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SUMMARY 16 

TIR (Toll/interleukin-1 receptor/resistance protein) domains feature in animal, plant and bacterial 17 

proteins involved in innate immunity pathways and associated processes. They function through 18 

protein:protein interactions, in particular self-association and homotypic association with other TIR 19 

domains. Structures of TIR domains from all phyla have been determined, but common association 20 

modes have only emerged for plant and bacterial TIR domains, and not for mammalian TIR 21 

domains. Numerous attempts involving hybrid approaches, which have combined structural, 22 

computational, mutagenesis and biophysical data, have failed to converge onto common models of 23 

how these domains associate and function. We propose that the available data can be reconciled in 24 

the context of higher-order assembly formation, and that TIR domains function through signaling 25 

by cooperative assembly formation (SCAF). 26 

 27 
28 
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INTRODUCTION 29 

The TIR (Toll/interleukin-1 receptor (IL-1R)/resistance protein) domain was first defined after 30 

detecting sequence similarities between the intracellular regions of the mammalian IL-1R and 31 

the Drosophila protein Toll [1]. TIR domains typically function as protein interaction modules, and 32 

are mostly found in multi-domain proteins involved in innate immunity pathways in animals and 33 

plants, despite the proposed independent evolutionary origins for these pathways [2]. TIR domains 34 

also appear in many bacterial proteins, at least some of which are used by pathogenic bacteria to 35 

evade the host immune responses [3].  36 

 In mammals, TIR domains are found in Toll-like receptors (TLRs) and IL-1Rs as their 37 

cytosolic segments, as well as in the cytosolic adaptor proteins involved in signaling downstream 38 

from these receptors. TLRs (10 family members in humans: TLR1-10) are pattern-recognition 39 

receptors (PRRs) that defend against microbial infection and endogenous danger, by interacting 40 

with conserved pathogen- and danger-associated molecular patterns (PAMPs/DAMPs) [4]. These 41 

interactions lead to the TLR-selective recruitment of the TIR domain-containing adaptor proteins 42 

MyD88, MAL (TIRAP), TRIF (TICAM-1) and TRAM (TICAM-2) via TIR:TIR domain 43 

interactions [5]; these interactions trigger downstream activation of transcription factors such as 44 

NF-κB, AP-1 and IRFs to induce anti-pathogen signaling and inflammation [6]. An atypical TLR 45 

adaptor is SARM, which acts as a negative regulator of TRIF signaling [7], but also functions in 46 

neuronal axon degeneration [8,9] and cell-death pathways [10]. BCAP (B-cell adaptor for PI3K) 47 

has recently been proposed to be the sixth TIR domain-containing TLR adaptor [11,12]. IL-1Rs (10 48 

family members found in humans: IL-1RI, IL-1RII, IL-1RaCP, ST-2, IL-1Rrp, IL-1Rrp2, IL-49 

1RAcPL, IL-1RAPL, IL-1RAPL2 and SIGIRR) associate with proinflammatory cytokines, and like 50 

some of their TLR cousins, signal by recruiting the TIR domain-containing adaptor MyD88 [13]. 51 

 In plants, TIR domains are found as the N terminal segments of a major subclass of 52 

cytoplasmic nucleotide-binding (NB)/leucine-rich repeat (LRR) resistance (R) proteins. NB-LRR 53 

proteins are typically referred to as plant NLRs due to their similarity to mammalian nucleotide-54 
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binding oligomerization domain (NOD)-like receptors [14]. Plant NLRs directly or indirectly 55 

recognize "effector" proteins introduced into the plant cell by plant pathogens during the invasion 56 

of the plant. Effector detection by plant NLRs triggers defense responses, known as the 57 

hypersensitive response, that often include localized cell death at the site of infection [15]. The TIR 58 

domains are considered to be the signaling domains in plant NLRs, because they can cause cell 59 

death autonomously when expressed ectopically in planta [16-18]. TIR-only (TIR-X) and TIR-NB 60 

(TIR-N) proteins are also found in plants [19], and while their general functions are to date 61 

unknown, a number of these proteins have been shown to induce cell death when transiently 62 

expressed in tobacco and provide enhanced resistance when overexpressed in stable transgenics in 63 

Arabidopsis [20].  64 

 TIR domains are also found in proteins from a wide range of bacterial species, where they 65 

exist in combination with different types of domains [3]. Although the functions of most of these 66 

proteins are unknown, some proteins such as TcpB from Brucella melitensis and TcpC from 67 

uropathogenic Escherichia coli CFT073 suppress TLR signaling, possibly through interacting with 68 

the host TIR domain-containing proteins [21]. 69 

  In all these different organisms, TIR domains are thought to function through self-70 

association and homotypic association with other TIR domains. However, they can also engage in 71 

heterotypic interactions with proteins not containing TIR domains (e.g. the vaccinia virus protein 72 

A46 can bind MyD88, MAL, TRIF, TRAM and TLR4 [22]), and in intramolecular fashion with 73 

other domains in TIR domain-containing proteins [14] (e.g. with both the NB and LRR domains in 74 

the plant NLR RPP1 [23], and with an N-terminal helix in the bacterial protein TcpB [24]).  75 

 Currently, 32 structures corresponding to 16 different TIR domains from animals, plants and 76 

bacteria have been deposited in the Protein Data Bank [25]. Structurally, TIR domains comprise 77 

125-200 residues and contain a central parallel β-sheet surrounded by α-helices [25,26]. The 78 

elements of secondary structure are usually referred to sequentially; for example the BB loop 79 

connects strand !B with helix "B. Some of these structural elements correspond to conserved 80 
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sequence motifs called box 1–3 in mammalian TIR domains [25]. While the wealth of structural 81 

information has improved our understanding of TIR-domain function in individual systems, it is 82 

widely assumed that TIR-domain functions in different systems do not converge on a common 83 

mechanism of action. To date, no common self-association interfaces have been observed in the 84 

crystal structures of animal TIR domains, and numerous studies combining structural knowledge of 85 

TIR domains with computational docking, site-directed mutagenesis and other methods have 86 

proposed models that are different from each other [27-48]. By contrast, some common association 87 

modes are emerging for plant and bacterial TIR domains. Here, we review the key studies 88 

attempting to define the structural basis of TIR-domain function and suggest that both in plant and 89 

mammalian innate immunity pathways, it could be explained in the context of signaling by 90 

cooperative assembly formation (SCAF) (Box 1). 91 

 92 

2. SELF-ASSOCIATION AND HOMOTYPIC ASSOCIATION OF TIR DOMAINS IN MAMMALIAN PROTEINS 93 

TLR and IL-1R-dependent signal transduction is initiated by self-association of their intracellular 94 

TIR domains (hereafter denoted with superscript "TIR") upon binding of PAMPs (TLRs) or 95 

cytokines (IL-1Rs). The TLRTIR dimer then acts as a scaffold to recruit downstream adaptor 96 

proteins through TIR:TIR domain interactions. The highly conserved BB-loop in TLR/IL-1R and 97 

adaptor TIR domains plays an important role in signaling. In TLR4, the BB loop is the site of a 98 

naturally occurring mutation P712H [49], which renders it non-responsive to the PAMP 99 

lipopolysaccharide (LPS). This mutation also abolishes signaling when introduced into other 100 

receptor or adaptor TIR domains. 101 

 MyD88 also contains a death domain (DD) that interacts with IRAKs (IL-1R-associated 102 

kinases) through DD:DD interactions, forming the oligomeric myddosome, consisting of six 103 

MyD88, four IRAK4 and four IRAK2 DDs [50] (Box 1c). Forced dimerization of MyD88TIR 104 

constitutively initiates signaling [51], suggesting that upon TLR activation, the TLR, MAL and 105 

MyD88 form an oligomeric platform through TIR:TIR domain interactions, which in turn promotes 106 
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the assembly of the myddosome via DD:DD interactions. In comparison to MyD88 signaling, less 107 

is known about TRIF signaling, but live-cell imaging and confocal immunofluorescence analyses 108 

have shown that TRIF alters its distribution profile from a diffuse cytoplasmic to a speckle-like 109 

structure in response to TLR3 interaction with dsRNA [52], suggesting the formation of TIR 110 

domain-dependent oligomeric TRIF complexes.   111 

 Crystal structures have been determined for the TIR domains of human TLR1, TLR2, 112 

TLR6, TLR10, IL-1RAPL, MAL, MyD88 [26,30,37,40-43,53] and Toll-related receptor TRR-2 113 

from the lower metazoan Hydra magnipapillata (PDB ID 4W8G, 4W8H). NMR structures have 114 

also been determined for MyD88TIR, TRAMTIR and TRIFTIR [32,36]. Attempts to form stable TIR-115 

domain complexes have been unsuccessful, suggesting that weak interactions are a general feature 116 

of the mammalian TIR-domain complexes, and that membrane localization or the context of a large 117 

assembly stabilizes the interactions. Crystal contacts can reflect biological interactions [54]; 118 

analyses of crystal structures and combinations of computational modeling and docking studies, 119 

NMR and site-directed mutagenesis have led to several models of TIR domain assembly and 120 

although they are all different from each other [27-48], some common trends in the proposed 121 

TIR:TIR domain interaction modes are emerging (Figure 1, Table S1). 122 

 The BCD interface. Several of the crystal structures (TLR1, TLR2, TLR6, IL-RAPL, MAL 123 

and TRR-2) contain an interface involving the αC helices and either the αB/BB-loops or the αD 124 

regions, or both (the BCD interface) (Figure 1). In the TLR1TIR, TLR2TIR and TLR6TIR structures, 125 

symmetric αC:αC helix interactions are found at the core of this interface, flanked on both sides by 126 

interactions between the BB-loop/αB region on one molecule and the DD-loop/αD region on the 127 

second molecule [26,43]. It has been questioned whether this interface is physiologically relevant, 128 

because in both TLR1 and TLR6, it is stabilized by a disulfide bond (between the C707 residues in 129 

TLR1 and the equivalent C712 residues in TLR6). However, a similar interface involving the same 130 

secondary structure elements is also observed in the IL-1RAPL crystal structure [30]. In the 131 

TLR10TIR dimer [40], one of the molecules has been rotated 90° compared to the TLR1TIR, TLR2TIR 132 
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and TLR6TIR dimers, resulting in the two BB loops of TLR10TIR interacting directly with each 133 

other. Many loss-of-function mutations in TLR4 localize to the surface regions involved in this 134 

interface and the TLR10TIR homodimer has therefore been widely accepted as representative of 135 

TLR4TIR dimerization following LPS recognition [27-29,31,36]. 136 

 Crystal-contact analysis of the MAL structures revealed a symmetric interface comprising 137 

the αC and αD regions. Mutations of residues in this interface disrupt both MAL and MyD88 138 

binding [37,41]. In one of the crystal forms of TRR-2TIR (PDB ID 4W8G), one of the molecules has 139 

been rotated 180° compared to the MAL dimer, and the interface consists of the αC and αD helices 140 

of one molecule and the αC and αB helices of the second molecule. Although significant 141 

differences are observed between the interfaces described here, they are all centered around the αC 142 

helix and involve similar faces of the TIR domain. Furthermore, docking of TRAMTIR NMR 143 

structures, using data based on mutagenesis coupled with yeast-two-hybrid (Y2H) assays as 144 

restraints, suggested that TRAMTIR can self-associate using a similar configuration to the TLR10TIR 145 

dimer [36], while MyD88TIR can self-associate via a MALTIR-like dimer interface [35]. 146 

 The BE interface. The MyD88TIR crystal structure and the two different crystals forms of 147 

TRR-2TIR contain an asymmetric head-to-tail TIR:TIR domain interaction involving the BB-loop of 148 

one molecule and the surface encompassing the βE/EE loop/αE region of the second molecule (the 149 

BE interface; Figure 1c). Extensive mutagenesis using the mammalian-two-hybrid (MAPPIT) 150 

methodology combined with docking also provides support for an asymmetric BE interface 151 

involved in MyD88 self-association [35]. Furthermore, site-directed mutagenesis data identify both 152 

the BB-loop (R196/D197) and helix αE (K282/R288) as MAL-binding sites, suggesting that 153 

MALTIR and MyD88TIR may interact through a similar head-to-tail mode [32]. 154 

 Some lines of evidence suggest that purified TLR adaptor TIR domains may form higher-155 

order oligomers at high protein concentrations. For example, the 15N-labeled signals from 156 

MyD88TIR uniformly decreased upon titration with MALTIR [32]. Furthermore, TRAM and TRIF 157 
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oligomerized and precipitated out of solution at concentration above 200 µM [36]. Precipitation was 158 

prevented by the introduction of a BB-loop mutation (C117H in TRAM and P434H in TRIF), 159 

which has previously been shown to disrupt self-association in Y2H assays and to have a dominant 160 

negative effect in IFN-β reporter assays; this enabled the NMR structures of the monomeric 161 

proteins to be determined. 162 

 Many of the TIR-domain assembly models have assumed a 2:1 or 1:1 receptor/adaptor 163 

TIR:TIR domain stoichiometry [27,28,31], but more recent models try to rationalize how a single 164 

TLRTIR dimer can recruit >6 MyD88 molecules required for myddosome assembly.  In one study 165 

[29], the PRISM algorithm combined with existing crystal structures and experimental data was 166 

used to model MyD88 and TRIF signalosomes. Several different plausible models are presented, 167 

but it is argued that the most likely is a model consisting of a symmetric BCD-interface TLR4 168 

dimer (similar to the TLR10TIR dimer) that interacts with two symmetric BCD-interface MAL 169 

dimers, which in turn recruit two symmetric MyD88 dimers; this would result in clustering of 8 170 

MyD88 DDs, enabling myddosome formation. A completely different model, based on MAPPIT 171 

mutagenesis data and docking, is presented in another study [35], where it is proposed that MyD88 172 

oligomerization is a result of self-association through both a symmetric BCD interface (similar to 173 

the MALTIR crystal dimer) and an asymmetric BE interface . By combining the two types of 174 

interactions, it is proposed that MyD88TIR molecules can assemble into a left-handed helix, bringing 175 

the DDs together for myddosome assembly. This model displays similarities to the open-ended 176 

pyrin domain (PYD)/CARD assemblies recently described for other innate immunity pathways (e.g. 177 

the inflammasomes [55] and MAVS-dependent RIG-I/MDA-5 signaling [56]), and extension of the 178 

left-handed helix would presumably enable a single TLR dimer to assemble multiple myddosomes, 179 

which is consistent with the ability of TLRs to activate a large transcriptional response based on 180 

extremely low concentrations of PAMPs. Although this model is consistent with observed TIR:TIR 181 

domain interaction modes, the observed variations could give rise to different oligomeric TIR-182 

domain architectures. For example, in one of the TRR-2 crystal forms (PDB ID 4W8G), we also 183 
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observe a combination of BCD and BE interfaces, which results in a formation of a linear parallel 184 

two-stranded head-to-tail array of TIR domains within the crystal (Figure 1d). This architecture 185 

would also enable MyD88 DD clustering and myddosome formation. The BCD interface in this 186 

linear assembly differs from the MAL-based BCD interface in [35] by a 180° rotation of one of the 187 

molecules. However, it involves the αC and αD helices and can thus explains the reported MyD88 188 

mutagenesis data. Our analyses illustrate that care must be used in interpreting docking results with 189 

limited structural information, and to fully elucidate the molecular mechanisms of TIR-domain 190 

assembly formation and the exact nature of the interfaces, structural information on stable 191 

oligomeric assemblies will be required. Furthermore, TIR-domain proteins usually contain other 192 

domains and can be attached to membranes; however, the TIR-domain linker sequences are usually 193 

of sufficient length (>20 residues) to enable the proposed interactions on cell-membranes  or in the 194 

presence of other domains. 195 

 196 

3. SELF-ASSOCIATION AND HOMOTYPIC ASSOCIATION OF TIR DOMAINS IN PLANT PROTEINS 197 

The Arabidopsis TIR-X protein AtTIR (AT1G72930) provided the first plant TIR-domain structure 198 

[57]. It revealed a similar fold to those observed for mammalian TIR domains; however, an 199 

extended αD region is found. This feature appears to be unique to the plant TIR domains and 200 

present in most, but not all. AtTIR was report to be monomeric in solution [57]; however, this data 201 

was inferred from size-exclusion chromatography (SEC) alone, which, as subsequent studies have 202 

revealed, is unlikely to detect transient self-association. The first TIR-domain structure from a plant 203 

NLR came from the flax protein L6. L6TIR can self-associate according to Y2H and in-solution 204 

assays (SEC/multi-angle laser light scattering (MALS) and analytical ultracentrifugation (AUC)) 205 

[17]. Crystal-contact analysis, combined with mutagenesis, in-solution self-association assays and 206 

Y2H assays, revealed that the αD1/3, βE and αE regions mediate L6TIR self-association (the DE 207 

interface; Figure 2a, Table S1). Self-association is linked to the cell death-inducing activity 208 

association of L6TIR [17]. 209 
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The RPS4TIR:RRS1TIR complex is the only crystal structure available for a complex of two 210 

different TIR domains. RPS4 and RRS1 are jointly responsible for NLR-mediated resistance to 211 

three different pathogens in Arabidopsis. The regions that mediate the heterodimer interaction (αA, 212 

αE and the AA and EE loops - the AE interface) are also observed in the structures of RRS1TIR, 213 

RPS4TIR and AtTIR as individual proteins [18]. RPS4TIR, but not RRS1TIR can induce cell-death 214 

signaling responses. The AE interface has been recently also observed in the crystal structures of 215 

the TIR domains from the wild grape NLR RPV1 [58] and the Arabidopsis NLRs SNC1 [59,60] 216 

and RPP1 [60].  217 

The self-association of plant TIR domains observed to date is weak and transient; the 218 

dissociation constants measured for L6TIR and RPS4TIR by AUC experiments are in the high µM 219 

range. RPV1TIR did not appear to self-associate in vitro under the conditions tested. It is speculated 220 

that TIR:TIR domain interactions would be stabilized, in the activated NLRs, by self-association of 221 

other domains such as the NB domains, based on comparisons with the related mammalian NLRs 222 

[14]. By contrast, the heterodimer formed between RPS4TIR:RRS1TIR is ~100x stronger (455 nM) 223 

than any self-associations of plant TIR domains. RRS1TIR suppresses RPS4TIR cell-death signaling 224 

in plants and suggests that the RPS4TIR:RRS1TIR interaction represents a repressed state of the pair 225 

[18].  226 

The interfaces that mediate self-association in L6TIR and RPS4TIR are distinct, but they could 227 

co-exist (Figure 2). Mutations in Arabidopsis RPP1TIR that map to both the DE and AE interfaces 228 

affect RPP1TIR self-association, and a correlation between the degree of self-association in vitro and 229 

cell-death signaling has been observed [23]. These data suggest that both interfaces may facilitate 230 

self-association and signaling in RPP1 and potentially other plant TIR domains. Recent structures 231 

of SNC1TIR and RPP1TIR [59,60] revealed both AE and DE self-association interfaces within the 232 

crystal structures. Both interfaces also appear to control self-association, and we speculate that these 233 

interfaces may facilitate SCAF in the plant TIR domains (Figure 2). 234 

 235 
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4. SELF-ASSOCIATION AND HOMOTYPIC ASSOCIATION OF TIR DOMAINS IN BACTERIAL PROTEINS 236 

A common self-association interface has been observed in the available crystal structures of 237 

bacterial TIR domains, PdTLPTIR from the non-pathogenic Paracoccus denitrificans [61] and TcpB 238 

from the pathogenic Brucella melitensis [24,53,62] (Figure 3, Table S1). The dimer interfaces in 239 

both involve the DD and EE loops (different interface than the DE interface in plant TIR-domains) 240 

and leave the BB loops exposed on the surface of the molecules. While TcpBTIR associates 241 

transiently, full-length TcpB forms a stable dimer [62] and in one of the crystal structures, a helix 242 

corresponding to the sequence N-terminal to the TIR domain has been found to stabilize the 243 

interaction [24]. PdTLP and TcpB, as well as a number of other bacterial TIR-domain proteins, 244 

interact with MyD88, and some have been shown to interact with other mammalian TIR domains, 245 

including MALTIR and TLR4TIR, and interfere with NF-κB signaling [21,42,62].  246 

 247 

5. RECONCILIATION OF STRUCTURAL DATA IN THE CONTEXT OF HIGHER-ORDER ASSEMBLY 248 

FORMATION 249 

While common trends in association modes are emerging in plant and bacterial TIR domains, this is 250 

still not the case in animal TIR domains, despite the more extensive research. What could be the 251 

possible reasons for this? For the domains functional in innate immunity signaling, the associations 252 

need to be weak by design, so that responses are not too easily triggered in the absence of a 253 

pathogen or danger inducer. The specific conditions required for crystallization may therefore easily 254 

destabilize these interactions. Furthermore, the domains may have a tendency to assemble into 255 

higher-order oligomers not compatible with crystal formation. Indeed, higher-order assembly is an 256 

emerging feature of signaling in diverse innate immunity pathways. Protein domains from the DD 257 

family, in particular, appear to be able to form large, often open-ended helical structures [63,64]. 258 

Signaling through cooperative assembly formation (SCAF) explains the ultrasensitive, all-or-none 259 

response that is required in immune responses.  260 
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 We propose that the available data on TIR-domain interactions can be reconciled by the 261 

hypothesis that TIR domains that function in immunity pathways signal by cooperative assembly 262 

formation (SCAF). The structures available to date likely provide snapshots into this assembly, but 263 

the structures may, for reasons outlined above, vary in their biological relevance. Reconstitution of 264 

stable complexes and their structural analysis, in combination with complementary cell biology 265 

approaches, should reveal the interactions relevant to the signalosomes that occur in vivo.  266 

  267 
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FIGURE LEGENDS 485 

 486 

Box 1. (a) In the classical concept of receptor-mediated signaling, the activated receptor (R; for 487 

example, activated by binding to the ligand L, blue) initiates signal transduction inside the cell 488 

through successive steps of activation of signaling proteins (E; for example, enzymes that perform 489 

post-translational modifications, such as protein kinases, or enzymes that produce second 490 

messengers, such as adenylyl cyclases). This leads to signal amplification in a cascade-like fashion. 491 

Red and green represent inactive and activated proteins, respectively. (b) In the case of signaling by 492 

cooperative assembly formation (SCAF), the activated receptor initiates signal transduction through 493 

higher-order assembly formation, which involves cooperative interactions with adaptor proteins (A) 494 

and eventually enzymes (E) to form a signalosome. The large assembly can lead to rapid activation 495 

of enzymes such as protein kinases or proteases through proximity-induced activation. The 496 

cooperativity is the result of conformational changes and new binding sites generated by the 497 

assembly architecture. SCAF appears to operate in most innate immunity pathways, including the 498 

ones involving TIR domains. Most higher-order assemblies characterized to date are mediated by 499 

members of the death-domain (DD) fold (DD, CARD, PYD, death-effector domain). The DD-500 

mediated helical assembly containing 6 MyD88 (shades of red), 4 IRAK4 (shades of green) and 4 501 

IRAK2 (shades of blue) DDs [50] is shown as an example in (c) in cartoon representation. 502 

 503 

 504 

Figure 1.  Representative TIR:TIR domain interactions based on structures of mammalian TIR 505 

domains.  506 

(a) Crystal contact-based TIR-domain dimers [26,30,37,40,43] (PDB ID 4W8H). The protomers 507 

depicted on the right are all shown in analogous orientations.  508 

(b) Superposition of one of the protomers from all the dimers shown in (a). The superimposed 509 

protomer of the TLR2TIR is shown in surface representation), with the other protomer from all the 510 
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TIR  domains  shown in different colors in ribbon representation. 511 

(c) Head-to-tail arrangement of TIR domains in the crystals of MyD88TIR [42] and TRR2TIR (PDB 512 

ID 4W8G and  4W8H).  513 

(d) Two stranded parallel head-to-tail arrangement of TIR domains in the crystals of TRR2TIR (PDB 514 

ID 4W8G). 515 

 516 

 517 

Figure 2. TIR:TIR domain interactions mediated by the DE and AE interfaces in plant TIR-domain 518 

proteins. 519 

(a) Crystal contact-based TIR-domain dimers observed for the L6TIR (blue) [17] and the 520 

heterodimer of RPS4TIR (dark green) and RRS1TIR (green) [18], revealing the DE and AE interfaces, 521 

respectively.  522 

(b) Superimposed RPS4TIR and L6TIR dimers, revealing that the DE and AE interface can coexist. 523 

(c) A hypothetical AE and DE interface-mediated assembly of plant TIR domains (individual 524 

domains are shown in different colours). Note that this model does not account for other domains in 525 

NLR proteins, such as the NB and LRR domains, which could influence the arrangement and 526 

stoicometry of predicted assembles of plant NLRs, based on comparisons with the related 527 

mammalian NLRs [14].  528 

 529 

 530 

Figure 3. TIR:TIR domain interactions in bacterial TIR-domain proteins. The crystal structures of 531 

PdTLPTIR (red) [61] and TcpBTIR (blue) [24] reveal an analogous dimer interface. In one of the 532 

structures of TcpBTIR (PDB ID 4LZP) [24], the dimer is stabilized by a helix corresponding to the 533 

sequence N-terminal to the TIR domain (light blue). 534 

 535 
  536 



- 25 - 

Table S1  537 
 538 
Reports on the characterization of homotypic TIR-domain interactions. Only binary 539 
interactions are listed in the table in cases where higher-order complexes have been analyzed in the 540 
original publications.  541 
 542 

Interacting TIR 
domains Organism 

Interface and 
interaction 
mode 

Methods Reference 

Animal TIR domains 

TLR2TIR-

C713S:TLR2TIR-C713S Homo sapiens 

Asymmetric 
dimer; involves 
αB, αC, αD, CD 
and DD 
(molecule A) 
and αB and BB 
(molecule B) 

X-ray 
crystallography, 
mutagenesis 

[33] 

IL-1RAPLTIR:IL-
1RAPLTIR Homo sapiens 

Symmetric 
dimer; involves 
αB, αC and αD 

X-ray 
crystallography, 
mutagenesis 

[30] 

TLR2TIR: MyD88TIR 

Homo sapiens 

Involves BB 
and αA of both 
molecules Computational 

docking, mutagenesis [39] 
TLR2TIR:TLR2TIR,  
MyD88TIR:MyD88TIR 

Symmetric 
dimer; involves 
αE 

TLR1TIR:TLR2TIR Homo sapiens 

Two interacting 
regions; region 
I: involves 
TLR1 BB, 
TLR2 DD; 
region II: 
involves TLR1 
αA (His646)  
and αC, TLR2 
CD (Asn700) 

Mutagenesis, 
computational 
docking 

[44] 

TLR4TIR:TLR4TIR Homo sapiens 
Symmetric 
dimer; involves 
BB 

Modeling, docking, 
mutagenesis [31] 

TLR10TIR:TLR10TIR Homo sapiens 

Symmetric 
dimer; involves 
BB, DD, αB 
and αC 

X-ray 
crystallography, 
mutagenesis 

[40] 

MyD88TIR:MALTIR Homo sapiens 

Two interacting 
sites on MyD88  
(site 1 
corresponds to 
BB (R196) and 
site 2 to αE 

NMR spectroscopy, 
mutagenesis, docking  [32] 
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(R288) 

TLR4TIR:TLR4TIR 

Homo sapiens 

Symmetric 
dimer: involves 
BB, DD, αC 

Computational 
docking and modeling  [45] 

TLR7TIR:TLR7TIR 

Asymmetric 
dimer: involves 
BB (molecule 
A), αE 
(molecule B) 

MyD88TIR:MyD88TIR 
Symmetric 
dimer: involves 
BB,  αC 

TLR4TIR:SIGIRRTIR 

3 patches; patch 
1:  involves 
TLR4 CD, and 
BB, SIGIRR 
αB; patch 2: 
involves TLR4 
αB and αC, 
SIGIRR αC; 
patch 3: 
involves  TLR4 
BB, SIGIRR 
αD 

TLR7TIR:SIGIRRTIR 

Involves 
SIGIRR BB and 
αB, TLR7 αE, 
CD, βD, βE and 
DE 

MyD88TIR:SIGIRRTIR 

Involves 
MyD88 BB, 
and αC, 
SIGIRR BB, 
AA and αC 

MALTIR:MALTIR 

Homo sapiens 

Symmetric 
dimer: involves 
αC, αD X-ray 

crystallography, 
docking, mutagenesis 

[37] 

MALTIR:MyD88TIR 

Involves MAL 
D96 (AA) and 
S180 (DD), 
MyD88 R196 
(BB) 

TLR4TIR:TLR4TIR 

Homo sapiens 

Symmetric 
dimer: involves 
BB, αC Molecular dynamics 

(MD) simulations, 
molecular docking  

[46] 

TLR2TIR:TLR1TIR 
Asymmetric 
dimer:  involves 
TLR2 DD, 
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TLR1 BB 

TLR2TIR:TLR6TIR Involves TLR2 
DD, TLR6 BB 

ST2LTIR:MALTIR 

Involves ST2L 
AB and BB, 
MAL BB,  βA 
and βB 

ST2LTIR:MyD88TIR 

Involves ST2L 
BB, AA and 
αA, MyD88 
BB, αA 

MALTIR:MALTIR Homo sapiens 
Symmetric 
dimer: involves 
αC, αD 

X-ray 
crystallography, 
mutagenesis 

[41] 

TLR4TIR:TLR4TIR 
Homo sapiens 

Symmetric 
dimer: involves 
BB, DD, αC  

Mammalian protein-
protein interaction 
trap (MAPPIT), 
homology modeling, 
mutagenesis 

[28] 
TLR4TIR:MALTIR, 
TLR4TIR:TRAMTIR 

Involves TLR4 
αA, αB, BB, BC  

MALTIR:MALTIR Homo sapiens 

Asymmetric 
dimer: involves 
DD, DE, αD 
(molecule A), 
N-terminal 
region 
(molecule B) 

X-ray crystallography [47] 

MALTIR:MALTIR 

Homo sapiens 

Symmetric 
dimer: involves 
αC, αD 

Random mutagenesis, 
MAPPIT [27] 

MALTIR:MyD88TIR 

Involves MAL 
AB loop and 
two surface 
areas (area 1: 
Q135, W156; 
area 2: Y195, 
R215) 

MALTIR:TLR4TIR 

Involves MAL 
AB loop  and 
three surface 
areas (area 1: 
Q135, W156; 
area 2: Y195,  
R215; area 3: 
Q153, R184, 
R192) 

TRAMTIR:TRAMTIR Homo sapiens 
Symmetric 
dimer: involves  
BB, αC 

NMR spectroscopy, 
mutagenesis, docking  [36] 
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MyD88TIR:MyD88TIR Homo sapiens 

Symmetric 
dimer: involves 
βA, AA, αA, 
AB, CD, BB, 
αC 

Site-directed 
mutagenesis, 
computational 
modeling  

[48] 

MyD88TIR:MyD88TIR Homo sapiens 

Two 
asymmetric 
dimers: dimer 1 
involves αC, αD 
(molecule A), 
αA, EE and αE 
(molecule B); 
dimer 2 
involves αB, 
BB (molecule 
A), DD, αD, EE 
and αE 
(molecule B) 

X-ray crystallography  [42] 

MALTIR:MALTIR Homo sapiens 
Symmetric 
dimer: involves 
αC, αD 

X-ray 
crystallography, 
mutagenesis 

[53] 

TLR6TIR:TLR6TIR Homo sapiens 
Symmetric 
dimer: involves 
CD, DD, αB αC 

X-ray 
crystallography, 
MALS 

[43] 

TLR4TIR:TLR4TIR 

Homo sapiens 

Two symmetric 
dimers; both 
involve BB 

Modeling, in silico 
mutagenesis  [29] MALTIR:MALTIR 

Symmetric 
dimer: involves 
AB 

TRAMTIR:TRAMTIR 
Symmetric 
dimer: involves 
BB 

ST2TIR:TLR4TIR, 
ST2TIR:TRIFTIR Homo sapiens Involves BB Modeling, in silico 

mutagenesis  [38] 

MyD88TIR:MyD88TIR Homo sapiens 

Asymmetric 
dimer: involves 
BB (molecule 
A), αE 
(molecule B); 
symmetric 
dimer:  involves 
αD, αC 

MAPPIT, 
mutagenesis, docking [35] 

TLR4TIR:TLR4TIR Mus musculus 

Asymmetric 
dimer: involves 
BB  (molecule 
A), αE 
(molecule B) 

Decoy peptides, 
modeling  [34] 
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TRR-2TIR:TRR-2TIR Hydra 
magnipapillata 

Asymmetric 
dimer: involves 
BB (molecule 
A), βD, βE, DE, 
αE (molecule 
B); symmetric 
dimer: involves 
αB, αC, αD  

X-ray crystallography 

Weisse & 
Scheidig, 
unpublished; 
PDB ID 
4W8G 

TRR-2TIR:TRR-2TIR Hydra 
magnipapillata 

Asymmetric 
dimer 1: 
involves BB 
(molecule A), 
βD, βE, DE, αE 
(molecule B); 
asymmetric 
dimer 2: 
involves αA, αE 
(molecule A), 
αB, αC, αD 
(molecule B) 

X-ray crystallography 

Weisse & 
Scheidig, 
unpublished; 
PDB ID 
4W8H 

Plant TIR domains 

L6TIR:L6TIR 
Linum 
usitatissimum 
(flax) 

Symmetric 
dimer:  involves  
αD1, αD3, αE, 
βE , DE, EE 
(DE interface) 

X-ray 
crystallography, 
MALS, analytical 
ultracentrifugation 
(AUC), yeast two-
hybrid (Y2H) analysis 

[17] 

RRS1TIR:RPS4TIR Arabidopsis 
thaliana 

Pseudo-
symmetric 
dimer: involves 
αA, αE, EE (of 
both RRS1TIR 
and RPS4TIR) 
and DD 
(RRS1TIR) (AE 
interface) 

X-ray 
crystallography, 
MALS , SAXS, Y2H 
analysis 

[18] 

RPS4TIR:RPS4TIR Arabidopsis 
thaliana 

Symmetric 
dimer: involves 
αA, αE, EE (AE 
interface)  

X-ray 
crystallography, 
MALS, SAXS, AUC, 
Y2H analysis 

[18] 

RRS1TIR:RRS1TIR Arabidopsis 
thaliana 

Symmetric 
dimer: involves 
αA, αE, EE (AE 
interface) 

X-ray crystallography [18] 

RPV1TIR:RPV1TIR 

Muscadinia 
rotundafolia 
(wild 
grapevine) 

Symmetric 
dimer: involves 
αA, αE, EE (AE 
interface) 

X-ray crystallography [58] 
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SNC1TIR:SNC1TIR Arabidopsis 
thaliana 

Two dimer 
interfaces; 
interface 1 (AE 
interface), 
involves αA, 
αE, EE; 
interface 2 (DE 
interface): 
involves αD1, 
αE, βE, DE, EE 

X-ray crystallography [59] 

SNC1TIR:SNC1TIR Arabidopsis 
thaliana 

Two dimer 
interfaces; 
interface 1 (AE 
interface), 
involves αA, 
αE, EE; 
interface 2 (DE 
interface): 
involves αD1, 
αE , βE, DE, EE 

X-ray 
crystallography, 
MALS, SAXS 

[60] 

RPP1TIR:RPP1TIR Arabidopsis 
thaliana 

Two dimer 
interfaces; 
interface 1 (AE 
interface), 
involves αA, 
αE, EE; 
interface 2 (DE 
interface): 
involves αD1, 
αE , βE, DE, EE 

X-ray 
crystallography, 
MALS  

[60] 

Bacterial TIR domains 

PdTLPTIR:PdTLPTIR Paracoccus 
denitrificans 

Symmetric 
dimer: involves 
DD, EE  

X-ray 
crystallography, 
hydrogen/deuterium 
exchange mass 
spectrometry 
(DXMS) 

[61] 

TcpBTIR:TcpBTIR Brucella 
melitensis 

Involves DD, 
EE, αC, αD 

X-ray 
crystallography, 
MALS  

[24] 

TcpBTIR:TcpBTIR Brucella 
melitensis 

Symmetric 
dimer: involves 
DD, EE  

X-ray 
crystallography, 
SAXS, MALS 

[62] 
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TcpBTIR:TcpBTIR Brucella 
melitensis 

Symmetric 
dimer: involves 
DD, EE 

X-ray 
crystallography, 
DXMS 

[53] 

 543 
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