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Abstract—Physical Realizability addresses the question of
whether it is possible to implement a given linear time invariant
(LTI) system as a quantum system. A given synthesized quantum
controller described by a set of stochastic differential equations
does not necessarily correspond to a physically meaningful quan-
tum system. However, if additional quantum noises are permitted
in the implementation, it is always possible to implement an
arbitrary LTI system as a quantum system. In this paper, we
give an expression for the number of introduced noise channels
required to implement a given LTI system as a quantum system.
We then consider the special case where only the transfer function
to be implemented is of interest. We give results showing when it
is possible to implement a transfer function as a quantum system
by introducing the same number of quantum noises as there are
system outputs. Finally, we demonstrate the utility of these results
by providing an algorithm for obtaining a suboptimal solution
to a coherent quantum LQG control problem.

I. INTRODUCTION

For systems where it is necessary to consider quantum
effects, the laws of quantum mechanics introduce new consid-
erations not present in classical controller synthesis problems.
The presence of quantum noises [1] introduce fundamental
limits on controller performance. Furthermore, the requirement
for unitary evolution, the non-commuting nature of quantum
observables, and the requirement for commutation relations to
be preserved as systems evolve (see for example [2]) lead to
the notion of physical realizability [3], [4]. This is the property
that a given system model represents the dynamics of a phys-
ically meaningful quantum system. Controller synthesis and
optimization problems that are well understood in the classical
regime can become difficult when restricting their solutions to
physically realizable quantum controllers. New and tractable
methods are required for these quantum controller synthesis
problems.

It is useful to draw a distinction between measurement based
quantum feedback control and coherent quantum feedback
control. In measurement based quantum feedback control,
measurements of observables of a quantum system are used
to apply feedback via a classical controller. While the closed
loop system is modeled and analyzed in a quantum setting,
the results of the measurements are classical signals and the
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controller can be implemented using analog or digital elec-
tronics. This paper addresses the alternative coherent quantum
feedback approach illustrated in Figure 1 in which quantum
systems are interconnected directly, avoiding measurement;
e.g., see [5].
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Fig. 1. A Coherent Quantum Control Scheme

Both forms of quantum feedback control are relevant to a
diverse range of applications which take advantage of quan-
tum effects. These applications include quantum computing,
quantum communications, quantum cryptography and preci-
sion metrology such as gravity wave detection. Measurement
based quantum feedback control is well understood (see for
example [6]) and has been used successfully to manipulate
quantum effects. For example, in [7] a qubit was maintained
in an oscillating superposition state. This important result is
relevant to the field of quantum computing.

The majority of experimental results to date have focused
on measurement based feedback control. Coherent quantum
feedback control presents additional challenges in that the
controller must be physically realizable. However, coherent
quantum feedback control may offer several advantages over
its measurement based counterpart. Firstly, coherent feedback
avoids the collapse of the quantum state and the loss of
quantum information associated with the use of quantum mea-
surement. This is particularly relevant to quantum computing
where quantum states need to be maintained and manipulated.
Secondly, implementing coherent controllers may introduce
fewer quantum noise channels than the measurement process
and this in turn may lead to better control system performance.
Finally, it may be that there are technical or experimental
benefits in implementing a controller as a quantum system.
For example, the use of a coherent controller may result
in advantages in terms of the speed of control. Also, the
experimental setup may make measurement impractical.

Coherent quantum feedback control is generating increasing
interest within the research community ( [3], [5], [8], [9]) and
central to this area is the notion of physical realizability. In
the classical setting, we regard controllers as always being
possible to implement. In the quantum setting, a given syn-
thesized quantum controller described by a set of stochastic
differential equations cannot always be implemented by a
physically meaningful quantum system. Several recent papers
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have addressed this issue of physical realizability [3], [4], [10],
[11], giving conditions for when a given system is physically
realizable. Other papers [12]–[15] have given algorithms for
experimentally implementing several classes of physically
realizable quantum systems.

An importance difference between classical and quantum
controller synthesis is that in the case of coherent quantum
feedback control, implementing a controller as a quantum
system may require the introduction of quantum vacuum
noises. To see how this might arise, consider the following
example from quantum optics.

Input
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Output

Output

Noise Input

(Vacuum Noise)

Fig. 2. An Optical Cavity

Suppose that as part of the controller implementation pro-
cess, the design calls for a laser beam to be passed through
an optical cavity as shown in Figure 2. Here a naive approach
would be to consider this device as having a single input and
single output. However, the laws of quantum mechanics imply
that there is a second input to the cavity. Indeed, the mirror on
the right, which produces the output, also causes the cavity to
be coupled to a vacuum noise input; e.g. [1]. To obtain correct
results when modeling such a system, it is essential to take
this additional vacuum noise source into account.

Utilizing well established controller synthesis methods
(such as H∞ controller synthesis) and modifying the classical
solutions by incorporating additional quantum noises to obtain
physically realizable quantum systems provides a tractable
approach to coherent quantum controller design; e.g., see [3].
This approach requires a method for determining how many
additional quantum noises are necessary for physical realiz-
ability, and for constructing the resulting quantum systems.

In [3], the authors demonstrated that it is always pos-
sible to implement an arbitrary, strictly proper, linear time
invariant (LTI) system as a quantum system by introducing
a sufficient number of quantum vacuum noise channels. It is
straightforward to obtain upper and lower bounds on the num-
ber of introduced quantum noises that are necessary to obtain
physical realizability. Since these noises place limits on the
achievable controller performance, it is desirable to minimize
the number of these introduced noises. This paper extends the
result in [3] to determine the number of introduced quantum
noises that are necessary to implement a given, strictly proper,
LTI system. Also, our result extends the construction method
in [3] to give a construction that only introduces as many
quantum vacuum noises as are necessary to make that system
physically realizable.

We also consider the special case in which we are only in-
terested in physically realizing a transfer function, as opposed
to a specific state space realization. Note that the number of
introduced quantum noises necessary to physically realize a

strictly proper LTI system must be at least as many as the
output dimension. We provide a condition, under which a
strictly proper transfer function can be physically realized with
the number of introduced quantum noises being equal to the
output dimension. This condition is given in terms of a non-
standard algebraic Riccati equation. We then provide condi-
tions for the existence of a suitable solution to this Riccati
equation. This leads to a numerical solution to the question
of whether a particular strictly proper transfer function is
physically realizable with the number of introduced quantum
noises being equal to the output dimension.

Preliminary conference versions of the results of this paper
have appeared in [16]–[18]. Here, we provide detailed proofs
not included in those conference papers. Furthermore, we
demonstrate the utility of our main results by providing an
algorithm to obtain a suboptimal solution to a coherent quan-
tum linear quadratic Gaussian (LQG) problem. This algorithm,
and the example demonstrating its application, did not appear
in the conference papers.

The remainder of the paper proceeds as follows. In Sec-
tion II, we describe the quantum systems considered through-
out this paper. In Section III, we recall the definition of
physically realizable systems and outline relevant previous
results on this topic. In Section IV, we present our main
results. We first consider the problem of implementing a
particular state space model as a quantum system and the
number of introduced quantum noises necessary to do so. We
then consider the special case where a transfer function is to
be physically realized. We give results regarding when such a
transfer function is physically realizable with the number of
introduced noises being equal to the dimension of the system
output. In Section V, we demonstrate the utility of our results
by presenting an algorithm for finding a quantum controller
which is a suboptimal solution to a coherent quantum LQG
problem. An example demonstrating our algorithm followed
by our conclusion are then given in Sections VI and VII
respectively.

II. QUANTUM SYSTEMS

A. General Quantum System Model

Open quantum harmonic oscillators represent an important
class of quantum systems. Such systems can be described
by quantum stochastic differential equations (QSDEs) of the
following form (see [3]):

dx(t) = Ax(t) dt+B dw(t);

dy(t) = Cx(t) dt+D dw(t). (1)

Here, x(t) =
[
x1(t) · · · xn(t)

]T
is a column vector

of n self-adjoint system variables which are operators on an
underlying Hilbert space. Being quantum in nature, these vari-
ables do not commute in general. The commutation relations
for these variables are described by a real skew-symmetric
matrix Θ:[

xi(t), xj(t)
]

= xi(t)xj(t)− xj(t)xi(t) = 2iΘij .

Similarly, dw(t) is a column vector of nw self-adjoint, non-
commutative operators representing the input to the system and
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dy(t) is a column vector of ny self-adjoint, non-commutative
operators representing the output of the system. Their com-
mutation relations are as follows:[

dwi(t), dwj(t)
]

= 2iΘw,ij dt;[
dyi(t), dyj(t)

]
= 2iΘy,ij dt;

where Θw and Θy are real skew symmetric matrices.
The input signals dw(t) are assumed to admit the decom-

position
dw(t) = βw(t) dt+ dw̃(t)

where the self-adjoint, adapted process βw(t) is the signal
part of dw(t) and dw̃(t) is the noise part of dw(t). Here,
βw(t) is assumed to commute with x(t). The vector dw̃(t) is
a quantum Wiener process with Ito products

dw̃(t) dw̃T (t) = Fw̃ dt

where Fw̃ is a non-negative Hermitian matrix. Let Fw̃ =
Sw̃ + Tw̃, where Sw̃ is real and Tw̃ is imaginary. Then
Sw̃ describes the intensity of the quantum Wiener process
and is the quantum analog of the intensity matrix for a
classical Wiener process. The commutation relations for dw̃
are determined by Tw̃:[

dw̃(t), dw̃T (t)
]

= 2Tw̃ dt.

Since βw(t) is an adapted process, βw(t) commutes with
dw̃(t) for all t ≥ 0. Also, dw̃(t) commutes with x(t).

Finally, n, nw and ny are even (this is because in the quan-
tum harmonic oscillator, the system variables always occur as
conjugate pairs, see [6]) and A,B,C and D are appropriately
dimensioned real matrices describing the dynamics of the
system. For further details regarding these models, see [3].

Remark 1: While it is always possible to describe a col-
lection of quantum harmonic oscillators by QSDEs of the
form (1), not all QSDEs of this form correspond to a col-
lection of quantum harmonic oscillators. The property that the
QSDEs (1) correspond to a collection of quantum harmonic
oscillators is called physical realizability and is addressed in
greater detail in Section III.

We will now further restrict our attention within the class
of quantum systems described above.

B. A Class of Quantum System Models

This paper addresses the problem of implementing an
arbitrary, strictly proper, LTI system as a quantum system
(for example when implementing a coherent controller) by
introducing vacuum noise sources. The resulting quantum
systems are described by the following QSDEs which are a
special case of (1):

dx(t) = Ax(t) dt+Bu du(t)

+Bv1 dv1(t) +Bv2 dv2(t);

dy(t) = Cx(t) dt+ dv1(t). (2)

Here, du(t) (a column vector with nu components) represents
the inputs to the system and, like dw(t) in (1), is assumed
to admit the decomposition du(t) = βu(t) dt+ dũ(t). Also,

dv1(t) and dv2(t) (column vectors with nv1 and nv2 compo-
nents respectively) are quantum Wiener processes correspond-
ing to the introduced vacuum noise inputs. For convenience,
the vacuum noises are partitioned into two vectors dv1(t) and
dv2(t) such that nv1

= nu. Then, nv = nv1 + nv2 is the total
number of introduced vacuum noise inputs. Subsequently, we
will refer to dv1 as the direct feedthrough quantum noises
and to dv2 as the additional quantum noises. Also, Fũ, Sũ,
Tũ, Fv1 , Sv1 , Tv1 , Fv2 , Sv2

, and Tv2 are defined for dũ(t),
dv1(t) and dv2(t) respectively as Fw̃, Sw̃ and Tw̃ were for
dw̃(t) in (1). Furthermore, we assume that Fv1 and Fv2 are
appropriately dimensioned block diagonal matrices with each
diagonal block equal to

[
1 i
−i 1

]
. This assumption corresponds

to the fact that dv1 and dv2 represent vacuum noises [3].
The remaining symbols have the same meanings as in (1). We
restrict our attention to the case where ny = nu.

III. PHYSICAL REALIZABILITY

A. Definitions

As in [3], [8], [10], [16]–[18], the concept of physical
realizability means that the system dynamics described by
the QSDEs (1) correspond to those of a collection of open
quantum harmonic oscillators. Here, we slightly modify the
definition of physically realizable given in [3, Definition 3.1].
In [3] both fully quantum systems and hybrid systems with
quantum and classical degrees of freedom are considered.
However, we restrict our definition of physically realizable
systems to those that are fully quantum.

Definition 1: The system variables x are said to satisfy the
canonical commutation relations if[

xi(t), xj(t)
]

= 2iΘij

where Θ is of the form

Θ =


J 0 · · · 0
0 J · · · 0
...

...
. . .

...
0 0 · · · J

 ; J =

[
0 1
−1 0

]
. (3)

This corresponds to the case where x consists
of pairs of position and momentum operators:[
q1(t) p1(t) q2(t) p2(t) . . .

]T
.

Definition 2: The system described by (1) is physically
realizable if Θ is of the form (3) and there exists a quadratic
Hamiltonian operator H = 1

2x(0)TRx(0), where R is a real,
symmetric, n × n matrix, and a coupling operator vector
L = Λx(0), where Λ is a complex-valued 1

2nw × n coupling
matrix such that the matrices A, B, C and D are given by:

A = 2Θ
(
R+ Im

(
Λ†Λ

))
; (4a)

B = 2iΘ
[
−Λ† ΛT

]
Γ; (4b)

C = PT

[
Σny

0
0 Σny

] [
Λ + Λ#

−iΛ + iΛ#

]
; (4c)

D =
[
Iny×ny 0ny×(nw−ny)

]
. (4d)

Here: Γnw×nw
= P diag(M); M = 1

2

[
1 i
1 −i

]
;

Σny
=

[
I 1

2ny× 1
2ny

0 1
2ny× 1

2 (nw−ny)

]
; P is
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the appropriately dimensioned square permuta-
tion matrix such that P

[
a1 a2 · · · a2m

]
=
[
a1 a3 · · · a2m−1a2 a4 · · · a2m

]
and diag(M)

is an appropriately dimensioned square block diagonal matrix
with each diagonal block equal to the matrix M . (Note that
the dimensions of P and diag(M) can always be determined
from the context in which they appear.) Im (.) denotes
the imaginary part of a matrix and † denotes the complex
conjugate transpose of a matrix.

Remark 2: This definition amounts to saying that a sys-
tem (1) is physically realizable if and only if it corresponds
to a collection of open quantum harmonic oscillators [3].

We now apply this definition to the class of quantum
systems (2). The system (2) is physically realizable if there
exists a real, symmetric, n×n matrix R, and a complex-valued
1
2 (nv1 + nv2 + nu)×n matrix Λ such that the matrices A, Bu,
Bv1 , Bv2 and C are given by:

A = 2Θ
(
R+ Im

(
Λ†Λ

))
; (5a)[

Bv1 Bv2 Bu

]
= 2iΘ

[
−Λ† ΛT

]
Γ; (5b)

C = PT

[
Σny 0

0 Σny

] [
Λ + Λ#

−iΛ + iΛ#

]
, (5c)

where Θ is of the form (3). Here, Σny
=[

I 1
2ny× 1

2ny
0 1

2ny× 1
2 (nv1

+nv2
+nu−ny)

]
.

Theorem 1: (see [3, Theorem 3.4]) The system (1) is phys-
ically realizable if and only if:

0 = iAΘ + iΘAT +BTw̃B
T ;

B

[
I
0

]
= ΘCT diag(J);

where Θ is defined as in (3) and D satisfies (4d).
Corollary 1: The system (2) is physically realizable if and

only if:

0 = iAΘ + iΘAT +Bv1Tv1B
T
v1

+Bv2Tv2B
T
v2 +BuTũB

T
u ;

Bv1 = ΘCT diag(J),

where Θ is defined as in (3).

B. Previous Results

In [3], it was demonstrated that by introducing a sufficient
number of vacuum noises, an arbitrary LTI system could be
made physically realizable. In particular, the following lemma
relating to the physical realizability of a purely quantum
controller was proved.

Lemma 1: (See [3, Lemma 5.6]). Let Fũ be a block di-
agonal matrix with each diagonal block equal to I + iJ ,
and let A,B and C be matrices such that A ∈ Rn×n, B ∈
Rn×nu , C ∈ Rny×n. Also, let Θ be defined as in (3).
Then there exists an even integer nv2 ≥ 0 and matrices
Bv1 ∈ Rn×nv1 , Bv2 ∈ Rn×nv2 , such that the system (2) is
physically realizable.

Remark 3: It follows from [3, Theorem 3.4], that for a
system described by a strictly proper transfer function

G(s) = C (sI −A)
−1
Bu,

the dimension of the system output ny is a lower bound on
the total number of introduced vacuum noises nv that are nec-
essary for the system to be physically realizable. That is, the
direct feedthrough quantum noises dv1 in the system (2) are
necessary, but may not be sufficient for physical realizability.
We are also interested in the situation in which the presence
of the noises dv1 is sufficient for physical realizability and
the noises dv2 are not needed. In this case, we say that the
LTI system is physically realizable with no additional vacuum
noises. Physically realizing a system with minimal additional
noises means to implement the system as a quantum system (2)
by only introducing the number of additional vacuum noises
nv2 ≥ 0, that are necessary for physical realizability.

IV. MAIN RESULT

A. General Case - Implementing a State Space representation

In this section, we give a method to physically realize a
strictly proper LTI system

dx = Ax dt+Bu du

dy = Cxdt

with minimal additional quantum noises. The remainder of this
section is structured as follows. We first give our algorithm.
We then formally state our result as a theorem. The subsequent
proof of the theorem justifies our algorithm.

The algorithm for obtaining a physically realizable sys-
tem (2) with minimal additional quantum noises proceeds as
follows:

1) Construct the matrix

S̃ = ΘBuΘnuB
T
u Θ−ΘA−AT Θ− CT ΘnyC. (6)

Here Θnu
and Θny

are commutation matrices of the
form (3) of dimensions nu×nu and ny×ny respectively.

2) Find the rank of the matrix S̃: r = rank
[
S̃
]
. Now

nv2 = r. That is, nu direct feedthrough quantum noises,
and r additional quantum noises, are necessary for the ex-
istence of Bv1 , Bv2 such that the system (2) is physically
realizable. This gives nv = nu + r.

3) Calculate S = i
4 S̃.

4) Construct the singular value decomposition (SVD) for S:
S = U†DU . Here D is diagonal and U is unitary.

5) Construct Λb1 = (|D|+D)
1
2 U where |D| is the diagonal

matrix with entries equal to the absolute values of the
corresponding entries in D.

6) Construct Bv1 and Bv2 as follows:

Bv1 = ΘCT diag(J);

Bv2 = 2iΘ
[
−Λ†b1 ΛT

b1

]
P diag(M).

The system (2) with {A,Bu, C} given and with Bv1 , Bv2 so
constructed is physically realizable. We now give a theorem
which formally states that nv = nu + r introduced noises
are necessary and sufficient for physical realizability. The
construction of Bv1 and Bv2 above follows from the proof
of the theorem.

Theorem 2: Consider a strictly proper LTI system defined
by given matrices A,Bu and C. There exist matrices Bv1
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and Bv2 such that the corresponding system (2) is physically
realizable and with nv2 equal to r where r is the rank of
the matrix

(
ΘBuΘnuB

T
u Θ−ΘA−AT Θ− CT ΘnyC

)
. Con-

versely, suppose that there exist matrices Bv1 and Bv2
such

that the corresponding system (2) is physically realizable. Then
nv2 ≥ r.

Proof: The proof is structured as follows. We first show
that nu + r introduced quantum noises are sufficient for
physical realizability. We then show that nu + r introduced
quantum noises are necessary for physical realizability.

Following the method of [3], the construction of the matri-
ces R, Λ, Bv1

and Bv2 in (5a) - (5c) is as follows:

R = −1

4

(
ΘA+AT ΘT

)
;

Λ =

[
1
2C

TPT

[
I
iI

]
ΛT
b1 ΛT

b2

]T
;

Bv1 = ΘCT diag(J);

Bv2 = 2iΘ
[
−Λ†b1 ΛT

b1

]
P diag(M),

where Θ is defined as in (3). Here,

Λb2 = −i
[
I 0

]
P diag(M)BT

u Θ;

and Λb1 is any complex 1
2nv2 × n matrix such that

Λ†b1Λb1 = Ξ1

+ i

(
AT ΘT −ΘA

4
− 1

4
CTPT

[
0 I
−I 0

]
PC

− Im
(

Λ†b2Λb2

))
(7)

where Ξ1 is any real symmetric n×n matrix such that Λ†b1Λb1

is nonnegative definite.
The matrix Λb1 can be constructed as follows: first a real

symmetric n × n matrix Ξ1 is constructed such that the
right hand side of (7) is nonnegative definite. Then Λb1 is
constructed such that (7) holds.

Note that Λb1 has 1
2nv2 rows and thus determines the

number of additional quantum noises required in this imple-
mentation. We now provide a method for choosing Ξ1 and
Λb1 to obtain the result.

It is desired to construct Ξ1 such that Λ†b1Λb1 is of minimum
rank. This will allow Λb1 to be constructed with the minimum
number of rows. We make the following observations about
the terms in equation (7):

−Θ = ΘT ; (8)

PT

[
0 I
−I 0

]
P = Θny ; (9)

Λ†b2Λb2 = Θ†BuΓ†
[
I
0

] [
I 0

]
ΓBT

u Θ

= −1

4
ΘBu diag

([
1 i
−i 1

])
BT

u Θ;

Im
(

Λ†b2Λb2

)
= −1

4
ΘBu diag

([
0 1
−1 0

])
BT

u Θ

= −1

4
ΘBuΘnu

BT
u Θ. (10)

Substituting (8), (9) and (10) into (7), we obtain

Ξ2 = Ξ1 +
i

4
S̃

where
Ξ2 = Λ†b1Λb1

and S̃ is defined as in (6).
Note that the matrix S̃ is real and skew symmetric. Thus

S = i
4 S̃ is Hermitian, has real eigenvalues and is diagonaliz-

able: S = U†DU where D is diagonal and U is unitary.
We wish to find a real, symmetric matrix Ξ1 such that Ξ2 =

Ξ1 + S is positive semi-definite and of minimum rank. Let
Ξ1 = U† |D|U . We claim that Ξ1 is real and symmetric, that
Ξ2 = Ξ1 + S ≥ 0, and that Ξ2 has rank equal to half that of
S.

First, we show that this matrix Ξ1 is real and symmetric.
Observe that Ξ1 = Ξ1

† and Ξ1 ≥ 0. Also:

Ξ1
2 = U†|D|2U = U†D2U = S2.

Here, S is purely imaginary, thus S2 is real and Ξ1
2 ≥ 0 is also

real, and therefore has a real square root. From the uniqueness
of the positive semi-definite square root of a positive semi-
definite matrix [19, Theorem 7.2.6] we conclude that Ξ1 is
real. Further, since Ξ1 is Hermitian, Ξ1 is symmetric.

We now show that Ξ2 has rank equal to half that of S
and that Ξ2 is positive semi-definite. We observe that S is
Hermitian and so its eigenvalues are real. Thus the eigenvalues
of S̃ are purely imaginary. Also since S̃ is real, its eigenvalues
occur in complex conjugate pairs. Thus D is of the form:

D =


λ1 0 0 0 · · ·
0 −λ1 0 0 · · ·
0 0 λ2 0 · · ·
0 0 0 −λ2 · · ·
...

. . .

 ;λi ≥ 0.

|D| =


λ1 0 0 0 · · ·
0 λ1 0 0 · · ·
0 0 λ2 0 · · ·
0 0 0 λ2 · · ·
...

. . .

 ;λi ≥ 0.

|D|+D =


2λ1 0 0 0 · · ·
0 0 0 0 · · ·
0 0 2λ2 0 · · ·
0 0 0 0 · · ·
...

. . .

 ;λi ≥ 0.

From this, it can be seen that |D|+D has a rank which is
half that of D. Since

Ξ2 = Ξ1 + S

= U† |D|U + U†DU

= U†(|D|+D)U,

it follows that Ξ2 is positive semi-definite and has a rank which
is half that of S.
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Since S and S̃ have the same rank, Ξ2 has rank r
2 where

r the rank of S̃. Since Ξ2 ≥ 0 has rank r
2 , it is possible to

construct Λb1 with r
2 rows, such that Ξ2 = Λ†b1Λb1. Recall

that, Λb1 has 1
2nv2

rows, and we have nv2 = r. That is, the
system is physically realizable with the number of additional
quantum noises nv equal to nu + r where r is the rank of the
matrix S̃ defined in (6).

We now consider the second part of the theorem and show
that nu + r introduced noises are necessary for physical
realizability. To do so, it is sufficient to show that the number
of columns of

[
Bv1 Bv2

]
must be greater than or equal to

nu + r.
From (5b), it can be shown that:

Bu = 2iΘ
[
−Λ†b2 ΛT

b2

]
Γ; (11a)

Bv1 = 2iΘ
[
−Λ†b0 ΛT

b0

]
Γ; (11b)

Bv2 = 2iΘ
[
−Λ†b1 ΛT

b1

]
Γ; (11c)

where

Λ =

Λb0

Λb1

Λb2

 .
That is, Bv2 has twice the number of columns as Λb1 has rows.
Therefore, we wish to show that Λb1 has at least r

2 rows.
Consider,

Im(Λ†Λ) = Im(Λ†b0Λb0) + Im(Λ†b1Λb1) + Im(Λ†b2Λb2).

That is,

Im(Λ†b1Λb1) = Im(Λ†Λ)−Im(Λ†b0Λb0)−Im(Λ†b2Λb2). (12)

Rearranging (4a), we obtain

1

2
Θ−1A = R+ Im(Λ†Λ),

where R and Im(Λ†Λ), are respectively the symmetric and
skew-symmetric parts of the left hand side of this equation.
From this, it can be shown that

Im(Λ†Λ) = −1

4
(ΘA+AT Θ). (13)

Also using (4c) and (9), it is straightforward to verify that

Im(Λ†b0Λb0) =
1

4
CT ΘnyC. (14)

Substituting (10), (13) and (14) into (12) we obtain

Im(Λ†b1Λb1) =
1

4
S̃

where S̃ is defined as in (6). That is,

Λ†b1Λb1 = Ξ1 +
i

4
S̃,

where Ξ1 is the real part of Λ†b1Λb1.

Now using [20, Fact 2.17.3], we observe that

rank
(

Λ†b1Λb1

)
= rank

(
Ξ1 + i

S̃

4

)

=
1

2
rank

[
Ξ1

S̃
4

− S̃
4 Ξ1

]
≥ 1

2
rank

[
Ξ1

S̃
4

]
≥ 1

2
rank

[
S̃

4

]
.

That is, for any Ξ1,

rank
(

Λ†b1Λb1

)
≥ 1

2
rank[S].

This in turn implies that Λb1 has at least r
2 rows, where, r

is the rank of the matrix S̃ defined as in (6). However, it
follows from (11c), that Bv2 has twice as many columns as
Λb1 has rows. That is, Bv2 has at least r columns and hence[
Bv1 Bv2

]
has at least nu + r columns. Hence, the number

of quantum noises nv is greater than or equal to nu + r. This
concludes the proof of the theorem.

B. Special Case - Physically Realizing a Transfer Function

When designing LTI controllers, usually the transfer func-
tion of the controller rather than its particular state space real-
ization determines the closed loop performance. As such, the
question of whether a particular transfer function is physically
realizable may be of greater interest than whether a particular
state space realization is physically realizable.

Therefore, we now turn our attention to the case in which
we are interested in implementing an LTI quantum system
with a specified strictly proper transfer function. This is
equivalent to allowing a state transformation on the state
space description of the system. In particular, we consider
the problem of whether a particular transfer function can be
physically realized by only introducing the direct feedthrough
quantum noises dv1 in (2). That is, without introducing any
additional quantum noises dv2.

Here, we recall from Remark 3 that for systems described
by strictly proper transfer functions the direct feedthrough
quantum noises are necessary for physical realizability.

Under some assumptions, it is possible to implement a
specified transfer function as a physically realizable quantum
system (2) where only the direct feedthrough quantum noises
are introduced.

Theorem 3: Consider a system with strictly proper transfer
function matrix:

G(s) = C̃(sI − Ã)−1B̃u.

Suppose the algebraic Riccati equation (ARE)

XB̃uΘnu
B̃T

uX − ÃTX −XÃ− C̃T Θny
C̃ = 0 (15)

has a non-singular, real, skew-symmetric solution X . Here,
the matrices Θnu and Θny are defined as in (3). Then there
exists matrices {A,Bu, C} such that

G(s) = C(sI −A)−1Bu
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and the corresponding system (2) is physically realizable
with only the direct feedthrough quantum noises dv1 and no
additional quantum noises dv2.

Proof: First, note that for any 2m × 2m non-singular
real, skew-symmetric matrix X there exists a non-singular,
real matrix T for which X = TT ΘT where Θ is defined as
in (3) [21, Corollary 8.24]. Let,

X = TT ΘT ; T ∈ Rn; det T 6= 0;

A = TÃT−1;

Bu = TB̃u;

C = C̃T−1;

Bv1 = ΘCT diag(J).

The result now follows by applying Theorem 2. Indeed, (15)
implies:

0 = XB̃uΘnu
B̃T

uX − ÃTX −XÃ− C̃T Θny
C̃

= TT ΘTB̃uΘnu
B̃T

u T
T ΘT − ÃTTT ΘT − TT ΘTÃ

−C̃T Θny
C̃

= ΘTB̃uΘnuB̃
T
u T

T Θ−
(
TT
)−1

ÃTTT Θ−ΘTÃT−1

−
(
TT
)−1

C̃T Θny C̃T
−1

= ΘTB̃uΘnu

(
TB̃u

)T
Θ−

(
TÃT−1

)T
Θ−ΘTÃT−1

−
(
C̃T−1

)T
Θny

C̃T−1

= ΘBuΘnu
Bu

T Θ−AT Θ−ΘA− CT Θny
C.

That is, the matrix S̃ defined in (6) has rank zero. Applying
Theorem 2, we conclude that the system {A,Bu, C} can be
physically realized with nv2 = 0.

We now give conditions for when the ARE (15) has a non-
singular, real, skew symmetric solution X . The proof given
below closely follows that in [22, Theorem 13.5]. This result
also leads to a numerical procedure for physically realizing a
strictly proper transfer function with the minimal number of
additional quantum noises.

For convenience, we define R̃ = −B̃Θnu
B̃T , Q̃ =

C̃T Θny
C̃ and rewrite (15):

ÃTX +XÃ+XR̃X + Q̃ = 0. (16)

Note that Q̃ and R̃ are skew symmetric.
Define

H =

[
Ã R̃

−Q̃ −ÃT

]
, (17)

and Z = −i [ 0 I
I 0 ]. Note that Z−1 = Z†, (ZH) is skew

symmetric, and Z−1HZ = Z†HZ = −H†. That is, H and
−H† are similar, from which it follows that λ is an eigenvalue
of H if and only if −λ is. That is, the eigenvalues of H are
symmetric about the imaginary axis.

Assume H has no eigenvalues on the imaginary axis and
let χ−(H) be the n-dimensional spectral subspace [22] of H
corresponding to its negative eigenvalues. We find a set of
basis vectors for χ−(H) and stack the basis vectors to form
a matrix. Partitioning this matrix, we can write χ−(H) =

Im
[
X1

X2

]
where X1, X2 ∈ Cn×n. Here Im

[
X1

X2

]
denotes the

subspace spanned by the columns of the matrix
[
X1

X2

]
.

We assume X1 is non-singular or equivalently that χ−(H)
and Im [ 0

I ] are complementary subspaces. Then define X =
X2X

−1
1 . It follows that X is uniquely determined by H .

We will denote the corresponding function by X = Ric(H)
with the domain dom(Ric) consisting of matrices H of the
form (17) satisfying the properties that H has no purely
imaginary eigenvalues, and that X1 is non-singular.

Theorem 4: Suppose H ∈ dom(Ric) and X = Ric(H).
Then X is skew-symmetric and solves the algebraic Riccati
equation ÃTX +XÃ+XR̃X + Q̃ = 0.

Proof: Let X1, X2 be as above. There exists a Hurwitz
matrix H− ∈ Cn×n such that

H

[
X1

X2

]
=

[
X1

X2

]
H−. (18)

Pre-multiply (18) by
[
X1

X2

]T
Z to obtain[

X1

X2

]T
ZH

[
X1

X2

]
=
[
X1

X2

]T
Z
[
X1

X2

]
H−.

Since ZH is skew-symmetric, so are both sides of the above
equation. From the right-hand side:

(XT
2 X1 +XT

1 X2)H− = −H†−(XT
2 X1 +XT

1 X2)T .

This is a Lyapanov equation. Since H− is Hurwitz, the
unique solution is XT

2 X1 + XT
1 X2 = 0. That is, XT

1 X2

is skew symmetric, and since X1 is non-singular, X =
(X−1

1 )T (XT
1 X2)X−1

1 is also skew-symmetric.
It remains to be shown that X is a solution to (16). Post-

multiplying (18) by X−1
1 , we obtain

H [ I
X ] = [ I

X ]X1H−X
−1
1

and pre-multiplying by [ X −I ] gives

[ X −I ]H [ I
X ] = 0,

which is precisely (16).
Remark 4: The above proof also leads to a numerical

procedure for solving the ARE (15) and hence solving the
physical realizability problem under consideration. This nu-
merical procedure involves solving the eigenvalue, eigenvector
problem for the matrix H. The following corollary, which
follows directly from combining Theorems 3 and 4, is the
main result of this subsection.

Corollary 2: Consider a system with strictly proper transfer
function matrix:

G(s) = C̃(sI − Ã)−1B̃u.

Suppose H ∈ dom(Ric) and X = Ric(H) is non-singular
where H is defined as in (17). Then there exists matrices
{A,Bu, C} such that

G(s) = C(sI −A)−1Bu

and the corresponding system (2) is physically realizable
with only the direct feedthrough quantum noises dv1 and no
additional quantum noises dv2.

We now give the algorithm for solving the ARE (15) and
hence physically realizing a given transfer function by only
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introducing direct feedthrough quantum noises. Suppose we
wish to physically realize the transfer function

G(s) = C̃(sI − Ã)−1B̃u.

1) Construct the matrix H as in (17). Find the eigenvalues
and eigenvectors of H . Check that H has no purely
imaginary eigenvalues. In practice, this means checking
that the real part of each eigenvalue has magnitude greater
than some small numerical tolerance.

2) Construct a matrix
[
X1

X2

]
such that its columns are the

eigenvectors of H that correspond to eigenvalues with
negative real part. Check that X1 and X2 are non-singular
and calculate X = X2X

−1
1 . The matrix X is a non-

singular solution to the ARE (15).
3) Find the eigenvalues and eigenvectors of X . These will

occur in complex conjugate pairs. Hence, construct a
diagonal matrix Λ with entries being the eigenvalues of
X and with complex conjugate eigenvalues in adjacent
columns. Construct a matrix V with columns being the
corresponding eigenvectors of X normalized to have
unit norm and with complex conjugate eigenvectors in
adjacent columns.

4) Construct the n × n diagonal matrix Λ̃ with alternating
diagonal entries i and −i. Also construct the n×n block
diagonal matrix Ṽ with each diagonal block correspond-
ing to 1√

2

[
1 1
i −i

]
.

5) Calculate T = Ṽ DV † where D =
(

Λ̃−1Λ
) 1

2

.
6) Construct

A = TÃT−1;

Bu = TB̃u;

C = C̃T−1;

Bv1 = ΘCT diag(J).

Then
G(s) = C(sI −A)−1Bu

and the system (2) corresponding to
{
Ã, B̃u, C̃

}
is physically

realizable by introducing only direct feedthrough quantum
noises with Bv1 constructed as above. No additional quantum
noises are necessary for physical realizability.

Remark 5: We now justify the above numerical algorithm
for constructing T such that X = TT ΘT .

Since X is skew-symmetric, X = V ΛV †, where V is a
unitary matrix with columns which are the eigenvectors of
X . Also, Λ is a diagonal matrix where the diagonal elements
are the eigenvalues of X , which are purely imaginary and
occur in complex conjugate pairs. For every eigenvector v
of X corresponding to eigenvalue λ, its complex conjugate
v̄ is also an eigenvector and corresponds to λ̄. If necessary,
we reorder the columns of V and corresponding entries of
Λ such that these complex conjugate pairs are adjacent:
V = [ v1 v̄1 v2 v̄2 ... ] .

Similarly we can write Θ = Ṽ Λ̃Ṽ † where Ṽ is a block
diagonal matrix with repeated blocks 1√

2

[
1 1
i −i

]
and Λ̃ is a

diagonal matrix with alternating entries i and −i. Observe

that there exists a diagonal matrix

D =


d1 0 0 0 · · ·
0 d1 0 0 · · ·
0 0 d2 0 · · ·
0 0 0 d2 · · ·
...

. . .


such that Λ = DΛ̃D and the diagonal elements di are real
and positive. We now have X = V DṼ †ΘṼ DV †. Define T =
Ṽ DV †, then X = T †ΘT .

Observe that the matrices
[

1 1
i −i

]
and

[
di 0
0 di

]
commute.

Therefore Ṽ and D commute. We claim that the matrix
T = DṼ V † is real. This follows since

(Ṽ V †)† = V Ṽ †

= [ v1 v̄1 v2 v̄2 ... ] diag
(

1√
2

[
1 −i
1 i

])
= 1√

2 [ (v1+v̄1) −i(v1−v̄1) (v2+v̄2) −i(v2−v̄2) ... ]

which is real. Therefore T as constructed above is real and
X = TT ΘT.

V. A SUBOPTIMAL COHERENT QUANTUM LQG
CONTROLLER DESIGN ALGORITHM

In this section, we use the results in Section IV to provide
an algorithm for the design of a suboptimal coherent quantum
LQG controller. The main idea of our algorithm is to design a
classical LQG controller and then use Theorem 2 to implement
this controller as a quantum system. In contrast with the clas-
sical LQG controller synthesis problem, here the separation
principle of using the optimal state estimator and optimal
regulator no longer applies due to the relation between the
optimal regulator gain and the additional quantum noises that
arise when implementing the controller as a quantum system.
This is addressed in the algorithm that follows.

A. Problem Formulation

We will now formally state the problem to be addressed. Our
formulation follows that in [5] with some minor differences.

Suppose we have a quantum plant described by the follow-
ing QSDEs which are a special case of (1):

dx(t) = Ax(t) dt+Bu du(t) +Bw1
dw1(t);

dy(t) = Cx(t) dt+Du du(t) +Dw1
dw1(t). (19)

Here, as in (1), x is a column vector of n self-adjoint
system variables. The column vector du(t) represents the
input to the system. It consists of nu signals of the form
du(t) = βu(t) dt + dũ(t) where dũ(t) is the noise part
of du(t) with Ito products dũ(t) dũT (t) = Fũ dt where
Fũ is non-negative Hermitian. Also, the self-adjoint, adapted
process βu(t) is the signal part of du(t). Furthermore, dw1

is a column vector of nw1
non-commutative quantum Wiener

processes with Ito products dw1(t) dw1
T (t) = Fw1

dt where
Fw1 is non-negative Hermitian. Here, dw1 represents noises
driving the system and may for example include vacuum
noises and/or thermal noises. The column vector of ny signals
dy(t) represents the output of the system. Finally, as in (1), n,
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nu, nw1
and ny are all assumed to be even and A, Bu, Bw1

,
C, Du and Dw1 are appropriately dimensioned real matrices
describing the dynamics of the system. For further details see
[3], [5]. For simplicity we restrict our attention to the case
where ny = nu.

Furthermore, suppose that we wish to minimize an infinite
horizon quadratic cost function:

J = lim sup
tf→∞

1

tf

∫ tf

0

〈
xT(t)R1x(t) + βu(t)TR2βu(t)

〉
dt

(20)
where 〈.〉 denotes the quantum expectation; e.g., see [5].

We restrict attention to controllers described by the follow-
ing QSDEs which are of the form (2):

dxK(t) = AKxK(t) dt+By dy(t)

+Bv1 dv1(t) +Bv2 dv2(t);

du(t) = CKxK(t) dt+ dv1(t). (21)

The problem is to design a physically realizable quantum
controller of the form (21) that minimizes the cost function
(20).

To obtain an explicit expression for J , we consider the
closed loop system:

dη = Aη dt+ BwCL;

where,

η =

[
x
xK

]
; wCL =

dw1

dv1

dv2

 ;

dwCL dwCL
T = FwCL

dt; SwCL
= Re(FwCL

);

A =

[
A BuCK

ByC AK +ByDuCK

]
;

B =

[
Bw1

Bu 0
ByDw1 ByDu +Bv1 Bv2

]
.

Finally,

J = Tr
(
R̄Q̄
)
, (22)

where Q̄ is the unique symmetric positive definite solution of
the Lyapunov equation

AQ̄+ Q̄AT + BSwCL
BT = 0;

and

R̄ =

[
R1 0
0 CT

KR2CK

]
.

For a more detailed derivation of these expressions, see [5].
In the following subsection, we present an algorithm for

designing a quantum controller of the form (21) which is a
suboptimal solution to this problem.

B. Design Algorithm

We start by forming an Auxiliary Classical LQG Problem.
Consider the plant and controller equations (19) and (21)
and define dû = du − dv1. By temporarily ignoring the
Bv1 dv1 and Bv2 dv2 noise terms, and treating dw1 and dv1 as
classical Wiener processes with intensity matrices Sw1

and Sv1

respectively, we obtain the auxiliary classical plant equations:

dx = Axdt+Bu dû+Bw1
dw1 +Bu dv1;

dy = Cxdt+Du dû+Dw1
dw1 +Du dv1; (23)

and the auxiliary classical controller equations:

dxK = AKxK dt+By dy;

dû = CKxK dt. (24)

We also define an Auxiliary Cost Function which introduces
an extra term to account for the fact that we have ignored
the noise terms Bv1 dv1 and Bv2 dv2 that will appear in the
quantum version of the controller:

JAUX = lim sup
tf→∞

1

tf
E
[∫ tf

0

xT(t)R1x(t) + βu(t)TR2βu(t) dt

]
+ lim sup

tf→∞

1

tf
E
[∫ tf

0

ρβu(t)TR2βu(t) dt

]
(25)

where E[.] denotes the classical expectation and ρ ≥ 0.
Equivalently,

JAUX = lim sup
tf→∞

1

tf
E
[∫ tf

0

xT(t)R1x(t) + βu(t)T R̃2βu(t)dt

]
(26)

where R̃2 = (1+ρ)R2, ρ ≥ 0. The Auxiliary LQG problem is
to find a controller (24) that minimizes the cost function (26)
for the plant (23).

Our approach to the coherent quantum LQG problem is
as follows. The auxiliary LQG problem is first solved for
a given ρ ≥ 0 and the resulting auxiliary controller (24)
is implemented as a quantum controller (21) by applying
Theorem 3 or Theorem 2. The cost function (20) is then
evaluated using the expression (22). Finally, this process is
repeated, optimizing the cost function (20) by using a line
search over the parameter ρ to obtain our final suboptimal
controller.

We now detail one iteration of this design process. The
auxiliary LQG problem is a standard classical LQG problem
and is solved in the usual manner; see for example [23]. The
solution is the auxiliary controller (24) with

AK = A−KC −BuF +KDuF ;

By = K;

CK = −F.

Here, F and K are obtained as follows:

F = R̃−1
2 BT

u P ;

where P ≥ 0 is the solution to the ARE

R1 − PBuR̃
−1
2 BT

u P +ATP + PA = 0,

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: December 2, 2014 03:30:08 PST



and
K = (QCT + V12)V −1

2 ;

where Q ≥ 0 is the solution to the ARE

0 = (A− V12V
−1
2 C)Q+Q(A− V12V

−1
2 C)T

−QCTV −1
2 CQ+ V1 − V12V

−1
2 V T

12.

Here,

E
[
Bw1 Bu

Dw1 Du

] [
dw1

dv1

] [
dw1

dv1

]T [
Bw1 Bu

Dw1 Du

]T
=

[
V1 V12

V T
12 V2

]
dt;[

V1 V12

V T
12 V2

]
=

[
Bw1

Bu

Dw1
Du

] [
Sw1

0
0 Sv1

] [
Bw1

Bu

Dw1
Du

]T
.

Next, we obtain a fully quantum system of the form (21),
based on the auxiliary controller (24) with {AK , By, CK}
obtained above. We first attempt to apply Theorem 3. If the
conditions of the theorem are satisfied, the transfer function
of the auxiliary controller is implemented as a system (21),
with only direct feedthrough quantum noises introduced by
applying Theorem 3. That is, nv = nu. If the conditions
of Theorem 3 are not satisfied, then the auxiliary controller
is implemented by applying Theorem 2, which will result in
nv > nu quantum noises.

Finally, the cost function (20) is evaluated using the ex-
pression (22). For details on obtaining Bv1 and Bv2

see
Section IV-A.

Our algorithm is summarized as follows:
1) For a given ρ ≥ 0, form the Auxiliary Classical LQG

Problem (23), (25).
2) Solve to obtain the classical auxiliary controller (24).
3) Implement this controller as a coherent quantum con-

troller (21).
4) Form the corresponding closed loop system, and evaluate

the resulting cost function (20).
5) Repeat, optimizing over ρ ≥ 0.
We now give a heuristic motivation for our algorithm. In

the standard (classical) LQG problem, the separation principle
allows the optimal state estimator and optimal regulator to
be designed independently and then combined to yield the
optimal controller. In contrast to this, in the quantum version
of the problem, the regulator gain CK directly affects how
strongly the quantum noises dv1 and dv2 impact the state
estimator because Bv1 and Bv2 depend on CK .

Our method ignores the introduction of the additional noises
dv1 and dv2 when designing our state estimator. In order to
ensure that the effect of these noises is not too great, when
designing the regulator we introduce the parameter ρ which
puts an additional penalty on the size of the control signal.
The final step of optimizing over ρ ensures the right balance:
if ρ is too small the effect of the additional noises dv1 and
dv2 dominate the closed loop system response leading to poor
performance whereas if ρ is too large, the feedback gain is
unduly penalized also leading to poor performance.

We justify our approach by observing that in practice, our
algorithm is computationally tractable and examples show that
the controllers so obtained yield good results. In particular,
the example which follows demonstrates how a suboptimal
coherent quantum controller can outperform a combination of
heterodyne measurement and optimal (classical) measurement
based feedback control.

VI. ILLUSTRATIVE EXAMPLE

To demonstrate the coherent quantum controller design
process of Section V, we consider a two mirror optical cavity
driven by thermal noise of intensity kn as shown in Figure 3.
This example is a modification of an example considered in
[24]. Optically coupled to the second mirror is a controller to
be designed via our algorithm. We compare the value of the
cost function obtained with our controller to the no control
case; i.e. when the second mirror is not connected to any other
system and thus driven by a vacuum noise. We also compare
our approach with a scheme involving heterodyne detection
and an optimal classical LQG controller. Our design objective
is to minimize the expected number of photons in the cavity:
N =

〈
a†a
〉

= 1
4

〈
x1

2 + x2
2
〉
− 0.5, where x1 and x2 are

the position and momentum operators for the cavity. It will
be shown that for all kn > 0, it is possible to achieve better
performance using a quantum controller designed using our
method than with the optimal measurement based controller.
This validates the utility of our method.

Controller

Optical Cavity

Input

Fig. 3. Quantum Plant: we wish to minimize the expected number of photons
in the cavity.

Our plant is of the form (19) with

A = − γ

2
I2×2;

Bu = −
√
κ2I2×2;

Bw1
=
√
κ1I2×2;

C =
√
κ2I2×2;

Du = I2×2;

Dw1
= 02×2;

Sw1
= (1 + 2kn)I2×2

γ = 0.2;

κ1 = 0.1;

κ2 = 0.1. (27)

It is sufficient to minimize the cost function (20) with R1 =
I2×2 and R2 = 02×2. Then N = 1

4J − 0.5.
Remark 6: We use R2 = 10−6I2×2 to design both the

heterodyne classical LQG controller and the auxiliary LQG
controller. However, the cost function (20) for the resulting
controller is then evaluated using R2 = 02×2.
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A. No Control

We first consider the case of no control as a reference. Here,
the system input is driven by vacuum noise: du = dv1. The
resulting closed loop system is:

dx = Ax dt+
[
Bw1

Bu

] [dw1

dv1

]
,

where dwCL =
[

dw1

dv1

]
is a quantum Wiener process with

covariance

SwCL
=

[
(1 + 2kn)I2×2 0

0 I2×2

]
.

Equation (22) can then be used to find the value of the cost
function (20) for a range of values for kn.

B. Heterodyne measurement and classical LQG control

Next we consider combining heterodyne measurement with
a classical optimal LQG controller. Heterodyne measurement
introduces an additional vacuum noise input. Similarly, the
output of the classical controller will contain a vacuum noise
component when applied to the input of the plant. This is
accounted for by making the following substitutions:

du = dũ+ dw3;

dỹ = dy + dw2;

into (19) to obtain an augmented plant. Here dũ and dỹ are
classical signals which represent the input and output of the
augmented plant. The resulting equations for the augmented
plant are as follows:

dx = Axdt+Bu dũ+Bw̃ dw̃;

dỹ = Cxdt+Du dũ+Dw̃ dw̃.

Here A, Bu, C, and Du are as before, and

Bw̃ =
[
−√κ1I2×2 02×2 −√κ2I2×2

]
;

Dw̃ =
[
02×2 I2×2 I2×2

]
;

dw̃ =

 dw1

dw2

dw3

 ;

Sw̃ =

(1 + 2kn)I2×2 0 0
0 I2×2 0
0 0 I2×2

 .
As with the auxiliary LQG problem in our design algorithm,

we treat dw̃ as a standard classical Wiener process with
intensity matrix Sw̃. We now have a standard classical LQG
problem. We wish to find a controller of the form:

dxK = AKxK dt+By dỹ;

dũ = CKxK dt.

The estimator gain K and the regulator gain F are obtained
in the usual manner. For this example R2 = 02×2 but for
computational reasons we assume R2 takes a small value of

R2 = 10−6 and hence {AK , By, CK} are obtained. The closed
loop system is then as follows:[

dx
dxK

]
= A

[
x
xK

]
dt+ B dw̃;

A =

[
A BuCK

ByC AK +ByDuCK

]
;

B =

[
Bw̃

ByDw̃

]
.

The value of the cost function (20) can now be calculated
using (22) with R2 = 02×2 and substituting Sw̃ for SwCL

.

C. Quantum LQG control

Finally we consider our proposed control scheme. First the
auxiliary LQG problem is formed. The auxiliary plant is given
by (23) with parameters as in (27). The cost function is given
by (25) with R1 = I2×2 and R2 = 10−6.

Then, optimizing J over ρ, we do the following:
1) Solve the auxiliary LQG problem as detailed above to

obtain {AK , By, CK}.
2) Obtain a physically realizable quantum implementation

of {AK , By, CK}. We do this by first attempting to
apply Theorem 3 to obtain BK1. If the conditions of this
theorem are not met we apply Theorem 2 to obtain BK1

and BK2.
3) Evaluate the cost function (20) using (22) with R1 =

I2×2 and R2 = 02×2.

D. Comparison of controller performance

The relative performance of the no control case, the classical
LQG case and our coherent control case are illustrated in
Figure 4 and Figure 5. In the regime where both the ther-
mal noise driving the system and the quantum noises are
significant, the coherent quantum feedback controller offers
the best performance of the schemes considered. If we leave
the quantum regime with kn � 0, the relative performance
benefits of the coherent quantum feedback controller over
the measurement based feedback controller diminish as the
thermal noise dominates the system and the quantum noises
become insignificant by comparison. In the limit as kn → 0,
where the system is driven only by vacuum noise, our pro-
posed controller offers no advantage over the no control case.
This is consistent with the idea that the cavity cannot be driven
below the vacuum state.

VII. CONCLUSION

The notion of physical realizability is fundamental to the
coherent quantum feedback control problem where we wish to
implement a given synthesized controller as a quantum system.
By introducing additional quantum noises, it is always possible
to make a given LTI system physically realizable. However,
introducing additional quantum noises is undesirable in terms
of the control system performance. In this paper, we have given
an expression for the number of introduced quantum noises
that are necessary to make a given LTI system physically
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Fig. 4. Expected photon number N for no control, heterodyne measurement
and classical LQG control, and coherent quantum LQG control.
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Fig. 5. Normalized photon number N/NNC for heterodyne measurement
and classical LQG control, and coherent quantum LQG control.

realizable. Our result also gives a method for constructing the
resulting fully quantum system.

We also considered the case where a strictly proper transfer
function is to be physically realized. We have given a result in
terms of a Riccati equation for when it is possible to physically
realize a specified transfer function by only introducing direct
feedthrough vacuum noises and no additional quantum noises.
We have also given conditions for when this Riccati equation
has a suitable solution.

Using these results we have developed an algorithm for
obtaining a suboptimal solution to a coherent quantum LQG
control problem. Our example demonstrates the utility of our
results and shows that coherent quantum feedback control can
offer performance benefits over measurement based feedback
control.
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