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Abstract: We compare two types of reinsurance: excess of loss (EOL) and largest claim reinsurance
(LCR), each of which transfers the payment of part, or all, of one or more large claims from the primary
insurance company (the cedant) to a reinsurer. The primary insurer’s point of view is documented in
terms of assessment of risk and payment of reinsurance premium. A utility indifference rationale
based on the expected future dividend stream is used to value the company with and without
reinsurance. Assuming the classical compound Poisson risk model with choices of claim size
distributions (classified as heavy, medium and light-tailed cases), simulations are used to illustrate
the impact of the EOL and LCR treaties on the company’s ruin probability, ruin time and value as
determined by the dividend discounting model. We find that LCR is at least as effective as EOL in
averting ruin in comparable finite time horizon settings. In instances where the ruin probability for
LCR is smaller than for EOL, the dividend discount model shows that the cedant is able to pay a
larger portion of the dividend for LCR reinsurance than for EOL while still maintaining company
value. Both methods reduce risk considerably as compared with no reinsurance, in a variety of
situations, as measured by the standard deviation of the company value. A further interesting finding
is that heaviness of tails alone is not necessarily the decisive factor in the possible ruin of a company;
small and moderate sized claims can also play a significant role in this.

Keywords: largest claims reinsurance; excess of loss reinsurance; ruin probability; ruin time;
compound Poisson risk model; heavy tails; Lévy insurance risk process

1. Introduction

The classical insurance risk model for a company employs a compound Poisson process with
negative drift as the claims surplus process, and measures the lifetime of the company as the time taken
for the value of the process to exceed the initial capital of the firm; the “ruin time”. Originally developed
under a light tailed Cramér condition, in recent decades a wider spectrum of claim distributions—light,
medium and heavy tailed—has been analysed, and, more generally, a Lévy process has been used in
place of the compound Poisson process.
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A need for heavy tailed insurance risk models has been stressed, for example, by [1–3], and in
this context, special interest lies in the possibility of reinsurance, whereby the company can hedge its
risk of suffering extremely large claims. A reinsurance scheme increases its potential lifetime, thereby
reducing the company’s risk of default. However, reinsurance treaties come at a cost, and pricing of
those contracts and the consequent impact on the company’s overall value need to be considered.

In this paper we investigate how reinsurance can extend the lifetime of the company and reduce
the probability of ruin, with attention not just to heavy tailed claim distributions, but also to a variety
of other possible distributional tail behaviours. Reinsurance works by transferring responsibility for
some portion of the claims in a specified time period from the primary insurance company (the cedant)
to the reinsurer. Two types of reinsurance which guard against the possibility of extremely large claims
are excess of loss (EOL), and largest claim reinsurance (LCR). Each of these transfers the payment of
part, or all, of one or more of the largest claims from the cedant to a reinsurer. A considerable amount
of work has been done on these and related methods, usually taking the point of view of the reinsurer.
Here, by contrast, we concentrate on the properties of the resulting reduced process from the point of
view of the cedant and consider the relative merits of each type.

To illustrate the effects, we analyse compound Poisson models for an insurance risk process
incorporating an EOL or LCR aspect, or neither, computing ruin times and probabilities of ruin both
in finite and infinite time scenarios. Using a dividend discounting model, we also determine the
maximal amount the cedant is able to divert from dividend payments to the reinsurance premium,
without reducing company value.

To cover the spectrum of possibilities, as claims distributions we consider subexponential
(including Pareto) distributions, as typifying heavy tailed situations, convolution equivalent
distributions (such as the Inverse Gaussian) for medium, and distributions satisfying a Cramér
condition (we use a Gamma distribution), for light tailed cases. In this way, much insight into the
behaviour of the ruin time and associated quantities, such as the shortfall at ruin, can be gained.

The paper is organised as follows. The EOL and LCR reinsurance models are reviewed in Section 2.
Section 3 outlines our methods, with the compound Poisson model in Section 3.1, and the tail regimes
we consider in Section 3.2. Section 4 gives the results of the simulations, separately for LCR (Section 4.1)
and EOL reinsurance (Section 4.2). Section 4.3 compares results across the distributions for both kinds
of reinsurance. In Section 5 we set out the dividend discounting model which is our basis for valuation
of the cedant company, and use it to find the amount of the dividend the cedant is able to transfer
to reinsurance without reducing the value of the company. This value is then simulated under the
various regimes and conditions and comparisons made between the EOL and LCR strategies. Section 6
contains a summary discussion of our results with suggestions for future research. In an Appendix we
state some useful results concerning Laplace transforms of passage times which can be used to check
on some aspects of the simulations, or provide bounds for quantities of interest.

2. Reinsurance Models

A primary incentive for an insurance company to enter a reinsurance contract is to gain some
degree of certainty over its cash flows. There are of course many ways in which risks can be transferred
from cedant company to reinsurer. We briefly outline the two methods of reinsurance we will consider.

Excess of Loss Reinsurance: Under this scheme, a retention amount L is pre-determined and the
amount of any claim in excess of L is liable for the reinsurer. This scheme in effect truncates all claims
at the level L, and the modified aggregate claims process is then simply the sum of the truncated
claims. Analysis, both theoretical and practical, is relatively straightforward.

A potential problem with this procedure, however, is the moral hazard it may give rise to.
Moral hazard refers to changes in the cedant’s behaviour that may occur after having taken out
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reinsurance; it may lead to less cautious behaviour and consequently to an increase in the potential
magnitude and/or probability of a large loss. The work of [4,5], for example, discusses the issues
involved in this, and how their effects may be disentangled empirically.

Largest Claims Reinsurance: There are various alternatives to using a fixed retention level,
usually based on making the insurer liable for a proportion of the total loss in some way. Here we
examine the LCR treaty: having set a fixed follow-up time t, we delete from the process the largest claim
occurring up to and including that time. Defined in this way, the scheme incorporates a retrospective
feature akin to the construction of a “lookback” option as understood in finance 1.

The reduced process constitutes a “trimmed” process, in which some part of, or all of, one or
more of the largest claims has been deleted. Changes in the ruin probabilities and the expected ruin
times of the cedant due to the trimming are then of particular interest.

Ruin: “Ruin” occurs if the modified claim surplus process, starting from 0, exceeds the initial
capital level u. The ruin time and consequent quantities are then calculated on the modified risk process.
In Figure 1, we provide graphical realisations of the LCR reinsurance scheme for one particular claim
distribution, a Pareto(1, 2) (precise definitions of distributions are given in Section 3.2). The black
points in Figure 1 indicate individual claims arriving sequentially in time and the red segments
represent the amounts that will be covered by reinsurance.
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Figure 1. A schematic illustration of the largest claim reinsurance (LCR) reinsurance scheme with
a Pareto(1,2) claim distribution. Black dots indicate claim amounts and red lines are the successive
amounts liable for the reinsurance company.

Translating this scheme into the sample path of the cedant’s insurance risk process, we then have
the illustration in Figure 2, where the black line stands for the original risk process and the red line is
the process adjusted for LCR reinsurance. Figure 2 also includes a sample path for EOL reinsurance,
as the green line. In general, the ruin time with reinsurance will exceed or equal that without, for
each sample path, and the question we address here is how to measure this effect with regard to the
company’s viability.

1 The LCR procedure can be made prospective by implementing it as a forward looking dynamic procedure in real time,
from the cedant’s point of view. Designate as time zero the time at which the reinsurance is taken out. At this time, the cedant
company’s assets amount to u > 0, say. The first claim arriving after time 0 is referred to the reinsurer and not debited
to the cedant. Subsequent claims smaller than the initial claim are paid by the cedant until a claim larger than the first
(the previous largest) arrives. The difference between these two claims is referred to the reinsurer and not debited to the
cedant. The process continues in this way so that at time t, the accumulated amount referred to the reinsurer equals the
largest claim up till that time. This procedure has the same effect as referring the largest claim up till time t retrospectively
to the reinsurer.
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Figure 2. Sample paths of the insurance risk processes without reinsurance (black line), with LCR
reinsurance (red line), and with EOL reinsurance (green line), for a Pareto(1,2) claim distribution.
The company’s initial reserve is u = 10, the safety loading is θ = 0.1, expected claim size is µ = 2,
claim arrival rate is λ = 1, and each time unit is 0.01 year = 3.65 days. For comparability between the
two schemes, the retention level L for the EOL scheme is chosen so that the expected values of the LCR
and EOL aggregate claims are equal at maturity time T = 5000.

3. Methods

In this section we briefly set out notation for the compound Poisson process model we will use,
and describe the simulations to be carried out.

3.1. Compound Poisson Process Methodology

Our results are formulated in terms of the familiar Cramér-Lundberg compound Poisson process
model. In this, the claim surplus process takes the form

Ct =
Nt

∑
i=1

ξi − ct, t ≥ 0, (1)

where c is the premium rate, the ξi are independent positive random variables all having the same
claim size distribution function F(x) on [0, ∞) with F(0) = 0, and Nt is a Poisson process with intensity
λ, independent of the ξi. (A sum of the form ∑0

i=1 is taken as 0, and N0 := 0.) The premium rate c is
chosen to satisfy the net profit condition

c = (1 + θ)λµ, (2)

where θ > 0 is a prespecified safety loading factor and µ is the expectation of a random variable
generated from F, assumed finite. Ruin occurs if Ct exceeds the initial capital level u > 0, for some t > 0.
The net profit condition ensures that expected income outweighs expected claims, thus precluding the
possible case of almost sure ruin; but ruin will occur with positive probability.

In order to describe the reinsured claim surplus process, consider the claims occurring as a point
process in time. After reinsurance, the claim surplus process, denoted by CR

t , can be written at time
t ≥ 0 as

CR
t = Ct − Rt, (3)
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where in the case of an EOL treaty

Rt =
Nt

∑
i=1

(ξi − L)1{ξi>L}, (4)

for some L > 0, while for the LCR treaty

Rt = max
1≤i≤Nt

ξi. (5)

(1A denotes the indicator of an event A, and a maximum of the form max1≤i≤0 is taken as 0). In the
EOL version, Rt is the accumulated amount of claims exceeding the cutoff level L up till time t, which is
referred to the reinsurer hence subtracted from the claim surplus process in (3). In the LCR version,
CR

t is represented as the dynamically trimmed risk process with the largest jump occurring so far
omitted at each point in time. In either case, ruin occurs for the reinsured company if CR

t exceeds the
initial capital level u, for some t > 0.

3.2. Tail Regimes

Our analysis is divided into three different cases based on the heaviness of the tails of the claims
distribution. Thus we consider light (Cramér), medium-heavy (convolution equivalent) and heavy
(subexponential) scenarios. For detailed background concerning these models, we refer to [6–8], as
well as the references therein. Illustrations of practical applications using convolution equivalent
models are in [9,10], Here we only provide a list of basic definitions and the assumptions involved in
each regime. In order to make the models comparable, we choose parameters in each case such that
Eξ1 = 2.

(i) Cramér case: There exists a finite positive constant ν0 such that the claim distribution F satisfies

λ(mν0(F)− 1) = cν0, (6)

where mν(F) =
∫
[0,∞) eνxdF(x) is the moment generating function (mgf) of F, assumed finite

for ν = ν0. These are relatively “light-tailed” (exponentially small) distributions. As a typical
example in our simulations we choose F to be a Gamma(2, 1) distribution with density

f (x) = xe−x, x ≥ 0. (7)

(ii) Convolution equivalent case: The claims distribution function F is said to be convolution
equivalent with index α > 0, if its tail F(x) := 1− F(x), x > 0, satisfies

lim
x→∞

F(x− y)
F(x)

= eαy and lim
x→∞

F2×(x)
F(x)

= 2mα(F) < ∞, (8)

where F2× is the convolution, F2× = F× F. The distribution function F has the properties

mα(F) < ∞ and mα+ε(F) = ∞ for ∀ε > 0. (9)

These distributions have “medium-heavy” tails in the sense that a convolution equivalent
distribution of index α has a finite exponential moment of order α, but any larger order moment
is infinite. Typical examples are distributions with tails of the form

F(x) ∼ ce−αx

xρ , as x → ∞, (10)
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for some c > 0, α > 0, ρ > 1. One important example of a class of distributions which
are convolution equivalent is the Inverse Gaussian family with densities parametrised as in
Chapter 2.2 of [11]:

f (x; a, b) =

√
b

2π
x−3/2 exp

(
− b(x− a)2

2a2x

)
, x > 0. (11)

Here a > 0 is the mean parameter and b > 0 is called the scale parameter. We denote such a
distribution as IG(a, b). In our simulations we choose a = 2 and b = 1.5.

(iii) Subexponential case: When (8) is satisfied with α = 0, F is said to have a subexponential
tail. Typical examples are the Pareto distributions. In our simulations we used a Pareto(1, 2)
distribution with (power law) tail of the form

F(x) =
1
x2 , x ≥ 1. (12)

These distributions have very heavy tails, giving rise to occasional extremely large jumps.

With the parameters as specified above, these three regimes are mutually exclusive; see [8].

3.3. Simulation Methodology

Our focus is on illustrating notionally how reinsurance affects the ruin time of the company,
rather than on definitive numerical comparisons, so we adopt a straightforward approach to the
simulations which is adequate for our purposes. Specifically, we generate a number N = 100, 000
sample paths and keep track of whether and when they exceed the predetermined reserve level u
at some time during a time interval [0, T], T > 0. This allows estimation of the ruin probabilities
P(τu ≤ T) and P(τR

u ≤ T) for the risk processes with and without reinsurance. We also estimate the
conditional expected values of these ruin times. The ruin times are defined formally as

τu = inf{t > 0 : Ct > u}, and τR
u = inf{t > 0 : CR

t > u}. (13)

Simulated sample paths may be categorised as follows.

(a) Neither Ct nor CR
t transits above u in [0, T]. Suppose there are n1 such paths among the N.

(b) Ct transits above u in [0, T] but CR
t does not. Suppose there are n2 such paths among the N.

(c) CR
t transits above u in [0, T] and hence Ct does also. There are n3 = N − n1 − n2 such paths

among the N.

The ruin probabilities P(τu ≤ T) and P(τR
u ≤ T) were estimated by calculating the proportion

of all paths which exceeded the reserve level u during [0, T]. Standard errors of the probability
estimates were calculated using the binomial variance P̂(1− P̂)/N, where P̂ was the corresponding
estimated probability.

In calculating ruin times, we restrict ourselves to paths of Type (c). These are the only paths
for which we can determine both τu and τR

u , and lead to a useful comparison between them in the
form of estimates for E(τR

u |τR
u ≤ T) and E(τu|τR

u ≤ T). For these paths we record the times of first
passage above u for each of Ct and CR

t , denoted by τu,T,1, · · · , τu,T,n3 and τR
u,T,1, · · · , τR

u,T,n3
respectively,

and then estimate E(τR
u |τR

u ≤ T) and E(τu|τR
u ≤ T) by

τ̂R
u,T =

∑n3
i=1 τR

u,T,i

n3
(14)
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and

τ̂u,T =
∑n3

i=1 τu,T,i

n3
. (15)

For each of the n3 paths of Type (c) we have τu,T,i ≤ τR
u,T,i, implying of course that τ̂u,T ≤ τ̂R

u,T .
For the simulations in the next section we need to make choices for the parameters T, θ, µ, λ and

u. We discuss these choices in more detail in Section 5.2, but for the present purposes, we set them as
follows: expectation of claims distributions µ = 2; claim arrival rate is λ = 1; safety loading θ = 0.1.
Initial reserve takes values u = 10, 30, 50, 70, 100 and time spans are T = 100, 500, 1000. Each time unit
is 0.01 year = 3.65 days.

4. Results

In this section, we report on simulations for the classical compound Poisson risk model in
which the claim surplus process takes the form specified in (1) and the reinsured process is as in (3).
We inspected the impact of EOL and LCR reinsurances in the three different tail regimes by varying
the claim size distributions. In all examples, we chose the claim arrival rate as λ = 1 and the safety
loading as θ = 0.1. For a variety of combinations of initial capital u and follow-up time T, we recorded
the estimated original and the reinsured ruin probabilities, and the estimated ruin times.

4.1. Largest Claim Reinsurance

For the case of LCR we denote the claims surplus process in (3) by CM and the ruin time in
(13) by τM

u . We chose a Pareto(1, 2) distribution for the simulations in the heavy-tailed case. This
choice of parameters parallels that of [12], who calculated the ultimate ruin probabilities for these
particular Cramér-Lundberg risk models. So we can benchmark our results against theirs to check on
the accuracy of our simulations.

The results are summarised in Table 1. Comparing Columns 3 and 4 in Table 1, we see that
the estimated ruin probability P̂(τu < T) drops substantially to P̂(τM

u < T) after reinsurance.
Correspondingly, significant increases in the expected conditional lifetime of the company with
reinsurance are observed (compare Columns 5 and 6). Column 7 gives the percentage change in
the conditional ruin times due to reinsurance. As expected, the effect tends to diminish when u is
increased, but remains substantial even for u = 100. The probabilities in Columns 3 and 4 of Table 1,
and in similar tables below, are estimated correct to 2 decimal places (standard error less than 10−2).
Numbers in the T = ∞ rows in Table 1 are calculated from Algorithm III in [12].

We next investigate the impact of reinsurance on the Cramér-Lundberg model with light or
medium-heavy tailed claim distributions. The specific examples chosen are Gamma(2, 1) (light tailed)
and IG(2, 1.5) (medium-heavy tailed). For consistency, we chose the expectations of the claims
distributions to be µ = 2 (the same as in the Pareto case), and all other parameters (claim arrival rate
λ = 1, safety loading θ = 0.1, initial reserves u and time spans T) also the same.
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Table 1. LCR reinsurance for Pareto(1, 2) distributed claims. The safety loading is θ = 0.1,
expected claim size is µ = 2, claim arrival rate is λ = 1, and each time unit is 0.01 years. Simulations are
done with N = 100, 000 sample paths. The T = ∞ case refers to the results obtained from Algorithm III
in [12].

u T P̂(τu < T) P̂(τM
u < T) τ̂u,T τ̂M

u,T % Changes

10

100 0.43 0.14 19.06 37.03 93.34
500 0.53 0.20 38.14 85.45 124.02
1000 0.55 0.21 44.75 104.35 133.19

∞ 0.56± 0.03 - - - -

30

100 0.14 0.02 35.78 58.97 64.84
500 0.26 0.06 90.65 164.25 81.19
1000 0.28 0.06 113.18 214.20 89.25

∞ 0.32± 0.02 - - - -

50

100 0.06 0.00 44.64 66.40 55.74
500 0.14 0.02 129.20 215.24 66.59
1000 0.17 0.03 172.73 303.81 75.89

∞ 0.20± 0.02 - - - -

70

100 0.03 0.00 45.66 73.67 61.37
500 0.09 0.01 157.07 263.60 67.82
1000 0.11 0.01 221.55 380.55 71.77

∞ 0.14± 0.02 - - - -

100

100 0.01 0.00 37.32 75.64 102.71
500 0.05 0.00 180.25 300.30 66.60
1000 0.06 0.00 258.22 450.58 74.50

∞ 0.081± 0.017 - - - -

Graphical illustrations are in Figures 3 and 4. Relatively smaller claim sizes occur in these two
cases (compare the vertical scales of these two plots with that of Figure 1), and as a result the impact of
reinsurance is not as dramatic as it is for the heavy-tailed cases. A similar conclusion can be drawn
from the numerical results in Tables 2 and 3.

In both the Gamma and Inverse Gaussian cases, improvements in ruin probabilities after
reinsurance are significant, especially for u small, but proportionally not as substantial as for the Pareto.
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Figure 3. Sample paths of the insurance risk processes without reinsurance (black line), with LCR
reinsurance (red line), and with excess of loss (EOL) reinsurance (green line), for a Gamma(2, 1) claim
distribution. The safety loading is θ = 0.1, expected claim size is µ = 2, claim arrival rate is λ = 1, and
each time unit is 0.01 years. L for the EOL scheme is chosen so that the expected values of the LCR and
EOL claim distributions are equal at maturity time T = 5000.
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Figure 4. Sample paths of the insurance risk processes without reinsurance (black line), with LCR
reinsurance (red line), and with EOL reinsurance (green line), for an IG(2, 1.5) claim distribution.
The safety loading is θ = 0.1, expected claim size is µ = 2, claim arrival rate is λ = 1, and each time unit
is 0.01 years. L for the EOL scheme is chosen so that the expected values of the LCR and EOL claim
distributions are equal at maturity time T = 5000.

Table 2. LCR reinsurance for Gamma(2, 1) distributed claims. The safety loading is θ = 0.1,
expected claim size is µ = 2, claim arrival rate is λ = 1, and each time unit is 0.01 years. Simulations are
done with N = 100, 000 sample paths.

u T P̂(τu < T) P̂(τM
u < T) τ̂u,T τ̂M

u,T % Changes

10
100 0.43 0.25 22.22 34.91 57.11
500 0.49 0.32 44.35 70.81 61.18

1000 0.50 0.32 47.79 77.57 63.39

30
100 0.08 0.04 47.95 59.49 24.08
500 0.14 0.08 115.46 145.61 26.11

1000 0.15 0.09 135.16 170.45 26.11

50
100 0.01 0.00 62.13 72.35 16.45
500 0.04 0.02 177.90 208.29 17.08

1000 0.04 0.02 214.04 254.08 18.71

70
100 0.00 0.00 68.07 79.12 16.24
500 0.01 0.01 233.81 264.30 13.04

1000 0.01 0.01 292.09 327.81 12.23

100
100 0.00 0.00 - - -
500 0.00 0.00 315.52 347.89 10.26

1000 0.00 0.00 393.28 438.94 11.61



Risks 2017, 5, 3 10 of 27

Table 3. LCR reinsurance for IG(2, 1.5) distributed claims. The safety loading is θ = 0.1, expected
claim size is µ = 2, claim arrival rate is λ = 1, and each time unit is 0.01 years. Simulations are done
with N = 100, 000 sample paths.

u T P̂(τu < T) P̂(τM
u < T) τ̂u,T τ̂M

u,T % Changes

10
100 0.51 0.24 18.63 35.88 92.61
500 0.59 0.33 40.69 83.27 104.67
1000 0.60 0.34 47.97 100.35 109.18

30
100 0.16 0.05 38.97 56.63 45.33
500 0.27 0.13 101.28 153.44 51.51
1000 0.28 0.14 122.80 189.76 54.53

50
100 0.04 0.01 52.30 68.41 30.81
500 0.12 0.05 150.57 205.16 36.25
1000 0.13 0.06 197.59 272.25 37.79

70
100 0.01 0.00 61.72 78.22 26.73
500 0.05 0.02 197.71 253.26 28.10
1000 0.06 0.03 261.72 339.91 29.88

100
100 0.00 0.00 54.87 64.62 17.77
500 0.01 0.00 250.91 303.45 20.94
1000 0.02 0.01 368.16 455.16 23.63

4.2. Excess of Loss Reinsurance

In this section we examine the EOL reinsurance scheme. We denote the corresponding claims
surplus process by CL and the ruin time by τL

u . Under this treaty, the reinsurer pays the total amount
of any claim in excess of some pre-determined retention level L. For the results in the present section,
in order to afford some degree of comparability with the LCR scheme, we chose L such that

E(CL
T) = E(CM

T ),

For any t > 0 we have

E(CM
t ) = E(Ct)− E

(
max

1≤i≤Nt
ξi

)
,

and

E(CL
t ) = E(Ct)− E

(
Nt

∑
i=1

(ξi − L)1{ξi>L}

)
,

so for comparability we need to solve the equation

E
(

max
1≤i≤Nt

ξi

)
= E

(
Nt

∑
i=1

(ξi − L)1{ξi>L}

)
(16)

for L = L(t). The left-hand side of (16) is equal to

E
(

max
1≤i≤Nt

ξi

)
=

∞

∑
n=0

E
(

max
1≤i≤n

ξi

)
e−λt(λt)n

n!

=
∞

∑
n=0

∫ ∞

0
P
(

max
1≤i≤n

ξi > x
)

dx× e−λt(λt)n

n!

=
∫ ∞

0
dx

∞

∑
n=0

(1− Fn(x))× e−λt(λt)n

n!

=
∫ ∞

0
(1− e−λtF(x))dx,
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where F(x) = 1− F(x) is the tail of the distribution of the ξi. The right-hand side of (16) is equal to

E

(
Nt

∑
i=1

(ξi − L)1{ξi>L}

)
=

∞

∑
n=0

e−λt(λt)n

n!
nE((ξ1 − L)1{ξ1>L}) = λt

∫ ∞

L
(x− L)dF(x).

Choosing t = T and λ = 1, L is required to solve

∫ ∞

L
(x− L)dF(x) =

∫ ∞

L
F(x)dx =

1
T

∫ ∞

0
(1− e−TF(x))dx. (17)

This is easily done in the R package, which we used for the simulations also. Once having selected
L in this way, we used the same approach as before to estimate ruin probabilities and ruin times.
The results are displayed in Tables 4–6.

In these tables we abuse notation slightly and continue to use τ̂u,T as the estimated conditional
ruin time for the plain risk process, noting, however, that in the present case the conditioning is on the
event τL

u ≤ T and not on τM
u ≤ T as in Tables 1–3. This is the reason for the differing values of τ̂u,T in

Tables 4–6 as opposed to Tables 1–3.
Tables 4–6 contain an extra column “No Effect” as compared to Tables 1–3. The extra column

records the proportion of paths for which ruin occurs but the ruin times are the same for the original
sample path Ct as for the reinsured path CL

t . In these cases the reinsurance scheme does not avoid ruin.
There are two ways in which this can happen. One is that ruin occurs but reinsurance is not invoked
at all; that is, there was no claim larger than L before ruin. The second scenario is that even though
reinsurance was invoked at some time or times before ruin, nevertheless the jump causing ruin has
magnitude less than L. There is no saving effect from the EOL scheme in these cases.

Table 4. EOL reinsurance for Pareto(2, 1) distributed claims. The safety loading is θ = 0.1,
expected claim size is µ = 2, claim arrival rate is λ = 1, and each time unit is 0.01 years. Simulations
are done with N = 100, 000 sample paths. Retention level L is the solution to (17). For T = 100,
L(T) = 5.64; for T = 500, L(T) = 12.62; for T = 1000, L(T) = 17.84.

u T P̂(τu < T) P̂(τL
u < T) τ̂u,T τ̂L

u,T % Changes No Effect

10
100 0.43 0.20 15.88 21.36 34.55 0.08
500 0.53 0.39 31.50 36.55 16.03 0.30
1000 0.55 0.44 38.93 43.54 11.84 0.38

30
100 0.14 0.01 33.48 49.71 48.47 0.00
500 0.26 0.08 71.37 92.83 30.08 0.03
1000 0.28 0.12 87.85 106.86 21.63 0.07

50
100 0.06 0.00 45.22 67.26 48.76 0.00
500 0.14 0.02 107.64 145.85 35.50 0.00
1000 0.17 0.03 134.88 172.85 28.15 0.01

70
100 0.03 0.00 70.52 79.83 13.20 0.00
500 0.09 0.00 144.90 195.31 34.79 0.00
1000 0.11 0.01 182.04 243.62 33.82 0.00

100
100 0.01 0.00 - - - 0.00
500 0.05 0.00 181.23 281.15 55.13 0.00
1000 0.06 0.00 235.18 318.21 35.31 0.00
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Table 5. EOL reinsurance for Gamma(2, 1) distributed claims. The safety loading is θ = 0.1,
expected claim size is µ = 2, claim arrival rate is λ = 1, and each time unit is 0.01 years. Simulations
are done with N = 100, 000 sample paths. Retention level L is the solution to (17). For T = 100,
L(T) = 4.49; for T = 500, L(T) = 6.10; for T = 1000, L(T) = 6.79.

u T P̂(τu < T) P̂(τL
u < T) τ̂u,T τ̂L

u,T % Changes No Effect

10
100 0.43 0.32 20.02 24.34 21.55 0.13
500 0.49 0.45 40.67 44.52 9.45 0.32

1000 0.50 0.47 45.80 48.49 5.85 0.38

30
100 0.08 0.03 44.45 53.24 19.77 0.00
500 0.14 0.11 106.87 116.82 9.31 0.04

1000 0.15 0.13 127.08 135.13 6.33 0.07

50
100 0.01 0.00 57.85 68.12 17.74 0.00
500 0.04 0.03 165.39 181.42 9.69 0.01

1000 0.04 0.03 200.86 214.19 6.64 0.01

70
100 0.00 0.00 66.66 80.33 20.52 0.00
500 0.01 0.01 219.09 239.44 9.29 0.00

1000 0.01 0.01 279.28 294.17 5.33 0.00

100
100 0.00 0.00 - - - 0.00
500 0.00 0.00 306.48 334.20 9.04 0.00

1000 0.00 0.00 385.12 410.96 6.71 0.00

Table 6. EOL reinsurance for IG(2, 1.5) distributed claims. The safety loading is θ = 0.1, expected claim
size is µ = 2, claim arrival rate is λ = 1, and each time unit is 0.01 years. Simulations are done with
N = 100, 000 sample paths. Retention level L is the solution to (17). For T = 100, L(T) = 6.89; for
T = 500, L(T) = 11.27; for T = 1000, L(T) = 13.39.

u T P̂(τu < T) P̂(τL
u < T) τ̂u,T τ̂L

u,T % Changes No Effect

10
100 0.51 0.33 15.99 21.11 32.05 0.15
500 0.59 0.52 35.92 41.51 15.55 0.39

1000 0.60 0.56 44.17 48.64 10.10 0.47

30
100 0.16 0.04 35.16 47.97 36.44 0.00
500 0.27 0.18 89.10 106.78 19.85 0.07

1000 0.28 0.22 109.79 124.45 13.35 0.12

50
100 0.04 0.00 46.48 63.63 36.89 0.00
500 0.12 0.06 133.06 159.35 19.76 0.01

1000 0.13 0.09 175.11 199.22 13.77 0.03

70
100 0.01 0.00 55.19 71.45 29.44 0.00
500 0.05 0.02 177.18 211.36 19.29 0.00

1000 0.06 0.03 233.06 267.53 14.79 0.01

100
100 0.00 0.00 - - - 0.00
500 0.01 0.00 227.50 272.16 19.63 0.00

1000 0.02 0.00 333.10 384.93 15.56 0.00

Improvements under EOL reinsurance are more substantial when the claims have a heavier
tailed distribution (the Pareto(1, 2) case) as opposed to the medium-heavy and light tailed cases,
where decreases in ruin probabilities and increases in conditional ruin times are comparatively minor.
Comparing the results in Tables 4–6 to those in Tables 1–3 correspondingly, we see that when u ≤ 30
the LCR treaty gives larger percentage improvements in the ruin probabilities over all three tail
regimes, but this superiority diminishes as u grows. The same is true of the conditional lifetimes.
The EOL method appears to perform markedly better than no reinsurance only when there are
heavy tailed claims, whereas the LCR treaty shows consistent improvements over all three classes of
claim distributions.
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4.3. Comparisons Across Distributions

The simulations also allow us to make interesting comparisons across distributions, that is,
between the Pareto, Inverse Gaussian and Gamma distributed cases. Intuitively our initial expectation
might be that heavier tailed claims distributions would tend to lead to higher ruin probabilities than
lighter tailed ones. Seemingly perplexing at first, then, might be that the ruin probability with or
without reinsurance is, for small reserve levels (u ≤ 30), larger for Inverse Gaussian claims than for
Pareto-type claims, despite the fact that the Inverse Gaussian has much lighter tails than the power
law distributions. This is true for both LCR (compare Columns 3 and 4 in Table 1 with Columns 3
and 4 in Table 3) and for EOL (compare Columns 3 and 4 in Table 4 with Columns 3 and 4 in Table 6),
to varying degrees.

The explanation for this is that in general ruin probabilities and are not closely correlated with
“heaviness” of tails, at least for moderate values of u. Ruin can occur by the accumulation of many
small or medium sized jumps as well as by occasional huge jumps. When the claim size distribution
follows Pareto(1, 2), we see in Figure 1 that most claims have relatively small sizes, roughly in the
range 1 to 4. Eventually, though, as in Figure 1, a huge claim (having magnitude near 60 in the figure),
will arrive. Thus, in a heavy tailed situation, the ruinous jump is very likely to be due to the largest
claim. However ruin may occur by the accumulation of many smaller jumps. In Figure 4, for the
Inverse Gaussian, we see this effect; there are many small and moderate sized claims which can
accumulate to give ruin. The effect tends to be more noticeable when the initial reserve is small.

Figure 5 plots the tails of the three distributions used in the simulations. The tail of the
Pareto(1, 2) is undoubtedly much bigger than for the other two distributions (not obvious in this figure,
but apparent if the x–axis is extended further to the right). Correspondingly, there is less probability
mass at small and medium sized claims than for the Gamma and Inverse Gaussian. The Gamma
distribution has distinctly higher probability mass around relatively small (<5) claim sizes. In the
medium size range (5–15), the Inverse Gaussian provides many substantial claims whose sum can
contribute to ruin for a small reserve, more so than for a heavy tailed distribution.

0.00

0.05

0.10

0.15

10

Gamma(2,1)
InvGauss(2,1.5)
Pareto(1,2)

Figure 5. Tails of the three claim distributions involved in our simulations.

The table entries for τ̂u,T or τ̂R
u,T (with R = M or L) are expected ruin times conditional on ruin

occurring by time T for the reinsured processes, and consequently are not particularly meaningful across
distributions. The percentage changes however are of some interest. In this case improvements due to
reinsurance are greater for the Pareto than for the Inverse Gaussian, as evidenced by the values of the
percentage-wise increases (Column 7) in all tables.
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5. Cost of Reinsurance

Reinsurance treaties are undertaken to reduce risk, but there is a cost attached. In the present
section we employ a dividend discount model to determine the available means by which the company
is able to pay for reinsurance without reducing the firm’s value, and how this affects risk as measured
by the standard deviation of the company value.

5.1. Reinsurance Premium and Dividend Adjustment

We assume the company’s current value is given by its future potential dividend stream,
discounted to present value. Let ρ be the time value of money and assume that dividends are
paid at constant rate d until the cedant’s default, if this occurs. Then the claim surplus process in (1)
must be modified to reflect the dividend payment:

Yt := Ct + dt =
Nt

∑
i=1

ξi − (c− d)t, t > 0. (18)

The insurance company will require a specified safety loading θ to be in effect after the dividend
is paid, so the net profit condition (2) is modified to

c− d = (1 + θ)λµ. (19)

In (18), Y does not depend directly on c and d, only on c− d through the value of θ. Since our
main interest is in the cost of reinsurance, we will take c and d as given. In practice their values will be
dependent on policyholders’ willingness to pay and the choice of safety loading θ. Note also that the
values of c in (1) and (18) must differ if d > 0 and the same safety loading is used in both cases.

The ruin time of the company is now given by τu = inf{t : Yt > u}, for an initial capital level
u > 0, and the cumulative dividend income by

Iu = d
∫ τu

0
e−ρt dt =

d
ρ
(1− e−ρτu). (20)

The company is subsequently valued at

Vu = E(Iu) =
d
ρ

(
1− E(e−ρτu ; τu < ∞)

)
. (21)

Now suppose a reinsurance scheme is incorporated, for which the cedant pays the reinsurer a
premium which is constant in time at rate r. As a result of the consequent change in risk profile of the
insurer, policyholders may be willing to pay an increased premium c∗ ≥ c, while shareholders will
accept a reduced dividend d∗ ≤ d. The reinsured claim surplus process is then given by

Y∗t =
Nt

∑
i=1

ξi − (c∗ − r− d∗)t− Rt, t > 0, (22)

where the nondecreasing process R represents the reduction in claims due to reinsurance. This is
given by (4) in the case of an EOL treaty, and by (5) for the LCR treaty. The reinsured claim surplus
process has ruin time τ∗u = inf{t : Y∗t > u}, and the dividend income Equation (20) and the valuation
Equation (21) are then modified by replacing d and τu with d∗ and τ∗u respectively. Thus

V∗u = E(I∗u) = E
(

d∗
∫ τ∗u

0
e−ρt dt

)
=

d∗

ρ

(
1− E(e−ρτ∗u ; τ∗u < ∞)

)
. (23)
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Since the aim of reinsurance is to prevent, or at least delay ruin, it is natural to require that τ∗u ≥ τu

for all u > 0. For the LCR and EOL reinsurance schemes, this can only be guaranteed if c∗ − r− d∗ ≥
c− d, and so we make this assumption. Thus for a given new premium rate c∗ and dividend rate d∗,
the largest reinsurance premium the cedant would consider paying is r = c∗ − c + d− d∗. When this
condition holds, (22) becomes

Y∗t =
Nt

∑
i=1

ξi − (c− d)t− Rt := Y′t , (24)

which does not depend on c∗ or on d∗, and the valuation Equation (23) becomes

V∗u =
d∗

ρ

(
1− E(e−ρτ′u ; τ′u < ∞)

)
, (25)

where τ′u = inf{t : Y′t > u} does not depend on c∗ or on d∗. In particular, reducing d∗ reduces V∗u .
Adopting a “utility indifference” rationale ([13,14]) whereby the reinsurance contract is beneficial

for the cedant if its utility with reinsurance exceeds that without, and “utility” is taken to be the net
present value of dividend income received, acceptable reinsurance contracts must satisfy V∗u ≥ Vu. So
to find the maximal reinsurance premium rmax that the cedant is willing to pay for a reinsurance treaty
R, we should maximize r = c∗ − c + d− d∗ over all d∗ ∈ [0, d] for which V∗u ≥ Vu.

Since V∗u is increasing in d∗, it follows immediately from (21) and (25) that the maximizing value
of d∗ is given by

d∗max(u) = d
1− E(e−ρτu ; τu < ∞)

1− E(e−ρτ′u ; τ′u < ∞)
, (26)

and the corresponding maximal reinsurance premium by

rmax(u) = c∗ − c + d− d∗max(u) = c∗ − c + d
E(e−ρτu ; τu < ∞)− E(e−ρτ′u ; τ′u < ∞)

1− E(e−ρτ′u ; τ′u < ∞)
. (27)

One interesting aspect of (27) is that the factor

vθ(u) :=
E(e−ρτu ; τu < ∞)− E(e−ρτ′u ; τ′u < ∞)

1− E(e−ρτ′u ; τ′u < ∞)
∈ (0, 1) (28)

depends on u and θ only, and not on d, and so represents the proportion of the dividend that may
be used to pay the reinsurance premium for a given safety loading. Thus if the reinsurer demands a
premium which does not exceed dvθ(u), then, without reducing the value of the firm, the premium
can be paid for entirely with a reduction in dividend. However if the insurance premium is in excess
of dvθ(u), then the insurance company will be forced to turn to policyholders to pay part of the cost if
a reduction in the value of the firm is to be avoided.

The calculation of dmax, rmax and vθ(u) amounts to the evaluation of the Laplace transforms of τu

and τ′u, where τ′u represents the ruin time under whichever type of reinsurance is being considered.
For LCR, τ′u = τM

u , and for EOL, τ′u = τL
u as specified in Sections 4.1 and 4.2. Currently there are no

known theoretical results for the Laplace transform of τM
u , and it would be of interest and useful to

derive them 2.

2 Indeed, from a theoretical perspective, very little appears to be known about the effects of trimming on an insurance risk
process and the subsequent ruin quantities. A series of approximate premium calculations for LCR treaties has been made
in the literature; see, for example, [15,16], and [17–20], and their references.
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In general the Laplace transforms need to be approximated by some means. We did this by using
the simulations to directly estimate Ee−ρ(τu∧T) for large T, and then observing that

0 ≤ Ee−ρ(τu∧T) − E(e−ρτu ; τu < ∞) ≤ e−ρT . (29)

This applies equally well to τ′u. As a check on this, and to decide on the number of simulations
needed for sufficient accuracy, we also used Proposition A1 in the Appendix, which shows that

E(e−ρτu ; τu < ∞) = P(Yeρ > u) (30)

where Yt = sup0≤s≤t Ys and eρ is an independent exponential random variable with mean 1/ρ.
The right hand side of (30) can be estimated by simulating the paths of Y. (30) also holds if Y and
τu are replaced by Y′ and τ′u, so the Laplace transform of τ′u can be estimated by the same means.
Then dmax, rmax and vθ(u) can be evaluated by

d∗max(u) = d
P(Yeρ ≤ u)

P(Y′eρ
≤ u)

rmax(u) = c∗ − c + d

1−
P(Yeρ ≤ u)

P(Y′eρ
≤ u)

 . (31)

and

vθ(u) := 1−
P(Yeρ ≤ u)

P(Y′eρ
≤ u)

. (32)

5.2. Choice of Parameters

Below we report on simulations for some of the derived quantities in the present section. We want
to give reasonably realistic simulation scenarios, so we have to make a credible choice of parameter
values. There seems to be little guidance in the literature for doing this. In the end, the values we
decided on are loosely based on some given in [21,22] together with some pragmatic considerations.

To start with, the initial reserve level u is only determined up to a scale constant. It can be thought
of as units of $10 k, or $1 m, etc., as convenient. The mean claim size µis then to be taken relative to u.

The time unit we set to be 0.01 years = 3.65 days, so values of T = 100, 500, 1000, as designated
in Section 3.3 and in the finite horizon scenarios considered in Section 5.5, correspond to 1 year,
5 years, 10 years. The time value of money is set at ρ = 0.0005. Taken together with the time unit
specified, this corresponds to a discount rate of 5% p.a. To approximate the infinite time horizon
we take T = 13800 in (29) so that the error of the asymptotic approximation to (30) is bounded by
e−13800ρ ≈ 10−3.

Safety loadings are taken to be θ = 0, 0.025, 0.05, 0.075, 0.1. The expected claim size µ = 2 and
claims rate of λ = 1 are again as designated in Section 3.3. Thus claims accumulate on average an
amount of 2 units per unit time length. This again is taken relative to u. The rate of premium inflow
c and the dividend rate d need not be specified because as shown in Section 5.1, only the difference
c− d = (1+ θ)λµ is relevant for the computations in the present section, and this is fixed by our choice
of θ, λ and µ.

How to decide on the value of L for the EOL reinsurance is also problematic. Again we could
find little guidance in the literature 3. We want to maintain comparability between the LCR and EOL
schemes as far as possible. The values of L used in Tables 4–6 (finite horizon cases) were chosen so

3 The work of [23] suggests that one common principle in choosing L is to keep it at “a level at which claims become
very infrequent”.
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that the expected claim surpluses were equal at the specified expiration time T of the reinsurance
treaties. These were found by solving (17). For the infinite time horizon problem, choosing L by first
solving (17) and then letting T → ∞, would render EOL reinsurance equivalent to no reinsurance,
as L→ ∞ when T → ∞. Hence in order to maintain comparability with LCR, for the simulations in
the next section we chose L as a percentile of the claim distribution in such a way that the proportion
of the dividend available to support the reinsurance premium was approximately the same between
the EOL and LCR schemes.

5.3. Proportion of Dividend Paid for Reinsurance

Figure 6 exhibits the graph of vθ(u) (see (32)) for each of the LCR and EOL treaties under each
of the three claims distributions. For the EOL treaty, L is taken as the 98th percentile of the claims
distribution. This percentile was chosen after some experimentation to give similar values for vθ(u) in
the LCR and EOL cases.
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Figure 6. vθ(u) (from (32)) is the proportion of the dividend available to pay for reinsurance without
reducing the value of the firm. For Pareto, Inverse Gaussian and Gamma claim distributions, initial
reserve levels u = 10, 30, 50, 70, 100, time value of money ρ = 0.0005, and safety loadings θ = 0, 0.025,
0.05, 0.075, 0.1. Top panel: LCR; bottom panel, EOL with L taken as the 98th percentile of the claims
distribution. Simulations are done with N = 10, 000 sample paths.

In both the LCR and EOL frameworks, we observe from Figure 6 that vθ(u) varies noticeably
across u levels and distributions. As the reserve level increases from u = 10 to u = 100, the proportion
of the dividend the company is willing to pay for reinsurance drops significantly, for each value of θ.
The rate of decrease is larger for smaller values of u for LCR but rather uniform across u values for
EOL. As the safety loading increases, the insurance company is only willing to apportion a smaller
part of the dividend toward reinsurance.

It is interesting to note that vθ(u) is bounded by 0.65 in all settings, indicating that the cedant is
unwilling to pay more than 65% of the dividend to reinsurance despite the high risk of ruin in cases
when θ is low and u is low (e.g., θ = 0 and u = 10). In this high risk region, ruin, though being likely
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(certain when θ = 0), will, with sufficient frequency, occur far enough into the future that the dividend
stream lost due to ruin is negligible. Hence the cedant finds it unneccesary to dedicate more than 65%
of dividend to reinsurance.

Since we have adopted a “utility indifference” rationale in calculating the premium, the expected
values of the company, with and without reinsurance, are forced to be equal. This can also be readily
checked: from (21), (23) and (31), we have

V∗u =
d∗max(u)

ρ
P(Y∗eρ

≤ u) =
d
ρ

P(Yeρ ≤ u) = Vu.

5.4. Standard Deviation of Dividend Income

In this section we compare the two reinsurance treaties, and the case with no reinsurance,
with respect to the standard deviation of the dividend income. This will provide insight into the
stabilising effect, or otherwise, of the reinsurance, which is a primary concern of the cedant company.

To calculate the standard deviation of the dividend income, observe that

σ(Iu) =
d
ρ

σ(1− e−ρτu),

while for the reinsured portfolio, by (26),

σ(I∗u) =
d∗max(u)

ρ
σ(1− e−ρτ′u)

=
d
ρ

1− E(e−ρτu ; τu < ∞)

1− E(e−ρτ′u ; τ′u < ∞)
σ(1− e−ρτ′u)

=
1− E(e−ρτu ; τu < ∞)

σ(1− e−ρτu)

σ(1− e−ρτ′u)

1− E(e−ρτ′u ; τ′u < ∞)

(
d
ρ

σ(1− e−ρτu)

)
=

c∗u
cu

σ(Iu),

(33)

where cu is the coefficient of variation of 1− e−ρτu and c∗u is the coefficient of variation of 1− e−ρτ′u .
Observe that the change in standard deviation is by a factor

sθ(u) =
c∗u
cu

(34)

which, as for vθ(u), depends on u and θ but not on d. Values of sθ(u) are summarised in Figure 7,
which shows a clear reduction in the standard deviation of the dividend income received, compared
with the case of no reinsurance, across all distributions, reserve levels and safety loadings, for both
LCR and EOL. The reduction is most significant under the Pareto claim distribution, lessening as the
tail of the claim distribution becomes lighter.
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Figure 7. sθ(u) (from (34), obtained by approximation at T = 13, 800) is the ratio of the standard
deviation of the dividend income obtained under reinsurance, to that without (infinite horizon case).
For Pareto, Inverse Gaussian and Gamma claim distributions, initial reserve levels u = 10, 30, 50, 70,
100, time value of money ρ = 0.0005, and safety loadings θ = 0, 0.025, 0.05, 0.075, 0.1. Top panel: LCR;
bottom panel, EOL, with L taken as the 98th percentile of the claims distribution. Simulations are done
with N = 10, 000 sample paths.

As the safety loading θ increases, in almost all cases, the amount of variance reduction increases.
However, looking across u levels, two clearly different trends emerge for LCR and EOL reinsurances.
In the EOL setting, sθ(u) decreases across all scenarios. In contrast, for LCR, sθ(u) increases initially
except for larger values θ in the Pareto case. Interestingly, small values of u exhibit the least variance
reduction for EOL across all distributions, but, outside of the Pareto case, the most variance reduction
for LCR, for the chosen parameters.

Overall, it may be adjudged that reinsurance has a non-trivial stabilising effect on the value of the
company, particularly for heavier tailed claims distributions.

5.5. Dividend Adjustment and Reinsurance Premium, Finite Horizon

While it may be useful for planning and evaluation purposes to consider infinite horizon results,
in practice a reinsurance treaty is not taken over an infinite time horizon, nor are dividends paid at a
constant rate forever. Thus it is also prudent to value the company over a finite time horizon. In this
case we should take into account both the value of the dividends paid, VT,u, up to the expiration time
T of the reinsurance treaty, and also the value of the (liquidated) portfolio, FT,u, at time T. Thus, we
replace (21) for the uninsured process with

VT,u =
d
ρ

(
1− Ee−ρ(τu∧T)

)
, together with FT,u = e−ρTE(u−YT)1{τu>T}. (35)
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Similarly, for the reinsured process, (23) is replaced by

V∗T,u =
d∗

ρ

(
1− Ee−ρ(τ∗u∧T)

)
, together with F∗T,u = e−ρTE(u−Y∗T)1{τ∗u>T}. (36)

By analogy with the infinite horizon case, we now wish to find the maximal reinsurance premium
the cedant is willing to pay subject to τ∗u ≥ τu a.s, V∗T,u ≥ VT,u and F∗T,u ≥ FT,u

4.
Applying the same logic as in Section 5.1, we find that Y∗ = Y′ is given by (24) and does not

depend on d∗. Since Y′t ≤ Yt for all t ∈ [0, T], the condition F∗T,u ≥ FT,u is automatically satisfied.
Thus, arguing as before, the maximizing dividend rate d∗max(T, u) and the corresponding maximal
reinsurance premium rmax(T, u) (now both depending on T and u) are found by equating VT,u and
V∗T,u in (35) and (36). Setting

vθ(T, u) =
E
(

e−ρ(τu∧T) − e−ρ(τ′u∧T)
)

1− Ee−ρ(τ′u∧T)
= 1−

P(Yeρ ≤ u, eρ ≤ T)

P(Y′eρ
≤ u, eρ ≤ T)

, (37)

(where the second equality in (37) follows from (A1) in the Appendix), we find that

d∗max(T, u) = d [1− vθ(T, u)] and rmax(T, u) = c∗ − c + dvθ(T, u). (38)

Observe that 0 ≤ vθ(T, u) ≤ 1, and, as in the infinite horizon case, vθ(T, u) depends on u and θ

but not on d. Thus, again, only a fixed proportion of the dividend is available to pay for reinsurance if
the value of the firm is not to be reduced.

We simulated vθ(T, u) with the parameters kept the same as in Tables 1– 3 for LCR reinsurance
and Tables 4–6 for EOL reinsurance. As mentioned previously, this is done to maintain comparability
between the two reinsurance schemes. In particular L is not the 98-th percentile, as in the infinite
horizon case, but is chosen according to (17). The results are summarized in Figure 8, which displays
several interesting features.

For both types of reinsurance, the value of vθ(T, u) is slightly higher for a Pareto claim distribution
than for an Inverse Gaussian, which is greater again than for a Gamma claim distribution. This is
consistent with the results for the ruin times in Tables 1–6. It is notable that for T = 100, u = 100,
regardless of θ and the claim distribution, the cedant is essentially unwilling to commit any of the
dividend payment to reinsurance. Observe also that when the ruin probabilities under LCR and
EOL are comparable in Tables 1–6, the values of vθ(T, u) are also comparable, whereas when the ruin
probability under LCR is smaller than under EOL, for example when u = 10 across all distributions,
the cedant is able to contribute a larger portion of the dividend to reinsurance for LCR than EOL.

Considered as a function of u, vθ(T, u) is decreasing and apparently convex in the case of the
LCR treaty across all values of θ and T and all distributions, and this is also true for the EOL treaty
in the T = 100 case. For larger T, vθ(T, u) is neither decreasing nor convex for EOL. Indeed for small
u, vθ(T, u) is seen to be increasing. As a function of T, for fixed θ and u, vθ(T, u) is increasing for
the LCR treaty. For the EOL treaty this is not the case since, for example, vθ(T, u) is decreasing for
u = 10. Finally, for fixed T and u, the influence of the safety loading θ is much less pronounced than in
Figure 6.

4 There are other possibilities here, for example requiring V∗T,u + F∗T,u ≥ VT,u + FT,u, instead of V∗T,u ≥ VT,u and F∗T,u ≥ FT,u.
We chose our formulation since it most clearly mirrors the infinite horizon problem. The interested reader may investigate
other versions of the optimization problem.
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Figure 8. vθ(T, u) (from (37)) is the proportion of the dividend available to pay for reinsurance without
reduing the value of the firm. For LCR and EOL reinsurance policies, Pareto, Inverse Gaussian and
Gamma claim distributions, initial reserve levels u = 10, 30, 50, 70, 100, time value of money ρ = 0.0005,
and safety loadings θ = 0, 0.025, 0.05, 0.075, 0.1. Top panel: T = 100; Middle panel: T = 500; Bottom
panel: T = 1000. Retention level L for EOL reinsurance is the solution to (17). For T = 100, L(T) = 5.64,
6.89, 4.49; for T = 500, L(T) = 12.62, 11.27, 6.10; for T = 1000, L(T) = 17.84, 13.39, 6.79 for Pareto,
Inverse Guassian and Gamma distributions respectively. Simulations are done with N = 10, 000
sample paths.

6. Related Literature and Discussion

In this section we mention some related results and propose possibly fruitful areas for
future investigation.

6.1. Beveridge, Dickson and Wu Simulations

The work of [24] considers a model with a constant dividend barrier. Their insurance risk
model incorporates a reinsurance arrangement h that applies to an individual claim, so that if the
individual claim amount is x, the reinsurer pays x− h(x), and the primary insurer retains h(x), where
0 ≤ h(x) ≤ x. A dividend barrier, b, is specified such that when the surplus process, net of reinsurance,
attains level b, dividends are paid out to shareholders at a specified rate c∗ until the next claim occurs.
The modified surplus process remains at level b until the next claim occurs, then falls by the (net of
reinsurance) amount of that claim. On any subsequent occasion that the net of reinsurance surplus
process attains level b, dividends are again payable at rate c∗. Ruin occurs when the surplus process
falls below zero, and no dividends are payable after the time of ruin. (See also [25–27].)
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Under such a barrier scheme, the cedant’s ultimate ruin is certain, and the insurance operation is
essentially being used to generate dividend income for the insurance company’s shareholders. The
work of [24] investigates the effect of the reinsurance for two possible versions of the function h:
proportional reinsurance, with h(x) = ax, where 0 < a ≤ 1, and excess of loss reinsurance, as we
define it.

The emphasis of their study is different to ours, being mainly concerned with the value of net
income to shareholders. They find for example that proportional reinsurance does not increase the
expected present value of net income to shareholders, at least for the situations they consider, although
“it is possible to increase the expected present value of net income to shareholders by effecting (EOL)
reinsurance”. Other than this their results are mixed and not comparable with ours since in our setup
ruin is not certain and we can investigate increases in ruin time with reinsurance and the other effects
listed in Section 5.

6.2. Trimming More Values

The LCR scheme can be generalised by removing from the claims surplus process, not just the
largest claim up to time t, but also the 2nd largest, 3rd largest, etc., up to a total of the r largest claims,
r = 2, 3, 4, . . .. In this connection [28] discuss two kinds of reinsurance systems in particular, using the
nomenclatures ECOMOR and LCR. ECOMOR stands for excédent du coû moyen relatif. In this scheme,
the reinsured amount is the sum of the differences between the r largest claims, and the r-th largest,
r = 1, 2, . . ., up to a designated time. It was introduced into the actuarial literature by [29]. LCR in [28]
is largest claims reinsurance as we define it, in which the reinsured amount is the sum of the r largest
claims up to a designated time.

A considerable amount of work has been done on these and related methods; for background
we refer to [30], who gives an overview of commonly used forms of reinsurance, and [28] for further
literature. The [28] results 5 are concerned with limiting distributions of the reinsured amounts under
the ECOMOR and LCR schemes, with subexponential, extremal class or regular variation assumptions
on the tail of the claim distribution. They illustrate their results with simulations of the distributions.

Recall the discussion in Section 4.1, where we observed that the Inverse Gaussian case has several
sizeable claims apart from the largest one. In order to achieve a similar level of efficiency for the
reinsurance policy as in the Pareto case, the cedant can seek covers on the sum of the r largest claims.
Then arises the question of an optimal choice of r, etc., which we do not go into here.

Some distributional identities for the r-trimmed version of a Lévy process have been studied
in [31]. The continuity properties of various trimming functionals in cádlág space are investigated
in [32]. Their formulae could be used to further analyse the first passage time (ruin time) and other
path properties of r-trimmed processes.

6.3. The “Light-Medium-Heavy” Classification

It is important to stress that our division of claims distributions into “Light”, “Medium” and
“Heavy”-tailed is not definitive, and the “lightness” of tails is not a uniquely defined concept.
For example, if this were to be defined by whether the ratio of tails is asymptotically smaller
for one than for the other, the “light-tailed” Gamma(2,1) distribution in (7) is judged “heavier”
than the “medium”-tailed Inverse Gaussian in (11) for certain values of the parameters 6 a and b.

5 The work of [28] allows a generalised version of the compound Poisson model where the Nt in (1) is replaced by a mixed
Poisson process. But their simulations are done with the compound Poisson.

6 But our particular choice of a = 2 and b = 1.5 makes the Inverse Gaussian heavier-tailed than the Gamma(2,1).
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Nevertheless, the classification is a useful way of specifying a range of tail behaviours on which to
base simulation investigations.

The work of [33] gives a detailed analysis of the classical Norwegian Fire Claims data set,
comparing a number of distributions for goodness of fit and using them to calculate value-at-risk and
related measures. Of the six probability models considered some are heavy tailed, such as the GPD
(generalised Pareto), others are lighter-tailed (the Weibull-Pareto). They argue “it is certainly tempting
to conclude that simpler distributions, such as GPD and FT (folded-t) are preferred for the task of
measuring tail risk” but “lead to substantially different risk evaluations”. This underlines the value
of investigations like ours for understanding the behaviour of the risk process across a variety of tail
regimens. The work of [33] further stress the need for formal statistical analysis for measuring and
pricing tail risk.

In any case, as we discussed in Section 4.1, the behaviour of ruin probabilities and ruin times for
finite u is not necessarily closely correlated with tail heaviness, however defined. These characteristics
can be strongly influenced by the distribution of small and medium claim sizes. In this context we
refer to discussions in [34,35] where asymptotic analyses of path properties of the process are given for
convolution equivalent distributions, and related to the ruin prospects of the company.

On the other hand, of course, in any scenario, reinsurance in either of the ways we have defined it
increases the lifetime of the company.

6.4. Lévy Insurance Risk Models

The LCR model can be extended in various directions. Insofar as our analysis is restricted to
the classical compound Poisson risk process, it can be generalised to a broader class of processes, the
“general Lévy insurance risk models”. See for example [7–10,36,37] , where these models and some
subclasses of them are considered in this context.

7. Summary

We considered two types of reinsurance, EOL and LCR, and investigated the pros and cons of
each by simulations. We took as outcomes the extent of increases in ruin times and decreases in ruin
probabilities as a result of reinsurance. Using a dividend discount model, we also investigated the
amount of the dividend available to pay for reinsurance and the consequent effect on the standard
deviation of the company value.

We found in Section 4.2 that the EOL method performs markedly better than no reinsurance
in terms of lower ruin probability and longer ruin times mainly when there are heavy tailed claims,
whereas the LCR treaty shows consistent improvements over all three classes of claim distributions.

Regarding payment for reinsurance, we saw in Figures 6 and 8 that for a Pareto claim distribution
a greater proportion of the dividend is available to pay the reinsurance premium than for Inverse
Gaussian, which is greater again than for a Gamma claim distribution. Over a finite time horizon,
with equal expected aggregate claims, LCR is at least as effective as EOL in averting ruin (Tables 1–6).
When they are equally effective, the proportion of the dividend available to pay for reinsurance
is comparable. When LCR is more effective, then the proportion is greater for LCR than for EOL
(Figure 5). LCR and EOL both reduce risk considerably as compared with no reinsurance, in a variety
of situations, as measured by the standard deviation of the dividend income.
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Appendix A. Laplace Transforms

Here we state some useful results concerning Laplace transforms of passage times. We used the
formulae in this section for checking the asymptotic values in Section 5.1.

Simulating the Laplace transforms: The Laplace transforms Ee−ρ(τu∧T) etc. for finite or infinite times
T can be simulated using the following formulae.

Proposition A1. For any ρ > 0, T > 0 and u ≥ 0,

Ee−ρ(τu∧T) = e−ρT + P(Yeρ > u, eρ ≤ T), (A1)

while for ρ > 0 and u ≥ 0,
E(e−ρτu ; τu < ∞) = P(Yeρ > u). (A2)

The same results hold if Y and τu are replaced by Y′ and τ′u.

Proof. For (A1), we have

Ee−ρ(τu∧T) = E(e−ρτu ; τu ≤ T) + e−ρTP(τu > T)

=
∫
[0,T]

e−ρtP(τu ∈ dt) + e−ρTP(τu > T)

= e−ρTP(τu ≤ T) +
∫
[0,T]

ρe−ρtP(τu ≤ t)dt + e−ρTP(τu > T)

= e−ρT +
∫
[0,T]

ρe−ρtP(Yt > u)dt

= e−ρT + P(Yeρ > u, eρ ≤ T).

A check of the calculation shows this also holds if Y and τu are replaced by Y′ and τ′u. Letting
T → ∞ then proves (A2) in both cases.

Although we did not use it in the simulation exercises, the asymptotic dividend d∗max can be
estimated similarly using the formula

P(Yeρ ≤ u, eρ ≤ s) ≤ P(Yeρ ≤ u) ≤ P(Yeρ ≤ u, eρ ≤ s) + e−ρs (A3)

for P(Yeρ ≤ u). (Take s large enough that e−ρs is negligible.)
Explicit Formula for Exponentially Distributed Claims: The Laplace transform of τu has been well

studied in the literature; see for example [37–41]. Explicit, or even semi-explicit, formulae are rarely
available. The simplest instance of an explicit formula is when claims are exponentially distributed
with mean 1/δ. Then by Proposition 4.1.2 of [6],

E(e−ρτu ; τu < ∞) = e−νu
(

1− ν

δ

)
,
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where ν is given by

ν =
(c− d)δ− λ− ρ +

√
((c− d)δ− λ− ρ)2 + 4(c− d)ρδ

2(c− d)
.

Setting ρ = 0 gives the probability of ultimate ruin as

P(τu < ∞) =
exp(−θδu(1 + θ)−1)

1 + θ
,

where c− d = (1 + θ)λδ−1.
An Upper Bound for P(τM

u < ∞): With the notation in (13), assume the Cramér case, so that (6) is
satisfied for some ν0 > 0. Assume that Ct is defined on a filtered probability space (Ω,Ft,F , P), and
let P∗ be the exponentially tilted probability measure given by

dP∗ := eν0Ct dP on Ft.

Then
dP = e−ν0Ct dP∗

and
dP = e

−ν0C
τM
u dP∗

on Ft ∩ {τM
u < ∞}. It follows from Corollary 3.11 of [37] that

eν0uP(τM
u < ∞) = eν0uE∗ exp

(
−ν0CτM

u

)
= E∗ exp

(
−ν0

(
CM

τM
u
− u + ZM

u

))
where CM

τM
u
− u ≥ 0 is the overshoot for the trimmed process over level u and,

ZM
u = sup

0<s≤N
τM
u

ξi ≥ 0.

So we get
eν0uP(τM

u < ∞) ≤ E∗ exp
(
−ν0ZM

u

)
.

Assuming ξ1 has unbounded support, then ZM
u → ∞ almost surely as u → ∞,

so eν0uP(τM
u < ∞)→ 0, whereas eν0uP(τu < ∞)→ c > 0. This shows that the probability of eventual

ruin is much smaller when trimming and suggests a way of quantifying this effect via the overshoot of
the trimmed process.
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