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Abstract. This contribution will report on the experimental work on the level structure of 168Dy. The experimen-
tal data have been taken as part of the EURICA decay spectroscopy campaign at RIBF, RIKEN in November
2014. In the experiment, a 238U primary beam is accelerated up to 345 MeV/u with an average intensity of
12 pnA. The nuclei of interest are produced by in-flight fission of 238U impinging on Be target with a thickness
of 5 mm. The excited states of 168Dy have been populated through the decay from a newly identified isomeric
state and via the β decay from 168Tb. In this contribution, scientific motivations, experimental procedure and
some preliminary results for this study are presented.

1 Introduction

Atomic nuclei consisting of a number of protons and neu-
trons are driven towards non-spherical equilibrium shapes
when moving away from shell closures. Being located in
the close vicinity of the double midshell at Z = 66, N =
104, 168Dy (Z = 66, N = 102) is excepted to have a large
quadrupole deformation for the ground state. The excited
states in such a well-deformed nucleus are characterized
by collective rotation and surface oscillations, including

quadrupole (β and γ) and even higher-order vibrations, as
well as by other quasiparticle excitations. The intrinsic
state with a multi-quasiparticle configuration is likely to
be a metastable state (isomer), when the projection of the
total nuclear spin on the symmetry axis, denoted by K,
is largely different from that of the lower-lying levels to
which the isomer decays. The presence of these collective
and intrinsic excitations within a narrow range of energy
results in an interplay among them to a greater or lesser
extent, giving rise to a rich variety of structural aspects
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in deformed nuclei. Therefore, spectroscopic studies of
low-energy excitations in this doubly mid-shell region will
provide a good testing ground for various collective model
calculations.

This article will report on the spectroscopic results
of 168

66 Dy. For N = 102 isotones, Kπ = 4− isomers
had been identified in 170

68 Er (Ex = 1269 keV, T1/2 = 43
ns) [1], 172

70 Yb (1641 keV, 0.5 ns) [2], and Kπ = 6− iso-
mers in 164

62 Sm (1486 keV, 0.6 µs), 166
64 Gd (1601 keV, 0.95

µs) [3], 170
68 Er (1591 keV, 4.0 ns) [1], 172

70 Yb (1550 keV,
3.6 µs) [4], 174

72 Hf (1714 keV, 0.45 ns) [5]. The Kπ =
6− and 4− isomers are interpreted as the neutron two-
quasiparticle configurations ν27/2+[633] ⊗ 5/2−[512] and
ν27/2+[633]⊗1/2−[521], respectively. Yet isomeric states
have not been identified in 168Dy.

The octupole vibrational excitations have been iden-
tified in the doubly midshell region at relatively low en-
ergy, for example, 164

66 Dy (976.9 keV, Kπ = 2−) [6],
166
66 Dy (1029.9 keV, Kπ = 2−) [6], 170

66 Dy (861 keV, Kπ =
2−) [7] and 172

70 Yb (1154.9 keV, Kπ = 1−) [6]. Thus the
aforementioned K isomers with negative parity are proba-
bly mixed with the rotational band-members built on such
low-lying octupole vibrations. On the other hand, the Kπ

= 3+ states have been identified in 170
68 Er (1217.5 keV) [1]

and 172
70 Yb (1172.4 keV) [4]. In 174

72 Hf, the Kπ = 3+ state
has the possibility that the hexadecapole vibrational ex-
citation may also have a contribution, which has already
been studied before [8].

2 Experimental Procedure

In order to study the level structure of the neutron-rich
rare-earth nuclei around double midshell, an experiment
was performed in November 2014 at the RI-Beam Fac-
tory (RIBF) at RIKEN [9]. The 238U86+ primary beam
was accelerated up to 345 MeV/u by a sequential accel-
eration system consisting of a linac injector (RILAC) and
four ring cyclotrons (RRC-fRC-IRC-SRC). The secondary
beams were produced by in-flight fission of the U beam
incident on a Be target with a thickness of 5 mm. The nu-
clei of interest were separated and identified through the
BigRIPS spectrometer [10]. In this experiment, the sec-
ondary beams were transported with two different settings
of the slits on the beam line; one is optimized for 170Dy66+,
and the other for 172Dy66+. The respective particle identi-
fication spectra are shown in Fig. 1. About 1.2 × 104 ions
and 1.0×104 ions were collected for 168Tb65+ and the sum
of 168Dy65+,66+, respectively.

The identified particles were implanted into the
WAS3ABi active stopper [11] which was comprised
of two layers of double-sided silicon-strip detectors
(DSSSD). Each DSSSD had a thickness of 1 mm with
an active area of 60×40 mm2 with 2400 segmentations of
1 mm2 pitch. The WAS3ABi was placed at the end of the
beam line for the measurement of heavy-ion implantation
and electrons following β-decay and internal conversion
processes.

Gamma rays emitted from the implanted RIs were de-
tected by the EUROBALL-RIKEN Cluster Array (EU-
RICA) [12] that had a full energy-peak efficiency of about

10 % for 1 MeV γ ray. The EURICA array consisted of 84
HPGe crystals arranged in nearly 4π geometry in the form
of twelve 7-element CLUSTER-type detectors. The γ rays
emitted from the implanted RIs were detected within a co-
incidence time window of 100 µs with respect to the trig-
ger signals generated either when the heavy ions passed
through a plastic scintillator mounted ∼1 m upstream of
the WAS3ABi stopper or when the DSSSDs were fired by
the decay electrons.

The beam, electron, and γ-ray events were time-
stamped and recorded by independent data-acquisition
systems. Isomeric states with (sub)microsecond lifetimes
were identified by delayed coincidence between γ-ray and
beam signals on an event-by-event basis. Meanwhile, all
the data sets containing beam, electron and γ-ray events
were needed for electron-γ coincidence analyses, in which
the ion implantation of an identified particle was associ-
ated with the subsequent electron events that were detected
in the same or neighboring DSSSD pixels where the beam
particle was implanted.

3 Preliminary results

Figure 2 shows the β-delayed γ-ray spectrum measured
within 20 s after the implantation of 168Tb. Before the
present work, the excited states of 168Dy had been stud-
ied by the β decay of 168Tb [13] and multi-nucleon trans-
fer reactions with a 82Se beam incident on an 170Er tar-
get [14]. The γ rays at energies of 75 and 173 keV, which
were previously assigned as 2+1 → 0+1 and 4+1 → 2+1 , re-
spectively, have been confirmed in the present work. In
addition to the transitions reported previously, several new
γ rays are clearly visible at 216, 322, 915 and 1131 keV in
the present work.

Figure 3 shows the γ-ray spectrum measured within
350 ns ∼ 3 µs after the implantation of 168Dy. New γ
rays at 236 and 348 keV are clearly visible. Note that in
Fig. 3, the γ-ray at 405 keV is a contaminant from an iso-
meric state in 174Ho, which could not be separated from
the hydrogen-like component of the 168Dy ions in terms of
Z on the particle identification plot due to the poor reso-
lution of the ion chamber. Based on the present work, we

Figure 1. Particle identification spectra obtained with two differ-
ent setting optimized for (a) 170Dy66+ and (b) 172Dy66+ ions.
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have established a new level scheme of 168Dy, the details
of which will be presented elsewhere along with the dis-
cussion about the spin-parity assignment, transition hin-
derances, multi-quasiparticle configurations, and so on.

4 Summary
Decay spectroscopy experiment of 168Dy has been car-
ried out as part of the EURICA experimental campaign at
RIBF, RIKEN. Following the production of neutron-rich
isotopes by in-flight fission of 238U, the nuclei relevant to
the present work were separated and identified through the
BigRIPS spectrometer. The nuclei of interest were im-
planted into the WAS3ABi array, which also served as a
detector for β rays and internal conversion electrons ac-
companying the decay of the implanted radioactive iso-
topes. The heavy-ion implantation was associated with the
subsequent decay electrons based on the position correla-
tion in WAS3ABi. Gamma rays following β decay were
measured by the EURICA array in coincidence with elec-
trons detected by WAS3ABi. Meanwhile, isomeric states
with half-lives ranging from several tens of nanoseconds to
(sub)microseconds could be unambiguously identified by
taking delayed coincidence between γ-ray and identified
particles on an event-by-event basis. New results obtained
in the present work include a number of γ rays following
the β decay from 168Tb and the isomeric decay in 168Dy.
The detailed analysis including evaluation of γ-ray inten-
sities, feeding patterns, coincidence relationship, and tran-

Figure 2. γ-ray energy spectrum measured in coincidence with
electrons within 20 s after the implantation of 168Tb.

Figure 3. γ-ray energy spectrum measured in EURICA after the
implantation of 168Dy ions within a time range of 0.35 − 3 µs.

sition strengths will allow us to establish a level scheme of
168Dy, which will be presented elsewhere.
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