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Abstract. Agglutinated foraminifera are marine protists that show apparently complex behaviour in construct-

ing their shells, involving selecting suitable sedimentary grains from their environment, manipulating them in

three dimensions, and cementing them precisely into position. Here we illustrate a striking and previously un-

described example of complex organisation in fragments of a tube-like foraminifer (questionably assigned to

Rhabdammina) from 1466 m water depth on the northwest Australian margin. The tube is constructed from

well-cemented siliciclastic grains which form a matrix into which hundreds of planktonic foraminifer shells are

regularly spaced in apparently helical bands. These shells are of a single species, Turborotalita clarkei, which

has been selected to the exclusion of all other bioclasts. The majority of shells are set horizontally in the matrix

with the umbilical side upward. This mode of construction, as is the case with other agglutinated tests, seems to

require either an extraordinarily selective trial-and-error process at the site of cementation or an active sensory

and decision-making system within the cell.

1 Introduction

Agglutinated foraminifera are unicellular organisms that

construct their shells from sedimentary grains gathered from

the sea-floor environment and cement them together to form

what are sometimes intricate three-dimensional construc-

tions (Brady, 1879; Gooday, 1990). To do this they must

select, orientate and secure the grains in ways that are, at

present, poorly understood (Allen et al., 1988; Hemleben

and Kaminski, 1990; Makled and Langer, 2010; Rothe et

al., 2011). The use of grain type can seem relatively hap-

hazard (Armynot du Châtelet et al., 2013) or it can be

highly selective of both size and composition. Examples of

selectivity include foraminifera that gather specific miner-

als, sometimes heavy ones, such as ilmenite (Makled and

Langer, 2010), rutile (Cole and Valentine, 2006) and gar-

net (Allen et al., 1999), or particular biological clast types

such as sponge spicules (Brady, 1879), echinoderm plates

(Heron-Allen and Earland, 1909), or coccoliths (Holbourn

and Kaminski, 1997; Thomsen and Rasmussen, 2008). It

is also common for some agglutinated foraminifera to re-

use the shells of dead planktonic foraminifera from the sur-

rounding sediment in constructing their tubes (Brady, 1879;

Cartwright et al., 1989).

Tube-like agglutinated foraminifera that use planktonic

foraminifer shells in their construction are common in

bathyal and abyssal environments worldwide, where they

live either as suspension or deposit feeders (Gooday, 1990).

Fragments are difficult to assign to genus level if the pro-

loculus is absent and the branching pattern unclear, as is

the case with the pieces described here. The most important

genera that secrete such tubes are Rhabdammina Sars (for

thick-walled, inflexible, generally branching tubes), Rhiza-
mmina Brady (for thinner-walled, more elastic tubes which

form mat-like clumps), Hyperammina Brady (with an en-

larged proloculus) and Bathysiphon Sars for slowly ex-

panding tubes. The tubes can include mineral grains and

foraminifer shells of various species, sizes and orientations

that are attached along their length (Brady, 1879; Gooday,

1983; Cartwright et al., 1989).
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Figure 1. Rhizammina algaeformis Brady: (a, b) modified from Brady 1884, pl. 28, fig. 3 (scales approximately 200 μm and 1 mm); (c,
d) specimen from IODP Sample U1482B-mudline. Note the large variation in the size, species, and orientation of the planktonic foraminifer

shells along the tube, and the siliciclastic matrix. Foraminifera included in the construction include various species of Globigerinita, Glo-
bigerinoides, Globorotalia, Globoturborotalita, Tenuitella, Trilobatus, and Turborotalita (scales = 100 μm).

2 Description

Here we illustrate four fragments of what was probably a sin-

gle tube, which are remarkable because the individual grains

belong to a single species of planktonic foraminifer and oc-

cur in an organised arrangement. We also show one speci-

men of Rhizammina from the same sample for comparison.

The specimens are from International Ocean Discovery Pro-

gram (IODP) Site U1482 on the northwest Australian margin

at 15◦3.32′ S, 120◦26.10′ E and 1466 m below sea level, from

the “mudline”, that is, from unconsolidated seawater and sed-

iment slurry from the top of the first piston core taken from

the hole (Sample 363-U1482B-1H-mudline).

The Rhizammina in the sample is of a type commonly

encountered in deep-sea sediments, similar to a paratype

of Rhizammina algaeformis Brady (Fig. 1). The tube is

constructed above an internal organic layer with very fine

siliciclastic grains glued together with an organic cement

that is not visible in scanning electron microscopy (SEM)

but has been described as a probable mucopolysaccha-
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Figure 2. A fragment of Rhabdammina sp. that uses planktonic foraminifera of a single species in its construction. (a, b) Light microscope

and SEM images of the whole specimen. (c) Broken end of tube. (d) Detail of broken end of tube showing wall in cross section. (e) Other

broken end of tube. (f, g) Details of external surface. Specimen from IODP Sample U1482B-mudline (all scales = 100 μm).

ride (Cartwright et al., 1989). The shells of planktonic

foraminifera, which have been gathered from the surround-

ing sediment, are set into this siliciclastic matrix. As is nor-

mal in Rhizammina, the planktonic foraminifer tests are of

a wide range of sizes and species. The illustrated example

contains a variety of adult and juvenile shells belonging to

various genera and species, much as occur in the surround-

ing sediment, although other types of grain such as radiolaria

have been avoided. The planktonic foraminifer shells are ce-

mented in apparently random orientations, as has previously

been illustrated in this species (Brady, 1879; Cartwright et

al., 1989).

The four fragments of ?Rhabdammina (illustrated as

Fig. S1 in the Supplement) are all broken at both ends. The

www.j-micropalaeontol.net//37/97/2018/ J. Micropalaeontology, 37, 97–104, 2018
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(a)

(b)

Figure 3. Particles from the sediment in IODP Sample U1482B-mudline. (a) Unattached Turborotalita clarkei specimen imaged in umbilical,

edge, and spiral views. The umbilical side is distinguished by a deep groove into which the aperture opens. (b) General view of the > 63 μm

size fraction showing various species of planktonic foraminifer and radiolarians. Three specimens of T. clarkei are highlighted with arrows.

One other species of Turborotalita (T. quinqueloba) and many Tenuitella, Globigerinita, Globoturborotalita, and other genera are present

(scales = 100 μm).

largest fragment is a very regular tube, nearly perfectly cir-

cular in internal cross section and about 1 mm long with a

fairly constant external diameter of about 250 μm and an in-

ternal diameter of 150 μm (Fig. 2). Although polychaetes,

nematodes, and crustaceans are all known to construct ag-

glutinated tubes (Gooday, 1990; Finger et al., 2008), the

specimens described here can be securely identified as a

foraminifer because of the small size and mode of construc-

tion which is similar to other agglutinated foraminifera in-

cluding Rhizammina from the same sample. As in Rhizam-
mina (see Fig. 1), the tube has a matrix of angular siliciclastic

grains into which planktonic foraminifer shells are set.

A total of 123 planktonic foraminifer shells are cemented

along the tube of the largest fragment, all of which belong

to the single species, Turborotalita clarkei (Rögl and Bolli,

1973) (as do the > 100 shells in the smaller fragments). This

species is one of the smallest living planktonic foraminifera,

spinose in life, with a cosmopolitan distribution (Hemleben

et al., 1989). All specimens on the tube appear to be adult,

with a diameter of about 100 μm and a thick external cortex,

which is not always the case in the sediment. The sediment

itself contains over 20 species of planktonic foraminifer,

among which T. clarkei is a relatively frequent but not dom-

inant component among its size class, which also includes
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Figure 4. Four SEM images of the tube successively rotated forward by approximately 70◦. The apparent sinistral helical arrangement of

the planktonic foraminifer shells is highlighted by colour coding in bands A–H. Each specimen is given a unique identifier according to its

position on a band. Orientation data for each specimen are available in Table S1 in the Supplement (scale = 100 μm).

abundant radiolarians (Fig. 3). Hence the exclusive use of

T. clarkei in shell construction appears highly selective. It

may have been preferred because of its relatively high den-

sity, small size and simple, elliptical outline.

The construction of the matrix also implies considerable

selectivity because detrital grains are a relatively minor com-

ponent of the very fine fraction sediments recovered at this

location, compared to biogenic grains such as coccoliths,

which are entirely excluded (although they can be seen ad-

hering to the specimen in places, which was only gently

cleaned). The binding cement appears to be very strong be-

cause planktonic foraminifer shells at both broken ends of

the tube are fractured through the middle rather than having

been detached at their edges (see Fig. 2c, e).

The most notable feature of the specimen is the regular

way in which T. clarkei shells are attached along the outside

of the tube, which contrasts strongly with the more haphaz-

ard pattern seen in Rhizammina (see Fig. 1). The arrangement

appears to be roughly helical, because it is possible to trace a

series of sinistrally coiled helical bands along all or most of

the length of the tube (Fig. 4). The T. clarkei shells are regu-

larly spaced and oriented, with the great majority having their

equatorial peripheries set into the matrix rather than being

edge-on or at an oblique angle as is frequently seen in Rhiza-
mmina (see Fig. 1d). The T. clarkei shells generally just touch

the inner surface but project above the outer surface, giving

the tube a beaded appearance. For the larger, more oval spec-

imens, the long axis is generally along the line of the helix.

Most remarkable of all, the majority of shells are umbilical
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side up, with the umbilical groove in which the aperture is

set visible on the outside (104 specimens are umbilical side

up versus 14 that are spiral side up and 5 which are on their

side). The umbilical-side-up orientation may have been pre-

ferred because it avoids having the umbilical groove on the

inside, making it easier to construct a smooth inner surface.

(The three smaller fragments of tube are also exclusively

made of T. clarkei with a strong preference for umbilical side

upward orientation although the helical pattern is less clear

because of the narrower tube diameters; see Supplement.)

Although to our knowledge Rhabdammina has not been

observed alive, it presumably locates and moves sedimentary

grains with its pseudopodial network similar to many other

foraminifera. The high degree of grain-type selectivity ex-

hibited by this and other agglutinated foraminifera must be

time- and energy-expensive. Once in position at the growing

tip of the tube, the grains are presumably cemented in place

with an admixture of fine siliciclastic material and secreted

polysaccharide cement. The helical arrangement may reflect

the growth sequence, in which generally five or six T. clarkei
shells were located around the growing tip (or fewer when the

diameter was narrower), with each new shell being cemented

to the left (looking from the outside) of a pre-existing one.

Clues to the construction mode come from instances where

unusually large or small shells were included, for which there

may have been subsequent compensation (e.g. the large spec-

imen D7 in Fig. 4b may have been compensated for by the

smaller specimens C8 and E1, moving left to right, and caus-

ing a new helical band to start).

3 Discussion

The apparently complex behaviour of agglutinated

foraminifera has attracted attention since it was discov-

ered in the 1860s and described by W. B. Carpenter

(Carpenter, 1873, p. 784) as “most distinct evidence of selec-
tive power; and the question forces itself upon us, – by what

instrumentality is it exercised” (italics and punctuation as in

original). Charles Darwin wrote to Carpenter describing it as

“almost the most wonderful fact I ever heard of. One cannot

believe that they have mental power enough to do so, and

how any structure or kind of viscidity can lead to this result

passes all understanding” (Charles Darwin letter to W. B.

Carpenter, 1873, transcribed in Burkhardt et al., 2014, item

DAR 261.6:7). The issue was debated again in 1916, when

the foraminifer specialist Edward Heron-Allen claimed it as

an example of “intelligence”, which was robustly disputed

by the physiologist Edward Ray Lankester in an exchange

that quickly became a semantic argument (as described by

Hemleben and Kaminski, 1990). But while terms such as

“mental power” and “intelligence” remain jarring, the basic

problem of how a single cell effects this kind of behaviour

remains almost entirely unresolved and the debate has hardly

moved on (Allen et al., 1988; Hemleben and Kaminski,

1990; Makled and Langer, 2010; Rothe et al., 2011).

The phenomenon seems to belong to a different category

from cases in which unicellular organisms such as other

foraminifera, radiolaria, and diatoms secrete intricate skele-

tons of silica or carbonate as part of their life cycle (see,

for instance, Fig. 3). In those cases the biomineralisation se-

quence is presumably under genetic and epigenetic control in

which information is stored in genes which switch on or off

in response to internal triggers. In the case of complex agglu-

tinating behaviour, the correct grain type must be discovered

by the pseudopodial network, transported to the precise lo-

cation required, and then manipulated in three dimensions

before being cemented into place. At some point in the pro-

cess it must be discriminated from other similar grains. We

suggest two possible models for how this discrimination oc-

curs. Either (1) it occurs via a highly specific trial-and-error

process at the site of cementation to which many grains are

brought and rejected, and only T. clarkei grains in the cor-

rect orientation are accepted, presumably because of having

the correct affinity to the binding site, or (2) it occurs in the

pseudopodial network wherein only the correct grain type is

selected from the sediment and is then moved into position.

Both these mechanisms are difficult to envisage, however.

The former would be extremely costly and time-consuming

whereas the latter demands a sensory system capable of con-

tinuously monitoring grain position and orientation plus an

information processing ability with decision-making capac-

ity. If such behaviour was exhibited by a metazoan, it would

naturally be attributed to the functioning of the nervous sys-

tem. Observation of living agglutinated foraminifera may

help distinguish between these models.

Much behaviour in protists is apparently highly stereo-

typed and involves chemosensory responses to environmen-

tal cues in relation to feeding, predator avoidance, and dis-

criminating clones and potential mates (Vandromme et al.,

2010; Harvey et al., 2013). However recent work on partner

recognition in some ciliates has concluded that they are able

to actively encode, process and respond to information from

external pheromone signals which in turn produces planned

“courtship strategies” and “social decision making” (Clark,

2013). In the agglutinated foraminifer cell discussed here, the

decision-making must also, presumably, have a specialised

molecular basis, whether it occurs at the site of cementa-

tion or distributed in the pseudopodial network. As far as we

know, such processes are obscure, but if they can occur in one

type of cell, they could occur in others, so the phenomenon

could be more than just a curiosity.

4 Methods

Seawater and sediment slurry from the top of the first pis-

ton core at IODP Hole U1482B was collected in a bucket,

treated with rose bengal biological stain for 24 h to detect
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living cells and washed over 150 and 63 μm sieves. The sam-

ple residues were dried on a warm plate at 40 ◦C. Foraminifer

specimens including shells of Turborotalita clarkei and frag-

ments of Rhabdammina sp. and Rhizammina algaeformis
were picked by brush and transferred to conductive adhesive

discs on metal pedestals for microscopic investigation. Spec-

imens were photographed using a Zeiss Discovery V8 light

microscope (LM) and a Hitachi TM 3000 tabletop scanning

electron microscope (SEM) in various orientations without

conductive coating.

Data availability. The data to this paper can be found in the Sup-

plement.

The Supplement related to this article is available online
at https://doi.org/10.5194/jm-37-97-2018-supplement.
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