N as the PPM that selects and reorders the N
inlier point coordinates from the Nf measurements in frame
f ,

Pk = {Pk ∈ RNf×N|Pk
ij ∈ {0,1},

∑
i

Pk
ij = 1, (4)

∀j = 1, . . . , N,
∑
j

Pk
ij ≤ 1,∀i = 1, . . . ,Nk},

the resultant point position matrix defined upon PPMs
{Pf}Ff=1 is obtained as

W({Pf}Ff=1) =

 M1P
1

...
MF P

F

 . (5)

Note a global permutation ambiguity exists, i.e., permutating
the order of all the trajectories does not change any underlying
constraints.

To account for the outliers in point position measurements,
we express the reordered measurement matrix W as a combina-
tion of clean data from non-rigid shape RS and sparse outliers
E, that is

W = RS + E. (6)

Note that, by utilizing the PPMs, we are able to handle missing
data in measurements. With the introduction of outliers E,
we are even able to deal with sparse outliers. Therefore, our
unified framework can handle missing data and outliers in the
same framework.

1PX(i, 3i− 2) = 1,PY (i, 3i− 1) = 1,PZ(i, 3i) = 1, while all the other
positions being zero.

Piecing all the constraint together, we reach an optimization
model for simultaneous multi-view correspondences and non-
rigid structure reconstruction.

min
S,S],E,{Pf}Ff=1

‖S]‖∗ + λ‖E‖1

s.t. W = RS + E,

S] = g(S),

W({Pf}Ff=1) =

 M1P
1

...
MF P

F

 ,
(7)

where the nuclear norm ‖‖∗ is used as a convex surrogate to
the rank function, λ is a trade-off parameter to balance the
non-rigid structure term and sparse outlier term. Due to the
discrete nature of the PPMs, our formulation is a non-convex
non-linear optimization problem.

a) Constraining W directly: : In the above formulation,
we enforce low rank constraint on the reshuffled deformable
shape S], which expresses the low order linear combination
model equivalently. Note that if only point correspondences
are desired, a simplified model can be achieved by enforcing
constraints on the re-ordered measurement matrix W only.
The problem formulation can be easily derived by removing
constraints on S and S] in Eq. (7),

min
L,E,{Pf}Ff=1

‖L‖∗ + λ‖E‖1,

s.t. W = L + E,

W({Pf}Ff=1) =

 M1P
1

...
MF P

F

 . (8)

Given feature points in multiple images, Eq. (8) estimates a
reordering such that the reordered measurements matrix is low
rank. The solution of Eq. (8) is similar to the solution of
Eq. (7). Essentially, low rank constraint in image measurement
matrix originates from the low rank constraint in 3D non-rigid
deformation. A low rank structure in 3D deformation naturally
projects to a low rank structure in 2D image measurements.
However, a low rank structure pursuing in image measurement
matrix does not necessarily correspond to the underlying low
rank structure in 3D non-rigid deformation. A related analysis
is available in [6]. In the experiments section, we will compare
point correspondence recovery performance of both Eq. (7)
and Eq. (8).

IV. SOLUTION

In this section, we develop a numerical solver for simulta-
neous multi-view correspondences and non-rigid reconstruc-
tion by adapting the classic Alternative Direction Method of
Multipliers (ADMM) to non-convex optimization problem. To
solve the problem, we introduce Lagrange multipliers Γ and



Υ to remove the equality constraints. The resulting augmented
Lagrangian cost function is expressed as:

L(S], S, E, {Pf}Ff=1,Γ,Υ) = ‖S]‖∗ + λ‖E‖1
+ < Γ, S] − g(S) > + < Υ, W− RS− E > (9)
+β/2(‖S] − g(S)‖2F + ‖W− RS− E‖2F ),

where < X, Y >= tr(XT Y), and β is a penalty parameter. The
ADMM works by minimizing Eq. (9) with respect to S], S, E
and {Pf}Ff=1 one at a time while fixing the others. During each
iteration, we update S], S, E, {Pf}Ff=1 and Lagrange multipli-
ers Γ, Υ in sequel

S
]
k+1 = arg min

S]
L(S], Sk, Ek, {Pfk}

F
f=1, Γk, Υk), (10)

Sk+1 = arg min
S
L(S]k+1, S, Ek, {P

f
k}
F
f=1, Γk, Υk), (11)

Ek+1 = arg min
E
L(S]k+1, Sk+1, E, {Pfk}

F
f=1, Γk, Υk), (12)

{Pfk+1}
F
f=1 = arg min

{Pf}Ff=1

< Υk, Wk − RSk+1 − Ek >

+ β/2(‖Wk − RSk+1 − Ek+1‖2F ), (13)

Γk+1 = Γk + β(S]k+1 − g(Sk+1)), (14)

Υk+1 = Υk + β(Wk+1 − RSk+1 − Ek+1), (15)

βk+1 = min(βm, ηβk). (16)

The update of S]k+1 involves a convex optimization problem
for which a closed form solution exists. By introducing the
matrix shrinkage operator Sv(·) 2, the optimal solution to
Eq. (10) can be obtained as:

S
]
k+1 = S1/β(g(Sk)− Γk/β). (17)

For the update of S, as it only includes linear and least-
squares terms. Therefore, its update can be easily obtained
in closed-form. More specifically, the closed-form solution is
given by:

Sk+1 = (I + RT R)−1(g−1(Γk)/β (18)

+RT Υk/β + g−1(S]k+1) + RT (Wk − Ek)).

By using the soft-thresholding operator [9] τv(x) =
sign(x) max(0, |x|−v), the optimal solution for E is achieved
as:

Ek+1 = τλ/β(Wk − RSk+1 + Υk/β), (19)

where the soft-shresholding operator works on Wk − RSk+1 +
Υk/β element-wisely.

2Matrix Shrinkage Operator: Assume X ∈ Rm×n and the SVD of X
is given by X = UDiag(σ)V>, U ∈ Rm×r, σ ∈ Rr

+, V ∈ Rn×r . For
any v > 0, the matrix shrinkage operator Sv(·) is defined as Sv(X) :=
UDiag(sv(σ))V>, where sv(σ) is defined as:

sv(σ) := σ,with σi =

{
σi − v, if σi − v > 0,

0, otherwise.

Require: Camera motion R, point positions measurements
M1, · · · , MF , λ;
Initialize: S0, S]0, E0, {P

f
0}Ff=1, β0.

while Not converged do
1. Update S], S and E by Eq. (17), Eq. (18) and
Eq. (19);
2. Update {Pf}Ff=1 as
Pf = arg min ‖MfPf − (RSk+1 + Ek+1 − 1/βΥk)f‖2F by
using the Hungarian algorithm;
3. Update Γ, Υ and β as Eq. (14), Eq. (15) and Eq. (16);
4. Check the convergence conditions:
‖S]k+1 − g(Sk+1)‖∞ ≤ ε1, ‖Wk+1 − RSk+1‖∞ ≤ ε2.

end while
Ensure: Non-rigid shape S, reshuffled shape S] and outlier

pattern E.
Algorithm 1: Simultaneous correspondences and non-rigid
structure reconstruction via ADMM.

As there is no bilinear element between partial permutation
matrices across all the frames, problem (13) can be decom-
posed into F sub-problems, each of which only involves one
PPM Pf ,

P
f
k+1 = arg min

Pf
tr
[
(MfPf )T (MfPf )

]
(20)

− 2tr
[
(MfPf )T (RSk+1 + Ek+1 − 1/βΥk)f

]
,

where Mf denotes the position measurements at the f -th
frame, and (MfPf )T (RSk+1 + Ek+1 − 1/βΥk)f denotes the
2f − 1, 2f rows of matrix (MfPf )T (RSk+1 + Ek+1 − 1/βΥk)
which corresponds to the f -th frame. After some algebraic
derivation, we reach the following equivalent formula,

P
f
k+1 = arg min

Pf
‖MfPf − (RSk+1 +Ek+1−1/βΥk)f‖2F . (21)

This equation exactly expresses the problem as a linear assign-
ment problem, which can be solved by using the Hungarian
algorithm [18].

Our algorithm to perform simultaneous correspondences
and non-rigid structure reconstruction is summarized in Al-
gorithm 1. The initialization is algorithm implementation is
achieved as : the PPMs are set as identity, we work out corre-
sponding deformable shape S0, S

]
0 by state-of-the-art NRSfM

methods such as BMM. The outlier pattern is initialized as
E0 = 0.

V. EXPERIMENTS

In this section, we report experimental results on various
configurations. We have tested our method on real sequences
including Drink (1102/41), Pick-up (357/41), Yoga (307/41),
Stretch (370/41), and Dance (264/75) used in [1], and Face
(316/40), Shark (240/91) and Walking (260/55) in [34],
where (F/P ) denotes the number of frames (F ) and number
of points (P ). To facilitate the comparison, we use the same
error metrics as reported in [1] and [13]. e3D measures the



normalized mean 3D error in the reconstructed 3D points,
which is defined as

e3D =
1

σFP

F∑
f=1

P∑
p=1

efp, σ =
1

3F

F∑
f=1

(σfx + σfy + σfz),

where σfx, σfy and σfz are the standard deviations in X,Y
and Z coordinates of the original shape at frame f . To evaluate
the performance in building correspondences, we use the met-
ric of correspondence accuracy, which is defined as the ratio
between the number of corrected estimated correspondence
and the number of point positions.

We compare our methods against the state-of-the-art non-
rigid structure from motion methods, which include (1) Point
trajectory approach (PTA) [1]; (2) Column space fitting (CSF2)
[15] and Block matrix method (BMM) [5].

A. Tolerance to mismatches

The state-of-the-art NRSfM methods achieve considerable
performance improvement on benchmark data sets (i.e., CMU
mocap). However, their performance will degrade when mis-
matches occur. Here, we present two examples to illustrate this
effect. On the “Yoga” and “Pickup” sequences, we randomly
permutated the feature correspondences to create mismatches
in each frame. The ratio of mismatches gradually increase
from 0% to 10% and experiments were ran 10 times for each
ratio. Statistical results are reported in Fig. 1.
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Fig. 1. Performance of state-of-the-art non-rigid structure reconstruction
method (PTA, CSF2, BMM) while mismatch ratio in measurement matrix
gradually increases from 0% to 10%. (a) Experimental results on “Yoga”; (b)
Experimental results on “Pickup”.

In non-rigid reconstruction, 0.2 and above in relative er-
ror express a big change in 3D reconstruction. It is easy
to observe that with 1% and 2% mismatches, performance
of all the state-of-the-art methods (BMM, CSF2 and PTA)
degrade dramatically from less than 0.05 to around 0.2 and
0.3. The figure clearly illustrates the performance decrease
of the state-of-the-art NRSfM methods in the presence of
mismatches. These motivate our simultaneous correspondence
and non-rigid reconstruction framework. As illustrated in the
following parts, our new framework does not depend on pre-
computed correspondences, which enables it to handle even
100% mismatches.

B. Simultaneously correspondences and reconstruction

To evaluate the performance of our algorithm in simulta-
neously estimating correspondences and reconstruction, we
utilize the sequences “Yoga”, “Pickup”, “Stretch” and “Drink”
where the camera motions are available. For each frame
in the video sequence, we randomly generated permutation
matrices to obtain permutated feature point positions. Then
our method was applied to recover both correspondences and
non-rigid structure. Furthermore, we ran the implementation
constraining W only as in Eq. (8).

In Fig. 2, we illustrate the performance comparison on
sequences “Pickup” and “Yoga” between our model Eq. (7)
and model Eq. (8) in the aspect of permutation estimation
accuracy. Meanwhile, we provide non-rigid structure recon-
struction error accordingly in Fig. 2(d) and Fig. 2(b), where the
normalized mean 3D error is comparable with the result given
perfect correspondences. Obviously, our formulation with con-
straint on S] outperforms the formulation with constraint on W

by a margin. This can be understood as the low rank condition
on S] essentially expresses the low order constraint in the
linear combination model equivalently. In Fig. 3, we presented
3D reconstruction of our framework on “Yoga” sequence.
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Fig. 2. Performance of correspondence estimation and non-rigid structure
reconstruction, where the performance is reported as Permutation Estimation
Accuracy and Normalized Mean 3D Error under each test. (a) Correspondence
estimation accuracy for “Yoga”; (b) Normalized mean 3D error for “Yoga”;
(c) Correspondence estimation accuracy for “Pickup”; (b) Normalized mean
3D error for “Pickup”.

In Table I, we reported the average correspondence es-
timation accuracy and normalized mean 3D error in non-
rigid reconstruction. To better position the performance of
our method, we also provided 3D reconstruction results of the
state-of-the-art non-rigid reconstruction methods (PTA, CSF2
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Fig. 3. 3D reconstruction results on the Yoga sequence, where red triangle
denotes our results and blue circle denotes the ground truth.

and BMM) with ground truth correspondences. From the table,
we observe that, our method, while not requiring any point
correspondences as input, achieves comparable or even better
shape recovery performance compared with PTA, CSF2 and
BMM.

C. Sparse point trajectory results

By fixing the correspondences, our method can be applied
to non-rigid reconstruction problem with correspondences. To
illustrate the benefit of our ADMM formulation, here we
compared our method with the state-of-the-art methods in
non-rigid structure from motion factorization. The results are
illustrated in Table II, where EM-PPCA denotes the EM-
PPCA method proposed in [34], MP denotes metric projection
method presented in [23], while KSTA denotes the Kernel
Shape Trajectory Approach in [14], . It is observed that our
method achieves comparable 3D reconstruction results with
state-of-the-art methods. However, compared with fixed-point
continuation based BMM implementation, our ADMM based
implementation could achieve a speed-up factor of 5.

Additionally, efficient implementation of the ADMM
method enables us to solve even dense non-rigid structure
from motion problem under the same framework. To show
the scalability of our method, we applied our method to dense
non-rigid structure from motion problem. We tested it on the
synthetic face data set used in [11]. Experimental results are
illustrated in Table III. Note that under our formulation, we
only use the constraint in deformable shape without using
any spatial constraint as in [11]. Nevertheless, our method
achieves comparable performance while its implementation is
much more efficient.

VI. CONCLUSION

This paper advocates a unified framework to simultaneously
recover non-rigid structure and point correspondences. We
formulated the problem as searching for deformable shape
and a reordering of the feature point positions such that the
reshuffled non-rigid shape is low-rank and the reordered point

positions lie in the subspace spanned by the non-rigid shape.
The resultant non-convex optimization problem is solved via
the ADMM, where for each subproblem there exists efficient
solution. Experimental results on real image evidence the
performance of our method in simultaneously establishing
correspondences and estimating non-rigid 3D shape. In the
future, we plan to extend our method to handle camera motion
and hence simultaneously dealing with camera motion, non-
rigid structure and multi-view correspondences.
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