
RapidLyapunov control of finite-dimensional quantum

systems ⋆

Sen Kuang a,b, Daoyi Dong b, Ian R. Petersen b

aDepartment of Automation, University of Science and Technology of China, Hefei 230027, PR China

bSchool of Engineering and Information Technology, University of New South Wales, Canberra ACT 2600, Australia

Abstract

Rapid state control of quantum systems is significant in reducing the influence of relaxation or decoherence caused by the
environment and enhancing the capability in dealing with uncertainties in the model and control process. Bang-bang Lyapunov
control can speed up the control process, but cannot guarantee convergence to a target state. This paper proposes two classes
of new Lyapunov control methods that can achieve rapidly convergent control for quantum states. One class is switching
Lyapunov control where the control law is designed by switching between bang-bang Lyapunov control and standard Lyapunov
control. The other class is approximate bang-bang Lyapunov control where we propose two special control functions which
are continuously differentiable and yet have a bang-bang type property. Related stability results are given and a construction
method for the degrees of freedom in the Lyapunov function is presented to guarantee rapid convergence to a target eigenstate
being isolated in the invariant set. Several numerical examples demonstrate that the proposed methods can achieve improved
performance for rapid state control of quantum systems.
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1 Introduction

Quantum control has the potential to play important
roles in the development of quantum information tech-
nology and quantum chemistry, and has received wide
attention from different fields such as quantum informa-
tion, chemical physics and quantum optics (Dong & Pe-
tersen , 2010; Wiseman & Milburn , 2009; D’Alessandro
, 2007; Altafini & Ticozzi , 2012; Ticozzi & Viola , 2009;
Zhang et al. , 2012). Transfer control between quantum
states is one of the basic tasks in quantum control. Dif-
ferent control strategies such as optimal control (Dolde
et al. , 2014; Riviello et al. , 2014; Stefanatos , 2013; Yuan
et al. , 2012), adiabatic control (Kuklinski et al. , 1989;
Shapiro et al. , 2007), Lyapunov control (Mirrahimi et
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al. , 2005; Altafini , 2007; Wang & Schirmer , 2010a,b;
Kuang & Cong , 2008; Yi et al. , 2009; Wang et al. ,
2014),H∞ and LQG control (James et al. , 2008; Nurdin
et al. , 2009; Zhang & James , 2011), and sliding mod-
e control (Dong & Petersen , 2009, 2012a,b) have been
presented for controller design in quantum systems. A-
mong these control strategies, Lyapunov methods have
been extensively studied for quantum systems due to
their simplicity and intuitive nature in the design of con-
trol fields (Beauchard et al. , 2012; Sugawara , 2003; Cui
& Nori , 2013; Pan et al. , 2014). In Lyapunov control, a
Lyapunov function is constructed using information on
states or operators related to the quantum system and
the associated control law is designed based on the Lya-
punov function (feedback design). Then the control law
is implemented in an open-loop way. From the viewpoint
of control theory, one hopes that any system trajecto-
ry converges to a desired target state. Unfortunately,
the LaSalle invariance principle used in Lyapunov con-
trol methods cannot guarantee convergence of any sys-
tem trajectory to a target state. Some methods such as
using implicit Lyapunov functions or switching control
methods have been developed to achieve approximate or
asymptotic convergence for some specific quantum con-
trol tasks (see, e.g., Mirrahimi et al. (2005); Beauchard
et al. (2007); Kuang &Cong (2008); Zhao et al. (2012)).
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For quantum systems, rapid state control is of impor-
tance because a realistic quantum system cannot be per-
fectly separated from its environment, which will cause
a relaxation or decoherence effect. In the context of
quantum information processing, rapid control is a ba-
sic requirement for performance improvement in quan-
tum computing. In practical applications, robustness has
been recognized as a key requirement for the develop-
ment of quantum technology (Qi , 2013; Qi et al. , 2013;
Petersen et al. , 2012; Dong & Petersen , 2012b; Ya-
mamoto & Bouten , 2009; Kosut et al. , 2013; Ruth-
s & Li , 2012; Dong et al. , 2015). Rapid control may
make the control law more robust to uncertainties in the
model or in the control process. Time optimal control
methods have been proposed to achieve rapid control for
quantum systems (Weaver , 2000; Khaneja et al. , 2002;
Bonnard & Sugny , 2009; Glaser et al. , 2015). However,
the computational cost of searching for optimal control
laws is high for general quantum systems. In Hou et al.
(2012), an optimal Lyapunov design method was pro-
posed to design a control law for rapid state transfer in
quantum systems. Under power-type and strength-type
constraints on the control fields, two kinds of Lyapunov
control laws were designed. In particular, the strength-
type constraint led to a bang-bang Lyapunov control. In
Wang et al. (2014), the convergence problem for bang-
bang Lyapunov control law was further discussed for
two-level quantum systems.

The bang-bang Lyapunov control method in Hou et al.
(2012); Wang et al. (2014) can be used to achieve rapid
state control for some quantum systems with a high
level of fidelity. However, since the control function of
bang-bang Lyapunov control is not continuously differ-
entiable, the LaSalle invariance principle cannot be di-
rectly used to guarantee convergence. We show that a
high-frequency oscillation with an infinitesimal period
may occur in bang-bang Lyapunov control, which pre-
vents effective transfer to the target state. Such con-
trol fields can also not be realized in the laboratory.
In order to achieve rapidly convergent control in state
transfer, we propose two classes of new Lyapunov con-
trol methods in this paper: switching Lyapunov control
and approximate bang-bang Lyapunov control. We first
derive a sufficient condition for a two-level system that
shows a high-frequency oscillation with an infinitesimal
period in bang-bang Lyapunov control. Then we design
a switching strategy, i.e., switching between bang-bang
Lyapunov control and standard Lyapunov control. For
approximate bang-bang Lyapunov control, we design t-
wo special control functions that incorporate bang-bang
and smoothness properties. These proposed Lyapunov
design methods can achieve rapidly convergent control,
which is demonstrated by several numerical examples
involving a two-level system, a three-level system, and
two multi-qubit superconducting systems.

This paper is organized as follows. Section 2 presents
the system model, and describes the control task. Sec-

tion 3 discusses Lyapunov functions with various degrees
of freedom, presents several stability results, and devel-
ops a construction method for designing the degrees of
freedom. A switching strategy between bang-bang and
standard Lyapunov control schemes is proposed and the
switching condition is investigated in Section 4. In Sec-
tion 5, we propose two approximate bang-bang Lya-
punov control methods. Several numerical examples are
presented to demonstrate the performance of the pro-
posed rapid Lyapunov control strategies in Section 6.
Conclusions are presented in Section 7.

Notation

• i: the imaginary unit, i.e., i =
√
−1;

• [A,B]: the commutator of the matrices A and B, i.e.,
[A,B] = AB −BA;

• [A(n), B]: the repeated commutator with depth n, i.e.,
[A(n), B] = [A, [A, · · · , [A︸ ︷︷ ︸

n times

, B]]];

• ∥A∥: the induced 2-norm of the matrix A, or the l2-
norm of the vector A;

• AT: the transpose of the matrix A;
• A†: the conjugate transpose of the matrix A;
• ⟨ψ|: the conjugate transpose of the state vector |ψ⟩;
• a∗: the complex conjugate of the complex number a;
• |a|: the modulus of the complex number a;
• R: the set of all real numbers;
• C: the set of all complex numbers;
• tr(A): the trace of the matrix A;
• λ(A): the spectrum of the matrix A, i.e., the set of all
eigenvalues of A;

• ℜ(a): the real part of the complex number a;
• ℑ(a): the imaginary part of the complex number a.

2 Models of finite-dimensional quantum sys-
tems

Assume that the quantum system under consideration
is an N -dimensional and controllable closed system (Al-
bertini & D’Alessandro , 2003), described by the follow-
ing Liouville-von Neumann equation:

ρ̇(t) = −i
[
H0 +

m∑
k=1

Hkuk(t), ρ(t)
]
, (1)

where ρ(t) ∈ CN×N is a density matrix describing the
state of the system; H0 is the internal Hamiltonian, and
Hk is the control Hamiltonian that describes the interac-
tion between the external control fields and the system
(H0 and Hk are time-independent Hermitian matrices);
and uk(t) (k = 1, · · · ,m) are external real-valued con-
trol fields. In the energy representation, H0 has a diago-
nal form, i.e., H0 = diag[λ1, λ2, · · · , λN ]. We call ωab ,
λa − λb (a, b ∈ {1, 2, · · · , N}) the transition frequency
between the energy levels λa and λb. Denote |λj⟩ as the
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eigenvector of H0 corresponding to the eigenvalue λj ,
i.e., |λj⟩ = [0, · · · , 0, 1, 0, · · · , 0]T where the j-th elemen-
t is 1 and other elements are 0. All |λj⟩ (j = 1, · · · , N)
form an orthogonal basis of the N -dimensional complex
Hilbert space H ∼= CN .

For the quantum system in (1), its dynamics can also be
described by a unitary operator U(t) where U(t)U†(t) =
U†(t)U(t) = I as (D’Alessandro , 2007)

U̇(t) = −i
(
H0 +

m∑
k=1

Hkuk(t)
)
U(t) = −iH(t)U(t) (2)

with U(0) = I. Given an initial state ρ(0) = ρ0, the
quantum state at time t, ρ(t), can always be written as

ρ(t) = U(t)ρ0U
†(t), t ≥ 0. (3)

Equation (3) indicates that the system state ρ(t) at time
t always has the same spectrum with the initial state ρ0.

We assume that the control objective is to steer the
system to an eigenstate of H0, ρf , |λf ⟩⟨λf |, (f ∈
{1, 2, · · · , N}). Due to the isospectral evolution proper-
ty of closed quantum systems and the fact that pure s-
tates (tr(ρ2) = 1) and mixed states (tr(ρ2) < 1) have
different spectra, we assume that the initial state is a
pure state since the target eigenstate ρf is a pure state.
Moreover, quantum pure states have wide applications
in quantum information processing.

Also, the following conditions are assumed on the sys-
tem:

ωaf ̸= ωbf (a ̸= b; a, b ̸= f) ; (4)

(Hk′)jf ̸= 0 (j ̸= f ; ∃ k′∈{1, 2, · · · , m}) . (5)

Condition (4) means that the transition frequencies be-
tween the target eigenstate and other eigenstates are dis-
tinguishable, and that H0 is non-degenerate, i.e., its all
eigenvalues are mutually different. Condition (5) implies
that there exists a direct coupling between the target
eigenstate and any other eigenstate. The two condition-
s are helpful for providing strict theoretical results. On
the other hand, they could also be relaxed in practical
applications for achieving good control performance as
shown in the last numerical example in this paper.

We may use the Lyapunov method to design a control
law for model (1) and then apply the control law to the
real quantum system in an open-loop way (Dong & Pe-
tersen , 2010). In quantum control, open-loop control
is usually more practical since feedback control is diffi-
cult to implement in real systems due to the fast time
scales of quantum systems and measurement backaction
(Dong et al. , 2015). Since any physical quantum sys-
tem is unavoidably affected by some uncertainties, the

robustness of the control law is an important issue. In
Appendix A, we show that rapid control can make the
control law more robust to uncertainties in the model or
in the control process. This is another motivation (be-
sides reducing the relaxation and decoherence effect) to
develop rapid Lyapunov control in the sequel.

3 Lyapunov quantum control and stability

3.1 Lyapunov control design

Consider the following Lyapunov function:

V = tr (Pρ(t)) , (6)

where P is a positive semi-definite Hermitian operator
that needs to be constructed.

The time derivative of Lyapunov function (6) is

V̇ = tr (−iρ [P, H0]) +
m∑

k=1

uk(t)tr
(
− iρ [P, Hk]

)
. (7)

We design the control laws by guaranteeing V̇ ≤ 0 in (7).
Considering that tr(−iρ[P,H0]) in (7) is independent of
the control field uk(t) while P is an unknown Hermitian
matrix to be constructed, we let

[P, H0] = 0. (8)

Due to the fact that the diagonal matrix H0 is non-
degenerate, (8) implies that P is also a diagonal matrix.
Such a P is easy to design since we have complete flexi-
bility to choose P . We denote P , diag[p1, p2, · · · , pN ].
By using (8), (7) can be written as

V̇ =
m∑

k=1

uk(t)Tk(t), (9)

where Tk(t) , tr(−iρ(t)[P,Hk]). For notational simplic-
ity, we also denote Tk(t) as Tk in the sequel.

Thus, by guaranteeing V̇ ≤ 0, we can design a control
law with the following general form:

uk(t) = fk(Tk), (k = 1, 2, · · · ,m) (10)

where the control function fk(·) satisfies: 1) fk(x) (x ∈
R) is continuously differentiable with respect to x; 2)

fk(0) = 0; and 3) fk(x) · x ≤ 0. Since Tk = T †
k is a real

number, we have V̇ =
∑m

k=1 fk(Tk)Tk ≤ 0. In particular,
we call the following control law the standard Lyapunov
control in this paper:

uk(t) = −KkTk(t), (k = 1, 2, · · · ,m) (11)
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where the control gain Kk > 0 is used to adjust the
amplitude of the control field uk(t).

3.2 General stability results

Control law (10) means that the whole system is a non-
linear autonomous system. We use the LaSalle invari-
ance principle to analyze the stability of the system. The
LaSalle principle ensures that system (1) with the con-
trol fields in (10) necessarily converges to the largest in-

variant set E contained in M , {ρ : V̇ (ρ) = 0}.

Assume ρ̄ ∈ E and let ρ(0) = ρ̄. The invariance property

guarantees that V̇ (ρ(t)) = 0 (t ≥ 0), which holds when
uk(t) = 0 (k = 1, · · · ,m), i.e.

Tk = tr(−iρ(t)[P, Hk]) = 0, (k = 1, · · · ,m). (12)

Substituting the solution of ρ̇(t) = −i[H0, ρ(t)]) into
(12) and using (8), one has

tr
(
e−iH0tρ̄eiH0t[P, Hk]

)
= tr

(
eiH0tHke

−iH0t[ρ̄, P ]
)

= tr
( ∞∑

n=0

[
(iH0t)

(n), Hk

]
n!

[ρ̄, P ]
)

=

∞∑
n=0

−intn

n!
tr
(
[H

(n)
0 ,Hk][P, ρ̄]

)
= 0. (13)

Since the time function sequence 1, t, t2, · · · is linearly
independent, and H0 and P are diagonal, we have

tr
([
H

(n)
0 , Hk

]
[P, ρ̄]

)
= tr

((
ωn
jl(Hk)jl

)(
(pj − pl)ρ̄jl

))
= 0, (k = 1, · · · ,m; n = 0, 1, 2, · · · ). (14)

Since Hk and ρ̄ are Hermitian matrices, (14) reduces to∑
j< l

(
ωn
jl(Hk)jl(pl − pj)ρ̄lj + ωn

lj(Hk)
∗
jl(pj − pl)ρ̄

∗
lj

)
= 0, (k = 1, · · · ,m; n = 0, 1, 2, · · · ). (15)

For even and odd n, (15) has the following forms:∑
j< l

ℑ
(
ωn
jl(Hk)jl(pl − pj)ρ̄lj

)
= 0, (n = 0, 2, · · · ); (16)

∑
j< l

ℜ
(
ωn
jl(Hk)jl(pl − pj)ρ̄lj

)
= 0, (n = 1, 3, · · · ). (17)

We denote FN = N(N − 1)− 2, and define

ξk , [(Hk)12ρ̄21, · · · , (Hk)1N ρ̄N1, (Hk)23ρ̄32, · · · ,
(Hk)2N ρ̄N2, · · · , (Hk)N−1,N ρ̄N,N−1]

T, (18)

M,



1 · · · 1 1 · · · 1 · · · 1

ω2
12 · · · ω2

1N ω2
23 · · · ω2

2N · · · ω2
N−1,N

ω4
12 · · · ω4

1N ω4
23 · · · ω4

2N · · · ω4
N−1,N

... · · ·
...

... · · ·
... · · ·

...

ωFN
12 · · · ωFN

1N ωFN
23 · · · ωFN

2N · · · ωFN
N−1,N


, (19)

P , diag [p2 − p1, · · · , pN − p1, p3 − p2, · · · ,
pN − p2, · · · , pN − pN−1], (20)

Ω, diag [ω12, · · ·, ω1N , ω23, · · ·, ω2N , · · ·, ωN−1,N ]. (21)

Then (16) and (17) read

MPℑ(ξk) = 0, (k = 1, · · · ,m); (22)

MΩPℜ(ξk) = 0, (k = 1, · · · ,m). (23)

Since system (1) evolves unitarily, the positive limit set
of any evolution trajectory has the same spectrum as its
initial state. Thus, the invariant set that the system with
control law (10) will converge to can be characterized in
the following theorem.

Theorem 1 Given an arbitrary initial pure or mixed
state ρ0, and under the action of the control fields in
(10), system (1) converges to the invariant set E(ρ0) =
{ρ̄ : λ(ρ̄) = λ(ρ0); ρ̄ = ρ̄†;MPℑ(ξk) = 0,MΩPℜ(ξk) =
0, (k = 1, · · · ,m)}, where M,P,Ω and ξk are defined by
(18)-(21).

3.3 Construction of Hermitian operator P

In this subsection, we study the construction method
of P to achieve convergence to the target eigenstate ρf .
Thus, we only consider the case of initial pure states.
For system (1), all possible initial pure states can be
divided into two classes: initial states satisfying either
tr(ρ0ρf ) ̸= 0 or tr(ρ0ρf ) = 0. We consider these two
classes of initial states respectively.

When the initial state ρ0 satisfies tr(ρ0ρf ) ̸= 0, we have
the following result.

Theorem 2 Consider system (1) satisfying conditions
(4), (5) and with the control fields in (10). Assume that
the target eigenstate ρf and the initial pure state ρ0 sat-
isfy tr(ρ0ρf ) ̸= 0. If the diagonal elements of P satis-
fy pj = p > pf ≥ 0, (j = {1, 2, · · · , N}/f), then ρf is
isolated in the invariant set E(ρ0) and the system state
starting from ρ0 necessarily converges to ρf .

PROOF. Using conditions (4) and (5), we can sim-
plify the invariant set E(ρ0) in Theorem 1. For con-
venience of expression, we assume that the target
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eigenstate is the N -th eigenstate of H0, i.e., ρf = ρN .
If pj = p > pN ≥ 0, (j = 1, · · · , N − 1), we have

MP = (pf − p)


0 ··· 1 0 ··· 1 0 ··· 1
0 ··· ω2

1N 0 ··· ω2
2N 0 ··· ω2

N−1,N

0 ··· ω4
1N 0 ··· ω4

2N 0 ··· ω4
N−1,N

... ···
...

... ···
...

... ···
...

0 ··· ωFN
1N 0 ··· ωFN

2N 0 ··· ωFN
N−1,N

 and

MΩP = (pf − p)


0 ··· ω1N 0 ··· ω2N 0 ··· ωN−1,N

0 ··· ω3
1N 0 ··· ω3

2N 0 ··· ω3
N−1,N

0 ··· ω5
1N 0 ··· ω5

2N 0 ··· ω5
N−1,N

... ···
...

... ···
...

... ···
...

0 ··· ωFN+1
1N

0 ··· ωFN+1
2N

0 ··· ωFN+1
N−1,N

.
Thus, (22) and (23) are equivalent to

1 1 ··· 1
ω2

1N ω2
2N ··· ω2

N−1,N

ω4
1N ω4

2N ··· ω4
N−1,N

...
...

...
...

ωFN
1N ωFN

2N ··· ωFN
N−1,N

 · ℑ

 (Hk)1N ρ̄N1

(Hk)2N ρ̄N2

...
(Hk)N−1,N ρ̄N,N−1

 = 0 and


ω1N ω2N ··· ωN−1,N

ω3
1N ω3

2N ··· ω3
N−1,N

ω5
1N ω5

2N ··· ω5
N−1,N

...
...

...
...

ωFN+1
1N

ωFN+1
2N

··· ωFN+1
N−1,N

 · ℜ

 (Hk)1N ρ̄N1

(Hk)2N ρ̄N2

...
(Hk)N−1,N ρ̄N,N−1

 = 0,

respectively. Using condition (4), one can obtain
[(Hk)1N ρ̄N1, (Hk)2N ρ̄N2, · · · , (Hk)N−1, N ρ̄N,N−1]

T =
0. Using condition (5), we can obtain the relationship
[ρ̄N1, ρ̄N2, · · · , ρ̄N,N−1]

T = 0. Hence, all states in the in-

variant set E(ρ0) are of the form ρ̄ =
[
Ā 0
0 ×
]
, where “×”

represents an arbitrary eigenvalue of the initial state ρ0.

Since ρ0 is a pure state, ρ0 has one eigenvalue 1 andN−1
eigenvalues 0. Hence, the states in the invariant setE(ρ0)
have the form of ρ̄1 =

[
A1 0
0 1

]
or ρ̄2 =

[
A2 0
0 0

]
, where A1

and A2 are Hermitian matrices. For ρ̄1, all eigenvalues
of A1 are 0, which leads to A1 = 0, i.e., ρ̄1 = ρf . For
ρ̄2, A2 has one eigenvalue 1 with multiplicity 1 and one
eigenvalue 0 with multiplicity N − 2. In other words,
E(ρ0) = {ρf} ∪ {ρ̄2 =

[
A2 0
0 0

]
: A2 has one eigenvalue 1

and N − 2 eigenvalues 0} , E1(ρ0) ∪ E2(ρ0). It is clear
that the target eigenstate ρf is isolated in E(ρ0).

For any initial pure state ρ0 which satisfies tr(ρ0ρf ) ̸= 0,
one has ρ0 /∈ E(ρ0) or ρ0 ∈ E1(ρ0). When ρ0 ∈ E1(ρ0),
the conclusion naturally holds. When ρ0 /∈ E(ρ0), we
have V (ρ̄2) = p > V (ρ0) > pf . Hence, when tr(ρ0ρf ) ̸=
0 and p > pf , system (1) necessarily converges to ρf . �

When the initial state ρ0 satisfies tr(ρ0ρf ) = 0, we
have ρ0 ∈ E2(ρ0). That is to say, under the construc-
tion relation of P in Theorem 2, control law (10) can-
not enable any state transfer. In this case, there exists
a j ∈ {1, 2, · · · , N}/f such that ⟨λj |ρ0|λj⟩ ̸= 0. Thus,
we may use the following switching control to achieve
convergence to the target state:

uk(t) =

{
fk(sin(ωjf t)), t ∈ [0, t0]

fk(Tk), t > t0
(k = 1, · · · ,m), (24)

where ωjf , λj − λf , and t0 is a small time duration.

When t0 is small, the state ρ(t0) is not in the invariant
set E(ρ0). If we take ρ(t0) as a new initial state, then
Theorem 2 guarantees that control law (10) can achieve
convergence to the target state. Thus, we have the fol-
lowing conclusion.

Theorem 3 Consider system (1) satisfying conditions
(4), (5) and with switching control (24). Assume that the
target eigenstate ρf and the initial pure state ρ0 satisfy
tr(ρ0ρf ) = 0. If the switching time t0 satisfies ρ(t0) /∈
E(ρ0) and the diagonal elements of P satisfy pj = p >
pf ≥ 0 (j = {1, 2, · · · , N}/f), then the system state
starting from ρ0 necessarily converges to ρf .

For general continuously differentiable control function
(10), the construction relation in Theorems 2 and 3 en-
sures convergence to the target eigenstate. Based on the
construction relation of P , we propose two new methods
including switching Lyapunov control and approximate
bang-bang Lyapunov control to achieve rapidly conver-
gent Lyapunov control.

4 Switching between Lyapunov control schemes

To speed up the control process, Ref. Hou et al. (2012)
proposed two design methods for quantum systems with
power-type constraints and strength-type constraints
such that V̇ in (9) takes the minimum value at each
moment. For the case with strength-type constraints,
the “optimal” control law is the following bang-bang
Lyapunov control:

uk(t) =


−S, (Tk > 0)

S , (Tk < 0)

0 , (Tk = 0)

(k = 1, · · · ,m), (25)

where S is the maximum admissible strength of each
control field, i.e., |uk(t)| ≤ S.

The bang-bang Lyapunov control in (25) makes V̇ in (9)

satisfy V̇ ≤ 0, and can speed up completing some quan-
tum control tasks. Especially, the state may move rapid-
ly towards the target state at the early stages of the con-
trol (Hou et al. , 2012). However, convergence cannot be
guaranteed since the control function is not continuous-
ly differentiable. Here, we first show that the bang-bang
Lyapunov control may lead to a high-frequency oscilla-
tion phenomena (Hou et al. , 2012; Wang et al. , 2014),
which prevents effective state transfer towards the tar-
get state. Then, we propose a switching Lyapunov con-
trol strategy to achieve rapidly convergent control, i.e.,
switching between the bang-bang Lyapunov control and
the standard Lyapunov control.

5



4.1 High-frequency oscillation in bang-bang Lyapunov
control

In this subsection, we present a sufficient condition for
two-level quantum systems that high-frequency oscilla-
tion phenomena occur in the bang-bang Lyapunov con-
trol (Hou et al. , 2012), which can be used to determine
switching conditions for the design of switching Lya-
punov control. We first give the following definition.

Definition 4 The control law in (25) is said to have a
high-frequency oscillation with an infinitesimal period at
time t0 if ∃ ϵ > 0,

inf{τ > 0 : uk(t+ τ) ̸= uk(t)} = 0

for all t ∈ [t0, t0 + ϵ].

Since the control in (25) can take only one of three con-
stant values (0 and ±S) at any time, the high-frequency
oscillation in Definition 4 means that the control always
jumps between these values after an arbitrarily small
time in the interval [t0, t0 + ϵ]. Such a control field can-
not be realized in practice.

Now consider system model (1) in the case of two energy
levels, and denote its internal Hamiltonian asH0 and its
control Hamiltonian as H1:

H0 =

[
λ1 0

0 λ2

]
, H1 =

[
0 r

r∗ 0

]
, (26)

where r ̸= 0.

We define the first eigenstate |λ1⟩ , [1, 0]T as the excited

state, |λ2⟩ , [0, 1]T as the ground state, and

ω12 , λ1 − λ2 > 0. (27)

Let the excited state |λ1⟩ be the target state. According
to Theorem 2 or Theorem 3, P can be chosen as P =
diag [p1, p], (p > p1). Thus, [P, H1] = (p − p1)

[
0 −r
r∗ 0

]
.

From (25), T1 = 0 holds at any zero point of the bang-
bang Lyapunov control. For convenience of analysis, in
this paper we denote such moments as 0̃ to differentiate
them from the initial moment 0. Thus, we have

T1(0̃) = −itr
(
[P,H1]ρ(0̃)

)
= 2(p− p1) · ℑ

(
r∗ρ12(0̃)

)
= 0. (28)

Equation (28) equals that r∗ρ12(0̃) ∈ R. For the two-
level system, we have the following result.

Theorem 5 Consider the two-level system

ρ̇(t) = −i[H0 +H1u1(t), ρ(t)], (29)

with Hamiltonians (26) and bang-bang Lyapunov control
(25) (where k = 1). Assume that the initial state of the
system is an arbitrary pure state. We denote the state at
any zero point of the control field 0̃ (i.e., u1(t = 0̃) = 0)

as ρ(0̃) =
[
ρ11(0̃) ρ12(0̃)

ρ∗
12(0̃) ρ22(0̃)

]
. Then, a sufficient condition for

bang-bang Lyapunov control (25) to have a high-frequency
oscillation with an infinitesimal period is

|r|
(
ρ11(0̃)− ρ22(0̃)

)
|ρ12(0̃)|

≥ ω12

S
,
(
ρ12(0̃) ̸= 0

)
. (30)

PROOF. Assume that from the state ρ(0̃), a con-
stant control u1(t) = u acts on the system and last-
s to time t. Write the state at time t as ρ(t) =
e−i(H0+H1u)tρ(0̃)ei(H0+H1u)t. We have

T1(t) =−i tr
(
[P,H1]ρ(t)

)
=−itr

(
ei(H0+H1u)t[P,H1]e

−i(H0+H1u)tρ(0̃)
)
. (31)

Denote ωu =
√
ω2
12 + 4|r|2u2, R1 =

[
0 −r
r∗ 0

]
, and R2 =[

2|r|2u −rω12

−r∗ω12 −2|r|2u

]
, then ei(H0+H1u)t[P,H1]e

−i(H0+H1u)t in

(31) can be calculated as

ei(H0+H1u)t[P,H1]e
−i(H0+H1u)t

= [P,H1] + it[H0 +H1u, [P,H1]]

+
(it)2

2!
[H0 +H1u, [H0 +H1u, [P,H1]]]

+
(it)3

3!
[H0 +H1u, [H0 +H1u, [H0 +H1u, [P,H1]]]]

+ · · ·

= (p− p1)R1 + it(p− p1)R2 +
(it)2

2!
(p− p1)ω

2
uR1

+
(it)3

3!
(p− p1)ω

2
uR2 +

(it)4

4!
(p− p1)ω

4
uR1

+
(it)5

5!
(p− p1)ω

4
uR2 + · · ·

= (p− p1) cos (ωut)R1 +
i(p− p1)

ωu
sin (ωut)R2, (32)

where we have used the series formulas
∑∞

n=0
x2n+1

(2n+1)! =

ex−e−x

2 and
∑∞

n=0
x2n

(2n)! =
ex+e−x

2 , (x ∈ R).

Substituting (32) into (31) gives

T1(t) = −i(p− p1) · cos(ωut) · tr(R1ρ(0̃))

+
(p− p1)

ωu
· sin(ωut) · tr(R2ρ(0̃))

=
2(p− p1)

ωu
· sin(ωut)·[

u|r|2
(
ρ11(0̃)− ρ22(0̃)

)
− ω12 · r∗ρ12(0̃)

]
. (33)

6



Using (33), we prove the conclusion in the theorem by
contradiction.

For ρ12(0̃) ̸= 0, we first assume that the control field
after 0̃ is u = S which can last for a given small time du-
ration t̃1 (t̃1 > 0). Then, (25) guarantees that T1(t) < 0
holds for t ∈ (0̃, t̃1). It follows from condition (30) that
S|r|2(ρ11(0̃) − ρ22(0̃)) ≥ ω12|r∗ρ12(0̃)| ≥ ω12r

∗ρ12(0̃).
Considering (33), we have T1(t) ≥ 0 holds for t ∈ (0̃, t̃1).
Such a contradiction implies that the constant con-
trol u = S from 0̃ cannot last for any finite time
duration t̃1. Similarly, if the control field after 0̃ is
u = −S which can last for a small non-zero time du-
ration t̃1, then (25) guarantees that T1(t) > 0 hold-
s for t ∈ (0̃, t̃1). It follows from condition (30) that
S|r|2(ρ11(0̃) − ρ22(0̃)) ≥ ω12|r∗ρ12(0̃)| ≥ −ω12r

∗ρ12(0̃),
i.e., −S|r|2(ρ11(0̃)− ρ22(0̃))− ω12r

∗ρ12(0̃) ≤ 0. Consid-
ering (33), we know that T1(t) ≤ 0 holds for t ∈ (0̃, t̃1).
Such a contradiction implies that the constant control
u = −S cannot last for a finite time duration from 0̃.
For the case of u = 0, it is straightforward to obtain a
contradiction from (33).

Since T1(t) is a continuous function of t, we con-
sider another zero point 0̃2 following 0̃. Considering
that the Lyapunov function V = p1ρ11 + pρ22 =
p − (p − p1)ρ11, (p > p1) satisfies V̇ ≤ 0 in the
interval [0̃, 0̃2], we have ρ11(0̃2) ≥ ρ11(0̃). The
condition (30) implies that ρ11(0̃) > ρ22(0̃), i.e.,
ρ11(0̃) > 1

2 . Thus, we have ρ11(0̃2) ≥ ρ11(0̃) > 1
2 .

Therefore, |r|(ρ11(0̃2)−ρ22(0̃2))

|ρ12(0̃2)|
= |r|(2ρ11(0̃2)−1)√

ρ11(0̃2)(1−ρ11(0̃2))
≥

|r|(2ρ11(0̃)−1)√
ρ11(0̃)(1−ρ11(0̃))

= |r|(ρ11(0̃)−ρ22(0̃))

|ρ12(0̃)|
≥ ω12

S holds. That

is to say, condition (30) still holds at the zero point 0̃2.
We can conclude that the bang-bang Lyapunov control
has a high-frequency oscillation with an infinitesimal
period when condition (30) is satisfied. �

According to Theorem 5, when ρ(0̃) satisfies (30), the
bang-bang Lyapunov control has a high-frequency oscil-
lation with an infinitesimal period. Such a control field
with a high-frequency oscillation cannot guarantee ef-
fective state transfer for the two-level system as well as
it is not physically realizable. When ρ12(0̃) ̸= 0 and

|r|
(
ρ11(0̃)− ρ22(0̃)

)
|ρ12(0̃)|

<
ω12

S
, (34)

we can show that there exists an appropriate bang-bang
Lyapunov control to achieve effective state transfer. For
example, when r∗ρ12(0̃) > 0 and u = S, T1(t) < 0 in
(33) can last at least for π

ωu
. Hence, the condition in (30)

will be used to design the switching control law in the
following subsection.

Remark 6 Since ω12 > 0, the right-hand side of (30) is
positive. Hence, ρ11(0̃) > ρ22(0̃) in the left side always
holds. This clearly shows that any high-frequency oscil-
lation with an infinitesimal period only may occur when
ρ11(0̃) >

1
2 . For any zero point 0̃ of bang-bang Lyapunov

control (25), when the state ρ(0̃) satisfies ρ12(0̃) = 0, a
direct calculation of T1 with only an internal Hamiltoni-
an H0 shows that the control field will always be zero and
the state transfer will stop. That is to say, the system s-
tate in this case is within the invariant set. When ρ(0̃)
satisfies (30), the control law has a high-frequency oscil-
lation with an infinitesimal period and cannot guarantee
convergence toward the target state.

Remark 7 Theorem 5 only considers two-level systems.
For general N -level systems, the high-frequency oscilla-
tion phenomena in bang-bang Lyapunov control may also
occur. However, it is very difficult to establish an analyti-
cal sufficient condition for the high-frequency oscillation
phenomena in this case.

4.2 Switching design between bang-bang and standard
Lyapunov control schemes

We consider two-level systems. In order to avoid possible
high-frequency oscillations with infinitesimal periods in
bang-bang Lyapunov control (25), we design the switch-
ing control as follows. If the high-frequency oscillation
condition in Theorem 5 is not satisfied, we apply bang-
bang Lyapunov control law (25) to the system; once the
condition is satisfied at a certain zero point 0̃, we switch
to the standard Lyapunov control.

The standard Lyapunov control in (11) needs to satisfy
the strength constraint, i.e., |u1(t)| ≤ S. Calculating
T1(t) gives

T1(t) =−i(p− p1)tr

([
ρ11(t) ρ12(t)

ρ∗12(t) ρ22(t)

][
0 r

−r∗ 0

])
=−2(p− p1) · ℑ(r∗ρ12(t)). (35)

We can obtain an estimate of the amplitude of T1(t) as

|T1(t)| = 2(p− p1) · ℑ(r∗ρ12(t))
≤ 2(p− p1) · |rρ12(t)|
= 2(p− p1)|r|

√
(1− ρ11(t))ρ11(t)

≤ (p− p1)|r|. (36)

For (36), when ρ11(t)=
1
2 , 2(p−p1)|r|

√
(1−ρ11(t))ρ11(t)

reaches its maximum value. |T1(t)| may reach its maxi-
mum when the initial ρ0 satisfies tr(ρ0ρf ) <

1
2 . To guar-

antee that the standard Lyapunov control does not ex-
ceed the maximum admissible strength for all possible
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initial states, we choose

K1 =
S

|T1|max
=

S

(p− p1)|r|
. (37)

Thus, we can design a switching control law as follows:

u1(t) =

{
− S · sgn(T1(t)), (until (30) holds)
−K1 · T1(t), otherwise

(38)

where K1 = S
(p−p1)|r| . Note that switching between the

bang-bang Lyapunov control and the standard Lya-
punov control may only occur at zero points of T1(t).
From the initial time t = 0, the bang-bang Lyapunov
control should be first used unless T1(0) = 0.

Remark 8 Observing the high-frequency oscillation
condition for two-level systems in Theorem 5, it is clear
that reducing the bang-bang Lyapunov control strength
can avoid high-frequency oscillations. This observation
tells us that we can also develop a new switching design s-
trategy involving switching between bang-bang Lyapunov
controls with different control bounds. Such a switching
strategy is outlined in Appendix B.

4.3 Stability of switching Lyapunov control

Based on the construction relation of P in subsection
3.3, bang-bang Lyapunov control can speed up the con-
trol process, but cannot guarantee convergence to the
target state; while the standard Lyapunov control can
guarantee convergence. Therefore, dependent on differ-
ent initial states, the switching design strategy in sub-
section 4.2 can achieve rapidly convergent control.

Theorem 9 Consider two-level system (29) with Hamil-
tonians (26). Assume that the target state ρf is the excit-
ed state ρ1 = |λ1⟩⟨λ1|, and that the initial state ρ0 is an
arbitrary pure state. The diagonal elements of P satisfy
p2 = p > pf = p1 ≥ 0. Then, the following conclusions
hold:
i) the largest invariant set of the system with switch-
ing Lyapunov control (38) is E′ = {ρf} ∪ {ρ2}, where
ρ2 , |λ2⟩⟨λ2|;
ii) when ρ0 satisfies tr(ρ0ρf ) ̸= 0, with switching Lya-
punov control (38), the system trajectory starting from
ρ0 necessarily converges to ρf ;
iii) when ρ0 satisfies tr(ρ0ρf ) = 0, the initial control
u1(t) = S sin (ω21t) (t ∈ [0, t′]) is first used, where ω21

, λ2 − λ1 and t′ is a small positive number satisfying
tr(ρ(t′)ρf ) ̸= 0; then, with switching Lyapunov control
(38), the system trajectory starting from ρ(t′) necessarily
converges to ρf .

PROOF. Conclusion i). According to the proof of
Theorem 2 (k = 1), for the initial state ρ0 and the tar-
get state ρf , the largest invariant set of two-level system

(29) only under the action of the standard Lyapunov
control is E′ = {ρf} ∪ {ρ2 = [ 0 0

0 1 ]}. It can be verified
that when the system is in the state ρf or ρ2, the switch-
ing Lyapunov control u1(t) in (38) always has a value
of zero. This shows that E′ is a subset of the largest
invariant set of the system with switching control (38).
On the other hand, for switching Lyapunov control (38),
the system state will keep transferring toward the tar-
get state when the state ρ(0̃) at the zero point 0̃ of the
bang-bang Lyapunov control does not satisfy switching
condition (30); while when (30) is satisfied, the control
field will switch to the standard Lyapunov control and
the system state will still continue evolving toward the
target state. This shows that switching control (38) will
not generate any new stable state except ρf and ρ2
such that the system stops evolving toward the target
state. Hence, the largest invariant set of the system with
switching control (38) is still E′ = {ρf} ∪ {ρ2}.

Conclusion ii). If ρ0 = ρf , then the conclusion natural-
ly holds. Next, we consider the case of ρ0 ̸= ρf . The
condition tr(ρ0ρf ) ̸= 0 implies that ρ0 ̸= ρ2. The Lya-
punov function (6) takes the maximal value p2 when
ρ = ρ2 and monotonically decreases under the action
of switching Lyapunov control (38). Using Conclusion
i), we know that the system trajectory starting from ρ0
necessarily converges to ρf which is contained in the
largest invariant set E′.

Conclusion iii). The condition tr(ρ0ρf ) = 0 implies
that ρ0 = ρ2. In this case, the use of the initial control
u1(t) = S sin (ω21t) (t ∈ [0, t′]) leads to tr(ρ(t′)ρf ) ̸= 0.
Then, Conclusion ii) guarantees that a system trajecto-
ry starting from ρ(t′) necessarily converges to ρf . �

5 Approximate bang-bang Lyapunov control

In Section 4, we proposed a switching design method
between Lyapunov control schemes to achieve improved
performance. However, the switching points are not easy
to determine for a general case. In this section, we further
propose two approximate bang-bang (ABB) Lyapunov
control approaches that can achieve rapidly convergent
control (Kuang et al. , 2014).

5.1 ABB Lyapunov control design

The first ABB Lyapunov control law is designed as

uk(Tk) =
2Sk

1 + eγkTk
− Sk, (k = 1, · · · ,m), (39)

where Sk > 0 is the maximum admissible strength of the
control field uk, and γk > 0 is a parameter used to adjust
the hardness of the control function. The bigger γk is,
the harder the characteristic of uk(Tk) is. As γk → +∞,
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the characteristic of uk(Tk) approaches the bang-bang
Lyapunov control in (25).

The second ABB Lyapunov control law is designed as

uk(Tk) =
−SkTk
|Tk|+ ηk

, (k = 1, · · · ,m), (40)

where Sk > 0 is the maximum admissible strength of the
control field uk, and ηk > 0 is a parameter used to adjust
the hardness of the control function. Here, the smaller
ηk is, the harder the characteristic of uk(Tk) is. Like-
wise, as ηk → 0+, the characteristic of uk(Tk) approach-
es the bang-bang Lyapunov control in (25). The two s-
mooth control laws (39) and (40) can show similar char-
acteristics to bang-bang Lyapunov control by choosing
appropriate hardness parameters. Hence, we call them
approximate bang-bang (ABB) Lyapunov controls.

The ABB Lyapunov control laws (39) and (40) are two
special forms of the smooth control law (10). Therefore,
the convergence results in Theorems 1, 2, and 3 natural-
ly hold for these ABB control laws. That is to say, with
the conditions in Theorem 2 or Theorem 3, the corre-
sponding ABB Lyapunov control laws (39) and (40) are
always stable.

5.2 Further construction of P

Since control functions (39) and (40) are continuously
differentiable, the qualitative construction relation of P
in Theorems 2 and 3 guarantees convergence to the tar-
get state. In order to speed up the control process in the
early stages, we can design diagonal elements of P such
that the early-stage control has a bang-bang property.

Without loss of generality, we assume that the target
state is the N -th eigenstate, i.e., ρf = ρN . Consider
the construction relation of P in Theorems 2 and 3, we
denote P, ρ,H0 and Hk as the following block forms:

P ,
[
pIN−1 0

0 pf

]
=

[
pIN−1 0

0 pN

]
, (41)

ρ ,
[
ρ#1 ρ#2

(ρ#2)† ρff

]
=

[
ρ#1 ρ#2

(ρ#2)† ρNN

]
, (42)

H0 ,
[
H#1

0 0

0 λN

]
, (43)

Hk ,
[
H#1

k H#2
k

(H#1
k )† (Hk)NN

]
,
[
H#1

k Rk

R†
k (Hk)NN

]
, (44)

where IN−1 is identity matrix of order N −1; ρ#1,H#1
0 ,

and H#1
k are Hermitian matrices of order N − 1, and

H#1
0 = diag[λ1, · · · , λN−1]; ρ

#2 and Rk = H#2
k are col-

umn vectors of dimension N − 1; and ρNN = ρff and
(Hk)NN are real numbers.

Calculating T1(t) gives

Tk(t) =−i(p− pN )tr

([
ρ#1(t) ρ#2(t)

(ρ#2(t))† ρNN (t)

][
0 Rk

−R†
k 0

])
=−2(p− pN ) · ℑ ⟨Rk|ρ#2(t)⟩. (45)

Since the evolution state starting from any initial pure
state always stays, we can obtain an estimate of the
amplitude of Tk(t) as:

|Tk(t)| = 2(p− pN ) · |ℑ ⟨Rk|ρ#2(t)⟩|
≤ 2(p− pN ) · |⟨Rk|ρ#2(t)⟩|
≤ 2(p− pN ) · ∥Rk∥ · ∥ρ#2(t)∥
= 2(p− pN ) · ∥Rk∥·√

ρ11ρNN + · · ·+ ρN−1,N−1ρNN

= 2(p− pN ) · ∥Rk∥ ·
√
(1− ρNN (t))ρNN (t)

≤ (p− pN ) · ∥Rk∥. (46)

For (46), when tr(ρ0ρf ) <
1
2 , |Tk(t)| can reach the max-

imum value (p− pN )∥Rk∥ during the evolution process.

Assume that the initial state ρ0 satisfies tr(ρ0ρf ) <
1
2

and that the control laws in (39) and (40) are regard-
ed as having the bang-bang property when the control
value reaches βS, (β ≈ 1, β < 1). In this case, we cal-

culate from (39) and (40) that |Tk| = 1
γk

ln 1+β
1−β and

|Tk| = β
1−β ηk. Thus, when p−pf satisfies (p−pf )∥Rk∥ >

1
γk

ln 1+β
1+β and (p − pf )∥Rk∥ > β

1−β ηk, respectively, the

bang-bang property will be dominant in the control pro-
cess. These two expressions imply that, when γk is rel-
atively small or ηk is relatively large, p − pf should be
large, and vice versa. The selection can also be explained
as follows. When γk is very large or ηk is very small, a
large p− pf will put |Tk| in the saturation regions of the
functions (39) and (40). This makes the whole control
process similar to the bang-bang Lyapunov control in
(25).

6 Numerical Examples

In this section, we present several numerical examples to
demonstrate the performance of the proposed rapid Lya-
punov control strategies. In the first example of two-level
quantum systems, we compare the standard Lyapunov
control, the switching Lyapunov control and ABB Lya-
punov control. In the two examples for three-level quan-
tum systems and two-qubit superconducting systems,
the ABB Lyapunov control strategies are compared with
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Fig. 1. The evolution curves of the fidelities with the tar-
get state (Fig. 1(a)) and the control fields (Fig. 1(b)) un-
der the bang-bang Lyapunov control and the standard Lya-
punov control, where the bang-bang Lyapunov control shows
a high-frequency oscillation phenomenon.

the standard Lyapunov control. We also present numer-
ical results for a 256-dimensional system of 8 qubits to
show the extensibility of the rapid ABB Lyapunov de-
sign approach to N -level quantum systems.

6.1 Two-level quantum system

Consider two-level system (29) where H0 = [ 0.4 0
0 0 ] and

H1 = [ 0 1
1 0 ]; the maximum admissible strength of the

control field is S = 0.2; the initial pure state and the

target eigenstate are given as ρ0 = 1
6

[
1

√
5√

5 5

]
and ρf =

[ 1 0
0 0 ], respectively. According to Theorem 2 or Theorem
3, we set P = diag[0.5, 1].

We present simulation results first for bang-bang Lya-
punov control (25) and standard Lyapunov control (11);
then for switching control (38). In order to compare the
control effect of the two classes of rapid Lyapunov control
methods, we also present the simulation results for ap-
proximate bang-bang Lyapunov control (39) with k = 1
in Section 5. In simulations, we let the control gain in
(11) and (38) be K1 = 0.4 such that the maximum val-
ue of the standard Lyapunov control can reach up to the
maximum admissible strength S = 0.2. Through multi-
ple simulations, we choose γ1 = 11 in (39) such that AB-
B Lyapunov control (39) can achieve rapid convergence.
Simulation results are shown in Fig. 1 and Fig. 2.

Fig. 1 shows the evolution curves of fidelities with the
target state and the control fields under the bang-bang
Lyapunov control and the standard Lyapunov control. It
can be seen from Fig. 1(a) that the standard Lyapunov
control achieves convergence to the target state; and
that the bang-bang Lyapunov control has better rapid-
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Fig. 2. The evolution curves of fidelities with the target state
(Fig. 2(a)) and the control fields (Fig. 2(b)) under switch-
ing Lyapunov control (38) and ABB Lyapunov control (39)
(ABB I).

ness in the early stages but a high-frequency oscillation
phenomenon occurs from t = 5.5 as shown in Fig. 1(b).

Fig. 2 shows the evolution curves of fidelities with the
target state, and the control fields under the switch-
ing Lyapunov control, the approximate bang-bang Lya-
punov control, and the standard Lyapunov control. It
can be seen from Fig. 2 that these two classes of rapid
Lyapunov controls have similar control performance and
achieve excellent convergence to the target state. They
have better rapidness than the standard Lyapunov con-
trol. In addition, the switching Lyapunov control has
slightly better rapidly convergence than the ABB Lya-
punov control in (39). This is because that switching
Lyapunov control (38) always keeps the maximal control
value 0.2 in the early stages (see Fig. 2(b)).

6.2 Ξ-type three-level system

Consider a three-level system with Ξ-type configuration.
This system is controlled by only one control field, and
its internal and control Hamiltonians are given as H0 =[
0 0 0
0 0.3 0
0 0 0.9

]
and H1 =

[
0 1 0
1 0 1
0 1 0

]
, respectively. Assume that

the maximum admissible strength of the control field is
0.1, and that the target state is the second eigenstate
of the system, i.e., ρf = |λ2⟩⟨λ2|. Based on Theorems 2
and 3, ρf is isolated in the invariant set, and any system
trajectory starting from initial pure states necessarily
converges to ρf under the action of control law (10) or
(24) with the control function forms of (39) or (40).

Assume that that the initial state is given as ρ0 =
1
3

[
1 1 1
1 1 1
1 1 1

]
. In order to compare with standard Lya-

punov control (11), we choose K1 = 0.155 in (11) so
that the maximum strength of the standard Lyapunov

10
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Fig. 3. The time evolution of the fidelities under standard
Lyapunov control (11) and approximate bang-bang Lya-
punov control (39) with different hardness parameter values.

control can reach the maximum admissible strength
of the control field 0.1. Based on Theorem 2, we set
P = diag [1, 0.5, 1], choose (39) as the control law and
set its hardness parameter as γ1 = 2, 5, 10, 50, respec-
tively. The simulation results are shown in Fig. 3.

It can be seen from Fig. 3 that, as the hardness param-
eter increases, the rapidness of approximate bang-bang
Lyapunov control (39) is reinforced. At the same time its
convergence rate decreases in the later stages. Based on
simulation experiments, when 5 ≤ γ1 ≤ 10, we can ob-
tain improved control performance compared with the
standard Lyapunov control for this system, considering
both rapidness and convergence.

6.3 Superconducting qubit systems

In this subsection, we consider the control problem of su-
perconducting quantum systems of multi qubits. Super-
ducting qubits have been recognized as promising quan-
tum information processing units due to their scalability
and design flexibility (Clarke & Wilhelm , 2008; You &
Nori , 2005; Xiang et al. , 2013). Superconducting qubit-
s can behave quantum mechanically while they can be
controlled by adjusting some classical quantities such as
currents and voltages.

Let us first consider the coupled two-qubit system in
Wendin & Shumeiko (2006) where two charge qubits
are coupled via an LC-oscillator. The system model can
be described as

ρ̇(t) = −i
[
w1σ

(1)
z ⊗ I2 + w2I2 ⊗ σ(2)

z + u1σ
(1)
x ⊗ I2

+ u2I2 ⊗ σ(2)
x + u12σ

(1)
x ⊗ σ(2)

x , ρ(t)
]
, (47)

where I2 = [ 1 0
0 1 ]; σ

(1)
z = σ

(2)
z =

[
1 0
0 −1

]
and σ

(1)
x = σ

(2)
x =

[ 0 1
1 0 ] are the Pauli matrices along the z and x directions,
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Fig. 4. The evolution curves of the fidelities (Fig. 4(a)) and
the Lyapunov functions (Fig. 4(b)) under ABB Lyapunov
control (40) (ABB II) and standard Lyapunov control (11)
on a two-qubit superconducting system.
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Fig. 5. The evolution curves of the three control fields under
ABB Lyapunov control (40) (ABB II) and standard Lya-
punov control (11) on a two-qubit superconducting system,
in which the blue solid lines are the evolution curves of the
ABB Lyapunov control, and the black dotted lines corre-
spond to the standard Lyapunov control.

respectively. Considering the experimental parameters
(Pashkin et al. , 2003), we assume that these control
fields satisfy the following constraints: 1GHz ≤ |wj | ≤
20GHz, |uj | ≤ 10GHz, (j = 1, 2); and |u12| ≤ 0.5GHz.

Assume that the target state is ρf = |λ1⟩⟨λ1|. For sim-
plicity, we let w1 = 10GHz, w2 = 5GHz, and u12 = u3.
Thus, model (47) can be written as

ρ̇(t) = −i
[
H0 +

3∑
k=1

uk(t)Hk, ρ(t)
]
, (48)
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where H0 = diag [15, 5,−5,−15], H1 = σ
(1)
x ⊗ I2, H2 =

I2 ⊗ σ
(2)
x , H3 = σ

(1)
x ⊗ σ

(2)
x , |uj(t)| ≤ 10GHz (j = 1, 2),

and |u3(t)| ≤ 0.5GHz. The initial state is given as the

pure state ρ0 = 1
16

 1 1 1
√
13

1 1 1
√
13

1 1 1
√
13√

13
√
13

√
13 13

.
Set P = diag [0.5, 1, 1, 1], and choose (40) as our control
law. For comparison with the standard Lyapunov con-
trol, we choose K1 = 15, K2 = 12, and K3 = 0.6 for
standard Lyapunov control (11). According to simula-
tion results, we know that the maximum values of the
control fields are 3.9, 3.4, and 0.2, respectively. There-
fore, we set these three values to be the maximum ad-
missible strengths of the three approximate bang-bang
Lyapunov control fields, i.e., S1 = 3.9, S2 = 3.4, and
S3 = 0.2. Further, we choose their hardness parameter-
s as η1 = η2 = 0.005, and η3 = 0.01, respectively. The
simulation results are shown in Fig. 4 and Fig. 5. It can
be seen from Fig. 4 that both ABB Lyapunov control
(40) and standard Lyapunov control (11) achieve con-
vergence, but the rapidness of ABB Lyapunov control
(40) is better than that of standard Lyapunov control
(11). Fig. 5 shows that the three control fields associated
with ABB Lyapunov control (40) have a bang-bang like
property in the early stages of the control, which speeds
up the control process.

Now, we extend the application of our method to an
eight-qubit system in which condition (5) cannot be sat-
isfied. We assume that the system has a similar struc-
ture to a one-dimensional spin chain and fifteen control

degrees of freedom are considered. Denote I
⊗(k)
2 as the

tensor product of k 2×2 identity matrices and I
⊗(0)
2 = 1.

The system dynamics can be described by

ρ̇(t) = −i
[
H0 +

15∑
k=1

uk(t)Hk, ρ(t)
]
, (49)

where H0 =
∑8

k=1 wkI
⊗(k−1)
2 ⊗ σ

(k)
z ⊗ I

⊗(8−k)
2 , Hk ={

I
⊗(k−1)
2 ⊗ σ(k)

x ⊗ I
⊗(8−k)
2 (k = 1, · · · , 8)

I
⊗(k−9)
2 ⊗ σ(k−8)

x ⊗ σ(k−7)
x ⊗ I

⊗(15−k)
2 (k = 9, · · · , 15)

,

|uk(t)| ≤ 10GHz (k = 1, · · · , 8), and |uk(t)| ≤ 0.5GHz
(k = 9, · · · , 15).

We assume that the target state is ρf = |λ1⟩⟨λ1| and
take w1 = 18GHz, w2 = 16GHz, w3 = 12GHz, w4 =
9GHz, w5 = 6.5GHz, w6 = 5GHz, w7 = 1.8GHz, and
w8 = 0.8GHz. The initial state is given as ρ0 = |ψ0⟩⟨ψ0|,
where |ψ0⟩ = 1

20

(
|λ1⟩+ |λ3⟩+ 10|λ5⟩ + |λ7⟩ + 14|λ9⟩ +

10|λ13⟩+ |λ256⟩
)
. Also, we set P = diag [0.5, 1, 1, · · · , 1]

and choose (39) as our control law with S1 = · · · = S8 =
4, S9 = · · · = S15 = 0.4, γ1 = · · · = γ8 = 30, and
γ9 = · · · = γ15 = 60. The simulation result is shown in
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Fig. 6. (a) The evolution curves of the fidelity with the target
state and (b) some control fields under ABB Lyapunov con-
trol (39) for an eight-qubit superconducting system, where
only two (u6 and u13) of the fifteen control fields are plotted
and the others are omitted.

Fig. 6. From Fig. 6 it is clear that a high-fidelity state
transfer to the target state is achieved.

7 Conclusion

In this paper, we have designed a switching Lyapunov
control strategy between the bang-bang Lyapunov con-
trol and standard Lyapunov control and two approx-
imate bang-bang Lyapunov control laws. These Lya-
punov control laws can achieve rapidly convergent con-
trol for quantum systems by choosing appropriate pa-
rameters. In particular, convergence has been analyzed
via the LaSalle invariance principle, and a construction
method for the degrees of freedom in the Lyapunov func-
tion has been provided. We have also derived a sufficient
condition for the existence of high-frequency oscillation-
s that can be used for switching Lyapunov control de-
sign. Simulation experiments showed that the proposed
Lyapunov control methods can achieve improved perfor-
mance for manipulating quantum systems. Further re-
search includes optimizing these parameters in the con-
trol laws, and comparing the proposed rapid control
method with time optimal control for high-dimensional
quantum systems (Glaser et al. , 2015; Ryan et al. , 2008).

Appendix A: Robustness of open-loop quantum
control

Possible perturbations to quantum system (1) include
perturbations of the internal Hamiltonian H0, and per-
turbations in the control HamiltonianHk, inaccuracy in
the control law, and inaccuracy in the initial states.

We discuss perturbations in the Hamiltonian and de-
note the perturbations in the internal and control Hamil-
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tonians as δH0 and δHk, respectively, where δH0 is a
real diagonal matrix and δHk are Hermitian matrices.
Thus, the internal and control Hamiltonians with per-

turbations can be written as H̃0 = H0 + δH0 and H̃k =
Hk + δHk, respectively. We call model (1) the nominal
system and the system with δH0 and δHk the perturbed
system. Define ∆H , δH0 +

∑m
k=1 δHkuk(t). Then, the

dynamics of the perturbed system can be described as

˙̃ρ(t) = −i
[(
H0 +

m∑
k=1

Hkuk(t)
)
+∆H, ρ̃(t)

]
, (50)

where the Hermitian matrix ∆H is the uncertainty in
the Hamiltonian H(t).

We assume that the uncertainty ∆H satisfies ∥∆H∥ ≤ ε
and that the introduction of ∆H does not break con-
ditions (4) and (5), i.e., ω̃af ̸= ω̃bf (a ̸= b ̸= f), where

ω̃ab , λ̃a− λ̃b and λ̃a are the diagonal elements of H̃0 =

diag[λ̃1, λ̃2, · · · , λ̃N ]; and (H̃k′)jf ̸= 0 (j ̸= f ; ∃ k′ ∈
{1, 2, · · · , m}). Now, we examine the effect of the un-
certainty ∆H on the quantum system.

Theorem 10 We assume ∥∆H∥ ≤ ε. For any initial
pure state ρ0, the states of nominal system (1) and per-
turbed system (50) satisfy ∥ ρ̃(t) − ρ(t) ∥ ≤ min{e2tε−
1, 2} (t ≥ 0). If ∥ ρ(T )−ρf ∥ = ξ1 at a finite time T , then

for an arbitrarily given ξ (ξ1 ≤ ξ), when ε ≤ ln(1+ξ−ξ1)
2T ,

the distance between ρ̃(T ) and the target state satisfies
∥ ρ̃(T )− ρf ∥ ≤ ξ.

PROOF. Similar to (2), we write perturbed system

(50) in terms of its time evolution operators Ũ(t) as fol-
lows:

˙̃
U(t) = −i

(
H(t) + ∆H

)
Ũ(t), Ũ(0) = I. (51)

Since both Ũ(t) and U(t) are unitary matrices, we let

Ũ(t) = U(t)Q(t). (52)

Differentiating both sides of (52) with respect to t and
considering (2) and (51), we have

iQ̇(t) =
(
U†(t)∆HU(t)

)
Q(t), Q(0) = I. (53)

Define U†(t)∆HU(t) , Γ(t). We have ∥Γ(t)∥ ≤
∥∆H∥ ≤ ε. The Dyson series solution of (53) is the
following time-ordered integral

Q(t) = I +

∞∑
n=1

(−i)n
∫ t

0

dt1

∫ t1

0

dt2 · · ·∫ tn−1

0

dtnΓ(t1)Γ(t2) · · ·Γ(tn) , I +W (t), (54)

where t ≥ t1 ≥ t2 ≥ · · · ≥ tn ≥ 0. Considering ∥Γ(t)∥ ≤
ε, we have

∥W (t)∥ = ∥W †(t)∥ ≤
∞∑

n=1

εn
∫ t

0

dt1

∫ t1

0

dt2 · · ·∫ tn−1

0

dtn =
∞∑

n=1

εn
tn

n!
= etε− 1. (55)

For any initial state ρ(0) = ρ0, we have

∥∆ρ(t)∥, ∥ρ̃(t)− ρ(t)∥
= ∥U(t)Q(t)ρ0Q

†(t)U†(t)− U(t)ρ0U
†(t)∥

= ∥Q(t)ρ0Q
†(t)− ρ0∥

= ∥ρ0W †(t) +W (t)ρ0 +W (t)ρ0W
†(t)∥

≤ ∥ρ0W †(t)∥+ ∥W (t)ρ0∥+ ∥W (t)ρ0W
†(t)∥

≤ ∥W †(t)∥+ ∥W (t)∥+ ∥W (t)∥2

≤ e2tε− 1. (56)

Considering ∥ρ̃(t)− ρ(t)∥ ≤ 2, we have

∥∆ρ(t)∥ ≤ min{e2tε− 1, 2}. (57)

For perturbed system (50), when ∥ρ(T )− ρf∥ = ξ1,

∥ρ̃(T )− ρf∥ ≤ ∥∆ρ(T )∥+ ∥ρ(T )− ρf∥
≤ e2Tε− 1 + ξ1. (58)

Hence, when ε ≤ ln(1+ξ−ξ1)
2T , we have ∥ρ̃(T ) − ρf∥ ≤ ξ.

�

Theorem 10 shows that, for given ξ and ξ1, if nominal
system (1) can approach the target state within a short-
er time period, perturbed system (50) can tolerate larg-
er perturbations when guaranteeing given performance.
That is to say, a rapidly convergent control for nominal
system (1) may lead to improved robustness.

Appendix B: Switching between bang-bang Lya-
punov controls with different strengths

Here, we can design another switching Lyapunov control
strategy for two-level quantum systems in Section 4, i.e.,
switching between bang-bang Lyapunov controls with
different control bounds.

Observing the high-frequency oscillation condition for
two-level systems in Theorem 5, it is clear that reduc-
ing the bang-bang Lyapunov control strength can avoid
high-frequency oscillations. This observation inspires us
to develop a new switching design strategy involving
switching between bang-bang Lyapunov controls with
different control bounds.
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Assume that the state ρ(0̃) at the zero point 0̃ of T1(t)
satisfies high-frequency oscillation condition (30) in
bang-bang Lyapunov control (25). In theory, any pos-
itive number such that the high-frequency oscillation
condition is not satisfied may be chosen as the strength
of the new bang-bang Lyapunov control. The selection
of strengths is not unique. For instance, we can design
the following bang-bang control strength:

S(0̃+) =
µ1ω12|ρ12(0̃)|

|r|(ρ11(0̃)− ρ22(0̃))
, (59)

where S(0̃+) represents the first strength of the bang-
bang Lyapunov control after time 0̃; and µ1 ∈ (0, 1) is
a constant guaranteeing that the new control strength
does not satisfy the high-frequency oscillation condition.

Considering the fact that 0 ≤ 2
√
(1− ρ11(t))ρ11(t) =

2|ρ12(t)| ≤ 1 and |ρ12(t)| → 0 as t→ ∞, we may design
a coefficient-varying bang-bang control strength as

S(0̃+) =
2µ2ω12|ρ12(0̃)|2

|r|(ρ11(0̃)− ρ22(0̃))
, (60)

where the constant µ2 ∈ (0, 1) can be properly chosen.
It is clear that the coefficient 2µ2|ρ12(0̃)| also guarantees
that high-frequency oscillation condition (30) does not
hold. Hence, we can use the following switching control
law for two-level system (29):

u1(t) =


− S(0̃+) · sgn(T1(t)),

( |r|(ρ11(0̃)− ρ22(0̃))

|ρ12(0̃)|
≥ ω12

S(0̃−)
, ρ12(0̃) ̸= 0

)
− S(0̃−) · sgn(T1(t)), otherwise

(61)
where S(0̃−) represents the last strength of the bang-
bang Lyapunov control before time 0̃. In particular, the
strength of the bang-bang Lyapunov control before the
first zero point is S.
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