
On the Computability of
Solomonoff Induction and AIXI

Jan Leike1 and Marcus Hutter
Australian National University

Abstract

How could we solve the machine learning and the artificial intelligence problem if
we had infinite computation? Solomonoff induction and the reinforcement learn-
ing agent AIXI are proposed answers to this question. Both are known to be
incomputable. We quantify this using the arithmetical hierarchy, and prove upper
and in most cases corresponding lower bounds for incomputability. Moreover, we
show that AIXI is not limit computable, thus it cannot be approximated using fi-
nite computation. However there are limit computable ε-optimal approximations
to AIXI. We also derive computability bounds for knowledge-seeking agents, and
give a limit computable weakly asymptotically optimal reinforcement learning
agent.

Keywords: Solomonoff induction, AIXI, general reinforcement learning,
knowledge-seeking agents, computability, arithmetical hierarchy.

1. Introduction

Given infinite computation power, many traditional AI problems become triv-
ial: playing chess, go, or backgammon can be solved by exhaustive expansion
of the game tree. Yet other problems seem difficult still; for example, predict-
ing the stock market, driving a car, or babysitting your nephew. How can we
solve these problems in theory? A proposed answer to this question is the agent
AIXI (Hutter, 2000, 2005). As a reinforcement learning agent, its goal is to maxi-
mize cumulative (discounted) rewards obtained from the environment (Sutton and
Barto, 1998).

1Now at DeepMind.

Preprint submitted to Theoretical Computer Science July 18, 2017

The basis of AIXI is Solomonoff’s theory of learning (Solomonoff, 1964,
1978; Li and Vitányi, 2008), also called Solomonoff induction. It arguably solves
the induction problem (Rathmanner and Hutter, 2011): for data drawn from a
computable measure µ, Solomonoff induction will converge to the correct be-
lief about any hypothesis (Blackwell and Dubins, 1962; Rathmanner and Hutter,
2011). Moreover, convergence is extremely fast in the sense that Solomonoff in-
duction will make a total of at most E + O(

√
E) errors when predicting the next

data points, where E is the number of errors of the informed predictor that knows
µ (Hutter, 2001). While learning the environment according to Solomonoff’s the-
ory, AIXI selects actions by running an expectimax-search for maximum cumula-
tive discounted rewards. However, AIXI’s trade-off between exploration and ex-
ploitation includes insufficient exploration to get rid of the prior’s bias (Leike and
Hutter, 2015c), which is why the universal agent AIXI does not achieve asymp-
totic optimality (Orseau, 2013). It is clear that AIXI can only serve as an ideal,
yet recently it has inspired some impressive applications (Veness et al., 2011).

For extra exploration, we can resort to Orseau’s knowledge-seeking agents.
Instead of rewards, knowledge-seeking agents maximize entropy gain (Orseau,
2014) or expected information gain (Orseau et al., 2013). These agents are apt
explorers, and asymptotically they fully learn their environment.

A reinforcement learning agent is weakly asymptotically optimal if the value
of its policy converges to the optimal value in Cesàro mean (Lattimore and Hut-
ter, 2011). Weak asymptotic optimality stands out because it currently is the only
known nontrivial objective notion of optimality for general reinforcement learn-
ers (Lattimore and Hutter, 2011; Leike and Hutter, 2015c). Lattimore defines the
agent BayesExp by grafting a knowledge-seeking component on top of AIXI and
shows that BayesExp is a weakly asymptotically optimal agent in the class of all
stochastically computable environments (Lattimore, 2013, Ch. 5).

Both Solomonoff induction and AIXI are known to be incomputable. But
not all incomputabilities are equal. The arithmetical hierarchy specifies different
levels of computability based on oracle machines: each level in the arithmetical
hierarchy is computed by a Turing machine which may query a halting oracle for
the respective lower level.

The purpose of models such as Solomonoff induction, AIXI, and knowledge-
seeking agents is to answer the question of how to solve (reinforcement) learning
in theory. These answers are useless if they cannot be approximated in practice,
i.e., by a regular Turing machine. Therefore we posit that any ideal for a ‘perfect
agent’ needs to be limit computable (∆0

2). The class of limit computable functions
is the class of functions that admit an anytime algorithm.

2

P {(x, q) ∈ X ∗ ×Q | P (x) > q} {(x, y, q) ∈ X ∗ ×X ∗ ×Q | P (xy | x) > q}
M Σ0

1 \∆0
1 ∆0

2 \ (Σ0
1 ∪Π0

1)

Mnorm ∆0
2 \ (Σ0

1 ∪Π0
1) ∆0

2 \ (Σ0
1 ∪Π0

1)

M Π0
2 \∆0

2 ∆0
3 \ (Σ0

2 ∪Π0
2)

Mnorm ∆0
3 \ (Σ0

2 ∪Π0
2) ∆0

3 \ (Σ0
2 ∪Π0

2)

Table 1: The computability results on M , Mnorm, M , and Mnorm proved in Section 3. Lower
bounds on the complexity ofM andMnorm are given only for specific universal Turing machines.

In Section 3 we consider various different flavors of Solomonoff induction:
the universal (Solomonoff) prior M specifies the a priori probability that the uni-
versal monotone Turing machine generates x when fed with uniformly random
bits as input. It is only a semimeasure and not a measure: it assigns positive
probability that the observed string has only finite length. This can be circum-
vented by normalizing M . Solomonoff’s normalization Mnorm preserves the ratio
M(x1)/M(x0) and is limit computable (∆0

2-computable). If instead we mix only
over programs that compute infinite strings, we get a semimeasure M , which can
be normalized toMnorm. Moreover, when predicting a sequence, we are primarily
interested in the conditional probability M(xy | x) (respectively Mnorm(xy | y),
M(xy | x), or Mnorm(xy | x)) that the currently observed string x is continued
with y. We show that both M and Mnorm are limit computable (∆0

2), while M
and Mnorm are not. Table 1 summarizes our computability results for Solomonoff
induction.

For MDPs, planning is already P-complete for finite and infinite horizons (Pa-
padimitriou and Tsitsiklis, 1987). In POMDPs, planning is undecidable (Madani
et al., 1999, 2003). The existence of a policy whose expected value exceeds a
given threshold is PSPACE-complete (Mundhenk et al., 2000), even for purely
epistemic POMDPs in which actions do not change the hidden state (Sabbadin
et al., 2007). In Section 4 we derive hardness results for planning in general
semicomputable environments; this environment class is even more general than
POMDPs. We show that optimal policies are Π0

2-hard and ε-optimal policies are
undecidable.

Moreover, we show that by default, AIXI is not limit computable (∆0
2). When

picking the next action, two or more actions might have the same value (expected
future rewards). The choice between them is easy, but determining whether such
a tie exists is difficult. This problem can be circumvented by settling for an ε-
optimal policy; we get a limit-computable agent with infinite horizon. However,

3

Agent Optimal ε-Optimal
AIMU ∆0

2 ∆0
1

AINU ∆0
3, Π0

2-hard ∆0
2, Σ0

1-hard
AIXI ∆0

3, Σ0
1-hard ∆0

2, Σ0
1-hard

Entropy-seeking ∆0
3 ∆0

2

Information-seeking ∆0
3 ∆0

2

BayesExp ∆0
3 ∆0

2

Table 2: Computability results for different agent models derived in Section 4, Section 6, and
Section 7. AIMU denotes the optimal policy in a computable environment and AINU denotes the
optimal policy in a semicomputable environment (see Section 2.6). Hardness results for AIXI are
with respect to a specific universal Turing machine; hardness results for ν-optimal policies are with
respect to a specific environment ν ∈ M. Results for entropy-seeking and information-seeking
policies are only for finite horizons.

these results rely on the recursive definition of the value function. In contrast, Hut-
ter (2005) defines the value function as the limit of the iterative value function. In
Section 5 we compare these two definitions and show that the recursive definition
correctly maximizes expected rewards and has better computability properties.

In Section 6 we show that for finite horizons both the entropy-seeking and
the information-seeking agent are ∆0

3-computable and have limit-computable ε-
optimal policies. The weakly asymptotically optimal agent BayesExp relies on
optimal policies that are generally not limit computable (∆0

2). In Section 7 we
give a weakly asymptotically optimal agent based on BayesExp that is limit com-
putable. Table 2 summarizes our results on the computability of these agents.

This journal paper combines the results from Leike and Hutter (2015a) and
Leike and Hutter (2015b). We unified notation and results and added more ex-
planations. We also rewrote everything in terms of the recursive value function
(which is arguably the correct one), which also removes the distinction between
finite and infinite lifetime discounting. Lastly, we added figures for all environ-
ments constructed in proofs which should make them easier to understand. A list
of notation can be found on page 41.

2. Preliminaries

2.1. The Arithmetical Hierarchy
A set A ⊆ N is Σ0

n iff there is a quantifier-free formula η such that

k ∈ A ⇐⇒ ∃k1∀k2 . . . Qnkn η(k, k1, . . . , kn) (1)

4

where Qn = ∀ if n is even, Qn = ∃ if n is odd (Nies, 2009, Def. 1.4.10). (We can
also think of η as a computable relation.) A set A ⊆ N is Π0

n iff its complement
N\A is Σ0

n. The formula η on the right side of (1) is a Σ0
n-formula and its negation

is a Π0
n-formula. It can be shown that we can add any bounded quantifiers and

duplicate quantifiers of the same type without changing the classification of A.
The set A is ∆0

n iff A is Σ0
n and A is Π0

n. We get that Σ0
1 as the class of recursively

enumerable sets, Π0
1 as the class of co-recursively enumerable sets and ∆0

1 as the
class of recursive sets.

We say the set A ⊆ N is Σ0
n-hard (Π0

n-hard, ∆0
n-hard) iff for any set B ∈ Σ0

n

(B ∈ Π0
n, B ∈ ∆0

n), B is many-one reducible to A, i.e., there is a computable
function f such that k ∈ B ↔ f(k) ∈ A (Nies, 2009, Def. 1.2.1). We get
Σ0
n ⊂ ∆0

n+1 ⊂ Σ0
n+1 ⊂ . . . and Π0

n ⊂ ∆0
n+1 ⊂ Π0

n+1 ⊂ This hierarchy of
subsets of natural numbers is known as the arithmetical hierarchy.

By Post’s Theorem (Nies, 2009, Thm. 1.4.13), a set is Σ0
n if and only if it is

recursively enumerable on an oracle machine with an oracle for a Σ0
n−1-complete

set.

2.2. Strings
Let X be some finite set called alphabet. The set X ∗ :=

⋃∞
n=0X n is the set

of all finite strings over the alphabet X , the set X∞ is the set of all infinite strings
over the alphabet X , and the set X] := X ∗ ∪X∞ is their union. The empty string
is denoted by ε, not to be confused with the small positive real number ε. Given
a string x ∈ X ∗, we denote its length by |x|. For a (finite or infinite) string x of
length ≥ k, we denote with x1:k the first k characters of x, and with x<k the first
k − 1 characters of x. The notation x1:∞ stresses that x is an infinite string. We
write x v y iff x is a prefix of y, i.e., x = y1:|x|.

2.3. Computability of Real-valued Functions
We fix some encoding of rational numbers into binary strings and an encoding

of binary strings into natural numbers. From now on, this encoding will be done
implicitly wherever necessary.

Definition 1 (Σ0
n-, Π0

n-, ∆0
n-computable). A function f : X ∗ → R is called Σ0

n-
computable (Π0

n-computable, ∆0
n-computable) iff the set {(x, q) ∈ X ∗ × Q |

f(x) > q} is Σ0
n (Π0

n, ∆0
n).2

2 The results presented here also hold for a slightly different definition of computability, see
Valenti (2016).

5

{(x, q) | f(x) > q} {(x, q) | f(x) < q}
f is computable ∆0

1 ∆0
1

f is lower semicomputable Σ0
1 Π0

1

f is upper semicomputable Π0
1 Σ0

1

f is limit computable ∆0
2 ∆0

2

f is ∆0
n-computable ∆0

n ∆0
n

f is Σ0
n-computable Σ0

n Π0
n

f is Π0
n-computable Π0

n Σ0
n

Table 3: Connection between the computability of real-valued functions and the arithmetical hi-
erarchy.

A ∆0
1-computable function is called computable, a Σ0

1-computable function
is called lower semicomputable, and a Π0

1-computable function is called upper
semicomputable. A ∆0

2-computable function f is called limit computable, because
there is a computable function φ such that

lim
k→∞

φ(x, k) = f(x).

The program φ that limit computes f can be thought of as an anytime algorithm
for f : we can stop φ at any time k and get a preliminary answer. If the program
φ ran long enough (which we do not know), this preliminary answer will be close
to the correct one.

Limit-computable sets are the highest level in the arithmetical hierarchy that
can be approached by a regular Turing machine. Above limit-computable sets
we necessarily need some form of halting oracle. See Table 3 for the definition
of lower/upper semicomputable and limit-computable functions in terms of the
arithmetical hierarchy.

Lemma 2 (Computability of Arithmetical Operations). Let n > 0 and let f, g :
X ∗ → R be two ∆0

n-computable functions. Then

(i) {(x, y) | f(x) > g(y)} is Σ0
n,

(ii) {(x, y) | f(x) ≤ g(y)} is Π0
n,

(iii) f + g, f − g, and f · g are ∆0
n-computable, and

(iv) f/g is ∆0
n-computable if g(x) 6= 0 for all x.

6

(v) log f is ∆0
n-computable if f(x) > 0 for all x.

Proof. We only prove this for n > 1. Since f, g are ∆0
n-computable, they are limit

computable on a level n−1 oracle machine. Let φ be the function limit computing
f on the oracle machine, and let ψ be the function limit computing g on the oracle
machine:

f(x) = lim
k→∞

φ(k, x) and g(y) = lim
k→∞

ψ(k, y).

By assumption, both φ and ψ are ∆0
n−1-computable.

(i) Let G := {(x, y, q) | g(y) < q}, and let F := {(x, y, q) | q ≤ f(x)}, both
of which are in ∆0

n by assumption. Hence there are Σ0
n-formulas ϕG and ϕF

such that

(x, y, q) ∈ G ⇐⇒ ϕG(x, y, q)

(x, y, q) ∈ F ⇐⇒ ϕF (x, y, q)

Now f(x) > g(y) if and only if ∃q. (x, y, q) ∈ G ∩ F , which is equivalent
to the Σ0

n-forumla

∃q. ϕG(x, y, q) ∧ ϕF (x, y, q).

(ii) Follows from (i).

(iii) Addition, subtraction, and multiplication are continuous operations.

(iv) Division is discontinuous only at g(x) = 0. We show this explicitly. By
assumption, for any ε > 0 there is a k0 such that for all k > k0

|φ(x, k)− f(x)| < ε and |ψ(x, k)− g(x)| < ε.

We assume without loss of generality that ε < |g(x)|, since g(x) 6= 0 by
assumption.∣∣∣∣φ(x, k)

ψ(x, k)
− f(x)

g(x)

∣∣∣∣
=

∣∣∣∣φ(x, k)g(x)− f(x)ψ(x, k)

ψ(x, k)g(x)

∣∣∣∣
≤ |φ(x, k)g(x)− f(x)g(x)|+ |f(x)g(x)− f(x)ψ(x, k)|

|ψ(x, k)g(x)|

<
ε|g(x)|+ |f(x)|ε
|ψ(x, k)g(x)|

7

with |ψ(x, k)g(x)| = |ψ(x, k)| · |g(x)| > (|g(x)| − ε)|g(x)|,

< ε · |g(x)|+ |f(x)|
(|g(x)| − ε)|g(x)|

ε→0−−→ 0,

therefore f(x)/g(x) = limk→∞ φ(x, k)/ψ(x, k).

(v) Follows from the fact that the logarithm is computable.

2.4. Algorithmic Information Theory
The following notion of a (semi-)measure is particular to algorithmic informa-

tion theory.

Definition 3 (Semimeasure (Li and Vitányi, 2008, Def. 4.2.1)). A semimeasure
over the alphabet X is a function ν : X ∗ → [0, 1] such that

(i) ν(ε) ≤ 1, and

(ii) ν(x) ≥
∑

a∈X ν(xa) for all x ∈ X ∗.

A semimeasure is called (probability) measure iff equalities hold in (i) and (ii) for
all x.

Semimeasures are not probability measures in the classical measure theoretic
sense. However, semimeasures correspond canonically to classical probability
measures on the probability space X] := X ∗ ∪X∞ whose σ-algebra is generated
by the cylinder sets Γx := {xz | z ∈ X]} (Li and Vitányi, 2008, Ch. 4.2).

For a semimeasure ν and a string x with ν(x) > 0 we use ν(a | x) :=
ν(xa)/ν(x) to denote the conditional probability of the continuation a given the
string x.

Solomonoff’s prior M (Solomonoff, 1964) assigns to a string x the probabil-
ity that the reference universal monotone Turing machine U computes a string
starting with x when fed with uniformly random bits as input. Formally,

M(x) :=
∑

p:xvU(p)

2−|p|, (2)

Equivalently, the Solomonoff prior M can be defined as a mixture over all lower
semicomputable semimeasures (Wood et al., 2011). The function M is a lower
semicomputable semimeasure, but not computable and not a measure (Li and
Vitányi, 2008, Lem. 4.5.3).

8

The distribution M dominates all lower semicomputable semimeasures ν in
the sense that there is a constant w(ν) > 0 such that M(x) ≥ w(ν)ν(x) for all
strings x ∈ X ∗. This property is the crucial ingredient to show that Bayesian
prediction based on M is very successful:

Theorem 4 (Solomonoff (1978, Thm. 3)). For every computable measure µ,

Eµ

[
∞∑
t=1

∑
a∈X

(M(a | x<t)− µ(a | x<t))2
]
≤ K(µ) ln

√
2.

This theorem implies in particular that M(a | x<t) → µ(a | x<t) as t →
∞. Moreover, if there is a ε > 0 such that |µ(a | x<t) − µ(b | x<t)| > ε for
all a 6= b ∈ X , then the maximum-likelihood predictor based on M , x̂Mt :=
arg maxa∈X M(a | x<t) will only make finitely many more mistakes than a µ-
based predictor. See Hutter (2001) for details and additional properties.

A semimeasure ν can be turned into a measure νnorm using Solomonoff nor-
malization: νnorm(ε) := 1 and for all x ∈ X ∗ and a ∈ X ,

νnorm(xa) := νnorm(x)
ν(xa)∑
b∈X ν(xb)

. (3)

By definition, νnorm is a measure (Li and Vitányi, 2008, Sec. 4.5.3). Moreover,
since Mnorm ≥ M , normalization preserves universal dominance: M ≥ w(ν)ν
for all lower semicomputable semimeasures ν, and therefore Mnorm predicts just
as well as M .

The measure mixture M (Gács, 1983, p. 74) removes the contribution of pro-
grams that do not compute infinite strings:

M(x) := lim
n→∞

∑
y∈Xn

M(xy). (4)

The measure mixture M is the same as M except that the contributions by pro-
grams that do not produce infinite strings are removed: for any such program p,
let k denote the length of the finite string generated by p. Then for |xy| > k, the
program p does not contribute to M(xy), hence it is excluded from M(x).

Similarly to M , the measure mixture M is not a (probability) measure since
M(ε) < 1; but in this case normalization (3) is just multiplication with the con-
stant 1/M(ε), leading to the normalized measure mixture Mnorm.

9

agent π environment µ

action at

percept et = (ot, rt)

Figure 1: The agent model used in reinforcement learning.

2.5. General Reinforcement Learning
In reinforcement learning the agent interacts with an environment in cycles:

at time step t the agent chooses an action at ∈ A and receives a percept et =
(ot, rt) ∈ E consisting of an observation ot ∈ O and a real-valued reward rt ∈
[0, 1]; the cycle then repeats for t + 1 (see Figure 1). A history is an element
of (A × E)∗. We use æ ∈ A × E to denote one interaction cycle, and æ1:t to
denote a history of length t. The goal in reinforcement learning is to maximize
total discounted rewards. A policy is a function π : (A× E)∗ → A mapping each
history to the action taken after seeing this history.

The environment can be stochastic, but is assumed to be semicomputable. In
accordance with the AIXI literature (Hutter, 2005), we model environments as
lower semicomputable chronological conditional semimeasures (LSCCCSs). A
conditional semimeasure ν takes a sequence of actions a1:∞ as input and returns
a semimeasure ν(· ‖ a1:∞) over E]. A conditional semimeasure ν is chronolog-
ical iff percepts at time t do not depend on future actions, i.e., ν(e1:t ‖ a1:∞) =
ν(e1:t ‖ a′1:∞) whenever a1:t = a′1:t. Therefore we can write ν(e1:t ‖ a1:t) instead
of ν(e1:t ‖ a1:∞). Despite their name, conditional semimeasures do not specify
conditional probabilities; the environment ν is not a joint probability distribution
over actions and percepts. Here we only care about the computability of the envi-
ronment ν; for our purposes, chronological conditional semimeasures behave just
like semimeasures.

We fix a discount function γ : N→ R with γ(t) ≥ 0 and
∑∞

t=1 γ(t) <∞ and
make the following assumptions.

Assumption 5. (a) The discount function γ is lower semicomputable.

(b) Rewards are bounded between 0 and 1.

(c) The set of actions A and the set of percepts E are both finite.

Assumption 5b could be relaxed to bounded rewards because we can rescale
rewards r 7→ cr + d for any c, d ∈ R without changing optimal policies if the

10

environment ν is a measure. However, for our value-related results, we require
that rewards are nonnegative.

We define the discount normalization factor Γt :=
∑∞

i=t γ(i). There is no
requirement that Γt > 0. In fact, we use γ for both, discounted infinite horizon
(Γt > 0 for all t), and finite lifetime m. The effective horizon Ht(ε) is a horizon
that is long enough to encompass all but an ε of the discount function’s mass:

Ht(ε) := min{H | Γt+H/Γt ≤ ε} (5)

We illustrate the environments used in the proofs of our theorems in the form
of flowcharts. They should be read as follows. Circles denote stochastic nodes,
rectangles denote environment nodes, and diamonds denote the agent’s choice
nodes. Transitions out of stochastic nodes are labeled with transition probabilities,
transitions out of environment nodes are labeled with percepts (observations and
rewards), and transitions out of choice nodes are labeled with actions. The initial
node is marked with a small incoming arrow (see for example Figure 4). By
Assumption 5b the worst possible outcome is getting reward 0 forever, thus we
label such states as hell. Analogously, getting reward 1 forever is the best possible
outcome, thus we label such states as heaven.

2.6. The Universal Agent AIXI
Our environment class M is the class of all LSCCCSs. Typically, Bayesian

agents such as AIXI only function well if the true environment is in their hy-
pothesis class. Since the hypothesis classM is extremely large, the assumption
that it contains the true environment is rather weak. We fix a universal prior
w :M→ [0, 1] with w(ν) > 0 for all ν ∈ M and

∑
ν∈Mw(ν) ≤ 1, given by the

reference machine U by w(ν) ∝ 2−KU (ν). The universal prior w gives rise to the
universal mixture ξ, which is a convex combination of all LSCCCSsM:

ξ(e<t ‖ a<t) :=
∑
ν∈M

w(ν)ν(e<t ‖ a<t)

It is analogous to the Solomonoff prior M but defined for reactive environments.
Like M , the universal mixture ξ is lower semicomputable (Hutter, 2005, Sec.
5.10).

Definition 6 (Value Function). The value of a policy π in an environment ν given
history æ<t is

V π
ν (æ<t) :=

1

Γt

∞∑
k=t

∑
et:k

γ(k)rkν(e1:k | e<t ‖ a1:k)

11

if Γt > 0 and V π
ν (æ<t) := 0 if Γt = 0 where ai := π(æ<i) for all i ≥ t. The

optimal value is defined as V ∗ν (h) := supπ V
π
ν (h).

This value function is also called recursive value, in contrast to iterative value
that we discuss in Section 5. This name stems from the following identity (analo-
gously to Hutter (2005, Eq. 4.12)):

V π
ν (æ<t) =

1

Γt

∑
et

(
γ(t)rt + Γt+1V

π
ν (æ1:t)

)
ν(et | e<t ‖ a1:t)

where at := π(æ<t).
An explicit expression for the optimal value in environment ν is

V ∗ν (æ<t) =
1

Γt
lim
m→∞

max
at∈A

∑
et∈E

. . . max
am∈A

∑
em∈E

m∑
k=t

γ(k)rkν(e1:k | e<t ‖ a1:k). (6)

Let æ<t ∈ (A × E)∗ be some history. We extend the value functions V π
ν to

include initial interactions (in reinforcement learning literature on MDPs these are
called Q-values), V π

ν (æ<tat) := V π′
ν (æ<t) where π′ is the policy π except that it

takes action at next, i.e., π′(æ<t) := at and π′(h) := π(h) for all h 6= æ<t. We
define V ∗ν (æ<tat) := supπ V

π
ν (æ<tat) analogously.

Definition 7 (Optimal Policy (Hutter, 2005, Def. 5.19 & 5.30)). A policy π is
optimal in environment ν (ν-optimal) iff for all histories the policy π attains the
optimal value: V π

ν (h) = V ∗ν (h) for all h ∈ (A× E)∗.

The discount function is summable, rewards are bounded (Assumption 5b),
and actions and percepts spaces are both finite (Assumption 5c), so an optimal pol-
icy exists for every environment ν ∈M (Lattimore and Hutter, 2014, Thm. 10).

For an environment ν ∈ M (an LSCCCS), AINU is defined as a ν-optimal
policy π∗ν = arg maxπ V

π
ν (ε). To stress that the environment is given by a measure

µ ∈ M (as opposed to a semimeasure), we use AIMU. If we knew the true en-
vironment ν ∈ M, we would choose the agent AINU that maximizes ν-expected
value. Since we do not know the true environment, we use the universal mixture
ξ over all environments in M instead. This yields the Bayesian agent AIXI: it
weighs every environment ν ∈ M according to its prior probability w(ν). For-
mally, AIXI is defined as a ξ-optimal policy π∗ξ for the universal mixture ξ (Hutter,
2005, Ch. 5). Since ξ ∈ M and every measure µ ∈ M is also a semimeasure,
both AIMU and AIXI are a special case of AINU. However, AIXI is not a special
case of AIMU since the mixture ξ is not a measure.

12

M(xy | x) > q ⇐⇒ ∀m∃k. φ(xy,k)
φ(x,m)

> q ⇐⇒ ∃k∃m0∀m ≥ m0.
φ(xy,k)
φ(x,m)

> q

Figure 2: A Π0
2-formula and an equivalent Σ0

2-formula defining conditional M . Here φ(x, k)
denotes a computable function that lower semicomputes M(x).

Because there can be more than one optimal policy, the definitions of AINU,
AIMU and AIXI are not unique. More specifically, a ν-optimal policy maps a
history h to

π∗ν(h) :∈ arg max
a∈A

V ∗ν (ha). (7)

If there are multiple actions α, β ∈ A that attain the optimal value, V ∗ν (hα) =
V ∗ν (hβ), we say there is an argmax tie. Which action we settle on in case of a tie
(how we break the tie) is irrelevant and can be arbitrary.

We also use the following properties.

Lemma 8 (Linearity of V π
ν in ν (Hutter, 2005, Thm. 5.31)). Let ν = qρ+ q′ρ′ for

some q, q′ ≥ 0. Then for all policies π and all histories æ<t,

V π
ν (æ<t) = q

ρ(e<t ‖ a<t)
ν(e<t ‖ a<t)

V π
ρ (æ<t) + q′

ρ′(e<t ‖ a<t)
ν(e<t ‖ a<t)

V π
ρ′ (æ<t).

Theorem 9 (On-Policy Value Convergence (Hutter, 2005, Thm. 5.36)). Let µ be
any environment and π be any policy. Then

V π
ξ (æ<t)− V π

µ (æ<t)→ 0 as t→∞ µ-almost surely.

Lemma 10 (Mixing Mixtures (Leike and Hutter, 2015c, Lem. 1)). Let q, q′ ∈ Q
such that q > 0, q′ ≥ 0, and q + q′ ≤ 1. Let ξ be a universal mixture, and let ρ be
an LSCCCS. Then ξ′ := qξ + q′ρ is an LSCCCS and a universal mixture.

3. The Complexity of Solomonoff Induction

When using the Solomonoff prior M (or one of its sisters Mnorm, M , or
Mnorm) for sequence prediction, we need to compute the conditional probabil-
ity M(xy | x) := M(xy)/M(x) for finite strings x, y ∈ X ∗. Because M(x) > 0
for all finite strings x ∈ X ∗, this quotient is well-defined.

Theorem 11 (Complexity of M , Mnorm, M , and Mnorm).

13

(i) M(x) is lower semicomputable

(ii) M(xy | x) is limit computable

(iii) Mnorm(x) is limit computable

(iv) Mnorm(xy | x) is limit computable

(v) M(x) is Π0
2-computable

(vi) M(xy | x) is ∆0
3-computable

(vii) Mnorm(x) is ∆0
3-computable

(viii) Mnorm(xy | x) is ∆0
3-computable

Proof. (i) By Li and Vitányi (2008, Thm. 4.5.2). Intuitively, we can run all
programs in parallel and get monotonely increasing lower bounds for M(x)
by adding 2−|p| every time a program p has completed outputting x.

(ii) From (i) and Lemma 2 (iv) since M(x) > 0 (see also Figure 2).

(iii) By Lemma 2 (iii) and (iv), and M(x) > 0.

(iv) By (iii), Lemma 2 (iv) since Mnorm(x) ≥M(x) > 0.

(v) Let φ be a computable function that lower semicomputes M . Since M is a
semimeasure, M(xy) ≥

∑
zM(xyz), hence

∑
y∈XnM(xy) is nonincreas-

ing in n and thus M(x) > q iff ∀n∃k
∑

y∈Xn φ(xy, k) > q.

(vi) From (v) and Lemma 2 (iv) since M(x) > 0.

(vii) From (v) and Lemma 2 (iv).

(viii) From (vi) and Lemma 2 (iv) since Mnorm(x) ≥M(x) > 0.

We proceed to show that these bounds are in fact the best possible ones. If M
were ∆0

1-computable, then so would be the conditional semimeasure M(· | ·).
Thus we could compute the M -adversarial sequence z1z2 . . . defined by

zt :=

{
0 if M(1 | z<t) > 1

2
,

1 otherwise.

The sequence z1z2 . . . corresponds to a computable deterministic measure µ. How-
ever, we have M(z1:t) ≤ 2−t by construction, so dominance M(x) ≥ w(µ)µ(x)
with w(µ) > 0 yields a contradiction with t→∞:

2−t ≥M(z1:t) ≥ w(µ)µ(z1:t) = w(µ) > 0

14

By the same argument, the normalized Solomonoff prior Mnorm cannot be ∆0
1-

computable. However, since it is a measure, Σ0
1- or Π0

1-computability would entail
∆0

1-computability.
For M and Mnorm we prove the following two lower bounds for specific uni-

versal Turing machines. In the following theorem, we use MU ′ to denote the
measure mixture M defined on the universal Turing U ′ instead of U .

Theorem 12 (M is not Limit Computable). There is a universal Turing machine
U ′ such that the set {(x, q) |MU ′(x) > q} is not in ∆0

2.

Proof. Assume the contrary and let A ∈ Π0
2 \∆0

2 and η be a quantifier-free first-
order formula such that

n ∈ A ⇐⇒ ∀k∃i. η(n, k, i). (8)

For each n ∈ N, we define the program pn as follows.

1: procedure pn
2: output 1n+10
3: k ← 0
4: while true do
5: i← 0
6: while not η(n, k, i) do
7: i← i+ 1

8: k ← k + 1
9: output 0

Each program pn always outputs 1n+10. Furthermore, the program pn outputs the
infinite string 1n+10∞ if and only if n ∈ A by (8). We define U ′ as follows using
our reference machine U .

• U ′(1n+10): Run pn.

• U ′(00p): Run U(p).

• U ′(01p): Run U(p) and bitwise invert its output.

By construction, U ′ is a universal Turing machine. No pn outputs a string starting
with 0n+11, therefore MU ′(0

n+11) = 1
4

(
MU(0n+11) +MU(1n+10)

)
. Hence

MU ′(1
n+10) = 2−n−21A(n) + 1

4
MU(1n+10) + 1

4
MU(0n+11)

= 2−n−21A(n) +MU ′(0
n+11)

15

If n /∈ A, then MU ′(1
n+10) = MU ′(0

n+11). Otherwise, we have |MU ′(1
n+10) −

MU ′(0
n+11)| = 2−n−2.

Now we assume that MU ′ is limit computable (∆0
2-computable), i.e., there is

a computable function φ : X ∗×N→ Q such that limk→∞ φ(x, k) = MU ′(x). We
get that

n ∈ A ⇐⇒ lim
k→∞

φ(0n+11, k)− φ(1n+10, k) ≥ 2−n−2,

thus A is limit computable, a contradiction.

Corollary 13 (Mnorm is not Σ0
2- or Π0

2-computable). There is a universal Turing
machine U ′ such that {(x, q) |MnormU ′(x) > q} is not in Σ0

2 or Π0
2.

Proof. Since Mnorm = c ·M , there exists a k ∈ N such that 2−k < c (even if we
do not know the value of k). We can show that the set {(x, q) | MnormU ′(x) > q}
is not in ∆0

2 analogously to the proof of Theorem 12, using

n ∈ A ⇐⇒ lim
k→∞

φ(0n+11, k)− φ(1n+10, k) ≥ 2−k−n−2.

If Mnorm were Σ0
2-computable or Π0

2-computable, this would imply that Mnorm is
∆0

2-computable since Mnorm is a measure, a contradiction.

Since M(ε) = 1, we have M(x | ε) = M(x), so the conditional probability
M(xy | x) has at least the same complexity as M . Analogously for Mnorm and
Mnorm since they are measures. For M , we have that M(x | ε) = Mnorm(x), so
Corollary 13 applies. All that remains to prove is that conditional M is not lower
semicomputable.

Theorem 14 (ConditionalM is not Lower Semicomputable). The set {(x, xy, q) |
M(xy | x) > q} is not recursively enumerable.

We gave a different, more complicated proof in Leike and Hutter (2015b).
The following, much simpler and more elegant proof is due to Sterkenburg (2016,
Prop. 3).

Proof. Assume to the contrary that M(xy | x) is lower semicomputable. Let
a 6= b ∈ X . We construct an infinite string x by defining its initial segments ε =:
x(0) @ x(1) @ x(2) @ . . . @ x. At every step n, we enumerate strings y ∈ X ∗
until one is found satisfying M(a | x(n)y) ≥ 1/2; then set x(n + 1) := x(n)yb.
This implies that for infinitely many t there is an n such that M(b | x<t) = M(b |
x(n)y) ≤ 1 −M(a | x(n)y) ≤ 1/2. Since we assumed M(· | ·) to be lower
semicomputable, the infinite string x is computable, and hence M(xt | x<t) → 1
by Theorem 4. But this contradicts M(b | x<t) ≤ 1/2 infinitely often.

16

4. The Complexity of AINU, AIMU, and AIXI

4.1. Upper Bounds
In this section, we derive upper bounds on the computability of AINU, AIMU,

and AIXI. Except for Corollary 22, all results in this section apply generally to any
LSCCCS ν ∈M, hence they apply to AIXI even though they are stated for AINU.

In order to position AINU in the arithmetical hierarchy, we represent policies
as relations over (A × E)∗ × A. These relations are easily identified with sets
of natural numbers by encoding the history into one natural number. From now
on this translation of policies into sets of natural numbers will be done implicitly
wherever necessary.

Lemma 15 (Policies are in ∆0
n). If a policy π is Σ0

n or Π0
n, then π is ∆0

n.

Proof. Let ϕ be a Σ0
n-formula (Π0

n-formula) defining π, i.e., ϕ(h, a) holds iff
π(h) = a. We define the formula ϕ′,

ϕ′(h, a) :=
∧

a′∈A\{a}

¬ϕ(h, a′).

The set of actions A is finite, hence ϕ′ is a Π0
n-formula (Σ0

n-formula). Moreover,
ϕ′ is equivalent to ϕ.

One way to compute the optimal policy is through computing the optimal
value function. Hence we can provide upper bounds on the computability of the
optimal policy if we have upper bounds on the computability of the optimal value
function. The following lemma gives such an upper bound on the computability
of the value function for environments inM.

Lemma 16 (Complexity of V ∗ν). For every LSCCCS ν ∈ M, and every lower
semicomputable discount function γ, the function V ∗ν is ∆0

2-computable.

Proof. The explicit form of the value function (6) has numerator

lim
m→∞

max
at∈A

∑
et∈E

. . . max
am∈A

∑
em∈E

m∑
i=t

γ(i)riν(e1:i ‖ a1:i),

and denominator ν(e<t ‖ a<t) · Γt. The numerator is nondecreasing in m because
we assumed rewards to be nonnegative (Assumption 5b). Hence both numerator
and denominator are lower semicomputable functions, so Lemma 2 (iv) implies
that V ∗ν is ∆0

2-computable.

17

From the optimal value function V ∗ν we get the optimal policy π∗ν according to
(7). However, in cases where there is more than one optimal action, we have to
break an argmax tie. This happens iff V ∗ν (hα) = V ∗ν (hβ) for two potential actions
α 6= β ∈ A. This equality test is more difficult than determining which is larger
in cases where they are unequal. Thus we get the following upper bound.

Theorem 17 (Complexity of Optimal Policies). For any environment ν ∈ M, if
V ∗ν is ∆0

n-computable, then there is an optimal policy π∗ν for the environment ν
that is ∆0

n+1.

Proof. To break potential ties, we pick an (arbitrary) total order � on A that
specifies which actions should be preferred in case of a tie. We define

πν(h) = a :⇐⇒
∧

a′:a′�a

V ∗ν (ha) > V ∗ν (ha′)

∧
∧

a′:a�a′
V ∗ν (ha) ≥ V ∗ν (ha′).

(9)

Then πν is a ν-optimal policy according to (7). By assumption, V ∗ν is ∆0
n-computable.

By Lemma 2 (i) and (ii) V ∗ν (ha) > V ∗ν (ha′) is Σ0
n and V ∗ν (ha) ≥ V ∗ν (ha′) is Π0

n.
Therefore the policy πν defined in (9) is a conjunction of a Σ0

n-formula and a
Π0
n-formula and thus ∆0

n+1.

Corollary 18 (Complexity of AINU). AINU is ∆0
3 for every environment ν ∈M.

Proof. From Lemma 16 and Theorem 17.

Usually we do not mind taking slightly suboptimal actions. Therefore actually
trying to determine if two actions have the exact same value seems like a waste of
resources. In the following, we consider policies that attain a value that is always
within some ε > 0 of the optimal value.

Definition 19 (ε-Optimal Policy). A policy π is ε-optimal in environment ν iff
V ∗ν (h)− V π

ν (h) < ε for all histories h ∈ (A× E)∗.

Theorem 20 (Complexity of ε-Optimal Policies). For any environment ν ∈ M,
if V ∗ν is ∆0

n-computable, then there is an ε-optimal policy πεν for the environment
ν that is ∆0

n.

18

Proof. Let ε > 0 be given. Since the value function V ∗ν (h) is ∆0
n-computable,

the set Vε := {(ha, q) | |q − V ∗ν (ha)| < ε/2} is in ∆0
n according to Definition 1.

Hence we compute the values V ∗ν (ha′) until we get within ε/2 for every a′ ∈ A
and then choose the action with the highest value so far. Formally, let � be an
arbitrary total order on A that specifies which actions should be preferred in case
of a tie. Without loss of generality, we assume ε = 1/k, and define Q to be an
ε/2-grid on [0, 1], i.e., Q := {0, 1/2k, 2/2k, . . . , 1}. We define

πεν(h) = a :⇐⇒ ∃(qa′)a′∈A ∈ QA.
∧
a′∈A

(ha′, qa′) ∈ Vε

∧
∧

a′:a′�a

qa > qa′ ∧
∧

a′:a�a′
qa ≥ qa′

∧ the tuple (qa′)a′∈A is minimal with

respect to the lex. ordering on QA.

(10)

This makes the choice of a unique. Moreover, QA is finite since A is finite, and
hence (10) is a ∆0

n-formula.

Corollary 21 (Complexity of ε-Optimal AINU). For any environment ν ∈ M,
there is an ε-optimal policy for AINU that is ∆0

2.

Proof. From Lemma 16 and Theorem 20.

If the environment ν ∈ M is a measure, i.e., ν assigns zero probability to
finite strings, then we get computable ε-optimal policies.

Corollary 22 (Complexity of AIMU). If the environment µ ∈ M is a measure
and the discount function γ is computable, then AIMU is limit computable (∆0

2),
and ε-optimal AIMU is computable (∆0

1).

Proof. Let ε > 0 be the desired accuracy. We can truncate the limit m → ∞
in (6) at the ε/2-effective horizon Ht(ε/2), since everything after Ht(ε/2) can
contribute at most ε/2 to the value function. Any lower semicomputable measure
is computable (Li and Vitányi, 2008, Lem. 4.5.1). Therefore V ∗µ as given in (6)
is composed only of computable functions, hence it is computable according to
Lemma 2. The claim now follows from Theorem 17 and Theorem 20.

19

Purgatory Heaven
6= π∗ξ (ht)π∗ξ (ht)

r = 0
r = 1

Figure 3: The environment µ from the proof of Theorem 23. The agent gets reward 0 as long
as it follows AIXI’s policy π∗ξ that is assumed to be computable. Once the agent deviates from
π∗ξ , it gets reward 1. We get a contradiction because AIXI can learn this environment, so it will
eventually decide to take an action that leads to heaven.

4.2. Lower Bounds
We proceed to show that the bounds from the previous section are the best

we can hope for. In environment classes where ties have to be broken, AINU
has to solve Π0

2-hard problems (Theorem 24). These lower bounds are stated for
particular environments ν ∈ M. Throughout this section, we assume that Γt > 0
for all t.

We also construct universal mixtures that yield bounds on ε-optimal policies.
There is an ε-optimal AIXI that solves Σ0

1-hard problems (Theorem 25). For
arbitrary universal mixtures, we prove the following weaker statement that only
guarantees incomputability.

Theorem 23 (No AIXI is computable). AIXI is not computable for any universal
Turing machine U .

This theorem follows from the incomputability of Solomonoff induction. Since
AIXI uses an analogue of Solomonoff’s prior for learning, it succeeds to predict
the environment’s behavior for its own policy (Theorem 9). If AIXI were com-
putable, then there would be computable environments more powerful than AIXI:
they can simulate AIXI and anticipate its prediction, which leads to a contradic-
tion.

Proof. Assume there is a computable policy π∗ξ that is optimal in the mixture ξ.
We define a deterministic environment µ, the adversarial environment to π∗ξ . The
environment µ gives rewards 0 as long as the agent follows the policy π∗ξ , and
rewards 1 once the agent deviates. Formally, we ignore observations by setting

20

O := {0}, and define

µ(r1:t ‖ a1:t) :=


1 if ∀k ≤ t. ak = π∗ξ ((ar)<k) and rk = 0

1 if ∀k ≤ t. rk = 1k≥i

where i := min{j | aj 6= π∗ξ ((ar)<j)}
0 otherwise.

See Figure 3 for an illustration of this environment. The environment µ is com-
putable because the policy π∗ξ was assumed to be computable. Suppose π∗ξ acts in
µ to generate the history æ<t, then by Theorem 9 AIXI learns to predict perfectly
on policy:

V ∗ξ (æ<t) = V
π∗ξ
ξ (æ<t)→ V

π∗ξ
µ (æ<t) = 0 as t→∞,

since both π∗ξ and µ are deterministic. Therefore we find a t large enough such
that V ∗ξ (æ<t) < w(µ) where æ<t is the interaction history of π∗ξ in µ. A policy
π with π(æ<t) 6= π∗ξ (æ<t), gets a reward of 1 in environment µ for all time steps
after t, hence V π

µ (æ<t) = 1. With linearity of V π
ξ (æ<t) in ξ (Lemma 8),

V π
ξ (æ<t) ≥ w(µ)µ(e<t‖a<t)

ξ(e<t‖a<t)V
π
µ (æ<t) ≥ w(µ),

since µ(e<t ‖ a<t) = 1 (µ is deterministic), V π
µ (æ<t) = 1, and ξ(e<t ‖ a<t) ≤ 1.

Now we get a contradiction:

w(µ) > V ∗ξ (æ<t) = sup
π′
V π′

ξ (æ<t) ≥ V π
ξ (æ<t) ≥ w(µ)

For the remainder of this section, we fix the action space to be A := {α, β}
with action α favored in ties. The percept space is fixed to a tuple of binary
observations and rewards, E := O × {0, 1} with O := {0, 1}.

Theorem 24 (AINU is Π0
2-hard). There is an environment ν ∈M such that AINU

is Π0
2-hard.

Proof. Let A be a any Π0
2-set, and let η be a quantifier-free formula such that

n ∈ A ⇐⇒ ∀i ∃k η(n, i, k). (11)

21

n++

Heaven

1/2
o = 1
r = 0

1/2

o = 0
r = 0

β

α

1∃k η(n,i,k)

o = 0
r = 1

Figure 4: The environment ρi from the proof of Theorem 24. The mixture ν over class of environ-
mentsM′ := {ρ0, ρ1, . . .} ⊂ M forces AINU to solve Π0

2-hard problems: Action α is preferred
(because of a tie) iff it leads to heaven, which is the case iff ∃k η(n, i, k).

We define a class of environmentsM′ := {ρ1, ρ2, . . .} where each ρi is defined as
follows.

ρi((or)1:m ‖ a1:m) :=



2−m, if o1:m = 1m and ∀t ≤ m. rt = 0

2−n−1, if ∃n. 1n0 v o1:m v 1n0∞ and an+2 = α

and rt = 1t>n+1 and ∃k η(n, i, k)

2−n−1, if ∃n. 1n0 v o1:m v 1n0∞ and an+2 = β

and rt = 1t>n+1

0, otherwise.

See Figure 4 for an illustration of these environments. Every ρi is a chronological
conditional semimeasure by definition, so M′ ⊆ M. Furthermore, every ρi is
lower semicomputable since η is quantifier-free.

We define our environment ν as a mixture overM′,

ν :=
∑
i∈N

2−i−1ρi;

the choice of the weights on the environments ρi is arbitrary but positive. Let π∗ν
be an optimal policy for the environment ν and recall that the action α is preferred
in ties. We claim that for the ν-optimal policy π∗ν ,

n ∈ A ⇐⇒ π∗ν(1
n0) = α. (12)

22

ξ

Semi-Heaven

Heaven

∗

o = 1n0

α

β

1∃k η(n,i,k)

o = 0
r = 1/2

o = 0
r = 1

Figure 5: The environment ν from the proof of Theorem 25, which forces AIXI to solve Σ0
1-hard

problems. It functions just like ξ until the observation history is 1n0. Then, action α is preferred
iff heaven is accessible, i.e., iff ∃k η(n, i, k).

This enables us to decide whether n ∈ A given the policy π∗ν , hence proving (12)
concludes this proof.

Let n, i ∈ N be given, and suppose we are in environment ρi and observe 1n0.
Taking action β next yields reward 1 forever; taking action α next yields a reward
of 1 if there is a k such that η(n, i, k) holds. If this is the case, then

V ∗ρi(1
n0α) = Γn+2 = V ∗ρi(1

n0β),

and otherwise
V ∗ρi(1

n0α) = 0 < Γn+2 = V ∗ρi(1
n0β)

(omitting the first n+1 actions and rewards in the argument of the value function).
We can now show (12): By (11), n ∈ A if and only if for all i there is a k such that
η(n, i, k), which happens if and only if V ∗ρi(1

n0α) = Γn+2 for all i ∈ N, which is
equivalent to V ∗ν (1n0α) = Γn+2, which in turn is equivalent to π∗µ(1n0) = α since
V ∗ν (1n0β) = Γn+2 and action α is favored in ties.

Theorem 25 (Some ε-optimal AIXI are Σ0
1-hard). There is a universal Turing

machine U ′ and an ε > 0 such that any ε-optimal policy for AIXI is Σ0
1-hard.

Proof. Let A be a Σ0
1-set and η be a quantifier-free formula such that n + 1 ∈ A

23

iff ∃k η(n, k). We define the environment

ν((or)1:t ‖ a1:t) :=



ξ((or)1:n ‖ a1:n), if ∃n. o1:n = 1n−10

and an = α

and ∀t′ > n. ot′ = 0 ∧ rt′ = 1
2

ξ((or)1:n ‖ a1:n), if ∃n. o1:n = 1n−10

and an = β

and ∀t′ > n. ot = 0 ∧ rt = 1

and ∃k η(n− 1, k).

ξ((or)1:t ‖ a1:t), if @n. o1:n = 1n−10

0, otherwise.

See Figure 5 for an illustration. The environment ν mimics the universal envi-
ronment ξ until the observation history is 1n−10. Taking the action α next gives
rewards 1/2 forever. Taking the action β next gives rewards 1 forever if n ∈ A,
otherwise the environment ν ends at some future time step. Therefore we want to
take action β if and only if n ∈ A. We have that ν is an LSCCCS since ξ is an
LSCCCS and η is quantifier-free.

We define ξ′ := 1
2
ν+ 1

8
ξ. By Lemma 10 ξ′ is a universal lower semicomputable

semimeasure. Let n ∈ A be given and let h ∈ (A × E)n be any history with
observations o1:n = 1n−10. Since ν(1n−10 | a1:n) = ξ(1n−10 | a1:n) by definition,
the posterior weights of ν and ξ in ξ′ are equal to the prior weights, analogously
to the proof of Leike and Hutter (2015c, Thm. 7). In the following, we use the

linearity of V
π∗
ξ′

ρ in ρ (Lemma 8), and the fact that values are bounded between 0
and 1 (Assumption 5b). If there is a k such that η(n− 1, k) holds,

V ∗ξ′(hβ)− V ∗ξ′(hα) = 1
2
V
π∗
ξ′

ν (hβ)− 1
2
V
π∗
ξ′

ν (hα) + 1
8
V
π∗
ξ′

ξ (hβ)− 1
8
V
π∗
ξ′

ξ (hα)

≥ 1
2
− 1

4
+ 0− 1

8
= 1

8
,

and similarly if there is no k such that η(n− 1, k) holds, then

V ∗ξ′(hα)− V ∗ξ′(hβ) = 1
2
V
π∗
ξ′

ν (hα)− 1
2
V
π∗
ξ′

ν (hβ) + 1
8
V
π∗
ξ′

ξ (hα)− 1
8
V
π∗
ξ′

ξ (hβ)

≥ 1
4
− 0 + 0− 1

8
= 1

8
.

In both cases |V ∗ξ′(hβ) − V ∗ξ′(hα)| > 1/9. Hence we pick ε := 1/9 and get for
every ε-optimal policy πεξ′ that πεξ′(h) = β if and only if n ∈ A.

24

Note the differences between Theorem 23 and Theorem 25: the former talks
about optimal policies and shows that they are not computable, but is agnostic
towards the underlying universal Turing machine. The latter talks about ε-optimal
policies and gives a stronger hardness result, at the cost of depending on one
particular universal Turing machine.

5. Iterative Value Function

Historically, AIXI’s value function has been defined slightly differently to
Definition 6, using a limit extension of an iterative definition of the value function.
This definition is the more straightforward to come up with in AI: it is the natu-
ral adaptation of (optimal) minimax search in zero-sum games to the (optimal)
expectimax algorithm for stochastic environments. In this section we discuss the
problems with this definition.

To avoid confusion with the recursive value function V π
ν , we denote it W π

ν .3

Definition 26 (Iterative Value Function (Hutter, 2005, Def. 5.30)). The iterative
value of a policy π in an environment ν given history æ<t is

W π
ν (æ<t) :=

1

Γt
lim
m→∞

∑
et:m

(
ν(e1:m | e<t ‖ a1:m)

m∑
k=t

γ(k)rk

)
if Γt > 0 and W π

ν (æ<t) := 0 if Γt = 0 where ai := π(e<i) for all i ≥ t. The
optimal iterative value is defined as W ∗

ν (h) := supπW
π
ν (h).

Analogously to (6), we can write W ∗
ν using alternating max and

∑
operators:

W ∗
ν (æ<t) =

1

Γt
lim
m→∞

max
at∈A

∑
et∈E

. . . max
am∈A

∑
em∈E

ν(e1:m | e<t ‖ a1:m)
m∑
k=t

γ(k)rk

(13)
We use iterative AINU for the ν-optimal policy according to the iterative value

function, and iterative AIXI for the ξ-optimal policy according to the iterative
value function. Note that iterative AIMU coincides with AIMU since µ is a mea-
sure by convention.

3Note that in Leike and Hutter (2015a) the use of the symbols V and W is reversed.

25

Agent Optimal ε-Optimal
Iterative AINU ∆0

4, Σ0
3-hard ∆0

3, Π0
2-hard

Iterative AIXI ∆0
4, Π0

2-hard ∆0
3, Π0

2-hard
Iterative AIMU ∆0

2 ∆0
1

Table 4: Computability results for different agent models that use the iterative value function
derived in Section 5. Hardness results for AINU are with respect to a specific environment ν ∈M.

Hell

βα

r = ε

r = 0

r = 1

Figure 6: The environment ν from the proof of Proposition 27. Action α yields reward 1, but
subsequently the environment ends. Action β yields reward ε and the environment continues
forever. Iterative AINU will prefer the suboptimal action β, because it conditions on surviving
forever.

Generally, our environment ν ∈M is only a semimeasure and not a measure,
i.e., there is a history æ<tat such that

1 >
∑
et∈E

ν(et | e<t ‖ a1:t).

In such cases, with positive probability the environment ν does not produce a
new percept et. If this occurs, we shall use the informal interpretation that the
environment ν ended, but our formal argument does not rely on this interpretation.

The following proposition shows that for a semimeasure ν ∈ M that is not a
measure, iterative AINU does not maximize ν-expected rewards. Recall that γ(1)
states the discount of the first reward. In the following, we assume without loss of
generality that γ(1) > 0, i.e., we are not indifferent about the reward received in
time step 1.

Proposition 27 (Iterative AINU is not a ν-Expected Reward Maximizer). For any
ε > 0 there is an environment ν ∈ M that is not a measure and a policy π

26

that receives a total of γ(1) rewards in ν, but iterative AINU receives only εγ(1)
rewards in ν.

Informally, the environment ν is defined as follows. In the first time step, the
agent chooses between the two actions α and β. Taking action α gives a reward of
1, and subsequently the environment ends. Action β gives a reward of ε, but the
environment continues forever. There are no other rewards in this environment.
See Figure 6. From the perspective of ν-expected reward maximization, it is better
to take action α, however iterative AINU takes action β.

Proof of Proposition 27. Let ε > 0. We ignore observations and set E := {0, ε, 1},
A := {α, β}. The environment ν is formally defined by

ν(r1:t ‖ a1:t) :=


1 if a1 = α and r1 = 1 and t = 1

1 if a1 = β and r1 = ε and rk = 0 ∀1 < k ≤ t

0 otherwise.

Taking action α first, we have ν(r1:t ‖ αa2:t) = 0 for t > 1 (the environment ν
ends in time step 2 given history α). Hence we conclude

V ∗ν (α) =
1

Γt
lim
m→∞

∑
r1:m

ν(r1:m ‖ αa2:m)
m∑
k=1

γ(k)rk = 0.

Taking action β first we get

V ∗ν (β) =
1

Γt
lim
m→∞

∑
r1:m

ν(r1:m ‖ βa2:m)
m∑
k=1

γ(k)rk =
γ(1)

Γ1

ε.

Since γ(1) > 0 and ε > 0, we have V ∗ν (β) > V ∗ν (α), and thus iterative AINU will
use a policy that plays action β first, receiving a total discounted reward of εγ(1).
In contrast, any policy π that takes action α first receives a larger total discounted
reward of γ(1).

Whether it is reasonable to assume that our environment has a nonzero prob-
ability of ending is a debate we do not want to engage in here; instead we refer
the reader to Martin et al. (2016). Instead, we have a different motivation to use
the recursive over the iterative value function: the latter has worse computability
properties. Concretely, we show that ε-optimal iterative AIXI has to solve Π0

2-hard
problems and that there is an environment ν ∈M such that iterative AINU has to

27

solve Σ0
3-hard problems. In contrast, using the recursive value function, ε-optimal

AIXI is ∆0
2 according to Corollary 21 and AINU is ∆0

3 according to Corollary 18.
The central difference between V π

ν and W π
ν is that for V π

ν all obtained rewards
matter, but for W π

ν only the rewards in timelines that continue indefinitely. In this
sense the value function W π

ν conditions on surviving forever. If the environment
µ is a measure, then the history is infinite with probability one, and so V π

ν and
W π
ν coincide. Hence this distinction is not relevant for AIMU, only for AINU and

AIXI.

Lemma 28 (Complexity of W ∗
ν). For every LSCCCS ν ∈ M, the function W ∗

ν is
Π0

2-computable.

Proof. Multiplying (13) with Γtν(e<t ‖ a<t) yields W ∗
ν (æ<t) < q if and only if

lim
m→∞

max
at∈A

∑
et∈E

. . . max
am∈A

∑
em∈E

ν(e1:m ‖ a1:m)
m∑
k=t

γ(k)rk < q Γt ν(e<t ‖ a<t).

(14)
The inequality’s right side is lower semicomputable, hence there is a computable
function ψ such that ψ(`)↗ q Γt ν(e<t ‖ a<t) =: q′ as `→∞. For a fixed m, the
left side is also lower semicomputable, therefore there is a computable function φ
such that as k →∞,

φ(m, k)↗ max
at∈A

∑
et∈E

. . . max
am∈A

∑
em∈E

ν(e1:m ‖ a1:m)
m∑
k=t

γ(k)rk =: f(m)

(In contrast to the recursive value function V ∗ν , this quantity is not nondecreasing
in m.) We already know that the limit of f(m) for m→∞ exists uniquely since
optimal policies exist (Lattimore and Hutter, 2014, Thm. 10). Hence using that
φ(m, k) is nondecreasing in k and that ψ(`) is nondecreasing in ` we can write
(14) as

lim
m→∞

f(m) < q′

⇐⇒ ∃m0 ∀m ≥ m0. f(m) < q′

⇐⇒ ∃m0 ∀m ≥ m0 ∀k. φ(m, k) < q′

⇐⇒ ∃`∃m0 ∀m ≥ m0 ∀k. φ(m, k) < ψ(`),

which is a Σ0
2-formula.

28

n++ Hell

Conditional Heaven

1/2
o = 1
r = 0

1/2

o = 0
r = 0

α

β

1∀t′≤t ∃k η(n,i,t′,k)

o = 0
r = 0

o = 0
r = 1

Figure 7: The environment ρi from the proof of Theorem 30. The mixture ν over class of environ-
mentsM′ := {ρ0, ρ1, . . .} ⊂ M forces iterative AINU to solve Σ0

3-hard problems. ‘Conditional
Heaven’ is a node that yields reward 1 until ¬∃k η(n, i, t, k), at which point the environment
ends. Hence action β is preferred in environment ρi iff conditional heaven lasts forever (because
otherwise ν(. . .) = 0 and hence V ∗ν (. . .) = 0) which is the case iff ∀t ∃k η(n, i, t, k).

Note that in the finite lifetime case where m is fixed, the value function W ∗
ν is

∆0
2-computable by Lemma 2 (iv), since W ∗

ν (æ<t) = f(m)/q′. In this case, we get
the same computability results for iterative AINU as we did in Section 4.1.

Corollary 29 (Complexity of Iterative AINU). For any environment ν ∈ M,
iterative AINU is ∆0

4 and there is an ε-optimal iterative AINU that is ∆0
3.

Proof. From Theorem 17, Theorem 20, and Lemma 28.

We proceed to show corresponding lower bounds as in Section 4.2. For the
rest of this section we assume Γt > 0 for all t.

Theorem 30 (Iterative AINU is Σ0
3-hard). There is an environment ν ∈ M such

that iterative AINU is Σ0
3-hard.

Proof. The proof is analogous to the proof of Theorem 24. Let A be any Σ0
3 set,

then there is a quantifier-free formula η such that

n ∈ A ⇐⇒ ∃i ∀t ∃k η(n, i, t, k).

We define the environments ρi similar to the proof of Theorem 24, except for two
changes:

29

• We replace ∃k η(n, i, k) with ∀t′ ≤ t ∃k η(n, i, t′, k).

• We switch actions α and β: action β ‘checks’ the formula η and action α
gives a sure reward of 0.

Formally,

ρi((or)1:t ‖ a1:t) :=



2−t, if o1:t = 1t and ∀t′ ≤ t. rt′ = 0

2−n−1, if ∃n. 1n0 v o1:t v 1n0∞ and an+2 = α

and ∀t′ ≤ t. rt′ = 0

2−n−1, if ∃n. 1n0 v o1:t v 1n0∞ and an+2 = β

and ∀t′ ≤ t. rt′ = 1t′>n+1

and ∀t′ ≤ t∃k η(n, i, t′, k)

0, otherwise.

See Figure 7 for an illustration of the environment ρi. Every ρi is a chronological
conditional semimeasure by definition, so M′ := {ρ0, ρ1, . . .} ⊆ M. Further-
more, every ρi is lower semicomputable since η is quantifier-free.

We define our environment ν as a mixture overM′,

ν :=
∑
i∈N

2−i−1ρi;

the choice of the weights on the environments ρi is arbitrary but positive. We get
for the ν-optimal policy π∗ν analogously to the proof of Theorem 24

π∗ν(1
n0) = β ⇐⇒ ∃i ∀t′ ≤ t∃k η(n, i, t′, k) ⇐⇒ n ∈ A,

since action α is preferred in ties.

Analogously to Theorem 23, we can show that iterative AIXI is not com-
putable. We also get the following lower bound.

Theorem 31 (Some ε-optimal iterative AIXI are Π0
2-hard). There is a universal

mixture ξ′ and an ε > 0 such that any policy that is ε-optimal according to the
iterative value for environment ξ′ is Π0

2-hard.

Proof. Let A be a Π0
2-set and η a quantifier-free formula such that

n ∈ A ⇐⇒ ∀t∃k η(n, t, k).

30

ξ

Semi-Heaven

Conditional Heaven

∗

o = 1n0

α

β

1∀t′<t∃k η(n,i,t′,k)

o = 0
r = 1/2

o = 0
r = 1

Figure 8: The environment ν from the proof of Theorem 31, which forces ε-optimal iterative
AIXI to solve Π0

2-hard problems. It functions just like ξ until the observation history is 1n0. Then,
action α is preferred iff conditional heaven never ends, i.e., iff ∀t∃k η(n, t, k).

We proceed analogous to the proof of Theorem 25 except that we choose ∀t′ ≤
t∃k η(n, t, k) as a condition for reward 1 after playing action β.

Define the environment

ν((or)1:t ‖ a1:t) :=



ξ((or)1:n+1 ‖ a1:n+1), if ∃n. 1n0 v o1:t v 1n0∞

and an+1 = α

and ∀n+ 1 < k ≤ t. rk = 1/2

ξ((or)1:n+1 ‖ a1:n+1), if ∃n. 1n0 v o1:t v 1n0∞

and an+1 = β

and ∀n+ 1 < k ≤ t. rk = 1

and ∀t′ ≤ t∃k η(n, t, k)

ξ((or)1:t ‖ a1:t), if @n. 1n0 v o1:t v 1n0∞

0, otherwise.

See Figure 8 for an illustration of the environment ν. The environment ν mimics
the universal environment ξ until the observation history is 1n0. The next action
α always gives rewards 1/2 forever, while action β gives rewards 1 forever iff
n ∈ A. We have that ν is a lower semicomputable semimeasure since ξ is a lower
semicomputable semimeasure and η is quantifier-free. We define ξ′ = 1

2
ν + 1

8
ξ.

31

By Lemma 10, ξ′ is a universal lower semicomputable semimeasure. Let n ∈ A
be given and let h ∈ (A×O)n+1 be any history with observations o1:n+1 = 1n0.
In the following, we use the linearity of W ∗

ρ in ρ (analogously to Lemma 8). If
∀t∃k η(n, t, k), then

W ∗
ξ′(hβ)−W ∗

ξ′(hα) = 1
2
W ∗
ν (hβ)− 1

2
W ∗
ν (hα) + 1

8
W ∗
ξ (hβ)− 1

8
W ∗
ξ (hα)

≥ 1
2
− 1

4
+ 0− 1

8
= 1

8
,

and similarly if ¬∀t∃k η(n, t, k), then

W ∗
ξ′(hα)−W ∗

ξ′(hβ) = 1
2
W ∗
ν (hα)− 1

2
W ∗
ν (hβ) + 1

8
W ∗
ξ (hα)− 1

8
W ∗
ξ (hβ)

≥ 1
4
− 0 + 0− 1

8
= 1

8
.

In both cases |W ∗
ξ′(hβ) −W ∗

ξ′(hα)| > 1/9, hence with ε := 1/9 we have for an
ε-optimal policy πεξ′ that πεξ′(h) = β if and only if n ∈ A.

6. The Complexity of Knowledge-Seeking

In this section we discuss two variants of knowledge-seeking agents: entropy-
seeking agents (Orseau, 2011, 2014) and information-seeking agents (Orseau et al.,
2013). The entropy-seeking agent maximizes the Shannon entropy gain, while
the information-seeking agent maximizes the expected Bayesian information gain
(based on the KL-divergence) in the universal mixture ξ. These quantities are ex-
pressed in different value functions. To contrast them with the value function V π

ν

defined in Definition 6, we call the latter reward-seeking value.
In this section we use a finite horizon m (possibly dependent on time step t):

the knowledge-seeking agent maximizes entropy/information received up to and
including time step m. We assume that m (as a function of t) is computable.

Definition 32 (Entropy-Seeking Value Function (Orseau, 2014, Sec. 6)). The
entropy-seeking value of a policy π given history æ<t is

V π
Ent(æ<t) :=

∑
et:m

−ξnorm(e1:m | e<t ‖ a1:m) log2 ξnorm(e1:m | e<t ‖ a1:m)

where ai := π(æ<i) for all i ≥ t.

Definition 33 (Information-Seeking Value Function (Orseau et al., 2013, Def. 1)).
The information-seeking value of a policy π given history æ<t is

V π
IG(æ<t) :=

∑
et:m

∑
ν∈M

w(ν)
ν(e1:m ‖ a1:m)

ξnorm(e<t ‖ a<t)
log2

ν(e1:m | e<t ‖ a1:m)

ξnorm(e1:m | e<t ‖ a1:m)

32

where ai := π(æ<i) for all i ≥ t.

Analogously to before we define V ∗Ent := supπ V
π
Ent and V ∗IG := supπ V

π
IG. We

use V π and V ∗ in places where either of the entropy-seeking or the information-
seeking value function can be substituted. An optimal entropy-seeking policy is
defined as π∗Ent :∈ arg maxπ V

π
Ent and an optimal information-seeking policy is

defined as π∗IG :∈ arg maxπ V
π
IG.

The entropy-seeking agent does not work well in stochastic environments be-
cause it gets distracted by noise in the environment rather than trying to distinguish
environments (Orseau et al., 2013). Moreover, the unnormalized knowledge-
seeking agents may fail to seek knowledge in deterministic semimeasures as the
following example demonstrates.

Example 34 (Unnormalized Entropy-Seeking). Suppose we use ξ instead of ξnorm
in Definition 32. Fix A := {α, β}, E := {0, 1}, and m := 1 (we only care about
the entropy of the next percept). We illustrate the problem on a simple class of
environments {ν1, ν2}:

ν1α/0/0.1 β/0/0.5 ν2α/1/0.1 β/0/0.5

where transitions are labeled with action/percept/probability. Both ν1 and ν2 re-
turn a percept deterministically or nothing at all (the environment ends). Only ac-
tion α distinguishes between the environments. With the prior w(ν1) := w(ν2) :=
1/2, we get a mixture ξ for the entropy-seeking value function V π

Ent. Then V ∗Ent(α) ≈
0.432 < 0.5 = V ∗Ent(β), hence action β is preferred over α by the entropy-seeking
agent. But taking action β yields percept 0 (if any), hence nothing is learned about
the environment! ♦

Solomonoff’s universal prior is extremely good at learning, as stated in Theo-
rem 4. AIXI is a Bayesian reinforcement learning agent that uses this prior to learn
the value of its own policy asymptotically (Theorem 9). However, generally it
does not learn the result of counterfactual actions that it does not take. Knowledge-
seeking agents learn the environment more effectively, because they don’t have
to balance between exploration and exploitation: they can focus solely on ex-
ploration. Both the entropy-seeking agent and the information-seeking agent are
strongly asymptotically optimal in the class of all deterministic computable envi-
ronments (Orseau, 2014; Orseau et al., 2013, Thm. 5): the (entropy-seeking/information-
seeking) value of their policy converges to the optimal value. Moreover, the

33

information-seeking agent also learns to predict the result of counterfactual ac-
tions (Orseau et al., 2013, Thm. 7).

Using the results from Section 4 we can show that ε-optimal knowledge-
seeking agents are limit computable (∆0

2), and optimal knowledge-seeking agents
are ∆0

3.

Corollary 35 (Computability of Knowledge-Seeking Values). For fixed m, the
value functions V ∗Ent and V ∗IG are limit computable (∆0

2).

Proof. This follows from Lemma 2 (iii-v) since ξ, ν, and w are lower semicom-
putable.

Corollary 36 (Computability of Knowledge-Seeking Policies). For entropy-seeking
and information-seeking agents there are limit-computable ε-optimal policies and
∆0

3-computable optimal policies.

Proof. Follows from Corollary 35, Theorem 17, and Theorem 20.

Note that if we used an infinite horizon with discounting in Definition 32 or
Definition 33, then we cannot retain this computability result without further as-
sumptions: we would need that the value functions increase monotonically as
m→∞, as they do for the recursive value function from Definition 6. However,
entropy is not a monotone function and may decrease if there are events whose
probability converges to something ≥ 1/2. For the entropy-seeking value func-
tion this happens for histories drawn from a deterministic environment µ since
ξnorm → µ, so the conditionals converge to 1. Similarly, for the information-
seeking value function, the posterior belief in one (deterministic) environment
might become larger than 1/2 (depending on the prior and the environment class).
Therefore we generally only get that discounted versions of V ∗Ent and V ∗IG are ∆0

3

analogously to Lemma 28. Hence optimal discounted entropy-seeking and opti-
mal discounted information-seeking policies are in ∆0

4 by Theorem 17 and their
corresponding ε-optimal siblings are ∆0

3 by Theorem 20.

7. A Limit Computable Weakly Asymptotically Optimal Agent

In this section, we turn to an objective optimality notion for general reinforce-
ment learning.

Definition 37 (Weak Asymptotic Optimality (Lattimore and Hutter, 2011, Def.
7)). A policy π is weakly asymptotically optimal in the class of environmentsM

34

Algorithm 1 BayesExp (Lattimore, 2013, Alg. 2).
1: while true do
2: lifetime m← t+Ht(εt)
3: if V ∗IG(æ<t) > εt then
4: follow π∗IG for m steps
5: else
6: follow π∗ξ for 1 step

iff the reward-seeking value converges to the optimal value on-policy in Cesàro
mean, i.e.,

1

t

t∑
k=1

(
V ∗ν (æ<k)− V π

ν (æ<k)
) t→∞−−−→ 0 ν-almost surely for all ν ∈M.

Not all discount functions admit weakly asymptotically optimal policies (Lat-
timore and Hutter, 2011, Thm. 8); a necessary condition is that the effective hori-
zon grows sublinearly (Lattimore, 2013, Thm. 5.5). This is satisfied by geometric
discounting, but not by harmonic or power discounting (Hutter, 2005, Tab. 5.41).

This condition is also sufficient: Lattimore (2013, Thm. 5.6) defines a weakly
asymptotically optimal agent called BayesExp. BayesExp alternates between phases
of exploration and phases of exploitation: if the optimal information-seeking value
is larger than εt, then BayesExp starts an exploration phase, otherwise it starts an
exploitation phase. During an exploration phase, BayesExp follows an optimal
information-seeking policy for an εt-effective horizon. During an exploitation
phase, BayesExp follows an ξ-optimal reward-seeking policy for one step (see
Algorithm 1).

According to Theorem 24, optimal reward-seeking policies are generally Π0
2-

hard, and for optimal knowledge-seeking policies Corollary 36 shows that they
are ∆0

3. Therefore we get that BayesExp is ∆0
3:

Corollary 38 (BayesExp is ∆0
3). For any universal mixture ξ, BayesExp is ∆0

3.

Proof. From Corollary 18, Corollary 35, and Corollary 36.

However, we do not know BayesExp to be limit computable, and we expect
it not to be. However, we can approximate it using ε-optimal policies preserving
weak asymptotic optimality.

35

Theorem 39 (A Limit-Computable Weakly Asymptotically Optimal Agent). If
there is a nonincreasing computable sequence of positive reals (εt)t∈N such that
εt → 0 and Ht(εt)/(tεt) → 0 as t → ∞, then there is a limit-computable policy
that is weakly asymptotically optimal in the class of all computable stochastic
environments.

Proof. By Corollary 18, there is a limit-computable 2−t-optimal reward-seeking
policy πtξ for the universal mixture ξ. By Corollary 36 there are limit-computable
εt/2-optimal information-seeking policies πtIG with lifetime t+Ht(εt). We define
a policy π analogously to Algorithm 1 with πtIG and πtξ instead of the optimal
policies. From Corollary 35 we get that V ∗IG is limit computable (∆0

2-computable),
so the policy π is limit computable. Furthermore, πtξ is 2−t-optimal and 2−t → 0,

so V
πtξ
ξ (æ<t)→ V ∗ξ (æ<t) as t→∞.
Now we can proceed analogously to the proof of Lattimore (2013, Thm. 5.6),

which consists of three parts. First, it is shown that the value of the ξ-optimal
reward-seeking policy π∗ξ converges to the optimal value for exploitation time

steps (line 6 in Algorithm 1) in the sense that V
π∗ξ
µ → V ∗µ . This carries over to

the 2−t-optimal policy πtξ, since the key property is that on exploitation steps,
V ∗IG < εt; i.e., π only exploits if potential knowledge-seeking value is low. In
short, we get for exploitation steps

V
πtξ
ξ (æ<t)→ V

π∗ξ
ξ (æ<t)→ V

π∗ξ
µ (æ<t)→ V ∗µ (æ<t) as t→∞.

Second, it is shown that the density of exploration steps vanishes. This result
carries over since the condition V ∗IG(æ<t) > εt that determines exploration steps
is exactly the same as for BayesExp and πtIG is εt/2-optimal.

Third, the results of part one and two are used to conclude that π is weakly
asymptotically optimal. This part carries over to our proof.

8. Discussion

8.1. Summary
When using Solomonoff’s prior for induction, we need to evaluate condi-

tional probabilities. We showed that conditional M and Mnorm are limit com-
putable (Theorem 11), and that M and Mnorm are not limit computable (The-
orem 12 and Corollary 13). Table 1 on page 3 summarizes our computability
results on various versions of Solomonoff’s prior. Theses results implies that we

36

can approximate M or Mnorm for prediction, but not the measure mixture M or
Mnorm.

In some cases, normalized priors have advantages. As illustrated in Exam-
ple 34, unnormalized priors can make the entropy-seeking agent mistake the en-
tropy gained from the probability assigned to finite strings for knowledge. From
Mnorm ≥M we get that Mnorm predicts just as well as M , and by Theorem 11 we
can use Mnorm without losing limit computability.

Table 2 on page 4 summarizes our computability results for the agents AINU,
AIXI, and AINU: AINU is ∆0

3 and restricting to ε-optimal policies decreases the
level by one (Corollary 18 and Corollary 21). For environments that almost surely
continue forever (semimeasure that are measures), AIMU is limit-computable and
ε-optimal AIMU is computable (Corollary 22). In Section 4.2 we proved that
these computability bounds on AINU are generally unimprovable (Theorem 24
and Theorem 25). Additionally, we proved weaker lower bounds for AIXI inde-
pendent of the universal Turing machine (Theorem 23) and for ε-optimal AIXI for
specific choices of the universal Turing machine (Theorem 25).

When the environment ν has nonzero probability of not producing a new per-
cept, the iterative definition of AINU (Definition 26) originally given by Hutter
(2005, Def. 5.30) fails to maximize ν-expected rewards (Proposition 27). More-
over, the policies are one level higher in the arithmetical hierarchy (see Table 4
on page 26). We proved upper (Corollary 29) and lower bounds (Theorem 30 and
Theorem 31). The difference between the recursive value function V and the iter-
ative value function W is readily exposed in the difference between the universal
prior M and the measure mixture M : Just like W conditions on surviving forever,
so does M eliminate the weight of programs that do not produce infinite strings.
Both M and W are not limit computable (∆0

2-computable) for this reason.
We considered ε-optimality to avoid having to determine argmax ties. This

ε does not have to be constant over time, we may let ε → 0 as t → ∞ at any
computable rate. With this we retain the computability results of ε-optimal poli-
cies and get that the value of the ε(t)-optimal policy πε(t)ν converges rapidly to the
ν-optimal value:

V ∗ν (æ<t)− V π
ε(t)
ν

ν (æ<t)→ 0 as t→∞.
In Section 2.5 we defined the environment as a lower semicomputable chrono-

logical semimeasure over percepts given actions. When determining the probabil-
ity of the next percept et in an environment ν, we have to compute ν(e1:t | e<t ‖
a1:t). Alternatively, we could have defined the environment as a lower semicom-
putable mapping from histories æ<tat to probabilities over the next percept et. For

37

the proof of Lemma 16 and Lemma 28 we only need that ν(e1:t ‖ a1:t) is lower
semicomputable computable. While this new definition makes no difference for
the computability of AINU, it matters for AIXI because in the mixture ξ over all
of these environments is no longer lower semicomputable.

Any method that tries to tackle the reinforcement learning problem has to
balance between exploration and exploitation. AIXI strikes this balance in the
Bayesian way. However, it has been argued that this does not lead to enough
exploration (Orseau, 2013; Leike and Hutter, 2015c). To counteract this, we can
add an explorative component to the agent, akin to Orseau’s knowledge-seeking
agents. Instead of maximizing rewards, knowledge-seeking agents maximize the
expected information gained about the environment (Orseau, 2011, 2014; Orseau
et al., 2013). In Section 6 we show that ε-optimal knowledge-seeking agents are
limit computable (∆0

2-computable) if we use the recursive definition of the value
function.

We set out with the goal of finding an ideal reinforcement learning agent that
is limit computable (∆0

2-computable). The Bayesian agent AIXI could be con-
sidered one suitable candidate, despite the problems just mentioned. However,
we showed only an ε-approximation to be limit computable. Another suitable
candidates are asymptotically optimal agents, which in contrast to AIXI are op-
timal in an objective sense (Leike and Hutter, 2015c): they converge to optimal
behavior asymptotically. We discussed Lattimore’s BayesExp (Lattimore, 2013,
Ch. 5), which relies on Solomonoff induction to learn its environment and on
a knowledge-seeking component for extra exploration. Our results culminated
in a limit-computable weakly asymptotically optimal agent based on Lattimore’s
BayesExp (Theorem 39). In this sense our goal has been achieved.

8.2. Open Questions
The lower bounds in Theorem 25, Theorem 31, Theorem 12, and Corollary 13

were only provided with respect to one specifically chosen universal Turing ma-
chine. This implies that without further assumption on our reference machine, we
cannot improve the lower bound. However, this result could be strengthened if it
turned out that these lower bounds hold for all universal Turing machines. Below
we give a list of the questions that we have left unanswered.

1. Is there a universal mixture ξ ∈ M such that iterative AIXI’s argmax opera-
tor ties infinitely often? This would increase the lower bound for (ε-optimal)
iterative AIXI.

38

2. Is there a universal mixture ξ ∈ M such that iterative AIXI’s argmax operator
ties only finitely many times? This would decrease the upper bound for (ε-
optimal) iterative AIXI.

3. Do the lower bounds on M and Mnorm given in Theorem 12 and Corollary 13
hold for every universal Turing machine?

Acknowledgements.. We thank Tom Sterkenburg for feedback on the proof of
Theorem 14, Daniel Filan for pointing out a problem in the definition of LSC-
CCSs, and Manlio Valenti for pointing out a problem in the proof of Lemma 28,
both of which have been fixed in this version. This work was supported by ARC
grant DP150104590.

References

David Blackwell and Lester Dubins. Merging of opinions with increasing infor-
mation. The Annals of Mathematical Statistics, pages 882–886, 1962.

Péter Gács. On the relation between descriptional complexity and algorithmic
probability. Theoretical Computer Science, 22(1):71–93, 1983.

Marcus Hutter. A theory of universal artificial intelligence based on algorithmic
complexity. Technical report, 2000. http://arxiv.org/abs/cs.AI/
0004001.

Marcus Hutter. New error bounds for Solomonoff prediction. Journal of Com-
puter and System Sciences, 62(4):653–667, 2001.

Marcus Hutter. Universal Artificial Intelligence. Springer, 2005.

Tor Lattimore. Theory of General Reinforcement Learning. PhD thesis, Australian
National University, 2013.

Tor Lattimore and Marcus Hutter. Asymptotically optimal agents. In Algorithmic
Learning Theory, pages 368–382. Springer, 2011.

Tor Lattimore and Marcus Hutter. General time consistent discounting. Theoreti-
cal Computer Science, 519:140–154, 2014.

Jan Leike and Marcus Hutter. On the computability of AIXI. In Uncertainty in
Artificial Intelligence, pages 464–473, 2015a.

39

http://arxiv.org/abs/cs.AI/0004001
http://arxiv.org/abs/cs.AI/0004001

Jan Leike and Marcus Hutter. On the computability of Solomonoff induction and
knowledge-seeking. In Algorithmic Learning Theory, pages 364–378, 2015b.

Jan Leike and Marcus Hutter. Bad universal priors and notions of optimality. In
Conference on Learning Theory, pages 1244–1259, 2015c.

Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and
Its Applications. Texts in Computer Science. Springer, 3rd edition, 2008.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of prob-
abilistic planning and infinite-horizon partially observable Markov decision
problems. In AAAI, pages 541–548, 1999.

Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of proba-
bilistic planning and related stochastic optimization problems. Artificial Intel-
ligence, 147(1):5–34, 2003.

Jarryd Martin, Tom Everitt, and Marcus Hutter. Death and suicide in universal
artificial intelligence. In Artificial General Intelligence, 2016.

Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Allender. Com-
plexity of finite-horizon Markov decision process problems. Journal of the
ACM, 47(4):681–720, 2000.

André Nies. Computability and Randomness. Oxford University Press, 2009.

Laurent Orseau. Universal knowledge-seeking agents. In Algorithmic Learning
Theory, pages 353–367. Springer, 2011.

Laurent Orseau. Asymptotic non-learnability of universal agents with computable
horizon functions. Theoretical Computer Science, 473:149–156, 2013.

Laurent Orseau. Universal knowledge-seeking agents. Theoretical Computer Sci-
ence, 519:127–139, 2014.

Laurent Orseau, Tor Lattimore, and Marcus Hutter. Universal knowledge-seeking
agents for stochastic environments. In Algorithmic Learning Theory, pages
158–172. Springer, 2013.

Christos H Papadimitriou and John N Tsitsiklis. The complexity of Markov deci-
sion processes. Mathematics of Operations Research, 12(3):441–450, 1987.

40

Samuel Rathmanner and Marcus Hutter. A philosophical treatise of universal
induction. Entropy, 13(6):1076–1136, 2011.

Régis Sabbadin, Jérôme Lang, and Nasolo Ravoanjanahry. Purely epistemic
Markov decision processes. In AAAI, pages 1057–1062, 2007.

Ray Solomonoff. A formal theory of inductive inference. Parts 1 and 2. Informa-
tion and Control, 7(1):1–22 and 224–254, 1964.

Ray Solomonoff. Complexity-based induction systems: Comparisons and con-
vergence theorems. IEEE Transactions on Information Theory, 24(4):422–432,
1978.

Tom F Sterkenburg. Putnam’s diagonal argument and the impossibility of a uni-
versal learning machine. Technical report, Centrum Wiskunde & Informatica,
2016. http://philsci-archive.pitt.edu/12096/.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

Manlio Valenti. On the notion of Kolmogorov complexity and the computability
of learning agents. Master’s thesis, University of Trento, 2016.

Joel Veness, Kee Siong Ng, Marcus Hutter, William Uther, and David Silver. A
Monte-Carlo AIXI approximation. Journal of Artificial Intelligence Research,
40(1):95–142, 2011.

Ian Wood, Peter Sunehag, and Marcus Hutter. (Non-)equivalence of universal
priors. In Solomonoff 85th Memorial Conference, pages 417–425. Springer,
2011.

List of Notation

:= defined to be equal
:∈ defined to be an element of
↗ a monotone increasing limit
N the natural numbers, starting with 0
#A the cardinality of the set A, i.e., the number of elements

41

http://philsci-archive.pitt.edu/12096/

1A the characteristic function that is 1 if its argument is an element of the
set A and 0 otherwise

X ∗ the set of all finite strings over the alphabet X
X∞ the set of all infinite strings over the alphabet X
X] X] := X ∗ ∪ X∞, the set of all finite and infinite strings over the

alphabet X
x, y finite or infinite strings, x, y ∈ X]

x v y the string x is a prefix of the string y
A the (finite) set of possible actions
O the (finite) set of possible observations
E the (finite) set of possible percepts, E ⊂ O × R
α, β two different actions, α, β ∈ A
at the action in time step t
et the percept in time step t
ot the observation in time step t
rt the reward in time step t, bounded between 0 and 1
æ<t a history of length t− 1, æ<t = a1e1a2e2 . . . at−1et−1
h a history, h ∈ (A× E)∗

γ the discount function γ : N→ R≥0
Γt a discount normalization factor, Γt :=

∑∞
i=t γ(i)

Ht(ε) ε-effective horizon, defined in (5)
π a policy, i.e., a function π : (A× E)∗ → A
π∗ν an optimal policy for environment ν
πεν an ε-optimal policy for environment ν
V π
ν recursive (ν-expected) value function of the policy π
W π
ν iterative value function of the policy π in environment ν

φ, ψ computable functions
ϕ, η first-order formulas of Peano arithmetic, η is quantifier-free
n, k natural numbers
t (current) time step
i time step, natural number
m lifetime of the agent
M the class of all lower semicomputable chronological conditional

semimeasures; our environment class
ν, ρ lower semicomputable chronological conditional semimeasures,

ν, ρ ∈M
µ a computable chronological conditional measure, µ ∈M
ξ the universal mixture over all environments inM

42

A,B sets of natural numbers
ε a small positive real number
ε the empty string, the history of length 0
KU(x) Kolmogorov complexity of the string x on the universal Turing ma-

chine U
KU(ν) Kolmogorov complexity of the index of ν in the enumeration of all

lower semicomputable semimeasures on the universal Turing ma-
chine U

43

	Introduction
	Preliminaries
	The Arithmetical Hierarchy
	Strings
	Computability of Real-valued Functions
	Algorithmic Information Theory
	General Reinforcement Learning
	The Universal Agent AIXI

	The Complexity of Solomonoff Induction
	The Complexity of AINU, AIMU, and AIXI
	Upper Bounds
	Lower Bounds

	Iterative Value Function
	The Complexity of Knowledge-Seeking
	A Limit Computable Weakly Asymptotically Optimal Agent
	Discussion
	Summary
	Open Questions

