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Abstract—This paper considers the problem of constructing a
direct coupling quantum observer for a closed linear quantum
system. The proposed distributed observer consists of a network
of quantum harmonic oscillators and it is shown that the observer
network converges to a consensus in a time averaged sense in
which each element of the observer estimates the specified output
of the quantum plant. An example and simulations are included
to illustrate the properties of the observer network.

I. INTRODUCTION

A number of papers have recently considered the problem of
constructing a coherent quantum observer for a quantum sys-
tem; see [1]–[4]. In the coherent quantum observer problem, a
quantum plant is coupled to a quantum observer which is also
a quantum system. The quantum observer is constructed to
be a physically realizable quantum system so that the system
variables of the quantum observer converge in some suitable
sense to the system variables of the quantum plant.

In the papers [1], [2], [4], the quantum plant under con-
sideration is a linear quantum system. In recent years, there
has been considerable interest in the modeling and feedback
control of linear quantum systems; e.g., see [5]–[8]. Such
linear quantum systems commonly arise in the area of quantum
optics; e.g., see [9], [10]. For such linear quantum system
models an important class of quantum control problems are
referred to as coherent quantum feedback control problems;
e.g., see [5], [6], [11]–[20]. In these coherent quantum feed-
back control problems, both the plant and the controller are
quantum systems and the controller is typically to be designed
to optimize some performance index. The coherent quantum
observer problem can be regarded as a special case of the
coherent quantum feedback control problem in which the
objective of the observer is to estimate the system variables
of the quantum plant.

In some of the previous papers on quantum observers such
as [1]–[3], the coupling between the plant and the observer is
via a field coupling. This leads to an observer structure of the
form shown in Figure 1. This enables a one way connection
between the quantum plant and the quantum observer. Also,
since both the quantum plant and the quantum observer are
open quantum systems, they are both subject to quantum noise.
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Fig. 1: Coherent Observer Structure with Field Coupling.
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Fig. 2: Coherent Observer Structure with Direct Coupling.

However in the paper [13], a coherent quantum control
problem is considered in which both field coupling and direct
coupling is considered between the quantum plant and the
quantum controller. In this paper, we explore the construction
of a coherent quantum observer in which there is only direct
coupling between quantum plant and the quantum observer.
Furthermore, both the quantum plant and the quantum observer
are assumed to be closed quantum systems which means
that they are not subject to quantum noise and are purely
deterministic systems. This leads to an observer structure of
the form shown in Figure 2. It is shown that for the case being
considered, a quantum observer can be constructed to estimate
some but not all of the system variables of the quantum plant.
Also, the observer variables converge to the plant variables in
a time averaged sense rather than a quantum expectation sense
such as considered in the papers [1], [2].

In this paper, we consider the construction of a direct
coupling quantum observer for a linear quantum plant and
consider the case in which the quantum observer has the
structure of an observer network make up of a collection
of observer elements. This observer network is constructed
so that the output of each observer element converges to
the output of the quantum plant in a time averaged sense.
This means that there is a consensus of the observer network
element in estimating the output of the quantum plant. In
recent years, there has been significant interest in controlling
networks of multi-agent systems to achieve a consensus among
the agents; e.g., see [21]–[25]. In particular, some authors have
looked at the problem of consensus in distributed estimation
problems; e.g., see [26], [27]. Furthermore, issues of consensus
have been considered in networked quantum systems; see
[28]–[32]. This work is motivated by the fact that it is be-
coming increasingly possible for quantum control experiments



to involve the networked interconnection of many quantum
elements and these quantum networks will have important
applications in problems such as quantum communication
and quantum information processing. Also, many macroscopic
systems can be regarded as consisting of a large quantum
network. These issues motivate the direct coupled coherent
quantum observer network problem being considered in this
paper.

The results presented in this paper build on some of the
results presented in the preliminary conference papers [33]–
[35]). However, the results presented here provide a significant
generalization compared to the results of [33]–[35]. In partic-
ular, in this paper we allow for a non-zero Hamiltonian for
the quantum plant, whereas in the papers [33]–[35], the plant
Hamiltonian was assumed to be zero. Also, in the paper [33],
the quantum observer did not have a network structure and
corresponds to a special case of the current paper in which
the quantum observer network has only a single element. In
addition, the paper [34], restricts attention to quantum observer
networks having a simple chain structure and for which the
quantum plant and each element of the quantum observer
network contains only a single mode. Finally, the paper [35]
considers the case in which the quantum plant is a single qubit
rather than a quantum linear system as considered in this paper.
Also, it is assumed in [35] that each element of the quantum
observer network contains only a single mode.

In addition to the papers [33]–[35], a number of other
conference papers have considered problems related to the
current problem. The paper [36] considers the case in which
the quantum plant is a single qubit and the quantum observer
is a single mode quantum linear system. The paper [37]
considers the problem of an experimental implementation of
the results of [33]. The paper [38] considers the problem
of an experimental implementation of the results of [33]
with the modification that the quantum observer allows for
a measurement of its output using Homodyne detection. The
paper [39] considers a modification of the results of [33] to
allow for a reduced order quantum observer. The paper [40]
modifies the approach of [34] to allow for a chain structured
observer network which would be more straightforward to
implement experimentally than the approach proposed in [34].

II. QUANTUM SYSTEMS

In the quantum observer network problem under consid-
eration, both the quantum plant and the quantum observer
network are linear quantum systems; see also [5], [13], [41].
We will restrict attention to closed linear quantum systems
which do not interact with an external environment. The
quantum mechanical behavior of a linear quantum system
is described in terms of the system observables which are
self-adjoint operators on an underlying infinite dimensional
complex Hilbert space H. The commutator of two scalar
operators x and y on H is defined as [x, y] = xy−yx. Also, for
a vector of operators x on H, the commutator of x and a scalar
operator y on H is the vector of operators [x, y] = xy − yx,
and the commutator of x and its adjoint x† is the matrix of
operators

[x, x†] , xx† − (x#xT )T ,

where x# , (x∗1 x∗2 · · · x∗n)T and ∗ denotes the operator
adjoint.

The dynamics of the closed linear quantum systems under
consideration are described by non-commutative differential
equations of the form

ẋ(t) = Ax(t); x(0) = x0 (1)

where A is a real matrix in Rn×n, and x(t) =
[ x1(t) . . . xn(t) ]T is a vector of system observables;
e.g., see [5]. Here n is assumed to be an even number and
n
2 is the number of modes in the quantum system.

The initial system variables x(0) = x0 are assumed to
satisfy the commutation relations

[xj(0), xk(0)] = 2iΘjk, j, k = 1, . . . , n, (2)

where Θ is a real skew-symmetric matrix with components
Θjk. In the case of a single quantum harmonic oscillator, we
will choose x = (x1, x2)T where x1 = q is the position oper-
ator, and x2 = p is the momentum operator. The commutation
relations are [q, p] = 2i. In general, the matrix Θ is assumed
to be of the form

Θ = diag(J, J, . . . , J) (3)

where J denotes the real skew-symmetric 2× 2 matrix

J =

[
0 1
−1 0

]
.

The system dynamics (1) are determined by the system
Hamiltonian which is a which is a self-adjoint operator on
the underlying Hilbert space H. For the linear quantum sys-
tems under consideration, the system Hamiltonian will be
a quadratic form H = 1

2x(0)TRx(0), where R is a real
symmetric matrix. Then, the corresponding matrix A in (1)
is given by

A = 2ΘR (4)

where Θ is defined as in (3); e.g., see [5]. In this case, the
system variables x(t) will satisfy the commutation relations
at all times:

[x(t), x(t)T ] = 2iiiΘ for all t ≥ 0. (5)

That is, the system will be physically realizable; e.g., see [5].

Remark 1. Note that that the Hamiltonian H is preserved in
time for the system (1). Indeed, Ḣ = 1

2 ẋ
TRx + 1

2x
TRẋ =

−xTRΘRx + xTRΘRx = 0 since R is symmetric and Θ is
skew-symmetric.

Quantum Plant
In our proposed direct coupling coherent quantum observer

network, the quantum plant is a linear quantum system of
the form (1) described by the non-commutative differential
equations

ẋp(t) = Apxp(t); xp(0) = x0p;

zp(t) = Cpxp(t) (6)

where zp(t) denotes the vector of system variables to be
estimated by the observer network and Ap ∈ Rnp×np , Cp ∈
Rmp×np . It is assumed that np is even. It is also assumed
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Fig. 3: The graph (G, E) for a typical quantum observer
network.

that this quantum plant corresponds to a plant Hamiltonian
Hp = 1

2xp(0)TRpxp(0). It follows from (4) that Ap = 2ΘpRp

where the matrix Θp is of the form (3).
Quantum Observer Network

We now describe the linear quantum system of the form
(1) which will correspond to the quantum observer network;
see also [5], [13], [41]. This system is described by non-
commutative differential equations of the form

ẋo(t) = Aoxo(t); xo(0) = x0o;

zo(t) = Coxo(t) (7)

where the observer output zo(t) is the observer network
estimate vector and Ao ∈ Rno×no , Co ∈ R

no
2 ×no . Also, xo(t)

is a vector of self-adjoint non-commutative system variables;
e.g., see [5]. We assume the observer network order no is
an even number. We also assume that the plant variables
commute with the observer variables. The system dynamics
(7) are determined by the observer system Hamiltonian which
is a self-adjoint operator on the underlying Hilbert space
for the observer. For the quantum observer network under
consideration, this Hamiltonian is given by a quadratic form:
Ho = 1

2xo(0)TRoxo(0), where Ro is a real symmetric matrix.
Then, the corresponding matrix Ao in (7) is given by

Ao = 2ΘoRo (8)

where Θo is of the form (3). Furthermore, we will assume
that the quantum observer network has a graph structure with
N nodes and is coupled to the quantum plant as illustrated in
Figure 3.

The combined plant observer system is described by a
connected graph (G, E) which has N + 1 nodes with node 0
corresponding to the quantum plant and the remaining nodes,
labelled 1, 2, . . . , N , corresponding to the observer elements.
This corresponds to an observer Hamiltonian of the form

Ho =
1

2
xo(0)TRoxo(0)

=
1

2

N∑
i=1

xoi(0)TRoixoi(0)

+
1

2

N∑
i=1

N∑
j=1,j 6=i

xoi(0)TRcijxoj(0)

where the vector of observer system variables xo is partitioned
according to each element of the quantum observer network

as follows

xo =


xo1

xo2

...
xoN

 .

We assume that the variables for each element of the quantum
observer network commute with the variables of all other
elements of the quantum observer network; i.e.,

[xoi, x
T
oj ] = 0 ∀ i 6= j.

Also, we partition the matrix Θo as

Θo =


Θo1

Θo2 0
0 .. .

ΘoN

 (9)

where each matrix Θoi is also of the form (3).
We define a coupling Hamiltonian which defines the cou-

pling between the quantum plant and the quantum observer
network:

Hc =
1

2

N∑
i=1

(
xp(0)TRc0ixoi(0) + xoi(0)TRT

c0ixp(0)
)
.

Furthermore, we write

zo =


zo1

zo2

...
zoN


where

zoi = Coixoi for i = 1, 2, . . . , N.

Then

Co =


Co1

Co2 0

0
. . .

CoN

 .

Note that Roi ∈ Rnoi×noi , Rcij ∈ Rnoi×noj , Coi ∈
Rmp×noi , and each matrix Roi is symmetric for i =
1, 2, . . . , N , j = 1, 2, . . . , N . In addition, Rc0j ∈ Rnp×noi for
j = 1, 2, . . . , N . Also, the matrices Rcij for i = 0, 1, . . . , N ,
j = 1, 2, . . . , N are such that Rcij 6= 0 if and only if
(i, j) ∈ E, the set of edges for the graph (G, E).

The augmented quantum linear system consisting of the
quantum plant and the quantum observer network is described



by the total Hamiltonian

Ha = Hp +Hc +Ho

=
1

2
xp(0)TRpxp(0) +

1

2

N∑
i=1

xoi(0)TRoixoi(0)

+
1

2

N∑
i=1

N∑
j=1,j 6=i

xoi(0)TRcijxoj(0)

+
1

2

N∑
i=1

(
xp(0)TRc0ixoi(0) + xoi(0)TRT

c0ixp(0)
)

=
1

2
xa(0)TRaxa(0) (10)

where

xa =


xp
xo1

xo2

...
xoN

 ,

Ra =


Rp Rc01 Rc02 . . . Rc0N

RT
c01 Ro1 Rc12 . . . Rc1N

RT
c02 RT

c12 Ro2 . . . Rc2N

...
. . .

...
RT

c0N RT
c1N RT

c2N . . . RoN

 . (11)

Then using (4), it follows that the augmented quantum linear
system is described by the equations

ẋp(t)
ẋo1(t)
ẋo2(t)
...
ẋoN (t)

 = Aa


xp(t)
xo1(t)
xo2(t)
...
xoN (t)

 ;

zp(t) = Cpxp(t);

zo(t) = Coxo(t) (12)

where Aa = 2ΘaRa,

Θa =

[
Θp 0
0 Θo

]
(13)

and

Co =


Co1

Co2 0

0
. . .

CoN

 .
We now formally define the notion of a direct coupled linear

quantum observer network.

Definition 1. The matrices Roj , Rcij , Coj for i = 0, 1, . . . , N ,
j = 1, 2, . . . , N and the graph (G, E) define a linear
quantum observer network achieving time-averaged consensus
convergence for the quantum plant (6) if the corresponding
augmented linear quantum system (12) is such that

lim
T→∞

1

T

∫ T

0

(


I
I
...
I

 zp(t)− zo(t))dt = 0. (14)

III. CONSTRUCTING A DIRECT COUPLING COHERENT
QUANTUM OBSERVER NETWORK

We now describe the construction of a direct coupled linear
quantum observer network. We assume that mp =

np

2 and the
matrix Cp is of the form Cp = αT

0 where

α0 =


α01 0
0 α02 0

. . .
0 α0mp

 ∈ Rnp×mp (15)

and α0i ∈ R2×1 for i = 1, 2, . . . ,mp. This assumption
means that the plant variables to be estimated include only
one quadrature for each mode of the plant. Also, we assume

‖α0i‖ = α2

for i = 1, 2, . . . ,mp. Corresponding to the form (15), we can
partition the vector of plant variables as

xp =


xp1

xp2

...
xpmp

 (16)

where each xpi is a 2 by 1 vector of plant variables for i =
1, 2, . . . ,mp.

In addition, we assume that Rp is of the form

Rp = α0MαT
0 (17)

where M = MT . It that Ap in (6) is of the form

Ap = 2Θpα0MαT
0 .

Hence, it follows from (6) that

żp(t) = Cp2Θpα0MαT
0 xp(t) = 2αT

0 Θpα0MαT
0 xp(t).

However,

αT
0 Θpα0 =


αT

01Jα01 0
0 αT

02Jα02 0
. . .

0 αT
0mp

Jα0mp


= 0 (18)

since J is skew-symmetric. Therefore

żp(t) = 0.

That is, the vector of plant variables to be estimated zp(t)
will remain fixed if the plant is not coupled to the observer
network. However, when the plant is coupled to the quantum
observer network this may no longer be the case. We will
show that if the quantum observer is suitably designed, the
plant quantity to be estimated zp(t) will remain fixed and the
condition (14) will be satisfied.

We assume that each element of the observer network is of
dimension np and that the vector of observer variables xoi can
also be partitioned as in (16) as

xoi =


xoi1
xoi2
...
xoimp

 (19)



for i = 0, 1, . . . , N . Here, each xoij is a 2 by 1 vector of
observer variables. We also suppose that the matrices Rcij ,
Roi for i = 0, 1, . . . , N , j = 1, 2, . . . , N are of the form

Rcij = αijβ
T
ij , Roi = ωiI (20)

where αij ∈ Rnoi×mp , βij ∈ Rnoj×mp and ωi > 0 for i =
1, 2, . . . , N , j = 1, 2, . . . , N . Also, we assume that

Rc0j = α0jβ
T
0j where α0j = α0 = CT

p ∈ Rnp×mp (21)

for j = 1, 2, . . . , N such that (0, j) ∈ E. In addition, note that
αij = 0 and βij = 0 for (i, j) 6∈ E. Furthermore, we assume

Coi = Cp = αT
0 (22)

for i = 1, 2, . . . , N .
We will show that these assumptions imply that the quantity

zp(t) = Cpxp(t) will be constant for the augmented quantum
system (12). Indeed, the total Hamiltonian (10) will be given
by

Ha =
1

2
xp(0)Tα0MαT

0 xp(0) +
1

2

N∑
i=1

ωixoi(0)Txoi(0)

+
1

2

N∑
i=1

N∑
j=1,j 6=i

xoi(0)Tαijβ
T
ijxoj(0)

+

N∑
j=1

xp(0)Tα0jβ
T
0jxoj(0).

We will show that these assumptions imply that the quantity
zp(t) = Cpxp(t) will be constant for the augmented quantum
system (12). Indeed, it follows from (11), (12), (13) that

ẋp(t) = 2ΘpRpxp(t) + 2

N∑
i=1

ΘpRc0ixoi(t)

= Θpα0MαT
0 xp(t) + 2

N∑
i=1

Θpα0β
T
0ixoi(t).

Hence,

żp(t) = 2CpΘpα0MαT
0 xp(t) + 2

N∑
i=1

CpΘpα0β
T
0ixoi(t)

= 2αT
0 Θpα0MαT

0 xp(t) + 2

N∑
i=1

αT
0 Θpα0β

T
0ixoi(t).

However, it follows from (18) that αT
0 Θpα0 = 0 and hence,

żp(t) = 0.

Therefore
zp(t) = zp(0) = zp (23)

for all t ≥ 0.
Also, it follows from (9), (11), (12), (13) that

ẋoj(t) = 2ωjΘojxoj(t) + Θoj

N∑
i=1

βijα
T
ijxoi(t)

+Θoj

N∑
i=1

αjiβ
T
jixoi(t) + 2Θojβ0jzp (24)

for j = 1, 2, . . . , N .
To construct a suitable quantum observer network, we will

further assume that

αij = α0, βij = −µijα0 (25)

for i = 1, . . . , N , j = 1, 2, . . . , N where (i, j) ∈ E. Here,

µij = µji > 0. (26)

Also, we will assume that

β0j = −µ0jα0 (27)

for j = 1, 2, . . . , N where (0, j) ∈ E.
In order to construct suitable values for the quantities µij

and ωi so that (14) is satisfied, we will require that

2ωjΘojα0 −
∑

(i,j)∈E,i>0

µijΘojα0α
T
0 α0

−
∑

(i,j)∈E,i>0

µijΘojα0α
T
0 α0 − 2Θojµ0jα0α

T
0 α0 = 0

(28)

for j = 1, 2, . . . , N . This condition is equivalent to

ωj =
∑

(i,j)∈E,i>0

µijα
2 + µ0jα

2 (29)

for (0, j) ∈ E and

ωj =
∑

(i,j)∈E,i>0

µijα
2 (30)

for (0, j) 6∈ E.
Then, we define

x̃oj(t) = xoj(t)−
1

α2
α0zp

for j = 1, 2, . . . , N . It follows from (28) and (24) that

˙̃xoj(t) = 2ωjΘoj x̃oj(t) + Θoj

N∑
i=1

βijα
T
ij x̃oi(t)

+Θoj

N∑
i=1

αjiβ
T
jix̃oi(t)

= 2ωjΘoj x̃oj(t)− 2
∑

(i,j)∈E,i>0

µijΘojα0α
T
0 x̃oi(t)

for j = 1, 2, . . . , N .
We now write this equation as

˙̃xo1(t)
˙̃xo2(t)
...
˙̃xoN (t)

 = Ao


x̃o1(t)
x̃o2(t)
...
x̃oN (t)

 (31)

where Ao is an N ×N block matrix with blocks

aoij =

 2ωiΘoj for i = j,
−2µijΘojα0α

T
0 for i 6= j and (i, j) ∈ E,

0 otherwise



for i = 1, 2, . . . , N , j = 1, 2, . . . , N . Also, Ao is as given in
(8) where Ro is a symmetric N ×N block matrix with blocks

roij =

 ωiI for i = j,
−µijα0α

T
0 for i 6= j and (i, j) ∈ E,

0 otherwise

for i = 1, 2, . . . , N , j = 1, 2, . . . , N .

To show that the above candidate quantum observer network
leads to the satisfaction of the condition (14), we note that

x̃o =


x̃o1

x̃o2

...
x̃oN



satisfies (31). Hence, if we can show that

lim
T→∞

1

T

∫ T

0

x̃o(t)dt = 0 (32)

then it will follow from

Co
1

α2


α0

α0

...
α0

 zp

=
1

α2


αT

0

αT
0 0

0
. . .

αT
0



α0

α0

...
α0

 zp

=


I
I
...
I

 zp (33)

that (14) is satisfied.

We now show that the symmetric matrix Ro is positive-
definite.

Lemma 1. The matrix Ro is positive definite.

Proof: In order to establish this lemma, let

xo =


xo1

xo2

...
xoN



be a non-zero real vector. Then

xTo Roxo =

N∑
i=1

ωi‖xoi‖2

−
∑

(i,j)∈E,i>0,j>0

µijx
T
oiα0α

T
0 xoj

=

N∑
i=1

ωi‖xoi‖2

−
∑

(i,j)∈E,i>0,j>0

µij

mp∑
k=1

xToikα0kx
T
ojkα0k

≥
N∑
i=1

ωi‖xoi‖2

−
∑

(i,j)∈E,i>0,j>0

µij

mp∑
k=1

‖xoik‖‖xojk‖α2

(34)

using (15), (19) and the Cauchy-Schwarz inequality. We now
define

x̌oi =


‖xoi1‖
‖xoi2‖

...
‖xoimp

‖


for i = 1, 2, . . . , N . Again using the Cauchy-Schwarz inequal-
ity, it follows that

xTo Roxo ≥
N∑
i=1

ωi‖x̌oi‖2

−
∑

(i,j)∈E,i>0,j>0

µij‖x̌oi‖‖x̌oj‖α2

=

N∑
i=1

ωi‖x̌oi‖2

−
∑

(i,j)∈E,i>0,j>0

µ̃ij‖x̌oi‖‖x̌oj‖

(35)

where
µ̃ij = µijα

2

for 0 = 1, 2, . . . , N , j = 1, 2, . . . , N . Thus, (35) implies

xTo Roxo ≥ x̌To R̃ox̌o

where

x̌o =


‖x̌o1‖
‖x̌o2‖

...
‖x̌oN‖


and R̃o is a symmetric N ×N matrix with elements defined
by

r̃oij =

 ωi for i = j,
−µ̃ij for i 6= j and (i, j) ∈ E,
0 otherwise
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Fig. 4: The weighted graph (G̃, Ẽ) corresponding to the graph
(G, E) in Figure 3.

for i = 1, 2, . . . , N , j = 1, 2, . . . , N .
Now the vector x̌o will be non-zero if and only if the vector

xo is non-zero. Hence, the matrix Ro will be positive-definite
if we can show that the matrix R̃o is positive-definite. In order
to establish this fact, we first note that (29) and (30) imply that

ωj =
∑

(i,j)∈E,i>0

µ̃ij + µ̃0j

for (0, j) ∈ E and

ωj =
∑

(i,j)∈E,i>0

µ̃ij

for (0, j) 6∈ E. Hence, we can write

R̃o = R̃o1 + R̃o2

where R̃o1 is a symmetric N×N matrix with elements defined
by

r̃o1ij =


∑

(k,j)∈E,k>0 µ̃kj for i = j,

−µ̃ij for i 6= j and (i, j) ∈ E,
0 otherwise

for i = 1, 2, . . . , N , j = 1, 2, . . . , N . Also, R̃o2 is a diagonal
N ×N matrix with elements defined by

r̃o2ij =

{
µ̃0j for i = j and (0, j) ∈ E,
0 otherwise

It follows that the matrix R̃o2 is positive semidefinite.
Now the matrix R̃o1 is the Laplacian matrix for the weighted

graph (G̃, Ẽ) obtained by removing node 0 from the graph
(G, E) along with the associated edges. Then each edge
(i, j) ∈ Ẽ is given a weight µ̃ij ; e.g., see Figure 4 which
shows the weighted graph (G̃, Ẽ) which would correspond to
the graph (G, E) shown in Figure 3.

It follows that the matrix R̃o1 is positive-semidefinite with
null space of the following form:

N (R̃o1) = span{f1, f2, . . . , fm}

where m is the number of connected components of the graph
(G̃, Ẽ). Also, each of the vectors f1, f2, . . . , fm are vectors
whose elements are either zeros or ones. For the vector fk,
the elements of this vector which are ones correspond to the
nodes in the graph (G̃, Ẽ) in the kth connected component.

The fact that R̃o1 ≥ 0 and R̃o2 ≥ 0 implies that R̃o ≥ 0.
In order to show that R̃o > 0, suppose that x is a non-zero
vector in N (R̃o). It follows that

xT R̃ox = xT R̃o1x+ xT R̃o2x = 0.

Since R̃o1 ≥ 0 and R̃o2 ≥ 0, x must be contained in the null
space of R̃o1 and the null space of R̃o2. Therefore x must be
of the form

x =

m∑
k=1

γkfk

where not all γk = 0. However, since the graph (G, E) is
connected, it follows that there must be at least one branch
(0, j) ∈ E to a node in each of the connected components in
the graph (G̃, Ẽ). Then

xT R̃o2x =
∑

(0,j)∈E

µ̃0,jγ
2
k(j) = 0

where k(j) corresponds to the node of the connected compo-
nent in (G̃, Ẽ) which the branch (0, j) connects to. Since each
µ̃0,j > 0, it follows that

γk(j) = 0

for all (0, j) ∈ E. Furthermore, since each connected compo-
nent in (G̃, Ẽ) has at least one branch (0, j) ∈ E connected
to it, it follows that γ1 = γ2 . . . = γm = 0. However, this
contradicts the assumption that not all γk = 0. Thus, we can
conclude that the matrix R̃o is positive definite and hence, the
matrix Ro is positive definite. This completes the proof of the
lemma.

We now verify that the condition (14) is satisfied for the
quantum observer network under consideration. We recall from
Remark 1 that the quantity 1

2 x̃o(t)TRox̃o(t) remains constant
in time for the linear system:

˙̃xo = Aox̃o = 2ΘRox̃o.

That is

1

2
x̃o(t)TRox̃o(t) =

1

2
x̃o(0)TRox̃o(0) ∀t ≥ 0. (36)

However, x̃o(t) = e2ΘRotx̃o(0) and Ro > 0. Therefore, it
follows from (36) that√

λmin(Ro)‖e2ΘRotx̃o(0)‖ ≤
√
λmax(Ro)‖x̃o(0)‖

for all x̃o(0) and t ≥ 0. Hence,

‖e2ΘRot‖ ≤

√
λmax(Ro)

λmin(Ro)
(37)

for all t ≥ 0.
Now since Θ and Ro are non-singular,∫ T

0

e2ΘRotdt =
1

2
e2ΘRoTR−1

o Θ−1 − 1

2
R−1

o Θ−1



and therefore, it follows from (37) that

1

T
‖
∫ T

0

e2ΘRotdt‖

=
1

T
‖1

2
e2ΘRoTR−1

o Θ−1 − 1

2
R−1

o Θ−1‖

≤ 1

2T
‖e2ΘRoT ‖‖R−1

o Θ−1‖

+
1

2T
‖R−1

o Θ−1‖

≤ 1

2T

√
λmax(Ro)

λmin(Ro)
‖R−1

o Θ−1‖

+
1

2T
‖R−1

o Θ−1‖
→ 0

as T →∞. Hence,

lim
T→∞

1

T
‖
∫ T

0

x̃o(t)dt‖

= lim
T→∞

1

T
‖
∫ T

0

e2ΘRotx̃o(0)dt‖

≤ lim
T→∞

1

T
‖
∫ T

0

e2ΘRotdt‖‖x̃o(0)‖

= 0.

This implies

lim
T→∞

1

T

∫ T

0

x̃o(t)dt = 0

and hence, it follows from (31) and (33) that

lim
T→∞

1

T

∫ T

0

zo(t)dt =


I
I
...
I

 zp.
Also, (23) implies

lim
T→∞

1

T

∫ T

0


I
I
...
I

 zp(t)dt =


I
I
...
I

 zp.
Therefore, condition (14) is satisfied. Thus, we have estab-
lished the following theorem.

Theorem 1. Consider a quantum plant of the form (6) where
Rp is of the form (17). Then the matrices Roi, Rcij , Coi,
Roi for i = 1, 2, . . . , N , j = 1, 2, . . . , N and the connected
graph (G, E) will define a direct coupled quantum observer
network achieving time-averaged consensus convergence for
this quantum plant if the conditions (20), (21), (22), (25), (27),
(26), (29), (30) are satisfied.

Remark 2. The quantum observer network constructed above
is determined by the choice of the positive parameters µ̃ij

for i = 0, 1, . . . , N , j = 1, 2, . . . , N . A number of possible
choices for these parameters could be considered. One choice
is to choose all of these parameters to be the same as µ̃ij = ω0

for i = 0, 1, . . . , N , j = 1, 2, . . . , N where ω0 > 0 is a

μ

....
μ μ

1 2 3 N0

μ
01 12 23 (N-1),N

Plant

Fig. 5: Quantum Observer Network.

frequency parameter. Another possible approach is to choose
the parameters µij for i = 0, 1, . . . , N , j = 1, 2, . . . , N
randomly with a uniform distribution on a suitable frequency
interval.

IV. ILLUSTRATIVE EXAMPLE

We now present some numerical simulations to illustrate
the direct coupled quantum observer network described in
the previous section. We choose the quantum plant to have
np = 2, Rp = 0 and Cp = [1 0]. That is, the variable
to be estimated by the quantum observer is the position
operator of the quantum plant; i.e., zp(t) = qp(t) where

xp(t) =

[
qp(t)
pp(t)

]
.

For the quantum observer network, we choose a chain
structured network of the form shown in Figure 5 where
the number of observer elements is N = 5; see also [34].
In this quantum observer network, each element is of order
two. We choose the parameters µ̃01, µ̃12, . . . , µ̃N−1,N so that
µ̃(k−1),k = kω0 for k = 1, 2, . . . , N where ω0 = 1. Also,
the parameters ωj , are defined by equations (29), (30) for
j = 1, 2, . . . , N . Then the corresponding quantum observer
network is defined by equations (20), (25).

The augmented plant-observer system is described by the
equations (12), (11). Then, we can write

xa(t) = Φ(t)xa(0)

where
Φ(t) = eAat.

Thus, the plant variable to be estimated zp(t) is given by

zp(t) = e1CaΦ(t)xa(0)

=

2N+2∑
i=1

e1CaΦi(t)xai(0)

where

Ca =

[
Cp 0
0 Co

]
,

e1 is the first unit vector in the standard basis for RN+1, Φi(t)
is the ith column of the matrix Φ(t) and xai(0) is the ith
component of the vector xa(0). We plot each of the quantities
e1CaΦ1(t), e1CaΦ2(t), . . . , e1CaΦ2N+2(t) in Figure 6.

From this figure, we can see that e1CaΦ1(t) ≡ 1 and
e1CaΦ2(t) ≡ 0, e1CaΦ2(t) ≡ 0, . . ., e1CaΦ2N+2(t) ≡ 0,
and zp(t) will remain constant at zp(0) for all t ≥ 0.
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Fig. 7: Coefficients defining zo1(t).

We now consider the output variables of the quantum
observer network zoi(t) for i = 1, 2, . . . , N which are given
by

zoi(t) =

2N+2∑
j=1

ei+1CaΦj(t)xaj(0)

where ei+1 is the (i + 1)th unit vector in the stan-
dard basis for RN+1. We plot each of the quantities
ei+1CaΦ1(t), ei+1CaΦ2(t), . . . , ei+1CaΦ2N+2(t) in Figures
7 - 11.

Also, we can consider the spatial average obtained by
averaging over each of the distributed observer outputs:

zos(t) =
1

N

N∑
i=1

zoi(t) =
1

N

N∑
i=1

2N+2∑
j=1

ei+1CaΦj(t)xaj(0).

Then we plot each of the quantities 1
N

∑N
i=1 ei+1CaΦ1(t),

1
N

∑N
i=1 ei+1CaΦ2(t), . . . , 1

N

∑N
i=1 ei+1CaΦ2N+2(t) in Fig-

ure 12.
To illustrate the time average convergence property

of the quantum observer (14), we now plot the
quantities 1

T

∫ T

0
ei+1CaΦ1(t)dt, 1

T

∫ T

0
ei+1CaΦ2(t)dt,

. . ., 1
T

∫ T

0
ei+1CaΦ2N+2(t)dt for i = 1, 2, . . . , N in Figures

13-17. These quantities determine the averaged value of the
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Fig. 8: Coefficients defining zo2(t).
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Fig. 9: Coefficients defining zo3(t).

ith observer output

zaveoi (T ) =
1

T

∫ T

0

2N+2∑
j=1

ei+1CaΦj(t)xaj(0)dt

for i = 1, 2, . . . , N .
From these figures, we can see that for each i = 1, 2, . . . , N ,

the time average of zoi(t) converges to zp(0) as t→∞. That
is, the distributed quantum observer reaches a time averaged
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Fig. 10: Coefficients defining zo4(t).
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Fig. 11: Coefficients defining zo5(t).

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

Time

z
o

 

 
[1 1 ...]C

a
Φ

1
(t)/N

[1 1 ...]C
a
Φ

i
(t)/N

Fig. 12: Coefficients defining zos(t).

consensus corresponding to the output of the quantum plant
which is to be estimated.

V. CONCLUSIONS

In this paper we have considered the construction of a direct
coupling observer network for a closed quantum linear system
in order to achieve a time averaged consensus convergence.
We have also presented an illustrative example along with
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Fig. 13: Coefficients defining the time average of zo1(t).
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Fig. 14: Coefficients defining the time average of zo2(t).
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Fig. 15: Coefficients defining the time average of zo3(t).

simulations to investigate the consensus behavior of the direct
coupling observer network.
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