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Abstract

The spatially and temporally variable parameters and inputs to complex groundwater

models typically result in long runtimes which hinder comprehensive analysis. These

analyses typically involving calibration, sensitivity analysis and uncertainty propaga-

tion. Surrogate modelling aims to provide a simpler, and hence faster, model which

emulates the specified output of a more complex model as a function of its inputs

and parameters. A faster model enables more model runs, which are critical for

understanding models through methods such as sensitivity and uncertainty analysis.

Three broad categories of approaches to surrogate modelling are data-driven, pro-

jection, and hierarchical-based. Data-driven surrogates approximate a groundwater

model through an empirical model that captures the input-output mapping of the

original model. Projection-based models reduce the dimensionality of the parame-

ter space by projecting the governing equations onto a basis of orthonormal vectors.

In hierarchical or multi-fidelity methods the surrogate is created by simplifying the

representation of the physical system, such as by ignoring certain processes, or re-

ducing the numerical resolution. A surrogate method can only be of practical value

if it significantly reduces model runtimes in common contexts, robustly emulates the

output of the complex model and can be implemented simply and flexibly. While a

gamut of surrogate techniques have been applied to groundwater and similar partial

differential equation (PDE) based simulators, the practicability of all approaches is

not clear.

Among the promising approaches to emulation are Polynomial Chaos Expansions

(PCE), Multi-fidelity Stochastic Collocation (MFSC) and modern Deep Learning (DL)

Neural Networks (NN). These are investigated in the thesis. They represent the three

categories above as projection-based (depending on implementation), multi-fidelity

and data-driven methods respectively. However all three methods are black box

in that they do not require re-implementation of the complex model, making them

relevant to practitioners.
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PCEs are a versatile, highly efficient and statistically rigorous surrogate approach

with a number of well developed methods for their calibration. In the framework

we present, they are suited to accelerating sensitivity analysis and uncertainty propa-

gation of generic models with a moderate number of parameters. MFSC overcomes

many shortcomings of other surrogate methods by employing a lower resolution

model as the surrogate. The approach is shown to faithfully emulate spatially and

temporally distributed parameters. Complex model runs can be easily parallelized

and reused. While traditional NN are not the most promising surrogate technique,

there is enormous potential in the DL software frameworks associated with the re-

cent boom in their popularity. This promise extends not just to efficient uncertainty

analysis and data assimilation for groundwater modelling, but numerical modelling

in general.

From a wide survey of the literature we advance three promising techniques.

Model emulation using either PCE, MFSC or DL as demonstrated in this thesis will

add value to practical groundwater modelling by not only reducing model runtimes

but deepening understanding of the underlying model. The PCE approach iteratively

selects the underlying groundwater model samples, training a surrogate with less

than 1% error in under 200 model runs. The MFSC method achieves similar accuracy

with less than 30 full resolution model runs. The DL approaches are less efficient,

requiring 500 model runs. However they emulate the full spatially distributed output

of the underlying model, and can be applied in situations with 100s of uncertain

parameters. Further contributions of this work include two improvements to the

MFSC algorithm, reducing surrogate error by two orders of magnitude. We identify

a gap between existing research in applied DL, theory-rich applied mathematics

and the increasing quantity of spatially distributed data. We create a new surrogate

form which combines PCE theory with a DL implementation, and develop another

which captures physical aquifer properties during the training of a state of the art DL

architecture.
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Chapter 1

Introduction

1.1 Background

Groundwater is a key natural resource, making up about 50% of drinking water and

43% of irrigation water globally [Connor, 2015]. Understanding its behavior is also

key to mining, construction and natural resource management. Even in the age of the

“Internet of Things”, we cannot collect data dense and frequent enough to capture the

variability present in the rivers, landscapes and climates that make up groundwater

systems. Hence computer simulations are the principal tool available to policy makers

and engineers wishing to understand, regulate or use groundwater. Indeed, since

at least the early 1970s, numerical models based on partial differential equations

have been used to simulate groundwater levels and inform policy [Ungemach, 1975].

Natural groundwater systems cover large areas and are highly heterogenous in their

properties. The measurements we do have are typically subject to large uncertainties

(think of what a flood does to a stream gauge, or how well a 10cm core sample

represents an aquifer’s geology 10km away). Thus there is a need for numerical

implementations with a fine spatial and temporal scale in the governing equations,

but also to analyze the uncertainty inherent in these models - something typically

achieved by running them repeatedly in various configurations. Unfortunately both

of these requirements increase the time and cost of computation.

The briefing for this thesis was to investigate computationally efficient methods

for facilitating the uncertainty analysis of groundwater models. A secondary research

question was how to assimilate monitoring data (heads, flow rates, remote sensing,

flux measurements) into these models. To assimilate more data into models typically

1



2 Introduction

requires model inversion. Heads, flow rates, flux and some remote sensing variables

are model outputs. So to include them we must optimize the inputs to the model so its

outputs match these data. Again, this is a computationally expensive process. Hence

the two goals boil down to the same bottleneck. To make better policy decisions we

need to run complex models many times, and our ability to do this is limited by the

computational cost of doing so. Surrogate modelling, that is emulating a complex

model with a simpler one, is a promising technique [Razavi et al., 2012b] for reducing

the computational cost of running a model. Many surrogate approaches are simply

statistical emulators of input-output data produced by the complex model [e.g. Tang

et al., 2020]. More involved methods include multi-fidelity [e.g. Menberg et al., 2020]

approaches where the numerical resolution of the underlying model must be changed

and projection based surrogates [e.g. Xia et al., 2020] where the underlying equations

are altered. There are a many approaches available in the literature, but few have seen

widespread adoption in practical settings. Understanding the benefits of surrogate

methods is made challenging by the wide range of reported efficiency gains and the

breadth of modelling contexts (e.g. data assimilation, sensitivity analysis, uncertainty

propagation, Bayesian inversion) in which they are applied.

An additional benefit of employing surrogate modelling is that it may provide

further insight into the model or data, in addition to a more efficient emulator. An

example is the sensitivity indices which can be derived [Sudret, 2008; Jakeman et al.,

2019a] from a polynomial chaos surrogate (discussed in Chapter 3). This thesis

focuses on how surrogate modelling techniques may add value in a groundwater

modelling context by increasing computational efficiency and understanding of the

underlying model.

1.2 Outline

In Chapter 2 we introduce surrogate modelling and review the application of surro-

gates to groundwater models. In the following chapters we further progress three

cutting edge surrogate techniques for application to groundwater models.

Polynomial Chaos Expansions (PCE), addressed in Chapter 3, are a highly efficient
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and statistically rigorous surrogate approach with a number of well developed meth-

ods for their calibration [Xiu and Karniadakis, 2003; Najm, 2009]. Once calibrated,

the statistical moments and sensitivity indices of the outputs can be computed analyt-

ically. We apply an efficient adaptive method to calibrate a PCE on a variety of inputs

and outputs of a groundwater model and demonstrate how the surrogate can be used

for uncertainty propagation and sensitivity analysis in a computationally optimal

manner. Further, we develop a new method for the calibration of a PCE using nested

polynomials implemented in a modern Deep Learning software package discussed

later in Chapter 5 .

In Chapter 4 we look at Multi-fidelity Stochastic Collocation, another versatile

emulator, which employs two or more resolutions of the same model. Surrogate runs

involve a solution to the lowest fidelity model, which practitioners may prefer to a

data-driven emulator whose structure bears no resemblance to the original model.

The approach is well suited to spatially and temporally distributed parameters. We

identify two improvements to the algorithm in practical groundwater modelling

settings.

Finally, in Chapter 5 we look at an exploding area of research in Neural Networks

(NNs). This area has enjoyed several booms in popularity with only limited benefit

to the groundwater modelling community. NNs are now faster and more complex,

incrementally improving this work. However, more importantly, the recent rise of

Deep Learning (DL) software frameworks represent an unprecedented opportunity

for numerical modelling in general, and groundwater modelling specifically. They

provide simple and open access to cutting edge computational resources, algorithms

and software quality. We show that they are as relevant to researchers of applied

mathematics as to the machine learning practitioners who developed them, and

there is great promise in greater cross pollination between the two communities. We

develop two state of the art DL models to be best in class surrogates of groundwater

models in a wide range of scenarios, particularly where emulating large numbers of

inputs and outputs. We review recent work applying DL methods to groundwater

simulation and speculate that these methods might be useful beyond emulation. We

move the field forward by providing the first case studies (to our knowledge) of
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how DL methods function fundamentally differently to other “black-box” surrogate

methods. Architectures are possible which mimic physical systems in ways the

internals of other statistical methods cannot.



Chapter 2

Review

2.1 Introduction

The physical properties and processes that determine groundwater flow are highly

heterogeneous. To adequately capture such heterogeneity, many groundwater man-

agement problems require complex, fully distributed models that can accommodate

fields for the hydraulic properties and boundary conditions that vary in time and

space. There has been a tendency towards including more physical processes, in-

creasing numerical resolution, and expanding the model domain in fully distributed

groundwater models [Leube et al., 2012; Doherty and Simmons, 2013], typically solved

using a finite difference approximation such as implemented in MODFLOW [Har-

baugh, 2005] or a finite element method, as used for example by FEFLOW [Diersch,

2005]. Greater conceptual model complexity, however, translates to a larger number

of parameters and increased model runtimes.

Long runtimes inhibit the use of models in applications which require many

model runs, such as integrated modelling (where groundwater flow models are cou-

pled with models of different processes), uncertainty analysis, sensitivity analysis

and inverse modelling. Slow runtimes also prevent models being used in real time,

necessary for applications such as decision support. Furthermore, the “curse of

dimensionality” is encountered as the number of samples required to cover the pa-

rameter space in uncertainty analysis, sensitivity analysis or calibration increases

exponentially with the number of model parameters. An increase in model runtime

means that numerical resolution needs to be reduced or physical processes ignored to

decrease runtime and make many model runs computationally tractable. Surrogate

5
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models have the potential to speed up complex models without sacrificing accuracy

or detail.

Also known as metamodels [e.g. Blanning, 1975], reduced models [e.g. Willcox

and Peraire, 2002], model emulators [e.g. O’Hagan, 2006], proxy models [e.g. Bieker

et al., 2007], lower-fidelity models [e.g. Robinson et al., 2008] and response surfaces

[e.g. Regis and Shoemaker, 2005], surrogate models are computationally cheaper

models designed to approximate the dominant features of a complex model. While

the main motivation for applying a surrogate model is achieving computational

efficiency [Razavi et al., 2012b], other reasons do exist.

Simple surrogate models can reduce numerical instability which facilitates calibra-

tion and uncertainty analysis [Doherty and Christensen, 2011]. The process of build-

ing an emulator can reveal insensitive outputs and irrelevant parameters of a complex

model [Young and Ratto, 2011]. Surrogates may serve as didactic tools for analyzing

model simplification and the ways in which models simplify reality [Watson et al.,

2013]. They can also be used to smooth an objective function surface, allowing the

use of gradient based, nonlinear programming methods for optimization problems

[Hemker et al., 2008; Kavetski and Kuczera, 2007], or to reduce ill-conditioning of a

conjugate gradient optimizer by using eigenvector approximations [Vuik et al., 1999].

The gain in computational efficiency opens the door for exploration of structural

model uncertainty by simultaneous simulation and calibration of alternative model

structures [Matott and Rabideau, 2008] or inclusion of data and physical processes at

multiple scales [Weinan and Engquist, 2003]. Also, surrogates with sufficiently short

runtimes have been used in interactive decision support environments [Roach and

Tidwell, 2009]. Lastly, surrogates have been used for “complementary” modelling,

where a simple model is fitted to the residual of a complex model to improve accuracy

[Demissie et al., 2009; Xu et al., 2012].

This review is structured around a taxonomy of surrogate models, based on their

mathematical structure. We follow Robinson et al. [2008] by classifying surrogate

models into three categories as outlined in Table 2.1: data-driven surrogates involving

empirical approximations of the complex model output calibrated on a set of inputs

and outputs of the complex model (snapshots); projection-based methods, where the
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governing equations are projected onto a reduced dimensional subspace characterized

by a basis of orthonormal vectors; and multi-fidelity methods, built by simplifying

the underlying physics or reducing numerical resolution. The three categories are

addressed in Sections 2.2, 2.3 and 2.4. Rather than describing each technique in

detail, we give an illustrative example. We then discuss the other techniques in each

category, how they relate to the example, and their historical and potential application

to groundwater modelling. Since reducing runtime is a major motivation for using

surrogate models, we discuss some alternative techniques for doing so in Section 2.5.

Several recent publications compare a subset of surrogate modelling approaches

[Forrester et al., 2008; Forrester and Keane, 2009; Castelletti et al., 2012; Frangos et al.,

2010; Antoulas, 2005; Gugercin and Antoulas, 2000]. Razavi et al. [2012b] published a

review of surrogate models in the water resources literature. However, there appears

a general imbalance in the literature towards data-driven methods. Razavi et al.

[2012b] for example, devote 19 pages to data-driven methods, and only four to the

section covering both multi-fidelity and projection-based approaches. In particular,

we note the sparse treatment of surrogates developed for spatially distributed models

[Pasetto et al., 2011].

Two important motivations exist to correct this imbalance. Firstly, Razavi et al.

[2012a] have noted that despite the optimism about data-driven surrogate modelling

in the literature, it can be an inefficient and unreliable approach to optimizing complex

numerical models. Secondly, Razavi et al. [2012b] observe that “lower-fidelity sur-

rogates” (encompassing both projection-based and multi-fidelity methods reviewed

here) overcome many of the limitations of data-driven approaches; namely they can

be applied to larger numbers of parameters, and perform better further from snap-

shots used in calibration of the surrogate. These advantages are particularly relevant

to spatially distributed models which are ubiquitous in groundwater studies. De-

spite this, many sophisticated “lower-fidelity” methods have not yet been applied to

groundwater problems.

As well as summarizing the current state of the art in surrogate models, we aim to

give a more comprehensive coverage of surrogate modelling approaches and discuss

their historical, as well as their potential, application to distributed groundwater
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models. We aim to glean from the wider research community surrogate methods

which show promise for groundwater applications.

Few well-accepted criteria exist for assessing surrogate modelling approaches.

Razavi et al. [2012b] note the need to validate the whole surrogate-enabled analysis

framework rather than testing the surrogate in isolation. They also note the need

for more developed metrics of computational efficiency gains, and recommend ap-

proaches which make use of estimates of surrogate-introduced uncertainty. Several

standards of good modelling practice [Jakeman et al., 2006] are particularly relevant

to surrogate modelling. Approaches should be as simple as possible to avoid coding

errors. Justification should be given for the choice of surrogate technique. Insofar as

possible, surrogate performance should be thoroughly analyzed. Finally, results and

methods should be reported in sufficient detail as to allow informed criticism.

We analyze the surrogate approaches below with reference to the following crite-

ria.

1. If purported to do so, the approach should significantly increase computational

efficiency. Ideally this would be assessed based on:

(a) Average runtime of a single surrogate versus complex model run.

(b) The number of complex model runs used to calibrate the surrogate, justi-

fied with reference to surrogate-introduced uncertainty.

(c) Runtime for combining surrogate and complex models, typically this in-

volves (iteratively) calibrating the surrogate on the output of complex

model runs.

(d) An indication of effort required to apply the method. Does the complex

model code typically require modification?

2. The surrogate should allow more thorough analysis and testing of the original

model.

3. An indication of surrogate-introduced uncertainty should be given.
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Table 2.1: Taxonomy of surrogate models

Category Also known as Examples
Data-driven surrogates in-
volving empirical approxima-
tions of the complex model
output calibrated on a set
of inputs and outputs of the
complex model (snapshots).

Response surface,
statistical and
black box methods.

Polynomials [Hussain et al., 2002],
neural networks [Kourakos and Mantoglou, 2009; Yan and Minsker,
2006],
Gaussian processes [Stone, 2011; Kennedy and O’Hagan, 2001],
kriging [Baú and Mayer, 2006; Garcet et al., 2006] ,
radial basis functions [Regis and Shoemaker, 2005],
support vector machines [Yoon et al., 2011],
dynamic mode analysis [Young and Ratto, 2011],
(generalized) polynomial chaos expansions [Laloy et al., 2013] ,
genetic programming [Fallah-Mehdipour et al., 2013],
Bayesian networks [Fienen et al., 2013].

Projection-based meth-
ods, where the governing
equations are projected
onto a reduced dimension
subspace characterized by a
basis of orthonormal vectors.
Typically divided into SVD
and Krylov based methods.

Reduced order,
reduced basis and
model reduction meth-
ods.

Proper orthogonal decomposition (POD) [McPhee and Yeh, 2008;
Siade et al., 2012; Galbally et al., 2010],
Karhunen-Loève expansion [Laloy et al., 2013],
proper generalized decomposition [Chinesta et al., 2011],
Krylov subspace methods [Dunbar and Woodbury, 1989; Woodbury
et al., 1990],
dynamic mode decomposition [Ghommem et al., 2013],
Fourier mode reduction [Willcox and Megretski, 2005] and
(certified) reduced basis [Lieberman et al., 2010; Chen et al., 2010;
Knezevic and Peterson, 2011; Efendiev et al., 2012].

Multi-fidelity based surro-
gates, built by simplifying
the underlying physics or re-
ducing numerical resolution.

Multiscale,
hierarchical and
physically based meth-
ods.

Multigrid method [Ashby and Falgout, 1996; Saied and Mahinthaku-
mar, 1998; Thum et al., 2011],
multiscale finite elementmethod [Shi et al., 2012; Hou andWu, 1997],
heterogeneous multiscale method [Weinan et al., 2002],
residual free bubbles [Sangalli, 2003],
conservative subgrid [Arbogast, 2002] and
variational multiscale method [Ganapathysubramanian and Zabaras,
2007; Hughes et al., 1998].

2.2 Data-driven methods

In this section, we introduce data-driven methods by describing a particular exam-

ple, Gaussian processes. We then discuss other techniques and their application to

groundwater modelling.

Let us denote the output of a complex model F as h = F(θ). Consider a vector, θ,

whose values represent a groundwater model’s inputs and parameters: the hydraulic

properties, sources, sinks, and initial conditions. Data-driven surrogates attempt to

emulate the mapping from θ to h without considering the inner workings of F. The

complex model is run on a set {θ(i)}, known as the design of experiment, to produce
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a set of snapshots, {h(i))}. Depending on the data-driven method, a function

F̂(φ, ·) (2.1)

is chosen, and the snapshots are used to fit the hyperparameters φ such that

F̂(φ, θ(i)) ≈ F(θ(i)) for all i. (2.2)

Data-driven methods differ in how they select the snapshots and the functional

form of F̂, chosen to emulate the θ to h relationship.

2.2.1 Gaussian processes - an example

Gaussian processes [e.g. Kennedy and O’Hagan, 2001; Stone, 2011] assume the rela-

tionship can be captured by a surrogate

F̂(φ, θ) = f(θ)T β + e(θ), (2.3)

where f(θ) are chosen regression functions, and the unknown hyperparameters, φ,

include the regression coefficients, β, and the parameters of the stochastic process,

e. The stochastic process, e, has zero mean and a specified positive semi-definite

covariance function. A common choice is a linear regression function

f(θ) = (1, θ) (2.4)

and the covariance function

Cov(e(θ(j)), e(θ(k))) = σ2 exp

(
−∑

i
ωi|θ(j)

i − θ
(k)
i |αi

)
. (2.5)

Two of the hyperparameters, β and σ, can be estimated by analytic expressions

using a set of snapshots [Sacks et al., 1989], but numerical optimization of ωi and αi

is required.
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2.2.2 Other data-driven methods

Razavi et al. [2012b] thoroughly cover data-driven surrogates with only a few excep-

tions, which we mention briefly below.

Bayesian Networks Bayesian Networks are annotated acyclic graphs which give the

joint probability distributions of a number of variables. Nodes are random variables

Xi, . . . , Xn and edges (links) are probabilities P(xi|πi) where xi is a realization of

Xi, and πi its parents. Fienen et al. [2013] create a Bayesian Network surrogate

of a groundwater model. In order to reduce the number of parameters, surrogate

parameters are taken as the maximum or mean of a property along a cross section of

the complex model domain. As is a requirement for Bayesian Networks, parameters

are discretized into bins. The approach makes causal relationships easy to see and can

be integrated simply with larger Bayesian Networks. Being largely a static method,

their main restriction is the difficulty in emulating the temporally varying outputs.

Transfer functions Transfer function models consist of a function

hk = F(hk−1, · · · , hk−n, uk, · · · , uk−m), (2.6)

which predicts an output time series hk in terms of its history and possibly a driving

input series uk. Young and Ratto [2011] present a transfer function based method

which, as a dynamic model, purportedly exhibits greater predictive capability for

a wider range of scenarios than static approaches. Immediate drawbacks are the

limitation to linear models, and difficulty in creating a map from the transfer function

to complex model parameters.

Response Matrices Cheng et al. [2011] construct a response matrix surrogate using

“one at a time” sensitivity analysis of a finite difference groundwater model’s output

heads to changes in pumping and recharge. The sensitivity analysis is used to

compute influence coefficients, ∂hi,T
∂Qp,t

, which represent the change in head at location

i and time T caused by a change in pumping rate of well p at time t. Using these
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derivatives, head can then be approximated by a truncated Taylor series around Qp,0.

Genetic programming Genetic programming [e.g. Fallah-Mehdipour et al., 2013]

seeks to find a functional form that approximates the input-output relationship of a

model. An evolutionary algorithm searches through relationships randomly created

using inputs, outputs, random variables, and operators (functions, arithmetic opera-

tors, boolean operators, or logical expressions). Disadvantages of genetic program-

ming surrogates include computationally demanding calibration and over-fitting.

Polynomial chaos The popular polynomial chaos method involves expanding a

random variable (parameter or output) in an orthogonal polynomial basis. Any

stochastic process with finite variance can be expanded as a polynomial of random

variables so long as the polynomials are orthogonal with respect to distribution of

that random variable. Xiu and Karniadakis [2002] describes the method and the

Askey scheme, which details which polynomial basis is to be used with which distri-

bution. A common example is the use of Hermite polynomials of Gaussian processes

(normally distributed variables). The approach has recently been incorporated into a

two step MCMC (Markov Chain Monte Carlo) Bayesian inversion of a groundwater

flow model [Laloy et al., 2013]. As is common in the wider literature [e.g. Ghanem

and Dham, 1998] the polynomial chaos surrogate is coupled with a Karhunen-Loève

parameterization of conductivity. The most common approaches of finding the coef-

ficients of the polynomials are stochastic collocation and pseudo-spectral methods,

which are non-intrusive as they do not involve editing the complex model code. How-

ever, it is possible to use an intrusive Galerkin method which would make the method

a projection based approach [Herzog et al., 2008].

2.2.3 Comparisons and Recommendations

There are notable similarities between a number of the data-driven methods listed in

Table 2.1. Forrester et al. [2008] and Forrester and Keane [2009] note that certain forms

of kriging, Guassian process models, radial basis functions, support vector machines,

and single-layer neural networks with radial coordinate neurons are identical.



§2.2 Data-driven methods 13

While many methods do share mathematical structures, such as Guassian function

of distance, as in (2.5), it would be a mistake to consider all methods labeled as

“kriging” or “radial basis functions” to be identical. Each of the terms listed in

Table 2.1 represents a sizable volume of literature devoted to developing a variety of

methods known by that name.

Furthering the confusion, recent efforts have combined several data-driven surro-

gate methods. Rather than selecting a data-driven surrogate method a priori, Viana

et al. [2009] suggest a framework for using multiple surrogates simultaneously. Matott

and Rabideau [2008] propose a method for the simultaneous calibration of multiple

models. In their test case employing multiple analytic surrogates, they improve

the optimized objective function and reduce runtime. Schöbi et al. [2015] combine

polynomial chaos expansions with kriging.

Comparisons of data-driven techniques in the literature are numerous [e.g. Garcet

et al., 2006; Forrester and Keane, 2009; Razavi et al., 2012a; Villa-Vialaneix et al., 2012;

Espinet and Shoemaker, 2013]. However, as Forrester and Keane [2009] note, no

method performs best universally. Results will depend on the application and factors

such as the size of training set [Breiman, 2001]. There is some consensus [Forrester

and Keane, 2009; Villa-Vialaneix et al., 2012; Razavi et al., 2012b] about the strength

of kriging [Jones et al., 1998] and radial basis function [Regis and Shoemaker, 2007]

based optimization frameworks. Subsequent literature [Espinet and Shoemaker, 2013]

indicates the viability of these methods for groundwater modelling.

For calibration and uncertainty quantification, we would, in addition to kriging

and radial basis functions, advocate for the use of polynomial chaos expansions. The

polynomial chaos method of Marzouk and Najm [2009] and related stochastic partial

differential equation approaches form a very active area of research. These methods

are worthy of consideration since they have only recently been applied to ground-

water models and few comparisons with other data-driven approaches have been

published other than the theoretical work of O’Hagan [2013]. Advantages of polyno-

mial chaos methods include the ability to calculate sensitivity indices of parameters

and their interaction analytically from the expansions [Sudret, 2008] and the depth of

literature devoted to selecting samples at which to calibrate the surrogate [e.g. Xiu
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and Hesthaven, 2005]. While it has been noted [Forrester and Keane, 2009; Razavi

et al., 2012b] that it is better to select snapshots iteratively, taking into account surro-

gate error, many surrogates do not have established methods for selecting snapshots

of the complex model.

Data-driven surrogates have a number of limitations. Razavi et al. [2012a] warn

they may be subject to computationally demanding calibration, subjective structure,

and over-fitting. They are of the opinion that the optimism in the literature around

data-driven surrogates is in some areas ill-founded, pointing out that in some cases

optimization methods without surrogates were more effective than those employing

surrogates. It is worth noting that there are well established methods for addressing

issues such as over-fitting [Hastie et al., 2009]. Other disadvantages include the possi-

bility of getting trapped in local minima [Demissie et al., 2009] and the limitation of

only being able to handle a relatively small number of parameters. This latter limi-

tation often results in aquifer parameters being assumed homogeneous [Mugunthan

et al., 2005] or known a priori [Yan and Minsker, 2006]. However, novel methods of

calibrating polynomial chaos surrogates using adaptive sparse grids [Jakeman and

Roberts, 2013] have been applied to increasingly large numbers of parameters.

Data-driven surrogates are not expected to perform well away from design sites.

A known limitation of all global surrogates, where a single surrogate is used for

the full parameter range of interest, is their inability to adequately capture hetero-

geneity [Najm, 2009]. Solutions for polynomial chaos surrogates have been proposed

involving piecewise polynomial bases [Wan and Karniadakis, 2005], multivariate

wavelet bases [Le Maitre et al., 2004], or sparse grid collocation with local interpolants

[Matthies and Keese, 2005; Xiu and Hesthaven, 2005]. Marzouk and Najm [2009] pro-

poses adaptive polynomial degree, sparse truncation of the basis, or partitioning the

prior support as other possible improvements.

Despite their drawbacks, well used data-driven approaches remain a valuable tool

in applications such as decision support and integrated modelling, where it may be

necessary to limit both the number of parameters and the ranges which they take.

Quick runtimes once calibrated and their non-intrusive nature make data-driven

methods particularly useful for these applications.
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2.3 Projection-based methods

The essence of projection-based surrogates is to replace a vector space, h, by a linear

combination of (orthogonal) basis vectors

h ≈ Φhr. (2.7)

Complexity is reduced because the number of basis vectors (columns of Φ), and

therefore elements in hr, needed to approximate h is often much smaller than the

dimension of h. Projection-based methods vary according to which vector space

is approximated and how the basis vectors are found. The process invariably in-

volves substituting Φhr for h in the governing equations, and using an orthogonality

condition to simplify the result.

2.3.1 Proper orthogonal decomposition - an example

The proper orthogonal decomposition (POD) method (also referred to as singular

value decomposition (SVD), principal component analysis and empirical orthogonal

functions) is a common projection-based surrogate. It proceeds as follows [McPhee

and Yeh, 2008]. For a complex model F, we obtain a set of snapshots {y(i)} from a

set of samples of the input space {θ(i)} where y(i) = F(θ(i)). A set of normalized

snapshots is then combined in a matrix

Y =

[
y(1)

‖y(1)‖
y(2)

‖y(2)‖ · · ·
y(n)

‖y(n)‖

]
. (2.8)

The method requires the eigenvalues and eigenvectors of the covariance matrix C =

YYT. However, in practice the smaller Cs = YTY is used to solve the eigenproblem

Csg(i) = g(i)λ(i) i ∈ {1, · · · , n}. (2.9)

The eigenvectors Φ of C are then computed as

Φ = Y
[

g(1) g(2) · · · g(n)

]
Λ−

1
2 (2.10)
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where

Λ−
1
2 =



√
λ(1)

√
λ(2)

. . .
√

λ(n)



−1

(2.11)

The dimensions of Φ are the same as Y. However, the proportion of the variance

in Y explained by each eigenvector (column of Φ) is given by the normalized value

of its corresponding eigenvalue

ψ(i) =
λ(i)

∑n
j=1 λ(j)

. (2.12)

In practice, a minimum acceptable explained variance θmin can be chosen, and m

identified such that ∑m
i=1 ψ(i) ≥ θmin, where ψ(i) are arranged in descending order. A

useful surrogate is created when m is orders of magnitude smaller than n.

In the case of confined aquifers (linear flow) where transmissivity does not vary

in time, the discretized groundwater equation may be written [Harbaugh, 2005]

M
dh
dt

+ Ah = q (2.13)

where h is head, q a source-sink term, and M and A are derived from hydraulic

conductivity, storativity, and head-dependent boundary conditions.

Substituting Φhr for h in (2.13), left multiplying with ΦT, and noting hr is time

dependent but not Φ, we obtain

ΦTMΦ
dhr

dt
+ ΦTAΦhr = ΦTq. (2.14)

Although this reduced order equation can be solved using similar methods as those

used for (2.13), this typically involves editing the complex model solvers.
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2.3.2 The Lanczos method - another example

As with the POD method described above, the Lanczos [Dunbar and Woodbury, 1989]

approach is based on the reduced order equation (2.14). However, the basis vectors

making up Φ are computed differently. Rather than using the eigenvectors of the

snapshot covariance as basis vectors, the Lanczos method uses the solution to the

generalized eigenvalue problem

AΦ = MΦΛ, (2.15)

where A and M are from (2.13), Φ are the eigenvectors to be found, and Λ is the

diagonal matrix of corresponding eigenvalues. Again, we only need find the m

smallest eigenvalues and corresponding vectors. Using the orthogonality properties

of the eigenvectors, ΦTMΦ = I and ΦTAΦ = Λ, (2.14) can be reduced to

dhr

dt
+ Λhr = ΦTq. (2.16)

If g = ΦTq is time independent, this has the analytic solution

(hr)i(t) = (hr)
0
i e−λit +

gi

λi
(1− e−λit). (2.17)

A time stepping algorithm can be applied for calculating time dependent g as done

by Sahuquillo [1983]. However, finding the m smallest eigenvalues of AΦ = MΦΛ is

a computationally challenging problem.

Note that we can rewrite (2.15) as

ΦΛ−1 = A−1MΦ. (2.18)

The Lanczos algorithm seeks the solution to the tridiagonal system

LT = A−1ML (2.19)
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by finding the tridiagonal matrix

T =



α1 β2

β2 α2
. . .

. . . . . . . . .

. . . . . . βm

βm αm


(2.20)

and the so called Lanczos vectors L = (L1, L2, · · · , Lm).

The eigenvalues of T give good approximations to the smaller eigenvalues of

AΦ = MΦΛ. The strength of the approach lies in the efficient algorithm for comput-

ing Li, αi and βi using a standard tridiagonal solution algorithm. Similarly to above,

substituting Lhr for h in (2.13) and left multiplying with LTMA−1, gives

LTMA−1ML
dhr

dt
+ LTMLhr = LTMA−1q. (2.21)

Which can be reduced to

T
dhr

dt
+ hr = LTMA−1q (2.22)

using the orthogonality properties LTMA−1ML = T and LTML = I. A solution for

hr can then be found using standard time integration techniques.

2.3.3 Other projection-based methods

Other reduced basis methods employ different techniques to find bases which reduce

the dimensionality of the parameter or output space. Table 2.2 lists a number of

different approaches.

We note here that projection-based surrogates, despite employing many of the

same techniques, differ from parameterization methods. In a discussion of parame-

terization methods for calibrating reservoir models, Oliver and Chen [2011] mention

zonation, pilot points, splines, Karhunen-Loève approximations, wavelets, and sin-

gular vectors of the model sensitivities. While these might be considered surrogate
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Table 2.2: Methods for computing a reduced basis

Method Basis Reference

POD SVD of snapshot covariance
McPhee and Yeh [2008]

Proper generalized
decomposition

Separation of variables
Chinesta et al. [2011]

Dynamic mode de-
composition

SVD of forward operator
Ghommem et al. [2013]

Lanczos and
Arnoldi

Krylov subspace
Dunbar and Woodbury
[1989], Woodbury et al.
[1990]

Fourier model re-
duction

Fourier expansion of the discrete-
frequency transfer function Willcox and Megretski

[2005] Gugercin and Willcox
[2008]

(Certified) reduced
basis

Greedy algorithm
Lieberman et al. [2010],
Chen et al. [2010], Knezevic
and Peterson [2011]

parameterizations, they do not emulate the model. The distinguishing feature of the

work listed in Table 2.2 is that each uses an intrusive (model driven) method to derive

an orthogonal basis.

2.3.4 Comparisons and Recommendations

Antoulas [2005] and Gugercin and Antoulas [2000] divide “reduced models” into two

categories: SVD based (e.g. POD) and Krylov subspace based. While SVD based

methods have an error bound they cannot be applied to highly complex systems.

Antoulas [2005] argue that Krylov methods can be implemented iteratively and so are

more appropriate for systems of high complexity. He describes a method combining

the two categories designed to overcome the limitations of both. However Frangos

et al. [2010] claim that Krylov methods are limited to linear cases. There seems to be

very limited application of Krylov methods to groundwater, some being the Lanczos

algorithm by Dunbar and Woodbury [1989] and the Arnoldi method by Woodbury

et al. [1990].
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There has been more attention paid to the POD method which, for a given dimen-

sion, minimizes the least squares error of the surrogate on the snapshots [Frangos

et al., 2010]. Hay et al. [2012] note that variation in parameters reduces the effec-

tiveness of a POD surrogate. They propose replacing each mode with a first-order

Taylor expansion. A finite difference method is used to compute the sensitivity of

the mode to variations in each parameter. Ghommem et al. [2013] compare POD and

dynamic mode decomposition methods and find the latter basis makes more accurate

predictions for a variety of parameter and boundary condition values. Chinesta et al.

[2011] advocate for proper generalized decomposition based on empirical studies,

but note the lack of rigorous mathematical foundations. Nouy [2007] note that the

method allows greater online computational savings compared to POD.

For a linear system, Willcox and Megretski [2005] compare their approach to POD

and Arnoldi methods, and demonstrate superior computational efficiency and error

bounds over a wide range of frequencies. Chen et al. [2010] points out that POD based

methods have only the largest ignored singular value as an error approximation, and

Krylov methods have no estimate at all. He advocates the certified reduced basis

method employing the“greedy” algorithm [e.g. Knezevic and Peterson, 2011]) - so

called because it iteratively adds basis vectors in the direction of the residual. Buffa

et al. [2012] provide the proof underlying the greedy algorithm’s error estimate.

Lieberman et al. [2010] employ the reduced basis method on the parameter and state

spaces of a groundwater inverse problem.

Rewieński Michałand White [2006] propose a method which combines a reduced

basis and a quasi piecewise linear approximation of the state function for a non-linear

differential equation. It is claimed the approach outperforms POD on their case

studies.

The projection based approach of Sahuquillo [1983] has been applied by Andreu

et al. [1996] to provide real-time spatially distributed groundwater flow modelling

for decision support.

Projection based methods have two principal drawbacks: the basis vectors depend

on the snapshots used to compute them, making inverse modelling and uncertainty

analysis difficult, and solving the reduced model typically involves editing the model
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code. To address the former issue, recent work aims at selecting optimal snapshots

which cover both the parameter space and the time domain. Lieberman et al. [2010]

develop an approach for the reduced basis method, Siade et al. [2010]; Baú [2012]

for POD and Pasetto et al. [2013, 2014]; Boyce and Yeh [2014] for syntheses of the

two methods. For confined aquifers, reduced models have been demonstrated to run

orders of magnitude faster than the full order equivalent. However, the approach

does not yield similar results in nonlinear problems as many more basis vectors need

to be included [Cardoso et al., 2009].

2.4 Multi-fidelity methods

Multi-fidelity surrogates refer to those constructed from the complex model by reduc-

ing numerical resolution, increasing tolerances, or removing processes. Perhaps the

simplest surrogate possible is created by reducing the numerical discretization of the

complicated model. Previous research has focused on how to upscale properties from

the scale of measurements or a fine grid to a coarse grid for rapid computation. How-

ever, Farthing et al. [2012] note that under-resolved models can produce inaccurate

objective function values and may produce “false” solutions.

The disadvantages of simply reducing resolution and the requirement for finer

detail has led to multi-fidelity methods that attempt to combine models at multiple

levels of complexity to attain the detail of the complex, at the speed of the simple. This

typically involves solving the global problem on a coarse grid, along with multiple

local problems on a finer grid. Methods often differ in how they relate the results; in

particular, in how they set the boundary conditions for the local problems.

Weinan and Engquist [2003] differentiate between homogeneous multiscale meth-

ods, which use identical models at different scales and heterogeneous methods, which

allow for different processes at each scale; for example, Darcy’s Law at one scale, and

lattice Boltzmann pore-scale effects at another. In this review we consider only ho-

mogeneous multiscale methods, which we refer to as multi-fidelity methods as they

can be more readily classified as surrogates. While they do not have the advantage of

incorporating multiple physical processes, they do still simplify the inclusion of data
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at multiple scales, possibly negating the need for upscaling.

2.4.1 The multiscale finite volume method - an example

Consider the groundwater flow equation (the continuous form of (2.13))

∇ · (K∇h) = Ss
∂h
∂t

+ q. (2.23)

For the multiscale finite volume method (MsFV) developed by Jenny et al. [2003] (see

Hajibeygi et al. [2008] for a detailed explanation), the model domain Ω is divided into

a coarse grid with M control volumes (grid cells) Ω̄m and a dual coarse grid, formed

by joining the midpoints of the control volumes of the coarse grid. The dual grid has

N control volumes Ω̃n. Head on the fine grid is computed as

h(x) ≈
N

∑
n=1

(
M

∑
m=1

φm,n(x)h̄m + φ∗n(x)

)
(2.24)

where basis functions φm,n and correction functions φ∗n are computed by solving the

following systems of equations for each dual grid cell [Lunati and Jenny, 2008]:

∇ · (K∇φm,n) = 0 x ∈ Ω̃n

(n · ∇)((K∇φm,n) · n) = 0 x ∈ ∂Ω̃n

φm,n(xi) = δni at dual grid point xi

(2.25)

∇ · (K∇φ∗n) = Rn x ∈ Ω̃n

(n · ∇)((K∇φ∗n) · n) = R∗n x ∈ ∂Ω̃n

φ∗n(xi) = 0 at dual grid point xi

(2.26)

where Rn and R∗n are some specified functions. In practice, good results are achieved

with Rn = 0, but more advanced techniques exist [e.g. Hajibeygi et al., 2008]. In a

typical finite volume fashion, (2.24) can then be substituted into (2.23), the resulting

equation integrated over Ω̄m and Gauss’ theorem applied to find the coarse grid
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heads h̄m. The MsFV method has potential for wide-scale application were it to be

included in the recently released finite volume package MODFLOW-USG [Panday

et al., 2013].

2.4.2 Other multi-fidelity methods

In this section we discuss the application of several multi-fidelity methods to ground-

water modelling. The multiscale finite element method (MsFEM) [Efendiev and Hou,

2007] proceeds similarly to the above MsFV approach, but without the correction

functions. The approach has recently been applied to groundwater flow by He et al.

[2013]. Recent work [Efendiev et al., 2012, 2013] has combined MsFEM with projection

based approaches to reduce online runtime. Sun [2008] reviews a number of mul-

tiscale methods for groundwater modelling including the multiscale finite element

method (MsFEM), the mixed MsFEM, subgrid upscaling, mixed mimitec multiscale

methods for corner-point grids, the stochastic variation multiscale method, the MsFV

method and ghost node local grid refinement. All but the latter two are mixed finite

element methods. Although MsFEM and MsFV methods are not typically more com-

putationally efficient than the corresponding fine grid solution, they allow greater

parallelization [Sun, 2008].

Multigrid [e.g. Bastian and Reichenberger, 2000] and adaptive mesh refinement

methods [e.g. Mansour and Spink, 2013] allow the problem to be solved on a hierarchy

of resolutions, providing methods for interpolating between multiple scales on the

same computational domain. Similar to traditional multigrid methods, the ghost

node local grid refinement method involves an iterative interpolation of head from the

coarse-grid solution to local fine-grid boundaries, and flux solutions in the opposite

direction. The approach is widely available as the MODFLOW-LGR package [Mehl

and Hill, 2005]. Vilhelmsen et al. [2012] conclude that the method is more efficient

than a uniform fine grid only when the area of refinement covers less than 10-15% of

the total model.

Weinan et al. [2007] refer to a number of other classical and recent multiscale meth-

ods. Domain decomposition aims to allow the problem to be solved independently on
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a number of sub-domains to facilitate parallel computation. Wavelet methods decom-

pose a model into its components of different frequencies, allowing each component

to be computed using the appropriate resolution.

In certain cases a simpler model which has a different structure or ignores certain

physical processes may be available. For example, Keating et al. [2010] build an ad

hoc analytic surrogate to predict influences on groundwater head of nuclear tests.

Although potentially useful, the approach is not generic enough to be classified and

contrasted against more general methods.

2.4.3 Comparisons and Recommendations

The multi-fidelity surrogates discussed above aim to solve the forward model, and

can therefore be substituted for the complex model in any application. While they are

intrusive, the MsFEM, MsFV, and multigrid methods maintain the detail and accuracy

of the complex model. This makes them ideal for those implementing groundwater

modelling codes, but less relevant to practitioners.

Related to such forward model surrogates, several approaches have been devel-

oped to use multi-fidelity models in optimization and uncertainty analysis. Robinson

et al. [2008] aim to develop a general framework for optimization using multiple

models with different sets of parameters. A space mapping, linking low to high fi-

delity parameters is created by varying low fidelity parameters to match high fidelity

output. A common uncertainty analysis approach is to use a coarse model to increase

acceptance rates of MCMC during Bayesian inversion of a complex model [Efendiev

et al., 2005]. Samples are evaluated by the complex model only if accepted by the sur-

rogate. Cliffe et al. [2011] apply the Multilevel Monte Carlo method to groundwater

flow. Narayan et al. [2014] develop an uncertainty quantification method based on

multi-fidelity stochastic collocation which uses low-fidelity results to inform sampling

locations for the high-fidelity model.

Doherty and Christensen [2011] advocate the use of both simple and complex

models. Complex models allow the use of expert information in prior distributions,

since their parameters correspond more readily to physical quantities. Simple models
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allow numerical stability and efficient calibration. They develop a method to compare

the results of simple and complex models to infer whether errors are due to depen-

dency on the complex model null space, measurement noise in the calibration data,

or surrogate parameters compensating for the structural simplification. Results allow

the correction of predictions of a simple model calibrated on field data. A case study

is presented using two finite difference models of different grid resolutions.

If different fidelity models (e.g. a complex model and a data-driven surrogate or

the same model at different resolutions) exist, these multi-fidelity inverse modelling

methods are particularly attractive since they can be applied non-intrusively. As

noted by Robinson et al. [2008], such approaches require a mapping from surrogate

to high-fidelity parameters. For groundwater models, even upscaling parameters

from a fine to a coarse grid is no simple matter [Wen and Gómez-Hernández, 1996;

Vermeulen et al., 2006; Mehl and Hill, 2010]. To what extent multi-fidelity models

can be used in the aforementioned inverse modelling frameworks, using simple and

practical mappings, remains an open question.

2.5 Decreasing runtime

Decreasing model runtime can be a major motivation for employing one of the sur-

rogates mentioned in Sections 2.2, 2.3 and 2.4. In this section we note some of the

techniques available for reducing model runtime other than employing a surrogate.

A Simpler model Determining appropriate model complexity is a complex issue.

At one extreme, proponents of analytic models [Matott et al., 2006; Craig and Read,

2010; Estabragh et al., 2013] espouse not just their fast runtimes, but other advantages

such as numerical stability. Others, such as Doherty and Christensen [2011]; Miller

et al. [2013], argue for the many advantages of increasing model complexity. In

any case, computational expense should certainly feature as a consideration when

determining model complexity [Hill, 2006].
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Parameterization Rather than simplifying the model itself, a common approach is

to reduce the number of parameters, thus reducing the number of samples neces-

sary for uncertainty analysis or calibration. A number of parameterization methods

are common in practice; for example zones, pilot points, splines, Karhunen-Loève,

wavelets, and singular vectors of the model sensitivities [Oliver and Chen, 2011].

Such approaches are often coupled with surrogate modelling techniques. Laloy et al.

[2013], for example, combine a polynomial chaos surrogate with a Karhunen-Loève

parameterization of conductivity.

Uncertainty analysis algorithm Surrogates are commonly used to accelerate uncer-

tainty quantification and the choice of uncertainty analysis algorithm may also have

a large effect on total runtime by reducing the number of model runs required. A

large number of uncertainty analysis methods exist. Matott et al. [2009] for example,

evaluate 65 software packages for evaluating model uncertainty. Mariethoz et al.

[2010] propose a method, iterative spatial re-sampling, that requires fewer model

runs than MCMC but yields “reasonably” similar posterior distributions. Franssen

and Kinzelbach [2009] compare ensemble Kalman filtering to a Monte Carlo based

inversion algorithm and note a significant speed up. The field of stochastic partial

differential equations provides many alternatives to sampling. For example, moment

differential equations [Winter et al., 2003] involve solving the flow equation for as

many probability moments as one is interested in. Perturbation based solutions exist

for the first and second moments of head and flux [Guadagnini and Neuman, 1999].

The wide-scale application of the approach is limited by its ability to account for

highly heterogeneous media. Vrugt et al. [2003] combine the Metropolis algorithm

with an evolutionary approach to reduce the number of model runs required for

Bayesian inversion compared to traditional MCMC. Shafii et al. [2014] suggest that

simply relaxing the convergence criterion of a MCMC sampler may yield sufficiently

accurate uncertainty estimates at a fraction of the computational cost.

Optimization algorithm As is the case with uncertainty analysis, an apt choice of

algorithm may reduce the number of forward runs necessary to calibrate a model.
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The SVD-assist [Tonkin and Doherty, 2005], adjoint sensitivity [LaVenue and Pickens,

1992], and Principal Component Geostatistical [Kitanidis and Lee, 2014] approaches

all claim to reduce the computational burden of the inverse problem. Franssen

et al. [2009]; Oliver and Chen [2011]; Zhou et al. [2014] review some of the many

optimization algorithms available to modelers.

Computational techniques If the aim of a surrogate model is simply to reduce

runtime, improving computational techniques may be a viable alternative. Relevant

topics, including choice of solvers, programming language, and parallelization tech-

niques are covered by Miller et al. [2013]. Seemingly banal choices, such as that of

compiler, may have significant implementations. For example, Intel compiled MOD-

FLOW can be almost eight times faster than the gfortran version according to Dong

and Li [2009].

Of particular note, parallelizing the forward model can reduce runtimes for a

variety of applications. HYDROLAB [Erhel et al., 2009], ParFlow [Ashby and Fal-

gout, 1996] and PFLOTRAN [Mills et al., 2009] are examples of softwares developed

explicitly for highly parallelized groundwater modelling. Linear reduction of paral-

lel walltime versus the number of processors, up to 27580 cores, has been achieved

using PFLOTRAN. By comparison, the most significant result in the data-driven sur-

rogate approaches reviewed by Razavi et al. [2012b] is a 97% reduction in complex

model evaluations reported by Regis and Shoemaker [2012]. Ignoring time to de-

velop and run the surrogate, this time saving could be achieved by parallelization of

the original model on a 30 core machine. Parallel implementations of the algebraic

multigrid solver [Thum et al., 2011] exist for both MODFLOW and FEFLOW. Fienen

and Hunt [2015] outline approaches for further parallelizing high throughput appli-

cations, where it is unnecessary for computations to interact when running, such as

uncertainty analysis and calibration.
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2.6 Further research

Based on our review of the methods above, we consider that a number of areas war-

rant further research. The limitations of global surrogates have been identified. In

particular there is a need to deal with complex fields with discontinuities. Localiza-

tion techniques attempt to overcome these difficulties by dividing parameter space

into a number of sub-domains, and employing a different surrogate on each. Such

methods are still in their infancy, but are receiving increasing attention (see polyno-

mial chaos references in Section 2.2.3). While localized parameterizations have been

developed for groundwater models [Nan and Wu, 2011, e.g.], localized surrogates, to

our knowledge, have not.

Quantification of the uncertainty introduced by the surrogate model is another

nascent field. Many approaches have not yielded rigorous bounds on surrogate

computed posteriors. Application of, and comparison between, approaches is made

difficult by the lack of an established measure of surrogate-induced uncertainty [Chen

et al., 2010], and surrogate-enabled runtime reduction [Razavi et al., 2012a].

Multiscale methods which preserve the accuracy and detail of the complex for-

ward model hold promise for implementation in industry groundwater modelling

codes. For example, as mentioned in Section 2.4, there is the possibility of a MsFV or

MsFEM version of the numerous finite volume and finite element codes in widespread

use. Further investigation is required into the possible increases in computational

efficiency of each multiscale method.

Many data-driven methods rely on ad hoc approaches to select snapshots on

which to calibrate the surrogate. Further research is warranted into the application

to groundwater model surrogates of the innovative snapshot selection methods from

the multi-fidelity [e.g. Narayan et al., 2014] and projection based [e.g. Pasetto et al.,

2014] literature. Although these approaches were developed in an uncetainty anal-

ysis framework, they could as easily be applied to snapshot selection for integrated

modelling or decision support.

In addition to the above areas which require further research, a number of promis-

ing techniques appear as active areas of research in the literature. For a small number



§2.7 Conclusion 29

of parameters, radial basis function and kriging based optimizers [Regis and Shoe-

maker, 2012] have been shown to compare favorably to industry standard methods

such as gradient-based PEST [Espinet and Shoemaker, 2013]. Tensor based sparse

grid collocation methods for polynomial chaos based uncertainty analysis [Espig et al.,

2013; Jakeman and Roberts, 2013] deserve attention, as it is a rapidly improving field

of research with the ability to handle increasing numbers of parameters. Parameter

independent projection based methods [Boyce and Yeh, 2014; Pasetto et al., 2014] have

been shown capable of significant runtime reductions while maintaining spatially dis-

tributed parameters and outputs, making them applicable to inverse modelling along

with other applications.

2.7 Conclusion

The purpose of this review is to summarize approaches to surrogate modelling which

are applicable to groundwater modelling. As has been already indicated, no surro-

gate method is universally superior. We conclude by summarizing our findings on

surrogate models appropriate to different use cases.

Multiscale and parameter independent projection based methods have potential to

replace groundwater models in any context, since they can emulate the full output of

a complex model. However, their likely application is by developers of groundwater

model codes, rather than everyday users, because they are intrusive. If the aim of a

surrogate model is simply to reduce runtime, we add that computational techniques

may be a viable alternative in any context.

For decision support, where very short runtimes are required, data-driven ap-

proaches are the obvious choice. Since decision support typically involves a small

number of parameters, many of the drawbacks of data-driven methods are irrelevant.

The only alternatives are certain projection based approaches which only require the

once off computation of basis vectors.

In the case of inverse modelling, we echo previous concerns that despite the ease

of use and popularity of data-driven methods, they have well-established limitations

and should be used with care. Preference should be given to approaches which have
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been validated in the context in which they are to be used. For example the kriging

and radial basis functions enabled optimization, or polynomial chaos expansion

uncertainty analysis methods mentioned in Section 2.6. Projection based approaches

have only recently been applied to the inverse modelling of groundwater models, with

promising results for runtime reduction. Doubtless, the benefits and disadvantages

of these methods will be exposed more clearly as they are further explored. Multi-

fidelity inverse modelling methods (discussed in Section 2.4.3) offer potential for

both direct application and future development. Again, they have only recently been

applied to groundwater models, but hold great promise. Developing maps from low

to high fidelity models remains the biggest hurdle to their widespread application.



Chapter 3

Polynomial Chaos Expansions

3.1 Introduction

Thorough analysis of mathematical models is a prerequisite to their application to

system or policy design. Models of hydro-geological systems are typically PDE-based

and characterized by a high degree of complexity and uncertainty in the parameter-

ization of hydraulic properties and boundary conditions. Fine grids are required to

capture the spatial heterogeneity, making even single model runs computationally

expensive. Large samples of model runs are needed to how understand uncertainty in

the inputs effects confidence in the predictions. Hence thorough analysis in the form

of uncertainty propagation, sensitivity analysis, convergence studies and inversion

can be prohibitively expensive.

In this chapter we propose a computationally efficient method to perform uncer-

tainty propagation and sensitivity analysis on a groundwater model using polynomial

chaos expansions. We demonstrate the effectiveness of the method given a range of

typical input-output relationships. The first output of the study is a computationally

efficient estimate of sensitivities and output distributions.

A major limitation of polynomial surrogate methods is the growth in the number

of coefficients with an increase in random variables and polynomial order (see Equa-

tion (3.6)). The second output of this study is a method of mitigating this effect by

fitting nested lower order polynomials, rather than a single higher order polynomial.

31
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3.1.1 Balancing stochastic and spatial resolution

Sensitivity and uncertainty analysis runtimes of groundwater models are affected by

model complexity and the number of samples necessary. Models can be systematically

simplified [Pachepsky et al., 2006] or emulated [Razavi et al., 2012b; Asher et al., 2015]

in many ways. However, the choice of spatial and temporal resolution resolution is

often the most pertinent aspect of physically based model complexity. The most

obvious way to simplify a model based on a set of discretized differential equations is

to reduce the resolution of the discretization (the physical resolution). Likewise, while

many uncertainty analysis methods exist [Refsgaard et al., 2007; Matott et al., 2009],

their computational cost boils down to the number of model runs they require (or

the stochastic resolution). Hence, in most cases there is a direct trade off in accuracy

between physical resolution (spatial grid size), and stochastic resolution (the number

of samples used to compute sensitivity and uncertainty metrics).

In practice, discretized inputs for groundwater flow models are often produced

from continuous conceptual data using graphical user interfaces such as Groundwater

Vistas [Rumbaugh and Rumbaugh, 2007], Visual MODFLOW FLEX [Fitzpatrick, 2012],

Aquaveo GMS [Aquaveo, 2011] or ModelMuse [Winston, 2009]. Recent work has

developed automated tools to extract parameters from geospatially enabled databases

and discretize them to the model mesh [e.g. Bhatt et al., 2014]. Where the original

conceptual data is available, such methods allow the same conceptual model to be

implemented using a range of spatial resolutions.

While this chapter suggests that spatial resolution should be adjusted to mini-

mize associated error given computational constraints, a noteworthy aside is that

adjusting the spatial resolution of groundwater models is a non-trivial task. This

is particularly true with respect to aquifer properties. Appropriate grid resolution

depends on modelled physics, parameterization, and quantities of interest [Ababou

et al., 1989; Bower et al., 2005]. Numerous studies [Vermeulen et al., 2006; Neuman

and Di Federico, 2003; Wen and Gómez-Hernández, 1996; Mehl and Hill, 2010] have

documented the limitations in upscaling groundwater models. Upscaling parameters

refers to reducing their spatial resolution, computing their values on a coarse grid
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from the corresponding values on a fine grid. Two approaches are used to upscale pa-

rameters to a coarser grid: local and non-local techniques. In local techniques, coarse

scale values are an explicit function of the fine scale values contained in that cell.

Non-local techniques solve the groundwater flow equation for the coarse grid with

boundary conditions given by the fine grid. It should be noted though that coarse

scale conductivities are not a “material property”, but depend on sub-grid level flow

conditions [Wen and Gómez-Hernández, 1996]. Hence conductivity parameter values

depend on the grid size. Mehl and Hill [2010] find that stream bed conductance pa-

rameters (Cauchy boundary conditions) also depend on grid discretization. Although

a number of optimal approaches for upscaling transmissivity and boundary condi-

tions exist, none significantly reduce upscaling error in practice [Vermeulen et al.,

2006]. Pogson and Smith [2015] provide a method to quantify the spatial resolution’s

contribution to uncertainty with reference to a fine grid.

Despite these nuances, implicit in the use of process based models is a belief

that finer grids are more accurate. Therefore it is desirable to compute the “error”

associated with spatial resolution by conducting convergence studies as conducted in

this chapter. Previous work has been conducted into analyzing groundwater model

convergence as spatial grids are refined [Brooks and Tobias, 1996; Bower et al., 2005;

Zyvoloski and Vesselinov, 2006].

It has been noted that while a significant body of literature has developed concern-

ing uncertainty in groundwater models (i.e. stochastic hydrogeology), there remains

a significant gap between research and industry [Renard, 2007; Neuman, 2004; Hunt

and Doherty, 2011]. Therefore, this chapter focuses on three classes of methods with

both established support in the literature and readily available software implemen-

tations: uncertainty propagation, sensitivity analysis and sampling based inverse

modelling. Polynomial chaos expansions have been used to implement each of these

uncertainty quantification methods for groundwater models. The method’s flexibility

is a key strength: it develops a surrogate of the forward model that can be applied in

many problem settings. Ghanem [1998] used polynomial chaos expansions to propa-

gate uncertainty in a groundwater model. Ciriello et al. [2013] employed polynomial

chaos expansions for global sensitivity analysis of a groundwater model. Laloy et al.
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[2013] apply a spectral projection based polynomial chaos approach to Bayesian in-

ference of a groundwater model. This chapter aims to serve as a more general guide

to the application of polynomial chaos surrogates to groundwater modelling. Hence

we explore different configurations of flow models, as well as the convergence with

respect to spatial and stochastic resolution.

Similarly to the case with physical resolution, the error in sensitivity indices or

output distributions due to the number of samples can be computed using conver-

gence studies. Ballio and Guadagnini [2004]; Ernst et al. [2012]; Xiu and Karniadakis

[2003] have studied the stochastic convergence of groundwater models. Leube et al.

[2013] recently found considerable efficiencies could be made by optimally allocating

resources by selecting the number of Monte Carlo samples and spatial resolution for

the estimation of statistical moments of groundwater level. However, their brute force

approach involved computing the budget and error at each point on a dense grid of

spatial and stochastic resolutions, making it difficult to apply in practice. Moslehi et al.

[2015] instead used a non-linear programming method, approximating the sampling

error by the sample variance and spatial discretization error by a polynomial.

3.1.2 Structure

In this chapter we conduct a convergence study on a practical groundwater model -

and then conduct sensitivity analysis using Polynomial Chaos methods, which proves

significantly more efficient than Monte Carlo sampling.

3.2 Polynomial Chaos Expansions

Consider the generic model

h = F(θ) or L(θ, h) = 0 (3.1)

where θ = (θ1, . . . , θr) ∈ Γ ⊂ Rr are the random parameters and h is the output

of interest. F is the forward operator, which typically cannot be defined analytically.

Instead, it is given as the solution to a system of equations L.
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Groundwater models are typically based on solving the flow equation (i.e. L)

∇ · (K∇h) = S
∂h
∂t

+ q (3.2)

where h(x, t) is pressure, K(x) hydraulic conductivity, S(x) is specific storage, q(x, t)

is a source sink term, x = (x1, · · · , xd) ∈ Rd are the spatial coordinates and t is time.

The models in this chapter are 3 dimensional so d = 3. The inputs h (for previous t),

K, S and q will be determined from available data and the random parameters θ.

Polynomial chaos expansions allow efficient approximations of relationships such

as (3.1). Cameron and Martin [1947] proved that any process F(θ) of finite variance

can be represented as

F(θ) = a0ψ0

+
∞

∑
i1=1

ai1 ψi1(θi1)

+
∞

∑
i1=1

i1

∑
i2=1

ai1i2 ψi1(θi1)ψi2(θi2)

+
∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

ai1i2i3 ψi1(θi1)ψi2(θi2)ψi3(θi3)

+ · · · , (3.3)

where ψi is the order-i Hermite polynomial and θi are independent Gaussian random

variables. The key property of the multivariate Hermite polynomials in (3.5), is that

they satisfy the orthonormality condition with respect to Gaussian random variables

∫
Γ

ψi(θ)ψj(θ)ρ(θ)dθ = δi,j (3.4)

where ρ is the Gaussian probability density function and δi,j is the Kronecker delta

function.

In multiple dimensions, typically tensor product polynomials are used and we
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can employ a multi-index to rewrite (3.3) as

F(θ) =
∞

∑
i=0

αiΨi(θ) (3.5)

where there is a one-to-one correspondence between the coefficients and functions in

(3.3) and (3.5). Ψ is a tensor product of the univariate polynomials.

In practice, for n random variables and maximum polynomial order p, (3.5) is

truncated

F(θ) ≈
P

∑
i=0

αiΨi(θ1, · · · , θn) (3.6)

where P =

(
n + p

n

)
= (n+p)!

n!p! . Convergence of the Hermite-chaos, (3.6), is optimal if

θ are Gaussian random variables.

The Wiener-Askey scheme of Xiu and Karniadakis [2002] gives the corresponding

one dimensional orthogonal polynomial which has a weighting function identical

to that distribution’s probability density function. Functions with random inputs

of normal, uniform, beta, exponential and gamma distributions can be optimally

approximated by expansions in Hermite, Legendre, Jacobi, Laguerre and Generalized

Laguerre polynomials respectively. Algorithms do exist for computing orthonormal

one dimensional polynomials for general distributions [Liu and Narayan, 2021].

Of practical note too are algorithms [e.g. Jakeman et al., 2019b] which allow

construction of PCE where the variables are dependent.

Once calibrated, a polynomial chaos expansion (3.6) can be used as a surrogate of

a function (3.1). The expansion is a simple analytic expression so can be evaluated

quickly. Furthermore, statistical moments and sensitivity indices can be computed

directly from the coefficients.

A number of approaches exist for calibrating a polynomial chaos expansion, ie.

finding αi of (3.6), for a given model. In the following sections we explain several of

the most common.
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3.2.1 Stochastic Galerkin

In a similar fashion to other projection based surrogates [McPhee and Yeh, 2008], the

stochastic Galerkin method solves for the coefficients in an intrusive manner. The

output h is written as a truncated polynomial chaos expansion, such as (3.6) to give

h ≈
P

∑
i=0

ĥiΨi(θ) (3.7)

and substituted into the governing equations (3.1)

L(θ,
P

∑
i=0

ĥiΨi(θ)) = 0. (3.8)

Similar to the weak form in the finite element method, Galerkin projection onto the

basis polynomials Ψi, using the same inner product as the orthogonality condition

(3.4), is then used to form a set of P + 1 equations

∫
Γ

L(θ,
P

∑
i=0

ĥiΨi(θ))Ψj(θ)ρ(θ)dθ = 0, ∀j = 0, · · · , P. (3.9)

These can be solved for the coefficients, ĥi, using typical numerical techniques, similar

but not identical to the solver used for the original model defined by (3.1).

Following Xiu [2009], consider the example of the stochastic Galerkin solution to

groundwater flow (from (3.2))

∂h(x, t, θ)

∂t
= ∇x · (k(x, θ)∇xh(x, t, θ)) + f (x, t, θ), x ∈ Rd, t ∈ (0, T] (3.10)

h(x, 0, θ) = h0(x, θ), h(·, t, θ)|∂D = 0 (3.11)

Assume the conductivity field k can be parameterized using the Karhunen-Loève

expansion with n random terms

k(x, y) =
n

∑
i=0

k̂i(x)θi (3.12)

where θ0 = 1 and k(x, θ) ≥ kmin > 0, ∀x, θ. Further assume the head will have finite
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variance, so can be approximated by

h(x, t, θ) ≈
P

∑
i=0

ĥi(x, t)Ψi(θ). (3.13)

Substituting (3.12) and (3.13) into the governing equations (3.10), then taking the

inner product of the equation with each basis to project them onto the random space

spanned by the basis polynomials Ψi yields

∂ĥk

∂t
(x, t) =

n

∑
i=0

P

∑
j=0
∇x ·

(
k̂i(x)∇x ĥj(x, t)

)
eijk + f (x, t), ∀k = 0, · · · , P (3.14)

where

eijk = E(θiΨjΨk) =
∫

Γ
θiΨj(θ)Ψk(θ)ρ(θ)dθ, i ∈ (0, n), 0 ≤ j, k ≤ P, (3.15)

Simplifying (3.14),

∂ĥk

∂t
(x, t) =

P

∑
j=0
∇x ·

(
(

n

∑
i=0

k̂i(x)eijk)∇x ĥj(x, t)

)
+ f (x, t), ∀k = 0, · · · , P (3.16)

which can be solved as a system of P + 1 diffusion equations.

3.2.2 Pseudo-Spectral Projection

Pseudo-spectral methods are a type of collocation approach with a long history of ap-

proximating deterministic functions with orthonormal polynomials [e.g. Gheorghiu,

2007]. More recently, they have been applied to stochastic equations.

Consider the expansion from (3.6)

F(θ) ≈
P

∑
i=0

ĥiΨi(θ). (3.17)

As with Fourier series, the optimal coefficients can be found using the projection

ĥi =
∫

Γ
F(θ)Ψi(θ)ρ(θ)dθ, i = 1, · · · , P
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(3.18)

which ensures the error of the projection is orthogonal to the span of the polynomial

basis [Le Maitre et al., 2002]. The stochastic integral in (3.2.2) is typically approx-

imated using quadrature rules which select Q nodes and weights {(θ(j), w(j))}Q
j=1,

obtain the corresponding solutions {h(j) = F(θ(j))}Q
j=1 and compute the coefficients

[e.g. Eldred and Burkardt, 2009]

ĥi =
Q

∑
j=1

h(j)Ψi(θ
(j))w(j), i = 1, · · · , P (3.19)

3.2.3 Regression

A polynomial chaos expansion can be also calibrated in a non-intrusive manner

using regression [Isukapalli, 1999]. While the pseudo-spectral projection approach

approximates the integral which would minimize the L2 expansion error for a given

set of Q sample points {θ(j)}, least squares regression minimizes the discrete error

‖F(θ)−
P

∑
i=0

ĥiΨi(θ)‖2 =
1
Q

Q

∑
j=1

(
F(θ(j))−

P

∑
i=0

ĥiΨi(θ
(j))

)2

. (3.20)

At set of Q sample points, a polynomial chaos expansion (3.6) can be written in

matrix form

h = Pc (3.21)

where P is the Q× (P + 1) “Vandermonde” matrix with elements defined

Pij = Ψj(θ
(i)), (3.22)

h is made up of solutions of the original model

h =
(

F(θ(1)), · · · , F(θ(Q))
)T

(3.23)
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and the coefficient array

c =
(

ĥ0, · · · , ĥP

)T
(3.24)

is computed as the least squares solution:

c = (PTP)−1PTh. (3.25)

The sample points can be chosen in any way that leads to an invertible matrix

(PTP). Winokur [2015] review other methods, such as hybrid least-angle regression

or compressed sensing which may be used to solve (3.24) while taking advantage of

the sparsity of the expansions.

3.2.4 Sparse Grids

Another method of fitting a PCE is by first using sparse grid [e.g. Barthelmann

et al., 2000; Hegland, 2003] interpolation and then transforming these into a PCE

[Jakeman et al., 2019a]. Sparse grids are a method of stochastic approximation of

multivariate functions at a fraction of the computational cost of a full tensor product

interpolation. Consider the function Fα(θ) where θ are the inputs of interest, and

α parameterizes the coarseness of the physical discretization. A full tensor product

interpolation, at nβ = d points, is a weighted sum

Fα,β(θ) = ∑
j≤β

Fα(θ
(j))

d

∏
i=1

li,j(θi) (3.26)

where the weights are tensor products of univariate Lagrange polynomials

li,j(θi) =

mβi

∏
k=1,k 6=j

θi − θ
(k)
i

θ
(j)
i − θ

(k)
i

, i ∈ {1, . . . , d} (3.27)

for the set of points θ
(j)
i , j ∈ {1, . . . , mβi};
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To fit the interpolant, Fα must be evaluated on Mβ = ∏d
i=1 mβi points, written

d⊗
i=1

i
βi
=

[
θ(1) · · · θ(Mβ)

]
∈ Rd×Mβ . (3.28)

Nested Clenshaw-Curtis points are often used for uniform variables to define the

univariate Lagrange polynomials

θ
(j)
i = cos

(
(j− 1)π
mβi − 1

)
. (3.29)

In tensor product interpolation the number of points grows exponentially with

the number of random variables d. Sparse grids on the other hand use a weighted

sum of low-resolution tensor-products [Barthelmann et al., 2000]

Fα,I (θ) = ∑
β∈I

cβFα,β(θ) (3.30)

with weights cβ given

cβ = ∑
j∈⊗d

i=1{0,1}
(−1)|j|1 χI (β + j), χI (k) =


1 k ∈ I

0 otherwise.
(3.31)

The points of a sparse grid are made up of union of tensor products ZI =
⋃

β∈I Zβ.

A common implemenation is the Clenshaw-Curtis isotropic sparse grid where the

total number of points in the grid is given

M(l) ≈
2l

l!
dl ,

versus the larger number of points in the full tensor product

Ml = md
l =

(
2l + 1

)d
l = (l, . . . , l).

The sparse grid approximation (based on Lagrange polynomials l) given in Equa-
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tion 3.30 can now be transformed to a PCE [Jakeman et al., 2019a] (based on orthonor-

mal polynomials φ). For each tensor-product interpolant (Equation 3.26) that makes

up the sparse grid, we can write the Lagrange basis function li,j as a PCE

li,j(θi) =

mβi

∑
k=1

αkψk(θi) j = 1, · · · , mβi , i = 1, · · · , d. (3.32)

The coefficients αk for the orthonormal polynomial can be derived using Gaussian

quadrature.

3.2.5 Statistical Information

Once we have a calibrated polynomial chaos expansion (3.6) from one of the above

methods, various important statistical metrics can be computed analytically using the

surrogate. Typically this is several orders of magnitude faster than the alternative,

which involves solving the underlying differential equations on a random sample of

inputs.

A common method for characterizing the relative importance of a number of

inputs and parameters to model outputs is variance based global sensitivity analysis.

Two established methods are the Sobol [Sobol, 2001] and the Fourier Amplitude

Sensitivity Test [Cukier et al., 1973]. Recently, Sudret [2008] observed that the same

sensitivity indices can be computed efficiently from polynomial chaos expansions.

These metrics can be computed as follows.

Mean

E(F) =
∫ ( P

∑
i=0

αiΨi(θ1, · · · , θn)

)
ρ(θ)dθ = α0

Variance
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Var(F) = E
(
(F−E(F))2

)
=

P

∑
i=1

α2
i E
(
Ψ2

i (θ1, · · · , θn)
)

=
P

∑
i=1

α2
i

Sobol indices

S(i1,··· ,is) =
∑i∈J α2

i E
(
Ψ2

i (θ1, · · · , θN)
)

Var(F)

where J is the set of multi-indices with only non-zero entries in the positions

(i1, · · · , is).

Main effect

The contribution to variance from a single variable.

S(i1) =
α2

i1E
(
Ψ2

i1(θ1, · · · , θN)
)

Var(F)
(3.33)

Total effect

The sensitivity of the variance due to the single variable and its interactions.

ST
(i1) = ∑

(j1,··· ,js)∈T
S(j1,··· ,js) (3.34)

where T = {(j1, · · · , js) : i1 ∈ (j1, · · · , js)} .

3.3 Application of PCE to a Groundwater flow model

In this section we demonstrate the effectiveness of a PCE surrogate for the uncertainty

analysis of a groundwater flow model. The purpose of the model is to be used

as a component in an integrated model like that of Iwanaga et al. [2018]. They
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combine a similar groundwater model with surface water, ecology, economic and

policy components. It is noted that the groundwater model’s computational expense

is a bottleneck in iterative and participatory modeling. Surrogate methods, such as

PCE, allow such models to be run quickly without a significant reduction in model

output.

As an example of the application of PCE to a groundwater model, a small

(20x40km) part of the Peel River catchment (Northern NSW, Australia) is used, with

the PCE surrogate was trained to emulated the response of water pressure (head) at

four locations (see Figure 3.1) to 12 uniformly distributed parameters, including the

four uncertain parameters in Table 3.1.

Name Description Range

hk KLE mode i The ith modes of Karhunen-
Loève parameterization of the
conductivity.

[0, 4] meters

stage height i The river stage height during
time period i

[0, 4] meters

well rate i The flow out of the ith well [20, 50] gigaliters per year
rch intensity Effective rainfall (amount of rain-

fall that reaches the water table)
[10, 50] mm per year

Table 3.1: The uncertain inputs for the groundwater flow model are shown. All were given
uniform distributions.

To test the flexibility of the approach we created a model with a variety of com-

mon inputs and outputs. These include examples of two types of boundary condi-

tions in groundwater flow models, namely specified flux boundary (Neumann) in

well rate i and head-dependent flux boundaries (Robin or mixed) in stage height i.

Specified head boundaries (Dirichlet) were not included in this particular analysis,

but behaved similarly to head-dependent flux boundaries in early analysis. This

range was selected to test the application of the approach in a variety of modelling

contexts.

Using a common method [e.g. Ghanem and Dham, 1998] we create Karhunen-

Loève parameterization of conductivity. By assuming several statistical properties of

the conductivity (mean, standard deviation and correlation length of the covariance
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kernel), we can write a given conductivity field (2D image) as a weighted sum of basis

fields. We can now parameterize uncertainty in the conductivity field by treating the

weights (hk KLE mode i) as random variables.

The data for the study site is from publicly available, continental scale datasets

[Carrara et al., 2017]. We develop an automated conceptualization workflow from

continential scale data sets to MODFLOW [Mehl and Hill, 2005] input files as shown

in Figure 3.1, so as to allow multiple models of different spatial resolutions. The

worflow was built using utility libraries contributors [2021] and Bakker et al. [2016]

to perform geospatial operations and model input file formatting respectively.

3.3.1 Surrogate error and runtime reduction

The aim was to develop an efficient, yet comprehensive understanding of the input-

output relationships of the model for a range of inputs at the four selected bore

sites. Following the adaptive algorithm of Narayan and Jakeman [2014]; Jakeman

et al. [2019a] we considered error introduced by spatial discretization alongside the

stochastic error. Figure 3.2 shows the convergence in surrogate model error with the

number of complex model runs used to train the surrogate (i.e. stochastic resolution).

Results are plotted for three spatial resolutions. The error is the RMSE with respect

to the complex model at the highest spatial resolution. It is of note that the adaptive

sparse grid surrogate here converges to less than 1% error in less than 200 runs of a

moderately complex groundwater model with a range of common inputs and outputs.

Note the error on this plot is RMSE in units of meters, the percentage error is an order

of magnitude lower. As seen in Figure 3.3, this convergence holds for the statistical

outputs of the model. Here the error reported is averaged across the four locations.

With a validation set of 1000 samples of the uncertain parameters (see Table 3.1), we

compare the PCE estimated mean with the error of the Monte Carlo (MC) estimate

using the same number of complex model runs. This shows the PCE estimate of the

mean to be three orders of magnitude better than the MC estimate using 100 complex

model runs.

Surrogate and complex model predictions are plotted against one another in
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(a) Vector

(b) Raster

Figure 3.1: Examples of the geospatial data available for the Peel river catchment in its raw
vector and processed raster form. Bores (black), rivers (blue) and elevation (reds) ar shown.

Figure 3.4 using the surrogate trained on 100 complex model runs. Note that the

depth of bore 3 is much less ( 6m) compared to the other bores ( 25-60 m), which

explains the different RMSE seen in Figure 3.2. A major finding is that a surrogate

of this accuracy has a one time offline cost of 100 complex model runs, after which

predictions can be made at almost negligible cost as seen by the online surrogate

runtime ratios given in Table 3.2. Note that the complex model runtime includes not

only expensive computation, but a significant amount of I/O (reading and writing
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Model Size (number of finite difference cells) Ratio of Complex/Surrogate Online Runtime

10x20 115,158

20x40 470,293

40x80 2,219,158

Table 3.2: Computational requirements of the adaptive sparse grid calibrated PCE surrogate.
These ratios are very high because the surrogate execution takes a small fraction of a second.

files). The offline time to calibrate a PCE is dominated by the necessary complex

runs. Fitting the coefficients of the PCE once the data is generated is computationally

negligble.

As described in Section 3.2.5, this PCE surrogate can be used to compute sensi-

tivity indices [Jakeman et al., 2019a]. These are plotted in Figures 3.5(a) and 3.5(b).

These plots show the values of the Sobol’ main effect for different stochastic and spa-

tial resolutions respectively. The main effect indicates the contribution to variance of

that input, excluding interactions. If all the main effects sum to one then the model is

additive (i.e. there are few interactions). The magnitude is not important here, but the

relative height of the curves shows the relative importance of that variable according

to the surrogate trained at that point. The horizontal axis shows the change as more

full model runs are added to the surrogate training set. Note that low variations of

the curves in Figure 3.5(a) indicate the PCE surrogate is able to accurately estimate

these indices based on a few (< 200) model runs; i.e. by the first point on the plot. For

two of the locations in Figure 3.5(b), the relative importance of well rate i and the

hk KLE i parameters shift as spatial resolution is increased. As resolution increases

boundary conditions change from covering one to multiple cells, and from occurring

in the same cell as an input to one nearby. As discussed above, there are few tech-

niques for thoroughly treating these kinds of grid scale changes. We conclude here

that given the rapid convergence of the surrogate with stochastic resolution, many

modellers would benefit from an increased focus (and computational investment) in

quantifying uncertainty due to physical resolution.
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Figure 3.2: Convergence of the RMSE error (vertical axis) with number of complex model
runs (horizontal axis) at four locations. Results are shown for three spatial resolutions.
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Figure 3.3: Error in the mean estimate as computed by the PCE surrogate for a given number
of complex model runs and the highest physical resolution. This is compared with the error
of the Monte Carlo (MC) estimate using the same number of complex model runs. Error is
the relative RMSE averaged across the four locations.
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Figure 3.4: Scatter plots of complex v surrogate computed head at four locations.
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(a) Convergence of the Sobol’ main effect sensitivity index with number of complex model runs. The
“boring” flat curves indicate the PCE surrogate is able to accurately estimate these indices based on a
few (< 100) model runs; i.e. by the first point on the plot. The colours of the curves match the legend in
the below sub figure.

(b) Convergence of the Sobol’ main effect sensitivity index with the number of points in the spatial
discretization.

Figure 3.5: Sensitivity indices.
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3.4 Nested Polynomials

As noted above, a PCE surrogate of n random variables and maximum polynomial

order p will have (n+p)!
n!p! unknown coefficients. The principal limitation of the PCE

method, as with many surrogates, is the curse of dimensionality. The rapid growth in

polynomial order (and hence computational requirements) for the large n necessary

to parameterize uncertainty in many practical problems. The sparse grid method

used in Section 3.3 are able to delay growth in computational requirement compared

to full tensor product interpolation, and have been demonstrated on larger numbers

of random variables (e.g. 40 in Narayan and Jakeman [2014]).

However, there is still a need for algorithms which deal with greater numbers of

random parameters. In this section we explore the potential of nested polynomials to

reduce the dimensionality of the same groundwater problem discussed in Section 3.3.

While nested lower order polynomials cannot emulate the full flexibility of a single

polynomial with the same total order, they have important advantages. First, they

have fewer terms and hence require less training data and computational resources.

Second, the nested (i.e. “deep”) structure is uniquely suited to implementation in

the deep learning software packages discussed in Chapter 5. While the underlying

reasons are not yet fully understood, there is significant empirical evidence [Lin et al.,

2017] that nested structures outperform flat functions in many modelling contexts.

Setup

In this section we deal with employ two types of polynomials. The first few (proba-

bilists’) Hermite polynomials are given below along with the recursion formula used
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to compute higher orders [Chihara, 1978]

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 + 15x

· · · (3.35)

Hn+1(x) = xHn(x)− nHn−1(x).

Monomials are simply written

M0(x) = 1

M1(x) = x

M2(x) = x2

M3(x) = x3

· · · (3.36)

Mn(x) = xn.

To implement our nested model, we define a “layer” function f p as the expansion

f p(x) = ∑
i∈1,...,p

αiPi(x) (3.37)

where Pi are either the Hermite polynomials (H) or monomials (M) described above, p

is the order of the layer, θ the input and αi the coefficients which need to be calibrated.

We will denote 3.37 as either Hp or Mp depending on the polynomial used. Layers

can be composed, e.g. M2 ·M2, where the output of the first 3.37 becomes the input

x for the second.
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Multiple random variables n are introduced by defining e.g.

Hp
n = f p(x) = ∑

i∈1,...,p
αi

(
∏

j∈1,...,n
Hi(xj)

)
(3.38)

Multiple outputs are implemented in parallel with a layer 3.38 for each.

Demonstration

As noted above, nested polynomials have fewer terms than a single polynomial of

the same order. For example, a polynomial M6
5 of order p = 6 and n = 5 random

variables has 462 terms. A composition of lower order polynomials M2
5 ·M2

5 ·M2
1 has

231. While the latter will have the same total order, it evidently cannot emulate the

full range of functions spanned by the larger expression. The question is whether

nested polynomials are more efficient in practice, where the coefficients of surrogate

polynomials are typically sparse.

Since libraries developed for deep learning (see Chapter 5) applications are based

on similar nested structures, we implemented a nested PCE framework using the

deep learning library Pytorch [PyTorch]. We built a number of surrogates using

layers like Equation 3.38 of different depths, and calibrated them on data from the

same groundwater model as the previous section. To simplify this analysis a single

output was considered, the water pressure at a particular location and time. The

inputs were re-sampled using normal distributions, with the same center.

As shown in Figure 3.6, the nested structure results in a more accurate surrogate

in each of the scenarios we tested. The plots show the convergence of the surrogate

error with optimizer iterations (as additional training data is used in the calibration),

for a mix of polynomial structures and training data sizes. In most cases the nested

structure also converges more quickly. Optimization was done via limited memory

BFGS (acronym for original author’s names) algorithm of Byrd et al. [1995]. Perfor-

mance was similar with the more popular Adams optimization routine of Kingma

and Ba [2014].

Note that each training iteration in Figure 3.6 introduces new data (constrained

by the total number of samples in the training set), so the horizontal axis is partly
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(a) 200 model runs in training set
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(b) 1000 model runs in training set

Figure 3.6: PCE surrogates of mid head mean, implemented as deep learning models. H are
Hermite Polynomials and M are standard Monomials. The exponent indicates the order of
the polynomial.

a proxy for how many complex model runs are used. This is an artefact of the

optimization implementation in Pytorch [PyTorch], which is designed to handle

parallel training of large datasets (too big to fit in memory) on high performance

computers. A more thorough future investigation into precise convergence over

multiple optimization runs for a given number of complex model runs is beyond the

scope of this work. The architectural choices made here: the optimization routine,

how to combine multiple inputs and outputs, the number of layers and polynomial

choice are somewhat arbitrary and warrant further investigation. From this early

demonstration, there are two promising findings. First, it shows nested polynomials,

implemented in a state of the art deep learning framework, can outperform flat

structures. Second, it shows the potential of the PCE theory [Xiu and Karniadakis,
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2002] in this practical setting. As expected, the Hermite polynomials converged

significantly faster than monomials for this problem where the inputs were normally

distributed. Further research is required to systematically understand the impact of

each architectural consideration on surrogate accuracy and efficiency.

3.5 Discussion and Conclusions

There are two main results from this chapter. The first relates to the application of

existing PCE approaches to groundwater modelling. The second explores a novel

direction PCE research could take.

3.5.1 PCE of a Groundwater Model

In this paper we demonstrate the application of a PCE surrogate to the analysis of a

groundwater model. The method allows very efficient uncertainty propagation and

sensitivity analysis. The adaptive sparse grid algorithm [Jakeman et al., 2019a] trains

a PCE in several hundred model runs which captures crucial parameter interactions

and emulates the model to a fidelity which is sufficient for many applications. While

accuracy requirements will vary by application, this approach finds the point at which

the surrogate induced error will be outweighed by spatial resolution errors. We

propose that the method can be used in a thorough analysis framework by studying

convergence in the error of PCE and sensitivity indices with an increase in stochastic

and spatial resolution. Such analysis gives an understanding of model complexity,

interactions and uncertainties. While highly non-linear relationships would make

the method impracticable by requiring high order polynomials and therefore a large

number of training runs, such relationships are not common in many groundwater

modeling applications.

PCE software implementations are widely available [Eldred et al., 2013; Feinberg

and Langtangen, 2015; Jakeman, 2020b] and do not require significant expertise to

train. Therefore we recommend the technique as among the most valuable surrogate

based tools for the efficient analysis of groundwater models.

PCE can provide an easy to implement initial analysis of a model. It could aid
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in selection of model features and structure during early stages of the modelling

process [Jakeman et al., 2006]. It might also be incorporated into a number of the well

established frameworks which exist for inverse modelling. For example, the method

of Doherty [2009]; Doherty and Hunt [2010], which is based on Truncated Singu-

lar Value Decomposition, Tikhonov regularization and Gauss-Marquardt-Levenberg

parameter-estimation. A PCE could be used to compute the sensitivities necessary

for the the Null-Space Monte Carlo [Tonkin and Doherty, 2009] method employed.

Similarly, the ad-hoc surrogate used by Keating et al. [2010] could be replaced by a

more generalizable PCE. PCE surrogates have also been used within another well

developed Bayesian setting, Markov Chain Monte Carlo methods [Laloy et al., 2013],

to accelerate uncertainty quantification.

The principal drawback of the adaptive approach employed in this paper is diffi-

culty dealing with fragile full models. Future work could focus on robust algorithms

able to continue past iterations which fail when the underlying model cannot process

the sampled inputs. A key difficulty remains in performing computationally effi-

cient convergence studies, necessary to understanding how physical and stochastic

resolution impact error.

3.5.2 New Directions

In Section 3.4 we demonstrated how a composition of lower order polynomial chaos

expansions can outperform a single, higher order expansion. Specifically they con-

verged faster (with fewer complex model runs in the training data) and did not

converge with significantly greater errors. This is of note because these nested struc-

tures have fewer parameters than flat structures of the same order. The experiment

was implemented in a deep learning framework because highly nested (deep) models

are common in this domain. Herein lies another significant finding; to our knowl-

edge this is the first practical step (albeit a minor one) in combining PCE and deep

learning methods. Shahane et al. [2019] have contrasted the two approaches, but

we posit that a more fruitful area of research will be their combination. The simple

benefit observed in this chapter (in Section 3.4) is that matching the polynomial with
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the input distribution (in line with PCE theory) leads to a surrogate which can be

calibrated on fewer data points.

As discussed in Chapter 5, deep learning is a rapidly expanding field of research

and practice, and there are many opportunities for cross pollination between math-

ematical techniques with solid theoretical underpinnings, such as PCE, and state of

the art software methods developed by this new community. On the other hand,

deep learning research is highly empirical. Model structures, objective functions and

optimization algorithms are developed based on performance on real world data. A

deeper analytical understanding would doubtless yield practical outcomes.

Recently, Cheng et al. [2018] claimed that the neural networks typically used in

deep learning are “essentially” polynomials. However, there has been little knowledge

transfer from applied mathematics to deep learning experiments. For example, to

our knowledge, PCE theory that informs the choice of polynomials based on input

distributions has not been applied to that area of research. In Chapter 5 we discuss

further potential collaborations between the two fields.
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Chapter 4

Multi-fidelity Stochastic

Collocation

4.1 Introduction

Surrogate methods are a valuable tool for reducing complexity and increasing the

efficiency of numerical models. Consider the generic model

u = u(z), (4.1)

which takes a number of inputs z = (z1, z2, · · · zD) and produces a number of outputs

u = (u1, u2, · · · uQ). Models may be run in many settings, for prediction, uncertainty

quantification, sensitivity analysis, or optimization. Here the inputs are the quantities

to be varied in a particular setting. Similarly, the outputs are only the quantities of

interest for a particular application. All other model coefficients, parameters, data,

inputs and outputs which are not to be varied for the specific application at hand are

not included in u or z. A complex implementation of u, such as a partial differential

equation solver with fine resolution, allows a variety of data and processes to be

included at a many temporal and spatial scales and detailed predictions to be made.

However, long runtimes limit the use of such high-fidelity models in applications

which require real-time results, such as decision support, or many model runs, such

as optimization, uncertainty analysis or integrated modelling.

Surrogate models aim to approximate the input-output relationship of u at a frac-

tion of the computational cost. Three broad categories of surrogates exist. Data-driven

59
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methods calibrate an empirical approximation on at set of inputs, {zn}n∈(1,2,··· ,N) and

corresponding outputs {un}n∈(1,2,··· ,N). Commonly used examples are Polynomial

Chaos Expansions [Xiu and Karniadakis, 2002] and Radial Basis Functions [Powell,

1987]. In projection based methods the governing equations of the complex model u

are projected onto a basis of orthogonal vectors. Examples include Proper Orthogonal

Decomposition [Sirovich, 1987] and Reduced Basis Methods [Fox and Miura, 1971].

Multi-fidelity or hierarchical surrogates are constructed by simplifying the underlying

physics of a model or reducing numerical resolution to create a low-fidelity surrogate

[e.g. Doherty and Christensen, 2011]. Many multi-fidelity approaches, for example

Multi-scale Finite Element methods [Efendiev and Hou, 2007], Multilevel Monte Carlo

Giles [2008] or Sparse Grid Combination Techniques Harding and Hegland [2014]

prescribe iterative procedures for combining models at various resolutions.

Which surrogate methods are most promising depends, of course, on the context.

[Asher et al., 2015] review techniques from all three categories. This chapter focuses

on methods appropriate to increasing the computational efficiency of distributed

groundwater flow models for applications such as sensitivity analysis, uncertainty

analysis, and calibration. Many surrogate methods are unsuitable for this application

as they are unable to handle large numbers of inputs and outputs (specifically spatial

fields and time series). Other approaches are intrusive (require complex model

code to be edited) or have subjective structures. The time and expertise required

by practitioners to use them is thus prohibitive. Data-driven surrogates in particular

exhibit poor performance at new values of z far away from the runs used to calibrate

the surrogate.

Surrogate approaches are typically developed for a particular setting. For example,

Le Gratiet et al. [2014] present a multi-fidelity method specific to the estimation of

Sobol’ sensitivity indices. Giles [2008] presents another multi-fidelity method for

uncertainty propagation (estimating statistical moments of model outputs based on

varying inputs). An oft overlooked consideration for practitioners is the flexibility of

a surrogate method. Practical approaches should be relevant in a number of settings

and allow the reuse of model runs.

Bi-fidelity stochastic collocation, the approach employed in this chapter, combines
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techniques from both Hierarchical and Projection based methods. As in the reduced

basis method [e.g. Lieberman et al., 2010], the greedy algorithm is used to select a

basis which spans the output space of the complex model. High-fidelity outputs can

then be approximated in terms of this basis. A defining feature of the algorithm is

the use of a low-fidelity model in both the basis selection and the projection required

to approximate new outputs. Runtimes are hence reduced, as the vast majority

of necessary high-fidelity runs can be approximated at the cost of a low fidelity

simulation.

The method outperforms many surrogates in the aforementioned criteria. It

is non-intrusive and uses computational resources efficiently by allowing simple

parallelization, reuse of low and high fidelity model runs, and iterative addition of

more high-fidelity runs to improve accuracy. A further advantage is that the low-

fidelity output need not be a direct approximation of the high-fidelity output. For

example a low-fidelity spatial field uL = (uL
1 , · · · uL

QL) may be used with a high-fidelity

timeseries uH = (uH
1 , · · · uH

QH ), provided the uniqueness of the z to uH relationship

is emulated by uL. Although not necessary, uL and uH will often relate to similar

quantities - such as different spatial resolutions of the same output. In this case,

an important practical advantage of this method over statistical approaches is the

ability to compare the surrogate approximation with a low-fidelity output. Our

work provides anecdotal evidence that the algorithm deals with correlated inputs, a

known shortcoming of methods such as polynomial chaos expansions. This study

investigates the ability of bi-fidelity stochastic collocation for building a surrogate

model. We have not investigated the effect of using more than two fidelities. (Zhu

et al. [2014] suggest three may be optimal) and its performance in the case of “tensor

stratification” [Narayan et al., 2014], where the inputs of the low-fidelity model are a

subset of the high-fidelity inputs.

One purpose of this work is to determine whether bi-fidelity stochastic collocation,

applied to multiple resolutions of the same groundwater flow model, is a practical

surrogate approach. The process of creating discretized numerical models from var-

ious data sources is increasingly automated, in common graphical user interfaces

(eg. Groundwater Vistas Rumbaugh and Rumbaugh [2007], Visual MODFLOW FLEX
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Fitzpatrick [2012], Aquaveo GMS Aquaveo [2011] or ModelMuse Winston [2009]) or

purpose built tools [e.g. Vermeulen, 2013; Bhatt et al., 2014]. This has created an oppor-

tunity for modellers to easily produce multiple fidelities of the same model, making

the multi-fidelity methods of real practical interest. Despite the well documented

problems with changing the resolution of hydrological parameters [Vermeulen et al.,

2006; Neuman and Di Federico, 2003; Wen and Gómez-Hernández, 1996; Mehl and

Hill, 2010], multi-fidelity groundwater surrogates have been demonstrated to be ef-

fective [Mehl and Hill, 2002; Burrows and Doherty, 2014]. We aim here to investigate

whether different resolutions of the same groundwater model can be combined effec-

tively using a multi-fidelity surrogate.

This chapter is structured as follows. Section 4.2 details the bi-fidelity algorithm.

Section 4.3 gives several illustrative examples of its application to trivial problems,

introducing our analysis methods. Section 4.4 demonstrates our development of the

method and the application to a groundwater flow model. Conclusions follow in

Section 4.5.

4.2 Multi-fidelity Stochastic Collocation

Consider again the generic model (4.1)

u = u(z) (4.2)

with uncertain or unknown inputs z = (z1, · · · zD) ∈ Iz ⊆ RD and outputs u =

(u1, · · · uQ). Narayan et al. [2014] developed a bi-fidelity stochastic collocation surro-

gate which combines a high-fidelity implementation of (4.2),

uH : Iz → VH, (4.3)

and a low-fidelity implementation

uL : Iz → VL (4.4)
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to produce an approximator of uH at the cost of uL.

The bi-fidelity surrogate is created as follows.

1. Evaluate the low-fidelity model uL on a candidate set Γ = {zm}m∈{1,2,··· ,M} ⊂ IZ,

ie. compute

uL(Γ) = {uL(zm)}m∈(1,2,··· ,M). (4.5)

2. Choose an ordered subset γ = {zn}n∈(1,2,··· ,N) ⊂ Γ which best spans Γ using the

Greedy algorithm. See Section 4.2.1 for details.

3. Evaluate the high-fidelity model uH on γ, ie. compute

uH(γ) = {uH(zn)}n∈(1,2,··· ,N). (4.6)

4. For any new input z ∈ Iz, z /∈ γ, the bi-fidelity surrogate is found by projecting

uL(z) onto uL(γ), then use these coordinates to estimate uH(z) in terms of

uH(γ). See Section 4.2.2 for details.

An example of the above method implemented in Python is given in Figure 4.19,

applied to two resolutions of a one dimensional diffusion equation 4.20. Together

with the below algorithms (Figures 4.8 and 4.1), these scripts form a complete example

which readers can run on any computer with Python and a few common libraries

(Numpy and Scipy) installed. We are of the opinion that very little efficiency of

expression or clarity is lost by presenting Equation 4.8 in Python as opposed to the

more common “pseudo-code”. Using a real language has the advantage of providing

a ready to use example for readers to try, and perhaps more importantly, allowing

the authors to test the algorithm exactly as it is presented. It is our experience that

“pseudo-code” in the literature contains many errors, likely because authors cannot

test it in this fashion.

As detailed in Zhu et al. [2014], the simulation cost has two important components.

One is the N low-fidelity runs making up uL(Γ), and the other the M high-fidelity

runs uH(γ). Each new value z ∈ Iz, z /∈ γ requires the evaluation of uL(x). The

expense of the linear algebra required for the node selection and projection will be
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insignificant compared to these model evaluations. A key advantage of this algorithm

is that if either M or N is increased, the previously computed low and high-fidelity

outputs can be reused. Furthermore, as the samples are independent, both uL(Γ) and

uH(γ) can be evaluated in parallel and can be reused. For example, uL(Γ) might be

used to select the nodes, and also to provide uncertainty estimates of the outputs of

uH using the multi-fidelity surrogate.

4.2.1 Selection of the collocation nodes

We aim to choose a set of N basis vectors, uH(γ), which minimises the distance be-

tween span(uH(γ)) and span(uH(Γ)). Implicit is the assumption that span(uH(Γ)) ≈
VH. To reduce computational cost, we use uL instead of uH and treat Γ as a finite set

rather than a continuum.

The Greedy Algorithm achieves this as follows. Define a distance function be-

tween an output v ∈ VL and a set of outputs W ⊂ VL

dL(v, W) = inf
w∈W
‖v− w‖L

= ‖(I − PW)v‖L

= ‖v− ∑
w∈W

〈w, v〉
〈w, w〉w‖

L (4.7)

where PW is the orthogonal projection operator onto W. Start with γ0 = {} and

iteratively expand the set

zn = arg max
z∈Γ

dL
(

uL(z), uL(γn−1)
)

γn = γn−1 ∪ {zn} (4.8)

where uL(γn−1) = {uL(zi)}i∈(1,2,··· ,n−1). The algorithm is implemented as in Figure 4.1

using the pivoted Cholesky decomposition, also known as an incomplete Cholesky

decomposition or partial Gram-Schmidt orthogonalization [Hardoon et al., 2004]. As

in Zhu et al. [2014], we assume that the continuous inner product in (4.7) can be

computed by a discrete dot product.
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1 from numpy import dot, array, arange, zeros, empty, argmax, finfo, sqrt
2 def select_nodes(V, N):
3 # The columns of $V$ are the $M$ candidate outputs of the low-fidelity model
4 # $V = u^L(\Gamma)=[ u^L(\mathbf{z}_1), u^L(\mathbf{z}_2) \cdots u^L(\mathbf

{z}_M) ]$.
5 # $N$ is number of interpolation nodes/ high-fidelity runs
6 M = V.shape[1]; assert N <= M;
7 # Elements of $w$ are the norms for corresponding parameter $\mathbf{z}_m$
8 w = array([dot(V[:, m], V[:, m]) for m in range(M)])
9 # $P$ is the permutation vector

10 P = arange(M, dtype=int)
11 # $L$ is the Cholesky factor
12 L = zeros((M, N))
13 r = empty((M))
14 for n in range(N):
15 # Choose largest norm for the next pivot/ interpolation point
16 p = argmax(w[n:M]) + n
17 # Avoid ill-conditioning if norm is less than machine precision
18 if w[p] < 2*finfo( float ).eps:
19 print 'Grammian␣is␣numerically␣singular...The␣grammian␣has␣rank␣%s␣

and␣size␣%s'%(n,M)
20 n -= 1
21 break
22 # Update indices in $P$ and swap columns $n$ and $p$ of $V$, $L$, and

$w$
23 P[[n, p]] = P[[p, n]]
24 V[:, [n, p]] = V[:, [p, n]]
25 L[[n, p], :] = L[[p, n], :]
26 w[[n, p]] = w[[p, n]]
27 # Update $L$
28 for t in range(n+1, M):
29 r[t] = dot(V[:, t], V[:, n]) - sum([ L[t, j]*L[n, j] for j in range(

n)])
30 L[n, n] = sqrt(w[n])
31 for t in range(n+1, M):
32 L[t, n] = r[t]/L[n, n]
33 w[t] = w[t] - L[t, n]**2
34 # Truncate the Cholesky factor and permutation vector
35 L = L[:n+1, :]
36 P = P[:n+1]
37 return P, L
38 # Note that $L L^T = V^T V$ where $V$ is the input $V$ with columns permuted

according to $P$

Figure 4.1: Algorithm as Python code to select the interpolation nodes γ from the candidates
Γ using a pivoted Cholesky decomposition based Greedy algorithm.
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4.2.2 Bi-fidelity surrogate

For any input z ∈ Iz, z /∈ γ, the bi-fidelity surrogate is constructed as the projection

of uH(z) onto uH(γ)

uH(z) ≈ uB(z) =
N

∑
n=1

cnuH(zn) (4.9)

where cn solve

〈
N

∑
n=1

cnuL(zn), φ〉L = 〈uL(z), φ〉L, ∀ φ ∈ uL(γ). (4.10)

Since only uL(z) is required, the computational cost is reduced by the ratio of uH to

uL runtime. The discrete form of this equation algorithm is implemented in Figure

4.2. Again the continuous inner product in Equation (4.10) can be computed by a

discrete dot product.

1 from numpy import dot
2 from numpy.linalg import inv, cond
3 def synthesis_operator(LF_selected_values, HF_selected_values, L, LF_new):
4 # LF_selected_values is $u^L(\gamma)$
5 # HF_selected_values is $u^H(\gamma)$
6 # L is the Cholesky product from the node selection algorithm
7 # LF_new is $u^L(\mathbf{z})$
8 G = dot(L,L.T)
9 G_inv = inv( G )

10 g = dot( LF_selected_values.T, LF_new )
11 c = dot( G_inv, g )
12 # MF_new approximates $u^H(\mathbf{z})$
13 MF_new = dot( HF_selected_values, c ).squeeze()
14 return MF_new, cond(G)

Figure 4.2: Algorithm as Python code to compute multi-fidelity surrogate for new input.

4.2.3 Configurations

Given a high-fidelity model uH : Iz → VH, a number of choices must be made when

building a bi-fidelity surrogate.

1. A low-fidelity model uL : Iz → VL must be used that replicates the uniqueness

of the Iz → VH relationship. Note that VL need not approximate VH.

2. Choose the size M and structure (sampling scheme) of Γ such that uL(Γ) spans
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VL. Without prior knowledge of which samples will span the space it is neces-

sary for M to be a large number. M is the number of low-fidelity runs.

3. Select the size N of the subset γ such that uL(γ) may be selected from the larget

set, so that it too spans VL. N is the number of high-fidelity runs, and will be

significantly smaller than M. The assumption is that uH(γ) will span VH.

4. Determine the discrete form of the inner product to be used in (4.7) and (4.10).

Narayan et al. [2014] suggest that it may be possible to improve the accuracy

of certain quantities of interest by weighting the inner product. We could not

identify examples of this in our investigation.

In this work, we consider a customization to the algorithm whereby the columns of

uL(Γ) are normalized for the selection of the collocation nodes. Hence the Grammian

G cannot be computed from the Cholesky decomposition as LLT, as in Narayan

et al. [2014]. Instead we compute G less efficiently, but equivalently, as uL(γ)TuL(γ).

Models based on spatially and temporally varying partial differential equations typ-

ically result in a large number of outputs; one or more for each point in space and

time. Depending on the purpose, the quantities of interest u = (u1, · · · uQ) are cho-

sen or computed from these. Here, we experiment (in Section 4.4) with a number

of low-fidelity outputs uL based on the same underlying model, in an attempt to

approximate a given high-fidelity output uH.

4.3 Simple numerical examples

To introduce our analysis of the methods, we give a number of simple examples

from the literature. We use several error metrics below to compare a set of P bi-

fidelity outputs {uB(zi)}i=(1,··· ,P) to a test set of high-fidelity outputs {uH(zi)}i=(1,··· ,P).

Where both outputs consist of Q quantities of interest, the mean L2 error based on P
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samples is calculated

E
(
‖uH − uB‖L2

)
=

1
P

P

∑
i=1
‖uH(zi)− uB(zi)‖L2

=
1
P

P

∑
i=1

√√√√∑Q
q=1(u

H
i,q − uB

i,q)
2

Q
(4.11)

where uH
i,q is the qth quantity of interest of the bi-fidelity model evaluated at zi. The

relative mean L2, which attempts to better account for sampled outputs which vary

by orders of magnitude, is defined

E
(
‖uH − uB‖L2

)
=

1
P

P

∑
i=1
‖uH(zi)− uB(zi)‖L2

=
1
P

P

∑
i=1

√√√√∑Q
q=1(u

H
i,q − uB

i,q)
2

∑Q
q=1(u

H
i,q)

2
. (4.12)

The L∞ error is

‖uH − uB‖L∞ = max
i∈(1,··· ,P),q∈(1,··· ,Q)

|uH
i,q − uB

i,q|. (4.13)

4.3.1 Trigonometric example

Narayan et al. [2014] illustrate the technique with approximations of the function

u(x, z) = g(x, z + εz2)
4
= cos

(
x(z + εz2) + 1

)
, (x, z) ∈ [−1, 1]× [0, 10π].

The low-fidelity model is

uL(x, z) =
QL−1

∑
k=0

ĝk(z)L̃k(x)

where

ĝk(z) = ck

√
π(2k + 1)
|z| Jk+1/2(|z|), z 6= 0

ck = <
[
ei z
|z| ik
]
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Jk is the order-k Bessel function of the first kind and L̃k is the degree-k Legendre

polynomial orthonormal under the unit weight function on [−1, 1]. Here QL and QH

are the number of terms in the low and high-fidelity expansions respectively. The

high-fidelity model has more terms (QL < QH) and includes a fidelity parameter ε.

uH(x, z) =
QH−1

∑
k=0

ĝk(z + εz2)L̃k(x).

Convergence of the bi-fidelity surrogate is shown in Figure 4.3. Here we reveal an

aspect of the algorithm not obvious in previous work. While the performance of

the multi-fidelity surrogate improves with the size, N, of γ to a point, it degrades

rapidly thereafter. We include three more plots which explain this phenomenon.

The error at the interpolation nodes γ increases almost identically to the condition

number of the grammian uL(γ)TuL(γ). These in turn correspond to the decay of the

eigenvalues of the candidates uL(Γ). A key limitation of the algorithm is that if too

many interpolation nodes are used, redundancy begins to affect the uniqueness of the

solution to the projection, as we see around N = 22 in Figure 4.3. This is mitigated

as in the algorithm given in Figure 4.1 by stopping when the Grammian is singular.
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Figure 4.3: Bi-fidelity example from Narayan et al. [2014]. Mean L2 error at test points,
collocation points, the condition number of Grammian and the eigenvalues of the M = 1000
candidate points. Errors calculated using 1000 MC tests. High and low-fidelity are evaluated
at Q = 100 points in space. The high-fidelity model has QH = 100 terms. ε = 5× 10−3. The
top plot is the same as Figure 1a or Narayan et al. [2014].
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4.3.2 1D Diffusion with KLE using Chebyshev Collocation

Another example from the preceding literature [Zhu et al., 2014], involves the steady

state 1D diffusion equation

∂

∂x

(
c(x, z)

∂u
∂x

)
= − f (x, z) (4.14)

u(0) = u(1) = 0 0 < x < 1

where the quantity of interest is the density, u(x), and the unknowns are the conduc-

tivity, c(x, z), and forcing term, f (x, z).

As in Zhu et al. [2014], we parameterize conductivity using the Karhunen-Loev̀e

expansion (KLE)

c(x, z) = 1 + σ
D−1

∑
d=1

1
dπ

cos(2πdx)zd (4.15)

with σ = 0.5 and (z1, · · · , zD−1) ∈ [−1, 1]D−1 is uniformly distributed. The forcing

term is considered constant

f (x, z) = 1. (4.16)

Chebyshev collocation is used to solve (4.14). The low and high-fidelity mod-

els differ only in the number of collocation nodes used. Lagrange interpolation is

used to interpolate low-fidelity outputs to the locations of the high-fidelity outputs.

Convergence of the bi-fidelity surrogate is shown in Figure 4.4. We plot the error at

interpolation points and the condition number along with the error because these are

the quantities available in a real setting (where the test point error is not). In these

settings, those data points must be used to determine the number of high fidelity

runs to be used.
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Figure 4.4: 1D diffusion equation with diffusivity represented by a KLE of D− 1 terms. LF
has 24 Chebyshev collocation nodes, HF has 27. The top figure replicates Figure 2 of Zhu et al.
[2014].
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4.3.3 1D Diffusion with KLE using FEM

Another example uses the finite element method to solve (4.14). The forcing term is

given

f (x, z) = 50z2
D (4.17)

where zD normally distributed on N(0, 1). The same KLE expansions as above (4.15)

is used for conductivity, with coefficients all uniformly distributed on U(−1, 1). Using

a 29 node solution as the high-fidelity model, Figure 4.5 shows the convergence of

the multi-fidelity method. The use of a random forcing term may be causing the high

error when using a high resolution uL. If there was serial correlation in the driving

force, then the lower resolution uL may be more effective.

To introduce diagnostics used later, Figure 4.6 plots the low uL(z), high uH(z),

and multi-fidelity output uB(z) for a few random test inputs z.The residuals, uH(z)−
uB(z) and uH(z)− uL(z) are also plotted. We include these for each of the examples

below to visualize the model output and basis functions and explain some of the

artefacts of the algorithm. For instance in 4.6 we note the periodic nature of the

residuals. These are the shapes of the truncated basis functions (beyond the 6 basis

functions included in this MF surrogate).

Figure 4.7 shows the candidates uL(Γ) along with the chosen uL(γ) and uH(γ).

In common with the other examples in this section, and many such “toy” problems

from the literature, uL is itself a close approximation to uH . This motivates the use of

a more “complex” example in Section 4.4.
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Figure 4.5: 1D diffusion equation, with diffusivity represented by a KLE of 10 terms and
random forcing term. The solution is by the Finite Element method. High-fidelity resolution
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Figure 4.7: LF candidate outputs, and chosen LF and HF outputs.
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4.4 Practical example

In this section we apply the bi-fidelity stochastic collocation algorithm to two fidelities

of a groundwater flow model. We describe the model in Section 4.4.1, and then

present results based on various configurations of the algorithm in Sections 4.4.2

through 4.4.4.

4.4.1 Bi-fidelity groundwater model

The purpose of the model used in this section is to find the maximum drawdown

(decrease in pressure) in surface aquifers due to coal seam gas development. It is

implemented in the 2.5D finite difference groundwater flow model code, MODFLOW

Harbaugh [2005], based on the equation

s(x, z)
∂h(x, t, z)

∂t
= ∇x · (k(x, z)∇xh(x, t, z)) + f (x, t, z), x ∈ D, t ∈ (0, T] (4.18)

where h is pressure, k is conductivity, s is specific storage and f is a source sink term.

Discretization is as follows. A 30 year development period with pumping to keep

production wells in lower layers dry is divided into 20 timesteps, a further 60 years

without pumping is divided into 30 timesteps. Vertically, the model is 1200m thick,

composed of 34 layers including coal seams and confining units. A 10× 40km area

is divided into horizontal cells of 400× 400m for high-fidelity and 2400× 2400m for

low-fidelity model. This results in a HF runtime which is 50 times the LF on average.

Our quantity of interest, and therefore uH, is a drawdown timeseries for a particular

location xa in the top layer

uH(z) = (h(xa, 0, z), · · · , h(xa, T, z)) . (4.19)

As noted above, uL need not be the equivalent output of the low fidelity model. We

explore a number of possibilities for uL in Sections 4.4.2 through 4.4.4

Much of the uncertainty in such models concerns the conductivity values of

aquifer and faults. A 2D linear parameterization is employed for the aquifer proper-

ties, with the random variables z = (z1, z2, · · · z10) made up of
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1. anisotropy of conductivity (ratio of conductivity North-South to East-West)

2. conductance of faults

3. slope of conductivity in confining unit

4. intercept of conductivity in confining unit

5. slope of conductivity in coal seem

6. intercept of conductivity in coal seem

7. slope of storage in confining unit

8. intercept of storage in confining unit

9. slope of storage in coal seem

10. intercept of storage in coal seem.

4.4.2 Timeseries LF

Perhaps the most straightforward configuration of the bi-fidelity algorithm is to take

uL identical to uH, but based on the coarser model:

uL(z) = (h(xa, 0, z), · · · , h(xa, T, z)) . (4.20)

The convergence of this approach is given in Figure 4.8. We see that for this naive

application of the algorithm, as the number of high-fidelity runs increases, the error

of the surrogate increases. This undesired behaviour is due to the system becoming

ill-conditioned, and steps are taken below to rectify the algorithm. Candidates uL(Γ)

and chosen nodes uL(γ) and uH(γ) are plotted in Figure 4.9. Note that most of

the basis functions chosen (in colour) are of a large magnitude, while the density of

functions is higher in general for lower magnitudes. This is a flaw of the algorithm as

it favours basis functions of large magnitude, but the issue is rectified below. We can

see in Figure 4.10, where we plot low, uL(z), high, uH(z), and multi-fidelity output,

uM(z), for 8 random test inputs z. The residuals, uH(z) − uM(z) are also plotted.
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These 8 samples were selected as the quantiles of high-fidelity output from 1000 test

samples. As this approach reveals, the multi-fidelity approximator performs much

better where uH(z) is large. While the mean L2 errors do not vary drastically, the

mean relative errors do. This is an artifact of the greedy algorithm, which favours

the selection of nodes larger in magnitude, something we address in the following

sections.
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Figure 4.8: Error at 1000 test samples, error at collocation nodes, condition number of Gram-
mian and eigenvalues of uL(Γ). High-fidelity cell size is QH = 400 meters. QL = 2400 meters.
Candidate runs M = 1000.
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Figure 4.9: Water level over time. LF candidate outputs, and chosen LF and HF outputs.
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Figure 4.10: Water level versus time for LF, MF and HF for 8 random inputs. HF runs=28,
mean L2 for LF= 8.49e+01, mean L2 for MF= 3.41e+00, mean relative L2 for MF= 9.48e-01,
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4.4.3 Normalized timeseries LF

Here we consider an identical formulation to Section 4.4.2, with uL again the coarse

model timeseries output. However, to account for the aforementioned shortcoming

of the greedy algorithm, the candidates uL(Γ) are normalized for the selection of

the collocation nodes. Hence the Grammian G cannot be computed LLT, but must

be computed with the unnormalized uL(γ)TuL(γ). Figures 4.11, 4.12 and 4.13 cor-

respond to Figures 4.8, 4.9 and 4.10 respectively, with a notable improvement in

performance. The mean L2 error in 4.11 converges rather than growing with more

high-fidelity runs as it does in 4.8, and the error here ends an order of magnitude

lower. One can see the distribution of the basis functions in 4.12 matches that of

the underlying data better than in 4.9, where there is a clear bias towards vectors

of greater magnitude. While the higher magnitude (latter) subplots of 4.13 have a

similar fit to those of 4.10, there is a notable improvement in the earlier subplots with

lower magnitude.
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Figure 4.11: Error at 1000 test samples, error at collocation nodes, condition number of
Grammian and eigenvalues of uL(Γ). High-fidelity cell size is QH = 400 meters. QL = 2400
meters. Candidate runs M = 1000.
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Figure 4.12: LF candidate outputs, and chosen LF and HF outputs.
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4.4.4 Normalized spatial and timeseries LF

In addition to normalizing the candidate vectors for node selection, we found that,

in general, the algorithm improves when more information is added to uL. An

improvement on Section 4.4.2 was found by setting uL as the spatial output of the

coarse model in the top layer for a single timestep ta

uL(z) = (h((0, 0, 0), ta, · · · , h((0, X0, 0), ta, z), · · · , h((0, X0, X1), ta, z)) (4.21)

where the model has X0 rows and X1 columns. Note that this is a different output,

but is based on the same underlying model. Thus storage requirements will increase,

but computational time should not. Further improvement was noted by taking uL as a

combination of Equations 4.21 and 4.20, the results of which are given in Figures 4.14,

4.15 and 4.16, with a notable improvement in performance. Most notably the mean

L2 error is reduced by another order of magnitude for the selected number of high-

fidelity runs and continues to decline, unlike the previous algorithm configurations

which converged at this stage. Since we are now combining spatial and temporal

data we plot not only the timeseries of head in 4.15 but also the 2D spatial head for

the timestep ta.
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Figure 4.14: Error at 1000 test samples, error at collocation nodes, condition number of
Grammian and eigenvalues of uL(Γ). High-fidelity cell size is QH = 400 meters. QL = 2400
meters. Candidate runs M = 1000.
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Figure 4.15: LF candidate outputs, and chosen LF and HF outputs. Top plots are water
level over time. Bottom panel are 2D spatial cross sections of water level for ta timestep.
Previously (e.g. Figure 4.12 basis functions were only timeseries of water level, but now they
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Figure 4.16: LF, MF and HF for 8 random inputs. For each sample we show the water level
timeseries (top), error timeseries (middle) and 2D spatial maps of water level for the top layer
at the selected timestep (bottom). HF runs=30, mean L2 for LF= 1.00e+28, mean L2 for MF=
7.83e-01, mean relative L2 for MF= 1.76e-02, condition number for plots=6e+11, HF condition
number for plots=2e+21
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4.4.5 Comparison with LF equal to HF

To compare the above results with the potential of the method, we repeat the config-

uration in Section 4.4.4, but using the fine resolution simulator for both the low and

high-fidelity model. The results are given in Figures 4.17 and 4.18. We omit the basis

functions as the 82 chosen for these results in Figure 4.18 is an impractically large

number to visualize. Note an improvement in the mean L2 error from 7.83e− 01 to

1.14e− 03, and the relative error from 1.76e− 02 to 1.81e− 05. These results represent

a theoretical maximum bound to the accuracy that could be achieved by this method.

Since we are here using the HF for the LF when selecting the basis functions, it is

not possible to get a higher fidelity LF than the HF itself. The conclusion here is

that a more accurate surrogate could be developed by improving the lower fidelity

representation or basis selection algorithm.
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Figure 4.17: Error at 1000 test samples, error at collocation nodes, condition number of
Grammian and eigenvalues of uL(Γ). High-fidelity cell size is QH = QL = 400 meters.
Candidate runs M = 1000.
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Figure 4.18: LF, MF and HF for 8 random inputs. For each sample we show the water level
timeseries (top), error timeseries (middle) and 2D spatial maps of water level for the top layer
at the selected timestep (bottom). HF runs=82, mean L2 for LF= 1.00e+28, mean L2 for MF=
1.14e-03, mean relative L2 for MF= 1.81e-05, condition number for plots=3e+16, HF condition
number for plots=4e+23



§4.5 Conclusions 93

4.5 Conclusions

While lower fidelity, faster models may lack detail and accuracy, they often cap-

ture important features of the underlying system. This fact is exploited by a novel

method, multi-fidelity stochastic collocation, to create an approximation of a high-

fidelity model based on low-fidelity simulations by combining samples of both in a

bi-fidelity surrogate. Multi-fidelity stochastic collocation is a valuable tool for efficient

analysis of complex models, such as groundwater flow simulators. The method is

non-intrusive and can be applied to a variety of lower-fidelity models. The surro-

gate can be used for demanding applications such as sensitivity analysis, uncertainty

propagation, integrated modeling, optimization and decision support. It allows the

efficient use of computational resources, as the required samples are independent

and easily parallelizable. A major advantage of the approach is its robustness. The

sampling is not adaptive (like for example the PCE algorithm used in Chapter 3, so

samples for which the model fails to execute can be ignored. Furthermore, additional

high and low-fidelity pairs can be added to the training set and the surrogate re-

trained at minimal cost. Since low fidelity runs are required for each surrogate run,

there is a process based output to compare to the surrogate output. This is valuable to

boost confidence in the surrogate enabled predictions where there is concern that the

training set may not adequately capture variability present during prediction. The

first step in the algorithm involves a large sample of low-fidelity runs to inform which

samples are run through the high-fidelity model. This provides an additional layer of

analysis for modellers, similar in function to k-mediods, identifying a few samples of

the parameter space that span the variability present in the outputs of interest. The

method is particularly well suited to the approximation of spatially and temporally

varying output, from which particular quantities of interest can be computed.

As demonstrated by our case study (see Section 4.4), as few as 10-30 high-fidelity

model runs may be required to satisfactorily construct the surrogate, orders of magni-

tude fewer than would be required for applications such as optimization, uncertainty

analysis, or decision support. By satisfactorily we mean that the order of magnitude

of error in the MF surrogates from the above results (around 1× 10−5 for the relative
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L2 error) is negligible compared to error from other sources such as physical dis-

cretization (the low-fidelity outputs had a relative L2 of 1× 1025 for example). Thus

despite the inaccuracy of the low-fidelity model, a bi-fidelity surrogate can achieve

similar accuracy to higher-fidelity using a smaller number of simulations. Compu-

tational cost for each run required for such analysis can then be reduced to that of

the low-fidelity model. In the above case study this is 1/50 the cost of a high-fidelity

simulation.

We have identified two novel improvements to the algorithm in practical settings.

Firstly, low-fidelity outputs should be normalized for node selection so as to prevent

bias towards outputs of larger magnitude. Second, as much information from the

low-fidelity simulator should be included in the output as is practical. Significant

improvement was noted by including more outputs of the same underlying model.

While the approach shows much promise, several limitations are of note. Accuracy

of the surrogate depends on the discrepancy between low-fidelity and high-fidelity

models. For a given number of high-fidelity simulations, the accuracy of bi-fidelity

surrogate increases as the discrepancy decreases. The present algorithm relies on

a large number (1000) of low-fidelity model runs. Even if these are significantly

cheaper than high-fidelity runs, this cost may be prohibitive where a fast low-fidelity

model cannot be found. As noted by Peherstorfer et al. [2018], complex relationships

between models of different fidelities are common, limiting the utility of most multi-

fidelity methods currently available.

The field remains ripe for further research. Few of the multi-fidelity methods sur-

veyed by Peherstorfer et al. [2018] have been applied to groundwater simulation, and

recent work [e.g. Man et al., 2020] is making significant progress towards emulating

more complex models.
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4.6 Appendix



96 Multi-fidelity Stochastic Collocation

"""
Boilerplate for running the multi-fidelity stochastic collocation algorithm using a simple diffusion example
authors: John Jakeman (jdjakem@sandia.gov) and Michael Asher (michael.james.asher@gmail.com)
date: August 2015
"""
import numpy
import matplotlib.pylab as plt
"""
Import

* HF_model and LF_model: high-fidelity and low-fidelity models
* sample_inputs: function to produce samples from input distributions (for building and testing)
* select_nodes: function to select collocation nodes
* synthesis_operator: function to compute surrogate

"""
from ellip import HF_model, LF_model, sample_inputs
from select_nodes import select_nodes
from synthesis_operator import synthesis_operator
# Settings
# number of initial candidates/snapshots for low-fidelity model
num_lf_candidates = 100
# number of low-fidelity, multi-fidelity, and high-fidelity runs to do for testing
num_test_samples = 100
# number of interpolations nodes/high-fidelity runs
num_hf_runs = 3
# 1. Evaluate the low-fidelity model uL on a candidate set Γ.
candidate_inputs = sample_inputs(num_lf_candidates)
lf_candidate_values = LF_model( candidate_inputs )
# 2. Choose an ordered subset of N nodes γ using Algorithm 1.
pivots, L = select_nodes(V=lf_candidate_values.copy(), N=num_hf_runs)
selected_inputs = candidate_inputs[:,pivots]
lf_selected_values = lf_candidate_values[:,pivots]
# 3. Evaluate the high-fidelity uH model on γ.
hf_selected_values = HF_model( selected_inputs )
# 4. Use uH (γ) to construct the interpolation operator
# and evaluate at any z using Algorithm 2 with input data v = uL(z).
test_inputs = sample_inputs(num_test_samples)
lf_test_values = LF_model( test_inputs )
mf_test_values, condition_number = synthesis_operator(lf_selected_values, hf_selected_values, L, lf_test_values)
hf_test_values = HF_model( test_inputs )
print('condition number= %.2e, 1/machine eps= %.2e' % (condition_number, 1./numpy.finfo(float).eps))
print("||HF-LF|| = %.2e" % (numpy.mean(numpy.linalg.norm(hf_test_values-lf_test_values, axis=0)) / numpy.sqrt(hf_test_values.shape[0])) )
print("||HF-MF|| = %.2e" % (numpy.mean(numpy.linalg.norm(hf_test_values-mf_test_values, axis=0)) / numpy.sqrt(hf_test_values.shape[0])))
# plot a few random LF, HF, and MF samples
rand_i = numpy.random.randint(num_test_samples, size=(6))
for i in range(len(rand_i)):

plt.subplot(numpy.ceil(len(rand_i)/3.), 3, i+1)
plt.plot(lf_test_values[:, rand_i[i]], '--', label="lf")
plt.plot(hf_test_values[:, rand_i[i]], '-', label="hf")
plt.plot(mf_test_values[:, rand_i[i]], 'o', label="mf")
plt.title('sample '+str(rand_i[i]))

plt.legend()
plt.show()
# plot all LF candidates
for l in range(num_lf_candidates):

plt.plot(lf_candidate_values[:,l], color='grey', alpha=0.3)
# plot chosen LF and HF
cm = plt.get_cmap('gist_rainbow')
for l in range(num_hf_runs):

plt.plot(lf_selected_values[:,l], 'x', color=cm(1.*l/num_hf_runs))
plt.plot(hf_selected_values[:,l], color=cm(1.*l/num_hf_runs))

plt.title("Selected nodes")
plt.show()

Figure 4.19: Boilerplate for running the multi-fidelity stochastic collocation algorithm using
a simple diffusion example.
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"""
Multi-fidelity solver for a 1D elliptic PDE with random coefficients and random forcing
Originally from Mike Giles' MCMC code.
authors: John Jakeman (jdjakem@sandia.gov) and Michael Asher (michael.james.asher@gmail.com)
date: August 2015
2nd order central difference discretization of (c u')'(x)= - 50 Z^2, u(0)=0, u(1)=0
where Z = N(0,1) (Normal with unit variance)
and c(x) = 1 + a*x with a = U(0,1) (uniformly distributed on (0,1))
"""
import numpy
import scipy.sparse
import scipy.stats
class ellip():

# set up equation matrices
def __init__(self, nf, num_QOI):

hf = 1./nf
cf = numpy.ones((nf))
A0f = hf**(-2)*scipy.sparse.spdiags([cf[1:], -cf[1:]-cf[0:-1], cf[0:-1]],[-1.,0.,1.],nf-1,nf-1)
cf = (numpy.arange(1.,nf+1.)-0.5)*hf
A1f = hf**(-2)*scipy.sparse.spdiags([cf[1:], -cf[1:]-cf[0:-1], cf[0:-1]],[-1.,0.,1.],nf-1,nf-1)
self.cf = numpy.ones((nf-1))
self.A0f = A0f
self.A1f = A1f
self.num_QOI = num_QOI

# interpolate with grid of num_QOI cells
def post_process(self, uf):

nf = len(uf)+1
hf = 1./nf
n_HF = self.num_QOI + 1
h_HF = 1./n_HF
# note boundary conditions (0.) are left off ends, add them here
return numpy.interp(x=[h_HF*(i+1) for i in range(n_HF-1)], xp=[hf*(i+1) for i in range(-1, nf)], fp=numpy.concatenate(([0.0], uf, [0.0])))

# solve equation for given random variables
def run(self, x):

U, Z = x
uf = scipy.sparse.linalg.spsolve(-(self.A0f+U*self.A1f), (50.*Z**2*self.cf))
return self.post_process(uf)

# solve equation for each column
def bulk_run(self, input_samples):

num_samples = input_samples.shape[1]
output_values = numpy.empty( (self.num_QOI, num_samples), float )
for i in range( num_samples ):

output_values[:,i] = self.run( input_samples[:,i] ).squeeze()
return output_values

# set up two fidelities
n_HF = 2 ** 9
h_HF = 1./n_HF
n_LF = 2**(2)
h_LF = 1./n_LF
num_QOI = n_HF - 1
num_dims = 2
HF_model = ellip(nf=n_HF, num_QOI=num_QOI).bulk_run
LF_model = ellip(nf=n_LF, num_QOI=num_QOI).bulk_run
# should return (num_dims, num_samples)
def sample_inputs(num_samples):

input_samples = numpy.random.RandomState().uniform(0.,1.,(num_dims, num_samples))
input_samples[1,:] = scipy.stats.distributions.norm(loc=0., scale=1.).ppf(input_samples[1,:])
return input_samples

if __name__ == '__main__':
num_samples = 6
zs = sample_inputs(num_samples)
HFs = HF_model(zs)
LFs = LF_model(zs)
import matplotlib.pylab as plt
for i in range(num_samples):

plt.subplot(numpy.ceil(num_samples/3.), 3, i+1)
plt.plot(HFs[:,i], label="HF")
plt.plot(LFs[:,i], '--', label="LF")

plt.suptitle("Low and high fidelity elliptic equation solutions for a few random inputs.")
plt.legend()
plt.show()

Figure 4.20: Multi-fidelity solver for a 1D diffusion equaion with random coefficient and
forcing.
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Chapter 5

Deep Learning

5.1 Introduction

In recent years, Deep Learning (DL) models, composed of many Neural Network

(NN) layers, have come to dominate the fields of artificial intelligence and machine

learning [Schmidhuber, 2015]. The popularity of this branch of machine learning is

surging as measured by listed jobs [Aiken et al., 2017], academic citations (eg. LeCun

et al. [2015]) or the public activity of the worlds biggest companies, many of which

have published papers and software on the topic recently (eg. Apple [2019]; Amazon

[2019]; Google [2019]; Microsoft [2019]; Tencent [2019]; Baidu [2019]).

The success of these statistical methods is in large part due to software improve-

ments made possible by huge communities of open source contributors. While their

theoretical basis is poorly understood [Lin et al., 2017; Poggio and Banburski, 2020],

DL frameworks provide simple interfaces to enormous hardware and software re-

sources.

However, this progress has not been mirrored in the physics based modelling

software typically used by applied mathematicians. A cursory investigation of public

open source code libraries reveals at least a 100 to 1 ratio of users and contributors

when comparing deep learning libraries [e.g. Google, 2019] to popular packages

related to physics based modelling [e.g. Bakker et al., 2016; OpenTurns; OpenBLAS].

However while the field of applied mathematics has few state of the art software

packages, it does have many decades of theoretical research, which is yet to be

integrated into DL. For example optimization, regularization, functional forms and

multiscale methods have been studied in great detail.

99
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Marçais and de Dreuzy [2017] and Shen [2017] have noted the relevance of DL

to hydrology, an area of research where process driven models have been the norm.

While we agree with their suggestions about where DL can be applied, there are

significant unmentioned possibilities. One of the aims of this paper is to identify

specific ways in which applied mathematicians working in hydrology can engage

with the DL community in a mutually beneficial manner.

It is worth noting that most DL applications have to date involved infilling missing

data rather than extrapolating or predicting in unseen conditions [Marcus, 2018]. The

seminal works cited by LeCun et al. [2015] all involve interpolation. Data for training

and testing are randomly drawn from the same dataset without partitioning on any

known variable. Both contain images of similar quality and subject.

A notable exception is the field of transfer learning, which uses models trained on

data from one domain, as inputs to a model predicting in another domain. See Tan

et al. [2018]’s survey for more details on the topic. It is also worth noting also that DL

methods have performed well in scenarios that might appear to be extrapolation, such

as a hydrological model predicting on catchments not present in the training data

[Nearing et al., 2020]. The common approach to interpolating at external catchments

is a form of ad-hoc machine-learning, selecting a similar catchment from the training

dataset [Parajka et al., 2013].

Difficulty with extrapolation is of course a limitation of statistical methods [Mar-

cus, 2018]. However, in our opinion data availability has outpaced model develop-

ment in many fields, such as hydrology. This increases the relevance of data intensive

approaches. Traditional models such as MODFLOW [Harbaugh, 2005] have not been

developed to make full use of the gamut of data now available from for example the

Sentinel program [El Hajj et al., 2017]. Further, one of the arguments we present here

is that the hardware and software advances brought about by DL research are not

limited to statistical approaches.
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5.1.1 DL and Groundwater

Recently, DL techniques have been used to train surrogates of groundwater mod-

els. Zhu and Zabaras [2018] perform Bayesian Uncertainty Quantification on a 4225

parameter flow model using a CNN using only 512 runs of the underlying process

based model. They employ Image-to-Image Regression, also known as fully convo-

lution neural networks (FCN), which involves pixel level predictions not the more

common task of image level classification. The surrogate has 241,164 parameters.

A model setting with this ratio of parameters to data is clearly not focused on the

principals of identifiability and parsimony [Guillaume et al., 2019]. The number of

parameters is enormous compared to statistical approaches typical in hydrological

modelling. Razavi et al. [2012b]’s review of surrogate modelling in hydrology found

85% of models in the literature have less than 20 parameters. However, this number

of parameters is small in the DL literature. Forms of SegNet [Badrinarayanan et al.,

2017] for example have over 1.6 million parameters. This gap highlights the difference

between the two schools of thought. The DL community has focused on empirical

results and intense computation. Numerical modellers have typically focused on

systematic sensitivity and uncertainty analysis.

Zhu and Zabaras [2018] mapped permeability to steady state head, but suggested

their approach can be applied to varying boundary conditions by simply appending

additional input channels (or images). They suggested a similar approach for dealing

with time as an additional input channel. In a follow up work, Mo et al. [2019] do

not incorporate time in this way - instead approximating head at a given time as a

function of head at the previous time, the hydraulic conductivity and the boundary

conditions. All of which are represented as images in the spatial domain.

Much has been written (eg Nabian and Meidani [2018]) on creating DL based

surrogates of physical models. The work of Mo et al. [2019] is of particular interest

as it demonstrates a surrogate which emulates the full spatial-temporal nature of

the original model as well as the key input-output relationships. It does this while

maintaining the previously extolled virtues of DL surrogates - namely computational

power and software quality. If such surrogates are broadly applicable they may be
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used to replace the underlying models altogether. Recent work by Sun et al. [2020]

provides a method for enforcing physical laws (PDEs) in DL architectures without

using any simulation data. Since most DL approaches were developed for training

on noisy "real-world" data. Future research will likely focus on models trained using

both this data and physical systems based constraints.

5.1.2 The Band Wagon

NNs have been around since the 1950’s [Rosenblatt, 1958], and have been applied in

hydrogeological setting since at least the 1990’s [Ranjithan et al., 1993]. Their poten-

tial is evident in their flexibility, Cybenko [1989] demonstrated that any continuous

function could be approximated by a single hidden layer network. However, their

recent popularity and successful application can be explained in large part by the

• Relative simplicity of use of DL libraries, eg PyTorch; Google [2019]. These

“black-box” methods can be applied to most datasets with little modification.

The libraries contain equation implementations, optimization algorithms, anal-

ysis tools and many examples of models and training data.

• Development of computational resources capable of training large networks,

making them suitable for use with increasingly large datasets and computa-

tional resources.. In particular the aforementioned DL libraries provide an easy

way to program GPUs [Ren et al., 2019].

• Availability of large training datasets, for example Deng et al. [2009] is a freely

accessible database of millions of classified images.

• Research matching particular structures (interconnections, activation functions,

loss functions and calibration methods) to particular problem domains. For

example back propagation LeCun et al. [1990] advanced the performance of

image classification networks considerably and convolution NNs were found to

be easier to train for image recognition.

• Application of regularization techniques. For example dropout [Srivastava

et al., 2014], unsupervised pre-training [Bengio et al., 2007; Erhan et al., 2010]
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or vanishing gradient regularization [Pascanu et al., 2013] and early stopping.

• Techniques to artificially increase the size of a training dataset by deformation.

Clearly no new information is added via this route, but it has been shown to

assist training models on a given dataset Mikołajczyk and Grochowski [2018].

• “Knowledge transfer” from models calibrated on large datasets to others fine

tuned on smaller datasets [Tan et al., 2018]. There is an inherent risk that

such calibrated models can be misused without due diligence by others, and

“knowledge” may be a misnomer for the coefficients of what are typically black

box models. We believe that a tighter integration between classical numerical

fields and DL research will shed some light on model internals.

5.1.3 Value of DL Methods

The aim of this chapter is to explore the potential for DL methods to address chal-

lenges faced by groundwater modellers in practice. Specifically the problem setting

of simulating water level and flow based on readily available data. Commonly, what

is available is water levels at sparse locations and proxies (eg rainfall, temperature) of

boundary conditions and forcing conditions (eg neighboring systems, rivers, recharge,

pumping). Data on aquifer properties is so sparse compared to aquifer heterogeneity

that it is often used only to initialize or constrain calibrated values. Of special interest

in this problem setting is forecasting into conditions for which data is not available

(dramatically increased pumping, climate change, fracking, subsidence).

We find that there are three broad areas where DL methods stand out among

other surrogate approaches of interest to groundwater practitioners.

Firstly, DL models have been shown to perform well (i.e. surrogate induced error

is orders of magnitude less than that from other uncertainties) as “black-box” surro-

gates [Sun, 2018; Mo et al., 2020; Dagasan et al., 2020] which can be used to replace

a slower model without changing the underlying code in a variety of prediction ad

inversion settings. Notably, DL methods are capable of handling orders of magnitude

more parameters than other surrogate approaches. Mo et al. [2019] demonstrate the

use of a DL surrogate on a problem with 686 uncertain input parameters, whereas
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Razavi et al. [2012b] found 85% of surveyed surrogate methods dealt with less than

20. In Section 5.4.1 we show the performance of a DL “black-box” surrogate.

Secondly, DL architectures vary far more so than other surrogate methods. This

correlates with the huge quantity of publications on this subject in general (not yet on

their application to hydrology and hydrogeology). The opportunity for groundwater

modelling is that architectures can be adapted to particular model settings, to deal

with for example a greater variety of boundary conditions or out-of-sample forecast-

ing [Sun et al., 2020; Wang et al., 2020; Geneva and Zabaras, 2020]. In Section 5.4.2

we show the performance of a DL surrogate in a variety of modelling conditions on

a practical groundwater model.

Thirdly, it has been speculated [Marçais and de Dreuzy, 2017; Shen, 2017; Nearing

et al., 2020] that DL methods could be used beyond emulation to provide additional

insight that process based models could not. However, to our knowledge, no studies

have produced results in this area. In Section 5.4.3 we provide a couple of results

showing the potential in opening up the “black-box” of a DL surrogate’s inner work-

ings.

5.1.4 Structure

Our major contributions of this chapter are as follows. We explain the particular

aspects of DL methods, as opposed to statistical methods in general, that make them

of interest to groundwater modelling. We enumerate opportunities for knowledge

transfer between DL and physics based modelling in Section 5.2. Then in Section 5.3

we apply both simple and state of the art DL models as surrogates of groundwater

problems showing 1) their strength as an emulation method, 2) some of their limita-

tions in practice and 3) their potential to provide new kinds of insight not possible

with existing approaches.
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5.2 Opportunities

5.2.1 Software

In our view, the simplest, most productive approach for applied mathematicians

who wish to benefit from DL is to use one of the software frameworks that are

synonymous with the field. TensorFlow [Google, 2019], CNTK [Microsoft, 2019],

PyTorch [PyTorch] and Caffe2 [Caffe], in descending order of popularity on Github at

time of writing, are all open source software libraries built for DL. They allow models

to be designed, calibrated and analyzed on state of the art computational resources (at

present GPUs) using in the order of a hundred lines of a high level language (typically

Python). This is a fundamental shift from, for example MODFLOW [Harbaugh, 2005],

the customization of which might require editing thousands of lines of low level

code. Current DL approaches cannot replace process driven models in many of the

applications that require extrapolation, since in many situations there are insufficient

methods to evaluate confidence in their predictions. For example they have not

gained widespread adoption in weather forecasting Dueben and Bauer [2018]. Given

the investment in DL research we posit this will change as the field matures, for

example as we develop an understanding of the range of predictions that can be

made from DL models with comparable measured performance.

DL software is of great use to applied mathematicians even if they have no interest

in NNs. Apart from the NN specific code, each of these libraries provide generic

functions which allow the implementation of arbitrary numerical algorithms. The

frameworks are based on GPU accelerated tensor (multi-dimensional array) compu-

tation, but contain a great variety of numerical tools. Hence even a physics based

model implemented in a DL framework, though it might not use NNs at all, will still

benefit from simple to use software of a high quality, high performance computing

and a large community of algorithms, models and datasets. For example, a simple

PDE solver based on Burkardt [2013], re-implemented in PyTorch is attached in 5.11.

A more complex example of coupling a physics based groundwater model with a DL

approach is given in Section 5.4.2.
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5.2.2 Remote Sensing

The potential of remote sensing data for hydrogeological modelling is largely un-

realized [Brunner et al., 2007], and the same is true of many areas of geophysical

applied mathematics. This is problematic as remote sensing datasets are the only

source of data on the same physical scale as many of these models. Their application

is often limited since remotely sensed variables do not directly map to the parame-

ters of process based models. As mentioned in Section 5.3.1, Convolution NNs and

Recurrent NNs have been successfully applied to imagery processing and timeseries

modelling respectively. Many of the advances in training models on large datasets

of imagery could be transferred to remote sensing, and indeed Zhang et al. [2016];

Zhu et al. [2017]; Yuan et al. [2020] have reviewed work in this area. We posit that

the intersection between remote sensing data and deep learning models is the most

promising area for research in hydrological modelling.

Continued increases in the number of sensors and open data initiatives has cre-

ated global scale datasets of hyper-spectral imagery, elevation and synthetic-aperture

radar, as well as continental datasets of airborne electromagnetics, magnetics, grav-

ity, magnetotellurics, radiometrics and seismics. Progress has been made in using

remote sensing in hydrological modelling. van Dijk and Renzullo [2011] review data

assimilation and model evaluation methods which have used remote sensing data to

improve accuracy and enhance spatial resolution. They reported varying degrees of

success, but analysis is limited to “surface” level relationships such as the location of

groundwater discharge zones, surface water levels, topsoil moisture content, soil hy-

draulic properties, snow cover, leaf area index, biomass and precipitation. Arguably

the benefit of DL would be in discovering more complex interactions. One can sketch

a rough relationship between reflectance values and soil moisture, but could one do

the same between the reflectance values and geological classification?

A simple opportunity for applied mathematicians to utilize methods common to

DL, is to preprocess or synthesize remote sensing imagery as inputs or parameters for

models, regardless of that model’s form (NN, statistical, PDE or otherwise). Relatively

little has been done to investigate the possibilities here, for example in replacing
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traditional interpolation methods such as kriging with a DL model incorporating

remote sensing data to predict soil or aquifer properties.

5.2.3 PDE methods

Despite being framed as statistical methods, DL models in practice may share many

of the same structures as physically based models Mehta and Schwab [2014]. Convo-

lutions, the foundation of many DL libraries, are also a foundational data structure

in the implementation of PDE based models. Marçais and de Dreuzy [2017]; Lin

et al. [2017] conjecture that the success of DL models may be due to their ability to

replicate physical processes. There are examples of using DL to solve PDEs [Rudd,

2013; Weinan et al., 2017] and applying PDE theory to improve DL models [Haber

and Ruthotto, 2017; Chaudhari et al., 2017]. While these links are clearly conjecture,

at least it makes clear the potential for PDE models to be implemented in DL related

software - which would in and of itself yield significant benefits.

While the suite of computational advances labelled DL have had great practical

success, their mathematical theory is not well developed Vidal et al. [2017]. Given

the novelty of the field, there is likely great promise in the transfer of decades of

applied mathematics research, particularly regarding PDEs, to the DL community.

For example super-resolution methods Shi et al. [2016] have clear parallels with

multifidelty methods such as those discussed in Chapter 4.

While still in their infancy, more complicated NN nodes would benefit dispropor-

tionately from this knowledge transfer. For example Amos and Kolter [2017] recently

developed a NN where each node solves a constrained optimization (quadratic pro-

gramming) problem. Such developments will increase the ease with which process

driven models can be implemented in DL frameworks.

5.2.4 Model Structure

More speculative than areas noted above is the prospective use of DL to infer physical

model structure. By design, DL architectures are flexible. The weights and activation

functions turn internal nodes on and off during calibration. Internal nodes can be
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composed of any function for which a gradient can be approximated. There is an open

opportunity for research into new functional representations. By analyzing trained

NNs, Marçais and de Dreuzy [2017] and Shen [2017] both note potential for DL to

guide the choice of the structure of physical models. Shen [2017] gives examples

where DL has already been used to identify patterns that are not represented in

physical models.

In the broader DL literature, Bengio et al. [2007] demonstrated the effectiveness

of unsupervised pre-training, implying the capture of an underlying structure, and

LeCun et al. [2015] claim it will be an increasingly important area of research.

In some cases, DL may have the potential to improve the parameters of existing

process driven models. For example Badrinarayanan et al. [2017] successfully used

remote sensing data to spatially segment and classify an aquifer. The segmentation

would be based on remote sensing values, and would not require knowledge of the

aquifer properties. Current common practice is to use zones often hand drawn by

experts based on historically available data.

More speculatively, it may be true that correlations unearthed by DL models

trained on copious volumes of remote sensing data may encode internal variables

that can be built into new or altered process based models [Nearing et al., 2020]. This

is not as outrageous as it sounds. While hydraulic conductivity is a property that

can be physically measured, any practicing hydro-geologist will note there is little

in common with the measured property and the parameters of that name in existing

groundwater models. A first step in future research could explore the potential of

DL to automate and improve the prediction of spatial distributed model inputs (e.g.

acquifer properties) from the availalbe data (e.g. geological facies maps and bore

logs).
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5.3 Methods

5.3.1 Neural Networks

A neural network model consists of J interconnected nodes (neurons), each of which

can be written simply as

yj = f

(
∑

i∈1,...,I
wi,jxi + bj

)
j ∈ 1, ..., J (5.1)

where yj are the outputs, xi the inputs, wi,j are the weights, bj the bias and f is a

non-linear function. Common examples of this so called activation function or so

called “non-linearity” include the softmax function

f (xj) =
exp xj

∑i∈1,...,J exp xi
j ∈ 1, ..., J (5.2)

or the rather linear rectified linear unit (ReLU)

f (xj) = max(0, xj). (5.3)

In a classic fully connected network, the nodes are arranged in layers where every

node in a layer takes as input the outputs of all nodes in the previous layer. Deep

Learning [LeCun et al., 2015] refers to the calibration of NN models with many

(more than several) internal (hidden) layers between the model’s inputs and outputs

of interest. While this structure is nothing more than logistic regression models

arranged in both series and parallel, particular structures of simple nodes have been

developed to model complex problems in a number of domains.

Convolution NNs [Krizhevsky et al., 2012; Simonyan and Zisserman, 2014] have

had huge success in computer vision. In convolution NN layers, input sequences xi

are commonly pixels of an image, and the weights are sparse and shared between

nodes in the same layer, such that Equation (5.1) amounts to a convolution of the

vectors of inputs and weights.

Recurrent NNs, in particular Long Short-Term Memory networks [Sutskever et al.,

2014], have produced unprecedented results for sequential data such as speech recog-



110 Deep Learning

nition, language translation and timeseries modelling. Recurrent NNs create loops by

adding nodes which maintain a state cj, which is updated at each computation based

on its previous value as well as the inputs. Layers are not typically fully connected

nor are they linear, i.e. connections may skip layers.

5.3.2 Architectures

Much of the research into DL has focused on network architecture, and its impact

on accuracy and training time for a given dataset. While there is no universal tax-

onomy of architectures as a whole, a number of well known submodules of several

connected layers have surfaced and typically encoded in DL software packages such

as Google [2019]; PyTorch. We focus here on image-to-image (or fully convolutional)

architectures which have a multi-dimensional image as an input and output. Such

configurations are common in literature relating to semantic segmentation [Minaee

et al., 2020] and Generative Adversarial Networks (GAN) Gui et al. [2020]. These

image-to-image methods appear most relevant to groundwater simulation where

much of the data is multi-dimensional.

Here we draw from two popular image-to-image architectures. DenseED Zhu and

Zabaras [2018] and ConvLSTM Shi et al. [2015]; Geneva and Zabaras [2020].

5.4 Results

5.4.1 DL as a simple surrogate

This section contains the training of a Convolution NN on two PDE based models,

including a groundwater model implemented in MODFLOW Harbaugh [2005]. The

purpose of experiment is to demonstrate the ease of use and power of DL software

to encourage applied mathematicians to use the software for their own research.

First, we implement an explicit finite difference solution to the two dimensional

heat equation

∂h(x, t)
∂t

= ∇2
xh(x, t) + f (x, t), x ∈ D, t ∈ (0, T] (5.4)
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(a) full network

(b) encoder

(c) decoder

Figure 5.1: The architecture of DenseEd, figures from Zhu and Zabaras [2018]

where h(x, t) is temperature, though in application to groundwater systems, this is

groundwater pressure.

We parameterize the initial head as the Karhunen-Loève expansion

h(x) = µ + σ
n

∑
i=0

ki(x)λizi, (5.5)

where µ and σ are the mean and standard deviation of the field, ki(x) and λi are the

eigenfunctions and eigenvalues, and zi are the random weights.

The model in Equation (5.4), implemented in Figure 5.11 of the Appendix, is then

solved for T timesteps for 10, 000 realizations of Equation (5.5) by sampling random

values for the weights zi. We then trained a convolution NN, implemented in Figure

5.12, with T identical layers. We used replication padding (extrapolating edge values

to prevent convolution from reducing the image size) and a kernel diameter of three

(a weighted sum of 3 x 3 neighbouring pixels is used in the convolution layer). Figure
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(a) 2D image into a 3D tensor

(b) the inner structure of a ConvLSTM

Figure 5.2: The architecture of ConvLSTM, figures from Shi et al. [2015]

5.3 shows the convergence of the NN error with the number of training examples for

T = 1 and T = 5. Two things of note from this example are that 1) the implementation

of a convolution NN corresponds closely to that of a numerical PDE scheme and more

significantly 2) that NN can be coded and trained on state of the art computers with

unprecedented ease. The implementation of the PDE solver and NN are attached in

Figure 5.11 and Figure 5.12 of the Appendix.

Figure 5.3: Convergence of convolution NN trained on heat model for one (left) and five
(right) timesteps. The mean value of the solution was 2× 10−2.
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Figure 5.4: Convergence of convolution NN trained on MODFLOW model over 10 timesteps.
The mean value of the solution was 2× 102.

Similar convergence of errors can be seen on a surrogate of a simple MODFLOW

model in 5.4. These results show the successful calibration of DL surrogates on PDE

based models with hundreds of parameters and outputs, using simple “black-box”

software, showing them to be a useful surrogate for groundwater practitioners.

5.4.2 Limitations of DL surrogates

The aim of this section is to extend the work of Mo et al. [2019] to a practical ground-

water model. As a practical example we develop a model of similar complexity to

those used in commercial or policy making settings. We construct a MODFLOW

[Harbaugh, 2005] finite difference model of the Campaspe River basin in Victoria,

Australia based on the work of Iwanaga et al. [2020]. Real data was incorporated for

climate, elevation, groundwater levels and hydrological units.

Using the same popular FCN as Mo et al. [2019], but with additional channels, we

predicted hydraulic head images at a given time based on images of hydraulic head

at the previous timestep, hydraulic conductivity and spatial patterns of boundary

conditions. To cover a range of scenarios we implemented a specified head boundary

(Dirichlet or first-type) using the CHD package, specified flux boundary (Neumann

or second-type) using the well package and head-dependent flux boundary (Robin
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or mixed) using the river package. Figure 5.5 shows the images used to represent the

spatial variability of the boundary conditions in the model. Hydraulic conductivity

represented using a Karhunen-Loéve expansion. The model had 13 variable inputs

including 10 Karhunen-Loéve modes and a scale for each of the three boundary

conditions.

As seen in Figure 5.6, similar accuracies were achieved regardless of the boundary

condition. The spikes in the convergence plots are an artefact of the random sam-

pling during training. The specified flux model (middle) shows the least volatility -

showing a simpler input-output relationship in this case. Further research is required

into optimizing the hyper-parameters (parameters that control the calibration algo-

rithm) that would lead to fast and reproducible calibration of DL surrogates in this

setting. We improved the performance in all cases by adding the spatial variability

of that boundary condition as an input - significantly so in the case of the fixed head

boundary. This adds credibility not only to the use of FCN as surrogates but also

to the idea that they may be able to represent the underlying physical processes

in a similar fashion to the PDE based model. As seen in Figure 5.6, including the

boundary condition as input only impacts the performance of this surrogate in the

case of the fixed head boundary. In this model, only the fixed head boundary had a

time varying component, which explains this artefact.

There are notable differences in the surrogate implemented here and those de-

scribed in Chapter 2. Since this surrogate employs a DL package, [PyTorch], the

author gained access to tested and professionally implemented software tools and

algorithms. As Harris et al. [2020] note of Numpy, such tools play an essential role

in research. Even more significantly, the efficiencies of the DL packages allow the

calibration of a surrogate on a number of inputs many orders of magnitude higher

than other approaches. Figure 5.7 shows the spatially distributed output of the sur-

rogate compared with that of the full MODFLOW model. The mean of the absolute

residual is 1.5 or about 1% of the head values. The mean head difference between the

previous and current time steps was 13, so error was closer to 10% of that quantity.



§5.4 Results 115

Figure 5.5: Top row: Spatial variability in well pumping, river stage and fixed head boundary
conditions. Bottom row: An example spatial pattern of hydraulic conductivity.
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Figure 5.6: Convergence of surrogate root mean squared error (RMSE) with training epoch
(set of 50 model input-output training runs). Shown here for a specified head boundary
(Dirichlet type, top), specified flux boundary (Neumann type, middle) using the well package
and head-dependent flux boundary (Robin type, bottom) using the river package.
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Figure 5.7: Example of hydraulic head observed (MODFLOW output) left, surrogate predicted
(center) and the difference between the two (right).

5.4.3 What value do DL models provide beyond emulation?

As discussed above, DL methods stand out from other surrogate methods given their

easy-to-use software, and ability to handle large numbers of uncertain inputs. In line

with the previous literature on surrogate modelling, research continues into how cer-

tain network architectures perform better as surrogates for particular combinations of

boundary conditions, quantities of interest and aquifer parameterizations. However,

there is little except speculation [Marçais and de Dreuzy, 2017; Shen, 2017; Nearing

et al., 2020] into how DL models might provide insight beyond their use as emulators.

How can the recent surge in DL popularity translate into a step change in model

ease-of-use, accuracy, reliability or resolution in earth systems modelling?

In this section, we provide a result that demonstrates how these methods can

function fundamentally differently to other “black-box” surrogate methods. Due to

the flexibility available in DL software packages, architectures can be implemented

which mimic physical systems in ways the internals of other statistical methods
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cannot.

The simplest example of this potential can be seen in calibrating a model with

a single convolution layer. From the simple model in Section 5.4.1, with conver-

gence results shown in Figure 5.3, we extract the internal weights of the model. The

calibrated weights of the convolution layers are given in Figure 5.8. Ignoring the

magnitude, which is adjusted by another factor in the model, the symmetrical shape

of the weights correspond closely to the explicit finite difference scheme of the source

model. This trivial example seeks to explain that the coefficients of DL models have

the potential to represent more than simple black-box coefficients.0.0087 0.0853 0.0085
0.0851 0.6244 0.0855
0.0087 0.0853 0.0085


0.0097 0.0822 0.0097

0.0829 0.6310 0.0828
0.0090 0.0836 0.0090

 (5.6)

Figure 5.8: Kernel of trained convolution NN for one (left) and five (right) timesteps.

A more practical example is constructed by fitting a state-of-the-art ConvLSTM

[Shi et al., 2015] architecture to a MODFLOW model. Such recurrent architectures

calibrate an internal state of the same dimensions as the input and output. By

using images of head at subsequent timesteps as input and output, we fit a single

ConvLSTM module model. The result, as shown in Figure 5.10 is that as the model

error reduces, so increases the correlation between this internal state and the spatial

distribution of hydraulic conductivity - the dominant aquifer property in this model.

A simple “patchwork” spatial distribution of hydraulic conductivity (Figure 5.9 was

chosen.

Such a method could be extended in practice to model the spatial distribution

of unknown aquifer properties or boundary conditions based on the data which is

most often regularly available - water level timeseries. This result is nebulous but

an important step in providing the first (to our knowledge) feasible route for the

use of DL methods beyond pure emulation. We speculate that truly novel modeling

methods are possible by combining this approach with remote sensing data (digital

elevation, magnetics, gravity, radar and hyper-spectral imagery).
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Figure 5.9: Images showing conductivity (left) and the internal state of the ConvLSTM model
(right). Units are omitted as we only wish to show a correlation, which in this case has a
Pearson coefficient of 0.5.
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Figure 5.10: Convergence of the correlation (top) and error (bottom) of the ConvLSTM model
with training batches, B, each of 100 data points. Correlation is measured by the Pearson
coefficient, error by the root mean square error. The mean magnitude of the output is 3.5, the
error converges around 6%.
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5.5 Discussion and Conclusion

Recent advances associated with DL methods represent a significant opportunity

for the applied mathematics community. To date, DL methods have been shown

to be applicable as surrogates of physics based models, and are able to identify

unrepresented mechanisms in these models. However, we argue that the greatest

opportunity is in the use of the associated software frameworks. Both earth systems

modelling and DL would benefit enormously from cross-pollination, and the best way

to realize these opportunities is for applied mathematicians to employ DL software

in their research.

While Marçais and de Dreuzy [2017] note the promise in using process based and

statistical (DL) approaches in a complementary fashion, we argue that the biggest

gains will come only if for process based modellers use and contribute to DL software.

We predict this will accelerate advances in both fields by improving the computational

resources available to physical modellers, the mathematical techniques available to

DL practitioners, and the ease with which approaches can be combined.

A number of specific research challenges present themselves. Transfer learning,

where models are first trained on large generic datasets before being refined on

a smaller, more relevant ones, represents a great opportunity. The application of

transfer learning to earth systems models, typically PDE based at present, has not

been explored in great depth. The rapidly increasing availability of remote sensing

data makes this a promising avenue for future research. The need is there: Clark

et al. [2015] note that representing spatial variability remains the greatest challenge

in hydrological modeling.

Another exciting prospect is the porting of methods from applied mathematics

to the DL community. In particular uncertainty and sensitivity analysis methods

encoded in packages such as PEST Doherty [2009], DAKOTA Eldred et al. [2013], and

RAVEN Rabiti et al. [2014].

As demonstrated in Section 5.4, DL software can be used to implement and

emulate process based models relatively easily. In Section 5.4.2 we developed DL

surrogates which captured a range of common input-output relationships in ground-
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water modelling. The number of inputs far exceeds what is typically possible in other

surrogate approaches.

Our position is that the numerical modelling community, in particular hydro-

geological modellers, would benefit enormously from using DL related software (even

if they are not implementing NNs) and from methods such as that given in Section

5.4.2, a simple black box surrogate capable of approximating any reasonable number

of input-output relationships. However, the aforementioned benefits alone justify

greater engagement between the DL field of research and the numerical modeling

community, and as noted in Section 5.2, there is a blue sky full of other innovations

that may well come from this shift.

At present DL methods are largely black box, which ironically do little for human

learning and provide limited insight into the confidence of their results. The appar-

ent “power” in interpolating on a given dataset carries danger their results will be

misconstrued elsewhere.

Currently, process driven surrogates such as the Multi-fidelity Stochastic Col-

location approach described in Chapter 4 still provide an attractive alternative to

groundwater modellers seeking a drop in surrogate to extrapolate, for example to a

scenario with a fundamentally different climate to the data available for training. Fur-

ther research into the the potential of DL methods to provide value to groundwater

modellers in these scenarios is required.

5.6 Appendix
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import torch
import numpy as np
import util
def solve(A, rhs):

LU_data, LU_pivots = torch.btrifact(torch.unsqueeze(A, 0))
x = torch.btrisolve(torch.unsqueeze(rhs, 0), LU_data, LU_pivots)
return torch.squeeze(x)

def implicit_heat_2d_torch(U, dx, dt, timesteps=1):
n = U.shape[0]
mu = 0.5 * dt / (dx * dx)
# tridiagonal LHS
du = -mu * np.ones((n - 1))
dc = 1 + 2 * mu * np.ones((n))
dl = -mu * np.ones((n - 1))
A = torch.from_numpy(np.diag(dl, -1) + np.diag(dc) + np.diag(du, 1))
for t in range(timesteps):

# Peaceman-Rachford alternating direction implicit finite difference method for solving the 2d heat equation
rhs = torch.from_numpy(np.zeros((n, n)))
rhs[:, 0] = 0.
rhs[:, n - 1] = 0.
V = mu * U[:, 2:] + (1 - 2 * mu) * U[:, 1: n - 1] + mu * U[:, :-2] + mu * rhs[:, 1: n - 1]
rhs[:, 1: n - 1] = V
U_star = solve(A, rhs)
U_star[:, 0] = 0.
U_star[:, n - 1] = 0.
rhs = torch.from_numpy(np.zeros((n, n)))
rhs[0, :] = 0.
rhs[n - 1, :] = 0.
V = mu * U_star[2:, :] + (1 - 2 * mu) * U_star[1: n - 1, :] + mu * U_star[:-2, :] + mu * rhs[1: n - 1, :]
rhs[1: n - 1, :] = V
U[:, :] = solve(A, rhs)
U[:, 0] = 0.
U[:, n - 1] = 0.
U[0, :] = 0.
U[n - 1, :] = 0.

return U
def explicit_heat_2d_torch(U, dx, dt, timesteps=1):

r = dt / (dx * dx)
assert r <= 1 / 4 # for stability
for i in range(timesteps):

dUx = U[2:, 1: -1] - 2 * U[1: -1, 1: -1] + U[:-2, 1: -1]
dUy = U[1: -1, 2:] - 2 * U[1: -1, 1: -1] + U[1: -1, :-2]
U[1: -1, 1: -1] = U[1: -1, 1: -1] + r * (dUx + dUy)
U[0, :] = 0.
U[-1, :] = 0.
U[:, 0] = 0.
U[:, -1] = 0.

return U
if __name__ == '__main__':

R = 32
dx = 1.0 / R
dt = 0.0001
timesteps = 100
U = np.meshgrid(np.ones(R), np.linspace(0, 1, R))[1]
util.imshow('Initial', U)
U_implicit_torch = implicit_heat_2d_torch(torch.from_numpy(U.copy()), dx, dt * 10, timesteps=timesteps // 10).numpy()
util.imshow('Implicit', U_implicit_torch)
U_explicit_torch = explicit_heat_2d_torch(torch.from_numpy(U.copy()), dx, dt, timesteps=timesteps).numpy()
util.imshow('Explicit', U_explicit_torch)

Figure 5.11: Implemention of a PDE solver in PyTorch.
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import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import datasets
import util
# test and training data loader
class Headset(torch.utils.data.Dataset):

def __init__(self, base_dir, train_or_test):
self.train_data = util.read_dir('%s/%s/%s' % (base_dir, train_or_test, 'in'))
self.target_data = util.read_dir('%s/%s/%s' % (base_dir, train_or_test, 'out'))
assert len(self.train_data) == len(self.target_data)

def __getitem__(self, index):
img = util.from_np_pickle(self.train_data[index])
target = util.from_np_pickle(self.target_data[index])
return img, target

def __len__(self):
return len(self.train_data)

# model structure
class Net(nn.Module):

def __init__(self, timesteps=1):
super(Net, self).__init__()
# reuse the same instances here so there is only one set of conv parameters
pad = nn.ReplicationPad2d(1)
conv = nn.Conv2d(1, 1, kernel_size=3, bias=False)
layers = []
for i in range(timesteps):

layers.append(pad)
layers.append(conv)

self.net = nn.Sequential(*layers)
def forward(self, x):

return self.net(x)
def loss_func(output, target):

return (output[:, :, 1:-1, 1:-1] - target[:, :, 1:-1, 1:-1]).pow(2).sum()

Figure 5.12: Implemention and training of a convoluation NN in PyTorch.
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Conclusion

6.1 Contributions

A number of surrogate modelling methods have been developed to increase the

efficiency of model based analysis of groundwater systems. We reviewed progress

to date in Chapter 2 and developed three families of promising, state of the art

surrogates of practical groundwater models in the following three chapters. In each

case we analyzed the performance of the surrogate method in a range of practical

groundwater modelling contexts where computational efficiency is a bottleneck to

model based analysis. The models in Chapters 3 and 5 estimated water pressure at a

number of locations based on uncertain boundary conditions and aquifer properties.

This is a typical scenario for calibration and use of groundwater models where the

main source of available data is water levels. The model of Chapter 4 estimated

heads of a deep aquifer where little was known about its structure, hence the model’s

layer depths and properties were treated as uncertain inputs. All of the approaches

provided significant runtime reductions. Once calibrated, the PCE and DL surrogates

have a negligible computational cost to run online. The PCE approach took fewer

than 200 full model runs to calibrate a surrogate of less than 1% error, and sensitivity

indices can be derived from the expansion without further computational cost. The

DL approach achieved similar results using 500 full model runs to calibrate. MFSC

used far fewer full model runs (<50) but required many (1000) lower fidelity models

to calibrate, and requires the lower fidelity model to be run online for each surrogate

prediction.

All three methods can be applied simply as non-intrusive emulators in a number
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of contexts, and have the benefit of adding an additional layer of understanding to

the analysis. Non-intrusive methods can be applied without editing the underlying

model, making such approaches simpler and more robust to apply. In many cases

only a an input-output dataset is readily available so intrusive methods are not

possible.

The PCE surrogate developed in Chapter 3 provides efficient sensitivity analysis

of a model. The adaptive sparse grid calibration method trains a surrogate of a given

accuracy using an order of magnitude fewer samples than conventional calibration

approaches. The method stands out among all other approaches we analyzed as

the fastest for moderate (<20) numbers of parameters. Surrogate introduced error is

shown to quickly converge below that due to the spatial and temporal resolution. We

achieve convergence of the error in the mean estimate below 1% (relitve RMSE) in

fewer than 100 runs. Further, we developed a novel calibration method that makes

use of nested polynomials implemented as layers in a DL software package. The

approach has fewer parameters and converges faster than a conventional surrogate

with a single polynomial of the same order. Of note too is that PCE theory [Xiu and

Karniadakis, 2002] holds value in this new architecture. Pairing the polynomial used

with the distribution of the input reduces the number of full model runs necessary

for calibration of this nested surrogate.

The MFSC method was shown in Chapter 4 to be another promising emulation

method. The approach is well suited to spatially and temporally distributed param-

eters, and has the added benefit of providing insight into the resolution-dependent

errors of the underlying model. By using lower-fidelity model runs as the basis for

the surrogate, the approach is better suited than purely statistical methods to make

predictions in unseen conditions such as in different catchments or future climate sce-

narios. We developed two improvements to the algorithm in practical groundwater

modelling settings. Both of these reduced error in the surrogate by an order of mag-

nitude with the same training cost. Firstly, low-fidelity outputs should be normalized

for node selection so as to prevent bias towards outputs of larger magnitude. Second,

as much information from the low-fidelity simulator should be included in the output

as is practical. Significant improvement was noted by including more outputs (e.g.
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both spatial fields and timeseries) of the same underlying model.

In Chapter 5 we reviewed the rapidly developing field of DL surrogates and

their recent application to groundwater modelling. We show two state of the art

architectures perform well in a range of modelling contexts. Their major advantage

as an emulator is their ability to handle orders of magnitude more model parameters

than other surrogate methods. Further, these surrogates have the potential to provide

more value than reducing computational requirements. We provided two examples

of DL architectures which not only serve as emulators, but capture properties of

the underlying physics-based model in their internal weights as they are calibrated.

These represent innovative first steps towards using progress in DL not only to speed

up existing process based groundwater models, but to create new models altogether.

6.2 Limitations

All surrogate techniques add a significant level of complexity to the modelling process,

which in many cases outweigh the benefits in decreased modelling times. In some

cases, making better use of computational resources (parallelism, faster languages,

GPUs) is a better alternative. This would be true for many of the techniques reviewed

in Chapter 2 and Razavi et al. [2012b] where computational gains reported between

the original model and surrogate are less than a couple orders of magnitude. Or

in analyses where the number of complex model runs necessary to calibrate the

surrogate on a domain is not significantly lower than the number needed for the

analysis itself. In summary, surrogates are best suited to scenarios such as integrated

modelling, where online prediction speed is crucial.

Most approaches (MFSC and PCE included) are computationally intractable with

large (>50) numbers of parameters. While DL methods can handle more parameters,

published approaches to date have done so by including large samples of the under-

lying model for calibration of the surrogate. This requirement, along with relatively

long training times is a major limitation of DL approaches in practice.

MFSC is among many novel algorithms with little publicly available software.

While quality software implementations do exist for PCE [Eldred et al., 2013; Jakeman,



128 Conclusion

2020a], a lack of simple and flexible tools remains the biggest roadblock to both

methods’ widespread adoption.

While the adaptive calibration of the PCE surrogate outperforms naive sampling

based approaches, it relies on a robust model which will not fail on any of the sampled

inputs, which is seldom the case in practice.

Multi-fidelity methods such as MFSC are limited to scenarios where the fidelity

(often the spatial resolution) can be altered without removing or fundamentally al-

tering features of the model. This is not always possible, for example with certain

boundary conditions with grid size [Mehl and Hill, 2010].

6.3 Future Work

In Chapter 2 we noted several generic areas of surrogate modelling warranting fur-

ther research: quantification of surrogate induced uncertainty, multi-scale methods,

localization in parameter space, and optimal snapshot selection. Research into each

of these is required for practitioners to readily adopt model emulation. Surrogate

induced uncertainty is typically treated as purely a function of stochastic resolution

(how many model runs are required to train the surrogate). However as discussed

in Chapter 3, stochastic and physical resolution both effect model runtime and error,

and so should be considered together. A promising approach to doing so lies in

multi-fidelity (or multi-scale) methods [e.g. Jakeman et al., 2019a] which quantify

both stochastic and physical grid errors. There is a significant amount of contem-

porary research into multi-fidelity surrogates [Peherstorfer et al., 2018]. Conversely,

there has been little progress (based on e.g. the work of Wan and Karniadakis [2005])

to automate the building of a different surrogates on sub-domains of the parameter

space to better deal with discontinuities. Many surrogate methods rely on ad hoc

approaches to sampling complex model snapshots on which to calibrate, despite this

typically being the most computationally expensive aspect of the analysis. Adaptive

polynomial chaos methods have been developed [e.g. Miller et al., 2018] which iter-

atively select new complex model runs based on existing knowledge of the space, a

key innovation to the widespread adoption of these methods.
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Traditionally, surrogate approaches have formed part of model analysis literature

concerning parameter estimation, uncertainty quantification, and sensitivity analysis.

During the writing of this thesis, deep learning has expanded in popularity rapidly

in both research and industry. The latter field has fewer mathematical roots but

has recently attracted a huge investment in software implementations. The software

frameworks recently developed by the deep learning community are a promising

avenue for researchers interested in surrogates. They provide simple interfaces to

state of the art computational resources, libraries of algorithms and a burgeoning

community of experts. There is significant overlap in the fields, such as in neural

network techniques. However applied mathematicians, including groundwater mod-

elers, can tap into these benefits not only by using NN surrogates or models, but

by implementing process-driven simulators using these libraries. Such efforts would

rapidly accelerate collaboration between two large fields of study and undoubtedly

benefit both.

In this vein, we implemented a nested PCE surrogate using a DL framework in

Chapter 3 and showed correlation of surrogate weights with underlying physical

properties in Chapter 5. These are early results, but we believe there is great promise

in continuing to explore this area.
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