
PHYSICAL REVIEW A 95, 023820 (2017)

Supermode spatial optical solitons in liquid crystals with competing nonlinearities
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We study numerically the formation of spatial optical solitons in nematic liquid crystals with competing
nonlocal nonlinearities. We demonstrate that at a sufficiently high input power the interplay between focusing
and thermally induced defocusing may lead to the formation of two-peak fundamental spatial solitons. These
solitons have a constant spatial phase and hence represent supermodes of the self-induced extended waveguide
structure. We show that these two-peak solitons are stable in propagation and exhibit an adiabatic transition to a
single-peak state under weak absorption.
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I. INTRODUCTION

Spatial optical solitons represent optical beams propagating
without spreading in nonlinear media due to the balance
between diffraction, which tends to spread the beam, and
focusing from the nonlinear response of the medium. They
have been observed in a variety of nonlinear optical materials
exhibiting different types of nonlinearity, including spatially
local, nonlocal, Kerr-like, or saturable [1–3]. Typically, the
soliton formation has been discussed in the context of local
nonlinearity, i.e., when the nonlinear response in a particular
spatial location is determined by the light intensity in the
very same location. The most prominent examples are the
so-called Kerr media where the light-induced refractive-index
change is proportional to the light intensity. In the past decade
there has been interest in nonlocal nonlinear media, i.e., media
with a nonlinear response (index change) at a specific point
determined by the light intensity in the neighborhood of this
point [4]. The spatial extent of this region relative to the soliton
width determines the degree of nonlocality. The nonlocal
nonlinearity has been identified in such diverse systems as
thermal media [5], nematic liquid crystals (LCs) [6,7], Bose-
Einstein condensates [8], and atomic clouds [9–11].

Typical fundamental bright optical solitons have the form
of a finite beam, self-trapped by the nonlinear change of
the polarization of the material. In this respect, in most
situations, the soliton is nothing but a fundamental mode of the
self-induced waveguide [12]. As such, the stationary intensity
profile of a fundamental soliton features a single maximum. In
principle, it is possible to form stationary multipeak solitons.
However, these are not fundamental solitons. They can be
realized, for instance, as vector solitons, i.e., objects formed
by the simultaneous propagation of a few incoherently coupled
optical beams (components), with each of them representing
various (higher-order) modes of the optical waveguide induced
by the total intensity. These multihumped solitons have been
demonstrated in a number of systems including photorefractive
and thermal media [13]. It is worth mentioning that in nonlinear
media with spatially nonlocal nonlinearity, multipeak solitons
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can be formed as a bound state of two or more fundamental
solitons with a π phase shift between them. In local media
out-of phase solitons tend to repel each other [1] but strong
nonlocal nonlinearity introduces an attractive potential, which
causes the formation of bound states of solitons [14,15]. Such
dipole and higher-order multiple solitons have been observed
in nematic liquid crystals and media with a thermal nonlinear
response [16,17]. However, fundamental multipeak solitons
have yet to be reported. While it has been shown that a model
of nonlinear media with a periodic nonlocal response function
supports multipeak solitons, these solitons are unstable and
break up in propagation [18].

In this paper we demonstrate theoretically that fundamental
two-humped spatial solitons can exist in media with competing
nonlocal nonlinearities [19]. Specifically, we discuss a nonlin-
ear model of nematic liquid crystals. We show numerically that
the competition between reorientational, focusing and thermal,
defocusing nonlinearities leads, in our configuration, to the
formation of two-peak fundamental solitons. These solitons
which can be considered as supermodes of the self-induced
waveguide structure appear to be stable and resistant to strong
perturbations.

II. THEORY AND RESULTS

We consider the propagation of an optical beam in the
nematic liquid-crystal cell comprising LCs located between
closely placed (tens of micrometers) parallel glass plates
located in the y-z plane. We assume that the internal surfaces of
both plates are conditioned (for instance, by rubbing) to ensure
that the molecules of the LCs are anchored and aligned at an
angle θ = θ0, with respect to the z axis. Hence the LC in a cell
behaves as a uniaxial optical medium with a constant refractive
index. The electric field of the optical beam (wavelength
λ0) propagating in LC changes locally the orientation of
molecules, leading to an intensity-dependent index change for
extraordinary polarized light. If we consider beam propagation
along the z axis, the evolution of the amplitude of electric field
E(x,z) is described by [20]

2ik0n(θ0)
∂E

∂z
= ∂2E

∂x2
+ k2

0[n2(θ ) − n2(θ0)]E, (1)
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where k0 = 2π/λ0, and

n(θ ) = none√
n2

o sin2 θ + n2
e cos2 θ

(2)

is an effective index of refraction for the y-polarized (i.e.,
extraordinary) light. Here, no and ne denote ordinary and
extraordinary refractive indices, respectively. The index n(θ )
depends on the local orientation of molecules, which follow
the direction of the electric field of the beam, and here the
molecular orientation angle θ is governed by the following
relation,

∂2θ

∂x2
− �εε0

2K
sin 2θ |E|2 = 0. (3)

Here, K is an effective elastic constant [20,21] and �ε = n2
e −

n2
o. As Eqs. (2) and (3) show, the light-induced reorientational

index change is spatially nonlocal and it is always positive as
the molecules tend to align along the direction of the electric
field. This leads to self-focusing of the extraordinary polarized
optical beam and the formation of bright solitons, called
nematicons [20,22]. In the following, we will assume that
the propagation of light in the liquid crystal is accompanied
by weak absorption which causes its heating. This process is
governed by the heat equation

κ
∂2T

∂x2
+ cε0α

2
|E|2 = 0, (4)

where T denotes temperature, κ is the thermal conductivity, α

is the absorption coefficient, and c is the speed of light.
The light-induced heating modifies both the ordinary and

extraordinary refractive indices of the liquid crystal [23],
inducing effective self-defocusing of the extraordinary polar-
ized beam. Therefore, the nonlinear response of the nematic
liquid crystal consists of two competing, spatially nonlocal
processes: reorientation-driven self-focusing and thermally
induced self-defocusing. It it is worth mentioning that thermal
nonlinearity alone can be also used to support bright solitons.
This requires, however, the light beam to be ordinary polarized
[24,25]. Here, we are concerned with the role of the defocusing
thermal effect on the reorientational nonlinearity and consider
standard nematicons, formed by extraordinary polarized light.

The temperature dependence of a wide range of nematic liq-
uid crystals is described by universal polynomial dependence
[23]. In this paper, for the sake of concreteness, we will employ
an empirical polynomial formula, which accurately represents
the thermal response of a 4-(trans-4′-n-hexylcyclohexyl)-
isothiocyanatobenzene (6CHBT) liquid crystal in its nematic
phase, in the temperature range 18–42 ◦C [26,27]. Details of
this dependence are presented in the Appendix.

In general, the elastic constant K in Eq. (3) is also
temperature dependent [21]. However, this dependence is
weak and, as we checked, has no effect on our results. Hence
it will be neglected in further discussions.

The stationary bright soliton solutions of the system of
Eqs. (1)–(4) were found numerically with the help of the
imaginary-time method [28]. We assume the stationary so-
lution of Eq. (1) in a form E(x,z) = E(x) exp(iβz), where
β is the propagation constant. Then, after taking z to be
imaginary, z → iz, Eqs. (1)–(4) were solved iteratively until
its solution converges to the stationary solution representing

FIG. 1. Soliton solutions in the nematic liquid crystal with
competing focusing and defocusing nonlocal nonlinearities as a
function of beam power. Spatial intensity (solid) and light-induced
refractive-index (dashed) profiles are shown [total power (a) P = 1.4,
(b) 1.8, (c) 2.0, and (d) 2.2].

the fundamental soliton of the system. In these simulations the
temperature and molecular orientation were kept constant at
the boundaries, T (x = ±x0) = T0 = 20◦ and θ (x = ±x0) =
θ0 = 45◦, with 2x0 being the width of the computational
window. We used the finite difference to solve Eqs. (3) and (4).
Our simulations show that, as long as the focusing prevails,
the system always supports the existence of solitons. Typical
intensity profiles of these solitons are depicted in Fig. 1, for
varying total power, P = ∫ ∞

−∞ |E(x)|2dx. In particular, for low
input power, when the nonlinearity is predominantly driven by
the molecular reorientation, the solitons have a typical form
of a single-peak, bell-like, shape [see Fig. 1(a)]. However,
as the power increases, the thermal effect becomes relevant
and the soliton broadens, acquiring first a flat top [Fig. 1(b)]
and eventually splitting into two distinct peaks [Figs. 1(c) and
1(d)]. It should be stressed that the two-peak solution still
represents a fundamental soliton with a constant phase across
the soliton. Using a waveguide analogy for solitons, for low
power, the soliton-formed waveguide is induced purely by
reorientation of the molecules and is smooth, a function of
spatial coordinates. When the thermal effects come into play,
at higher power, the waveguide structure develops two internal
peaks. This is clearly seen in the refractive-index profiles
plotted with a dashed line in Fig. 1. It is worth mentioning that
although degrees of nonlocality represented by Eqs. (3) and (4)
are comparable, they contribute differently to the resulting
refractive index. The interplay between both orientational and
thermal effects leads to the formation of a complex waveguide
structure supporting multipeak solitons.

We can get a clearer picture of the competition between
the thermal and reorientational mechanisms by utilizing the
fact that the anisotropy, n2

e − n2
o, is relatively small. Then,

by expanding Eq. (1) in a series, we arrive at the following
approximate relation for the nonlinear response,

n2(T ,θ ) − n2(T ,θ0) = [
n2

e(T ) − n2
o(T )

]
(cos2 θ − cos2 θ0)

= �(T )�(θ ). (5)
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FIG. 2. Interplay between reorientational [�(θ )] and thermal
[�(T )] contributions to the nonlinear response of the liquid crystal
induced by two different soliton intensity distributions (indicated by
the dashed line).

It appears that the nonlinearity is governed by the product
of two functions representing the thermal [�(T )] and orien-
tational [�(θ )] contributions, respectively. This interplay is
different from typical nonlinear media with competing non-
linearities where different mechanisms contribute additively
to the total nonlinear response. We illustrate the interplay
between the thermal and reorientational effects in Fig. 2 for two
examples of light intensity distributions representing single-
peak [Fig. 2(a)] and two-peak [Fig. 2(b)] solitons. It is evident
that while �(θ ) is responsible for spatial focusing due to the
light-induced reorientation of molecules of LC and reaches
its maximum at the intensity maximum, the heat-induced
contribution [�(T )] decreases with intensity, causing spatial
defocusing. As a result, the full nonlinear response weakens
and flattens in the center, and finally develops a central dip for
higher intensity. This is exactly the regime where the two-peak
soliton formation takes place.

In Fig. 3 we illustrate the relation between the amplitude
and the power of different soliton solutions. It is clear that
two-peak solitons emerge above a certain critical power. The
insets in Fig. 3 show the intensity profiles of various soliton
solutions.

FIG. 3. Dependence of soliton power on its amplitude for
wavelength λ0 = 532 nm and initial orientation θ0 = 45◦, back-
ground temperature T0 = 20 ◦C, elastic constant K = 3.6 pN, ther-
mal conductivity κ = 0.135 W/m ◦C, and absorption coefficient
α = 5.769 1

m
.

FIG. 4. Stability of two-peak solitons. (a), (d) Input intensity
profiles. The red solid (black dashed) line indicates perturbed (exact)
input soliton profiles; (b), (e) soliton dynamics in propagation; (c),
(f) final beam profiles.

Since the bright soliton is a fundamental mode of the
self-induced waveguide, one can think of these two-humped
solitons as some kinds of supermodes of the self-induced
waveguide structure, which are well known in the context of
waveguide couplers and waveguide arrays [29]. The nonlinear
version of supermodes has been also demonstrated in nonlinear
couplers and cold atoms trapped in double-well potentials
[30]. However, such symmetric nonlinear modes are subject to
spontaneous symmetry breaking and result in spatially asym-
metric intensity distributions [31,32]. Therefore, it is crucial
to determine the stability of our two-peak soliton solutions.
To this end we used the original system of Eqs. (1)–(4)
to numerically propagate the soliton solution. We added
random perturbation to the amplitude of the exact solution and
propagated it over many diffraction lengths. We employed a
finite-difference beam propagation method with the Runge-
Kutta fourth-order algorithm and with a finite-difference
relaxation with the multigrid algorithm technique. The results
for two-humped solitons are shown in Fig. 4. The left
(right) panel in each row shows the initial (final) intensity
distribution (solid red line), while the dynamics of propagation
is shown by the contour plots. It is clear that the solitons are
stable in propagation and they retain their two-peak structure.
Moreover, it is evident that intensity perturbation is smoothed
out in propagation (compare left and right panel plots in
Fig. 4). This is due to the nonlocal character of nonlinearity
which tends to average out any sharp intensity variations.
Additional (not shown) simulations confirm that at large angles
solitons survive acute collisions with other solitons, however,
in shallow angle collisions their identity is lost because the
model is nonintegrable and collisions are inelastic.

So far in our simulations we have ignored linear loss. For
typical experimental conditions with a propagation distance
of millimeters this assumption is justified. However, it is
interesting to see how the linear loss affects two-peak solitons
in a long-distance propagation. We illustrate this in Fig. 5(a),
where we plot the intensity evolution of an, initially exact,
two-peak soliton as its propagates in the presence of weak
linear loss. As its power decreases, the soliton itself undergoes
an adiabatic transformation from a two-peak to a single-peak
structure. At any point along its propagation the beam is, in
fact, a soliton solution from the family represented in Fig. 3, as
indicated by a dashed line. This is evident in Fig. 5(b), where
we show the evolution of the power and amplitude of the beam
during propagation.
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FIG. 5. Absorption-induced adiabatic transformation of a two-
humped nematicon into a single-peak soliton in propagation. (a)
Evolution of the beam profile. (b) Variation of the power of the
soliton and its amplitude as a function of propagation distance. The
dashed black line follows the stationary soliton solutions from Fig. 3.

Having in mind future experimental observations of two-
humped solitons, we also address the issue of soliton exci-
tation through proper initial conditions. In Fig. 6 we show
numerically how a two-humped fundamental soliton can be
created from the initial amplitude distribution given by two
in-phase, weakly overlapping Gaussian beams. It is clear that
the two-peak solitary beam is formed in propagation. The
visible oscillations and the emission of radiation are caused by
the mismatch between the exact soliton profile and input beam.
Notice that unlike soliton excitation in typical nonlinear media
which is accompanied by the outward emission of dispersive
waves, here the radiation is confined to the center of the sample.
This is because we deal here with a so-called infinitely nonlocal
medium [33] where the degree of nonlocality is as large as
the transverse dimension of the medium. Consequently, the
light-induced waveguide is very broad, extending to the sample
boundaries, imposing strong localization in the center.

III. CONCLUSIONS

In conclusion, we studied theoretically the formation of
fundamental bright solitons in nematic liquid crystals in the
presence of competing nonlinearities: reorientational focusing
and thermally induced defocusing. We found that for a suffi-

FIG. 6. Excitation of two-humped fundamental solitons. (a)
Initial amplitude distribution. (b) Nonlinear evolution of the beam. (c)
Output intensity distribution of the soliton. The input power P = 2
(top row), P = 2.3 (bottom row).

ciently large input power the system supports the formation of
two-humped fundamental solitons with a uniform phase. These
solitons, which could be considered as supermode solitons of
the self-induced two-well index structure, appear to be stable
in propagation. We also showed that these solitons could be
excited by a properly shaped amplitude of the input beam.
While our calculations have been conducted using parameters
of a specific type of liquid crystal, our results are applicable to a
wide range of nematic liquid crystals since their birefringence
exhibits similar thermal behavior.
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APPENDIX

The ordinary and extraordinary refractive indices of the
6CHBT liquid crystal in the temperature range 18–42 ◦C are
modeled by the following empirical relation,

no = 
3
j=0ajT

j , ne = 
3
j=0bjT

j , (A1)

where coefficients aj and bj are also functions of the
wavelength. For instance, for λ = 532 nm, the coefficients
aj and bj read

a0 = 1.659, a1 = 2.814 × 10−3, a2 = −0.103 × 10−3,

b0 = 1.545, b1 = −1.861 × 10−3, b2 = 3.118 × 10−5.

where T is expressed in degrees (Celsius).
Figure 7 illustrates the above temperature dependence. It

clearly shows that while an ordinary refractive index only
weakly depends on temperature, the extraordinary index
decreases fast with temperature. At roughly 42 ◦C the crystal
undergoes a phase transition from a nematic to an isotropic
phase.

FIG. 7. Temperature dependence of ordinary (no) and extraor-
dinary (ne) refractive indices of the 6CHBT liquid crystal, for
λ = 532 nm. nizo denotes the refractive index in the isotropic phase.
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