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Abstract

In this paper we propose several methods to solve for
a robust solution of bundle adjustment, a non-linear pa-
rameter estimation problem. Given a set of images of a
scene, bundle adjustment simultaneously estimates camera
parameters and 3D structure of the scene. Generally, a
least squares criterion is minimized by using the Levenberg-
Marquardt (LM) method, a non-linear least squares opti-
mization method. It is known that the least squares meth-
ods are not robust to outliers, even a single outlier can de-
viate the solution from its true value. Therefore, we pro-
pose several methods to minimize an Lq cost function, for
1 ≤ q < 2. The Lq cost function minimizes the the sum of
the q-th power of errors. In addition to the Lq cost func-
tion, we propose several methods to minimize the Huber
function. The proposed methods have an advantage of us-
ing the Levenberg-Marquardt (LM) method to find a robust
solution of the problem. Our experimental results confirm
that the proposed methods are more robust to outliers than
the standard least squares method. This being so, the pro-
posed methods trivially fit in the existing literature of the
least squares bundle adjustment and have potential of be-
ing used as standard methods for bundle adjustment.

1. Introduction
This paper presents extremely simple techniques to find

a robust solution, especially an Lq solution, of the bundle
adjustment problem and therefore contradict the perception
that the Lq-bundle adjustment can not be done easily. An
advantage of the proposed techniques is that they rely on the
Levenberg-Marquardt (LM) method, a least squares mini-
mization technique, to find a desired solution, even an Lq
solution. Given a set of error vectors the LM method min-
imizes the sum of squared errors. We show that the mini-
mization of a desired cost function can be achieved by using
a modified difference vector or error vector, that is a vector
representing the difference between measured image points
and predicted image points, in the LM method.

The minimization of an Lq cost function is achieved by

using two different methods. The first method, referred as
the Lq method, minimizes the sum of the q-th power of er-
rors by using modified error vectors in the LM method. The
second method is an Iterative Re-weighted Least Squares
(IRLS) technique where the sum of the q-th power of er-
rors is minimized by iteratively minimizing a weighted least
squares cost function, that is a weighted sum of squared
errors. In addition to the Lq cost function, we propose a
method to minimize the sum of the L1 norms of error vec-
tors, we refer to it as the Absolute Value method.

In addition to the Lq cost function, we propose sev-
eral methods to minimize the Huber function. In robust
statistics, the Huber function is a very popular differen-
tiable function that has a hybrid behavior of a linear func-
tion and a non-linear function. A straightforward way of
applying the Huber function for vector valued inputs is to
apply the Huber function on each component of the input
vector. However, we apply the Huber function on error vec-
tors in the following two ways: Firstly, we apply the Hu-
ber function on the magnitude of error vectors instead of on
each component of error vectors; we refer to this function
as the Isotropic Huber function. Secondly, we introduce a
re-thresholded version of the Huber function, we refer to it
as the Re-thresholded Huber function. The Re-thresholded
Huber function takes advantage of the iterative behavior of
the LM method and decreases the threshold value of the Hu-
ber function after a fixed number of iterations. As a result,
after some iterations the resultant function will have a domi-
nant linear behavior and consequently increased robustness.

Given two or more images of a scene, bundle adjust-
ment [6, 17, 3] simultaneously estimates camera matrices
and 3D structure of the scene and is therefore a non-linear
optimization problem. Several techniques exist in the liter-
ature to minimize a non-linear least squares cost function,
such as the Gauss-Newton method, the Leveberg-Marquardt
method, Trust Region methods, etc. The Levenberg-
Marquardt method has become a fairly standard technique
to solve the bundle adjustment problem. In this paper,
we only focus on the Levenberg-Marquardt method for the
minimization of desired cost functions.

Several strategies have been proposed to make bundle



adjustment a practically feasible method, such as using
sparse bundle adjustment [6, 2], hierarchical bundle adjust-
ment [13], incremental bundle adjustment [14] that tunes
parameters after every new frame arrives, spectral partition-
ing approach [15] for dividing large problem into smaller
sub-problems, real time bundle adjustment [12], relative
camera motion instead of absolute positions [7], probabilis-
tic approach [4], etc. In this paper our focus is on increasing
the robustness of bundle adjustment.

In recent years, the attention of a large group of research
community has been directed to robust parameter estima-
tion methods, especially L1 optimization methods. A recent
paper [16] uses Wiberg algorithm to solve the L1 bundle ad-
justment problem but it require very different formulation
and does not trivially fits in the paradigm of the existing
bundle adjustment literature. On the other hand, we try to
minimize this trade-off of simplicity and robustness by pre-
senting methods that use the Levenberg-Marquardt method
to find a robust solution of the bundle adjustment problem,
especially an Lq solution for 1 ≤ q < 2. Thus, the pro-
posed methods trivially fit in the existing literature of the
bundle adjustment and only require a slight modification of
the existing bundle adjustment implementations.

In summary, this paper presents extremely simple and
easily visualizable techniques to find a robust solution of
the bundle adjustment problem, especially an Lq solution.
As far as the practicalities of the proposed methods is con-
cerned, a simple approach and re-usability of the existing
least squares implementation (with minor changes) makes
the proposed algorithms a perfect candidate to replace a
commonly used least squares bundle adjustment technique.

2. Theoretical Background
The Levenberg-Marquardt (LM) method [10, 11] is a nu-

merical method for solving non-linear least squares prob-
lems. Let c(β) be a vector valued function and g(β) =
c(β)T c(β). The LM method minimizes a squared norm of
a vector valued function

min
β

c(β)T c(β) . (1)

A current estimate of parameters β is updated in a direction
δ such that g(β + δ) ≤ g(β). This process is repeated until
convergence. The resultant cost function g(·) is then,

g(β + δ) = c(β + δ)T c(β + δ) . (2)

By using the first order approximation of c, we get

g(β + δ) ≈ (c(β) + Jcδ)
T

(c(β) + Jcδ) , (3)

where Jc is the Jacobian of vector c(β). Assuming that the
function is linear; by taking the derivative and equating to
zero we get,

JTc Jcδ = −JTc c(β) , (4)

for details see [6]. In the Gauss-Newton method, the value
of δ is obtained as the solution to the above normal equa-
tions. On the other hand, in the case of the Levenberg-
Marquardt method the normal equations of the Gauss-
Newton method (4) are replaced with the augmented nor-
mal equations as,

(JTc Jc + λI)δ = −JTc c(β) , (5)

where λ is known as a damping factor that enables the
LM algorithm to behave like both the steepest descent and
Gauss-Newton methods and has a higher convergnce rate
than both the algorithms. Due to its high convergence rate
the LM algorithm has become a standard method for solv-
ing non-linear least squares problems.

3. Problem Formulation
Let xi ∈ IR2 be image measurement vectors1 approx-

imating the true values x̄i and X be a vector obtained by
concatenating all measurements: X = (x1,x2, . . . ,xN ),
where N is the total number of measurements. The mea-
surement vector X is assumed to be related by a non-linear
function f to a parameter vector β. The mapping of param-
eter vector β ∈ IRM to measurement vectors X̂ ∈ IR2N ,
that is X̂ = f(β). We seek a parameter vector β for
which the desired cost function C has minimum value,
minβ C(X, β) . Typically, the LM method minimizes the
squared norm of a vector function. Therefore, we can write
the cost function C as inner product of two vectors as

min
β

ETE , (6)

where E is an error vector computed from the values of X

and f(β). Depending on the cost function to be minimized,
there are several ways of computing the error vector E. For
example, when minimization of the least squares cost is de-
sired then the vector E is taken as the difference of vectors
X and f(β), E = X−f(β). Then from (6), the least squares
cost function to be minimized is

C2(X, β) =
∑
i

‖ei‖2 =
∑
i

d(xi, fi(β))2 , (7)

where d(xi, fi(β)) is the Euclidean distance between a
measured value xi and a predicted value fi(β); and ei ∈
IR2 is computed as difference of the vectors xi and fi(β),
ei = xi − fi(β), while it is assumed that the measurement
xi is related by a function fi to a parameter vector β. From
here on we assume that ei = xi − fi(β).

In the rest of the paper we assume that the vector E is
formed by concatenation of error vectors ei, where ei is
a vector representing the difference between a measured
value xi and a predicted value fi(β) and is computed as
ei = xi − fi(β).

1In general, the theory applies to measurements in spaces of any di-
mension.



3.1. Solution Strategies:

In this section we discuss the techniques that are used to
minimize a desired robust cost function.

•Modified Error Vector: One of the techniques to achieve
the minimization of a desired cost function is to replace the
error vector E in (6) with a modified error vector E′. This
new vector is obtained by modifying each component of E.
The resultant minimization function is,

min
β

(E′)T (E′) = min
β

∑
i

‖e′i‖2 . (8)

Since the minimization function is still a squared norm of
the modified error vector, the resultant cost function can be
minimized by using the LM method.

• Attenuation Factor: Another strategy to minimize a de-
sired cost function is to multiply each vector ei by an atten-
uation factor αi, such that the inner product of the modified
error vectors e′i = αiei result in minimization of a desired
function ψ(·). The minimization function takes the follow-
ing form,

min
β

∑
i

‖e′i‖2 = min
β

∑
i

α2
i ‖ei‖2 , (9)

where α2
i ‖ei‖2 = ψ(‖ei‖). Same as before, the above min-

imization problem can be solved by using the LM method.
Furthermore, the value of the attenuation factor is computed
as

αi = ψ(‖ei‖)1/2/‖ei‖ . (10)

In this case, the value of the attenuation factor determines
the impact of the corresponding error vector on the resul-
tant cost function. Thus, the resultant function can be made
robust to outliers by increasing the impact of inliers and de-
creasing the impact of outliers.

4. Existing Techniques
In this section we discuss some of the existing techniques

to solve the bundle adjustment problem. We are particularly
interested in the Squared Error function and the Huber func-
tion. This section briefly describes the Squared Error func-
tion. However, the Huber function is discussed in section 6.

4.1. L2 or Squared Error Function (SE):

The Minimization of a squared distance function is a
fairly standard and widely used technique. For some scalar
input ε, the Squared Error (SE) function ψSE is,

ψSE(ε) = ε2 . (11)

An advantage of using the Squared Error function is that it
is a continuous function and is at least twice differentiable;

(a) SE Contours (b) SE Attenuation (c) SE Resultant
Contours

Figure 1. Squared Error Function (2D): (a) shows an isotropic
contour plot of e′T

i e
′
i/α

2
i for two dimensional error vectors. A

plot of the constant attenuation factor αi is shown in (b). Isotropic
contours and a constant attenuation factor indicates that both in-
lier and outlier data is treated equally, therefore the Squared Error
function is not robust against outliers and the resultant function
also has isotropic contours, as shown in (c).

but unfortunately it suffers from a major drawback when it
comes to robustness against outliers.

For some vector ei, the Squared Error function ψSE is
ψSE(‖ei‖) = ‖ei‖2 . The value of αi from (10) is equal to
1. By replacing ei with e′i = αiei in (6), the resultant cost
function C2, is

C2(X, β) =
∑
i

e′
T
i e
′
i =

∑
i

eTi ei (12)

It can easily be seen that C2 minimizes the sum of the
squared Euclidean distances. Since the Squared Error func-
tion is a quadratic function, the effect of outliers on the over-
all cost function is magnified; as a consequence the resultant
cost function is very sensitive to outliers.

For 2D vectors ei, the quadratic behavior of the Squared
Error function is evident from the isotropic contours of
e′
T
i e
′, as shown in fig 1(c). A constant plot of the attenua-

tion factor in fig 1(b) shows that the Squared Error function
assigns equal weights to all the error vectors and does not
distinguish between the inlier and outlier data. As a result,
the resultant function is senstive to outliers.

5. Proposed Lq Cost Functions
This section presents three ways of minimizing an Lq

cost function. We are particularly interested in the follow-
ing two forms of the Lq cost functions: Firstly, an Lq cost
function that minimizes the sum of the q-th power of er-
ror, that is minβ

∑
i ‖ei‖q . Secondly, an L1 cost function

that minimizes the sum of the L1 norms of error vectors, as
minβ

∑
i,j e

j
i . In order to distinguish both the functions

we refer to the first function as the Lq cost function and the
second function as the Absolute Value function. Below we
discuss these techniques in detail.

5.1. Lq Cost Function:

The Lq cost function finds the minimum of, CLq =∑
i ‖ei‖q , by associating an attenuation factor αi with each

corresponding error vector ei.



For some scalar input ε, the Lq function ψLq is defined
as

ψLq(ε) = |ε|q . (13)

For large values of input the Lq function, for 1 ≤ q < 2, has
a relatively smaller output than the Squared Error function.
Thus, the resultant function is more robust to outliers than
tha Squared Error function.

For some vector ei, the Lq function ψLq is ψLq(‖ei‖) =
‖ei‖q . The value of αi from (10) is computed as

αi =
ψLq(‖ei‖)1/2

‖ei‖
=

‖ei‖q/2

‖ei‖
= ‖ei‖(q−2)/2 . (14)

By replacing the value of ei with e′i = αiei in (6), we get

C2(X, β) =
∑
i

e′
T
i e
′
i =

∑
i

α2
i e
T
i ei

=
∑
i

‖ei‖q−2 ‖ei‖2 =
∑
i

‖ei‖q . (15)

Thus, the proposed modification results in minimization of
CLq(X, β) instead of C2(X, β). This enables us to use the
Levenberg-Marquardt method to minimize the Lq cost, that
would otherwise require relatively complicated strategies to
find a solution. It is evident from non-isotropic contours of
the Lq cost function, in fig 2(c), that the Lq cost function
is more robust to outliers than the Squared Error function
and the primary reason for this robustness is the attenuation
factor, as shown in fig 2(b).

5.2. Lq Optimization using Iterative Re-Weighted
Least Square (IRLS):

The technique proposed in this section uses an Iteratively
Re-Weighted Least Squares (IRLS) approach to solve for an
Lq solution of the problem. The IRLS technique iteratively
solves a weighted least squares cost to minimize a relatively
robust cost function than the standard least squares cost.
The weighting factor in this case has the same role as the
attenuation factor in the case of the Lq cost function, that
is to increase or decrease the influence of a particular error
vector on the resultant function. Thus, the robustness of an
IRLS cost function depends on the weight values used.

A general form of the IRLS objective function is

min
β

∑
i

wi ‖xi − fi(β)‖2 , (16)

where wi is a scalar value associated with its correspond-
ing error vector ei. There can be several choices of how
to compute weights. However, if we choose weights as
‖ei‖q−2 and perform iterations until convergence, then the
IRLS technique will results in minimization of the Lq cost
function, for details see [1]. On the other hand, if we choose
different weights then the resultant function may be more

robust to outliers than the Squared Error function or even
the Lq function, but in that case the resultant function will
no longer be the Lq cost function, possibly not even convex.

At iteration t, a current estimate of parameters βt is up-
dated as,

βt+1 = argmin
β

∑
i

wti ‖xi − fi(β)‖2 , (17)

where wti is some positive weighting term and is computed
as wti = ‖xi − fi(βt)‖q−2.

Since the Levenberg-Marquardt method is a numerical
optimization algorithm, a modified solution of (6) at itera-
tion t is computed as

CIRLS(X, β) =
∑
i

wti ‖eti‖2 , (18)

where eti = xi − fi(βt) and

wti = ‖eti‖q−2 . (19)

In this case, it is obvious that CIRLS is equivalent to Cq .
A contour plot of the resultant function, in fig 2(f), shows
that the IRLS function has the same contours as the Lq cost
function. Furthermore, weights in this case play the same
role as the attenuation factors in the case of theLq cost func-
tion, which is to reduce the effect of outliers.

5.3. Absolute Value Function (AV):

The Absolute Value function minimizes the sum of the
L1 norms of error vectors. The desired minimization func-
tion is minβ

∑
i ‖ei‖1 , where ‖ · ‖1 is the L1 norm.

For some scalar input ε the Absolute Value function fAV
is defined as

fAV (ε) =

{ √
ε if ε ≥ 0
−
√
−ε otherwise . (20)

Since, we are only interested in the squared value of func-
tions, the squared Absolute Value function ψAV for some
scalar input ε is,

ψAV (ε) = fAV (ε)2 = |ε| . (21)

Let e′ be the modified error vector obtained by applying
the Absolute Value function fAV on each component e as,

e′ =
(
fAV (e1), fAV (e2), . . . , fAV (en)

)T
, (22)

where ej is the j-th component of e.
By replacing ei with e′i in (6), we get

C2(X, β) =
∑
i

e′
T
i e
′
i =

∑
i,j

|eji | =
∑
i

‖ei‖1 .



(a) L1 Contours (b) L1 Attenuation (c) L1 Resultant
Contours

(d) IRLS (e) IRLS Attenuation (f) IRLS Resul-
tant Contours

(g) AV Contours (h) AV Attenuation (i) AV Resultant
Contours

Figure 2. Proposed Lq Functions (2D): The above figure shows
plots of the L1, IRLS and Absolute Value functions. The left col-
umn of the above figure shows contour plots of e′T

i e
′
i/α

2
i for two

dimensional error vectors. The middle column shows plots of at-
tenuation factors αi. The right column plots e′T

i e
′
i, that is con-

tour plots obtained by multiplying the left and middle columns.
In the case of the L1 and IRLS functions, robustness against out-
liers is achieved through the attenuation factor. The bell shaped
curve of the attenuation factor indicates that the effect of inliers
is magnified and the effect of outliers is reduced on the resultant
function. However, in case of the Absolute Value function, non-
isotropic contours indicates that the robustness against outliers is
encoded in the function itself and is not achieved through the at-
tenuation factor.

Since the above equation minimizes a squared error func-
tion, the Absolute Value function can be minimized by us-
ing the LM method. Furthermore, the non-isotropic con-
tours of the Absolute Value function, in fig 2(g), show that
unlike the previously proposed techniques where attenu-
ation factor played a major role in achieving robustness
against outliers, in this case the robustness against outliers
is encoded in the function itself.

6. Proposed Huber Cost Functions

In this section we discuss the Huber function and a stan-
dard way of applying the Huber function to vector inputs,
followed by the proposed Isotropic Huber function and the
re-thresholded Huber function.

6.1. Huber Function:

In robust statistics, a very popular function to minimize
is the Huber function [9]. Given a threshold value b, the
Huber function h(·) for a scalar input ε is,

h(ε) =


ε if |ε| ≤ b√

(2ε− b)b if ε > b

−
√
−(2ε+ b)b if ε < −b

. (23)

Since we are only interested in a squared function, the
squared Huber function ψH(·) is,

ψH(ε) =

{
ε2 if |ε| < b
2b|ε| − b2 otherwise . (24)

The Huber function shows a hybrid behavior depending
on the value of the threshold b; for inliers (|ε| < b) the Hu-
ber function has a quadratic behavior, whereas for outliers
(|ε| ≥ b) the Huber function has a linear behavior. This in
turn makes the Huber function robust to outliers and differ-
entiable at the minimum.

6.2. Standard Huber Function

A standard way of applying the Huber function on some
vector valued input ei, is to apply the Huber function h(·)
on each component eji of the vector as,

e′i =
(
h(e1i ), h(e2i ), . . . , h(eni )

)T
. (25)

By replacing the value of ei with e′i in (6) we get

C2(X, β) =
∑
i

e′
T
i e
′
i =

∑
i,j

ψH(eji ) (26)

Thus, the minimization of C2 results in the minimization
of a hybrid function that adapts the minimization strategy
based on each component of error vectors.

A contour plot of e′Ti e
′
i for a two dimensional input vec-

tor is shown in fig 3. The non-isotropic contours in fig 3(a)
show that the resultant function adapts its behavior depend-
ing on the value of individual components of the error vec-
tor. Thus, instead of treating a whole point ei as an outlier
or inlier, the influence of the higher components of the er-
ror vector is mitigated to increase the robustness of the cost
function to outliers.

6.3. Proposed Isotropic Huber (IsoH) Function

In this section we propose a slightly different applica-
tion strategy of the Huber function for vector valued inputs,
we refer to it as Isotropic Huber function because of its
isotropic contours. Instead of changing the behavior of the
Huber function on the basis of each component of the error
vectors as mentioned before, the Isotropic Huber function
adapts its behavior on the basis of the magnitudes of the er-
ror vectors, that is ‖ei‖. Thus, the resultant cost function



(a) Huber Con-
tour

(b) Huber Attenuation (c) Huber Resul-
tant Contours

(d) IsoH
Contours

(e) IsoH Attenuation (f) IsoH Resul-
tant Contours

Figure 3. Huber Functions (2D): The above figure shows plots
of the Huber and Isotropic Huber functions. The left column of
the above figure shows contour plots of e′T

i e
′
i/α

2
i for two dimen-

sional error vectors. The middle column shows plots of attenuation
factors αi. The right column plots e′T

i e
′
i, that is contour plots

obtained by multiplying the left and middle columns. The non-
isotropic contours and a constant attenuation factor of the Huber
function indicates that the robustness to outliers is encoded in the
function itself. On the other hand, the isotropic contours and a bell
shaped curve of attenuation factor of the Isotropic Huber function
indicates that the robustness against outlier is achieved through
the attenuation factor.

deals with outliers in a more intuitive way than the Huber
cost function CH , described earlier.

For some input vector ei, the Isotropic Huber function
ψIsoH(·), is ψIsoH(‖ei‖) = ψH(‖ei‖) . The value of αi
from (10) is computed as,

αi =
ψH(‖ei‖)1/2

‖ei‖
. (27)

Finally, a modified error vector is computed as e′i = αiei.
By substituting the value of e′i in (6) we get

C2(X, β) =
∑
i

α2
i e
T
i ei =

∑
i

ψH(‖ei‖) . (28)

For two dimensional input vectors, a contour plot of
e′
T
i e
′
i is shown in fig 3(f). The bell shaped attenua-

tion curve (in fig 3(e)) together with the isotropic contours
(in fig 3(d)) makes the resultant function e′

T
i e
′
i robust to

outliers by assigning less weight to outliers, as shown in
fig 3(f).

6.4. Re-Thresholded Huber Function:

Here, we take advantage of the iterative behavior of the
LM method and update, specifically reduce, the threshold
value of the Huber function after some fixed number of
iteration. Therefore, it is referred as the Re-Thresholded

Huber function. Given an initial threshold value, the Re-
Thresholded Huber function solves for (28) using the LM
method and after some iterations the threshold value is re-
duced by some factor. This way, after some number of it-
erations the Huber function will have a dominant linear be-
havior and consequently increased robustness.

7. Experiments

We apply the proposed algorithms to a subset (20 views)
of the popular and publicly available NotreDame dataset.
Our experiments are focused on the following aspects of the
proposed algorithms: The first experiment shows the con-
vergence behavior of the proposed algorithms on real data.
The second experiment is designed to show the robustness
of the proposed algorithms to different percentage of out-
liersin the data set. The last experiment shows the conver-
gence behavior of the L1-bundle adjustment from different
but sufficiently close starting points.

In our experiments we assume that the intrinsic cam-
era parameters are known. Therefore, we only solve for
rotations and translations of cameras, and 3D structure of
the scene. Furthermore, errors are computed against know
ground truth values. Note that the error curves shown in
the figures are not monotonically decreasing because the er-
rors reported are different than the error minimized by the
bundle adjustment algorithms, that is the re-projection er-
ror. Furthermore, the plots shown in the figures are cropped
to enhance the visibility.

Starting Point: Since the primary purpose of this paper
is not on how to generate a good starting point for bundle
adjustment, we add noise to the known ground truth param-
eters and use these parameters as a starting point.
- Rotation parameters: Each camera rotation is perturbed
by a maximum angle of 5◦, by creating a rotation matrix
from a random vector (maximum magnitude 5◦) and then
multiplying with the ground truth rotation.
- 3D points and Camera centers: Each component of X (3D
point) and C (camera center) is scaled by a maximum factor
of 0.2.

Outliers: For n% of outliers, a Gaussian noise of zero mean
and standard deviation σ = 25 is added to n% of the pro-
jections of every 3D point.

Error Measures: All errors are computed with respect to
the known ground truth as follows:
- Error in Rotations: Let {Ri} be a set of estimated rotation
matrices and {R̂i} be the corresponding set of ground truth
rotation matrices. Let T be the L2 mean [5] of the rotation
matrices RiR̂

T

i . Then, error in degrees for each rotation ma-
trix is computed by finding the difference in angle between
the ground truth rotation R̂i and the transformed rotation
R

′

i = TRi. Finally, the mean of errors is reported.



(a) Mean Error Rotations (Degrees) (b) Mean Percentage Error 3D Points (c) Mean Percentage Error Camera Centers

Figure 4. Convergence Behavior: The above figures show the convergence behavior of the proposed algorithms on real data, with no
outliers added explicitly. The above plots show that the Absolute Value and re-thresholded Isotropic Huber techniques give better results
than the rest of the techniques. Thus, whenever there are not many outliers in the dataset then the Absolute value and re-thresholded
Isotropic Huber techniques are recommended.

(a) Mean Error Rotations (Degrees) (b) Mean Percentage Error 3D Points (c) Mean Percentage Error Camera Centers

Figure 5. Robustness to Outliers: The above figures show the results of the proposed methods in the presence of different number of outliers
in the dataset. In this case the percentage of outliers is varied from 0% to 40% with an increment of 10%. The results have shown
that the re-thresholded Isotropic Huber technique has the least error, except when there are no outliers in the dataset. Furthermore, as
expected, the results of the L2 method are far from the ground truth than the rest of the techniques. Therefore, in the presence of outliers
the re-thresholded Isotropic Huber technique is recommended because of its superior results and adaptive threshold values.

- Error in Camera Centers and 3D points: We report a
mean percentage error between true and estimated 3D point
clouds. Let {xi} be a set of k ground truth points and {yi}
be a set of estimated points. Let T be the transformation be-
tween the points clouds, computed using the Horn’s method
[8]. The mean percentage error e between points is com-
puted as,

e =
1

k

k∑
i=1

(
abs(‖xi‖ − ‖Tyi‖)

‖xi‖
× 100

)
,

The same technique is used for computing errors in camera
centers.

In the rest of the section we will discuss our experimental
results.

7.1. Convergence Behavior

This experiment demonstrates the convergence behavior
of the proposed algorithms on real data, with no outliers
added explicitly. It evident from fig 4 that the results of
the Absolute Value and re-thresholded Isotropic Huber tech-
niques are closer to the ground truth than the rest of the tech-
niques. Thus, whenever there are not many outliers in the
dataset then the Absolute value and re-thresholded Isotropic
Huber techniques are recommended. Since the LM method

is a numerical optimization method, the results of the L1

and IRLS methods are the same.

7.2. Robustness to Outliers

This experiment demonstrates the robustness of the pro-
posed algorithms against outliers. Therefore, we add differ-
ent percentage of outliers to the dataset ranging from 0% to
40% with an increment of 10%. We are particularly inter-
ested in the L1, L2, Absolute Value, Isotropic Huber and
re-thresholded Isotropic algorithms. As expected, the re-
sults of the L2 algorithm are far from the ground truth val-
ues than the rest of the techniques and the parameter esti-
mates of the re-thresholded Isotropic Huber algorithm are
closer to ground truth than the other proposed algorithms,
as shown in fig 5.

7.3. Convergence from Different Starting Points

This experiment shows that the convergence behavior
of the L1-bundle adjustment does not change much with
a small change in the starting point of the algorithm. In or-
der to generate different starting points for our algorithm, in
addition to the basic noise in parameters as defined before,
we further perturb the rotations by 1◦, and camera center
and 3D points by a factor of 0.05. Each colored line in fig 6
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Figure 6. Convergence from Different Starting Points (L1-bundle adjustment): The above figures show the convergence behavior of the L1

method from different starting points. Each colored line represents a different starting point of the algorithm. Results have shown that the
convergence behavior of the L1 method does not change much with a change in the starting points of the algorithm and that the parameters
recovered are generally close to each other.

indicates the convergence of the L1 technique from a differ-
ent starting point. These plots have shown that the results of
the L1-bundle adjustment will not change drastically with a
small change in initial parameter estimates.

8. Conclusion
In summary, we proposed several techniques to solve for

a robust solution of a non-linear parameter estimation prob-
lem, namely the bundle adjustment problem. The proposed
techniques minimize Lq cost functions, for 1 ≤ q < 2,
and the Huber cost function. An advantage of the proposed
techniques is that an existing implementation of the L2 bun-
dle adjustment can be modified to minimize a desired cost
function because the proposed techniques still use the LM
method to find a robust solution. Furthermore, our exper-
imental results on the NotreDame set showed that the pro-
posed techniques are more robust to outliers than the L2

bundle adjustment. A Simple approach and easy implemen-
tation makes the proposed algorithms practically feasible.

The applicability of proposed techniques is not only
limited to bundle adjustment problem but a wide class
of non-linear parameter estimation problems, that use the
Levenberg-Marquardt method for minimization, can be
solved robustly using these techniques.
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