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We examine a solution of non-adaptive two-state rotaxane molecules which can switch from a short
state of length L to a long state of length qL, using statistical thermodynamics. This molecular switching
is externally driven and can result in an isotropic-nematic phase transition without altering temperature
and concentration. Here we concentrate on the limitation imposed by switching inefficiency, i.e., on the
case where molecular switching is not quantitative, leading to a solution of rotaxanes in different states.
We present switching diagrams that can guide in the design of rotaxanes which affect a macroscopic
phase change. Published by AIP Publishing. https://doi.org/10.1063/1.5022134

I. INTRODUCTION

Liquid crystals are comprised of anisotropic or rod-like
molecules that can be partially aligned or ordered like a crys-
tal, while simultaneously able to flow like a liquid. Onsager1

described how a solution of rods, interacting only via hard-
body repulsion, can transit from a low concentration isotropic
phase to an ordered nematic phase at higher concentrations.
This transition is understood in terms of a competition between
the translational and orientational entropy of the rods. In the
isotropic state, the orientational entropy is maximised, so the
rods point freely in every direction. As the concentration of
rods increases, this orientational freedom limits the trans-
lational freedom of the rods. At a critical concentration, a
trade-off occurs: rods begin to align with one another (with a
reduction in orientational entropy) so as to increase the transla-
tional freedom of the rods. This emerging alignment provides
an optical signal; similar to crystals, the aligned nematic phase
interacts with polarised light. This lyotropic isotropic-nematic
transition, first recognised in cholesterol, also occurs for col-
loidal particles, such as the tobacco mosaic virus, as well
as polymers which are not strictly rod-like but have internal
flexibility.2

However, a very different kind of molecule with inter-
nal degrees of freedom imparted by mechanical bonding3

can also exhibit liquid crystallinity, but without the required
change in concentration. Such mechanical bonds, which con-
sist of a topological linkage of at least two covalent struc-
tures, have existed for about half a century.4 The original
example is a catenane, where two macrocycles or rings are
mechanically linked or interlocked together. These molecules
were first made statistically in low yield by Wasserman,5 but
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Sauvage et al.6,7 revolutionised the synthesis of catenanes and
other interlocked molecules with a metal templating method.
Another example of an interlocked molecule, which is the
focus here, is a rotaxane, or a “wheel” and “axle” molecule,
where a ring is threaded onto a molecular axle that is stoppered
by a bulky group to prevent de-threading. A rotaxane-switch
corresponds to a molecular axle into which attractive stations
are built; the ring switches between stations depending upon
external factors, including chemical reactions,8–10 solvent
polarity,11 pH,12–16 and light.17–19 Bruns and Stoddart20 have
recently reviewed a class of length-extending two-state rotax-
ane switches which can be switched from a short to a long state,
where the ratio of lengths in these cited examples can be as
high as 3.

In two recent publications, He et al.21,22 introduced the
idea of using a solution of two-state rotaxane switches to
affect a switchable liquid crystalline phase. A generic two-
state rotaxane, predicted to exhibit lyotropic liquid crystalline
phase behavior, is illustrated in Fig. 1. In the case of 100%
switching efficiency, or where the two-state rotaxane switches
quantitatively between two different lengths, He et al.21,22

predicted a crystalline phase change that occurs without a
change in concentration. However, these molecules usually
do not switch quantitatively; i.e., a fraction of the molecules
do not switch.12,13 Instead, solutions of these two-state rotax-
ane switches consist of a mixture of long and short rods, and
switching changes the relative composition of short to long
states.

In this paper, we predict the macroscopic change in liquid
crystalline phases that result from the molecular switching of
two-state rotaxanes, controlled externally, but where switch-
ing is not quantitative. The liquid crystalline phases of binary
mixtures of rods of fixed length (and small diameter) were pre-
viously predicted by Lekkerkerker et al.23 and Birshtein et al.24

who constructed phase diagrams for a mixture of rods of length
L and qL (q > 1), with different fractions of long rods, x. Here
we use those predictions to construct a liquid crystalline phase
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FIG. 1. A two-state rotaxane consisting of two axles or rods interlocked to
each other. When the rings are engaged at the red stations, the molecule is in
a short state of length L. When the rings are engaged to the green station, the
molecule is in a long state of length qL. Switching between long and short
states is by external influences such as light or a change in pH which alters
the state of minimal energy. We assume that the energy difference in the long
and short states is always much greater than kBT, irrespective of which state
is minimal. This means that the switch is unaffected by the local alignment or
density of molecules. That is, we consider only non-adaptive switches. If the
state is affected by the local alignment or density, then the rotaxane switch
is adaptive.22 This length switching process provides a possible mechanism
to accomplish a direct macroscopic transition from an isotropic to nematic
phase, which is not possible in conventional lyotropic liquid crystals without
a change in concentration.

switching diagram, predicting the concentration range and q
which provides maximal optical signal or when the solution
macroscopically switches from isotropic to nematic phases.
The remainder of the paper is organised in the following way:
First, we briefly review the case of isotropic to nematic phase
change with 100% molecular switching efficiency. This pro-
vides the framework upon which the incomplete or inefficient
switching predictions are constructed. Next, we briefly out-
line the free energy minimisation or entropy maximisation for
binary mixtures of rods. Then we construct switching dia-
grams for four different switching scenarios to demonstrate
the range of concentration and length ratio where observ-
able, macroscopic optical changes can occur by molecular
switching.

II. MONODISPERSE RODS

Here we review the thermodynamics of isotropic/nematic
phase transition for a solution of monodisperse rods of length
L which have no interactions other than hard-body or volume-
excluding interactions. This means that the free energy com-
prises the translational entropy of the rods in solution, the
orientational entropy of the rods, and a term that describes
the reduction in translational entropy due to the pairwise hard-
body interactions. If we let u be the unit vector specifying
the rod direction and Ψ(u) be the orientational distribution so
that Ψ(u)du is the probability that a molecule has an orien-
tation vector between u and u + du, then the free energy per
molecule of a homogeneous solution of N molecules of length
L and diameter d in a volume V is

F[N , V ,Ψ]
NkBT

= ln
N
V
− 1 +

∫
duΨ(u) ln [Ψ(u)]

+
1
2

N
V

∫ ∫
dudu′Ψ(u)Ψ(u′)2L2d | u × u′ | .

(1)

Here the term involving ln [Ψ(u)] is the orientational entropy
of the solution, while the final term is the reduction in
translational entropy due to pairwise, volume excluding inter-
actions between two rods of orientations u and u′. At
low concentrations, this free energy is minimised when
Ψ(u) = (4π)�1 or when all orientations are equally likely and
the solution of molecules is isotropic. However, at interme-
diate concentrations ci < N /V < ca, two different orienta-
tion distributions minimise the energy, indicating that two
coexisting phases exist. These two phases are an isotropic
phase with Ψi(u) = (4π)�1 of concentration ci = N i/V i and a
nematic phase with preferential orientation, Ψa(u), and
concentration ca = Na/Va. The free energy in the isotropic
phase is F i = F[N i, V i, (4π)�1]; the free energy in the
nematic phase is Fa = F[Na, Va, Ψa(u)]. The volume of
each phase varies within the concentration range ci < c < ca,
where c = (N i + Na)/(V i + Va), and is determined by min-
imising the free energy of the solution, F = F i + Fa, with
respect to N i, V i, subject to the constraints of V = V i + Va

and N = N i + Na. Equivalently, we can determine phase
concentrations and volumes by equating the chemical
potential of molecules in each coexisting phase (or
∂Fi
∂Ni
=

∂Fa
∂Na

) and equating the osmotic pressure in each phase (or
∂Fi
∂Vi
=

∂Fa
∂Va

).
For a solution of homogenous fixed rods of length L and

diameter d, solutions for the critical concentrations, ci and
ca, have been obtained by numerical minimisation or, as first
achieved by Onsager, by parameterisation of the orientational
distribution function, Ψ(u). These critical concentrations are
reported in units of the inverse average excluded volume of the
cylindrical rods or vo =

π
4 L2d, when L � d. Herein we report

dimensionless concentration as c∗ = cv0. The values of c∗i and
c∗a vary slightly with different numerical solutions. Lekkerk-
erker’s solution is c∗i = 3.290 and c∗a = 4.191, that is, the
minimum density at which a nematic phase is present is 3.290
molecules per average excluded volume, and the maximum
density at which the isotropic phase persists is 4.191 molecules
per average excluded volume. For two-state rotaxane switches
with external and quantitative (100%) conversion from short to
long state, we can compare the isotropic and nematic concen-
tration boundaries (always given relative to the short state, that
is, c∗ = cv0, where v0 =

π
4 L2d) to relate the switching of indi-

vidual molecules to the switching of liquid crystalline phases.
That is, we can compare the isotropic nematic concentration
boundaries for solution of homogeneous molecules of short
length L,

short state =




isotropic, c∗ ≤ c∗i,short = 3.290,

nematic-isotropic, c∗i,short ≤ c∗ ≤ c∗a,short,

nematic, c∗ ≥ c∗a,short = 4.191

to that of a solution of homogeneous molecules of long length,
qL,
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long state =




isotropic c∗ ≤ c∗i,long = 3.290q−2

nematic-isotropic c∗i,long ≤ c∗ ≤ c∗a,long

nematic c∗ ≥ c∗a,long = 4.191q−2

.

The isotropic to nematic transition provides the dominant opti-
cal contrast, so our aim is to identify a concentration, c∗, and
a length ratio q, where molecular switching changes the solu-
tion from an isotropic to a nematic solution. Initially, the phase
of short rods is isotropic, c∗ ≤ c∗i,short, but after quantitative
switching to long rods, the solution is in a nematic phase,
or c∗ ≥ c∗a,long. This corresponds to a solution of two-state
rotaxanes of c∗ ≤ 3.290 with a strategic extension ratio of
q >

√
4.49/3.34, which provides a first principles approach

which can guide synthetic chemists constructing two-state
switches with the capacity to phase switch. However most
synthesised two-state molecular switches are not quantitative,
as a solution of rotaxanes may be in a 80/20 ratio of short
to long state; after molecular switching, the ratio may change
to a 10/90 ratio of short to long state. How sensitive is the
switching of the liquid crystalline phase to the inefficiency of

molecular switching? To address this question, we make use
of predictions of the isotropic/nematic transition of a solution
of rods of fixed but bidisperse length.

III. A SOLUTION OF RODS OF BIDISPERSE LENGTH

Lekkerkerker et al.23 extended Onsager’s treatment to
model a solution of rod-like molecules of two different fixed
lengths, with a length ratio of long to short rods q, again in
the limit of L � d. Knowing the liquid crystalline phases of a
binary mixture of rods of two different fixed lengths allows us
to construct a switching diagram of two-state rotaxanes with
inefficient molecular switching. The free energy derivation is
similar to that for the monodisperse rods,1 with the exception
that we allow the short and long rods to orient differently, or
in other words, we have two orientational distribution func-
tions, one for short rods, Ψs, and another for long rods, Ψ` .
Additionally, there is a mixing entropy contribution to the free
energy, Smix/(NkB) = x ln x + (1 � x) ln (1 � x), where x is
the fraction of molecules that are in the long state, of length
qL. The corresponding free energy for this solution of rods of
bidisperse length is

F[N , V , x,Ψs,Ψ`]
NkBT

= ln
N
V
− 1 + x ln x + (1 − x) ln (1 − x) + (1 − x)

∫
duΨs(u) ln [Ψs(u)] + x

∫
duΨ`(u) ln [Ψ`(u)]

+
1
2

N
V

[
(1− x)2

∫ ∫
dudu′Ψs(u)Ψs(u′)2L2d | u × u′ | + 2x(1 − x)

∫ ∫
dudu′Ψs(u)Ψ`(u′)2qL2d | u × u′ |

+ x2
∫ ∫

dudu′Ψ`(u)Ψ`(u′)2q2L2d | u×u′ |
]
. (2)

As in the homogeneous, fixed length problem, the critical
concentrations are found by determining the orientation dis-
tributions that minimise the free energy, and where coexisting
phases exist, equating chemical potentials and osmotic pres-
sures of the phases. However, the critical concentrations now
depend upon the fraction of long rods, x in the solution. We
do not consider the de-mixing of short/long rods, as van Roij
and Mulder25 demonstrated that de-mixing within isotropic or
nematic phases occurs when the diameter ratio between differ-
ent rods is more than 5:1. Here, our rods are of fixed diameter
irrespective of the short or long state.

The major difficulty in solving Eq. (2) is in approximating
the orientational distribution functions for the two kinds of
rods,Ψi(u), where i = {s, `}. Here we express the orientational
vector u in terms of a shorthandΩ for the spherical polar angles
(θ, φ) so that the usual normalisation conditions can be written
as

1=
∫

duΨi(u)=
∫ 2π

0
dφ

∫ π

0
dθ sin θ Ψi(θ, φ)=

∫
dΩΨi(Ω),

i = {s, `}, (3)

and the orientational entropy term in Eq. (2) is written as∫
duΨi(u) ln [Ψi(u)]→

∫
dΩΨi(Ω) ln [4πΨi(Ω)].

The contribution to the free energy due to pairwise volume-
excluding interactions involves integrals which we identify
as ρij,∫ ∫

dudu′Ψi(u)Ψj(u′)2L2d | u × u′ |→
4
π

×

∫ ∫
dΩdΩ′ sin [γ(Ω,Ω′)]Ψi(Ω)Ψj(Ω

′) = ρij.

Here γ(Ω,Ω′) is the angle made by two rods with orientations
Ω and Ω′, where this integral can be written for 3 possible
pairings, ρss, ρs` , and ρ`` , for short-short, short-long, and
long-long pairs. Minimising the free energy [Eq. (2)] results
in a set of coupled equations

ln [4πΨs(Ω)] = Cs − 2DL2c
∫

dΩ′ sin [γ(Ω,Ω′)]

× [(1 − x)Ψs(Ω′) + qxΨ`(Ω′)],

ln [4πΨ`(Ω)] = C` − 2DL2qc
∫

dΩ′ sin [γ(Ω,Ω′)]

× [(1 − x)Ψs(Ω′) + qxΨ`(Ω′)],

(4)

where the constants Cs and C` are determined by the normali-
sation of orientation distribution function, Eq. (3). Equation (4)
provides the orientational distribution function of short and
long rods, Ψs and Ψ` , for a given concentration, c = N /V and
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fraction of long rods, x. Like the monodisperse case, at
low concentrations, all orientations are equally likely with
Ψs = Ψ` = (4π)�1. But at an intermediate range of concentra-
tions, ci ≤ c ≤ ca, there are two pairs of orientation functions
that satisify Eq. (4) indicating coexistence of an isotropic
phase, identified with a subscript 1, and a nematic phase, iden-
tified with subscript 2. Let c1 and c2 denote the concentrations

of rods in the isotropic and nematic phases and x1 and x2 be
the fraction of long rods in the isotropic and nematic phases.
The coexisting phases at overall concentration c and a fraction
of long rods, x, are described by the 6 variables {Ψs ,2Ψ` ,2,
c1, c2, x1, x2} which are determined by Eq. (4) and cast for a
nematic phase [as Ψs ,1Ψ` ,1 = (4π)�1], an equation matching
the osmotic pressure in each phase,

Π1 = Π2

c1(1 + c1[(1 − x2
1 + 2x1(1 − x1)q + x2

1q2]) = c2(1 + c2[(1 − x2)2ρss + 2x2(1 − x2)qρs` + x2
2q2ρ``]),

an equation matching the chemical potential of short rods, µ(s), in each phase,

µ1(s) = µ2(s)

ln c1 + ln (1 − x1) + 2c1[(1 − x1) + x1q] = ln c2 + ln (1 − x2) + σ1 + 2c2[(1 − x2)ρss + x2qρs`],

an equation matching the chemical potential of the long rods, µ(`), in each phase,

µ1(`) = µ2(`)

ln c1 + ln x1 + 2c1q[(1 − x1) + x1q] = ln c2 + ln x2 + σ2 + 2c2[(1 − x2)qρs` + xaq2ρ``],

as well as one more equation from the mass balance equations

cV = c1V1 + c2V2

xN = x1c1V1 + x2c2V2.

However,these equations, particularly Eq. (4) involving
the orientation functions, cannot be solved analytically and
researchers have used different numerical methods to obtain
solutions. A trial function can be used for Ψ1,26 or one can
expand sin γ27 and solve the system numerically.28,29 Here
we employ Lekkerkerker’s method, as briefly detailed in the
Appendix, and approximate the integrals ρi ,j using a 32-point
Gaussian integration. The liquid crystalline phase diagram
of mixtures of fixed length is obtained numerically, using a
Newton-Raphson method, for 0 ≤ x ≤ 1 in increments of
∆x = 0.01 with fixed q, as well as for fixed x with the length ratio
varying between q = 1 (homogeneous rod length) and q = 2.

Figure 2 traces the critical concentrations, c∗i and c∗a, as a
function of the fraction of longer rods in solution for a length
ratio of q = 1.2 and 2.0. Note that x = 0 corresponds to a
monodisperse solution of short rods, recovering the critical
concentrations c∗i = 3.290 and c∗a = 4.191. This phase behav-
ior of mixtures of fixed length rods has been predicted in
earlier publications,23,24 i.e., an isotropic phase (i) at small
concentrations followed by isotropic-nematic coexistence (ni)
at intermediate concentrations and a pure nematic phase (n) at
large concentrations. The phase is determined by three vari-
ables: the overall concentration of the solution, c∗, the overall
fraction of long rods in the solution, x, and the length ratio, q.
The characteristic concentration where the major phase change
occurs is near c∗ ≈ 3. Naturally, as the fraction of longer rods
increases the concentration boundaries decrease, as it is much
easier to form a nematic phase.

A. Switching diagrams

The goal here is to construct a solution of two-state rotax-
ane switches which will allow us to affect an isotropic to
nematic phase transition without changing the concentration
of rotaxanes in the solution. That is, our goal is to esti-
mate the concentration range and extension length q, where
molecular switching results in a macroscopic change in the
orientational phase in solution. As we will show, even for the
case of very modest efficiencies in switching on the molecu-
lar scale, we still achieve transitions from isotropic to nematic
(i → n) and from isotropic to nematic-isotropic coexistence
(i→ ni). This is important because the presence of a nematic
phase, even if the system is not purely nematic, will have an
optical effect, and thus the length switching on the molecu-
lar scale will induce a macroscopically detectable change in
the solution. A weaker optical effect due to molecular align-
ment occurs for the other transitions between nematic (n)
and nematic-isotropic coexistence (ni) or nematic to nematic
(n → n, ni → ni, and ni → n). While these phase transi-
tions can be observed optically, a direct switch from a sin-
gle isotropic phase to a single nematic phase is of most
interest.

As the orientational phase of a solution is determined by 3
parameters, then the switching diagram is determined by four
variables: (1) the fixed concentration c∗ of the solution, (2) the
length ratio, q, of the molecule, (3) the initial fraction of long
rods in solution, xi, and (4) the final fraction of long rods in
solution, xf , after molecular switching. He et al.21 provided
the switching diagram for the case of xi = 0.0 and xf = 1.0,
or where switching is quantitative. Here we demonstrate four
different switching inefficiencies: where the fraction of long
rods changes as xi → xf
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FIG. 2. Scaled concentration, c∗ = cv0, versus fraction of long rods for a solution of rods of bidisperse length with a length ratio of long to short of q = 1.2 (left)
and q = 2 (right). The scaled concentration c∗i (dashed line) separates the isotropic phase region from the region where isotropic and nematic phases coexist:
it is the minimum concentration at which a nematic phase is present. The scaled concentration c∗a (solid line) separates the coexistence region from the single
phase nematic region: it is the maximum concentration at which an isotropic phase is present. The data points represent the results of Lekkerkerker.23 At x = 0,
corresponding to a solution of short rods of homogeneous length L, c∗i = 3.290, and c∗a = 4.191. The addition of longer rods reduces the concentration range over
which an isotropic phase is present and increases the range over which a nematic appears. A large extension ratio q steepens the boundary curves, enhancing the
nematic phase with an increase in population of the longer rod of length qL.

FIG. 3. The switching diagram, scaled concentration, c∗, versus extension ratio q with switching efficiency of xi = 0.2→ xf = 0.8 (top left), xi = 0.4→ xf = 0.6
(top right), xi = 0 → xf = 0.25 (bottom left), and xi = 0 → xf = 0.75 (bottom right). Isotropic(i), coexisting isotropic-nematic(ni), and nematic(n) phases are
labeled. Dashed lines separate isotropic and coexistence regions and solid lines separate coexistence and nematic regions, for both initial solution of xi and final
solution xf . In this way, (i→ ni) indicates an isotropic phase at xi switches to an isotropic-nematic coexistence phase at xf . While a transition from isotropic to
coexistence (i→ ni) or coexistence to nematic(ni→ n) can show change in optical properties, the transition from pure isotropic directly to a nematic phase is
of most interest.



134905-6 He, Sevick, and Williams J. Chem. Phys. 148, 134905 (2018)

1. xi → xf ≡ 0.2→ 0.8
2. 0.4→ 0.6
3. 0→ 0.25
4. 0→ 0.75.

These cases are chosen because they all represent considerably
less than 100% switching efficiency, and in two of the cases,
the change in x is small,∆x = 0.2 or 0.25, corresponding to poor
switching efficiency. Figure 3 shows these cases over a limited
range of length ratio, 1.0 ≤ q ≤ 2.0. These are constructed by
overlapping phase diagrams of the initial solution of xi and
final switched solution of xf .

For three of these cases, the transition from isotropic to
pure nematic can be induced in this system by switching the
length of the molecules, even for the case of a very modest
change in x roughly at c∗ ≈ 3. A high switching efficiency
(∆x = xf � xi is large) creates a significant difference in the
critical concentrations, facilitating i↔n transitions of a greater
range of q (as demonstrated by cases 0.2→ 0.8 and 0→ 0.75).
When the switching efficiency is relatively low, for exam-
ple, xi = 0→ xf = 0.25, switching in molecular length is not
enough to trigger a direct transition from isotropic to nematic
phase with a reasonable extension ratio q. Importantly this
is not the least efficient switch case: the case of 0.4 → 0.6
has a lower switching efficiency (∆x = 0.2) but still demon-
strates a significant i→ n phase switch because of the initial
presence of long rods. This suggests that not all molecules
incorporated need to be designed as switchable in order to
achieve a macroscopic phase transition. For example, the same
phase switching predicted for the inefficient switching case of
0.4 → 0.6 also holds for a solution mixture containing 40%
fixed-length long (qL), 40% fixed-length short (L) molecules,
and only 20% molecules that quantitatively switch from
L→ qL. What the switching diagram does show is that even for
this case of very modest changes in switching on the molec-
ular scale (either inefficient switching or a small fraction of
quantitative switches), we still get transitions from isotropic
(i) to nematic-isotropic coexistence (ni).

IV. CONCLUSIONS

We have constructed the macroscopic isotropic-nematic
phase switching diagram for a rod-like molecule that can
switch between two different lengths via a mechanical bond.
We have previously studied this system in the case where the
microscopic switching in length was 100% efficient, i.e., all the
molecules switch quantitatively between short and long states.
Here we have examined the more realistic case of an ineffi-
cient system where molecular switching is not quantitative.
We have shown that the macroscopic, switchable phase tran-
sition from isotropic to nematic is in fact fairly robust and can
be found even for cases of very inefficient molecular switch-
ing. This also suggests that not all molecules in the solution
need to be switchable in order to achieve a switchable phase
change.

While our predictions have not yet been demonstrated in
experiment, it is worth noting that a different kind of molecu-
lar switch, based upon photo-induced isomerisation of a fully
covalent molecule (with no mechanical bond),30 is used as a
dopant to induce chirality in nematic liquid crystals. These

photoswitchable molecules have been shown to provide ther-
mally stable, reversible control31 of the structure of cholesteric
liquid crystals.

APPENDIX: NUMERICAL APPROACH TO SOLVE
EQUATION (4)

Equation (4) cannot be solved analytically and researchers
have used different numerical methods to obtain solutions.
Here we follow Lekkerkerker’s method23 and expand sin γ in
a Legendre series up to order 7, which is sufficiently accurate
for our predictions. As explained in Lekkerkerker, symmetry
allows us to recast the distribution functions in terms of θ
or Ψi(Ω) → Ψi(θ) and the Legendre series must be of even
order

sin γ =
π

4
−

7∑
n=1

d2nP2n(cos γ), (A1)

where d2n =
π(4n+1)(2n−3)!!(2n−1)!!

22n+2n!(n+1)!
. Using the addition theorem

for spherical harmonics or

Pl(cos γ) = Pl(cos θ)Pl(cos θ ′) + 2
l∑

m=1

(l − m)!
(l + m)!

Pm
l (cos θ)

× Pm
l (cos θ ′) cos [m(φ − φ′)].

Lekkerkerker finds that the orientation distribution functions
for the short and long rods are then

Ψs(θ) =
exp [
∑7

n=1 α2nP2n(cos θ)]

Ns
,

Ψ`(θ) =
exp [q

∑7
n=1 α2nP2n(cos θ)]

N`
,

(A2)

where N i is a normalisation constant so that 1 = ∫ dθ Ψi(θ) and
α2n is a set of 7 unknown Legendre coefficients. Equation (4)
then reduces to a set of 7 equations,∫

dθ [(1 − x)Ψs(θ) + xqΨ`(θ)]P2n(cos θ) =
πα2n

8cd2n

1 ≤ n ≤ 7. (A3)

Equations (A2) and (A3) provide us with nine equations,
which, for a specified concentration, c, and fraction of long
rods, x, provide the set of Legendre coefficients or distribution
functions Ψs and Ψ` for a solution of rods in a nematic phase.
[Recall, in the isotropic phase, Ψs = Ψ` = (4π)�1.]
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