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Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability
may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during
repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the
stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every
5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly
decreases promoting transcriptome resetting. Decay constants (k) were modeled using two strategies, linear and nonlinear
least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short
half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci
undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However,
small RNAs and 5ʹ-3ʹ RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess
light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable
conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of
active recovery and cellular memory.

INTRODUCTION

In the post green revolution era, optimizing plant energy capture
and use is a key target for improvement to increase crop yields
(Murchie et al., 2009). However, abiotic stress such as excess
light, temperature extremes, and drought cause significant crop
losses by reducing photosynthetic efficiency and preventing yield
potentials from being realized (Murchie et al., 2009; Mickelbart
et al., 2015; Rivers et al., 2015). Notwithstanding notable suc-
cesses (Mickelbart etal., 2015), enhancingabioticstress tolerance
often leads to a trade-off with yield potential (Murchie et al., 2009;
Lawlor, 2013). Stress exposure may also promote priming or
memory, increasing resilience to future stress (Crisp et al., 2016).

Conversely, prior exposure toastresscanmanifest inmaladaptive
memories hampering future growth and proliferation (Skirycz and
Inzé, 2010). Yet, the rules governing the selective formation and
retention of environmental memories, including via potential epi-
genetic mechanisms, are poorly defined (Boyko and Kovalchuk,
2011; Eichten et al., 2014; Mirouze and Paszkowski, 2011; Gutzat
and Mittelsten Scheid, 2012; Iwasaki and Paszkowski, 2014). An
aspect of stress responses inplants that has received relatively little
attention is stress recovery. Understanding the processes and
mechanisms enabling recovery from stress may shed light on
current gaps in our understanding and present novel avenues for
improvingperformanceby identifying theprocesses that contribute
to “remembering” or “forgetting” a stress.
Plants regularly absorb excess-light energy because of fluc-

tuations in light intensities and temperature regimes that exceed
the capacity for photosynthetic capture and use (Li et al., 2009b;
Ort, 2001). When photosynthetic and photorespiratory carbon
metabolism cannot utilize or dissipate all absorbed light, this
can lead to the generation of biologically damaging molecules,
including reduced and excited species of oxygen, peroxides,
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radicals, and triplet state excited pigments (Li et al., 2009b). Other
environmental stresses, for instance drought or temperature
extremes, generally decrease the maximum photosynthetic ca-
pacity of plants, exacerbating excess-light stress (Demmig-
Adams and Adams, 1992). Accordingly, plants possess a suite of
photoprotective mechanisms to combat excess light (Raven,
1994; Pastenes et al., 2004; Kasahara et al., 2002; Murchie
and Niyogi, 2011; Li et al., 2009b; Apel and Hirt, 2004). Non-
photochemical quenching (NPQ) is a posttranscriptional photo-
protectivemechanism (Demmig-Adams andAdams, 1992;Müller
et al., 2001;Horton et al., 2008). A number of processes contribute
to the induction and relaxation of NPQ over time (Nilkens et al.,
2010; Murchie and Niyogi, 2011); however, these are likely con-
servative in favor of photoprotection, rather than optimized for
maximal productivity (Murchie and Niyogi, 2011). Consequently,
slow relaxation of thermal dissipation mechanisms are estimated
to cost crop canopies 13 to 32% in potential carbon gain (Zhu
et al., 2004; Armbruster et al., 2014), illustrating the potential of
enhancing stress recovery processes.

A transcriptional aspect of excess-light stress responses in
plantsare thesignalingmechanisms, including retrogradesignals,
which direct changes in nuclear gene expression to coordinate
stress tolerance and acclimation responses (Li et al., 2009b;
Ruckle et al., 2012; Dietz, 2015; Chan et al., 2016). Indeed, excess
light can trigger gene expression changes within seconds or
minutes (Suzuki et al., 2015; Vogel et al., 2014), and an excess-
light exposure of <2 min in duration is sufficient to engage
downstream signaling cascades and stress responses even if
plants are returned to low light intensity (Vogel et al., 2014). By
contrast, we have little understanding of the reverse processes
that are required to reset the transcriptome following excess-light
stress or, indeed, for any other abiotic stress (Crisp et al., 2016).

Recovery is unlikely to only involve the suppression of tran-
scription because posttranscriptional regulatory mechanisms
would in theory be engaged to clear the transcriptome of stress-
activated transcripts to facilitate new postrecovery expression
states. Therefore, a key aspect of stress recovery warranting in-
vestigation is the decay, be it targeted or nonspecific, of RNA
molecules. Measurement of the decay rate of a transcript allows
for calculation of mRNA half-life, a comparative measure of the
stability of different mRNAs. We note that stability also has
thermodynamic associations; here, we use the term synony-
mously with half-life. Importantly, because transcription is a zero
order process, whereas decay is first order, RNA stability dictates
how promptly abundance levels react to changes in transcription
rates (Ross, 1995). Consistent with this, in yeast and mammals, it
has been observed that mRNAs involved in stress response are
often highly unstable, and sometimes destabilized by the stress,
enhancing responsiveness through fast transient changes in
mRNAabundance (Shalemet al., 2008;Molin et al., 2009; Amorim
et al., 2010; Elkon et al., 2010). Theoretically, highly unstable and,
hence, responsive transcripts could enable rapid recovery fol-
lowing stress. The extent to which this same phenomenon occurs
in plants is not clear. Genome-wide measurements of RNA sta-
bility have been performed in Arabidopsis thaliana (Narsai et al.,
2007); however, whether these steady state stability measure-
ments conducted in cell culture equate to stability during stress in
planta is an intriguing question. For instance, themeasured half-life

of the excess-light-responsive ASCORBATE PEROXIDASE2
(APX2) transcript is >17 h (Narsai et al., 2007), suggesting that
APX2 would be surprisingly unresponsive to transcriptional
shutoff and would recover slowly following excess-light stress.
Several lines of evidence point to the involvement of the 5ʹRNA

decay pathway in stress responses. RNA decay pathways exhibit
specificity of action (Belostotsky and Sieburth, 2009; Chekanova
et al., 2007; Frei dit Frey et al., 2010), particularly the general
cytoplasmic RNA decay enzyme EXORIBONUCLEASE4 (XRN4),
which has known roles in heat stress tolerance (Merret et al., 2013;
Rymarquis et al., 2011; Nguyen et al., 2015). This raises the
possibility of the involvement of 5ʹ-3ʹ exoribonuclease-mediated
decay in stress recovery. We have previously found that the nu-
clear-localized 5ʹ-3ʹ XRN2 and XRN3 function downstream of the
chloroplastic SAL1 enzyme in an excess-light and drought stress
retrograde signaling pathway. These mutants also exhibit con-
stitutive activation of a significant portion of the excess-light-
responsive transcriptome and possess increased abiotic stress
tolerance (Wilson et al., 2009; Estavillo et al., 2011; Hirsch et al.,
2011); one possibility is that these phenotypes are due to altered
stress recovery dynamics.
Recent reports have revealed that impairing RNA decay (Zhang

et al., 2015) or decapping (Martínez de Alba et al., 2015) in various
mutant backgrounds can lead to small interfering RNA (siRNA)
production at endogenous loci and potentially silencing of en-
dogenous genes. An intriguing possibility is that environmental
perturbations could similarly induce impairments in RNA decay
(Merret et al., 2013), potentially causing silencing of endogenous
genes. Examples of endogenous siRNA-mediated gene silencing
have been attributed to the availability of aberrant RNAmolecules
producedduring transcriptionordecay,whichserveassubstrates
for RNA-dependent RNA polymerases (RDRs), triggering double-
stranded RNA production and siRNA biogenesis (Christie et al.,
2011; Gazzani et al., 2004; Gregory et al., 2008; Gy et al., 2007).
Indeed, somehaveproposed that suchmechanismsmay function
to protect the genome against excessively expressed genes (Luo
andChen, 2007); likewise, it is conceivable that endogenous gene
silencing could limit excessive transcriptional responses during
stress.
RNA decay during stress recovery could also play a pivotal

role in balancing memory retention against resetting, that is, the
restoration of homeostasis to a prestress state (Crisp et al., 2016).
Targeted decay of some transcripts and selective stabilization
of others may underpin resetting and memory, respectively. In
addition, RNA decay may also antagonize or circumvent the
mechanisms that initiate epigenetic memories, by generating or
removing template RNA molecules that could be used by the
posttranscriptional gene silencing (PTGS) or RNA-dependent
DNA methylation pathways (Christie et al., 2011; Gazzani et al.,
2004; Gregory et al., 2008; Gy et al., 2007; Crisp et al., 2016).
Comparedwith studies in yeast (Molin et al., 2009;Shalemet al.,

2008; Castells-Roca et al., 2011; Fan et al., 2002; Molina-Navarro
et al., 2008; Romero-Santacreu et al., 2009), for plants, there is
notably lessdataonRNAstability during stress. It hasbeenshown
that inhibiting photosynthesis, either by chemical treatment or
darkness, destabilizes Ferredoxin-1mRNA (Petracek et al., 1998).
Drought and salt stress also cause rapid downregulation of
photosynthetic genes specifically underpinned by decreased
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mRNAstability (Park et al., 2012), and cold stresswas observed to
globally increaseRNAstability in cell culture,withdifferent classes
of transcripts affected to different degrees (Chiba et al., 2013).
These studies demonstrate that stress in plants can indeed alter
the stability of an mRNA and lead to stress-mediated decay (Park
et al., 2012); however, an outstanding question is the global
stability of themRNAs that are transcribed during and after stress.

To address these gaps in our knowledge,we sought to examine
the stability and responsiveness of mRNAs during stress and
recovery. A difficulty with making RNA stability measurements is
the need to implement transcriptional shutoff regimes (Gutierrez
et al., 2002; Narsai et al., 2007), which can cause a full spectrumof
nonspecific effects, impair stress responses, fail to stop tran-
scription uniformly across different tissues (Seeley et al., 1992), and
potentially affect the process of RNA degradation itself by elimi-
nating transcription of its regulators (Thomsen et al., 2010).
Moreover, inhibiting transcription is very stressful in and of itself,
which could increase the abundance and stability of the transcripts
under investigation. Thus, it is technically challenging to combine
transcriptional inhibition treatments with physiologically relevant
stresses on intact plants without adversely affecting the stress
response (Park et al., 2012; Chiba et al., 2013). A potential way
around these difficulties associated with transcriptional inhibition
assays is through in vivo estimates of RNA stability in intact plants
(Thomsen et al., 2010). Using abundance measurements recorded
overa timecourse,effectiveRNAstabilitycanbeestimated fromthe
rates of decrease in abundance between time points.

In the context of optimizing abiotic stress tolerance strategies,
here,we investigated theprocessofstress recoverybyperforming
detailed transcriptome profiling of an excess-light stress and
recovery time course. We are not aware of any global studies, in
any system, that have investigated whether stress recovery
causes changes in RNA stability. Thus, we specifically focus on
the rate and extent of recovery and the effect of recovery on
subsequent stress responses and transcriptional memory. We
combine this with an in vivo strategy to estimate half-lives, tar-
geted analysis of the degradome, small RNA activity, and the 5ʹ-3ʹ
RNA decay pathways. Lastly, we identify diverse clusters of
recovery-specific transcript profiles, including transcripts uniquely
activated during the recovery process.

RESULTS

The Excess-Light Stress Experimental System

To interrogate transcriptome dynamics during stress perception,
recovery, and memory, excess light was applied to plants at 103
growth irradiance using a combination of metal halide and high
pressure sodium lamps (1000 mmol photons m22 s21). This light,
with a spectral quality similar to that of sunlight, is distinct from
cold light sources such as water-filtered light or LEDs. We have
previously reported on the relative induction of excess-light-
responsive genes under different spectral qualities (Jung et al.,
2013). For example, this “warm” light causes H2O2 accumulation
and an increase in leaf temperature and is required for robust
induction of specific excess-light-responsive transcripts such as
APX2 (Jung et al., 2013). Here, we further demonstrate that ex-
posing plants grown under standard growth conditions (100mmol

photons m22 s21; see Methods) to 1000 mmol photons m22 s21

irradiance for 60 min caused expected declines in chlorophyll
fluorescence parameters (Galvez-Valdivieso et al., 2009; Karpinski
et al., 1997; Supplemental Figure 1 and Supplemental Methods).
These results confirmed the physiological relevance of this level
of light stress, which significantly impaired PSII photochemistry
measured at the adaxial side of the leaf, triggered photoprotective
mechanisms,andcausedadegreeofphotodamage, impacting leaf
photosynthesis (Lichtenthaleretal.,2005). Importantly, itappearsto
bewellwithin thecapacityofawild type,Col-0, todissipatemuchof
the excess light energyand repair anydamage. At thephysiological
level, recoveryoccurs rapidlyduring thefirst60min followingstress,
withphotodamagecontinuingtoberepairedover24h; therefore, for
subsequent detailed transcriptomic investigation, we focused on
the first 60 min of recovery.
High coverage, strand-specific mRNA-seq [poly(A) selected]

was initially performed on plants exposed to 60min of light stress
to identify and characterize the warm excess-light response. In
parallel, a subset of plants was subjected to sustained and rel-
atively slow soil-grown drought stress of 9 d without watering,
causing a drop in relative water content (RWC) to around 60%.
This allowed a comparison between short-term and sustained
oxidative stresses. More than one-third of the excess-light-
responsive genes at a false discovery rate (FDR) adjusted P value
(padj) < 0.05 were similarly responsive to drought (469 commonly
upregulated and 703 commonly downregulated transcripts;
Figures 1A and 1B; Supplemental Data Sets 1 and 2). Thus, as
expected, a short-termwarm light stress has a strongoverlapwith
a slow, long-term drought stress. There was a degree of asym-
metry in theMverses A plots indicative of a set of lowly expressed
genes becoming among the most abundant mRNAs in the tran-
scriptome (indicated by boxes in Figures 1C and 1D).
Given that excess-light stress is often transient, we hypothe-

sized that significantly upregulated transcripts would be highly
unstable, which would facilitate a rapid response to alleviation of
the stress or changing conditions. To test this hypothesis, for all
transcripts elevated by more than 3-fold after 60 min of excess-
light stress (padj < 0.05), we extracted half-life values from
previous measurements made in Arabidopsis cell culture in the
absence of stress (Narsai et al., 2007). Surprisingly, this subset of
transcripts had a higher than average half-life at 6.4 h (median 4.5)
compared with the transcriptome average of 5.3 h (median 3.8;
Figure 1E). Transcripts upregulated by >8-fold had higher average
half-lives again at 7.8 h (median 5.8). Drought-induced transcripts
displayed the same trend (Figure 1E). The high stability of these
transcripts is surprising and suggests that it could take hours for
the transcriptome to reset following light stress. For example,
HEAT SHOCK PROTEIN101 (HSP101) has a reported half-life of
6.4 h (Narsai et al., 2007). This transcript is upregulated 750-fold
during excess-light stress; thus, in the absence of transcription, it
could take >61 h to decay back to prestress levels. In light of this
result, we directly tested how rapidly the transcriptome recovers.

Design of a Stress and Recovery Time Course for in-Depth
Transcriptome Profiling

Anexcess-light stressand recovery timecourse,consistingof four
phases, was designed to investigate complementary aspects of
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stress tolerance, recovery, and memory (Figures 2A and 2B). At
each time point, the transcriptome was profiled by performing
mRNA-seq, sRNA-seq, and parallel analysis of RNA ends (PARE).
Whole-genome bisulfite sequencing (WGBS)was also conducted
to examine DNA methylation at the three indicated time points.

RNA-seq data were analyzed to determine relative gene ex-
pression profiles over the time course, including differentially
expressed genes, using edgeR (Robinson and Oshlack, 2010;

McCarthy et al., 2012; Supplemental Data Set 3). The expression
profiles of replicate time points formed discrete treatment groups
upon clustering, reflecting the quality and reproducibility of the
RNA-seq data (Supplemental Figure 2A). qPCR was performed,
corroborating the normalized expression profiles (Supplemental
Figures 2B and 2C).
Individual stress-recovery expressionprofile plotswere created

for the 1000 most rapidly downregulated transcripts (discussed

Figure 1. RNA-Seq Comparison of Transcriptional Responses to Drought and Excess Light.

(A) and (B) Venn diagrams comparing excess-light (60 min, 103 growth irradiance, 1000 mmol photons m22 s21) responsive transcripts with drought (9 d
withholding water; RWC ;60%) responsive transcripts. P values refer to the significance of the overlap, determined using a hypergeometric test.
(C) and (D)Mversus A plots for excess-light and drought, each comparedwith control samples respectively. Each dot represents a transcript and log2 fold
change (stress/control) is plotted against average abundance in CPM. Red dots indicate differentially expressed transcripts (padj < 0.05), blue lines are
drawn at 62-fold change, and dashed boxes indicate the groups of high-abundance, high fold-change genes.
(E)Half-lives (inhours)basedonmeasurementsmade incell culture (Narsaietal., 2007) forgenesexhibitingupregulationunderexcess lightordroughtstress
summarized in a box-and-whisker plot (FC refers to fold change relative to untreated).
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below; Supplemental Data Set 4), and a selection are presented in
Supplemental Figure 3. These individual time course plots are
a resource for unexpected insights into potential novel roles of
stress response genes. To give one example, the expression
of the transcription factor SALT TOLERANCE ZINC FINGER
(STZ ZAT10) peaked during recovery. Previously, ZAT10 has
been reported to function specifically during stress exposure
(Rossel et al., 2007; Sakamoto et al., 2004); these results
suggest that beyond stress tolerance, ZAT10 could play a role
in repressing expression of target loci during stress recovery,
consistent with earlier reports that it binds a cis-acting ele-
ment, the A(G/C)T repeat, and represses gene expression
(Sakamoto et al., 2004).

Rapid Transcript Downregulation during Recovery

A striking feature of the stress and recovery RNA-seq expression
profiles was that rapid induction can be followed by equally rapid
decline in transcript abundance. For instance, HSP70 is ex-
pressed at relatively low levels of 28 counts per million (CPM)
under control conditions (where control conditions refer to
measurements made at time point I on untreated plants grown
under standard growth conditions, as described in Methods).
Upon excess-light stress, HSP70 becomes the 23rd most abun-
dant transcript in the entire transcriptome at 10,746 CPM and then
rapidly decreases back to prestress levels during recovery
(Supplemental Data Set 4, page 575). We termed this phenom-
enon rapid recovery gene downregulation (RRGD).

Figure 2. Excess-Light Stress and Recovery Time Course.

(A) Schematic of the excess-light (EL) stress recovery time-course experimental design. In Phase 1, plants were exposed to 103 growth irradiance
(1000 mmol photons m22 s21) for 60 min to establish the initial transcriptional responses to excess light. Subsequently in Phase 2, subsets of plants were
returned to control growth irradiance (“recovery,” 100 mmol photons m22 s21) to observe the dynamics of transcriptional recovery, while a group of plants
remained in excess light for a further 60 min to enable comparison of sustained excess light and recovery. In Phase 3, a subset of plants from the phase
2 recovery were returned to excess light to investigate priming in the case of immediate, repeated stress exposure. This immediate priming group was
contrasted with a longer-term memory experiment in Phase 4, where plants were exposed to a delayed repeated exposure following a 24-h recovery.
Numbers in gray boxes indicate sampling times in minutes and roman numerals the time point identifiers.
(B) Schematic representation of sampling design for transcriptome and DNA methylome profiling. For transcript profiling, RNA was extracted from three
biological replicates and then each RNA sample split for mRNA-seq, sRNA-seq, and PARE (degradome-seq). ForWGBS (DNAmethylome), four biological
replicates were used.
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To determine the prevalence of rapid transcript silencing during
stress and recovery, the profiles of all transcripts activated by
excess-light stress were examined. Many transcripts peak in
expression after 30min of excess-light exposure; thus, focus was
turned to the444 transcripts significantly (padj<0.05) upregulated
by 3-fold at 30 min of excess light (Figure 3A; Supplemental Data
Set 5). The 444 excess-light-responsive transcripts were divided
into three groups: Category 1 transcripts that maintain high ex-
pression into the recovery phase (Figure 3D); Category 2 tran-
scripts that drop in expression specifically during recovery
(“recovery-triggered decay”; Figure 3E); and Category 3 tran-
scripts that peak in expression at 30 min and are subsequently
downregulatedduring the remaining light stressperiod (Figure3F).
For example, HSP101 increased 750-fold by 30 min, with an
equally rapid decay during and after light stress (Figure 3C). In-
terestingly, of the 444 transcripts upregulated by 3-fold ormore at
30 min, 44% declined to below basal levels such that they were
downregulated relative to untreated by 60-min recovery.

Unexpectedly, during stress recovery, a prominent spike in the
relative expression level of many transcripts was observed at
the 7.5-min recovery time point (e.g., Figure 3A). Using a high-
resolution qPCR time course (Figures 4A to 4C) the expression
spike during recovery was replicated a second time but with
greater resolution for the three transcripts profiled. We observed
that the recovery expression spiked within 3min and could still be
observed at the 6- and 9-min recovery time points. It is possible
that this spike could be linked to a trigger for stress recovery, but
this was not investigated further. Consistent with the RNA-seq
data, the speed of induction for the HSPs observed in the high-
resolution qPCR analysis combined with the speed of down-
regulation during recovery suggest thatHSP101 andHSP20-like2
mRNAs are highly unstable (Figures 4B and 4C).

To explore the activation of the stress-recovery response, the
genome-wide trajectories of transcripts in plants maintained in
excess light for 120 min (IV ) were compared with those of plants
thatweresent to recoveryafter 60min (VIII). Theplots inFigures4D
and 4E demonstrate that on average for excess-light activated
transcripts, if excess-light ismaintained, then higher expression is
also maintained (red lines); conversely, if the stress is alleviated
then expression is repressed (blue lines).

Unstable Transcripts

The rate at which transcripts recover from their peak expression
defies the predicted half-lives of many excess-light responsive
transcripts, which in cell culture averaged 6.4 h (Figure 1E). For
instance,HSP101 transcriptswitha reportedhalf-lifeof6.4h incell
culture take just60min to recover inplanta (Figure3B).Tomeasure
stability during light stress and recovery, we considered two
approaches: transcriptional shutoff (Park et al., 2012; Chiba et al.,
2013) and in vivo estimation based on abundancemeasurements
(Thomsen et al., 2010). First, we tested experimental procedures
to stop transcription during stress. Photosynthetically active
protoplasts (Yoo et al., 2007) presented a promising system for
application of transcriptional inhibitors; however,wecould neither
observe reliable inductionor recoverydecayofany typical excess-
light responsive transcripts, ruling out protoplasts as a suitable
system for excess-light stress in planta (Supplemental Figure 4).

We also performed cordycepin infiltrations into leaves during
excess-light exposurewith the aimof comparing half-lives before,
during, and after stress; however, we could not reliably stop
transcription duringexcess-light stress in intact leaveson the time
scale of minutes employed in our time course.
To examine RNA half-lives in our excess-light recovery system,

two strategies were undertaken. The initial strategy was to adopt
an approach analogous to a prior study in Drosophila mela-
nogaster that estimated RNA decay during development in vivo in
the absence of exogenous application of transcriptional inhibitors
(Thomsen et al., 2010). We examined the stability and speed of
mRNA decay during stress and recovery by estimating maximum
possible half-lives (half-lifemax). This approach does not factor in
ongoing transcription and accordingly will overestimate half-life if
transcription is still occurring. For transcripts that exhibit rapid
downregulation characteristic of predominant decay, this ap-
proach can provide an estimate of the maximum half-life with
statistical confidence, but for other transcripts that are not rapidly
decayed, thismodelmaybe inaccurate. The calculated half-lifemax

is an upper bound estimate based on the rate of downregulation,
with the true half-lives being necessarily equal or lower (more
unstable). For each transcript, the net decay was quantified and
the in vivo decay constant (k) and half-lifemax were estimated by
applying an exponential decay model. The net decay values
represent log2 fold-changes between respective time points;
hence, a net decay of –1 represents a 50% drop in transcript
abundance.
For HSP101 mRNAs, we estimated a half-lifemax of ;12.1 min

during recovery using the RNA-seq data. In the high-resolution
qPCR analysis, a half-life of 5.2 was estimated. Moreover, given
a half-life of 5.2 min, in the absence of transcription, it would take
around50min forHSP101 transcripts to decay toprestress levels.
Supporting our estimation and approach, 60 min after stress
HSP101 expression levels returned to within 4- to 5-fold of pre-
stress expression (Figures 3C and 4B).
Thehalf-lifemaxvalues for each individual time interval of the time

course were collated, revealing that the recovery period was
associated with the highest transcript instability (shortest
half-lifemax). The transcripts with the shortest half-lifemax were
found to be downregulated most rapidly between 0 to 7.5 min
and 7.5 to 15min recovery, and transcripts downregulated during
these periods also had the lowest median half-lifemax (Figure
5A). One limitation of estimating half-lifemax in vivo is that
during short time intervals more stable transcripts do not
decay significantly, so their half-lifemax cannot be estimated,
which could bias the distribution in Figure 5A. Therefore,
we took the 1000 most rapid decay events across the whole
time course, representing the 901 most unstable transcripts
(Supplemental DataSet 6).Of these1000 fastest decay events,
69% occur during the first 15 min of recovery (Figure 5B) in
agreement with the median values (Figure 5A). Nevertheless,
directly comparing half-lifemax estimated for stress and re-
covery using the same time interval of 30 min revealed that the
initial stress is also associated with very unstable transcripts
(Figure 5C). Analysis of the Gene Ontology (GO) categories
enriched among the most unstable transcripts revealed
greatest enrichment for the Molecular Function transcription
factor, which in turn likely accounted for a large diversity of
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stress responsive Biological Processes Terms that are en-
riched for this group (Supplemental Data Set 7).

Half-lives estimated here were directly correlated with their
respective half-lives in cell culture in the absence of stress (Narsai
et al., 2007). There is no correlation (r2 < 0.01) between temporal

half-life measured during stress and recovery and the half-life
determined in the absence of stress (Figure 5D). For example, the
measured half-life ofAPX2 is >17 h in the absenceof stress, which
is in the 99th percentile of stability (<1% of transcripts are more
stable), whereas during the stress treatment between 7.5 and

Figure 3. Rapid Downregulation of Stress-Activated Transcripts.

(A)RNA-seqexpressionprofiles forall transcriptsupregulatedby3-fold (padj<0.05)at30minofexcess light (1000mmolphotonsm22s21), 444 transcripts in
total.
(B) and (C) individual stress-recovery profiles of representative excess-light-responsive transcripts, including HSP101(B) and HSP20-like2 (C).
(D) to (F) Transcripts activated by 3-fold at 30min of excess light were divided into three profile groups: (D)Category 1 transcripts activated by excess light
and maintained at high expression levels through to 30 min recovery; (E) Category 2 transcripts activated by excess light and repressed by 30 min of
recovery; and (F) Category 3 transcripts that peak in expression at 30-min excess light and subsequently decay during the initial 60-min stress exposure.
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15 min APX2 has an estimated half-lifemax of 12.1 min (only
21 transcripts are less stable, 1st percentile). This result is con-
sistent with the hypothesis that RNA stability is dynamically
regulated during stress and recovery.

This initial half-lifemax estimation method incorporates mea-
surementsmade from just twoconsecutive timepoints.Given that
it is not known if the stability of the mRNAs for a particular gene
changes during excess-light stress and/or recovery, this ap-
proachwasemployed to capture any rapid decay event during the

time course. However, an additional more robust calculation was
undertaken to estimate half-lifemax incorporating the additional
available time points. Here, a least-squares linear model was
applied to the timecourseexpressionvalues toestimatekmax, 95%
confidence intervals, SE of thedecay rate, and recovery half-lifemax.
This calculation was applied to the 444 genes upregulated by
3-fold during excess-light stress (Figure 3A) and is reported in
Supplemental Data Set 5. Category 3 genes were modeled from
30minof stressuntil 60min recovery to capture theperiod of rapid

Figure 4. High-Resolution qPCR and Recovery-Triggered Decay.

(A) to (C)High-resolutionexcess-light stress recoveryqPCRtimecourse forAPX2 (A),HSP101 (B), andHSP20like2 (C).Pointsdenote foldchange relative to
time 0, error bars denote SE, n= 4, red line indicates the stress period (1000 mmol photonsm22 s21), dashed red line indicates prolonged stress, and the blue
line indicates the recovery period (100 mmol photons m22 s21).
(D) Comparison of transcript trajectories in RNA-seq data between recovery (blue lines) and prolonged excess-light stress (red lines), corresponding to
Phase 2 in Figure 2.
(E)Local polynomial regressionfitting (loesscurve) fordata in (D)demonstrating the trend. Inall plots, red lines indicateperiodofexcess-light stressandblue
lines period of recovery.
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downregulation following the peak in expression. Given the ex-
pression spike between 0 and 7.5 min recovery, Category 2 (and
Category1)genesweremodeled from7.5min recovery tosimilarly
capture the period of most rapid downregulation. Using this
combination of time periods also fitted the highest number of
geneswith statistical significance (FDR<0.05). In total, 87% (388/
444) of these stress upregulated genes had a recovery half-lifemax

of <60 min (regression padj < 0.05). This group of 388 highly
unstable, rapidly recovering transcripts was defined as “RRGD
loci” (Supplemental Data Set 5).

An important point of difference between this investigation and
that conducted by Thomsen et al. (2010) is that the previous study
analyzed Drosophila during early development, a time period
reportedly devoid of transcription. Transcription undoubtedly still
occurs during excess-light stress and recovery at some loci.

Therefore, we undertook a second modeling approach to better
estimate half-lives by accounting for ongoing transcription and
decay. This approach also enabled us to test the suitability of the
half-lifemax estimation in our system. We used nonlinear least
squares regression to fit Equation 2 derived from Equation 1 (see
Methods) according toPérez-Ortín et al. (2007), yieldingestimates
of transcription rates during recovery, and half-lives (termed half-
lifeNL to denote the model used in the calculation). This model
exploits the kinetics of expression: Synthesis of anmRNA follows
zero-order kinetics, whereas their decay follows first-order.
Therefore, the model incorporates a linear term for transcription
(zero-order) and an exponential term for decay (first-order).
The nonlinear model was applied to the 444 excess-light re-

sponsive transcripts to calculate half-lifeNL. Using this more
complex approach reduced our statistical power; however, the

Figure 5. RNA Half-Lifemax Estimation during Stress and Recovery.

(A) Half-lives for genes exhibiting a net decay (downregulation) for each time period were calculated according to the exponential decay model and
summarized in abox-and-whisker plot. For comparison, thedotted red line indicates themedianhalf-life of 3.8 h across the transcriptomedetermined in the
absence of excess-light stress in cell culture (Narsai et al., 2007).
(B)The 1000 fastest decay events (smallest half-lives) corresponding to 901 unique geneswere extracted and the percentage occurring at each timeperiod
is summarized in the pie chart. The first 15 min of recovery from the initial excess-light stress account for 69% of the fastest decay.
(C) Half-lifemax estimates for the first 30 min of excess light (I and II) compared to estimates made between an equivalent sized time interval, 0 to 30 min of
recovery (III–VII).
(D)Half-life determination in the absence of EL stress (in cell culture; Narsai et al., 2007) compared with half-lifemax estimate during stress and recovery for
RRGD loci in this study (Supplemental Data Set 5; r2 < 0.01).
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model converged and we were able to make estimates for 90 and
95% of Category 2 and 3 genes, respectively (Table 1). Example
model resultsareplotted inFigure6 forAMT1;2andHSP101along
with the half-lifemaxmodel results. Both models exhibit a similar fit
to the RNA-seq data with comparable half-lives. Applying the
model to both theRNA-seq data andqPCRdata also led to similar
half-life estimates forHSP101 (Figure6Band6C).The linearmodel
gives a larger half-life estimate than the nonlinear, as expected.
However, for these examples gene transcription levels approach
zero for both models, and the goodness of fit of the half-lifeNL and
half-lifemax models is not significantly different (e.g., for HSP101,
Akaike’s information criterion [AIC] 604 and 602, respectively;
ANOVA, P = 0.92). The power of the nonlinear model is better
demonstrated using simulated data, where the final steady state
does not equilibrate to zero (Supplemental Figure 5). In this case,
the goodness of fit of the half-lifeNL models is significantly better
than half-lifemax model (AIC 604 and 611, respectively; ANOVA,
P = 0.003).

In total, for 222 transcripts we could confidently (FDR < 0.05)
estimate half-lives (all results listed in Supplemental Data Set 5).
Among the high confidence stability estimates, Category 2 tran-
scripts had an average half-lifeNL of 8.8 min and Category
3 20.2min; for instance,AMT1;2 had an estimated half-life 6.9min
(Figure 6; Supplemental Data Set 5). As expected, the half-life
estimates were lower than the prior half-lifemax calculations in all
cases. Overall, following FDR adjustment, the linear transcription
term was significantly greater than zero [FDR(a) < 0.05] for
30 Category 2 transcripts and 39 Category 3 transcripts, indi-
cating that transcription is ongoing to some level at these loci
(Supplemental Data Set 5). We also modeled the half-life of
HSP101 during the period of stress (20–120 min) using the qPCR
data, which gave a value of 25 min for HSP101 during contin-
uous stress; however, the result was not statistically significant
(FDR > 0.05).

Half-lives and kdecay provide a comparable measure of the
stability of anmRNA; however, becauseRNA decay is a first order
process, these parameters do not directly reflect actual rates of
decay. The decay rate of anmRNA (molecules h21) is a product of
the decay constant (kdecay) multiplied by concentration (C). Ac-
cordingly, it is informative to put into perspective the workload of
the cellular RNAdecaymachinery byconsidering decay rates. Lee
andLee (2003)estimated thatArabidopsishas100,000 transcripts
per cell for average sized transcripts (citing estimates of 100,000
and500,000 for higher plants; Kamalay andGoldberg, 1980;Kiper
et al., 1979); accordingly, one transcript copy would approximate
10 CPM on average for RNA-seq data (without correcting for
transcript length bias). This is consistent with estimates in ani-
mals: Mortazavi et al. (2008) proposed that one transcript copy

approximated 0.5 to 5 FPKM and Marinov et al. (2014) also es-
timated ;10 FPKM on average, noting that RNA quantities can
vary by an order of magnitude between cells. Working with the
estimate thatone transcriptper cell approximates10CPMinRNA-
seq data from Arabidopsis leaves, we can thus calculate and
compare molecular decay rates. HSP101 had the fastest decay
rate of 585 molecules min21 cell21 at the 30-min time point (II)
during excess-light stress, whileRUBISCOACTIVASE (RCA) was
the second fastest decaying transcript. APX2 exhibits a rapid
decrease between 7.5 and 15 min recovery, going from 148 to
40 CPM, corresponding to a half-life of 4.0 min. This translates to
an estimated average decay rate of 1.4 molecules of APX2min21

cell21. By contrast, during the same period an approximate 25%
drop in RCA abundance was detected, which was statistically
significant (padj < 0.05) and corresponded to a decay from 14,283
to 10,879 CPM over 7.5 min. At a minimum, this would require
turning over in the order of 45.4molecules ofRCAmin21 cell21 on
average at an initial rate of 585 molecules min21 cell21 at the
beginning of the decay period (assuming exponential decay
dC/dt = 2kdecay * C). Thus, small relative changes for highly ex-
pressed genes may require considerably more enzymatic activity
than lower abundance genes.

Profiling RNA Degradome Dynamics during Stress
and Recovery

Considering the high instability and rates of decay triggered by
stress and/or recovery, one attractive mechanism for RRGD is
cis-acting siRNAs, which could be generated from aberrant
transcripts produced during the prolific transcription at stress-
responsive loci. Therefore, we undertook PARE to profile the RNA
degradome, capturing uncapped precursor siRNA template
molecules. This procedure captures all uncapped and poly-
adenylatedmRNAmolecules in the transcriptome using a custom
variation on the Illumina sRNA and mRNA library preparation
protocols, providing a snapshot of the degradome (Zhai et al.,
2014). Using these data, we can calculate the degradome
abundance associated with the mRNA for a particular gene. First,
we compared the PARE profile of the untreated sample to pre-
viously reported degradome sequencing. A significant correlation
between PARE abundance and mRNA abundance (r2 =0.64;
Figure7A;additional replicatesprovided inSupplementalFigure6)
in the untreated samples (I) was observed, consistent with pre-
vious reports that also examined untreated samples (Jiao et al.,
2008;Addo-Quayeetal., 2008;Willmannet al., 2014).Ofparticular
interest were the 1950 loci that displayed a greater than 2-fold
enrichment forPAREtags relative tomRNAabundance (Figure7A,
upper left). As expected, PARE-enriched loci include known

Table 1. Summary of Nonlinear Modeling Statistics for Determination of RNA Half-Lives

Category Model Period No. of Genes Modeled No. of Models Converged k FDR < 0.05 Mean Half-Life SD Half-Life

Cat1 67.5–120 62 33 1 NA NA
Cat2 67.5–120 136 123 28 8.804 4.823
Cat3 30–120 246 233 193 21.164 9.548

Category (Cat) refers to categories defined in Figure 3; model period (minutes) refers to time points depicted in Figure 6 (which correspond to the time
point IDs II, III, V, VI, VII, and VIII, defined in Figure 2). All genes in each category were modeled; however, the model did not converge in all cases.

Rapid Recovery Gene Downregulation 1845

http://www.plantcell.org/cgi/content/full/tpc.16.00828/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00828/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00828/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00828/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00828/DC1


microRNA (miRNA) targets and represent canonical miRNA
cleavage signatures in the PARE data (Figure 7A, red dots). Some
PARE-enriched loci correspond to structural RNAs such as
transfer RNAs, small nuclear RNAs, and small nucleolar RNAs as
previously observed (Hou et al., 2014), andmany also correspond
to protein-coding genes. These observations raise the possi-
bility that the abundance and pattern of PARE reads mapping to
protein-coding transcripts could be of functional relevance.

The relationship betweenPARE abundance andmRNAstability
wasfirst examinedusingexistingmRNAhalf-lifedata (Narsai et al.,
2007).We observed no correlation (r2 < 0.01) between the stability
of a transcript (as measured in a transcriptional inhibition exper-
iment) and the degradome abundances measured in our experi-
ments (Figure 7B). Similarly, there was no correlation (r2 < 0.01)
between the half-lives measured in our experiments and their
PAREabundanceat 60min recovery, a timepointwhenRRGD loci
approach equilibrium (Figure 7C).

During the periods where expression levels change, the time-
course PARE analysis herein revealed that rapid transcript
upregulation is associatedwith a proliferation in uncappedmRNA
molecules (Figures 7D to 7I). One possibility is that unstable
transcripts undergoing higher rates of decay could exhibit an
increased PARE:RNA-seq ratio. Therefore, PARE and mRNA-
seq abundances were profiled for RRGD loci that display rapid

induction followed by rapid decay during excess-light stress, and
a selection is shown in Figures 7D to 7I. Overall, the degradome
abundance largely mirrors mRNA abundance. There is some
evidence in these plots that periods of decay are associated with
an increasedPAREratio,withPAREabundanceappearing to “lag”
behind mRNA abundance. PARE abundance spikes to relative
levels higher even thanmRNA abundance at the 7.5-min recovery
time point (V), which is a period of very rapid downregulation
(Figures 4A to 4C).
Recently, Hou et al. (2016) and Yu et al., (2016) demonstrated

thatPAREdata fromplants canbeused to identify loci undergoing
cotranslational decay by virtue of ribosome footprints detectable
in the degradome. To validate the quality of our degradome data
and investigate whether RRGD loci undergo cotranslational
decay, we developed a software tool called PAREphase (see
Methods). At a genome-wide level, consistent with the previous
findings of Hou et al. (2016) and Yu et al. (2016), we also observe
3-nucleotide phasing over coding sequences. Our software tool
also replicates the findings of both previous investigations using
the published data sets (Supplemental Figures 7C to 7F). For all
three data sets, frame 1 is enriched over the other frames (where
0 is the translation frame),with remaining readsdistributedmore in
frame 2 than frame 0 in the direction of the translating ribosome.
With respect to ribosome stalling, in agreement with Yu et al.

Figure 6. Estimation of RNA Half-Lives Using Nonlinear Modeling.

Fitting of the nonlinear (NL) model to the mRNA expression data for both RNA-seq data and qPCR data. The upper panels display the mRNA expression
levels as log2 fold change relative to time point 0. The period the model is fitted to is denoted by the dashed lines, and the model fit is plotted in the panels
below (teal line). The half-lifemaxmodel is fitted for comparison (pink line). The half-lives calculated using eachmodel are presented below the plots and the
asterisk indicates the FDR for k associated with the half-life is < 0.05. The half-lifemax and nonlinearmodel equations are displayed in the key, wherem is
mRNA abundance, k is the decay constant, t is time, and a and b are modeling constants (see Methods). The half-lifemax equation is equivalent to the half-
lifeNL equation, where a equals zero and is alsomathematically equivalent to the canonical formula for half-life and kdecay in transcriptional halt experiments
(m = b$e2kt equivalent to kdecay = -ln[C/C0]/dt; see Supplemental Methods for derivation).
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(2016), we find that the peak accumulation of reads occurs at
16 nucleotides and a secondary peak at 17 nucleotides upstream
of the mRNA stop codon, corresponding precisely to the 5ʹ
boundary of ribosomes stalled with their A site at the stop codon
(Figure 8A; Supplemental Figures 7A and 7B).

RRGD loci exhibit clear 3-nucleotide phasing and the 16- to
17-nucleotide peak, demonstrating that these loci undergo co-
translational decay under control conditions (Figure 8B). The ratio
of the abundance of the protected frame 1 to the average
abundance in frames 0 and 2, is defined as the cotranslational

decay index (CDI) and can be used as an indication of relative
levels of cotranslation decay (Yu et al., 2016). Here, we further
divide the CDI into a phasing decay index for the translating ri-
bosome and a stalled ribosome decay index because the ribo-
some footprints of translating andstalled ribosomeare enriched in
different frames (Figure 8C; see Methods). During the recovery
period, the RRGD loci exhibit little change in the phased CDI;
however, apronounced increase in their stalledCDIoccurs (Figure
8D). This is suggestiveof an increase incotranslationdecayduring
stress and recovery for these loci compared with the genome-wide

Figure 7. Degradome Abundance Correlates with mRNA Abundance but Not Half-Life.

(A)Relationship between degradome abundance (PARE) andmRNA abundance [poly(A)+ RNA-seq] for one replicate of sample I (time 0). CPM valueswere
determined for genic-sensemapping reads following library normalization using TMM in edgeR; r2 values represent correlation coefficients; red dotsmark
experimentally validated miRNA targets (sourced from Ding et al., 2012a).
(B) and (C) Relationship between PARE enrichment and mRNA half-life. The PARE enrichment ratio (PARE CPM/mRNA-seq CPM).
(B) Half-lives were reported by Narsai et al. (2007), determined in Arabidopsis cell culture following transcriptional inhibition.
(C) Half-lives were estimated in this study.
(D) to (G) PARE abundance shadows mRNA abundance during stress and recovery. PARE (red dashed line) and mRNA (black solid line) abundance
(normalized CPM), profiled over the stress-recovery time course for individual RRGD loci. Dotted vertical lines demarcate the recovery period.
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trend. While these PARE data are only a single replicate per time
point, the trend is consistent over the recovery time course.

Stress Recovery and XRNs

PAREspecifically capturesuncapped,polyadenylatedRNAthat is
in the process of 5ʹ end decay. The increased abundance of PARE
tags for excess-light-activated transcripts also suggested the
involvement of the 5ʹ-3ʹ decay pathway. To test this, qPCR was
undertaken for a selection of RRGD loci using nuclear (xrn2xrn3)
and cytosolic (xrn4) XRN mutants. In addition, we generated

a triple xrn2xrn3 xrn4mutant and included theSAL1mutant alleles
alx8 and fry1-6 that have concurrently impaired function of all the
XRNs (Estavillo et al., 2011; Gy et al., 2007). Wild-type plants
exhibited strong induction of gene expressionduring the60minof
light stress followed by a rapid restoration of mRNA expression
levels during recovery. Collectively, stress recovery for the sal1
and xrnmutantsproceededwithdynamics similar to thoseofwild-
type plants as opposed to the hypothesis that abundance would
decrease only minimally or even continue to increase during re-
covery (Figure 9; Supplemental Figure 8).

Figure 8. Cotranslational Decay of RRGD Loci during Recovery.

(A)Average genome-wide distributionof the 5ʹ endsof uncappedRNAmolecules around the stop codonsof all coding sequences. Bluebars indicate frame
0; yellow, frame1,which is theprotected frame; andgreen, frame2. Theblue frame0coincideswith the first nucleotideof codons in thecanonical translation
frame. Nucleotide positions are relative to the first base of the stop codon, which is numbered 0.
(B)Averagedistribution forRRGDlociundercontrol conditionsat timepoint I. The illustrationat thebottomshows thesizeofanmRNAfragmentprotectedby
a plant ribosome and the position of ribosome stalled at the stop codon. The dashed lines at positions 0 and –17, mark the approximate width of a half
a ribosome footprint, the peak accumulation of reads occurs at –16 nucleotides in frame 2.
(C)Twocotranslational indices are calculated, and thephasedCDI is calculated over –98 to –19bydividing the average counts in theprotected frameby the
depleted frames, while the stalled CDI is calculated by dividing the average counts from –18 to –16 by the average counts from 0 to + 47 (background in the
untranslated region).
(D)Profile of cotranslational indices during recovery for the genome-wide average (teal) comparedwith RRGD loci (red). Dashed line, stalled CDI; solid line,
phased CDI.
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Endogenous Transcripts Protected from siRNA Silencing

The rapid proliferation of uncappedRNAsduring stress at excess-
light-responsive loci raised the possibility of siRNA biogenesis.
Small RNAs were profiled by sRNA-seq in triplicate for each time
point of the time course (using the same RNA on which RNA-seq
wasconducted). De novoannotation andquantification of siRNAs
was then performed using ShortStack (Axtell, 2013; Shahid and
Axtell, 2014) to determine regulatory siRNA clusters and identify
siRNA producing loci. In total, between 16,731 and 27,495 siRNA
loci were identified per time point (Supplemental Data Set 8),
consistent with previous reports of siRNA cluster number in
Arabidopsis aerial tissue (Axtell 2013). On average 76.5% of the
siRNA clusters overlap with transposable elements (TEs), ac-
counting for 14,160, or 45.4%of all TEs. By contrast, only 8.6%of
the siRNA clusters overlap with protein-coding loci. A total of
1979 genes have siRNA clusters, with 35.5% of these gene-
associated siRNA clusters conserved across every sample.
Two analyses were then undertaken: an overlap with stress-
responsive transcripts and an unbiased global analysis. First, of
the 444 significantly light-stress-activated transcripts (Figure 3A),
12 were associated with siRNAs (Supplemental Data Set 9).
However, none of these siRNA clusters were found to be stress
or recovery responsive: All 12 siRNA clusters were present in
untreated, treated, and recovery sampleswith no clear treatment-
dependent expression patterns. Thus, none of the light-stress-
induced loci exhibited siRNA production coincident with mRNA
or degradome upregulation.

Globally, we found no evidence of stress- or recovery-induced
siRNAclusters.Manystress-responsiveand rapidlydecayed loci do
show an increase in small RNA tags; however, these were generally
of mixed size classes (18–25) and overwhelmingly aligned to the
sense strand. Accordingly, these small RNA reads are most likely
degradation intermediates (small fragments of degraded RNA),
rather than functionalsiRNAs.ThesesmallRNAdecay intermediates
arecontrasted inFigure10withexamplesof twoof themajorclasses

of siRNAs, 24-nucleotide heterochromatic small interfering RNAs
and 21-nucleotide phased, secondary, small interfering RNAs (Fei
et al., 2013). On occasion, siRNA loci were observed neighboring
stress-responsiveloci (Figure10C);however, thesiRNAlociwerenot
responsive to excess-light stress and no obvious influence on the
neighboring genes was observed.
To complement the global siRNA profiling, qPCR of multiple

transcripts in various combinatorial rdr mutant backgrounds
was performed to determine whether impairing the siRNA bio-
genesis pathway led to defects in mRNA decay following excess-
light induction (Supplemental Figure 9). REDOX RESPONSIVE
TRANSCRIPTIONFACTOR1 (RRTF),HEATSHOCKTRANSCRIPTION
FACTOR A7A (HSFA7A), HSP101, and LIGHT-HARVESTING
CHLOROPHYLL-PROTEIN COMPLEX II SUBUNIT B1 (LHCB1.4)
mRNAswere analyzed, with LHCB1.4 included as a representative
excess-light-repressed transcript. For APX2, rdr1 mutants dis-
played attenuated induction but no defect in APX2 decay during
recovery (Supplemental Figure 9A). Backgrounds with combina-
tions of the rdr2 and rdr6 mutations unexpectedly displayed se-
verely delayed induction ofAPX2 (Supplemental Figure 9B). In fact,
other loci (RRTF1, HSP101, and HSF7A) are also characterized by
mildly attenuated induction.Nevertheless,with respect to recovery,
expression levelsdecreased in the rdrmutantswithhighsimilarity to
the profile of wild-type plants.

Excess-Light Stress DNA Methylome

In addition to the key role ofRNAdecay in the rapid downregulation
of transcripts during recovery, transcriptional repression will also
contribute to this process. This could directly affect future stress
response if repression is maintained or inherited epigenetically.
DNA methylation is associated with repressive chromatin states
and a diverse range of environmental cues can alter themethylome
(Eichtenetal.,2014).Thus,whole-genomebisulfitesequencingwas
performed on four biological replicates for the control (I), excess-
light (III), and 24-h recovery (X) samples.

Figure 9. Stress Recovery in 5ʹ RNA Decay Mutants and Retrograde Signaling Mutants.

HSFA7A transcript abundance during stress and recovery in SAL1 retrograde signaling mutants (alleles alx8 and fry1-6) (A), XRN4 mutants (alleles ein5-6
and xrn4-5) (B), and XRN2 and XRN3 mutants (xrn2-1 xrn3-3 and xrn2-1 xrn3-3 xrn4-6) (C). Abundance is expressed as log2 fold change relative to Col-0
untreated samples. Each dot represents themean fold change from two experimental repeats, with each experiment comprising three biological replicates
(three individual plants) per genotype. The xrn2 and xrn3 mutants were profiled in a single experiment. Error bars denote SE.
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Globally, DNA methylation patterns were highly conserved
across all samples (r = 0.96–0.98). However, when correlations
between all samples were clustered, two putative preexisting
epitypes among our Col-0 plants were observed (Supplemental
Figure 10A). That is to say that the samples had one of twodistinct
epigenome profiles. These epitypes could be distinguished

displaying unique DNA methylation states, independent of the
experimental treatments received (Supplemental Figure 10B). The
seedstock for theplants used in this studywasmaintainedbybulk
harvests (rather than an individual line propagated by single seed
descent); thus, individuals may be genetically, and epigenetically,
separated by multiple generations. We reasoned that any robust

Figure 10. Example siRNA Generating Loci.

Genome browser (IGV) views of RNA-seq, PARE, and sRNA-seq abundance (read depth) for 24-nucleotide heterochromatic small interfering RNA
transposon loci (A), 21-nucleotidephasiRNA/tasiRNA loci (TRANS-ACTINGSIRNA1B, AT1G50055) (B), and24-nucleotide siRNA loci adjacent to anRRGD
transcript loci (C). Tracks are colored according to sample/time point.
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and reproducible excess-light response should be evident in
a bulk seed stock.

Differentially methylated regions (DMRs) were identified using
a Bayesian hierarchical model, incorporating the biological rep-
licates, implemented in the R-based software DSS (Feng et al.,
2014). In total, there were 484 DMRs including 389 CG DMRs
between the epitypes (Supplemental Data Sets 10 and 11), and
hierarchical clustering of methylation levels at these DMR loci
revealed two clades distinguished by distinct and consistent DNA
methylationdifferences (Supplemental Figure10B; representative
DMRs are depicted in Supplemental Figures 10C and 10D).
Of these, 79/484 (16%) of the epitype DMRs overlap with the
3018 previously reported spontaneous epiallele loci (Becker et al.,
2011; Schmitz et al., 2011; Supplemental Data Set 10). Given that
these two putative epitypes might be attributed to genetic vari-
ation, we identified single nucleotide polymorphisms (SNPs) from
the bisulfite sequencing data using BS-SNPer (Gao et al., 2015).
Only a few putative SNPs could be identified between samples
(Supplemental Data Set 12), ruling out widespread cis-acting
genetic variation as an underlying cause of the DMRs and con-
firming that theplantswereall closely related.Similarly, noneof the
SNPs disrupted the methylation machinery or genes that are
known to regulate patterns of DNA methylation; in fact, no SNPs
were found inprotein-codinggenes.Thus,ourepitypeDMRs likely
correspond topotentially spontaneous epiallele formation leading
to the emergence of distinct epitypes within our seed stock.
Accordingly, these preexisting DMR loci were excluded from the
analysis of excess-light effects.

Next, we identified DMRs between treatments (filtering out
preexisting epitype loci). Contrasting untreated (I) with 60-min
excess-light (III) revealed only six DMRs (FDR adjusted P < 0.05;
twoexampleDMRsaredepicted inSupplemental Figures10Eand
10F) andcontrasting untreated (I) with 24-h recovery fromexcess-
light (X) similarly revealed minimal changes in DNA methylation
(Table 2; Supplemental Data Set 13). Thus, under our conditions,
a single exposure to excess-light stress has negligible impact on
patterns of DNA methylation.

Excess-Light Stress Transcriptional Memory and
Recovery-Specific Expression Patterns

Given that RRGD can cause extremely rapid repression, coupled
with the observation that many transcripts fall below prestress
levels after a 60-min recovery, we examined whether RRGD im-
paired subsequent stress responses. A generalized linear model
(GLM) was implemented in edgeR to identify transcripts that
display a significantly different (padj < 0.05) response to excess
light upon a second exposure. In total, 547 transcripts responded
differently to excess-light applied 24 h after the first exposure,
comparedwith their initial responseat thefirst exposure (basedon
the GLM test of significance). Of the 444 3-fold upregulated
mRNAs (Figure 3A), only two transcripts exhibited a diminished
response, indicating that in the vast majority of cases RRGDdoes
not impair subsequent induction. In fact, 72 RRGD transcripts
displayed an enhanced response, typical of transcriptional
memory. Inspection of individual stress-recovery expression
profiles also revealed that transcripts respond differently to sub-
sequent stress exposure, for instance, APX2 andDEHYDRATION-

RESPONSIVE ELEMENT BINDING PROTEIN2 (Supplemental
Figure 3). Genome wide, the first 60-min excess-light stress (III) led
to the differential expression of 1841 transcripts (log2 > 1, padj <
0.05; 953 up, 888 down). Both repeat stress treatments (IX and XI)
elicited a greater global transcriptome perturbation compared with
the initial stress, as evident in the heat map (Figure 11A). In par-
ticular, reexposure to excess light after just 60-min recovery (IX)
caused a significant increase in the number and magnitude of
differential expression.
Four dehydration stress memory types were proposed (Ding

et al., 2012b, 2013; Avramova, 2015). Building upon these criteria
we observe six profiles (Supplemental Figure 11), including hyper,
rapid, persistent (Figure 11), gain (e.g., AT1G21940), loss (e.g.,
AT3g03260), and inversion (e.g., AT1G66700; see Supplemental
Data Set 4). Consistent with reports for dehydration stress in
Arabidopsis (Ding et al., 2012b, 2013), significant occurrences of
hyperresponsiveness were identified; nevertheless, the response
to the second stress was predominately the same as the response
to the first stress (III versus I compared with XI versus IX). Of the
8800 transcripts responsive to the second stress exposure (XI
versus X, padj < 0.05), 394 exhibited hyperinduction and 192 hy-
perrepression (Figures 11B and 11C; all stress memory transcripts
are listed in Supplemental Data Set 14). In total, 189 transcripts
displayed persistent-induction memory and 284 persistent re-
pression (Figures 11E and 11F). The expression of many hyper-
induction transcriptsattainedcomparable levels inboththefirstand
second exposure; however, expression peaked sooner in the first
exposure and subsequently declined to lower levels at the 60-min
comparison point (Figure 11D). Moreover, many transcripts in the
“persistent” memory class peaked in expression during the re-
covery period, pointing to a role in stress recovery (Figure 11G). In
summary, there is prevalent genome-wide excess-light transcrip-
tional memory in Arabidopsis, independent of DNA methylation.
Beyond rapid resetting, hierarchical clusteringof theexpression

patterns and directionality over the time course revealed a gra-
dient of treatment effects in the heat map (Figure 12A) and also in
the multidimensional scaling plot (Supplemental Figure 2A). The
expression profiles of samples before stress, during stress, and
during recovery were clearly distinguishable. This may point to the
activation of recovery-specific expression networks as opposed to
merely a relaxation back to the prestressed state. Four general
patternswereobserved, twoareanticipated, namely, induction then
recovery and repression then recovery (Figures 12B and 12D). By
contrast, the twogenesets inFigures12Cand12Edepict transcripts
with stable expression prior to and during excess light (II and III);
however, during recovery (V–VIII) expression is specifically upre-
gulated or repressed by the reversion to standard light intensity.
Among thegroupof recovery-induced transcripts,GO termanalysis
revealed enrichment for transcripts associated with synthesis of
ethylene (GO:0009693)andjasmonicacid (GO:0009695;allenriched
GO terms are listed in Supplemental Data Set 15).

DISCUSSION

To further our understanding of excess-light stress responses in
plants,wehaveundertakenacomprehensive global analysis of an
excess-light stress and recovery time course. We combined
mRNA, small RNA, degradome, and DNA methylome profiles,
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together with a targeted analysis of the processes and proteins
that regulate changes in transcription and RNA turnover. This
analysis provided insight into the significant role of RNAstability in
stress recovery and the observation that sets of transcripts adjust
to different transient light regimes, indicating a form of memory of
the prior environments that is not readily explained by changes in
DNA methylation.

Rapid Excess-Light Recovery Is Underpinned by Highly
Unstable Transcripts

Given that slow relaxation of NPQ and constitutive expression of
factors that confer stress tolerance deleteriously impact yield, we
propose the response of the transcriptome both during and after
stress may be critical in determining the rate of return to optimal
growth, while also governing the extent of priming andmemory. A
key question then is how responsive aremRNAs to “deactivation”
or downregulation? An established idiom of transcript kinetics is
thatRNAstability determines the rapidity of the transitionbetween
expression states (Pérez-Ortín et al., 2007). Surprisingly, many
excess-light and drought-induced transcripts were reported to
be relatively stable in cell culture, with exemplar light stress-
responsive transcripts such asAPX2 reported to have half-lives of
>17 h (Narsai et al., 2007; Figure 1 E). However, as these stability
measurements were made in cell culture in the absence of stress
(Narsai et al., 2007), it was necessary to measure the tran-
scriptome response during recovery in planta.

In planta, transcripts exhibited exceptional responsiveness. For
example, the excess-light treatment upregulated HSP101 and
AMT1;2 after 30 min; then, by an hour after stress they recovered
to 4.4- and 0.6-fold prestress levels, corresponding to very rapid
downregulation (Figures 3B and 3C). Moreover, a high-resolution
qPCR, with 3-min intervals, corroborated the speed of this re-
covery (Figures4Band4C). Initially,weestimatedmRNAhalf-lives
in planta using the equations that describe mRNA decay in the
absence of transcription, as has been applied previously in vivo
(Thomsen et al., 2010), providing an estimate of the maximum
possible half-life for transcripts for which the model gave a sig-
nificant fit. Of the 444 transcripts upregulated by excess light, the
388RRGD transcriptswere estimated to havemaximumhalf-lives
of <60 min during recovery (Supplemental Data Set 5). This re-
vealed an unexpected lack of correlation (r2 < 0.01) between
stability in cell culture in the absence of stress versus in planta
during recovery, albeit calculated by different methods and ex-
perimental conditions (Figure 5D). We also kept in mind that if
transcription is still taking place, which is possible for many
transcripts, then our estimated stress half-lives represent an
underestimation.Acontributing factor for this starkdifferencemay
be that it is difficult to accurately measure the half-life of lowly
expressed transcripts in the absence of stress in a transcriptional

shutoff experiment (Narsai et al., 2007), and transcripts couldhave
altered stability in cell culture (Papadakis andRoubelakis-Angelakis,
2002; Xu et al., 2013). Nevertheless, while themost unstablemRNA
in cell culture has a half-life of 13.0 min, we identified 71 transcripts
with an estimated half-lifeNL of lower than 13.0 min and 222 tran-
scripts with a half-lifeNL of under 60.0 min. It is clear that the RRGD
subset of excess-light-induced transcripts can be highly unstable.
Given the uncertainty surrounding possible ongoing tran-

scription specifically at RRGD loci during excess-light recovery,
we performed a more sophisticated least squares nonlinear
modeling approach to account for any ongoing transcription. This
model is basedupon transcriptionbeing zeroorder anddecay first
order. It also assumes (as do all half-life equations) that a given
transcription rate does not gradually change over the modeled
period. Thismeans that this approach will not be appropriate in all
cases and is recommended only where the rate of change in
transcription is very rapid, as described by Pérez-Ortín et al.
(2007). For this reason, anddue to noise in the data and the limited
number of timepoints,wecouldonly derive half-life estimates that
were significant for 222 of the 388 RRGD loci. Statistical power to
estimate half-lives could be increased with more sampling points
and replicates. Our analyses indeed revealed that a degree of
transcription is ongoing for some genes, and once accounted for,
estimatedhalf-liveswerecalculated tobe thesameor less than the
maximum estimate. Indeed, there are instances when the two
models fitted the data equally well (Figure 6). However, the power
of the nonlinear model was revealed using the simulated data for
which it had a significantly better fit (Supplemental Figure 5).

Mechanistic Insights into RNA Decay during
Stress Recovery

An intriguing further question concerns the timing of destabi-
lization of RRGD transcripts. For instance, are the transcripts
that are generated under conditions of stress unstable from the
outset, or canstability changeduring thecourseof stressorduring
recovery? In animals, transcription anddecaycanalsobecoupled
to enhance the responsiveness of transcripts. Through an mRNA
imprinting mechanism, RNA Polymerase II subunits Rpb4 and
Rpb7 chaperone stress-induced mRNAs into the cytoplasm and
promote degradation (Shalem et al., 2008; Molin et al., 2009;
Amorim et al., 2010; Elkon et al., 2010). It is not yet known if similar
mechanisms operate in plants, although several studies have
previously demonstrated that stress can alter mRNA stability
(Petraceketal., 1998;Parket al., 2012;Chibaetal., 2013).Analysis
of transcription rates could provide a complementary approach
toward determining the relative contributions of transcription and
decay (Park et al., 2012). For instance, Pol II chromatin immu-
noprecipitation and global run-on sequencing methods could be
implemented to measure transcription (Hetzel et al., 2016; Erhard

Table 2. Number of Differentially Methylated Regions Associated with Excess-Light Stress

Methylation Context

Contrast CG CHG CHH
Control (I) versus Excess light 60 (III) 2 2 2
Control (I) versus recovery (X ) 3 3 4
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et al., 2015). However, these approaches may be problematic on
the timescaleofminutesdue to the timedelay required toprepare,
fix, or cross-link samples (Madsen et al., 2015). Regardless, our
data suggest that posttranscriptional RNA regulation plays an
important role in mediating the stress response and rapid re-
covery, and the answers to these questions will likely require

a more mechanistic understanding of the RNA decay pathways
involved.
Possibilities for regulating the rapid decrease in mRNA abun-

dance of RRGD transcripts include targeted action by the RNA
decay pathways, production of (de)stabilization factors, such as
RNAbinding proteins (Reichel et al., 2016), and the action of small

Figure 11. Excess-Light Transcriptional Memory.

(A)Heatmapsummarizing thepatternsof relativeexpression for each treatment versus theuntreatedcontrol, including60minofexcess light (III), recoveryof
60 min (VIII), immediate repeat of 60 min of excess light (IX ), 24-h recovery (X ), and further repeat excess light after the 24-h recovery period.
(B) to (G) Line plots of relative abundance (RNA-seq) over time (minutes), for 1059 transcripts exhibiting transcriptional memory. Red lines indicate the
60-min excess-light exposures, light blue the 60-min recovery, and dark blue lines the 24-h recovery period, which is also demarcated with a vertical line to
indicate the break in the axis scale.
(B) and (C) A total of 394 genes show hyperinduction (B), and 192 genes display hyperrepression (C).
(D) Profile of hyperinduction over the full time course demonstrating peak expression at 30 min of excess light.
(E) and (F) A total of 189 transcripts displayed persistent-induction memory (E) and 284 persistent repression (F).
(G) Many persistent induction loci peak during recovery.
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RNAs.PAREenablesasnapshotofRNAdecay throughprofilingof
uncapped RNAmolecules (Gregory et al., 2008) that are potential
templates for siRNA production (Christie et al., 2011; Gazzani
et al., 2004;Gregory et al., 2008;Gy et al., 2007).Weobserved that
upregulation of mRNA levels during excess-light stress was co-
incidentwith asignificant upregulation inPAREabundance,which
could suggest activation of a 5ʹ-3ʹ RNA decay pathway with
a concomitant increase in the pool of potential RDR substrates for
siRNA biogenesis against these transcripts.

Interestingly, multiple lines of evidence indicate that impairing
RNA decay (Zhang et al., 2015) or decapping (Martínez de Alba
et al., 2015) in a range of mutant backgrounds can lead to
siRNA production at endogenous loci and potential silencing of

endogenous genes. Several examples of environmentally re-
sponsive siRNAs have been reported (Yao et al., 2010; Moldovan
etal., 2010).However, thevastmajorityof studiedsiRNAs inplants
do not respond to environmental perturbations, and environ-
mental conditions have yet to be identified where endogenous
genes become subject to cis-PTGS in this manner. Here, we find
despite prolific and rapid transcription during excess light, no
endogenous loci attracted cis-PTGS. Moreover, we observed
upregulation of uncapped RNAs, which are siRNA biogenesis
triggers (Christie et al., 2011; Gazzani et al., 2004; Gregory et al.,
2008; Gy et al., 2007); yet, it appears that this alone was not
sufficient to trigger PTGS. Consistent with these observations,
mRNA decay during recovery was not impaired in the rdrmutants

Figure 12. Diverse Transcript Profiles during Stress Recovery.

(A)Heatmap representation of a one-dimensional hierarchical clustering of genome-wide differential expression levels as determinedbyRNA-seq for each
time point in the stress-recovery time course relative to the untreated control group.
(B) to (E)RNA-seqmRNAabundanceprofiles, plottedas log2 foldchangescomparedwithabundanceat time0; red lines representstress treatmentandblue
lines recovery phase.
(B) Transcripts activated by 3-fold at 30 min of excess light (II; padj < 0.05).
(C) Transcripts repressed by 3-fold at 30 min of excess light (II; padj < 0.05).
(D) Transcripts activated by recovery (fold change <1.5 prior to recovery phase, >2-fold at recovery 30min [VII] versus 60-min excess light [III]; padj < 0.05).
(E) Transcripts repressed by recovery (fold change < 1.5 prior to recovery phase, 2-fold at recovery 30min [VII] versus 60-min excess light [III]; padj < 0.05).
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analyzed (Supplemental Figure 9). In summary, we found no ev-
idence for a role for RDRs and siRNAs in the recovery following
excess-light stress.

Previously, PARE/degradome data sets have primarily been
used to investigate the activity of miRNAs (Addo-Quaye et al.,
2008; Gregory et al., 2008; German et al., 2008), with only a few
reports considering the broader use of PARE data (Jiao et al.,
2008; Hou et al., 2014; Zhang et al., 2013). One possibility is that
loci undergoing higher rates of decay could exhibit an increased
PARE:RNA-seq ratio. However, we could not find convincing
evidence for such a relationship. PARE:RNA-seq ratios had low
correlation to mRNA half-lives (Figure 7B), and we did not see
evidenceof a shift in thePARE:RNA-seq ratio during time intervals
when transcript abundance declined rapidly (Figures 7D to 7I).
Recently, PARE analysis was also used to study ribosome stalling
and cotranslational decay in plants (Yu et al., 2016; Hou et al.,
2016). Extending on these discoveries, we applied this method to
a timecourse during environmental perturbations for the first time.
We discovered that RRGD loci exhibit patterns of PARE read
phasing characteristic of targets of cotranslation decay (Figure
8B). Thus, a significantmechanism regulating the abundance and
decay of RRGD loci is likely to involve the cotranslation decay
pathway. Genome wide, there appears to be a decline in the
ribosome stalling index average for all loci during stress; the sig-
nificance of this is not clear. Interestingly, we observed a signifi-
cant increase in the relative cotranslational decay index at RRGD
loci during the recovery period, compared with all loci (Figure 8D).
At this stage, we can only speculate as to the cause, but these
data are consistent with the specific targeting of these transcripts
by this decay mechanism.

The increasedabundanceofPAREtagsforexcess-light-activated
transcripts (Figures 7D to 7I), coupled with the targeting by co-
translation decay suggests the involvement of the 5ʹ-3ʹ decay
pathway in the regulationof the excess-light response, especially as
XRN4 is known to have substrate specificity related to conserved
sequencemotifs in targetmRNAs(Rymarquisetal.,2011).XRN4and
LA RELATED PROTEIN 1A associate during heat stress (15 min at
38°C) to facilitate a massive heat-induced mRNA decay process
targeting more than 4500 mRNAs (Merret et al., 2013). Under these
conditions, xrn4 mutants are highly susceptible to prolonged
moderate heat stress. By contrast, another investigation using
a different heat-stress regime of 44°C for 3 to 5 h found that xrn4
mutantsaremore tolerant to this transitoryheatshock (Nguyenetal.,
2015). Of note,HSFA2 expression recovers to prestress levelsmore
slowly in xrn4 mutants.

Given these findings, it is surprising that xrn4mutations do not
impede recovery for the transcripts analyzed herein. Similar re-
sults were observed for xrn2 xrn3, the xrn2 xrn3 xrn4 triplemutant,
and sal1 mutants. There is now convincing evidence that co-
translational decay occurs in Arabidopsis (Merret et al., 2015; Hou
et al., 2016; Yu et al., 2016). Together, these prior reports have
established that cotranslational decay is mediated by the 5ʹ-3ʹ
exonuclease activity of XRN4. Loss of XRN4 has been shown to
lead to a loss of cotranslational decay, demonstrated through
degradome analysis (Yu et al., 2016). Accordingly, loss of XRN4
also leads to the accumulation of transcripts that normally un-
dergo cotranslation decay (Merret et al., 2015). Considering
these prior findings, we hypothesized that the decay of RRGD

transcripts during stress and recovery would be impaired in xrn4
mutants. In fact, we hypothesized that RRGD transcripts would
accumulate to high levels in xrn4 mutants. By contrast, we ob-
served that lesions in XRN4 had little effect on the rate of rapid
downregulation of RRGD loci, which was consistent across
multiple xrn4alleles.On theonehand, this result is in starkcontrast
to prior observations byMerret et al. (2015)where xrn4 lesions had
a significant effect on gene expression. Our hypothesis to rec-
oncile these seemingly contradictory observations is that, in the
case of excess-light stress recovery, the cotranslational decay
pathway is redundant with other RNA decay pathways, which
operate in parallel and/or independently. One possibility is 3ʹ-5ʹ
decay by the exosome. To establish the existence of an in-
dependent pathway, PARE analysis could be performed in xrn4
mutants to confirm that cotranslation decay has been abolished
during recovery.While we have inferred this genetically using xrn4
mutants, it would be valuable to confirm this, for instance, by
conducting PARE sequencing and subsequent ribosome foot-
printing analysis using PAREphase upon xrn4mutants subject to
stressand recovery. If cotranslationaldecay isabolishedand rapid
downregulation still occurs, then this would point to an additional
mechanism. Elucidation of the parallel mechanisms for RRGD
decaycould thenbe investigated through further analysisof stress
recovery in mutants impaired in other aspects of RNA decay, for
instance, 3ʹ-5ʹ exosome-mediated decay.
An intriguing observation in our stress recovery data is the

prominent spike in relative expression levels observed for hun-
dreds of transcripts between 3 to 9 min of recovery (Figures 3A
and 4A to 4C). It is attractive to speculate that this could cor-
respond to the release of a repressor or a change in chromatin
state, for instance, histone exclusion or variants (To and Kim,
2014; Coleman-Derr and Zilberman, 2012). While we do not yet
have an explanation for this expression spike, it does point to the
possibility of a recovery-activated mechanism preceding and
triggering the rapid decay during recovery.

DNA Methylation

Sixty minutes of excess light and a 24-h recovery did not induce
any substantive changes in DNA cytosine methylation. It remains
to be determined whether any of the six DMRs associated with
excess-light stress are of functional significance, but none are
associated with known abiotic stress loci. This result was sur-
prising given that DNA methylation changes can be induced by
drought, flooding, nutrient limitation, temperature shock, patho-
gen infection, high salinity, heavy metal exposure, UV radiation,
and herbivory (reviewed in Herman and Sultan, 2011). How-
ever, consistent with our results, phosphate starvation-induced
changes in DNA methylation observed in rice (Oryza sativa) were
not found in Arabidopsis, likely owing to the lowprevalence of TEs
compared with rice (Secco et al., 2015). Additionally, transcrip-
tional changes preceded changes in DNAmethylation, which fully
manifest only after 24 d (Secco et al., 2015). Thus, the low fre-
quencyofTEs inArabidopsiscomparedwithotherspeciesand the
short-term and transient nature of the excess-light stress applied
herein might explain the lack of DMRs, and it is possible that
a longer termormore repetitiveexcess-light regimewouldalter the
DNA methylome.
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Toward Understanding and Enhancing Stress Recovery

We have demonstrated that an aspect of stress recovery involves
the rapid resetting of transcript levels that may be underpinned by
high RNA instability and decay. In this regard, the recovery pro-
cess could be altered bymanipulating RNA stability or RNAdecay
processes. Slowing down transcriptome recovery could facilitate
a stress memory, increasing future tolerance, although likely with
a yield trade-off. More rapid or timely recovery, if possible, might
be advantageous. An intriguing possibility is that “memories”
could be encoded through retained changes in RNA instability/
responsiveness.

Wehypothesize that stress recovery is an active process, rather
than explained solely by relaxation of the mechanisms engaged
during stress. The rapid recovery response is not simply triggered
by the length of the stress or upon reaching a certain expression
level, suggesting that alleviation of the light stress could be the
trigger for the recovery response (Figures 4D and 4E). Whether
recovery cues could trigger destabilization of mRNAs or if this
response is wholly dependent on transcriptional repression is
a fascinating question. In addition, of particular interest are the
atypical expression profiles, for instance, hundreds of transcripts
maintain steady expression levels before and during the stress,
then become up- or downregulated during the recovery phase
(Figures 12C and 12E). The new expression states could be
a consequence of the stress, reflecting a new homeostasis; al-
ternatively, this could be evidence of a specific function during
recovery. As such, these transcripts and expression networks are
a key target for future investigations that, like theRRGD loci,might
be manipulated to define the mechanism and determine the po-
tential for optimizing stress recovery.

METHODS

Plant Growth and Stress Conditions

For all experimentsArabidopsis thalianaCol-0 plantswere cultivated in soil
under a 12-h photoperiod, 100 (625) mmol photons m22 s21 PAR, and 23/
22°C (62°C) day/night temperatures (standard growth conditions). For
excess-light treatments, 103 growth irradiance PAR was applied,;1000
mmol photons m22 s21 using a temperature controlled Conviron chamber
(21°C, 55% humidity) fitted with 4 3 250 W metal halide lamps and 4 3

250 W high-pressure sodium lamps. For recovery phases, plants were
returned to their standard growth cabinets at 100 (625) mmol photons
m22 s21. Light stress treatments were always performed between 14:00
and16:00,which ismidday in theday/nightcycle (08:00–20:00),usingmature
3-week-old Arabidopsis plants. Whole rosettes were excised from their
roots and immediately frozen in liquid nitrogen for RNA or DNA extraction.
Drought treatment was applied by withholding water from 3-week-old
plants for 9 d, leading to wilting and a RWC of around 60% in repre-
sentative plants. RWCwas calculated as ½fresh weight ðFWÞ2dry weight
ðDWÞ�=½turgid weight ðTWÞ2dry weight ðDWÞ�. A subgroup of drought-
stressedplantswererewatered toconfirmviabilityandtoassess thecapacity
for recovery. Rewatered plants readily recover in 3 to 4 d. Arabidopsis
mutants alx8, fry1-6 (SALK_020882), xrn2-1 (SALK_041148), xrn3-3
(SAIL_1172_C07), xrn2-1 xrn3-3 (xrn2 xrn3), xrn4-6 (SALK_ 014209), and
ein5-6 were as previously described (Estavillo et al., 2011). Other mutant
lines, xrn4-5 (SAIL_681_E01), rdr1-1 (salk_112300), rdr2-1 (SAIL_1277H08),
rdr2-2 (salk_059661), and rdr6-15 (SAIL 617_H07), were obtained through
TAIR. An xrn2 xrn3 xrn4mutant line was generated by crossing xrn2 xrn3+/2

plants with xrn4-6. The xrn2 xrn3 and xrn2 xrn3 xrn4 seed stocks were

maintained with xrn3 in a heterozygous state and homozygous plants
identifiedeachplantingbyPCRgenotypingandmorphologicalphenotyping.

Chlorophyll Fluorescence Measurements

Chlorophyll fluorescence measurements were performed using an Im-
aging-PAM chlorophyll fluorometer K-4 and ImagingWin software appli-
cation (Walz). For 60-min excess-light treatments, 1000 PAR actinic light
was provided either by a Conviron chamber or by the PAM LEDs. Ground
fluorescence (F0), variable fluorescence (Fv), maximum fluorescence (Fm),
as well as light-adapted F, Fm9, and F09 were measured then the following
parameters were calculated using R according to the following formulae
(Baker, 2008): Fv=Fm ¼ ð Fm 2FoÞ=Fm (maximum PSII quantum effi-
ciency); F ’

v=F
’
m ¼ ð F ’

m 2F ’
oÞ=F ’

m (maximum PSII quantum efficiency, light
adapted); F ’

q=F
’
m ¼ ð F ’

m 2FÞ=F ’
m (PSII operating efficiency, ΔF/Fm9 or

fPSII); F
’
q=F

’
v ¼ ð F ’

m 2FÞ=ðF ’
m 2F ’

oÞ (PSII efficiency factor, mathematically
identical to qP); NPQ ¼ ð Fm 2F ’

mÞ=Fm (nonphotochemical quenching);
qN ¼ ð Fm 2F ’

mÞ=ðFm 2F ’
oÞ (coefficient of nonphotochemical quench-

ing). Fv/Fm measurements were taken following a 20-min dark adaptation.
The constituents of qNwere estimated as described by Lichtenthaler et al.
(2005) based on the dark relaxation of Fm measured at 1, 5, and 20 min
following theexcess-light stress. Thesevaluesonly reflect theapproximate
constituents of qN due to variations and overlap in relaxation kinetics of
each component, which also varywith environmental factors (Baker, 2008;
Maxwell and Johnson, 2000); however, they provide an indication of the
level of photodamage and are useful for comparing different excess-light
stress regimes.

RNA Isolation and Quality Assessment

For transcriptomeexperiments, RNAwas isolated usingTrizol reagent (Life
Technologies)usingaprocedureadapted fromAllenetal. (2010).Briefly,up
to100mgof snap-frozen tissuewasground then lysed in1mLof Trizolwith
gentle agitation. Following 5 min incubation at room temperature, the
organic phase was extracted twice with 200 mL of chloroform. The RNA
was precipitated by addition of an equal volume of 100% isopropanol and
incubated overnight at –20°C. RNA was recovered by centrifugation
(20,000 relative centrifugal force) at 4°C for 20 min and washed with 70%
ethanol, air-dried at room temperature, resuspended inwater or Tris buffer,
and stored at –80°C. All RNA-seq experiments, i.e., RNA-seq, sRNA, and
PARE, were performed in biological triplicate on paired samples from the
same RNA extraction. RNA quality was assessed using a Bioanalyzer
(Agilent) or a LabChip GXII (Perkin-Elmer) for RIN > 7.0. The size and
concentration of all sequencing libraries were assessed using a MultiNA
(Shimatzu) or LabChip GXII capillary electrophoresis instrument and
a Qubit Fluorometer (Life Technologies).

RT-qPCR

For RT-qPCR analysis, RNA was either extracted using the Trizol pro-
cedure or using the Spectrum Total RNA kit (Sigma-Aldrich). RNA was
reverse transcribed into cDNA using SuperScript III (Invitrogen, Life
Technologies) and oligo(dT18VN) primers. Gene expression was analyzed
by quantitative real-time PCR (qPCR) on a Roche LightCycler480 using
Sybr Green I (Roche Diagnostics). Raw fluorescence data were exported
and analyzed using LinRegPCR (Ramakers et al., 2003; Ruijter et al., 2009)
to perform background subtraction, determine PCR efficiency, and cal-
culate starting concentration (N0; in arbitrary fluorescence units). Sam-
ples were then normalized against CYCLOPHILIN5 (CYP5, AT2G29960),
GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE C2 (GAPC2,
AT1G13440), and PROTEIN PHOSPHATASE 2A SUBUNIT A3 (PP2AA3,
AT1G13320) and expressed as fold changes against untreated wild-type
plants. At least three biological replicates (individual plants) per genotype
per experiment were sampled, and each qPCR reaction was run in
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duplicate or triplicate. Primer sequences and descriptions are provided in
Supplemental Data Set 16.

Sequencing and Analysis of mRNAs

A summary of all sequencing experiments is provided in Supplemental
Data Set 17. For the RNA-seq experiment comparing drought and excess-
light stress, 3-week-old control and excess-light treated plants were di-
rectly compared with the drought stressed plants (4 weeks old following
drought stress). The Illumina TruSeq V2 Kit was used for RNA-seq library
preparation as per the manufacturer’s instructions (TruSeq User Guide
Revision D) with a custom dUTP incorporation step during second strand
synthesis to introducestrandspecificity (adapted fromParkhomchuket al.,
2009). Fourmicrogramsof total RNAwasused for input and fragmented for
8 min. Following first-strand synthesis, cDNA was precipitated to remove
dNTPs; per 25 mL first-strand reaction, 5 mL of 5 M NH4OAc (ammonium
discriminates against precipitation of dNTPs), 2 mL of the coprecipitant
Glycolblue (Ambion), and 110 mL 100% ethanol were added and samples
incubated overnight at –80°C. The following day samples were recovered
by centrifugation (20,000 relative centrifugal force) for 20 min at 4°C, and
pellets were washed with 70% ethanol, air-dried for 5 min, and then re-
suspended in custom second strand buffer incorporating a dNTP/dUPT
mix. The second strand mix contained 4 mL of 53 RT buffer from the
SuperScript III kit (Life Technologies), 2 mL 50 mMMgCl2, 2 mL 0.1 M DTT,
1 mL 50 ng/mL random hexamers, 49 mL water, 8 mL Second Strand
Synthesis buffer (NEBNext; B6117S), 10 mL dNTP/dUTP mix (Fermentas;
R0251), and4mLSecondStrandenzymemix (NEBNext;E6111S).Samples
were incubated for 2.5 h at 16°C. Prior to the PCR enrichment step (after
adapter ligation), the USER enzyme was used to degrade the dUTP
containing coding strand to give a reverse stranded final library. Per
sample, 1 mL of USER enzyme mix was added and samples incubated at
37°C for 15 min. Using pilot PCRs, an optimal PCR cycle number of
15 cycles was determined empirically for amplification of all samples and
final amplification was performed with a half volume PCR. Following PCR,
clean-up samples were pooled in equal molar ratios and sequenced
(100 bp paired end) on one lane of the HiSeq 2000 at the Biomolecular
Resource Facility (BRF) at the Australian National University.

All bioinformatic analysis pipelines are freely available online on GitHub
(https://github.com/pedrocrisp/NGS-pipelines). Quality control was per-
formedwithFastQCv.0.11.2.Adapterswere removedusingscythev.0.991
with flags -p 0.01 for the prior and reads were quality trimmed with sickle
v.1.33 with flags -q 20 (quality threshold) -l 20 (minimum read length after
trimming). The trimmed and quality filtered reads were aligned to the
Arabidopsis genome (TAIR10) using the subjunc v.1.4.6 alignerwith -u and
-H flags to report only reads with a single unambiguous best mapping
location (Liao et al., 2013). Reads were then sorted, indexed, and com-
pressed using samtools v1.1-26-g29b0367 (Li et al., 2009a) and strand-
specific bigwig files were generated using bedtools genomecov v2.16.1
(Quinlan and Hall, 2010) and the UCSC utility bedGraphToBigWig for
viewing in the Integrated Genomics Viewer (IGV; Robinson et al., 2011). A
summary of all Illumina sequencing experiments performed, describing
sample names, indexing, lane pooling, yield of quality filtered reads, and
numberofgenomemapped reads isprovided inSupplementalDataSet17.

For standard differential gene expression testing, the number of reads
mapping per TAIR10 gene loci was summarized using featureCounts
v.1.4.6 with flags -p and -c to discard read pairs mapping to different
chromosomes and the -s 2 flag for (reverse) strand specificity, multi-
mapping reads and multi-overlapping reads (i.e., reads mapping to
overlapping regions of more than one gene loci) were not counted (Liao
et al., 2014). Reads were summarized to parent TAIR10 gene loci rather
than individual splice variants by summarizing to the genomic coordinates
defined by the feature “gene” in the TAIR10 GFF3 reference. There are
28,775 gene loci in the current TAIR10 release and 19,444 genes were
detected as expressed in this RNA-seq data set. Gene loci are annotated

with the description of the representative gene model listed in TAIR.
Statistical testing for relative gene expression was performed in R using
edgeR v.3.4.2 (McCarthy et al., 2012; Robinson and Oshlack, 2010;
Robinson et al., 2010; Robinson and Smyth, 2007, 2008). Reads mapping
to rRNA were removed (contamination rate <0.1% for all samples); or-
ganelle transcripts were removed and only loci with an abundance of at
least 1 CPM in at least three samples (;10–20 reads for each replicate in
one sample group) were retained, yielding data for 17,402 gene loci. GO of
the concordantly responsive genes was examined for enriched ontology
categories using AmiGO v1.8 (Boyle et al., 2004).

For the stress and recovery time course, RNA-seq libraries were
prepared using the Illumina TruSeq V2 Kit (RS-122-2001) as per
the manufacturer’s instructions (TruSeq User Guide Revision D). Four
micrograms of total RNA was used for input and fragmented for 7 min.
Using pilot PCRs, an optimal PCR cycle number of 10 cycles was de-
termined empirically for amplification of all samples and final amplifi-
cation was performed with a half-volume PCR. Following PCR cleanup,
samples were pooled in equal molar ratios and sequenced over two
lanes, 18 samples per lane (including three samples from an unrelated
project) on the HiSeq 2000 in 100-bp paired-end mode at the BRF.
Sample pooling was such that at least one replicate from each time point
was represented in each lane; no effect of sequencing lanewas observed
in sample clustering (Supplemental Figure 2A). RNA-seq analysis was
performed as described above for the excess light and drought com-
parison, except at the featureCounts step, reads were summarized in
a non-strand-specificmanner in accordancewith the library preparation.
In total, 17,991 loci passed filtering and were tested for differential ex-
pression. Multidimensional scaling plots (PCA) were created using
edgeR, using a variation on PCA appropriate for digital gene expression.
A set of top genes were chosen that have largest biological variation
between the libraries (those with largest tag-wise dispersion treating all
libraries as one group). Then the distance between each pair of libraries
(columns) is the biological coefficient of variation (square root of the
common dispersion) between those two libraries alone, using the top
genes. Among the transcripts upregulated by >3-fold (padj < 0.05) after
30 min of excess-light stress (II), Categories 1 to 3 were defined as
follows: Category 3 transcripts reduced in abundance by >2-fold be-
tween 30 and 60 min stress (II versus III); Category 2 reduced in abun-
danceby<2-foldbetween30and60min stress (II versus III) and>1.5-fold
between 60 min stress and 30 min recovery (III versus VII); and Category
1 reduced in abundance by <2-fold between 30 and 60 min stress (II
versus III) and again <1.5-fold between 60min stress and30min recovery
(III versus VII).

Transcriptional Stress Memory Types

To identify transcripts that display a significantly different response to
excess light upon a second exposure, first a GLM was implemented
in edgeR (padj < 0.05). The prevalence of hyperinduction memory
(Supplemental Figure 11) was further analyzed by filtering for transcripts
that are differentially expressed after the first exposure (III versus I, padj <
0.05), relaxed to prestress levels during recovery (X versus I, padj > 0.05)
then were differentially expressed during the second stress when con-
trastedwith the first stress (III versusXI, padj > 0.05). Transcripts displaying
a persistent memory type were defined as those that (1) were differentially
expressed at all three time points compared with time 0 and (2) fluctuated
by less than 62-fold between each successive time point.

RNA Half-Life Calculation

Maximum half-lives (half-lifemax) were calculated according to the expo-

nential decay model using the equation t1
2
¼ ln 1

2

2 kdecay
; that is, half-lifemax is

equal to the natural log of a half divided by the negative of the decay
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constant k. The decay constant is proportional to the natural log of the

change inmRNAabundance over time, kdecay ¼
2
�
ln C

C0

�
dt

(Ross, 1995; Lam

et al., 2001;Gutierrez et al., 2002;Narsai et al., 2007; Thomsen et al., 2010).
Using this equation, half-livesmax were calculated based on changes in
steady state abundance determined using RNA-seq (CPM values) or
qPCR. This procedure assumes that decay during recovery is constant;
however, we cannot rule out the possibility that stepwise changes in half-
life occur during the recovery phase. For the initial survey of the entire
transcriptome, all decay events were quantified using the change in
abundance between any two consecutive time points. To identify RRGD
loci, the decay constant was determined using a linear regression on the
timecourse III,V-VIII for Category 2 transcripts, and II, III,V-VIII forCategory
3 transcripts. Least squares linear regressionswere performed inR on log-
transformed CPM values to give the coefficient (Kdecay), 95% confidence
interval, and SE of Kdecay. An R2 value was calculated for the fitted model of
each transcript with an accompanying F-statistic and P value, testing the
null hypothesis that the fitted regression is equivalent to a y-intercept-only
model (a significantPvalue indicating that the fit of a y-intercept onlymodel
is reducedcomparedwith the fitted regression). RRGD lociweredefinedas
those thatwere upregulated by>3-fold (padj < 0.05) after 30min of excess-
light stress (time point II) and had a recovery half-livesmax of < 60 min (padj
<0.05).

To more accurately estimate half-lives in vivo and to account for on-
going transcription, we undertook a further nonlinear modeling approach.
Thedecayconstant of a transcriptmaybeestimated fromdataof transcript
abundance over time. Pérez-Ortín et al. (2007) showed that the concen-
tration of a transcriptm as it changes from an initial steady statemI toward
equilibrium at a final steady state mF , can be modeled as:

m ¼ mF þ ðmI 2 mFÞ$e2kt ð1Þ
where k is the decay constant and t is time. Using nonlinear least squares
regression, we can estimate the three terms: mF , mI 2mF , and k ac-
cording to:

m ¼ aþ b$e2kt ð2Þ
This assumes an instantaneous change in the transcription rate TR at
t = 0 and that both the new TR and k remain constant over the modeled
period. Since we can solve for k and m, and given that steady state
concentration is proportional to transcription rate divided by decay rate�
m ¼ TR

k

�
(Pérez-Ortín et al., 2007), then:

TRF ¼ mF$k ð3Þ
Similarly, where transcript abundance is at equilibrium (steady state) at the
initial time point, one could also solvemI for TRI (becausem ¼ TR

k at steady
state). Thismodel (Equation 1) is consistentwith the half-lifemaxmodel used
to estimate decay constants in transcriptional halt experiments, such as in
Narsai et al. (2007), because it is mathematically equivalent when the
transcription rate is zero such that the final steady state concentrationmF

also reaches zero (see Supplemental Methods for derivation). Importantly,
this model can estimate the true decay constant when transcription is
ongoing, as may occur in in vivo systems in the absence of transcriptional
inhibitors.

Experimental Procedure for Small RNA-Seq Analysis

sRNAswere size fractionated from10mgof total RNAusingPAGEon15%,
8 M TBU gels, by excising the region from ;18 to 35 bp. Sequencing li-
braries were prepared using the NEB Next sRNA kit (E7300) according to
themanufacturer’s instructions from5 mgof isolated sRNA. Ligationswere
performed for 1 h and pilot PCRs (20 mL) were performed on the cDNA to
determine an optimal PCR cycle number of 13, and final PCR was

performed using a 40mL reaction in duplicate. Amplified libraries were size
selected by PAGE on 6% 0.53 TBE gels. Libraries were prepared in bi-
ological triplicate, indexed, pooled, and sequenced over two lanes of the
Illumina HiSeq 2000 in 50-bp single-end mode at the BRF.

Read quality control was performed with FastQC v0.11.2 before and
after trimming. Given that reads were sequenced with 50-bp read lengths,
all sRNAs were expected to contain adapters on the 3ʹ. Adapters were
trimmed using cutadapt v1.8 with the flags: -e 0.1, first nine bases of
adapter must match perfectly; -m 18 -M 25, only keep reads lengths from
18 to 25 nucleotides after trimming; -O 10, adaptermust overlap by at least
10 bases; -a AGATCGGAAGAGC, adapter sequence (Python v2.7.8;
Martin, 2011; note that the cutadapt algorithm has changed significantly
since publication). Histograms of read-length distribution were calculated
using textHistogram confirming enrichment for 21- and 24-nucleotide
sRNAs as expected. Reads were then aligned to the Arabidopsis genome
(TAIR10) using Bowtie2 v2.2.5 (Langmead and Salzberg, 2012) using the
flags: -a to report all matches for multi-mapped reads; -D 20 and -R 3,
increases the likelihood that Bowtie2 will report the correct alignment for
a read that aligns many places and -i S,1,0.50, reduces the substring in-
terval, further increasing sensitivity; -end-to-end, preventing trimming of
reads to enable alignment; -L 10 reduces substring length to 10 (default 22)
as these are short reads and -N 0 requires exact match in the seed;
-score-minL,0,0 reports onlyexactmatches in -end-to-endmode (alignment
score of 0 required which is max possible in end mode). Reads were then
sorted, indexed, and compressed using samtools v1.1-26-g29b0367 (Li
et al., 2009a) and strand-specific bigwig files were generated using bed-
tools genomecov v2.16.1 (Quinlan and Hall, 2010) and the UCSC utility
bedGraphToBigWig for viewing in IGV (Robinson et al., 2011). To identify
regulatory siRNAs clusters, de novo annotation and quantification of
siRNAswere also performed using ShortStack v3.3.3 (Axtell, 2013; Shahid
and Axtell, 2014). Here, trimmed sRNAs of 7 to 34 nucleotides were
mapped to TAIR10 using the ShortStack wrappers with default settings
except to make cluster sensitivity more consistent across samples the–
mincovflagwasused,set to0.5RPM,equivalent toaroundseven readsper
library. siRNA clusters were overlapped with TAIR10 gene and TE anno-
tations, downloaded from TAIR, using bedtools intersect (v2.24.0) with
default parameters.

PARE

PARE libraries were prepared as per Zhai et al. (2014) with minor mod-
ifications includedbelow.PARE libraries capture a20- to 21-nucleotide tag
of the 5ʹ end of all uncapped (5ʹ monophosphate) mRNA molecules by
ligation of a 5ʹ adapter incorporating the recognition site of the Type II
restriction endonucleaseMmeI. Librarieswereprepared frompoly(A)+RNA
captured from75mgof totalRNA.Following ligationof thedouble-stranded
DNA 3ʹ adapter, the ligation product was PAGE purified to remove
abundant adapter dimers, yielding higher quality final libraries. Following
tag generation, libraries were amplified with 3ʹ index primers from the
Illumina Truseq sRNA Kit (RS-200-0012) and a custom PARE-TruSeq
primer, facilitating incorporation into the Illumina workflow for sequencing.
Pilot PCRs were employed to determine an optimal PCR cycle number of
eight cycles for the final amplification, which was performed as a half
volume reaction (25 mL). Following the final PCR, the indexed libraries were
pooled equal-molar thenpurifiedusingAMPurebeads usingabead ratio of
1:1.7 determined empirically using a standard curve to maximize recovery
of the 130-bp library and minimize carryover of 80-bp contaminants. Li-
braries were sequenced on the Illumina HiSeq 2500 in 50-bp single-end
sequencing over one lane at the BRF using a custom read 1 primer (5ʹ-
CCACCGACAGGTTCAGAGTTCTACAGTCCGAC-3ʹ, PAGE purified).

FastQC v0.11.2 was used to examine fastq files for quality statistics;
typically, read quality is exceptional for bases 1 to 21 of all reads (Q > 32,
99.9% accuracy). The PARE protocol produces very consistent fragments
of 20 to 21 nucleotides; therefore, using longer read technology (50 or
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100 bp) leads to low quality sequencing of the 3ʹ adapter owing to color
imbalance.To trim thisoften low-quality adapter sequence, readswerefirst
hard trimmed to 20 nucleotides using cutadapt, then the remaining
20-nucleotide fragments were scanned for adapter contamination using
cutadapt v1.8with the flags: –cut -31, trim 31 bases from the 3ʹ end; -e 0.1,
first nine bases of adapter must match perfectly; -m 14 -M 22 only keep
reads between 14 and 22 nucleotides after trimming; -O 3, adapter must
overlap by at least three bases; -a TGGAATTCTC, Illumina small RNA
TruSeq 5ʹ adapter sequence. This approach gave a higher yield of reads
passing filtering and ultimately mapping to the genome compared with
quality trimming or adapter removal without a fixed length trim first (>90%
alignment rate). Reads were then aligned to the Arabidopsis TAIR10 ge-
nomeusingBowtie2v2.2.5 (LangmeadandSalzberg, 2012)using thesame
settings as described above for the sRNA analysis. The PARE data from
Hou et al. (2016) were obtained fromSRA (SRR3143654) and processed in
the same manner above. GMUCT data from Yu et al. (2016) (SRR863540
and SRR863541) were obtained from SRA and mapped using subjunc
v.1.4.6 owing to the longer read length of 50 bp. To analyze ribosome
footprints in PARE data, we implemented a novel tool PAREphase, which
records the position of the 5ʹ end of each aligned read relative to the stop
codon. PAREphase is implemented in Python3 and produces gene-wise
summaries in a tabular form from reads in BAM format and an annotated
reference genome in FASTA/GFF3 format. PAREphase version 1.0 was
used for all analyses; PAREphase is available at https://github.com/
kdmurray91/PAREphase. The phasedCDIwas determined by considering
counts between –95 to –19 and taking the sum of the counts in frame
1 (protected frame) and dividing by the average of the sum of counts in
frames 0 and 2. The stalled CDI was determined using the sum of counts
between –18 and –16 (stalled codon) divided by the average counts of all
codons between 0 and +47 of the untranslated region, which represent
background PARE coverage.

WGBS Analysis

WGBS analysis was performed on four replicates for the time points:
control (I), 60-min excess light (III), and 24 h recovery (X ); however, these
samples were not tissue paired with the RNA sequencing analysis. DNA
was extracted using the Qiagen DNeasy Plant Mini Kit as per the manu-
facturer’s instructions. In total, 1000 ng of genomic DNA was fragmented
using aCovaris column purified using theMinElute PCRCleanup (Qiagen),
end repaired using the End-It Kit (Epicentre), A-tailed then bead cleaned
using AMPure XP beads (Beckman Coulter). NEXTflex methylated
adapters (Bioo Scientific) were ligated and following bead cleanup the
ligationproductwasquantifiedonaQubit (LifeTechnologies). Then, 450ng
of clean ligation was bisulfite converted using the MethylCode kit (Life
Technologies). Bisulfite -converted DNA was amplified with six cycles of
PCRusingaKapaHiFiHotStartU+23 readymix (KapaBiosystems) andan
Illumina compatible NEXTflex Primer mix (Bioo Scientific). Samples were
bead-cleaned, quantified by qPCR using a Library Quantification Kit for
Illumina/LightCycler 480 (Kapa Biosystems), pooled equal-molar, and six-
samplepoolswere sequencedper laneonaHiSeq2500 (100bpsingle end)
at the BRF; we saw no evidence of lane effects (Supplemental Figure 10).

Raw sequencing reads were quality filtered using Trim Galore! v0.3.7
(using Cutadapt v1.9). Reads were the aligned to TAIR10 using Bismark
v0.14.5 (Krueger and Andrews, 2011) with the flags –bowtie1 -n 2, -l 20.
Methylatedcytosineswere extracted fromaligned readsusing theBismark
methylation extractor with default parameters. Bisulfite conversion rate
was calculated from the proportion of unconverted cytosines in the CHH
context from the chloroplast genome and ranged from 99.4 to 99.7% per
sample.TheproportionofCG,CHG,andCHHmethylationwasdetermined
asmeanmethylation across reads at single cytosine resolution and across
100-bp windows for genome-wide comparisons. Correlations (R2) be-
tween methylation levels were performed on the 100-bp bin mean
methylation levels. DMRswere identified usingBayesianmodeling, across

individual cytosines, in R (v3.2.5) using the package DSS (v2.10.0; Feng
et al., 2014) following the recommended default settings except for a re-
duced smoothing window size (smoothing.span = 100). The threshold
methylation difference for DMRs in each sequence context (delta) was 0.4
for CG, 0.2 for CHG, and 0.2 for CHH. DSS calculates an FDR-adjusted P
value and the posterior probability that the difference specified (delta) is
significant; DMRs were considered significant at FDR < 0.05. Methylation
levelswereassigned toannotatedgeneand transposable element features
of the TAIR10 assembly using Bedtools (v2.21.0; Quinlan and Hall, 2010).

SNPs were identified using the WGBS data and BS-SNPer (v1.0; Gao
et al., 2015). Samples were compared with the TAIR10 Col-0 reference
using default parameters with the following modifications, minhetfreq =
0.15,minhomfreq=0.85,Minquali = 30, andMincover=15. Low-confidence
SNPs were filtered out by removing thousands of C-T and G-A transition
mutations (mostly likely caused by bisulfite conversion); SNPs not given
a PASS for FILTER status and SNPswith a Phred-scaled quality score < 30,
leaving on average 20 putative SNPs per sample. Distance correlations and
hierarchical clustering of samples (using “complete” distance) was per-
formed in R.

Accession Numbers

RNA-seq, sRNA-seq,PARE, andWGBS readsaredepositedwith theNCBI
Short Read Archive under BioProject accession number PRJNA391262.
Bioinformatics analysis pipelines are available online on GitHub (https://
github.com/pedrocrisp/NGS-pipelines). Accession numbers are as fol-
lows: HSP101 (AT1G74310), AMT1;2 (AT1G64780), APX2 (AT3G09640),
HSP20like1 (AT1G59860), HSP20like2 (AT1G54050), RRTF1 (AT4G34410),
HSF.A7A (AT3G51910), ZAT10/STZ (AT1G27730), HSP70 (AT3G12580),
RCA (AT2G39730), and LHCB1.4 (AT2G34430).2
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