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Introduction

The yeast Pichia pastoris is an important platform for 
process-scale production of recombinant secreted proteins. 
It can be grown to very high cell densities in bioreactors, 
under forced aeration, to improve yields. However, the 
specific productivity is often low. Simply increasing pro-
moter strength for recombinant genes is not a panacea, as 
biological feedback loops may result in decreased levels of 
secreted protein. A key mechanism in this regard is a home-
ostatic response to the buildup of unfolded protein in the 
endoplasmic reticulum (ER), the unfolded protein response 
(UPR), a transcriptional programme that is regulated by 
activation at UPR elements (UPRE) by a transcription fac-
tor generated by splicing of HAC1 mRNA [21]. Although 
there is some argument about the detailed mechanism, in 
one model an increase of unfolded protein in the ER binds 
the chaperone Kar2p, causing it to dissociate from the 
transmembrane protein Ire1p. This then activates a cyto-
plasmic endoribonuclease activity in Ire1p, allowing it to 
splice HAC1 mRNA [11], generating a transcriptionally 
competent and active gene encoding the transcription fac-
tor, Hac1p. This binds to UPRE sites in UPR-responsive 
promoter regions, including HAC1, enhancing the expres-
sion. As many of the UPR-responsive genes encode chaper-
ones and related factors which can enhance protein folding, 
this leads to a positive feedback loop.

Low levels of UPR can improve protein production by 
increasing the expression of chaperones, but high levels of 
UPR can decrease it by shutting down translation altogether 
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and activating the ER-associated degradation (ERAD) path-
way leading to protein degradation [7, 25]. As the UPR is 
so critical for protein secretion, it is often used as an indica-
tor to determine whether cells are stressed, and based on the 
premise that stressed cells will result in lower secretion, this 
is often used in strain design to find good secretors. How-
ever, traditional methods for screening for UPR require sep-
arate steps for extracting RNA and then determining tran-
script levels, or analysis of protein concentrations, which 
can also be time consuming and laborious. Therefore, any 
biological indicator that could be used to estimate potential 
levels of cellular stress could be very valuable.

A key step in scaling up secreted protein production is 
in selection of strains for testing at larger volumes. There is 
a wide variation in secretion levels in recombinant clones, 
and companies often screen thousands of colonies to iden-
tify the best secretor before scaling up to the bioreactor cul-
ture [6, 27]. Metabolic profiling is widely used as a strategy 
to report on cellular physiology. Metabolite changes within 
a cell are extremely dynamic, so metabolic profiles give a 
real-time picture of cellular responses and metabolites form 
arguably the most direct representation of cellular pheno-
type [23]. Furthermore, metabolomic results are readily con-
verted into target assays well suited to rapid screening and/
or online monitoring [5]. There is also considerable interest 
in using metabolic profiling of bioprocess supernatants for 
rational optimization of medium composition [2, 16, 24].

Metabolomic analysis has been used to determine the 
impact of recombinant protein expression in P. pastoris 
under varying growth conditions, including oxygen limita-
tion and glucose–methanol co-utilization [4, 14]. Further-
more, Jorda et  al. used the combination of metabolic flux 
analysis and metabolomic analysis to determine the impact 
on metabolism of expressing Rhizopus oryzae lipase: tre-
halose levels were significantly upregulated, indicating an 
increased flux through the ATP futile cycle, which may 
be related to the induction of the UPR [15]. These inves-
tigations into the use of metabolomics analysis provide a 
basis for potential metabolic engineering that may assist 
with identifying bottlenecks in the production of recombi-
nant proteins. Here, we generated metabolic profiles for a 
series of P. pastoris constructs that varied in their levels of 
UPR induction and carried out a proof-of-principle study to 
determine if there were any potential metabolite biomark-
ers of UPR.

Materials and methods

Strains and growth conditions

Pichia pastoris GS115 (recently reclassified as Komaga‑
taella sp. [17]) was obtained from Invitrogen, Paisley, UK. 

The three-copy trypsinogen strain was generated as previ-
ously described [10]. The human lysozyme strains were 
a gift from Prof. David Archer (Nottingham) [28]. The 
Mfe-23 and BC1 strains were a gift from Dr. Kate Royle. 
P. pastoris strains were grown in 24-well plates (Corning, 
NY, USA) in BMG [100 mM potassium phosphate, pH 6.0, 
1.34% (w/v) yeast nitrogen base (YNB), 4 × 10–5% (w/v) 
D-Biotin, 1% (v/v) glycerol)] for 24 h. Cells were centri-
fuged for 5 min at 4000 rpm at room temperature and the 
supernatant removed. The cultures were then re-suspended 
in the methanol-containing medium BMM for expression 
(as BMG but with 0.5% v/v methanol replacing glycerol) 
and incubated for 4 h.

Reverse transcription‑qPCR

For reverse transcription (RT)-qPCR, RNA was isolated 
using RiboPure Yeast Kit, according to the manufactur-
er’s instructions (Applied Biosystems, Warrington, UK). 
cDNA was prepared using the High-Capacity cDNA 
Archive Kit (Applied Biosystems, Warrington, UK). 1 μg 
RNA was used in a total reaction volume of 20 μL. RT-
qPCR reactions were set up using the 2X SYBR® Green 
JumpStart Taq Ready Mix (Sigma-Aldrich, Dorset, UK). A 
Chromo4™ Real-Time Detector using the thermal cycler 
software Opticon 3 (Bio-Rad, Hemel Hempstead, UK) was 
used. Data were analysed using the Pfaffl method, based on 
ΔΔ-Ct [19, 22] and normalized to ACT1 as the housekeep-
ing gene. Primers for ACT1 were GCT TTG TTC CAC 
CCA TCT GT and TGC ATA CGC TCA GCA ATA CC. 
Primers for HAC1 were CGA CTA CAT TAC TAC AGC 
TCC ATC A and TGC TGT AAT GTG TAA AGA TGA 
ATC C, for PDI, GCC GTT AAA TTC GGT AAG CA and 
TCA GCT CGG TCA CAT CTT TG and for KAR2, TCA 
AAG ACG CTG GTG TCA AG and TAT GCG ACA GCT 
TCA TCT GG.

Metabolite analysis  Extracellular and intracellular metab-
olite concentrations were measured by 1H NMR. For extra-
cellular metabolite measurements, samples from the incu-
bation plate (1 ml) were quickly centrifuged and decanted 
before being frozen on dry ice. For intracellular metabolite 
measurements, a total quenching procedure of whole broth 
(cells +  media) with 60% aqueous methanol and 0.11  M 
ammonium bicarbonate was used to halt metabolism, as 
previously described [26]. The samples were dried under 
reduced pressure and reconstituted in 600  μl of NMR 
buffer (1  mM trimethylsilyl-2,2,3,3-tetradeuteropropionic 
acid (TSP), 0.1 M phosphate buffer, pH 7.4, in 95% D2O). 
Samples (550 μl) were transferred to 5 mm NMR tubes and 
spectra were acquired on a Bruker Avance DRX600 NMR 
spectrometer (Bruker BioSpin, Rheinstetten, Germany), 
equipped with a 5  mm inverse probe, operating at a 1H 
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frequency of 600 MHz. Samples were introduced with an 
automatic sampler and spectra were acquired using stand-
ard approaches (Dona, 2014). Briefly, 2D JRES 1H NMR 
spectra were acquired with the pulse-sequence d1-90y-τ-
180-τ-acquire FID, with suppression of the water resonance 
during d1. Data were acquired into 32 k data points in F2 
with a d1 of 2 s and 16 transients using 32 increments of 
τ; the spectral widths in F2 and F1 were 12,019 and 50 Hz, 
respectively. Spectra were processed in iNMR 3.4 (Nucleo-
matica, Molfetta, Italy). Fourier transform of the free-induc-
tion decay was applied with a line broadening of 0.5 Hz. 
Metabolite peak integrals were obtained with rNMR [18] 
and expressed relative to TSP (Supplementary Material).

Results and discussion

We used eight different strains expressing different recom-
binant proteins (Table  1) and grew them in miniaturized 
cultures in 24 deep-well microtitre plates. Strains with 
either one or three copies of the trypsinogen gene and 
human lysozyme (HuL) mutational variants that have been 
shown to have different stabilities were used, as these have 
been shown to induce the UPR [13, 28]. Hesketh et  al. 
[12] selected two of the mutant variants, T70N and I56T, 
and using continuous culture observed variations using 
RNAseq. Although they determined “reporter metabo-
lites” for these two strains, this was done solely through 
annotations of the transcriptomic data and did not include 
any direct metabolite analysis. We also included BC1 and 
Mfe-23, two single chain antibody fragments (ScFvs), 
which were chosen as these are industrially relevant prod-
ucts, showing the applicability of our work in an industrial 

context. All genes were expressed using the AOX1 pro-
moter and α-mating factor (α-MF) secretion signal from 
Saccharomyces cerevisiae that targets the protein to the 
secretory pathway. Cultures were grown for 24  h in a 
buffered glycerol minimal medium and then switched to 
a buffered methanol minimal medium to induce protein 
expression. Samples were taken after 4 h of induction. We 
monitored UPR levels by measuring HAC1, KAR2 and 
PDI1 transcripts by qRT-PCR using ACT1 as a reference 
gene. All strains were normalized to wild type to allow for 
the background of potential cellular stress effects caused by 
the switch to methanol medium [10]. The two trypsinogen 
strains had the highest levels of HAC1 induction.

We carried out untargeted proton NMR metabolic profil-
ing of both the exometabolome (i.e. cell supernatants) and 
“total quenching” of both exo- and endometabolome (i.e. 
cells +  supernatants together). Total quenching of P. pasto‑
ris broths combined with NMR profiling gives useful data 
on intracellular metabolites that contain effectively as much 
information as does quenching in cold solvent and removing 
the supernatant [26]. Most metabolites showed quite differ-
ent patterns between the exometabolome and the total quench 
results, with the exception of some organic acids (formate, 
2-oxoisocaproate, 3-methyl-2-oxovalerate), which we already 
knew to be supernatant contaminants, and glycerophospho-
choline; the implication is that the culture supernatant and the 
total quench (whole broth) data represent two independent 
datasets, both of which could contain potential biomarkers.

There were some robust correlations between the indi-
vidual gene expression levels (HAC1, KAR2, PDI1) and 
individual metabolites, although there were no metabo-
lites which were significantly correlated for all three genes 
(Fig. 1). Induction of HAC1 under these conditions can be 

Table 1   Summary table of strains used in this study indicating the 
recombinant protein expressed, dry cell weight (g/L) growth after 
24 h in glycerol, followed by 4 h expression in methanol-containing 

medium and fold difference of transcript levels of HAC1, KAR2 and 
PDI1 compared to wild-type GS115

All data represented as the average of three biological repeats with standard deviation shown

Strain Recombinant protein Source Dry cell weight (g/L) Fold difference compared to GS115 at 0 h

HAC1 KAR2 PDI1

T1 Trypsinogen (1 copy) [15] 0.492 ± 0.175 2.132 ± 0.656 −0.353 ± 0.603 0.511 ± 0.326

T3 Trypsinogen (3 copy) [15] 0.436 ± 0.072 2.912 ± 0.314 0.392 ± 0.753 1.378 ± 0.826

L Lysozyme (wild-type) [20] 0.990 ± 0.592 0.307 ± 0.412 0.145 ± 0.225 0.170 ± 0.527

I8 Lysozyme (I89V variant) [20] 1.128 ± 0.439 −0.268 ± 1.117 0.073 ± 0.446 0.491 ± 0.591

T7 Lysozyme (T70A vari-
ant)

[20] 0.895 ± 0.489 0.608 ± 0.600 0.200 ± 0.563 0.532 ± 0.475

I5 Lysozyme (I56T variant) [20] 0.866 ± 0.173 −0.327 ± 0.675 0.567 ± 0.333 0.504 ± 0.340

B BC1 Unpublished work in our 
laboratory

0.563 ± 0.058 1.173 ± 0.090 −1.130 ± 0.912 0.246 ± 0.606

M Mfe23 Unpublished work in our 
laboratory

0.651 ± 0.172 0.843 ± 0.440 −1.295 ± 1.206 0.487 ± 0.540
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used as an indicator of UPR, as this is assumed to reflect 
activation at the UPRE in the promoter region by Hac1p. 
The lack of complete correlation is only to be expected, 
as there were no strong correlations between the different 
transcript levels: HAC1 vs. PDI1 was the only pair that was 
significantly related at the 0.05 level (P = 0.024), but the 
relationship was still weak (r2 =  0.21). However, HAC1 
expression was also strongly associated with the extent of 
growth for each strain (as represented by dry cell weight, 
DCW). Because of this, we also calculated partial correla-
tions for each gene in turn against both DCW and metabo-
lite concentration, i.e. representing the gene/metabolite 
association once the effect of DCW has been allowed for.

In general, HAC1 levels were much more strongly asso-
ciated with DCW than individual metabolite concentra-
tions based on total quenching, whereas the relative effect 
of DCW was much less for KAR2 and PDI1 (Fig. S1). 
There were no metabolites which were associated with all 
three genes at the P < 0.05 level, but on comparing across 
all three, it was possible to identify some potential bio-
marker candidates: arabitol, aspartate and isoleucine were 
among the most highly associated metabolites for all genes 
(Fig. 1). (The associations were much weaker for the super-
natant metabolites (Fig. S2), so only the total quenching 
results are discussed from here on.)

Why were those specific metabolites correlated with gene 
expression? Arabitol is produced as an osmolyte by many 
fungi, including P. pastoris. It probably acts here as part of 
a general mechanism to reduce cell stress: different stresses 
in P. pastoris, including misfolded protein, can increase 
arabitol levels [1, 9]. For aspartate and isoleucine, though, 
it is also worth testing whether the changes in intracellular 
amino acid pool sizes were associated with the amino acid 
requirement of the different recombinant proteins—i.e. were 
Asp and Ile particular bottlenecks for the recombinant pro-
teins? There are some severe limitations to this: for instance, 
the data we have on the amino acid composition of P. pasto‑
ris do not distinguish between Gln and Glu, or Asp and Asn, 
and so we had to combine data for Glx and Asx [3]; and 
the recombinant protein composition data are obviously not 
different for the one-copy and three-copy trypsinogen strain 
and differ only slightly for the lysozyme strains. Nonethe-
less, as the mismatch for Asp and Ile fall within the range of 
all the amino acids for all the strains (Fig. S3), we conclude 
that there is no evidence of an association with amino acid 
requirements. Similarly, Carnicer et al. also found no asso-
ciation between amino acid pools and recombinant protein 
sequence for P. pastoris, although this was for the different 
case of a single protein grown under multiple conditions 
[4]. Additionally, Jorda et  al. found the same result when 
comparing an expressing and non-expressing strain of Rol. 
However, it was determined that an adaptation of the amino 
acid concentration distribution may have been as a conse-
quence of additional energy demands during recombinant 
protein production (with particular reference to an increase 
in trehalose) [14, 15].

Conclusions

Our current data show that monitoring UPR levels by gene 
transcription is certainly feasible at a potentially high-
throughput miniaturized scale and can therefore address a 
key bottleneck in the pathway to produced secreted pro-
teins. However, this is relatively time consuming and labo-
rious to do by traditional amplification-based methods, 
once all the different steps required have been allowed for 
[20]. We have found robust correlations between metabo-
lites and KAR2/PDI1 transcript levels, in particular (once 
DCW has been allowed for), which indicate that metabo-
lites could potentially be used as proxy indicators of UPR 
stress. Metabolite biomarkers have high precision and are 
well suited to high-throughput sampling and analysis, and 
therefore offer an alternative approach to screen for clones 
with low levels of UPR. Furthermore, this approach could 
be easily extended to process monitoring in bioreactors, 
especially as some of the potential biomarkers included 
supernatant metabolites.
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Fig. 1   Metabolites associated with genes relevant to the unfolded 
protein response; axes represent P values derived from partial correla-
tions. Metabolites were measured by 2D J-resolved NMR spectros-
copy using standard approaches [8], which offers benefits of reduced 
overlap between resonances in the crowded 1H spectrum, and indi-
vidual metabolite peaks were selected and quantitated using rNMR 
[15]. Each dot represents a single metabolite; blue dot isoleucine; red 
square aspartate; yellow diamond arabitol (color figure online)
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