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Abstract— It is of practical interest to automatically calibrate
the multiple sensors in autonomous vehicles. In this paper,
we deal with an interesting case when used low-resolution
Lidar and present a practical approach to extrinsic calibration
between monocular camera and Lidar with sparse 3D measure-
ments. We formulate the problem as directly minimizing the
feature error evaluated between frames following the way of
image warping. To overcome the difficulties in the optimization
problem, we propose to use the distance transform and further
projection error model to obtain the key approximated edge
points that are sensitive to the loss function. Finally, the
loss minimization is solved by an efficient random selection
algorithm. Experimental results on KITTI dataset show that
our proposed method can achieve competitive results and an
improvement in translation estimation particularly.

I. INTRODUCTION

For long term autonomous driving, it needs algorithm to
automatically calibrate the sensors. Therefore, it plays an
important role for the system to accurately calibrate the
extrinsic parameters without manual operations and mark-
ers. Due to the importance, many approaches have been
proposed [1] [2] [3] [4] to tackle this task and remarkable
performance has been achieved in real world applications.
However, existing methods to extrinsic calibration generally
depend on dense 3D measurements from the Lidar to enable
motion estimation or feature description from depth or inten-
sity. Most of the current autonomous vehicles (Google, Uber,
Ford, Baidu, etc.) are equipped with high-end Lidar such
as Velodyne 64 to achieve dense measurements. The main
drawback with the current high-end Lidar such as Velodyne
is the high cost, which is even comparable to the cost of
the whole vehicle. Therefore there is probably an interesting
case applying low-cost Lidar with sparse 3D points instead
of the high-end ones. For a brief view on our work, Fig. 1
illustrates the performance of our method.

In this paper, we aim at calibrating the extrinsic parameters
between a monocular camera and Lidar with sparse 3D Lidar
measurements without any markers. Compared to existing
methods with dense Lidar measurements, the task of using
sparse Lidar measurements (e.g., around 1000 points) is
particularly challenging due to the following reasons: 1)
The structure (e.g., edges) and reflectance information cannot
be extracted or not accurate enough to correlate well with
the mutual information in the camera image. 2) The Lidar
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Fig. 1: Illustration of our solution to extrinsic calibration. (a)(b)
show the calibration result before and after optimization with the
color images overlaid by the sparse Lidar measurements. The
corresponding cases for better display are shown in (c)(d). (e)(f)
demonstrate the histograms of pixel intensity error for dense cases,
showing the improvement by our method.

measurements are too sparse to enable accurate motion
estimation for linear solution especially in the “Hand-Eye”
framework. 3) In addition, with the sparse Lidar point infor-
mation, the estimation of translation is even more difficult
since it originally is tough though the rotation is relatively
easy [5].

To address the above issues, we propose to directly min-
imizing a feature error defined in the frames in the way of
image warping. In this way, the extrinsic calibration problem
has been transformed to a loss minimization, for which we
solve with evolutionary algorithm.

The main contributions of this paper can be summarized
as: 1) A general framework for extrinsic calibration between
a monocular camera and Lidar, which can be used for
both dense and sparse Lidar points clouds; 2) An effective
frame and point selection strategy has been proposed by
analyzing the sensitivity of the loss function for rotation
and translation estimation; and 3) An efficient algorithm
for accurate estimation through approximate edge points and



constrains on sensitive key points.

II. RELATED WORK

Existing extrinsic calibration methods for monocular cam-
era and Lidar can be roughly categorized into two groups:
mutual information based methods and motion based meth-
ods. The mutual information based methods exploit the
mutual information between different sensors to find the
extrinsic calibration parameters, e.g., the intensity in color
image and the reflectance or depth from Lidar. The motion
based methods utilize the conjugate motion cue inside the
camera and Lidar rig. When both motion estimations are
available from them, “Hand-Eye” calibration [6] is used
for extrinsic calibration. Again, these methods depend on
cross-modality correspondences or is fragile due to algebraic
optimization.

Mutual information based methods try to find the ex-
trinsic parameters by exploiting mutual information between
different sensors, such as the appearance information in
color images and the reflectance or depth values from Lidar.
Theoretically, extrinsic parameters can be solved from only
one frame pair. Levinson et al. [1] proposed to calibrate
camera-Lidar system by utilizing the edge features in both
2D image and 3D point clouds. Compared to [1] which only
used edge information, normalized mutual information based
method [2], [3] achieve better performance. The reason can
be interpreted as the loss function is more smooth with fewer
local minimums due to the reflectivity on both edges and
non-edges areas are for computing the mutual information.
In addition, Scott et al. proposed a method to find the good
scenarios for calibration by using the Normalised Informa-
tion Distance [4]. In [7], Tamas et al. proposed to achieve the
calibration parameters by using shape registration between
the 2D image and 3D points clouds, e.g., corresponding
planar regions.

Motion based methods aim at solving the extrinsic
transformation by exploiting the motion cues between dif-
ferent sensors. Theoretically, the extrinsic parameters can
be computed linearly if the camera and Lidar motion are
computed individually. Taylor et al. computed the initial
calibration via “Hand-Eye” method and then refine results
by using intensity consistency assumption across multiple
frames, which means that the Lidar point projected into
different image frames should share the same image intensity.
However, this ”Hand-Eye” approach suffers inevitable prob-
lem that the approximate planar motion causes the translation
solution to be singular [6] and also heavily relies on the
structure from motion techniques, which returns an unstable
initial. Zhao et al. [8] provided another way to compute
the transformation by registering two groups of 3D point
clouds with ICP (iterative closest point). The 3D points in
camera coordinates can be obtained by using structure from
motion technique. Although this method is not robust and
inaccurate due to image based 3D reconstruction, it also
shows that this framework is promising when the image
based 3D reconstruction is reliable.

III. PROBLEM FORMULATION

Given a set of m sparse Lidar point clouds P =
{p1,p2, · · ·pm} and the corresponding images I =
{I1, I2, · · · Im} with relative poses T = {T1, T2, · · ·Tm−1}
for each pair of images, our goal is to seek the best
relative transformation X between Lidar and camera. The
loss function is formulated as:

X̂ = argmin
X

1

N

m−1∑
i=1

[f i+1(π(Ti ·X ·pi))− f i(π(X ·pi))]
2,

(1)
where f is an alternative feature and SURF descriptor [9] is
used in our work for robustness, m the total frame numbers,
N the total number of computed points and π is the image
projection function.

In this paper, the relative pose between frames is not
our main concern so that the known poses are used and
alternatively they can be solved by some methods, e.g.
[10], [11], [12].

Note that, Eq. (1) is a little different from the classical
intensity-consistency formula since its two feature items both
contain the variables so that they simultaneously change in
each optimization iteration, which makes the loss function
contain more complex local minima. And that is why classic
methods are very laborious for this problem because they
belong to a kind of single matching problem where the key
features are fixed and while ours is a kind of double matching
problem where the features in relevant frames both vary to
match each other.

IV. PROPOSED APPROACH

The loss function in Eq. (1) is non-linear and non-convex
with a lot of local minima. Theoretically, it is real difficult to
obtain an approximate global solution efficiently. Therefore,
several strategies have been proposed for improvement.

A. Distinguish Frames Selection

Scenario has significant influence on the function. Frankly
speaking, this kind of function is invalid if the image is tex-
tureless or the intensity is evenly distributed over the whole
image. For example, the camera facing a wide white wall. So,
strategies should be proposed to select good scenarios where
it probably includes distinguishable structure, large intensity
variation, few plain area, etc. Alternatively, taking more
frames for error computation is another way to smoothing the
loss function, which is effective to reduce the number of local
minima. However, increasing of frames will increase the
computation burden. Here, we empirically choose 500 frames
to balance the efficiency and performance. Additionally, in
order to further enrich the scene context, we select frame
pairs for loss computation rather than using consecutive
frames. Thus, it can avoid using repetitive scenarios which
could also make the estimation to be biased. The constrains
used for selecting the frame pair include two parts:

Angle = arccos(
1

2
(trace(R)− 1)) · 180

π
≥ θ, (2)

τ1 < |t| ≤ τ2, (3)
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Fig. 2: Illustration of Distance transform. (a) An example of
distance transformed image and (b) approximate edge points in blue
compared to other ordinary points in red.

where R and t represents the relative rotation and translation
between the pair of frames and we set θ =3◦ and τ1 = 0m/s,
τ2 = 2m/s for the physical limits of common vehicles.

This simple criteria makes the selected frames are mostly
from cross roads where abundant features are available, For
example, 3D points from close buildings. Particularly, these
close points in this kind of scenarios are extremely helpful
to improve the translation estimation.

B. Sensitive Key Points Selection

In the field of computer vision and robotics, it is common
sense that the translation estimation is more challenging
than rotation in relative camera pose estimation. However,
this issue also occurs in the extrinsic calibration problem.
Detailed analysis is shown in V-B. Selection on distinguished
points inside one frame also plays an important role on the
loss function like that on distinguished frame pairs.

1) Distance Transform for Approximate Edge Points:
Many methods have shown that the gradient information
either in 2D image or 3D point cloud is essential to the
extrinsic calibration. Unfortunately, in our case, the gradient
information can be obtained in 2D image only. Therefore, we
select the “Approximate Edge Points” whose projected 2D
points are close to image edges. Because points projected
in flat or textureless area don’t contribute too much on
the loss function. Here, the distance transform technique
[13] is employed for seeking these approximate edge points.
Figure 2 shows an example of the distance transform result.
This selection makes the distribution of feature error sensitive
to the variation of points so that it helps to improve the
calibration performance.

2) Space Constrains for Key Points: As discussed that the
loss function is more sensitive to rotation than translation,
we propose to apply projection error model to analyze the
translation and find these key points among the approximated
edge points if it has a certain misalignment in 2D image
domain by adding small noise on the translation.
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Fig. 3: The relationship on sensitivity of translation in each direction
and a set of sample radiuses with 0.01m offset value on Z direction
for illustration.

Given a 3D point P = (X,Y, Z) in camera coordinate, its
image position (u, v)T can be computed. By adding small
noise (4t = [4tx,4ty,4tz]T ) only on translation part, its
image position (u′, v′)T is changed to[

u′

v′

]
=

[
f ·(X+4tx)

Z+4tz
+ u0

f ·(Y+4ty)
Z+4tz

+ v0

]
. (4)

where f, u0, v0 are the intrinsic parameters of a camera.
Therefore, the pixel displacement error caused by the

translation noise can be computed as:

ddis =
√

(u− u′)2 + (v − v′)2

=

{
f ·
√
R2−Z2·‖tz‖
Z(Z+tz)

[0, 0,4tz]T

f ·
√
R2−Z2·‖tz‖
Z(Z+tz)

[4tx, 0, 0]T or[0,4ty, 0]T
(5)

where R =
√
X2 + Y 2 + Z2 is the distance between point

P and the camera center.
From the equations, it shows that the key points often

appear on the two sides under a certain radius distance.
Figure 3 shows the curves when the offset is set to a
certain value. For example, if we want to estimate a small
translation, e.g. 0.01m along Z-axis and 0.01m along both
X- and Y-axis, and simultaneously it is assumed that 1 pixel
offset will cause obvious intensity differences which makes
it sensitive for better estimation, we have to use the points
within the corresponding radius of about 10 meters.

C. Optimization

Any local optimization methods (e.g. LevenbergMar-
quardt) for this loss function may result in a local min-
imum due to its double matching complexity. Therefore,
we proposed to use CMA-ES algorithm (Covariance Matrix
Adaptation Evolution Strategy) [14] which is an evolutionary
algorithm special for difficult non-linear non-convex opti-
mization problems in continuous domain for solving our
problem. In our task, The initial variance in each dimension
for this optimizer is set as the noise variance.

D. Efficient Random Selection for Extrinsic Calibration

Computing over a long sequence of frames to enrich dis-
tinguished scenarios is extremely computational expensive.
In order to improve the speed as well as to reduce the



Algorithm 1 Efficient Random Selection for Extrinsic Cal-
ibration Algorithm

Require: P = {p1,p2, · · ·pm}, I = {I1, I2, · · · Im}, T =
{T1, T2, · · ·Tm−1}, RndFrames, Iters,X0

Ensure: extrinsic parameter X̂ between Lidar and camera
1: Pn = SelectFramePairs(P, I,T)
2: for i = 1 : Iters do
3: FP = randomSelectFrames(Pn, RndFrames)
4: Ti = cmaes(FP)
5: end for
6: T̂ = robustRefineKsi(T, Iters)

memory consumption, an effective Random Frames Selection
for extrinsic calibration algorithm is proposed. Rather than
taking all the frames for optimization, we randomly take
parts of the frames for optimization and repeat this process
for a fixed number. Then, final result is the average value
of all the trials. The main steps of the proposed Random
Frames Selection algorithm is summarized in Algorithm 1.

Given point clouds and corresponding images, initialize
the repetitive iterations and random numbers of frames as
well as the initial extrinsic parameters. In the first Select-
FramePairs step, frame pairs are selected consecutively in
a sliding window fashion by the constrains Eq. (2) and
Eq. (3), where Pn is a structure contains image pairs, Lidar
points as well as the relative poses in camera coordinate. In
next iteration step, randomSelectFrames firstly divides the
frame pairs into RndFrames sets and then randomly choose
one frame pair in each set, and lastly gather the required
number of frame pairs to compute the loss function. Finally,
all RndFrames frames pairs are put into cmaes optimizer.
After all the iterations, robustRefineKsi post-processes the
optimization results by taking the average values after omit-
ting the outliers whose values are over 3σ.

V. EXPERIMENTAL RESULTS

A. Experiments Settings
KITTI odometry dataset [15] is used to verify the effec-

tiveness and robustness of the proposed approach. Specifi-
cally, sequence 00 is selected here because it includes over
4000 frames which can provide enough frames for our frame
pair selection. The proposed approach is implemented under
MacOs in Matlab 2015b environment on a standard laptop
with 16GB RAM and Intel Core i7, 2.2GHz. Note that the
demand for the speed of calibration is not strict because this
calibration can be operated by a single thread in the backend.

In addition, the geodesic distance [16] which is used for
measuring the noise added on rotation and translation is
defined as

d(P,Q) = (‖ log(AT
1 A2)‖2F + ‖b2 − b1‖2F )1/2, (6)

where P and Q are the two transformation matrices, A and
b are the rotation matrix and translation vector respectively.
The ‖ · ‖F is the Frobenius norm. Note that the units for
both parts are not compatible, we just exploit either rotation
or translation measurement for better evaluation.

(a) 2D misalignment by adding
rotation noise.

(b) 2D misalignment by adding
translation noise.

Fig. 4: Different sensitivities on rotation and translation. Blue points
are projected by ground truth extrinsic transformation matrix while
red ones are projected by contaminated transformation matrix.
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Fig. 5: Experimental results on one Virtual KITTI sequence. Vari-
ation trend of loss with different level noise on translation (a) and
rotation (b). X-axis represents the norm of the noise in translation
and rotation respectively, and Y-axis represents the loss value.

B. Sensitivity Evaluation on Rotation and Translation

To evaluate the sensitivity on rotation and translation to
Eq. (1) in controlled circumstance, Virtual KITTI dataset
[17] is employed. The ground truth calibration parameters
are set manually and Lidar points cloud are generated by
transforming the ground truth 3D points in camera coordinate
to Lidar coordinate.

Figure 4 shows qualitative results that the translation
estimation is more difficult than rotation. From Fig. 4(a), the
misalignment is obvious by adding small rotation noise (e.g.,
1◦) and is also uniformly distributed over the whole image.
However, this is totally different for the case of translation
in Fig. 4(b) with a small translation error (e.g., 0.1m) where
the misalignment is extremely small for the points far from
the camera but is relatively larger for the points close to the
camera.

To illustrate the numerical results, the variation trend of
loss is plotted in the following.

1) Evaluation for Translation Estimation: For translation,
normalized direction vectors Mt are randomly generated and
the amplitude λ of Mt is generated uniformly in the interval
[−0.3m, 0.3m], where t is the ground truth translation.
Finally the noisy translation vector is set as t̂ = t+ λ · Mt.
In addition, we keep the rotation matrix noise free in this
experiment. Fig. 5(a) displays the change of the loss function
by adding different levels of noise on the translation vector.
The loss increases with the increasing image size. At the
original image level, the loss increases slightly with the
increasing noise. Furthermore, this increasing trend becomes
even weaker on level 2 and 3.

2) Evaluation for Rotation Estimation: The similar way
is used on the rotation. Normalized direction vector Mr are
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Fig. 6: Comparison on the trend of the loss on different meth-
ods. The first row only compares the influence on rotation with
2◦ variance and the second row only compares the translation
influence with 0.3m variance. (a)(e) represent for the original
intensity matching method as Eq. 1; (b)(f) represent for the original
method with distance transform (DT) to find the points close to the
edges within 1 pixel; (e)(g) represent for original method under
space constrains (SC) with 0.02m along xyz axis; (d)(h) for surf
based method with both distance transform and space constrains.

randomly generated and angles θ are uniformly generated in
the interval [−15◦, 15◦]. The noisy rotation matrix is R̂ =
R·MR, where R is the ground truth rotation matrix. Fig. 5(b)
shows the variation trend for rotation matrix where the loss
increases significantly with the increasing noise. Particularly,
the loss achieves the minimum value when the noise is zero
for all three pyramid images levels.

C. Evaluation on Loss Function

In order to illustrate the changes made by different ap-
proaches for the loss function, a set of comparisons using
200 selected pairs of frames with either rotation or translation
noise are shown in Fig. 6.

Compared in the first row for rotation in Fig. 6(a)-(d),
each dot cloud shares similar overall trend which means that
the capability of finding rotation solution is almost the same,
and the sharpness of the left bottom area also appears similar
which means that rotation accuracy is very close to each
other. This shows that the rotation is naturally sensitive to
the noise no matter what method is used.

However, compared in the second row for translation in
Fig. 6(e)-(h), the overall trend of each dot cloud is differently.
The methods of distance transform (DT) for approximate
edge points and space constrains (SC) for key points selec-
tion affect performance respectively compared to the original
image intensity method, while when all the approaches are
used, the overall trend of loss to be more compact, making
the translation solution more convergent. Additionally, its left
bottom area is more sharp than others so that it can obtain
a better translation solution.

D. Optimization Results

This experiment shows the improvement on our algorithm
compared to the simple intensity-matching based method
used in [5] which shows outstanding performance compared

to other state-of-the-art methods. We take it as the Baseline.
All tests are computed on 500 selected pairs of frames by the
constrains in Eq. (2) and Eq. (3). The rotation and translation
standard variance on the ground truth are 2◦ and 0.1 meters
respectively. The simulated initial solutions with the noise
are generated in the way as in V-B. The same 100 initial
solutions are used and the average result is returned for each
method. For our proposed algorithm, it uses 10 iterations and
10 pairs of frames randomly selected in each iteration. When
the proposed algorithm is used, the average computation time
consuming for each solution is about 10 minutes, which
is 5 times faster than Baseline. However, it is possible to
accelerate by parallel technique e.g. GPU configuration.

Our algorithm takes two variants for different features.
One is called Ours+Patch with 15 × 15 patch size on
image intensities while the other is called Ours+SURF but
with SURF descriptor of also 15 × 15 patch size. Table I
shows the quantitative performance. Our algorithm enhances
the translation estimation than Baseline while the rotation
estimation is still worse when patches are used. This is the
reason that more frames are used in Baseline, making the
rotation less ambiguous. However, when the SURF features
are used, the performance of rotation estimation is improved
and comparable to that of Baseline but has higher efficiency
due to the random selection strategy.

Figure 7 shows the qualitative calibration results by align-
ing the Lidar points onto the image using the optimized
transformation matrix. For better illustration, the results are
shown with the original dense Lidar points instead of the
sparse Lidar points. Note that, Ours+SURF shows some
more precise details than Baseline and Ours+Patch such
as the man riding the bike as well as the left and right
tree. In the bottom Fig. 7(e)-(g), the histograms of the
pixel error show that the accuracy of rotation weights much
heavier than that of translation. For example, Ours+Patch
performs worse than Baseline because of the worse rotation
estimation (shown both in the Table I and image), regarding
the improvement of the translation accuracy. But when
Ours+SURF achieves almost the same accuracy of rotation
as Baseline, the improvement of the translation estimation
will enhance the performances.

VI. CONCLUSION

This paper tackles extrinsic calibration between monocular
camera and Lidar with sparse 3D points. To improve the
original feature error minimizing loss function, key points
selection and an efficient optimization strategy are proposed.
Our method is potential to handle both sparse and dense
Lidar measurement under a unified framework. Further bun-
dle adjustment for jointly optimization the relative poses and
extrinsic parameters will be considered for robust estimation.
SLAM techniques may be applied to address the cases where
rigid motion objects exist in the scenes.
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