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Revisiting Spatio-Angular Trade-off in Light Field
Cameras and Extended Applications in

Super-Resolution

Hao Zhu, Mantang Guo, Hongdong Li, Qing Wang, Antonio Robles-Kelly

Abstract—Light field cameras (LFCs) have received increasing attention due to their wide-spread applications. However, current LFCs

suffer from the well-known spatio-angular trade-off, which is considered an inherent and fundamental limit for LFC designs. In this

paper, by doing a detailed optical analysis of the sampling process in an LFC, we show that the effective resolution is generally higher

than the number of micro-lenses. This contribution makes it theoretically possible to super-resolve a light field. Further optical analysis

proves the “2D predictable series” nature of the 4D light field, which provides new insights for analyzing light field using series

processing techniques. To model this nature, a specifically designed epipolar plane image (EPI) based CNN-LSTM network is

proposed to super-resolve a light field in the spatial and angular dimensions simultaneously. Rather than leveraging semantic

information, our network focuses on extracting geometric continuity in the EPI domain. This gives our method an improved

generalization ability and makes it applicable to a wide range of previously unseen scenes. Experiments on both synthetic and real light

fields demonstrate the improvements over state-of-the-arts, especially in large disparity areas.

Index Terms—Spatio-angular trade-off, Light field reconstruction, Super-resolution, Epipolar plane image, LSTM

✦

1 INTRODUCTION

THe light field camera [1], [2] is becoming more and more
popular. Due to its capability to capture the whole 4D

light field [3], [4] in a single shot, it enables new imaging
features such as refocusing [5] and free-viewpoint roaming
[6]. However, the performance of current LFCs is limited
by the well-known spatio-angular trade-off [7], namely, the
notion that the product between the spatial resolution and
angular resolution must not exceed the sensor resolution.

Several methods have been proposed to recover a high
angular resolution light field from a low-resolution input
(Fig.1). However, there are still several challenges in current
solutions. For depth-based methods [9], [10], [11], [12], [13],
[14], the results are prone to errors in the depth estimation,
which may cause artifacts on occlusion boundaries. Addi-
tionally, since each view is reconstructed independently, the
geometric consistency between views can not be guaran-
teed.

Recently, learning-based light field reconstruction meth-
ods have also been explored. Kalantari et al. [15] proposed
two convolutional neural networks (CNNs) to estimate the
depth and predict colors sequentially. However, since an
explicit depth map has to be estimated, their method is still
prone to estimation error. Wu et al. [16], [17] tackled the
issue with depth-based approaches by focusing on learn-
ing EPI super-resolution. They eliminated the information
asymmetry [18] between the spatial and angular dimensions
by applying a blur operation on the EPI. However, such a
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Fig. 1. A comparison of light field super-resolution results of the
Amethyst [8]. Given a low-resolution (sparsely sampled) light field
(5 × 5 × 410 × 307), our method is able to produce a high-resolution
(densely sampled) light field (9 × 9 × 820 × 614). The bigger picture in
each sub-figure shows the reconstructed view at (4, 4) obtained by a
number of different methods. In the bottom row of each sub-figure, the
left panel shows a close-up image region (as indicated by the red box in
the full image). On the right panel, we show the reconstructed horizontal
and vertical EPIs.

blur operation can not handle large disparity areas, where
the continuous EPI lines become discrete points. In this
case, the information asymmetry still exists after the blur
operation. Moreover, the EPI consistency is lost during the
super-resolution process, which leads to fine structures in
the image to be lost or over-smoothed in the reconstructed
views.

In this paper, we first revisit the effective resolution of
an LFC and find the “2D predictable series” feature of the
4D light field. Then a specifically designed learning-based
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method is proposed to super-resolve a light field in both
angular and spatial dimensions.

One of our key insights is that the spatio-angular trade-
off only holds when the LFC is in generalized focused case
(Sec.3.1). In the defocused case, the effective spatial sam-
pling rate can be higher than the number of micro-lenses in
the conventional LFC [5]. Noting that the focused LFC [19]
is not discussed here because the 4D light field can not be
extracted from raw data directly. This insight is important
since it provides a theoretical basis for further light field
super-resolution beyond the resolution trade-off.

Secondly, the light field is proved to be a “2D predictable
series” (Sec.3.2). The new pixel in the super-resolved sub-
aperture image or the novel view is linearly connected
with the pixels in the low-resolution light field and can be
predicted. Thus the super-resolution for the 4D light field
can be treated as a prediction problem for series data. This
feature provides new insight for super-resolving light field
using the series processing techniques.

Thirdly, a new light field dataset is proposed. Compared
with previous publications, the proposed one provides three
different resolutions for each light field, which is suitable for
light field super-resolution tasks. Additionally, the provided
high-accuracy depth maps may benefit the light field depth
estimation and depth super-resolution tasks.

Last but not least, a learning-based framework for EPI
super-resolution (Sec.4) is proposed. As summarized in
Sec.3.2 that the light field is a “2D predictable series”, the
well-known convolutional long short term memory (LSTM)
for series analysis is introduced for EPI super-resolution
here. In contrast with previous super-resolution methods
[15], [16], which leverage semantic information and content
based inpainting, our network focuses on extracting and
interpolating geometric continuity in the EPI. This gives
our method a better generalization ability and makes it
applicable to a wide range of previously unseen scenes.
Experiments (Sec.5) on both synthetic and real light fields
demonstrate the performance of the proposed LSTM layers
and hint at significant improvements over state-of-the-art
learning-based methods (>3dB), especially in large dispar-
ity areas.

2 RELATED WORK

2.1 Light field sampling

Based on the two-parallel-plane (TPP) representation for
light field sampling [3], [4], two types of LFCs were de-
veloped, namely, the conventional LFC [5] and the focused
LFC [20]. However, they both suffer the spatio-angular trade-
off. Bishop et al. [21] analyzed the optical path in the focused
LFC. They pointed out that the aliasing effect in the spatial
image contains new information, thus the resolution trade-
off can be broken. The same conclusion was also summa-
rized by Broxton et al. in [22] and Chang et al. in [23],
where the diffraction effects are proved to be helpful for
improving lateral resolution of the light field microscope
using wave optics. Compared with [21], [22], [23], we focus
on whole pixels instead of aliasing or diffraction and prove
that multiple views in the conventional LFC record different
point sets. The resolution of a light field can hence be
improved by combining these point sets accordingly.

2.2 Depth-based methods

Light field reconstruction can be viewed as a special case of
image based rendering, as the input and reconstructed novel
views are all restricted in a 2D grid. So previous depth-based
rendering techniques [9], [10], [11], [12], [13] can also be
directly applied in light field reconstruction [14], [15], [24],
[25]. However, there are two problems in the depth-based
algorithms. Firstly, there are depth ambiguities in shadows,
reflection and refraction areas where a correct depth may
not be a good depth. Secondly, as each view is reconstructed
independently, the view consistency may be broken in the
reconstructed light field.

2.3 Non-depth-based methods

Considering the special grid characteristics of light field
sampling, some signal processing cues have been used in
light field reconstruction. These include, but are not limited
to the dimension gap between a 3D focal stack and the 4D
light field [26], the sparsity of light field sampling in contin-
uous Fourier domain [27] and the sparse representation of
EPI in shearlet transform domain [28].

Recently, CNNs have been used in light field reconstruc-
tion. Wu et al. [16], [17] tackled the light field reconstruction
task viewing it as a one-dimensional EPI super-resolution
problem and proposed a “blur-restoration-deblur” frame-
work. Wang et al. [29] introduced a 4D CNN to directly
super-resolve the 4D light field instead of the 2D EPI. Yeung
et al. [30] explored the coarse characteristics of the sparsely-
sampled light field and proposed the spatial-angular al-
ternating convolutions to accelerate the reconstruction pro-
cess. Guo et al. [31] explored very high angular light field
reconstruction from multiple light fields using the resid-
ual network. All of these CNNs treat light field (or EPI)
as a traditional 2D image, where each pixel is correlated
with its standard square-like neighbouring system (4 or
8). However, note the neighbouring system size depends
upon the direction of the EPI line in the light field and its
displacement. Thus pixels with large disparities have a large
neighbouring system. Wu et al. [32] improved the results
using the fusion of sheared EPIs. However, this solution
may also fail in occlusion areas with a large disparity. As a
result, previous CNN-based methods work well for narrow
baseline light fields while they often fail when applied to
wide baseline light fields (see Fig.1).

2.4 Light field dataset

There have been several light field datasets in [8], [15], [33],
[34], [35], [36], [37], [38], [39], [40], [41]. All these datasets
have a fixed spatial resolution, which is an obstruction for
further high-resolution light field reconstruction. Although
a low-resolution light field can be generated by down-
sampling each view image, it introduces prior in super-
resolution process. Compared with previous datasets, the
presented one has three advantages. Firstly, three differ-
ent resolution light fields without any prior, which are all
rendered using ray tracing techniques. Secondly, a larger
occlusion ratio. The sampling of occlusion boundary areas
is uneven and insufficient in light field [42], [43]. A dataset
with large occlusion ratio can be better used to evaluate
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the performance of light field applications. Thirdly, a larger
disparity range. The so-called EPI line only exists in the light
field with small disparity range (≤ 1 [14]) and it will become
discrete points in large disparity area, where the successful
technique in continuous areas may fail.

2.5 CNN and LSTM

CNN has become the hottest technique in almost all research
areas of computer vision and has achieved significant im-
provement over previous techniques [44], [45], [46], [47].
Any input with particular patterns can be well modelled
by CNN. LSTM [48] is a special recurrent neural network
(RNN) which aims at modelling series data, such as text and
speech. LSTM introduces 4 gates in each cell to solve the
gradient vanishing and exploding problems in traditional
RNN. Shi et al. [49] further improved the basic LSTM and
proposed the convolutional LSTM for video analysis.

3 OPTICAL PATH ANALYSIS IN AN LFC

In this section, we prove that the well-known spatio-angular
trade-off only exists when an LFC is in the generalized focused
case, i.e., the disparities of all pixels in the recorded light field
are integer values. In this case, all views in an LFC capture
the same point set. Otherwise different views account for
different point sets which are aliased with respect to other
views. As a result, the effective spatial resolution of the con-
ventional LFC is larger than the number of micro-lenses. In
addition, the 4D light field is proved to be a 2D predictable
series. The new pixel in the super-resolved light field, i.e.,
both the new pixel in the high-resolution image or in the
novel view, is linearly connected with the pixels in the low-
resolution version and can be predicted. Therefore, the light
field is naturally suitable to be processed by the techniques
for series analysis.

3.1 On the number of recorded scene points

Generalized focused case
Fig.2a shows the optical path of an ideal conventional LFC,
where all the pixels are covered by a micro-lens recording
different views of the same point in the 3D space. In such a
case, the depth Zf of the scene point and the distance fmM

between the micro-lens array (MLA) and the main lens must
meet the Gaussian imaging principle, i.e., 1

fM
= 1

fmM
+ 1

Zf
,

where fM is the focal length of the main lens. Here, the
spatio-angular trade-off holds and all recorded pixels are clear
images of the objects at depth Zf . That is, the recorded light
field describes a consistent point set observed from different
views.

If the scene depth varies, i.e., the LFC is in the defocused
case, the pixels covered by a micro-lens become a uniform
sampling over a circular area in the 3D space (the gray areas
in Fig.2a). In this case, different pixels under a micro-lens
record different points in the 3D space. Note that the above
trade-off also holds in some defocused situations. When the
point in the 3D space is moved to the depth Z ′

f in Fig.2a,
the point P is only recorded once by the micro-lens mi+1

from the view Vj . Other views also record it at different
positions, e.g., the view Vj−1 records it at the micro-lens mi.
In such a case, the images of point P from different angles
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Fig. 2. Optical path in the conventional LFC. (a) In the generalized
focused case, all views record a same 3D point set, thus the effective
spatial resolution equals to the number of micro-lenses. (b) In the
defocused case, different point sets are captured from different views
due to the floating disparities, so the spatio-angular trade-off does not
hold and the light field can be super-resolved.

are also recorded at different micro-lenses (boundary pixels
are ignored here). In other words, the recorded light field is
still a multi-view description of a same point set.

The above defocused case is similar to the focused case in
the sense that different views in the recorded light field de-
scribe the same set of scene points. We call both the focused
and the defocused at integer disparities cases generalized
focused case, where previous spatio-angular trade-off holds.

Defocused case
Except for the above generalized focused case, different views
of the recorded light field generally depict different scene
point sets. As a result, the actual number of captured scene
points is larger than the number of micro-lenses. Roughly
speaking, the “resolution-trade-off” is broken in this case.
Fig.2b illustrates the defocused case. Pixels p1 and p2 under
the micro-lens mi record two different points P1 and P2

from the views Vj+1 and Vj , respectively. Note that the ray
passing through the point P1 from the view Vj to the MLA
(the orange areas in Fig.2b) is “aliased” by the micro-lenses
mi and mi+1. We can also trace the ray for the micro-lens
mi+1 from the view Vj to the space point P3. It can be seen
that P1 drops between the points P2 and P3. Because P2

and P3 are the nearest points in the view Vj , the point P1,
which is recorded by the view Vj+1, is not recorded by the
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0.2 0.5 1

Fig. 3. The number of recorded pixels changes when the baseline in
light field sampling changes. From top to bottom we show the EPIs, the
reconstructed point clouds and the sketch maps of light field sampling.
From left to right we show the light fields with 0.2, 0.5 and 1 pixel
disparity. Note that the light field with 0.2 pixel disparity records the larger
number of points.

view Vj . Thus the number of effectively recorded points in
a conventional LFC is larger than the resolution of the view
Vj . Since the resolution of each view equals the number of
micro-lenses in the conventional LFC, the effective sampling
resolution becomes larger than the number of micro-lenses.

We also provide an intuitive explanation of the above
analysis on the EPI. Fig.3 shows EPIs and the corresponding
point clouds under different disparity levels. Three light
fields are captured with different baselines. It is noticed
that the number of recorded points is different in these light
fields and the one with 0.2 disparity records the most points.
The sketches in the third row of Fig.3 reveal the reason well.
When the disparity is 0.2, it can be seen that the red line
passes through an entire pixel once every 5 views; in other
words, views {1, 5, 9, ...} sample same point set while views
{2, 3, 4, 6, ...} sample other point sets. When the disparity
equals to 1, all views sample the same set of points. Thus,
the light field with 0.2 disparity records the largest number
of scene points. In summary:

Proposition 1. The spatio-angular trade-off in LFCs only
holds when the LFC is in the generalized focused case. This
is due to the fact that the depth has a continuous and complex
distribution in a real-world scene. Thus, the effective spatial
resolution of the conventional LFC is larger than the number of
micro-lenses. In such a case, the light field can be super-resolved.

Maximum super-resolution ratio under regular up-
sampling
Given an LFC that contains M micro-lenses where each
micro-lens covers N pixels, the maximum super-resolution
ratio under regular up-sampling can be derived by analyz-
ing the disparity distribution of the sampled points.

For the simplest case that the LFC is in the generalized
focused case, the maximum super-resolution ratio for such
a light field is only 1. Because all pixels have integer dispar-
ities, all views record the same point set and there are no
performance gains for light field super-resolution compared
with the single image super-resolution task.

For the defocused case, the maximum super-resolution

(a) d(p) = 1/4 pixel (b) d(p) = 1/5 pixel (c) d(p) = 1/10 pixel

Fig. 4. Demonstration of the super-resolution for different disparities.

ratio K is obtained from the following equation.

∀p, Sd(p) =

(

N−1
⋃

t=1

{td(p)− ⌊td(p)⌋}

)

K
∗ =







K̂ | ∃K̂ ∈
N
⋃

t=2

{t}, S =

K̂−1
⋃

t=1

{

t

K̂

}

, s.t. Sd(p) ⊆ S







K =

{

1 K∗ = ∅

maxK∗ K∗ 6= ∅

(1)

where d(p) refers to the disparity of pixel p, ⌊⌋ is rounding
down operation, maxK∗ returns the maximum element
of the set K∗. For the sake of simplicity, occlusion and
boundary pixels are ignored here. All pixels are firstly
projected to a fixed view, i.e., the first row in the above
equation. Sd(p) records the positions of the fraction part of
all projected pixels. The set K∗ records all possible super-
resolution ratios. It is noticed that not all floating disparities
can benefit the super-resolution. Fig.4 demonstrates the
comparison of three light fields with disparities 1/4, 1/5
and 1/10 pixel. Because the number of views is 5, the super-
resolution ratios are 4, 5 and 2 when d(p) = 1/4, 1/5
and 1/10, respectively. Finally, the maximum value in all
possible ratios is selected as the upper bound of the super-
resolution. Noting that, for other floating values without
reasonable sense, the maximum super-resolution ratio is not
discussed due to the irregular sampling.

3.2 Light field as 2D predictable series

Given an LFC with a low-resolution (Fig.5a), an “inverse ray
tracing” operation is firstly applied to find the 3D positions
P1, P2, P3, P4 of all recorded pixels. With the accurate po-
sitions of these 3D points, their imaging pixel positions in
any views or imaging view positions in any pixels can be
predicted by a “ray tracing” process (Fig.5b). For example,
the imaging pixel m∗ of the point P2 in the view Vk can be
derived by,

m∗ = fmM (
1

Z1
−

1

Zf

)(Vl − Vk) +mj . (2)

In other words, the light field can be seen as a “predictable”
series in the angular dimension. Additionally, when fixing
the pixel position mj , the point P3 will be observed by the
view V∗ where

V∗ = Vl − (mj −mi)
1

fmM ( 1
Zf

− 1
Z2

)
. (3)

Here, the light field is also a “predictable” series in the
spatial dimension. In summary, the light field can be seen
as a 2D predictable series.
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Fig. 5. Optical path of the light field super-resolution process in the
conventional LFC.
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Fig. 6. For each EPI line, it can be projected to angular or spatial axis
when fixing one of the axes for d ∈ (0,∞).

To better understand the above “predictable” feature, an
intuitive demonstration on the EPI is provided in Fig.6. For
each light ray p = (u, x) in free space (without occlusion),
there is a corresponding ray p1 = (u1, x1) describing the
same 3D point in any other view u1, such that

x1 = (u1 − u)d(p) + x, (4)

where d(p) refers to the disparity of p. In such a case, the
light field is a predictable series in the angular dimension.

From another point of view, there is a corresponding ray
p2 = (u2, x2) in any other pixel position x2, such that

u2 = (x2 − x)
1

d(p)
+ u. (5)

Therefore, the light field is also a predictable series in the
spatial dimension. In summary:

Proposition 2. The 4D light field can be seen as a 2D predictable
series. Any new pixel in the high-resolution sub-aperture image
or the novel view is linearly connected with the pixels in the low-
resolution light field and can be predicted.

Input

SRCNN

GT

Ours

Fig. 7. Different types of continuity. From top to bottom, we show the
input low-resolution EPI, super-resolved EPI from [51], ours and ground
truth, respectively. Previous image super-resolution CNN copes well
with “continuous continuity” (green boxes), failing for “discontinuous
continuity” (red boxes).

4 EPI SUPER-RESOLUTION USING A CNN-LSTM

NETWORK

While the above section shows it is possible to recover
high-resolution light field defying the conventional spatio-
angular trade-off, this is still not a straightforward task.
The main difficulty strives from how to super-resolve a
light field while keeping the consistency across different
views. Most existing light field super-resolution methods
are either based on depth recovery [15], [24], [50] or based
on EPI analysis [16], [29], [30]. The former approaches are
overly sensitive to errors in depth estimation, often failing
to maintain cross-view consistency. The latter ones treat
EPIs as a regular digital image, failing to capture the EPI
nature of continuous traces corresponding to pixels across
multiple views. In this section, we first discuss the issue of
continuity preservation in light field super-resolution. Then
we propose a novel CNN-LSTM architecture tailored for EPI
super-resolution.

4.1 Different continuities

There are two types of continuities in a light field, i.e., the
“continuous continuity” and “jumping continuity” (Fig.7).
When the disparity is small, EPI lines are continuous (green
boxes) such that previous single image super-resolution
methods [51], [52], [53] can be applied directly in such a
case. However, the continuous EPI lines become discrete
points (red boxes) when the disparity increases. Previous
image super-resolution methods treat the discrete EPI line
as independent points, so EPI line may be lost or over-
smoothed in the super-resolved new views, leading thin
structure objects missing or becoming unclear. Compared
with “continuous continuity”, the “jumping continuity” is
more common in light field reconstruction. Because novel
views can be synthesized directly by interpolating in 4D
space [3], [54], [55] when the disparity is small, it is unnec-
essary to use expensive reconstruction techniques.

It is hard to super-resolve the EPI lines meeting the
“jumping continuity” if treated EPI as a common 2D image.
However, when treating EPI as a “2D predictable series” and
super-resolving it using techniques for series modelling, the
“jumping continuity” can be well handled (see Fig.7).

4.2 CNN-LSTM for EPI super-resolution

Given a high-resolution light field LFH(u, v, x, y) and its
low-resolution version LFL(u, v, x, y), where (u, v) and
(x, y) refer to the angular and spatial positions of a light ray
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Fig. 9. The architectures of the convolutional LSTM layers for modelling
EPI in the top-down and left-right directions.

respectively. The light field super-resolution task is to find
an inverse function F that minimizes the error between the
super-resolved light field and the original high-resolution
light field,

min
F

||LFH −F(LFL)||. (6)

However, it is difficult to build a neural network to di-
rectly process the 4D data. We focus on the 2D slice super-
resolution of the 4D expression, i.e.,

min
F

||LFH,(v∗,y∗) −F(LFL,(v∗,y∗))|| (7)

where LFH,(v∗,y∗) and LFL,(v∗,y∗) refer to the 2D EPI slice
of the high and low-resolution light fields when fixing (v, y)
to (v∗, y∗), respectively.

Considering large disparities in the light field, we pro-
pose a CNN-LSTM network whose architecture is shown in
Fig.8. The overall network is inspired by the U-network in
EPI analysis [40], [56]. Our network has four “levels”, where
each of these accounts for the EPI at different resolutions. In
contrast with previous work, four convolutional LSTM [49]
layers are added at each level (the purple blocks in Fig.8) to
model the series nature of the EPI in the top-down, bottom-
up, left-right and right-left directions, respectively.

In this network, each convolutional LSTM has 100 chan-
nels. Fig.9 gives an illustration of the LSTM layers in top-
down and left-right directions, respectively. For the top-
down case, given a feature map Lj(u, x) output from previ-

ous CNN layer j, the current top-down convolutional LSTM
layer analyzes Lj(u, x) and outputs the feature Lj+1(u, x).
The Lj(u, x) is firstly separated into a sequence Lj(u1, x),
Lj(u2, x), ..., L

j(u9, x). Then the convolutional LSTM func-
tion [49] is applied,

it = σ
(

Wxi ∗ L
j(ut, x) +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi

)

ft = σ
(

Wxf ∗ Lj(ut, x) +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf
)

Ct = ft ◦ Ct−1 + it ◦ tanh
(

Wxc ∗ L
j(ut, x) +Whc ∗ Ht−1 + bc

)

ot = σ
(

Wxo ∗ L
j(ut, x) +Who ∗ Ht−1 +Wco ◦ Ct + bo

)

Ht = ot ◦ tanh (Ct) ,
(8)

where it,ft,Ct,ot and Ht are the input gate, forget gate,
cell output, output gate and hidden gate respectively. ∗
and ◦ are the convolution operator and Hadamard product,
respectively. Wxi, Whi, Wxf , Whf , Wxc, Whc, Wxo and
Who are convolutional kernels. The size of such kernels is
1 × 3 when the LSTM direction is top-down or bottom-up,
otherwise the size is 3× 1. Finally, the output Lj+1(u, x) of
the current layer is,

Lj+1(ut, x) = Ht. (9)

For the left-right case, a new input sequence is con-
structed by Lj(u, x1), L

j(u, x2), ..., L
j(u, x180). Then the

convolutional LSTM function is applied as shown in Eqns.8
and 9. For the bottom-up and right-left cases, inversing the
sequences and following the above steps.

When processing a low-resolution input EPI, this is
firstly scaled 2 times up in both angular and spatial dimen-
sions using the bicubic interpolation. Before LSTM analysis
at each level, 4 convolutional layers are applied. These
layers have kernels of size 3 × 5. The channels of these
convolutional kernels equal to 25× i for the i-th level. After
LSTM analysis, three convolutional layers are added with
kernel size 5 × 5 and channels 64, 32 and 32. Note that
each convolutional layer is followed by a ReLU layer [57].
Different levels in Fig.8 are connected by down and up-
convolutional layers with kernel size 3× 3.

5 EXPERIMENTAL RESULTS

We compare our method with a combination of state-of-the-
art light field reconstruction methods such as EPICNN [16],
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Input

5 5 180 180´ ´ ´

Horizontal EPI Super-resolution

5 9 180 360´ ´ ´

Vertical EPI Super-resolution

9 9 360 360´ ´ ´

Fig. 10. Two steps of the proposed EPI based light field super-resolution
method. Blue boxes refer to the input or reconstructed views, where the
size of each box shows the resolution of each view image.

TABLE 1
Quantitative comparisons of different light field datasets (The occlusion

ratio and disparity of our data are counted from light fields with the
resolution 180 × 180).

HCI [33] Konstanz [38] OurLFs
Number of light fields 7 24 100
Angular Resolution 9× 9 9× 9 9× 9

Spatial Resolution
180× 180

768 × 768 512 × 512 360× 360
720× 720

Occ. Ratio (mean) 0.59% 1.89% 6.07%
Occ. Ratio (max) 0.92% 6.64% 26.63%
Disparity (mean) 3.72 3.70 4.28
Disparity (max) 7.39 7.00 16.12

[17] and LFST [28], and image super-resolution methods
such as SRCNN [51] and LFNet [58]. All the results shown
here are evaluated using the code released by the authors.

We evaluate the performance of the proposed method
both on synthetic and real light fields. All the quantitative
comparisons shown here are the average values of all views.
To train the network, we have rendered a synthetic dataset
with 100 light fields (abbreviated as OurLFs) using the POV-
Ray [59], [60] (see Sec.5.1). As our network is trained on
the proposed synthetic data, to be fair, the synthetic data is
only used to validate the efficacy of the LSTM layers and
the number of levels. Real-world light fields from camera
array [8], [35] are used for comparing with other methods.
Here we have not used the light fields from the Lytro
Illum camera due to its small disparity range. Because the
proposed method works on EPI representation, it needs
two super-resolution operations to recover a high-resolution
light field from a low-resolution input (see Fig.10).

5.1 Datasets

In order to train and evaluate our network, we build an
automatic light field generator (ALFG) based on POV-ray
to render 100 light fields. Fig.11 shows some examples. For
training and testing, we have included various challenging
environments in our dataset. These include inter-reflection,
occlusion, shadowing, various illumination conditions and
structures with fine detail. Tab.1 shows a quantitative com-
parison between the presented and previous datasets [33],
[38]. Noting that, because the ground truth depth maps of
testing light fields in [38] are not publicly available, only 24
light fields are counted in Tab.1. Additionally, the dataset
of [40] is not listed since it is not publicly available, while
others [8], [15], [34], [35], [36], [37], [39], [41] are almost

Fig. 11. Light field examples. Top row: central views; Middle row: corre-
sponding depth maps; Bottom row: corresponding occlusion maps.

(a) d = 0

(b) d = 4

Fig. 12. The sheared EPIs when d = 0 and 4, respectively.

real data and do not provide ground truth depth. Fig.14
shows the disparity distributions of the proposed light field
in middle resolution. In summary, our dataset has a larger
occlusion ratio and disparity range, which is useful for
verifying the performance of various EPI based algorithms
for the situation that EPI is in “jumping continuity”. For
each scene, we provide three light fields with different reso-
lutions for further super-resolution tasks. Apart from these,
more light fields can be generated with the attached ALFG.
These advantages can benefit light field based applications.
The new light field dataset and the ALFG will be released
on our website [61] upon publication of the work.

We augment the training data using two approaches. The
first is exchanging the RGB channels. The second is shearing
EPIs [5] using the expression

EPId(u, x) = EPI0(u, x+ ud), (10)

where EPI0 and EPId are the original and sheared EPIs,
respectively (Fig.12). The main goal of the shearing oper-
ation is to enhance the performance in negative disparity
areas.

Note that, the flip operation as commonly used for data
augmentation in traditional image super-resolution [51],
can not be applied in EPI super-resolution. Note that, as
shown in Fig.13a, the intersection between foreground and
background is lost after the light field sampling. Thus the
flip operation will lead the wrong occlusion to be learnt,
causing forbidden occlusion to appear in the reconstructed
light field. This is shown in Fig.13c, where an incorrect light
field is reconstructed when the foreground is occluded by
the background.
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x

u

(a) The sampled light
field

x x

u

(b) Allowed occ.

x x

u

(c) Forbidden occ.

Fig. 13. Flip operation causing the network to learn incorrect occlusions.
(a) The sampled light field [62]. The red lines refer to sampled views
while the blue/green lines account for the EPI lines; (b) Occlusion after
reconstruction; (c) Incorrect occlusion caused by the flip operation.

TABLE 2
Quantitative comparisons between the results yielded by our network

with different structures.

Network Structure
4 levels 4 levels 3 levels

w. LSTM w/o. LSTM w. LSTM
PSNR(dB) 28.34 27.75 28.16
SSIM 0.886 0.863 0.884

5.2 Training configuration

The Tensorflow framework [63] is used for training the
proposed CNN-LSTM network. The Adam optimizer [64]
is chosen to minimize the L1 loss between the network
output and the ground truth. All parameters in the network
are initialized using the Xavier initializer [65]. We train the
network for 100 epochs. The batch size is 120. The learning
ratio is set as 1e − 4 and is reduced by a factor of 0.99
each epoch. The proposed new light field dataset is used
to train the network. In total, there are 727200 EPIs used in
the training process.

5.3 Synthetic data

To analyze the performance of the proposed network in
different disparities, the proposed synthetic light fields are
used for validation. In the following experiments, the syn-
thetic light fields with resolution 5×5×180×180 are super-
resolved to 9×9×360×360. So there is a difference between
the maximum disparities in Tab.1 and Fig.14.

5.3.1 LSTM layers

Tab.2 shows the quantitative comparison between the re-
sults yielded by our network with and without the LSTM
layers. Fig.14 shows a plot of the PSNR for both settings as
a function of disparity. Note that, as expected, our network
with LSTM layers outperforms the one without LSTM layers
over almost all of the disparity range. However, the trend
of curves is interesting that it increases with the disparity
increases. The main reason for this phenomenon is that the
disparities of occluded contents are always smaller than the
occluder, so the performance of reconstructed occluded con-
tents is lower than the occluder. As a result, the performance
of the reconstruction increases as the disparity increases.

Furthermore, Fig.15 shows qualitative results. Notice
that the network with LSTM delivers more details than
the one without LSTM in the reconstructed views. This is
mainly due to the fact that discrete EPI lines in these areas
are over-smoothed as shown in the bottom EPI comparison
in Fig.15 when the LSTM is not included. This is consistent
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4 levels, w. LSTM

4 levels, w/o. LSTM

3 levels, w. LSTM

Fig. 14. The histogram of disparity range (reconstructed light fields
with 360*360 pixels) and the performance of our network with different
structures as a function of disparity.

GT w. LSTM w/o. LSTM

GT

w. LSTM

w/o. LSTM

Fig. 15. Qualitative comparisons between the ground truth and the
results from networks with and without LSTM layers, respectively. Com-
pared with the one without LSTM, LSTM provides more clear novel
views and more accurate EPI lines.

with the notion that the LSTM can better cope with the
“discontinuous continuity” in EPI.

5.3.2 Number of Levels

We remove the 4-th level in Fig.8 to verify the influence
of the number of levels. Tab.2 shows the mean PSNR and
SSIM over all views. Note that, the network with three levels
performs weaker than the default one. However, it also
outperforms the one without LSTM. In Fig.14, it is noticed
that more levels benefit the reconstruction in small disparity
areas, so that the network without LSTM outperforms the
one with three levels. However, this effect decreases as
the disparity increases and the LSTM layers dominate the
performance in large disparity areas.

5.4 Real data

5.4.1 Comparison with State-of-the-arts

In this experiment, we used the Stanford light field dataset
(SLFD) [8]. In order to compare the performance of different
methods more fairly, we zoom out each view of the SLFD to
0.2, 0.3, 0.4, 0.5 of the original size. Recall that the disparity
range decreases with respect to the zoom out factor. For the
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TABLE 3
Disparity ranges of the SLFD [8] in different zoom out factors.

Factor 0.2 0.3 0.4 0.5
Amethyst [−2.4, 2] [−3.6, 3] [−4.8, 4] [−6, 5]
Bulldozer [−1.6, 8] [−2.4, 12] [−3.2, 16] [−4, 20]
Bunny [−3.2, 2] [−4.8, 3] [−6.4, 4] [−8, 5]
Chess [0, 2.8] [0, 4.2] [0, 5.6] [0, 7]
Lego [−3.6, 2.8] [−5.4, 4.2] [−7.2, 5.6] [−9, 7]
Truck [0, 1.2] [0, 1.8] [0, 2.4] [0, 3]

20

22

24

26

28

30

32

34

36

38

0.2 0.3 0.4 0.5

PSNR (dB)

Ours LFST+SRCNN LFST+LFNet EPICNN+SRCNN EPICNN+LFNet

(a) PSNR (mean and standard deviation)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.2 0.3 0.4 0.5

SSIM

Ours LFST+SRCNN LFST+LFNet EPICNN+SRCNN EPICNN+LFNet

(b) SSIM (mean and standard deviation)

Fig. 16. Quantitative comparisons with the combinations of the state-of-
the-art angular and spatial super-resolution methods. Larger zoom out
factor refers to larger disparity range.

reader’s reference, the disparity ranges of different sizes are
shown in Tab. 3.

Fig.16 shows quantitative comparisons of our method
with respect to the alternatives on the SLFD. All values come
from all 6 light fields over all views. Note that our method
outperforms the alternatives at almost all of the zoom out
factors. Although our network only employs synthetic data
during the training process, it shows a good generalization
ability as applied to unseen camera array data.
SRCNN vs LFNet: It is noticed that the specially de-
signed LFNet for light field spatial super-resolution per-
forms poorly than the single image super-resolution method
SRCNN. The main reason is that, the LFNet prefers pre-
serving the angular consistency during the super-resolution
process. LFNet will propagate the artifacts in the recon-
structed views to other clear input views. Because the
SRCNN focuses on super-resolving each view image inde-
pendently, the spatial super-resolved input views will not

Input &

Error map

LFNet &

Error map

SRCNN &

Error map

Fig. 17. Qualitative comparisons between the SRCNN and the LFNet
with the same input from the LFST. There is a big error in the recon-
structed 8-th view from the LFST (the red circle in the the first row).
Because the LFNet prefers preserving the angular consistency, this error
is propagated to all other views after the super-resolution (red circles in
the third row). However, as the SRCNN super-resolves each view image
independently, other views are not influenced by the error (red circles in
the bottom row).

be influenced by the artifacts in the reconstructed views by
the EPICNN or the LFST (see Fig.17). For this reason, we
only provide qualitative comparisons with the combination
of “EPICNN+SRCNN” and “LFST+SRCNN” later.

Figs.18,19 show qualitative demonstrations. For each
scene in Fig.18, the first and second rows refer to results
for zoom out factors 0.2 and 0.5, respectively. Note that
EPICNN and LFST achieve in general similar performance
as ours at small zoom out factors. However, the perfor-
mance decreases at large zoom out factors and they tend
to over-smooth object boundaries. On the other hand, ours
can always maintain sharp object boundaries at both small
and large zoom out factors. For example, the boundaries
of Bulldozer are all preserved well in Fig.18a. However,
previous methods often fail at large zoom out factors.
This phenomenon is also well demonstrated in Fig.18b and
Fig.19a.

Ours vs EPICNN: Compared with the state-of-the-art meth-
ods, our method has achieved at least a 3dB lead (32.17
vs 28.77, in Fig.16a). This advantage increases with the
disparity. In the green boxes of Fig.18b, the EPI lines are
broken in EPICNN while ours are continuous. Fig.18a gives
a better comparison in larger disparity areas. There are
serious ghosting in the shovel boundaries recovered by
EPICNN. Since the maximum disparity at these areas is
about 20 pixels, the EPI consistency on the shovel is lost
by EPICNN while our result remains sharp.

Ours vs LFST: Compared with the LFST, the proposed
method has two advantages. Firstly, despite LFST achieves
good results in large positive disparity regions (such as
the shovel boundaries in Fig.18a), the results in negative
disparity regions are somewhat mediocre. The best example
is Fig.19a, where the areas in front of and behind the toy
warriors have positive and negative disparities, respectively.
LFST induces ghosting effects in large negative disparity
areas. In contrast, our method produces consistent results
in both positive and negative disparity areas, thanks to the
shearing (Eqn.10) data augmentation and the LSTM’s ability
to model EPI. Secondly, in contrast with our approach, LFST



10

2
3
0
x
3
0
7

5
7
6
x
7
6
8

GT EPICNN

+SRCNN

OursLFST

+SRCNN

PSNR:22.79

SSIM:0.807

PSNR:22.09

SSIM:0.805

PSNR:29.97

SSIM:0.924

PSNR:32.39

SSIM:0.949

PSNR:31.24

SSIM:0.945

PSNR:31.77

SSIM:0.950

(a) Bulldozer

1
9
2
x
2
5
6

4
8
0
x
6
4
0

GT EPICNN

+SRCNN

LFST

+SRCNN

Ours

PSNR:31.85

SSIM:0.945

PSNR:33.73

SSIM:0.954

PSNR:33.67

SSIM:0.960

PSNR:29.89

SSIM:0.921

PSNR:36.40

SSIM:0.965

PSNR:35.30

SSIM:0.963

(b) Truck

Fig. 18. Qualitative comparison on the Bulldozer and the Truck. For each light field, the first and second rows show the results at different resolution
inputs. For each of the zoom in areas in red and green, the left panel shows the reconstructed view, while the right two rectangular panels show the
horizontal and vertical EPIs computed from the reconstructed light field.
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Fig. 19. Qualitative comparison on the Lego and the Chess. Idem as Fig.18
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TABLE 4
Comparisons of our method with the alternatives with fixed spatial

resolution and increasing disparity.

Skipped views
Bikes Couch

PSNR(dB) SSIM PSNR SSIM
1 (low dis.) 35.35 0.974 35.59 0.948
3 32.06 0.947 34.23 0.931
5 29.28 0.909 31.52 0.904
7 (high dis.) 28.16 0.893 29.69 0.898

TABLE 5
Comparisons of our method with the alternatives with fixed disparity

and increasing spatial resolution.

Skipped views
Bikes Couch

PSNR(dB) SSIM PSNR SSIM
7 (low res.) 29.68 0.923 33.06 0.872
5 30.87 0.942 33.63 0.886
3 32.87 0.963 34.17 0.906
1 (high res.) 35.34 0.975 35.57 0.948

often generates unexpected artifacts in texture boundaries,
as shown in some of the green boxes in Fig. 18a and red
boxes in Fig.19b1.

5.4.2 Disparity vs Resolution

Revisiting Fig. 16, it is noted that the performance of the
proposed method increases as the disparity increases. To
better explain this phenomenon, we conducted another two
experiments by fixing disparity range and spatial resolution,
respectively. The Disney light field dataset [35] is used here
since it has high angular and spatial resolutions. The light
fields “Bikes” and “Couch” are selected considering no
motion and no other objects in the ground truth.
Disparity: In the first experiment, we fixed the spatial
resolution and controlled the disparity range by changing
the number of skipped views. Tab.4 shows quantitative
comparisons of the proposed method on different disparity
ranges. The performance decreases with the increase of
disparity. In Fig.20, our method can reconstruct clear EPI
structures when the skipped number of views is small (1
and 3, disparities are about 4 and 8.). Because the disparity
increases rapidly with the increase of the number of skipped
views and there are repeated patterns, the EPI consistency
becomes weaker and weaker. It is more and more difficult
for our method to reconstruct clear EPI, thus the thin spokes
become blur when the disparity becomes large.
Resolution: In the second experiment, we fixed the disparity
range and changed the spatial resolution2. Tab.5 shows
quantitative results on different spatial resolutions with a
fixed disparity range. It can be found that a larger spatial
resolution leads to a better performance, which is consistent
with the tendency of our method shown in Fig. 16. The main
reason for this phenomenon is that our method works on
EPI domain, i.e., only one spatial dimension is considered.
When zooming out the original image to a low-resolution,
the distribution of texture is lost in all views. It is difficult
to recover a true texture distribution from an incomplete

1. Please watch the provided videos for better comparison.
2. Please refer the supplementary material for more details.
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Fig. 20. Results yielded by our method with fixed resolution for several
disparity scales.
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Fig. 21. Results yielded by our method with fixed disparity for several
resolution scales.

distribution. Fig.21 demonstrates this phenomenon well. In
the lowest resolution version (the rightmost column), it can
be found that the text area is observed as continuous gray in
all views so that our method produces continuous gray tex-
tures in the reconstructed high-resolution light field. While
there is a black dot in the ground truth, which damages
the distribution of continuous gray color. This problem is
not too noticeable in high-resolution light field. Therefore,
our method performs better in high-resolution light field
compared with the lower one.

In summary, the defects induced in the angular domain
can be compensated by the super-resolution in the spatial
domain. We guess that the main reason may be the consis-
tency between the spatial and angular patches as analyzed
in the [42], [43]. The angular patch is a projection of the spa-
tial patch, thus the proposed simultaneous super-resolution
method outperforms the combination of the state-of-the-art
light field angular and spatial super-resolution methods. We
will explore this issue in the future.

5.5 Discussion

5.5.1 Cross Validation

It is noticed that the performance of our method increases
a lot on real data compared with the synthetic one from
Tab.2 and Fig.16. We conducted another two experiments to
validate the generalization ability of the proposed network.
Training on the SLFD and testing on OurLFs.
We first re-train the proposed network using the SLFD
and testing on our synthetic light fields. Tab.6 shows the
comparisons. It is noticed that the performance decreases
4dB compared with the results by training on our synthetic
light fields. The main reason for this phenomenon is that our
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TABLE 6
Quantitative comparisons on OurLFs by training the proposed network

on OurLFs and SLFD respectively.

PSNR(dB) SSIM
Training on OurLFs 28.34 0.886
Training on the SLFD 24.61 0.789

TABLE 7
Quantitative results by training the proposed network on the mixture

LFs and testing on the SLFD.

Zoom out
factor

Trainng on OurLFs
Training on

the mixture LFs
PSNR(dB) SSIM PSNR SSIM

0.2 33.02 0.963 37.02 0.967
0.3 33.78 0.966 38.26 0.970
0.4 34.71 0.968 38.94 0.973
0.5 35.01 0.968 39.08 0.972

light field dataset contains much more challenging occlusion
and various lights than the SLFD.
Training on the mixture LFs and testing on the SLFD.
In the second experiment, the proposed synthetic light fields
and the ’Bulldozer’ and ’Lego’ from the SLFD are mixed
to train the network. The main reason for choosing these
two light fields is that they contain the maximum disparity
range from Tab.3. Tab.7 shows the results on the other 4
light fields in the SLFD, i.e., the ’Amethyst’, ’Bunny’, ’Chess’
and ’Truck’. It is noticed that the performance increases 4dB,
which demonstrates the good generalization ability of the
proposed CNN-LSTM network.

5.5.2 Limitation

It is worth noting in passing that, for EPI-driven light field
reconstruction, there exists an inherent ambiguity as related
to super-resolution. This is because each EPI only covers
one spatial dimension whereas every pixel is related to two
spatial dimensions in the super-resolution process (i.e., 1
pixel to 2 × 2 pixels). As shown in Fig.22, the proposed
method prefers producing EPI consistency compliant results
instead of more clear 2D images in the spatial dimensions.
In the future we will explore a method directly operating
on the full 4D light field instead of 2D EPIs, aiming to
ultimately eliminate such limitation.

6 CONCLUSION

In this paper, we have indicated that the resolution of
a conventional LFC is in fact larger than the number of
micro-lenses since most 3D points in a scene are generally
defocused. This new insight provides a theoretical basis
to overcome the barrier of “spatio-angular trade-off”. By
analyzing the optical path in an LFC, we have identified
the “2D predictable series” nature of the 4D light field. This
new feature inspires the introduction of series processing
techniques for light field analysis. We have proposed a novel
CNN-LSTM network to practically super-resolve a high-
resolution light field in both spatial and angular dimensions.
Experiments on synthetic and real-world light fields have
validated the superiority of the proposed method in large
disparity areas.
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Fig. 22. Limitation of EPI super-resolution.
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