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ABSTRACT

It is well known that laypersons and practitioners often resist using complex math-
ematical models such as those proposed by economics or finance, and instead use
fast and frugal strategies to make decisions. We study one such strategy: the recogni-
tion heuristic. This states that people infer that an object they recognize has a higher
value of a criterion of interest than an object they do not recognize. We extend previ-
ous studies by including a general model of the recognition heuristic that considers
probabilistic recognition, and carry out a mathematical analysis. We derive general
closed-form expressions for all the parameters of this general model and show the sim-
ilarities and differences between our proposal and the original deterministic model.

Corresponding author: M. Egozcue Print ISSN 1753-9579 jOnline ISSN 1753-9587
Copyright © 2017 Incisive Risk Information (IP) Limited

83



84 M. Egozcue et al

We provide a formula for the expected accuracy rate by making decisions according to
this heuristic and analyze whether or not its prediction exceeds the expected accuracy
rate of random inference. Finally, we discuss whether having less information could
be convenient for making more accurate decisions.

Keywords: recognition heuristic; judgment and decision making; fast and frugal; accuracy rate;
less-is-more effect (LIME).

1 INTRODUCTION

Many scholars argue that individuals are not unboundedly rational and instead are
bounded rational. There are many interpretations of bounded rationality (see Kat-
sikopoulos 2014). In one interpretation, individuals do not have complete and stable
preferences or have sufficient skills that enable them to achieve the highest attainable
point on their preference scale (see Simon 1955). Moreover, rationality is limited by
the information-gathering process, the cognitive limitations of the mind and the avail-
able amount of time to decide (see Gigerenzer and Selten 2002; Todd and Gigerenzer
2003).

There are many financial decisions where individuals compare (two) objects or
items and then must quickly choose one of them. Investors that must choose between
two different stocks, creditors that must decide between two different debtors and
consumers that must decide between two similar goods with different brands are
real-life examples of this type of financial decision process.

To solve this kind of problem, Goldstein and Gigerenzer (1999, 2002) claim that
decision makers follow a simple heuristic based on object recognition. The heuristic
uses the maxim that recognized objects have a higher value of some criterion than
unrecognized objects. Furthermore, the recognition heuristic suggests that if neither
of the two objects are recognized, then the subject decides randomly (with equal
probability); and if both objects are recognized, then the subject decides with the help
of some additional information (knowledge cues).

Also, the recognition heuristic challenged the idea that greater accuracy involves
greater effort. As some experiments have shown, more information can, instead of
increasing the rate of correct choices, decrease it. On the contrary, less information
could lead to higher accuracy rates, a feature coined the “less-is-more” effect. The
interested reader is referred to Pachur (2010) for an analysis of the experimental
evidence for the less-is-more effect (LIME).

Following Katsikopoulos (2010), we shall distinguish two types of effect:

(1) the full less-is-more experience occurs when a person recognizing an interme-
diate number of objects is more accurate than a person who recognizes all of
the objects; and

Journal of Risk Model Validation www.risk.net/journal



Simple models in finance 85

(2) the “below chance” LIME occurs when a person with no recognition of the
objects is more accurate than a person recognizing an intermediate number of
objects.

The interested reader is referred to Goldstein and Gigerenzer (2002) for a treatment on
the LIME, and to Katsikopoulos (2010) for theoretical predictions by and empirical
tests of the effect.

There are many applications of the recognition heuristic to finance. For instance,
in a bull market, Borges et al (1999) and Ortmann et al (2008) found evidence that
constructing portfolios based solely on the names of recognized companies yields
better returns than the market index. They conducted laboratory experiments where
participants constructed their portfolios with the most frequently recognized shares. In
most cases, the selected portfolios outperformed the market index. These results were
surprising, as they contradicted the efficient market hypothesis (see Fama 1970). That
is, simple investment strategies cannot consistently beat the market index. A reason
for this stunning result is that recognized companies may yield higher average returns
than unrecognized ones.

Boyd (2001) replicated the Borges et al (1999) test in a bear market, and reached
different conclusions. He found that the recognition heuristic as a strategy for picking
stocks does not outperform the market. A possible explanation for these contradictory
conclusions can be deduced from the model by Merton (see Andersson and Rakow
2007; Merton 1987), in which it is assumed that investors construct their optimal
portfolios only with known securities. This implies that recognized firms will tend to
have higher demand and value. Yet, the Merton model predicts a negative correlation
between stock returns and recognition, which implies that recognized companies will
yield lower returns than average, possibly explaining the results of Boyd (2001).

Andersson and Rakow (2007) study the effectiveness of the recognition heuristic
in choosing stocks but find few benefits of using this heuristic to form the portfolio.
They conclude that, with respect to changes in value, selecting stocks on the basis of
name recognition is a near random method of conforming a portfolio.

Nevertheless, the recognition heuristic has been applied to a wide variety of other
situations, for example, comparing cities with respect to their populations (Goldstein
and Gigerenzer 2002), predicting sports results (Andersson et al 2005; Scheibehenne
and Bröder 2007; Serwe and Frings 2006; Snook and Cullen 2006) and choosing
consumer goods (Hauser 2011; Herzog and Hertwig 2011; Oeusoonthornwattana
and Shanks 2010; Thoma and Williams 2013). We refer the reader to Gigerenzer and
Goldstein (2011) and the references therein for further applications of this heuristic.

The aim of this paper is to develop a theoretical general model of the recognition
heuristic. The novelty of our approach is that we assume that objects are recognized
according to some probability distribution. The rationale for setting up a probabilistic
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model is that memory is imperfect, and therefore people might not always recognize
the things they have experienced in the past (see Katsikopoulos 2010; Pleskac 2007;
Smithson 2010).

Our model will help us to understand the theoretical structure behind this heuristic
and aims to give the following results. First, we derive the explicit formulas for all the
parameters of the model and for the accuracy rate. Second, we state the conditions
under which making decisions according to the recognition heuristic surpasses the
strategy of choosing by simply flipping a fair coin (random inference). Third, we
establish the conditions under which the LIME may appear in the decision process.
Finally, we provide simulations to study the probability of occurrence of the LIME.

We find that having additional information about the objects has an important
role in improving the expected accuracy rate of this heuristic when their recognition
is identically distributed. Whereas, if the recognition of objects is nonidentically
distributed and there is no additional information about the objects, then a positive
correlation between the recognition of objects and the criterion ranking is crucial to
improve the expected accuracy rate of the heuristic.

The paper is organized as follows. In Section 2, we present a snapshot of the
heuristics used in finance. Section 3 introduces some definitions, provides the explicit
formulas for all the parameters and establishes some properties of the accuracy rate
of the model. Section 4 develops the general model for the recognition heuristic
and presents our main findings. In Section 5, we study the probability of the LIME
occurring by simulating the model under a variety of different scenarios. Concluding
remarks complete the paper.

2 A SNAPSHOT OF HEURISTICS

There are many reasons why individuals may use heuristics. First, decision makers
may be unable to obtain all the information necessary to solve (consciously or subcon-
sciously) a given problem. Second, even after obtaining the necessary information,
they may be unaware of the optimal method of solving the problem. Third, delay is
often not an option and decisions need to be made quickly.

Practitioners in finance and economics have long used simple rules. For instance,
the celebrated book by Graham (1973) recommends simple investing rules to obtain
abnormally high returns. Benartzi and Thaler (2001) show that successful investors
do not use sophisticated models to choose their portfolio, and usually allocate their
wealth using a naive strategy that consists in investing equal shares of their initial
wealth in each asset. Furthermore, Manasse and Roubini (2009) suggest some simple
“rules of thumb” to predict a sovereign debt crisis and Aikman et al (2014) evaluate
fast and frugal strategies in determining a bank’s capital adequacy and the probability
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of bank failure. Other examples of simple rules in finance can be found in Drexler et
al (2014) and Neth et al (2014) and the references therein.

Indeed, the use of heuristics has been compared with other decision models in
a number of additional applications, such as forecasting the commercial success of
patents (Åstebro and Elhedhli 2006), diversifying financial portfolios (DeMiguel et
al 2009a,b; Huberman and Jiang 2006; Monti et al 2012), predicting the future pur-
chasing behavior of past customers (Wübben and Wangenheim 2008), prescribing
antibiotics to children (Fischer et al 2002), geographical profiling of crimes (Ben-
nell et al 2010; Snook et al 2005), predicting political elections (Gaissmaier and
Marewski 2011), predicting the stock market and ranking airline safety (Richter and
Späth 2006).

To sum up, these studies conclude the following:

(i) heuristics have greater predictive accuracy than optimization models when
information is scarce;

(ii) the opposite appears to be true when information is not scarce; and

(iii) each of the heuristic models can outperform another more complex model, and
vice versa.

For a survey of these comparisons and a thorough treatment of heuristics, the interested
reader is referred to Gigerenzer et al (1999), Katsikopoulos (2011) and Schwartz
(2010).

3 DEFINITIONS, NOTATION AND PRELIMINARY RESULTS

In this section, we set out the definitions and notation of the Goldstein and Gigerenzer
(1999, 2002) original model of the recognition heuristic. The following mathemat-
ical notation is necessary to explain our main results. Suppose that we are deal-
ing with N objects xi for i D 1; : : : ; N , represented as an N -dimensional vector
x D .x1; x2; : : : ; xN /, called the recognition vector. The position of each coordinate
of x, and thus of the underlying object to be ranked, is based on the criterion rank-
ing, denoted by c D .c1; c2; : : : ; cN / D .1; 2; : : : ; N /, which is an arrangement of
the underlying objects in decreasing order with respect to the topic of interest. For
instance, according to the criterion ranking, the i th object is greater in value than the
j th object when i < j . Each coordinate, xi , of the vector is equal to 1 if the i th object
is recognizable, and to 0 if the object is unrecognizable.

For a recognition vector x, we have

NX
iD1

xi D N1 and
NX
iD1

.1 � xi / D N0;
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whereN1 is the number of recognized objects andN0 is the number of unrecognized
objects, with N D N0 C N1. We define the cue vector or cue ranking as follows:
q D .q1; q2; : : : ; qN /. The cue vector is used by the individuals only when both
objects are recognized. It indicates the ranking of the underlying objects, which may
or may not coincide with the above criterion ranking. We also assume that there are
no ties (ie, qi ¤ qj when i ¤ j ). We shall also use the following permutations of
x and q: x�1 D .xN ; xN�1; : : : ; x1/ and q�1 D .qN ; qN�1; : : : ; q1/. The following
example helps us to clarify the above notation.

Example 3.1 Consider the vector x D .1; 0; 1; 0; 0/, which means that there are
N D 5 objects, and the (default) criterion ranking is c D .1; 2; 3; 4; 5/. The objects
x1 and x3 have been recognized, and the other three objects have not been recognized.
In addition, suppose the cue ranking is q D .3; 1; 2; 5; 4/, which gives information
about the true object ranking. For instance, the cue ranking says that the first object is
ranked third, the second object is ranked first, and so on. We recall that this cue ranking
is used only when the two objects have been recognized. Therefore, we would only
compare the first and third elements of vector q. In this example, it means that when
the pairwise comparison is between object x1 and object x3 the individual would
follow the cue ranking and choose x3 as the higher value of the pair, as cue ranking
indicates this is so.

Finally, following the work by Smithson (2010), we define a parameter that will
be used later in this work.

Definition 3.2 Let vc (the knowledge cue validity) be the probability of correct
choices between any pair of objects using only the knowledge cue, q.

We are interested in finding the probability of correct choices or simply the accuracy
rate. Let A be the event “correct guess”. Thus, the expected proportion of correct
inference is the probability P.A/. In other words, P.A/ is the proportion of correct
answers in all of the pairwise comparisons. To calculate this probability, we first
introduce the following mutually exclusive and exhaustive sets or events.

� E00 consists of all the pairs of different objects in which both are unrecognized.

� E01 consists of all the pairs of different objects in which one is unrecognized
and the other is recognized.

� E11 consists of all the pairs of different objects in which both are recognized,

Now, using the rule of total probability, we have

P.A/ D P.A \E00/CP.A \E01/CP.A \E11/: (3.1)
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Our main goal is equivalent to findingP.A/ and calculating the “marginal” probabil-
itiesP.A\Eij / on the right-hand side of (3.1). Of course, the probabilityP.A\Eij /
is equal to 0 when Eij D ;, the empty set. When, however, Eij ¤ ;, the probability
can be expressed in terms of conditional probabilities by

P.A \Eij / D P.A j Eij /P.Eij /: (3.2)

Since computing the probabilities P.Eij / is straightforward for all i and j , our task
reduces to the calculation of the conditional probabilities P.A j Eij /, which can be
classified as follows.

� When E00 ¤ ;, we let ˇ0 WD P.A j E00/. This is called the knowledge
validity for unrecognizable objects. Throughout this paper, we set ˇ0 D 1

2
,

because when we face two unrecognizable objects, we choose one of them by
flipping a fair coin.

� When E01 ¤ ;, we set ˛ WD P.A j E01/. This is called the recognition
validity, which is the probability of scoring a correct answer when one object
is recognized and the other is not.

� WhenE11 ¤ ;, we set ˇ WD P.A j E11/. This is called the knowledge validity
for unrecognizable objects, which is the probability of scoring a correct answer
when both objects are recognized via an additional cue (knowledge cue).

Remark 3.3 Note that ˛ is a mapping of x into Œ0; 1�, while ˇ is a mapping of x
and q into Œ0; 1�.

Goldstein and Gigerenzer (2002) show that the probability of correct guesses, or
accuracy rate f .x; q/, is equal to

P.A/ D f .x; q/ D ˇ0
N0.N0 � 1/

N.N � 1/
C 2˛

N1N0

N.N � 1/
C ˇ

N1.N1 � 1/

N.N � 1/
; (3.3)

where ˇ0 D 1
2

, ˛ D ˛.x/ and ˇ D ˇ.x; q/.
So far, we have shown the accuracy rate of deciding between pairs of objects

using the recognition heuristic as it appears in the original model by Goldstein and
Gigerenzer (1999, 2002). Now, we derive closed-form solutions of all the parameters
in (3.3). Since we assume ˇ0 D 1

2
, we need to find the two remaining parameters, ˛

and ˇ. We start with the explicit formula for the recognition validity, which clearly
depends on the recognition vector, denoted by ˛.x/.

Proposition 3.4 For any x, we have

˛.x/ D
1

N1N0

NX
iD1

�
xi

NX
jDiC1

.1 � xj /

�
: (3.4)

www.risk.net/journal Journal of Risk Model Validation



90 M. Egozcue et al

Proof The proof is straightforward, since we need to calculate the proportion of
correctly guessed pairs among those with one recognized object and one unrecognized
object. Since there areN1 recognized objects andN0 unrecognized objects, using the
multiplication rule of counting we obtain N1N0 pairs with one recognized and one
unrecognized object. According to the heuristic, we shall guess correctly only pairs of
the form .1; 0/, while pairs of the form .0; 1/ will be guessed incorrectly. We initiate
our counting in the vector x containing the pairs .1; 0/ with the coordinate x1; if it
is equal to 0, we discard the case, and continue discarding until we reach the first
recognized object, that is, the leftmost “1” of the coordinates of x, which we denote
by xi D 1. There are

PN
jDiC1.1 � xj / zeros (ie, unrecognized objects) to the right

of xi . Hence, so far we have correctly guessed xi
PN
jDiC1.1 � xj / pairs. To pick the

remaining correctly guessed pairs, we proceed with the next “1” and count all the
zeros to the right of this, proceeding in the same fashion until no “1” remains. In this
way, we arrive at

PN
iD1 xi

PN
jDiC1.1 � xj / correctly guessed pairs, which are of the

form .1; 0/. �

Remark 3.5 Equation (3.4) can be written as

˛.x/ D
1

2
C

1

N1N0

�
N1.N1 CN0 C 1/

2
�

NX
iD1

ixi

�
; (3.5)

which appears in Pachur (2010, p. 598).

Next, we show the explicit formula for the knowledge validity, which will clearly
depend on the recognition vector and the cue vector. Hence, we shall denote knowledge
validity by ˇ.x; q/.

Proposition 3.6 The knowledge validity can be expressed as

ˇ.x; q/ D

PN
iD1

PN
jDiC1 xixj 1fqi < qj gPN
iD1

PN
jDiC1 xixj

; (3.6)

where the indicator function 1fqi < qj g is equal to 1 when qi < qj and equal to zero
otherwise.

Proof This proof is straightforward, noting that here we deal with pairs of two rec-
ognized objects, that is, with pairs of the form .1; 1/. In the numerator, we count those
pairs .1; 1/ that have been correctly recognized by the cue ranking. The denominator
is simply the total number of pairs .1; 1/ that we have to deal with, which is

NX
iD1

NX
jDiC1

xixj D
N1.N1 � 1/

2
:

�
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TABLE 1 ˛ and ˇ for N D 3.

ˇ.x; q/ depending on q‚ …„ ƒ
x ˛.x/ (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

(1,1,1) — 1 2/3 2/3 1/3 1/3 0
(0,1,1) 0 1 0 1 0 1 0
(1,0,1) 1/2 1 1 1 0 0 0
(0,0,1) 0 — — — — — —
(1,1,0) 1 1 1 0 1 0 0
(0,1,0) 1/2 — — — — — —
(1,0,0) 1 — — — — — —
(0,0,0) — — — — — — —

An example of the calculations of these parameters is shown in Table 1.
We pause here to present the following lemma, which we will use in later proofs.

Lemma 3.7 For any x and q, the following equalities hold:

(1) ˛.x/C ˛.x�1/ D 1;

(2) ˇ.x; q/C ˇ.x�1; q�1/ D 1.

We skip the proof of this lemma, since it is direct, by noting that if .i; j / is a
recognized–unrecognized pair and is correctly classified with vector x, then if .N C
1 � i; N C 1 � j / is a recognized–unrecognized pair, it will be wrongly classified
with vector x�1 and vice versa. The same argument applies to vector q.

It is worth noting the following relationship between the values of the probability
of success and a permutation of x and q.

Theorem 3.8 Given a recognition vector x and a cue ranking q, we have that

P.A/CP.Ac/ D f .x; q/C f .x�1; q�1/ D 1; (3.7)

where Ac is the complement of A.

The proof is omitted since it is sufficient to note that if .i; j / is a pair correctly
guessed by the heuristic corresponding to the setup .x; q/, then the pair .N C 1 �
i; N C 1; j / is wrongly guessed by the heuristic corresponding to the inverse setup
.x�1; q�1/, and vice versa.

Remark 3.9 Note that, even though numerically P.Ac/ D f .x�1; q�1/, the
probabilities are not the same, since they have different sample spaces.
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4 A GENERAL MODEL OF THE RECOGNITION HEURISTIC

Here, we present a general model of the recognition heuristic. Instead of assuming
that the individual recognizes (or not) an object with certainty, as Goldstein and
Gigerenzer’s model supposes, we assume that the recognition of the object is random.
As we shall see, this probabilistic approach will make our model more flexible in
characterizing the conditions under which the recognition heuristic predicts better
than random inference, and will also help us to discuss the occurrence of the LIME.
Moreover, the Goldstein and Gigerenzer model is a special case of our probabilistic
general model.

We define a random variable Xi such that Xi D 0 when the i th object is not
recognized and Xi D 1 when the i th object is recognized. We start be analyzing the
case when each object recognition probability has the same probability distribution.
Later, we study the case when this assumption is relaxed.

4.1 Recognition with identical distribution

We begin by assuming that Xi are independent random variables with distribution
P.Xi D 1/ D p and P.Xi D 0/ D 1� p for each i D 1; 2; : : : ; N , with p 2 Œ0; 1�.

More formally, letX W ˝ ! R
N be the recognition random vector, where˝ is the

sample space. We denote by X.!/ D x the real vector associated with the sample
point ! 2 ˝. For example, assume N D 3. Then, recall that we have 23 D 8

recognition vectors, ie, X 2 fx1;x2; : : : ;x8g, with

P ŒX D x1 D .0; 0; 0/� D .1 � p/
3; P ŒX D x2 D .1; 0; 1/� D p

2.1 � p/

and so on. Note that, under the previous assumptions, X and X�1 have the same
distribution.

We have also assumed that the knowledge cues are random. Let Q W ˝ 0 ! R
N

be a random vector of the knowledge cues, where ˝ 0 is the sample space. Similarly,
we denote by Q.!/ D q the real vector associated with the sample point ! 2 ˝ 0.
Likewise,X�1 andQ�1 are random vectors of, respectively, all possible vectors x�1

and q�1, as defined earlier.
Our aim is to find the expected probability of correct guesses (expected accuracy

rate) of the recognition heuristic for different recognition vectors. This is done by
considering all possible combinations of x and q for a givenN . As a benchmark, we
shall consider the simplest case, when X is independent ofQ.

We denote by EŒf .X ;Q/� the expected accuracy rate whenX andQ are random.
On the other hand, we denote by EŒf .X ;Q/ j Q D q� the expected accuracy rate
when X is random andQ D q.
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In Section 3, we derived the explicit formulas of all the parameters in (3.3) for any
x and q. Now, our goal is to find the expected accuracy rate for the general recognition
heuristic model.

To reach this goal, we need the following result.

Theorem 4.1 The following equality holds:

EŒ˛.X/ j X 2 A� D 1
2
; (4.1)

where A is the set of all x with pairs .0; 1/.

Proof Since X 2 A () X�1 2 A, by invoking the first result of Lemma 3.7,
we obtain

EŒ˛.X/ j X 2 A�C EŒ˛.X�1/ j X 2 A� D 1:

Since X and X�1 have the same distribution, we deduce that

EŒ˛.X/ j X 2 A� D EŒ˛.X�1/ j X 2 A�:

Thus, EŒ˛.X/ j X 2 A� D 1
2

, which is our desired result. �

Theorem 4.1 states that, on average, the recognition validity is equal to 1
2

. In
other words, the expected proportion of correct guesses for .0; 1/ pairs is one-half.
This result contradicts a possible correlation between the recognition validity and the
number of recognized items, as many works suggest (see, for example, Pachur 2010).

Now, we find the expected value of the knowledge validity.

Theorem 4.2 We have that

EŒˇ.X ;Q/ j Q D q;X 2 B� D vc.q/;

where B is the set of all x with pairs .1; 1/.

We skip the proof of this theorem, since it is easily deduced from Definition 3.2.
Since we have derived the conditional expectation of all the parameters, we are

now able to find the expectation of (3.3) givenQ D q.

Theorem 4.3 The following equality holds:

EŒf .X ;Q/ j Q D q� D 1
2
C .vc.q/ �

1
2
/p2: (4.2)

Proof We have that

EŒf .X ;Q/ j Q D q�

D
2
PN�1
iD1

PN
jDiC1 p

21fqi < qj g

N.N � 1/

C
2
PN�1
iD1

PN
jDiC1 p.1 � p/

N.N � 1/
C

PN�1
iD1

PN
jDiC1.1 � p/

2

N.N � 1/
:
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Since
N�1X
iD1

NX
jDiC1

D 1
2
N.N � 1/;

we obtain

EŒf .X ;Q/ j Q D q� D p2vc.q/C
2p.1 � p/C .1 � p/2

2
D 1

2
C .vc.q/ �

1
2
/p2:

�

Equation (4.2) has several implications for the recognition heuristic.

(1) When p D 0, the vectors have only elements equal to 0. Thus,

EŒf .X ;Q/ j Q D q� D 1
2
:

In addition, when p D 1, the random vectors have only elements equal to 1.
Thus, in this case, as the heuristic suggests, we decide with the help of the
knowledge cue(s), and (4.2) simplifies to

EŒf .X ;Q/ j Q D q� D vc.q/:

(2) EŒf .X ;Q/ j Q D q� is an increasing function in p if and only if vc.q/ > 1
2

,
and a decreasing function if and only if vc.q/ < 1

2
, since larger values of p

imply a greater chance of having a recognized object. Thus, there is an expected
LIME only when vc.q/ < 1

2
. This result tells us that, for any knowledge cue

whose validity is high enough, ie, is better than guessing (vc.q/ D 1=2), if
all objects have an equal probability of being recognized, then there is no
expected LIME. Note that we have a new kind of LIME, which we define for
the first time. Indeed, it is a natural extension of the deterministic LIME in the
probabilistic recognition case, and there is an interesting difference between
them: the probabilistic-case condition involves only vc.q/, not EŒ˛.X/� or
even p, while in the deterministic case (Goldstein and Gigerenzer’s version),
the condition involves ˛ and ˇ.

Finally, taking the expectation with respect to Q on both sides of (4.2), and using
the tower property of conditional expectation, yields a simple formula for finding the
expectation in (3.3):

EŒEŒf .X ;Q/ j Q D q�� D EŒf .X ;Q/� D 1
2
C .EŒvc.Q/� �

1
2
/p2: (4.3)

In the next theorem, we show the conditions under which the expected accuracy
rate of the recognition heuristic cannot improve on the strategy of deciding by flipping
a fair coin.
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Theorem 4.4 IfQ has the same distribution asQ�1, then

EŒf .X ;Q/� D 1
2
:

Proof The proof is deduced directly by invoking Lemma 3.7, noting that ifQ has
the same distribution as Q�1, then EŒvc.Q/� D

1
2

. The result follows by simply
plugging this equality into (4.3). �

A particular case of Theorem 4.4 is when Q is uniformly distributed. In this case,
the intuition behind the assertion in this theorem is the following: since any cue
vector has the same probability of being available, the cue recognition is, on average,
uninformative, and the recognition heuristic accuracy rate cannot improve on random
inference.

In conclusion, we find that the knowledge cue is crucial in determining whether
or not the expected accuracy rate exceeds the accuracy rate of random inference.
A similar conclusion appears in economics: the interested reader is referred to the
literature on the value of information and its transparency in decision making (see
Blackwell 1953; Broll and Eckwert 2006; Eckwert and Zilcha 2001). In addition, the
knowledge cue is fundamental to establish the appearance of the LIME. These findings
are consistent with the empirical evidence, where learning additional information
plays a fundamental role in increasing the accuracy rate of the recognition heuristic
(see, for example, Newell and Shanks 2004; Oeusoonthornwattana and Shanks 2010).

4.2 Recognition with nonidentical distribution

So far, we have assumed that each Xi is equally distributed with P ŒXi D 1� D p.
This is a strong assumption, since it implies that each item has the same probability
of being recognized. It is reasonable, however, to assume that objects with a higher
value are more likely to be recognized than objects with a lower value. Therefore,
here we relax this assumption as follows. Let Xi have the following distribution:

P ŒXi D 1� D pi and P ŒXi D 0� D 1 � pi ;

with i D 1; 2; : : : ; N and pi 2 Œ0; 1�.
The expected accuracy rate given q is easily deduced by the following result.

Theorem 4.5 We have that

EŒf .X ;Q/ j Q D q� D
2
PN�1
iD1

PN
jDiC1 pipj 1fqi < qj g

N.N � 1/

C
2
PN�1
iD1

PN
jDiC1 pi .1 � pj /

N.N � 1/

C

PN�1
iD1

PN
jDiC1.1 � pi /.1 � pj /

N.N � 1/
: (4.4)
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Remark 4.6 Note that, when pi D pj D p, (4.4) collapses to (4.2).

The expected unconditional accuracy rate when the probabilities of recognition are
different is presented in the next theorem.

Theorem 4.7 We have that

EŒf .X ;Q/� D

PN�1
iD1

PN
jDiC1.1C pi � pj /

N.N � 1/

C

PN�1
iD1

PN
jDiC1 pipj .2EŒ1fqi < qj g � 1�/

N.N � 1/
: (4.5)

Proof The proof follows from using the expectation tower property:

EŒEŒf .X ;Q/ j Q D q�� D EŒf .X ;Q/�

D
2
PN�1
iD1

PN
jDiC1 pipjEŒ1fqi < qj g�

N.N � 1/

C
2
PN�1
iD1

PN
jDiC1 pi .1 � pj /

N.N � 1/

C

PN�1
iD1

PN
jDiC1.1 � pi /.1 � pj /

N.N � 1/
: (4.6)

After simplifying the terms in (4.6), the assertion follows. �

Note that EŒf .X ;Q/� now depends on the values of each pi and EŒ1fqi < qj g�.
Hence, we can distinguish three cases that can help to elucidate when the expected
accuracy rate is greater than the rate of random inference.

Theorem 4.8 The following assertions hold.

(1) If pi D pj and EŒ1fqi < qj g� D
1
2

for all i; j D 1; 2; : : : ; N , then
EŒf .X ;Q/� D 1

2
.

(2) If pi > pj and EŒ1fqi < qj g� D
1
2

for all i ¤ j , with i; j D 1; 2; : : : ; N , then
EŒf .X ;Q/� > 1

2
.

(3) If pi > pj and EŒ1fqi < qj g� >
1
2

for all i; j D 1; 2; : : : ; N , then
EŒf .X ;Q/� > 1

2
.

We omit the proof of Theorem 4.8, since it can easily be derived from (4.5).
There is a big difference between this case and the identically distributed one.

Here, the recognition heuristic can have predictions better than random inference,
even if the additional information is uninformative. Moreover, in the nonidentically
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distributed case, we show that the expected accuracy rate of the heuristic is improved
when there is a positive correlation between the probability of recognition and the
criterion ranking, an intuitive fact that has been noted by Goldstein and Gigerenzer
(1999, 2002).

5 THE OCCURRENCE OF THE LESS-IS-MORE EFFECT

One of the characteristic features of the recognition heuristic, supported by experi-
mental data, is the LIME. That is, the accuracy rate might increase as we have less
information about the objects (less recognition). To distinguish the different types of
this effect, Katsikopoulos (2010) posits the concepts of “full experience” and “below
chance” effects as defined below.

Definition 5.1

(1) The full experience effect appears whenever there is a recognition vector x
such that

PN
kD1 xk < N and

f .x; q/ > f .z; q/;

where z D .1; 1; : : : ; 1/.

(2) The below chance effect appears when there is a recognition vector x such that

f .x; q/ < f .0; q/;

where 0 D .0; 0; : : : ; 0/.

The full experience effect states that full recognition of the objects does not ensure
an individual achieves the highest accuracy rate. In other words, a person with an
intermediate amount of experience could be more accurate than a person with all
possible experience. The below chance effect, on the other hand, states that an indi-
vidual with no experience might be more accurate than a person with an intermediate
amount of experience.

Next, we study the occurrence of the full experience and below chance effects as
defined above. For N D 3, it is easy to calculate “exactly” the value of these effects,
as we show in Table 2.

Note that when we have accurate additional information (q D .1; 2; 3/) the full
experience effect appears in one-fifth of the possible recognition vectors, whereas
if we have no accurate additional information (q D .3; 2; 1/), this effect appears in
three-quarters of the possible recognition vectors.
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TABLE 2 Less-is-more effect for N D 3.

Q‚ …„ ƒ
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

Experience 0.20 0.25 0.13 0.50 0.50 0.75
Below chance 0.25 0.25 0.25 0.50 0.50 0.50

TABLE 3 Less-is-more effect for N D 10 and N D 5000 simulations.

q1 q2 q3

Full experience 0.000 0.002 0.998
Below chance 0.162 0.176 0.813

In the following, we introduce a more complex example for N D 10 objects,
where we consider three knowledge-cue vectors that provide different qualities of
information:

� high accuracy, q1 D .1; 2; 3; 4; 5; 6; 7; 8; 9; 10/;

� medium accuracy, q2 D .2; 1; 3; 4; 5; 6; 7; 8; 10; 9/;

� low accuracy, q3 D .10; 9; 8; 7; 6; 5; 4; 3; 2; 1/.

We shall simulate the results depending on whether or not the cue vector is random.
If q is not random, we find these effects by choosing randomly (with equal probability)
a number of recognition vectors and calculating the effects for the cue vectors q1; q2
and q3. We show the results in Table 3.

Note that for N D 10 the probability of finding the LIME with highly accurate
additional information is practically zero. This probability increases to near unity as
the additional information becomes less accurate. It is interesting to note that the
below chance effect has a significant positive probability even when the additional
information is very accurate.

The possibility that the relationship between the knowledge cue validity and the
full experience effect could be nonlinear merits some discussion. Smithson (2010)
shows that when the knowledge cue validity is greater than 1

2
for pairs of unrecog-

nized objects, the full experience effect occurs only if the recognition heuristic has
greater validity than the knowledge cue for choices between pairs where one object
is recognized and the other is not. However, when the knowledge cue’s validity falls
below 1

2
, flipping a fair coin will perform better than the knowledge cue for choosing
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TABLE 4 Less-is-more effect with different probabilities of recognition.

p1 D 0.95, p1 D 0.45,
a D �0.05 a D 0.05

Full experience 0 0
Below chance 0.001 0.197

between objects, so that the full experience effect has a considerably greater chance
of occurring.

Finally, we perform the next simulation assuming that each object has a different
probability of recognition, ie, P ŒXi D 1� D pi . In this case, we run simulations
assuming that higher-ranked objects have a greater probability of being recognized
than lower-ranked objects. We set N D 10 and P ŒXi D 1� D pi and P ŒXj D 1� D
pi C a, where a 2 R for i < j , i; j D 1; 2; : : : ; 10. We run 1000 simulations with q
uniformly distributed over all its possible values. The results are depicted in Table 4.

Here, the magnitude of both effects is small, which is consistent with our assumption
that the probability of recognition increases with the objects’ ranking.

6 CONCLUDING REMARKS

In this paper, we presented a general model of the recognition heuristic that assumes
that objects’ recognition is random. The recognition heuristic simply states the rec-
ognized objects are “better” than unrecognized objects. Despite its simplicity, this
model has performed relatively well as a forecast tool in decision making. Our general
approach allowed us to theoretically validate, evaluate and compare the recognition
heuristic performance with other strategies of financial decision making.

We established the conditions under which the heuristic performs better than choos-
ing randomly in two different settings. First, we studied the case when the recognition
of objects is identically distributed. In this case, the additional information plays a
fundamental role in increasing the accuracy rate of this heuristic. Otherwise, its per-
formance cannot improve, on average, the accuracy rate of the strategy of random
inference. Second, we relaxed the identically distributed assumption and studied the
case where the recognition of objects is nonidentically distributed. Here, a positive
correlation between the recognition vector and the criterion ranking can make the
expected accuracy rate exceed the rate of random inference, even if we have an
average knowledge of information. Finally, we performed simulations to analyze the
probability of occurrence of the LIME. We found that the probability of its occurrence
is strongly correlated with the quality of the information provided by the knowledge
cue.
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