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ABSTRACT
Machine learning techniques have been increasingly useful in astronomical applications over
the last few years, for example in the morphological classification of galaxies. Convolutional
neural networks have proven to be highly effective in classifying objects in image data. In
the context of radio-interferometric imaging in astronomy, we looked for ways to identify
multiple components of individual sources. To this effect, we design a convolutional neural
network to differentiate between different morphology classes using sources from the Radio
Galaxy Zoo (RGZ) citizen science project. In this first step, we focus on exploring the factors
that affect the performance of such neural networks, such as the amount of training data,
number and nature of layers, and the hyperparameters. We begin with a simple experiment in
which we only differentiate between two extreme morphologies, using compact and multiple-
component extended sources. We found that a three-convolutional layer architecture yielded
very good results, achieving a classification accuracy of 97.4 per cent on a test data set.
The same architecture was then tested on a four-class problem where we let the network
classify sources into compact and three classes of extended sources, achieving a test accuracy
of 93.5 per cent. The best-performing convolutional neural network set-up has been verified
against RGZ Data Release 1 where a final test accuracy of 94.8 per cent was obtained, using
both original and augmented images. The use of sigma clipping does not offer a significant
benefit overall, except in cases with a small number of training images.

Key words: instrumentation: miscellaneous – methods: miscellaneous – techniques: miscel-
laneous – radio continuum: galaxies.

1 IN T RO D U C T I O N

Extragalactic radio sources are among the most unusual and power-
ful objects in the Universe. With sizes sometimes larger than a mega-
parsec, they have radio luminosities that are typically 100 times
those of star-forming galaxies for example (Van Velzen et al. 2012),
and display a wide range of morphologies. A new generation of
wide-field radio interferometers are undertaking efforts to survey

�E-mail: vesna.lukic@hs.uni-hamburg.de (VL); mbrueggen@hs.uni-
hamburg.de (MB)

the entire radio sky to unprecedented depths making manual clas-
sification of sources an impossible task. Among the current and
upcoming radio surveys that will detect such high numbers of radio
sources are the Low Frequency Array (LOFAR)1 surveys, Evolu-
tionary Map of the Universe, the largest of such surveys in the
foreseeable future (Norris et al. 2011), Very Large Array (VLA)
Sky Survey (VLASS),2 and surveys planned with the Square Kilo-
metre Array (SKA).3 The SKA alone will discover up to 500 million

1 http://www.lofar.org
2 https://science.nrao.edu/science/surveys/vlass
3 https://www.skatelescope.org
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sources to a sensitivity of 2 µJy beam−1 rms (Prandoni & Seymour
2015). Radio interferometry data often display high levels of noise
and artefacts (Yatawatta 2008), which presents additional challenges
to any method of obtaining information from the data, such as ex-
tracting sources, detecting extended emission, or detecting features
through deep learning.

Machine learning techniques have been increasingly employed
in data-rich areas of science. They have been used in high-energy
physics, for example in inferring whether the substructure of an
observed jet produced as a result of a high-energy collision is due to
a low-mass single particle or due to multiple decay objects (Baldi
et al. 2016). Some examples in astronomy are the detection of
‘weird’ galaxies using Random Forests on Sloan data (Baron &
Poznanski 2017), Gravity Spy (Zevin et al. 2017) for Laser In-
terferometer Gravitational-Wave Observatory (LIGO) detections,
optimizing the performance and probability distribution function of
photo-z estimation (Sadeh, Abdalla & Lahav 2016), differentiating
between real versus fake transients in difference imaging using ar-
tificial neural networks, random forests, and boosted decision trees
(Wright, Smartt & Smith 2015) and using convolutional neural net-
works in identifying strong lenses in imaging data (Jacobs et al.
2017).

Traditional machine learning approaches require features to be
extracted from the data before being input into the classifier.
Convolutional neural networks, a more recent machine learning
method falling within the realm of deep learning, is able to per-
form automatic feature extraction. These suffer less information
loss compared to the traditional machine learning approaches, and
are more suited to high-dimensional data sets (LeCun, Bengio
& Hinton 2015). These are based on neural networks that con-
tain more than one hidden layer (Nielsen 2015). Each layer ex-
tracts increasingly complex features in the data before perform-
ing a classification or regression task. The raw data can be input
into the network, therefore minimal to no feature engineering is
required (LeCun et al. 1989), and the network learns to extract
the features through training. However, it should still be noted
that convolutional neural networks do not always capture the data
features.

The classification of optical galaxy morphologies is based on a
few simple rules that make it suitable for machine learning. It also
lends itself to citizen science, where these rules can be taught to
non-experts. The Kaggle Galaxy Zoo (Willett et al. 2013) was a
competition where the aim was to predict the probability distri-
bution of the responses of citizen scientists about a galaxy’s mor-
phology using optical galaxy image data, and the winning solution
used convolutional neural networks (Dieleman, Willett & Dambre
2015b).

The convolutional neural network approach has only very re-
cently started to be applied to radio galaxy images. One example
has been in using convolutional neural networks to infer the pres-
ence of a black hole in a radio galaxy (Alger 2016). Another example
is in a recently published paper by Aniyan & Thorat (2017), where
the authors present their results on classifying radio galaxy images
using convolutional neural networks into the classes of Fanaroff–
Riley Type I or II (FRI/FRII; Fanaroff & Riley 1974) and bent-tailed
radio galaxies using a few hundred original images in each class and
producing a highly augmented data set. They use a fusion classifier
to combine the results of the three groups because poor results were
achieved when attempting to do the three altogether. Despite ob-
taining classification accuracies of above 90 per cent on the FRI and
FRII classes, the authors have commented on issues with regards to
overfitting due to having few representative samples in each class

prior to augmentation, resulting in a small feature space and the fact
that the network was highly sensitive to the pre-processing done to
the images.

In the case that outputs or labels are not provided alongside the
input data to train on, one can use unsupervised machine learn-
ing techniques. In regards to machine learning with radio galaxy
images, one method uses an unsupervised learning approach in-
volving Kohonen maps (Parallelized rotation/flipping Invariant Ko-
honen maps, abbreviated to PINK) to construct prototypes of radio
galaxy morphologies (Polsterer et al. 2016).

There are also automated methods that can help to generate labels,
therefore the task becomes a supervised machine learning problem.
In the astronomical context for example, there are source finding
tools that can provide structure to data, and one such tool is PyBDSF

(Rafferty & Mohan 2016). This is the approach taken in this work
to provide the training labels.

This work initially aims to classify radio galaxy morphologies
into two very distinct classes, consisting of compact sources in one
class and multiple-component extended sources in another class us-
ing convolutional neural networks. This set-up we call the two-class
problem. Once an optimal set-up of parameters is found, we will test
how it will work for the four-class problem of classifying into com-
pact, single-component extended, two-component extended, and
multiple-component extended sources.

A compact source is an unresolved single component or point
source, and an extended source is a resolved source, having at least
one component. The detection of point sources is important as they
are used for calibration purposes and they are also easier to match to
their host galaxy. Making a proper census of unresolved sources is
important for mapping out phase calibrators for radio interferometry
(Jackson et al. 2016). Although there are more conventional tech-
niques to detect point sources, deep learning provides an alternative
approach.

The LASAGNE 0.2.dev1 library4 is used to build a deep neural
network to differentiate between different classes of images of radio
galaxy data. We compare the classifier metrics obtained on test
samples, between the different models.

This paper is outlined as follows. Section 2 covers some basic
theory about neural networks, and the advantages of using deep
neural networks. In Section 3 we discuss the data provided from
Radio Galaxy Zoo, the minor pre-processing steps, and the use of
algorithms to help select an image data set consisting of compact
and extended sources. Section 4 explores the two-class problem of
distinguishing between compact and multiple-component extended
sources. It documents the parameters and classifier metrics used.
Section 5 applies the optimal set-up and parameters that were iden-
tified in Section 4 to the four-class problem of classifying between
compact and three classes of extended sources. The best-performing
set-up is also tested to see how well it replicates the findings in Data
Release 1 (DR1; Wong et al., in preparation) of the citizen science
project Radio Galaxy Zoo.

2 D E E P N E U R A L N E T WO R K S

Neural networks can be used to perform classifications of data. If
the input data are in the form of pixels of an image, along with
corresponding labels for the image, this information is fed into the
input layer of the network (Nielsen 2015). Neural networks are

4 https://lasagne.readthedocs.io/en/latest/

MNRAS 476, 246–260 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/476/1/246/4826039
by Australian National University user
on 08 June 2018

https://lasagne.readthedocs.io/en/latest/


248 V. Lukic et al.

initialized with a set of weights and biases in the hidden layers
(Bishop 1995). The data are propagated through the network and
the output layer computes a prediction. An error is calculated at the
output layer using a cost or loss function, which is based on the
difference between the true output and the predicted output (LeCun
et al. 1998). This error is backpropagated through the network,
and the network adjusts the weights and biases to reduce the error
(Rumelhart, Hinton & Williams 1986). These steps are iterated a
number of times until the cost function is minimized. This is known
as training a neural network.

In feed forward neural networks, the nodes in the hidden lay-
ers are fully connected to the nodes in the adjacent layers. There-
fore, the deeper the network becomes, the more computationally
intensive and time consuming it is to train, and often leads to the
vanishing gradient problem (Hochreiter 1991). Convolutional neu-
ral networks have been shown to work much more efficiently in
high-dimensional data such as image data (Krizhevsky, Sutskever
& Hinton 2012) and although they still suffer from the vanishing
gradient problem, one can lessen the impact by proper initialization
of the weights and biases, choosing an appropriate activation func-
tion and by doing layer wise pre-training. Such networks employ
a number of filters of a certain size, as specified by the user. The
receptive field is also referred to as the filter size. The filters are
initialized with weights and biases from some distribution, and are
connected to a small spatial portion of the input data. Features of
the input data are learned through training. In image data, one can
achieve a dramatic reduction in the number of parameters through
parameter sharing, under the assumption of translational invariance.
For example, if one feature is useful to compute at a particular spatial
position, it should also be useful to compute at a different spatial
position. Parameter sharing is achieved through the use of filters
(Karpathy 2016). One can reduce the computational complexity
through data reduction with the use of pooling, in essence a subsam-
pling method. There are several methods of implementing pooling
such as max pooling and average pooling (Lee, Gallagher & Tu
2016). This work uses max pooling, where the maximum value
within a window of the input feature map is chosen. The convo-
lutional and pooling layers are stacked with the end result being
a hierarchical extraction of features. These layers are usually fol-
lowed by one or more fully connected layers, before finishing at the
output layer, where a prediction is given (Karpathy 2016).

One problem that occurs with neural networks is overfitting,
which is when the architecture and parameters in the neural network
fail to generalize to a separate data set extracted from the same
source, that has not been trained on. In this case, the model captures
the noise in the data rather than the underlying signal, or there are
real features in the training set that may be peculiar to individual
sources but not common to the class as a whole. Overfitting is
evident if the validation error is higher than the training error. To
reduce the effect of overfitting, one can use image augmentation to
artificially generate more images from the original data (Krizhevsky
et al. 2012). Another method is to use dropout in the dense or fully
connected layers, where a certain proportion of connections to nodes
in adjacent layers are dropped to stop the network relying on the
presence of particular neurons, hence it is made to be more robust
(Srivastava et al. 2014). Although early stopping is recommended to
address the behaviour exhibited by deep neural networks trained on
noise, defined as the memorization effect by Arpit et al. (2017), they
find that such networks trained with Stochastic Gradient Descent
learn patterns before memorizing, even in the presence of noise
examples.

3 M E T H O D S

We utilize the radio galaxy images from the Radio Galaxy Zoo
project (Banfield et al. 2015), which uses 1.4 GHz radio galaxy im-
ages from the Faint Images of the Radio Sky at Twenty cm (FIRST).
The original FIRST data reached a 1σ noise level of 150 µJy beam−1

at 5 arcsec resolution (Becker, White & Helfand 1995). There are
206 399 FITS files in total that contain single-channel image data.
The size of the images is mainly (132 × 132) pixels resampled to a
pixel size of 1.37 arcsec.

3.1 Pre-processing

The pixel values representing brightness in mJy beam−1 were nor-
malized by dividing by 255 such that the values are contained
within the [0,1] range. Any ‘NaN’ pixel value was converted to 0.
The images were cropped to (110 × 110) pixels in order to slightly
reduce the amount of data fed into the neural network. We were
reluctant to do any further cropping because some of the extended
sources tended to be very close to the image boundaries, which is
information we did not want to remove. These were the only pre-
processing steps taken to the original data. Later on we explore the
effect of sigma clipping5 using a standard deviation of 3 to remove
the background noise. This involves calculating the median (m) and
standard deviation (σ ) of the pixel values, and removing any value
above m + 3σ and below m − 3σ . However, deep neural networks
should be able to account for the noise in the data without perform-
ing additional background noise removal. No procedure has been
performed to remove artefacts in the data. As strong sidelobe emis-
sion is observed more often in the synthesis imaging of compact
radio sources, sidelobe artefacts are expected to be minimal in RGZ
and similarly so, for the purposes of this paper. Banfield et al. (2015)
added 5 per cent of the total sources as compact radio sources thus
resulting in a smaller number where the sidelobe pattern could pose
an issue. Therefore, we do not expect large numbers of artefacts in
the images to be misidentified as radio sources or components to
cause an issue with our method. RGZ has a biased selection towards
extended sources from the FIRST catalogue.

In order to provide an estimate of the presence of artefacts, we
considered the sources in the two-component extended class from
the four-class problem and found that 18 out of 11 939 sources
(0.15 per cent) contained one component having a total flux that
was at least 50 times that of the other component.

3.2 PYBDSF

PyBDSF (the Python Blob Detector and Source Finder, formerly
PyBDSM) by Mohan & Rafferty (2015) is a tool designed to de-
compose radio interferometry images into sources composed of a
set of Gaussians, shapelets, or wavelets. For the purposes of this
work, we assume that each image is of a single source or radio
galaxy. Therefore, PyBDSF will detect the components belonging to
the source.

In order to provide some initial structure to the data, we used
the default settings of the PyBDSF version 1.8.11 ‘PROCESS_IMAGE’
task to help count the number of components in each image. The
default settings include using 5σ for the pixel threshold and 3σ

for island boundaries. The number of output lines in the resulting

5 http://docs.astropy.org/en/stable/api/astropy.stats.sigma_clip.html
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Table 1. The number of components detected by PyBDSF

including how many of these sources there are, for up to 11
components.

PyBDSF number of components Number of sources

1 63 051
2 66 589
3 29 482
4 10 437
5 3517
6 1136
7 510
8 264
9 163
10 79
11 48

SRL file from running PyBDSF provides the user with the number of
components that were able to be fit, using Gaussian fitting. The
images were all initially run through PyBDSF. Out of the original
206 399 images, 30 945 produced an error, either due to the image
having all blanked pixel values, presenting as NaNs (94.6 per cent),
or there were no components detected in the image (5.4 per cent).
175 454 images were successfully able to be processed by PyBDSF,
and produced source list (SRL) files that contained information
about each detected source. In the successfully processed images,
99.7 per cent contained an NaN pixel percentage in the range be-
tween 0 and 10 per cent. The highest percentage of NaN pixel values
was 93.2 per cent and the median was 1.9 per cent. The NaN values
occur only along the edges of the images and are due to observa-
tions at the edges of fields. Table 1 lists the number of components
detected in each image by PyBDSF, showing the results up to 11
components.

There are sometimes discrepancies between the number of com-
ponents that PyBDSF had detected and how many there visually ap-
peared to be in the image, therefore PyBDSF does not always perform
as a human would in counting the number of components in the
image. These inconsistencies remained even if the grouping param-
eters were altered. It was found that the number of inconsistencies
detected increased with the number of components in the image.

3.3 Image augmentation

The classification accuracy of deep neural networks increases with
the size of the training set. It is possible to generate more images
through label-preserving transformations such as horizontal, verti-
cal translation, and rotations (Krizhevsky et al. 2012). This method
is called augmentation and reduces the amount of overfitting to the
data. It can also improve performance in imbalanced class problems
(Wong et al. 2016).

We augmented our images using translation, rotation, and flips
but not skewing or shearing the data since such transformations ap-
plied to compact sources can make them appear as having extended
emission, which would render the label incorrect. The amount by
which the images are translated is within the range of 0–22 pixels
of the image width and height. Since no boundary conditions have
been applied to the images, it is likely that 5.1 per cent of images
in the two-class problem and 1.3 per cent in the four-class problem
have components that have been shifted out of the image. The im-
ages are rotated by any random angle between 0◦ and 360◦. The

Figure 1. Examples of image augmentations with an extended source. The
original image is shown on the top left. The transformations, from left to
right, top to bottom, are a random rotation, shift, and flip. The size of the
images is (110 × 110) pixels, with an angular resolution of 1.14 arcsec. The
colour bar represents the normalized flux densities.

KERAS6 package 2.0.3 was used to produce the augmented images.
KERAS is a high-level neural networks API, developed with the aim of
enabling fast experimentation. It is written in the PYTHON language
and able to be run on top of either TENSORFLOW7 or THEANO.8

Fig. 1 shows examples of rotation, shifting, and flipping on a
source with extended emission. The image is an example of how
some extended sources that have a small amount of extended emis-
sion can look similar to compact sources, therefore presenting chal-
lenges for deep learning methods or other programs used to extract
information from images.

3.4 Deep learning algorithms

There are several deep learning implementations currently avail-
able for use. This work uses LASAGNE 0.2.dev1 (Dieleman et al.
2015a), a lightweight library to build and train neural networks
in THEANO using the PYTHON language. PYTHON version 2.7.12 is
used and the THEANO version is 0.9.0dev2. THEANO is a PYTHON li-
brary that allows the user to define, optimize, and evaluate math-
ematical expressions involving multidimensional arrays efficiently.
Some features of THEANO include the ability to use NUMPY arrays
in THEANO-compiled functions, the transparent use of a graphics
processing unit (GPU), which enables data intensive computations
to be accomplished much faster than on a CPU, and the ability to
compute derivatives for functions with one or many inputs. The
PYTHON library LASAGNE is built on top of THEANO, but leaves the
THEANO symbolic variables transparent, so they can be easily altered
to make changes to the model or learning procedure, as desired.
This provides the user with more flexibility compared to that of
other libraries.

Several network models built using the LASAGNE library have been
trained, in order to see the set-up of parameters that results in the
optimal test classification accuracy. The learning rate was set to

6 https://keras.io/preprocessing/image/
7 https://www.tensorflow.org
8 http://deeplearning.net/software/theano/
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0.001 at the beginning and reduced by a factor of 10 at four points
during training. 1000 training epochs in total were used for all the
models shown. The network parameters at the 1000th epoch were
chosen for the final validation of the results. Training was stopped
at this time because the training and validation losses appeared to
reach their minimum and only fluctuated around this value, without
the validation loss becoming higher than the training loss in the
attempt to avoid overfitting, unless otherwise stated.

A simple manual tuning strategy was used to optimize the hyper-
parameters that involved experimenting with batch sizes of 8, 16,
and 32 against different chunk sizes and learning rates. A batch size
of 8 was found to give optimal results. The batch Stochastic Gradi-
ent Descent method (Bottou 1998) was used, where the gradient is
computed using the input data set with a specified batch size, rather
than using a single sample. The momentum update method used
was Nesterov, with a momentum of 0.9 and a weight decay of 0.
The Nesterov momentum update evaluates the gradient at the future
rather than current position, resulting in better informed momen-
tum updates and hence improved performance (Sutskever 2013).
The validation step is done every 10 training epochs. The networks
were trained on a single NVIDIA TESLA K20m GPU, with CUDA ver-
sion 8.0.61. The categorical cross-entropy9 cost function was used,
which has the following form:

Li = −
∑

j

ti,j log(pi,j ), (1)

where i and j denote the classes and observations, respectively,
ti, j represents the targets, and pi, j represents the predictions.
Equation (1) is used for predictions falling in the range (0,1) such
as the softmax output of a neural network. The outputs of the soft-
max function represent the probabilities that the images belong to
the given classes, and add up to 1. The predictions are clipped to
be between 10−7 and 1 − 10−7 in order to make sure that they fall
within the (0,1) range. There are over 1.6 million parameters to train
in total.

At the conclusion of training, the predictions at the final layer
of the network are rounded to 0 or 1. In the two-class problem,
the output [1,0] represents a compact source and [0,1] represents
a multiple-component extended source. Training, validation, and
test classification accuracies are calculated using the proportion of
rounded predictions that matched the labels. The image and label
data have had the rows shuffled at two stages to make sure that
there was no sampling bias when choosing the training, validation,
and test sets. A dropout of 50 per cent has been applied to the dense
layers. The rectified linear unit (ReLU) activation function (Glorot,
Bordes & Bengio 2011) was used in the convolutional layers. The
ReLU function is max(0, x), therefore only positive inputs are sent
forward, and the negative ones are set to 0. This makes the network
more sparse, therefore more efficient. Since the output is linear only
in parts of the network, this ensures that the gradients flow across the
active neurons, hence avoiding the vanishing gradient problem. The
PReLU activation function (He et al. 2015), which uses a negative
linear function with a coefficient to control the negative part of
the function, was also tried, however, it resulted in slightly worse
accuracies compared to using the ReLU. In the dense layers, the
identity activation function was used. The weights were initialized

9 http://lasagne.readthedocs.io/en/latest/modules/objectives.html#lasagne.
objectives.categorical_crossentropy

with the uniform Glorot distribution (Glorot & Bengio 2010), which
has the following form when the ReLU activation function is used:

σ =
√

2

(n1 + n2)f
, (2)

where n1 and n2 are the number of connections coming in and out
of the layer, respectively, and f is the receptive field size. The biases
were initialized with the constant 0.

In Section 4.1, we explore the effect of varying the number of
convolutional layers. Section 4.2 investigates the effect of adding
augmented data for varying chunk sizes, and Section 4.3 explores
the effect of using only a subset of the original provided images.
The chunk size refers to the number of data examples per iteration
and should be divisible by the batch size for optimal performance.

3.5 Selection of sources for two-class classification

In a first step, we applied a deep learning approach to two very
distinct classes of radio sources: compact sources and multiple-
component extended sources. Once this set-up is optimized, we
consider classification involving four classes.

In this work, we define our sample of compact sources from the
images where PyBDSF detected a single component, and additionally
using equation (3) from Kimball & Ivezić (2008) as follows:

θ =
(

Fint

Fpeak

) 1
2

, (3)

where Fint and Fpeak are the integrated and peak flux intensities,
respectively. According to this definition, values of θ ∼ 1 are highly
concentrated (unresolved), while components with larger θ are ex-
tended (resolved). Kimball & Ivezić (2008) adopt θ ≈ 1.06 as
the value separating resolved and unresolved components, where
components above θ ≈ 1.06 are resolved. We therefore define our
compact components as those having values θ < 1.06. If there was
only one compact component in the image, then it was classified as
a ‘compact’ source; there were 2682 such cases. The Fint and Fpeak

values were extracted from the provided FITS files, using the ‘IMFIT’
function from CASA version 4.7.2-REL. Several batches of samples
assigned to the ‘compact’ class were additionally examined visually
to verify that they truly appeared to be compact sources.

The choice of multiple-component extended sources was taken
from a random sample of 18 000 images where PyBDSF had detected
at least three components. This sample can include images of mul-
ticomponent compact sources.

Taking this sample of compact and extended sources, there are
20 682 images all together that can be divided into a training, val-
idation, and test data set for the initial deep learning approach.
The number of images used for the two-class problem is summa-
rized in Table 2. Fig. 2 shows some typical examples of compact
and multiple-component extended sources. It should be noted that
there are many more examples of multiple extended sources com-
pared to compact sources, however the compact sources display a
very well-defined morphology compared to the multiple extended

Table 2. Summarizing the number of images used for the two-
class problem.

Source/image type # Original # Augmented

Compact 2682 15 558
Multiple extended 18 000 144 633
Total 20 682 160 191
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Figure 2. Examples of compact and multiple-component extended source
classifications that we initially aim to make our deep neural networks dif-
ferentiate between. The top row of images represents compact sources,
whereas the bottom row represents multiple-component extended sources.
The colour bar represents the normalized flux densities.

sources, which can assume an almost infinite number of unique
morphologies.

In examining the images where PyBDSF had detected at least three
components, it appears that some of the images contain superpo-
sitions, or have fewer than three components in the image. Upon
closer inspection of a random sample of 250 images where PyBDSF

has detected at least three sources, there were roughly 44 per cent
that appeared to be superpositions or that visually had fewer than
three components in the image. This means that a substantial number
of images assigned to the multicomponent class do not truly belong,
however there is still a stark contrast in morphology compared to
the sources chosen for the compact class, therefore it should not
have an overly detrimental effect on the classification accuracies.
We attempt to eliminate these contaminated images when choosing
sources for the four-class problem.

3.6 Selection of sources for four-class classification

Assuming there is an optimal choice in hyperparameters that re-
sults in a high classification accuracy for the two-class prob-
lem of distinguishing between compact and multiple-component
extended sources, we also wanted to see how such a set-up
would be able to distinguish between sources belonging to four
classes. We chose the images belonging to categories of compact
sources, single-component extended, two-component extended, and
multiple-component extended sources. The compact sources are
the same ones as were used for the two-class problem, and the
multiple-component extended sources are a subset of the ones used
for the two-class problem. The single-component extended and two-
component extended classes are the new classes, and the images be-
longing to them have not previously been used for the deep learning
approach.

The labels for the images were able to be generated with the
help of the ‘S_CODE’ output of PyBDSF. The S_CODE quantity defines
the component structure (Mohan & Rafferty 2015) and the output
values are defined as such:

(i) ‘S’ = a single-Gaussian component that is the only component
in the island;

(ii) ‘C’ = a single-Gaussian component in an island with other
components;

(iii) ‘M’ = a multi-Gaussian component.

Table 3. Summarizing the number of images used for the four-
class problem.

Source/image type # Original # Augmented

Compact 2682 15 558
Single extended 6735 43 099
Two extended 11 939 35 994
Multiple extended 577 46 381
Total 21 933 141 032

The four classes are described below.

(i) Compact source: sources where PyBDSF has detected one com-
ponent and choosing sources as defined by equation (3) from
Kimball & Ivezić (2008). The same set of compact sources was
used for the two-class problem.

(ii) Single-component extended source: sources where PyBDSF

has detected one component, and the S_CODE quantity contains an
‘M’ (multi-Gaussian component).

(iii) Two-component extended sources: sources where PyBDSF has
detected two components, and the S_CODE quantity contains an ‘M’
(multi-Gaussian component) for both components.

(iv) At least three-component extended sources: sources where
PyBDSF has detected at least three components. We started with the
set of 18 000 images as for the two-class problem, required that
the S_CODE quantity contains at least two ‘M’s, and any number
of ‘C’s. Additionally, two blob-detection algorithms (logarithm of
Gaussian and difference of Gaussian) were run using the SCIKIT-
IMAGE 0.17.1 package in PYTHON.10 The images were also all in-
spected visually in an attempt to ensure that each image contained
at least three extended components that appeared to be part of the
same source, rather than being superpositions of sources. After this,
there were 577 images remaining. However upon cross-checking
with several optical/infrared (IR) images, more than 40 per cent of
this subset of images still appeared to contain superpositions of
components associated with more than one active galactic nucleus
(AGN). Therefore, although the classification successfully identi-
fies multiple-component structures, they are contaminated by such
superpositions in comparison with Radio Galaxy Zoo classifica-
tions.

The condition ‘S_CODE=S’ was not found to be useful in character-
izing components. Occasionally there was a source that appeared
as though it should belong to another class, so a small level of label
contamination must be accepted. The number of images used for
the four-class problem is summarized in Table 3, and Fig. 3 shows
some example images for each of the four classes. The four-class
classification scenario also contains an imbalance in the number
of original images for each class, however this can be alleviated by
augmenting the classes of data displaying richer morphologies more
(single-, two extended, and multiple-component extended sources),
compared to the compact sources.

The existence of the remaining superpositions of sources in the
multiple-component extended class in the training set means that
the deep learning algorithm will not be able to make the distinc-
tion between images that contain superpositions, and images with
components that are likely to be part of the same source. Even
radio galaxy experts cannot always reach a consensus about these
differences.

10 http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_
blob.html
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Figure 3. Examples of compact, single-component extended, two-
component extended, and multiple-component extended sources, for a deep
neural network to differentiate between. Top row: compact sources. Sec-
ond row: single-component extended sources. Third row: Two-component
extended sources. Fourth row: Multiple-component extended sources.

The fact that the compact and single-component extended sources
all come from the set of images where PyBDSF has detected a single
source mean that the deep learning algorithm is doing more than
just learning the method by which PyBDSF counts components. It
is also performing the source structure functions of PyBDSF, with
the advantage that it uses solely image data to learn about the
differences in morphology between compact sources and single-
component extended sources.

4 R ESULTS FOR TWO CLASSES

Our first aim is to see how well a deep neural network is able to
distinguish between two classes of data that are very morpholog-
ically distinct: compact sources and multiple-component sources.
There were 2682 compact and 18 000 multiple-component extended
sources, giving a total of 20 682 images provided as input data
for classification by the convolutional neural network designed in
LASAGNE. When the augmentation data are used as well, there are
a total of 180 873 images. The number of sources and augmented
images used is summarized in Table 2.

The results shown are the classifier metrics on the validation and
test data sets. The extended source class is used as the positive class
for the metrics, therefore a true positive (TP) is defined as when
an extended source is predicted that is also labelled as an extended
source. A false positive (FP) is defined when an extended source
is predicted, but is labelled as a compact source. A false negative
(FN) is defined when a point source is predicted, but is labelled as
an extended source. The following four metrics are used to evaluate
the performance of the classifier:

(i) precision = TP/(TP + FP) ;
(ii) recall = TP/(TP + FN) ;
(iii) F1 score = (2 × precision × recall)/(precision + recall);
(iv) accuracy = (TP + TN)/(TP + FP + TN + FN) ;

where FP, FN, and TN denotes false positives, false negatives, and
true negatives, respectively. For this task of classifying between ex-
tended and point sources, precision represents the classifier’s ability
to not classify point sources as extended sources. Recall evalu-

Table 4. The deep learning models that were explored.

Code Model # Pooling layers

A 2 dense 0
B 1 conv + 2 dense 1
C 2 conv + 2 dense 1
D 2 conv + 2 dense sigma clip 1
E 3 conv + 2 dense 2
F 3 conv + 2 dense sigma clip 2

ates the classifiers ability to not classify extended sources as point
sources, hence provides an estimate of the sensitivity of the classi-
fier, in whether it can correctly predict the labelled extended sources.
It is worth noting that in the literature, precision is often called ‘reli-
ability’ and recall is often called ‘completeness’ (e.g. Hopkins et al.
(2015)). The F1 score can be interpreted as the weighted average
of precision and recall. The accuracy is the overall classification
accuracy across the classes, how many correct predictions for the
labelled point, and extended sources were made overall. The F1 and
accuracy scores tend to correlate highly. The precision, recall, F1
score, and accuracy metrics were calculated for both the validation
and test data sets to assess the performance of each deep neural net-
work model. It should be noted that in machine learning theory, the
precision scores are a better assessor of performance compared to
accuracy in imbalanced data set problems. However, we address the
imbalance in our data set through augmentation, therefore use the
classification accuracy to assess the performance of the classifiers.
The training and validation losses are also plotted as a function of
epochs for several chosen models.

In order to assess which models are significantly better than
others, rather than arising as a result of random fluctuations, we use
the root mean square error (RMSE) measure to quantify the scatter
in the overall accuracies, for the original data. The RMSE is defined
according to equation (4):

RMSE =
√√√√ 1

n

n∑
j

(pi,j − ti,j )2, (4)

where i and j denote the classes and observations, respectively, n
is the total number of observations, ti, j represents the targets, and
pi, j represents the predictions. We consider any value beyond two
times the RMSE value to be significant in terms of metrics. This
error estimate is conservative in that it is a measure of the actual
scatter, as opposed to the derived error in the mean accuracies.

4.1 Effect of increasing convolutional layers

We first explore the effect of increasing the number of convolu-
tional layers, in order to see the effect the model complexity has on
obtaining better classification accuracies, without excessive overfit-
ting. The models explored are summarized in Table 4.

The results in Table 5 and Fig. 4 show the effect of adding an
increasing number of layers to the network. Simply using two dense
layers results in precision, recall, and F1 scores above 0.95 and a test
accuracy above 93 per cent. The addition of two adjacent convolu-
tional layers and the use of sigma clipping produce a classification
accuracy of 97.0 per cent. Taking into account the RMSE values to
establish random fluctuations in accuracy, the model that is signifi-
cantly better than all others is the three convolutional and two dense
layer model with sigma clipping (model F), achieving the optimal
accuracy of 97.5 per cent. However, this set-up results in overfitting
as shown in Fig. 5, and hence we exclude this model. The next
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Table 5. Effect of increasing the number of convolutional layers for the
original images. The precision, recall, F1 score, and accuracy values are
shown for both the validation and test data sets, calculated over 1000 training
epochs. The validation set is used every 10 epochs, and the final trained
parameters are used on the test data set after training is complete. 20 682
images were used in total, with a chunk size of 6000, and the training
samples make up 60 per cent of the total data.

Prec. Recall F1 score Accuracy RMSE
(per cent) (per cent) (per cent) (per cent)

Validation
A 96.6 95.6 96.1 93.3 0.27
B 97.9 97.0 97.4 95.6 0.22
C 97.4 97.5 97.4 95.6 0.20
D 98.2 96.9 97.5 95.7 0.21
E 98.6 97.5 98.0 96.6 0.19
F 98.4 97.5 97.9 96.4 0.19

Test
A 97.4 95.7 96.6 94.0 0.26
B 98.2 96.3 97.3 95.3 0.22
C 97.7 96.7 97.2 95.1 0.21
D 98.1 98.4 98.3 97.0 0.19
E 98.2 97.8 98.0 96.5 0.21
F 98.7 98.3 98.5 97.5 0.18

Figure 4. Plot of training and validation losses as a function of training
epochs, for models A and D in Table 4. The higher training and validation
losses are from using only two dense layers and no convolutional layers,
which are the highest losses amongst the six models and consequently pro-
duced the lowest classification accuracies. Adding two convolutional layers
produces lower training and validation losses, and therefore improved classi-
fication accuracies. The two convolutional and two dense layer architecture
with sigma clipping was one of two models that performed the best out of
all the models considered for this set of images.

best-performing models that are significantly better than the others,
without causing overfitting, are models D and E.

Using two adjacent convolutional layers followed by a pooling
layer as opposed to using a single convolutional layer followed
by a pooling layer reduces the number of parameters, given that
the two filter sizes of the adjacent convolutional layers are smaller
compared to using a single larger one (Simonyan & Zisserman
2015). When putting a max pooling layer in between the first and
second convolutional layer, it had a detrimental effect on the test
accuracy, reducing it by almost 1 per cent that is significant given

Figure 5. Plot of training and validation losses as a function of training
epochs, for a three convolutional and two dense layer model with sigma
clipping (model F). Despite this model achieving the highest test accuracy
for the original set of images, overfitting is evident as the validation losses
are higher than the training losses.

the RMSE values, and it took more training epochs to attain a
smaller training loss (results not shown). The radio galaxy images
with extended emission generally have structure that span across
large portions of the image, yet it would increase the number of
parameters by too much of a factor if a single convolutional layer
with a very large receptive field, or filter size was used. Therefore,
it is better to combine two adjacent convolutional layers that have
smaller receptive fields.

The deep learning algorithm appears to be robust to the classes
being imbalanced; there are approximately nine times more exam-
ples of the multiple extended class images compared to the compact
source images. However, the compact sources have a much more
stable morphology, largely consisting of a source in the centre of the
image, compared to the multiple-component extended class images,
which can be spread out all over the image.

Considering the results for the test data set and taking into ac-
count the RMSE values, the precision (reliability) values are on
average significantly higher compared to the recall (completeness)
values. This implies that the classifier is better at not classifying
the multiple-component extended sources as point sources but is
not as sensitive in identifying all the labelled multiple-component
extended sources. The training losses begin at a low value of around
0.27 and quickly settle to their minimal value for a particular model
by 200 epochs. A likely reason why the losses begin and remain low
during training is because the classes contain images that are mor-
phologically very different; one containing a single concentrated
source in the centre of the image and the other generally containing
multiple sources that are spread throughout the image.

The fact that a very substantial number of images belonging to
the multiple-component extended class appear to contain superpo-
sitions or visually appear as though they contain fewer than three
components probably does not hinder the classification accuracies
significantly, since the contents of the images are very different
between the two classes.

The memory requirements for a typical run using the three convo-
lutional layer architecture is 1.87 GB, with a computational time of
192 min using a single NVIDIA TESLA K20m GPU, with CUDA version
8.0.61.
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Table 6. Effect of using all augmented images in addition to original data.
The precision, recall, F1 score, and accuracy values are shown for both
the validation and test data sets, calculated over 1000 training epochs. The
validation set is used every 10 epochs, and the final trained parameters are
used on the test data set after training is complete. 180 873 images were
used in total, with a chunk size of 20 000, and the training samples make up
60 per cent of the total data.

Precision Recall F1 Accuracy
(per cent) (per cent) (per cent) (per cent)

Validation
C 97.0 98.2 97.6 95.7
D 98.3 98.3 98.3 96.9
E 98.8 97.9 98.4 97.0
F 98.6 97.8 98.2 96.8

Test
C 96.6 98.5 97.6 95.6
D 98.7 98.4 98.5 97.4
E 99.2 97.9 98.6 97.4
F 98.7 97.8 98.2 96.9

Figure 6. Plot of training and validation losses for the 2 conv + 2 dense
layer with sigma clipping (model D) and 3 conv + 2 dense layer (model E),
when using the original and augmented data. The training and validation
losses are higher and fluctuate more for model D, and there is a greater
difference between the training and validation losses compared to model E,
despite achieving a similar test classification accuracy. Taking these factors
into account, model E performs better overall.

4.2 Effect of including augmented data

Next we studied the effect of image augmentation on the classifi-
cation accuracies. Table 6 and Fig. 6 show that when the full set of
augmented data is used in addition to the original images, it results
in overall significantly improved F1 scores, validation, and test ac-
curacies, compared to when the original data is used. The use of
the augmented images enables the choice of the larger chunk size
leading to improved accuracy without causing the network to over-
fit, hence a chunk size of 20 000 is used, compared to the previous
size of 6000. The chunk size should be made as large as possible
for a given set of data, since the more training examples are seen
simultaneously, the more accurately the weights can be adjusted to
produce a lower training loss. The best-performing architecture with
the original and augmented images is the three convolutional and
two dense layer architecture, with no sigma clipping (model E). This

Figure 7. Example of an image where PyBDSF has detected three compo-
nents, even though the image appears to be that of a point source.

Figure 8. The 3 conv + 2 dense architecture, which constituted the best-
performing model. The colours are arbitrarily chosen to represent the dif-
ferent layers used.

set-up achieves the highest observed test accuracy for the two-class
problem of 97.4 per cent. Model D performs equally well in terms
of overall accuracy when taking into account the RMSE values,
however there is a greater difference in the training loss compared
to the validation loss, as is evident in Fig. 6. Therefore, model E is
the overall best-performing model, since the training and validation
losses are closer together.

The most likely reason why a higher accuracy is unable to be
achieved is that there is a small amount of label contamination, for
example a few of the images in the multiple-component extended
class may look more like compact sources. This is due to PyBDSF

detecting multiple components in an image, even though visually
the image appears to only contain a compact source, as shown in
Fig. 7. The three convolutional and two dense layers architecture is
shown in Fig. 8, and the details of the layers with the number of
parameters used are shown in Table 7.
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Table 7. Details of the layer parameters used for the best-performing model.
The number of parameters gives a cumulative sum at each layer. There are
1676 914 trainable parameters in total.

Layer Depth Filter size Stride length #Parameters

Conv2D 16 8 3 1040
Conv2D 32 7 2 26 160
MaxPool2D 32 3 – 26 160
Conv2D 64 2 1 34 416
MaxPool2D 64 2 – 34 416
Dense 1024 – – 625 264
Dense 1024 – – 1674 864
Softmax 2 – – 1676 914

Table 8. Effect of using a subset of the original and augmented images.
The precision, recall, F1 score, and accuracy values are shown for both
the validation and test data sets, calculated over 1000 training epochs. The
validation set is used every 10 epochs, and the final trained parameters are
used on the test data set after training is complete. 1000 original and 1000
augmented images were used (2000 in total) with a chunk size of 400, and
the training samples make up 60 per cent of the total data.

Precision Recall F1 Accuracy
(per cent) (per cent) (per cent) (per cent)

Validation
C 94.1 97.8 95.9 92.7
D 95.2 96.4 95.8 92.6
E 95.3 96.2 95.7 92.4
F 95.3 96.3 95.8 92.5

Test
C 96.5 94.0 95.2 91.4
D 93.8 98.1 95.9 93.0
E 95.3 95.3 95.3 92.2
F 94.4 91.8 93.1 88.3

4.3 Effect of using a subset of images

Next we explored the effect of using only a subset of images. Using
a subset of the available images (1000 original and 1000 augmented)
tended to significantly reduce the validation and test scores com-
pared to when using the full set of original images, as shown in
Table 8, caused greater fluctuations during training, and introduced
a higher level of overfitting as shown in Fig. 9. The larger fluctua-
tions during training are most likely due to the algorithm not seeing
as large a number of samples at a time compared to when the full
set of images is used, hence the weights cannot be estimated as
accurately for each subsequent training epoch. The validation and
test accuracies however still remained above 90 per cent, with the
exception of model F (three convolutional and two dense layers
set-up with sigma clipping).

4.4 TENSORFLOW FOR POETS

TENSORFLOW FOR POETS uses the ‘Inception v3’ network, a pre-trained
deep neural network that is trained for ImageNet Large Visual
Recognition Challenge. It is able to differentiate between 1000
different classes. We used this approach to perform classifications
and compare the results to the custom-designed networks using the
LASAGNE library, however we found the results to be inferior. This
poorer performance can be explained by the fact that the class types
trained on are mainly examples of every-day objects and animals
rather than scientific images. Another reason is that using a custom-
designed network has much more freedom in adjusting parameters

Figure 9. Training and validation losses when using only 1000 original and
1000 augmented images, when using the two convolutional and two dense
layers set-up with sigma clipping (model D). The training losses are around
the same compared to when using the full set of 20 682 images, and the
fluctuations are greater. There is also some amount of overfitting.

Figure 10. Showing the input image, first and third convolutional feature
map activations at 100 epochs into training using the three convolutional and
two dense layers architecture. The colours in the architecture are arbitrarily
chosen to represent the different layers used.

compared to using a ‘black-box’ approach, where more parameters
are fixed.

5 R ESULTS FOR FOUR C LASSES

In the previous section we have explored varying several parameters
using the custom-designed network in LASAGNE and found the opti-
mal one that results in the highest test classification accuracy for the
two-class problem of distinguishing between compact and multiple-
component extended sources, which was the three convolutional and
two dense layers architecture without sigma clipping (model E), us-
ing both original and augmented images. Fig. 10 shows an example
of the features that are learnt after 100 epochs into training, for the
first and third convolutional layers. Given the classification results,
we wanted to see how well such a deep neural network set-up could
distinguish between two additional classes of data, consisting of
single-component extended and two-component extended sources.

The same parameters were used as was described in Section 3.4.
Two models were explored for the task of four-class classification;
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Table 9. Results for four-class model. The difference between using sigma
clipping or not is very minor, and can be attributed to random fluctuations
for each subsequent run.

Precision Recall F1 Accuracy
(per cent) (per cent) (per cent) (per cent)

Validation
E 92.6 92.7 92.7 92.0
F 93.2 93.3 93.2 92.7
Test
E 94.0 94.1 94.0 93.5
F 94.0 93.9 93.9 93.5

Figure 11. Training and validation losses shown when using a chunk
size of 20 000 with a 3 conv + 2 dense model with no sigma clipping
(model E), for the four-class problem. The training losses are much higher
at the start compared to what was observed in the two-class problem, and
settle to a loss of around 0.2 by 400 training epochs.

the three convolutional and two dense layers architecture with and
without sigma clipping, using both original and augmented images.
This architecture and set of images performed best on the two-class
problem, which is why it was chosen for the four-class problem. The
number of images used is summarized in Table 3. The issue with
class imbalance was addressed by augmenting the single-, two-, and
multiple-component images to achieve roughly the same number of
images for these extended sources. We used the same set of original
and augmented images for the compact sources as for the two-class
problem. The results shown in Table 9 are the classifier metrics on
the validation and test data sets, as was done similarly for the two-
class problem, however applying a ‘macro’ average over the four
classes to obtain an overall summary of the number of true and false
positives and negatives across the confusion matrix. The training
and validation losses for this model (E), are shown in Fig. 11.

The inclusion of an additional two classes of data results in a sig-
nificantly reduced performance compared to when only two classes
are used. This is likely due to the low-level amount of label contam-
ination in the new classes, in addition to the level already present
in the previous two classes. The manually chosen images for the
multiple-component extended source class still contain a substantial
number of images that are superpositions. Despite this, the accura-
cies remain above 93 per cent.

Note that our machine learning algorithms are still making the
correct decision in determining membership in each of the four
classes, in that they were trained to simply recognize the number of

Table 10. Individual precision and recall values computed from the con-
fusion matrix for the four-class test set, using the original and augmented
images, for model E.

Precision Recall
(per cent) (per cent)

Compact 96.9 97.4
Single-component extended 93.4 95.3
Two-component extended 91.1 87.6
Multiple-component extended 94.6 96.1

extended components in close proximity. The information required
to identify some of these images as superpositions of more than
one physical radio galaxy requires more detailed information about
both the radio morphology and the location of possible optical/IR
counterparts. This is a future task for machine learning algorithms
to make use of labels with higher level information, for example
from Radio Galaxy Zoo.

The individual precision and recall values were computed for
each of the four classes in Table 10. The results show that the
precision and recall values are the highest for the compact sources,
so the deep learning algorithm is able to identify all the compact
sources and not confuse them with any other source, with most
accuracy. This is to be expected since they have a very well-defined
morphology with the least variability amongst the classes. The deep
learning algorithm however produces the lowest scores for the two-
component extended sources, and this is likely because there is the
most overlap between these sources and the two classes on either
side; the single-extended and multiple-extended sources.

These higher level classes of data can be used as an initial step to
facilitate the generation of more specific radio morphology classes
of scientific interest.

5.1 Comparing results with Data Release 1
of the Radio Galaxy Zoo

Radio Galaxy Zoo classification is a two-step process. For a single
classification, users first select all radio emission they consider to
be originating from a single radio galaxy. After selecting the radio
components, users will try to match it with a galaxy in the near-IR
data. If there are multiple radio sources in the image, users can repeat
both steps to identify other radio galaxies. Individual classifications
are aggregated to provide a consensus classification of the image
based on the majority vote (Willett 2016).

Data Release 1 (DR1) of the Radio Galaxy Zoo (Wong et al., in
preparation) was made with the purpose of obtaining citizen scien-
tists input in identifying which components belonged together in a
source. The ‘number of components’ is defined as the number of
discrete radio components that a source encompasses, which also
depends on the lowest radio contour level chosen. The ‘number of
peaks’ that examines the components identified by RGZ partici-
pants, refers to how many peaks are present in the radio source
as determined by an automatic pipeline processor. DR1 consists of
74 627 sources where user weightings have been applied to the con-
sensus levels, retaining the sources that have a consensus level of
0.65 or higher. The minimum reliability of DR1 is 75 per cent for a
minimum weighted consensus level of 0.65 for the classifications of
the FIRST survey. Using the data set for the four-class problem con-
sisting of 21 933 images, there are 10 722 (14.4 per cent) images in
common with the DR1 data set, where the matching is done based
on the source name. After removing the sources that contained
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Table 11. Rules by which labels were generated for the DR1 data set, based
on citizen scientists input, to test the best-performing LASAGNE convolutional
neural network architecture. The number given refers to both the number
of components and number of peaks in a given image. For example, the
compact/single-extended class is defined as having one component and one
peak.

# Components and # peaks Label

1 Compact/single-extended
2 Two-component extended
≥3 Multiple-component extended

Table 12. Summary of the numbers of sources used for training, validation,
and testing of the labels generated from the DR1 data, for both the original
(Orig.) and augmented (Aug.) images.

Data # Orig. # Orig. + Aug.

DR1 74 627
Final intersected data set (Test) 6966
Compact/single extended (Train.) 4147 14 588
Two-component extended (Train.) 10 306 14 306
Multiple-component extended (Train.) 475 15 177

Table 13. Chunk sizes and percentage of data used for training, validation,
and testing for the LASAGNE deep learning network in the DR1 cross-check
analysis.

Chunk size Train. Valid. Test
(per cent) (per cent) (per cent)

Orig. 1000 59 9 32
Orig.+Aug. 3000 78 8 14

invalid entries in the ‘matchComponents’ and ‘WISECATmis-
match’ columns, there were 9537 remaining (12.8 per cent).

Using the ‘number of components’ and ‘number of peaks’ infor-
mation provided that originated from the citizen scientists’ and the
post-processing pipeline, along with the images in the DR1 data
set, we were able to generate labels for the overlapping data set
of 9537 images. Since there is no way of distinguishing between
compact sources and extended sources based on this information
alone, we decided to make a single class composed of compact
and single-component extended images. The labels for the classes
were generated using the rules as shown in Table 11. These sources
make up the test set, to assess how well the custom designed net-
work in LASAGNE is able to reproduce the labels generated based on
the citizen scientists input. The sources where no class could be
assigned were removed, leaving 6966 sources. The remaining im-
ages that were not part of the test set of intersected images formed
the training and validation set. These numbers are summarized in
Table 12. It is worth noting that the original set of images again
contains an imbalance in the number of sources belonging to each
class, where there are fewer compact/single-extended sources and
the fewest multiple-component extended sources. This imbalance
is compensated by augmenting these classes more.

The architecture used is the three convolutional and two dense
layers architecture since this is the overall best-performing archi-
tecture. Two data sets are used: the first one using just the orig-
inal images that contain imbalanced classes, and the original and
augmented images that contain much more balanced numbers of
images in the classes. The parameters used for these two data sets
are summarized in Table 13.

Table 14. Validation and test metrics for the DR1 cross-check analysis.

Precision Recall F1 Accuracy
(per cent) (per cent) (per cent) (per cent)

Validation
Orig. 89.7 58.7 58.2 86.4
Orig.+Aug. 90.6 90.6 90.5 90.7

Test
Orig. 75.6 62.6 61.6 92.8
Orig.+Aug. 79.6 81.6 80.6 94.8

Table 15. Individual precision and recall values computed from the confu-
sion matrix for the DR1 test set of 6966 images, when training on just the
original images.

Precision Recall
(per cent) (per cent)

Compact/single-extended 97.2 95.0
Two-component extended 79.5 90.7
Multiple-component extended 50.0 2.1

Table 16. Individual precision and recall values computed from the confu-
sion matrix for the DR1 test set of 6966 images, when training on both the
original and augmented images.

Precision Recall
(per cent) (per cent)

Compact/single-extended 97.5 96.9
Two-component extended 88.0 89.5
Multiple-component extended 53.4 58.5

The results show that when using just the original images, the pre-
cision and recall metrics are quite low overall, as shown in the first
row of Table 14. Upon exploring the individual metrics for the three
classes in Table 15, the deep learning algorithm is able to identify
the compact/single-extended sources effectively, however it strug-
gles more with identifying the two-component extended sources,
despite there being more examples of this class to train on. The
most likely reason is that the DR1 data contain more information
for each source compared to what the deep learning algorithm is
trained on. Based on the input from the citizen scientists, it will
take a two-component extended source and divide it into 2 one-
component sources, depending on the WISE ID status. The deep
learning algorithm performs exceptionally poorly with the multiple-
component extended images, which is not surprising given that there
are only several hundred examples of this class of images to train
and validate on.

In using the augmented images that have been generated to even
out the class imbalance, in addition to the original images, all the
average metrics are improved, as can be seen in the second row of
Table 14. Upon examining the individual metrics for each class in
Table 16, the precision values are improved across all the classes.
The recall values are improved for the compact/single-extended
class, and are substantially higher for the multiple-component ex-
tended class compared to when only the original images are used,
however they still remain quite low for this class. The deep learning
algorithm is therefore much less precise and sensitive in identifying
the images belonging to the multiple-component extended class,
when the labels are generated according to citizen scientists input,
compared to the other two classes. It does not perform as well in de-
tecting the images that are labelled as multiple-component extended
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sources, and it also predicts images as being in this class when they
are labelled as belonging to another class. A couple of reasons are
as follows. There were only on the order of a few hundred (475)
original images to train on for images in the multiple-component
extended source class, and although they are augmented to generate
a set of images that has a roughly the same number compared to the
other classes, there are perhaps not enough original examples of the
different morphologies that can exist, therefore making the feature
space smaller for this class. Additionally, although the multiple-
component extended sources in the training and validation set were
inspected in an attempt to ensure that the images contain at least
three components that are part of the same source, which was the
classification scheme used by RGZ users, there were still found to
be a substantial number of images that contained source superposi-
tions, upon cross-checking with several optical/IR images. However
it is important to keep in mind that the deep learning algorithm was
trained to recognize the number of extended components in close
proximity, using radio galaxy images only. It should be noted that
all multicomponent sources, whether they are superpositions or not,
belong to the multicomponent class.

Presumably, the higher the number of components an image ap-
pears to contain, the more likely it is that the images are super-
positions of sources. This would explain why the compact/single-
extended and two-component extended sources are not affected
as much in terms of the precision and recall metrics as the
multiple-component extended class. It should further be noted that
77.6 per cent of images belong to the compact/single-component
extended class, which explains the overall high classification accu-
racies in Table 14.

The generation of augmented images to even out the imbalance in
classes in the original data overall improves the metrics in predicting
the labels that are generated using citizen scientists input.

6 C O N C L U S I O N S

This is a methods paper that explored the use of deep neural net-
works for classifying compact and various classes of extended
sources in radio astronomical data. We have found an optimal set
of parameters obtained from examining the two-class problem of
distinguishing between two well-defined classes of data composed
of compact and multiple-component extended sources, and applied
this to a classification scenario involving more classes, and have
shown that the classification accuracies remain high without ex-
cessive overfitting. The results were cross-checked on the Radio
Galaxy Zoo DR1 data set, where the generation of augmented im-
ages in order to address the class imbalance highly influenced the
accuracies to predict the labels generated based on the citizen sci-
entists input. However, the predictions for the multiple-component
extended class remained poor, most likely because this data set con-
tained the fewest number of original images to train on, and did not
have the additional information of which components made up a
radio source and how many peaks were contained in the source,
which was the additional information provided in the DR1 data set.

The first part of the results explored various architectures and
identified the optimal parameters for distinguishing between the
two morphological extremes of compact and multiple-component
extended sources. We found that the three convolutional and two
dense layers architecture using the original and augmented im-
ages with no sigma clipping produced the maximal accuracy of
97.4 per cent for the two-class problem, which is significantly bet-
ter compared to using just the original images with the same archi-
tecture. Although the equivalent architecture with sigma clipping

produced an accuracy in the same range, the difference between the
training and validation loss was greater. A better model is ensured
if the training and validation losses are closer together. The largest
influence of performance other than the model architecture was to
use a relatively large chunk size, since the more examples that are
seen simultaneously, the better the estimate can be for adjusting the
weights to achieve a lowered cost function. This is where the use of
augmented data is useful, as it allows one to use a larger chunk size.
Another important impact on the performance of the deep neural
network is to use quite a small learning rate at the start and make it
smaller by a factor of 10 at certain points during training, and using
a small batch size of eight samples.

When training deep neural networks with a large enough number
of images, removing noise through the use of sigma clipping appears
to offer no significant benefit. Given there is an adequate number of
images belonging to the available classes in question, with varying
levels of noise, the deep learning network can learn these properties
and becomes robust to them.

Using the knowledge gained from the factors that influence the
performance of the classifier in the two-class problem, we assumed
that the set-up would perform similarly for distinguishing between
an additional two classes of images. It is unclear what the effect
would have been, had two classes been chosen that were not extreme
examples of morphologies. For the four-class problem of distin-
guishing between compact, single-, two-component, and multiple-
component extended sources, and using the three convolutional and
two dense layers set-up with original and augmented images, we
were able to achieve a classification accuracy of 93.5 per cent. The
fact that the compact and single-component extended sources are
both chosen from where PyBDSF has detected one component, and
that the deep learning algorithm is able to achieve high precision and
recall values for these two classes, means that the deep learning al-
gorithm is doing more than just counting the number of components
in the images.

Both the two-class and four-class problems contain different
numbers of original images in each class. This did not appear to
dramatically affect the performance of the classifier when using the
original set of images in the two-class problem, most likely because
the minority set of images was composed of compact sources that
have a very specific morphology, and the sources are almost always
found the in the centre of the image.

It is worth noting that at least 44 per cent of images in the multiple-
component extended class in the two-class problem appeared to
contain superpositions, or fewer than three components. Although
we attempted to remove these images in the four-class problem
by manually selecting the sources, a substantial number of images
with superpositions remained, upon cross-checking with several op-
tical/IR images. However, the deep learning algorithm was trained
to identify extended components in close proximity in a radio galaxy
image, so it is still making the correct decisions in determining class
membership based on using the image data alone.

The other classes explored apart from compact sources display a
much richer variety of morphologies, which is why it is important
to augment those images much more in comparison to the compact
sources. Roughly equal augmented data sets were generated for
the extended source classes in the four-class problem, to make up
for the class imbalance present in the original images. This was
especially important for the DR1 analysis, where the deep learning
algorithm was much better able to predict the labels generated based
on citizen scientists input when the augmented data were used in
addition to the original data, to compensate for uneven classes.
Although the precision and recall values for the compact/single-
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component extended sources are quite high, it is possible to use
linear regression and simple positional matches to identify such
sources. The metrics were moderately high for the two-component
extended sources. The deep learning algorithm however struggles
more to identify the multiple-component sources when the labels
are generated using input from the citizen scientists, as is evidenced
from the poorer precision and recall values for this class of images.
This indicates the need for both more original images and labels
with higher level information from citizen scientists to make up the
training and validation set, in order to predict these sources more
accurately. The value in using both data from the RGZ and the help
of computer algorithms is the ability to connect discrete individual
components that may be associated with a source.

The first example of using convolutional neural networks to clas-
sify radio morphologies was in Aniyan & Thorat (2017), where they
choose a couple of hundred examples of FRI, FRII, and bent-tailed
galaxy morphologies, perform sigma clipping, apply a high amount
of augmentation, and build a fusion classifier to combine the results
for the three classes. However, the authors run into problems of
substantial overfitting, due to not using enough examples of differ-
ent varieties of FRI, FRII, and bent-tailed classes. An earlier study
using an unsupervised learning approach consisting of Kohonen
maps has shown that when categorizing radio galaxies into FRI- and
FRII-type sources, sigma clipping and other pre-processing may be
necessary (Polsterer et al. 2016). In contrast, this work has shown
that with enough examples of broad classes of radio galaxy mor-
phologies, it appears that pre-processing and noise removal through
sigma clipping does not offer a significant advantage and that it is
possible to classify radio galaxy morphologies into more than two
classes using only convolutional networks, without a high level of
overfitting.

The use of deep learning networks appears to be very well suited
to source classification in radio surveys. However one must keep in
mind that the deep learning algorithm will only able to make predic-
tions that are as good as the level or complexity of information that
is input into it. When there are a limited number of people to make
the classifications, one option to sift through the vast amount of data
is to use automated techniques such as PyBDSF or blob-detection al-
gorithms, to assist in providing structure. However these techniques
do not always reflect how humans would classify images; they are
poorer at making the distinction between images containing super-
positions, and images containing sources that have multiple compo-
nents associated with each other. They can also detect components
that a human would identify as noise, as shown in Fig. 7. Therefore
it is more likely that there will be contaminations in the training
set. However, given access to the classifications from an increasing
consensus of people that are trained to identify which components
belong together in a particular image, the training labels will be
more accurate, as will the predictions. Citizen Science projects like
RGZ are an excellent way of generating training sets, and appear to
have a reliability similar to that of trained astronomers.

When there are few people available to make classifications,
there are limitations in the extent of human intervention that can
be applied to reduce contamination in the data. In this case, the
results shown indicate that it is better to devote more time in further
classifying the images where PyBDSF has detected only up to a few
components, as they are less likely to contain superpositions.

The labels generated with the help of algorithms such as PyBDSF

are able to attain a certain level of concordance when compared
to labels used from citizen scientists. However, they appear unable
yet to replace input from humans, who are able to detect finer scale

structures and subtle aspects of morphologies such as the amount
and direction in which the bulges in the edges of radio components
are pointing and how far apart they are, that influences whether the
components are associated with each other, for a source in question.
With the availability of higher level training labels provided by
humans as opposed to the lower level ones provided by automated
techniques such as PyBDSF, deep learning techniques should exceed
the performance of PyBDSF in the future.

Another consideration is the identification of rare sources such
as radio relics that make up a small fraction of the overall observed
morphologies. Although they are more likely to be found in those
images where PyBDSF has detected a multitude of components, these
images contain an increasing number of source superpositions, so
it is still necessary to have humans to visually inspect the source
to see whether they are true relics or not, since PyBDSF has certain
ways of grouping the Gaussians that are fit to the sources, that may
not match how a person would associate them, even when changing
parameters that control how the components are grouped.

In future work, we aim to optimize deep neural network set-ups
for more complex morphological classifications and will use them
on LOFAR survey data (LOTSS; Shimwell et al. 2017). We will
also explore neural networks that perform cross-identification with
optical/IR surveys (Norris 2017).
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