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ABSTRACT
Stars are strongly clustered on both large (∼pc) and small (∼binary) scales, but there are few
analytic or even semi-analytic theories for the correlation function and multiplicity of stars. In
this paper, we present such a theory, based on our recently developed semi-analytic framework
called MISFIT (Minimalistic Star Formation Including Turbulence), which models gravito-
turbulent fragmentation, including the suppression of fragmentation by protostellar radiation
feedback. We compare the results including feedback to a control model in which it is omitted.
We show that both classes of models robustly reproduce the stellar correlation function at
>0.01 pc scales, which is well approximated by a power law that follows generally from
scale-free physics (turbulence plus gravity) on large scales. On smaller scales, protostellar disc
fragmentation becomes dominant over common core fragmentation, leading to a steepening
of the correlation function. Multiplicity is more sensitive to feedback: we found that a model
with the protostellar heating reproduces the observed multiplicity fractions and mass ratio
distributions for both Solar and sub-Solar mass stars (in particular, the brown dwarf desert),
while a model without feedback fails to do so. The model with feedback also produces an
at-formation period distribution consistent with the one inferred from observations. However,
it is unable to produce short-range binaries below the length-scale of protostellar discs. We
suggest that such close binaries are produced primarily by disc fragmentation and further
decrease their separation through orbital decay.

Key words: turbulence – binaries: general – stars: formation – galaxies: star clusters: general –
galaxies: star formation – cosmology: theory.

1 IN T RO D U C T I O N

Star formation (SF) is complex problem that involves non-linear
physics (turbulence, chemistry, gravity, radiation, etc.) on a vast
dynamic range. To achieve a deeper understanding of this process,
a number of simplified theoretical models have been proposed that
try to pinpoint the physical processes responsible for individual
qualitative features. The most common test of these models is a
comparison to the initial mass function (IMF), but that is just one
aspect of SF. It has been long proposed that the stellar clustering
and multiplicity properties carry the imprints of the physical pro-
cesses of SF (Kuiper 1935), making them an ideal secondary test
for different SF models.

It is well known that star-forming regions are highly structured,
with stellar positions correlated on a wide range of scales (Lada
& Lada 2003; Bressert et al. 2010; Portegies Zwart et al. 2010;
Gouliermis et al. 2015). The stellar correlation function has been
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measured in a wide range (about 5 orders of magnitude in radius)
and is found to be rising monotonically on smaller scales in all
star clusters (Simon 1997; Nakajima et al. 1998; Hartmann 2002;
Hennekemper et al. 2008; Kraus & Hillenbrand 2008). Despite
the overwhelming observational data and statistical analysis (Bate,
Clarke & McCaughrean 1998; Cartwright & Whitworth 2004), there
has been little effort to formulate a theoretical understanding of why
SF is clustered. A number of authors have measured the cluster-
ing of the stars produced in numerical simulations (e.g. Klessen &
Burkert 2000; Hansen et al. 2012; see the review by Krumholz 2014
for further references) and found reasonable agreement with obser-
vations, but the physical origin of the result was not completely
clear. Hopkins (2013a) (henceforth referred to as H13) was the first
to provide a quantitative explanation in terms of the statistics of
turbulence. Using the excursion set formalism, H13 showed that
the correlation function of ‘last crossing objects’1 is remarkably

1 Smallest self-gravitating structures in a fully developed turbulent medium
at a fixed time. They are considered to be the analogues of protostellar cores.
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similar to that of observed cores, which itself is similar to the cor-
relation function of stars (Stanke et al. 2006). However, this model
has a significant limitation in that it is calculated at a fixed time,
so the collapse and further fragmentation of cores is not taken into
account; it cannot therefore predict the correlation function of stars,
nor their multiplicity statistics.

There is similarly an abundance of observational data about the
multiplicity properties of stars (e.g. Raghavan et al. 2010 for solar-
type stars; Burgasser et al. 2007 for brown dwarfs; see Duchêne
& Kraus 2013 for a more detailed review). It is generally under-
stood that most multiple star systems either form during the SF
phase through common core fragmentation and protostellar disc
fragmentation (Tohline 2002) or during the cluster dissolution phase
(Kouwenhoven et al. 2010; Parker & Meyer 2014). Most theoretical
work is focused on modelling these processes in detailed numerical
studies. Hydrodynamical simulations (e.g. Bate 2009, 2012; Offner
et al. 2010; Krumholz, Klein & McKee 2012) have shown good
agreement with observed multiplicity statistics and found that radi-
ation feedback is essential. However, these simulations necessarily
have limited dynamical range and statistics, of key importance for
high-mass stars and long-range binaries, and pinpointing the key
physics in them is quite challenging.

There has also been significant effort to infer at-formation
multiplicity properties from observations. Both observations
(Duchêne 1999; Kraus et al. 2008, 2011) and simulations have
shown that stars are born in complex, multiple systems that are
broken up by dynamical effects (e.g. ejection of stars) causing
multiplicity to drop (Goodwin et al. 2007; Kaczmarek, Olczak
& Pfalzner 2011) and the period distribution (commonly referred
to as the binary distribution function) to shift to shorter periods
(Kroupa 1995; Marks, Kroupa & Oh 2011). This can be understood
as the result of long-range binaries being preferentially broken up
by ejection events, which also increase the binding between leftover
stars (‘hardening’). This means that to reproduce the present-day
multiplicity and binary distribution functions, the at-formation mul-
tiplicity should be of order unity for massive stars, and their period
distribution should be flat. These findings, however, have recently
been called into question. Parker (2014) showed that the densities
of star-forming regions are constant or increasing with time, while
Parker & Meyer (2014) found that an initial distribution of stars
with unit multiplicity and an excess of wide binaries will not evolve
through N-body processes into a distribution consistent with that
observed in field stars.

The aim of this paper is to expand upon the work of H13 by in-
vestigating the features imprinted by isothermal fragmentation and
protostellar heating through common core fragmentation in the stel-
lar correlation and multiplicities. This is accomplished by utilizing
the MISFIT (Minimalistic Star Formation Including Turbulence)
semi-analytical framework described by Guszejnov et al. (2016,
hereafter referred to as GKH16), which combines the fragmenta-
tion formalism of Guszejnov & Hopkins (2016, henceforth referred
to as GH16) and the protostellar heating model of Krumholz (2011,
henceforth referred to as K11) to follow the evolution and collapse
of a statistical ensemble of giant molecular clouds (GMCs) down
to the protostellar size scale.

The remainder of this paper is organized as follows. First, in
Section 2, we briefly outline the MISFIT framework that we use. In
Section 3.1, we show that the stellar correlation function is insen-
sitive to both initial conditions and underlying physics and that the
predicted 2D correlation function agrees well with observations. In
Section 3.2, we show that for low-mass stars, turbulent fragmen-
tation mediated by radiation feedback can roughly reproduce the

observed multiplicities and mass ratio distribution, and provides
qualitative agreement with the expected binary distribution func-
tion. However, we also show that protostellar disc fragmentation is
necessary to explain the short period tail of the distribution. Finally,
in Section 4, we summarize our findings and conclude.

2 MO D E L A N D M E T H O D O L O G Y

2.1 Semi-analytic framework

In this study, we use an improved version of the MISFIT
semi-analytical framework introduced in GH16 and GKH16 (see
Appendix A for a detailed description of all changes from the pre-
viously published version) that allows us to simulate the evolution
and fragmentation of GMC-sized clouds at a modest computational
cost (compared to full radiation-hydro simulations). This not only
allows the rapid exploration of different initial conditions and un-
derlying physics but also enables a statistical analysis as we are able
to simulate an ensemble of clouds.

This, of course, comes at the cost of some simple approximations.
The main assumption of MISFIT is that density fluctuations in col-
lapsing GMCs are created by turbulence and thus obey ‘random
walk’ statistics (see e.g. Hopkins 2013c). As the cloud collapses,
it pumps energy into turbulence (so that virial equilibrium is main-
tained) as motivated by Robertson & Goldreich (2012) and Murray
et al. (2017). Unlike most analytical models, MISFIT preserves
spatial and temporal information and can be easily expanded with
additional physics (e.g. equation of state, angular momentum etc.).
We show in Appendix B that despite these strong assumptions, our
results are roughly in agreement with the detailed radiation hydro-
dynamical simulation of Bate (2012).

The simulation starts from a GMC with fully developed tur-
bulence and follows its collapse. The density field of the cloud is
resolved on a grid with N3 points and is evolved in Fourier space fol-
lowing a Fokker–Planck equation (see Hopkins 2013b and GH16).
For the bulk of this paper, we use N = 32, and in Appendix C, we
show that this is sufficient to achieve convergence. Every time a
new self-gravitating substructure appears (i.e. the cloud fragments),
the code is run recursively for each substructure. When the cloud
size reaches the pre-defined relative size scale Rmin/R0 (the relative
termination scale), the simulation stops. This termination scale rep-
resents the length-scale where the initial assumptions break down
and the self-similar fragmentation cascade is terminated.

The primary effect that breaks self-similarity and imposes a scale
in our calculations is angular momentum, which leads to the for-
mation of a disc once the object has contracted a certain amount.
Disc formation is the natural termination scale. In our model, the
source of angular momentum is random turbulent motion, which
in the supersonic limit means that the distribution of the rotational
kinetic energy fraction β = Erot/Epot is strongly peaked around a
few per cent (Burkert & Bodenheimer 2000), consistent with the
observed distribution of protostellar core rotation rates (Goodman
et al. 1993). If one translates this into an angular momentum and
assumes that the specific angular momentum of fluid elements is
conserved during collapse, the characteristic radius of disc forma-
tion is Rmin ≈ βR0. In this paper, we adopt Rmin/R0 = 0.01 as our
fiducial value for most calculations, and we explore the sensitivity
of the results to our choice in Appendix C.

The initial conditions of the parent clouds are defined by their
mass MGMC, the sonic length Rsonic (the scale at which the turbulent
velocity dispersion is equal to the sound speed), the sonic mass
Msonic (the minimum self-gravitating mass at the sonic scale) and
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the termination scale Rmin. All other parameters (e.g. temperature,
Mach number) can be derived from these. Moreover, the total mass
only affects our results by changing the outer scale of the turbulent
cascade, a result we demonstrate in Appendix C, so we shall not
discuss it further here. For details about initial conditions and the
detailed algorithm, see GH16 in which a detailed step-by-step guide
to the model is provided in Appendix A.

The final output of the simulation is a list of protostars and
their initial properties (e.g. mass, velocity, position). As we are not
accounting for later dynamical processes, our results only apply at
the time of formation. The leftover unbound material is assumed to
escape.

2.2 Implementation of stellar feedback

In this paper, we investigate the clustering properties of two classes
of models: the case of pure isothermal fragmentation and a model
with feedback from protostellar heating based on K11. Isothermal
turbulence is scale-free (McKee, Li & Klein 2010; Krumholz 2014),
so we expect no absolute scales in any results (although scales from
initial conditions may appear), while the heated model imprints
a mass scale that is insensitive to initial conditions (hence there
is a peak in the IMF, as shown in GKH16. For comparison, we
also include some runs where in addition to protostellar heating
the gas has a ‘stiffening’ equation of state (EOS). This means that
the gas reacts to compression as a sub-isothermal medium at very
large scales, isothermally at intermediate scales and transitions to
an adiabatic behaviour after reaching a threshold volume density
where it becomes opaque to its own cooling radiation. We model
this effect using a physically motivated EOS based on Masunaga &
Inutsuka (2000) and Glover & Mac Low (2007). In this case, the
effective polytropic index is depends on the local volume density
as

γphys(ρ) =
⎧⎨
⎩

0.8 ρ < ρcrit,1

1.0 ρcrit,1 < ρ < ρcrit,2

1.4 ρ > ρcrit,2

, (1)

where we set ρcrit, 1 = 5000 M�pc3 and ρcrit, 2 = 5 × 108 M�pc3

corresponding to nH2,crit,1 ≈ 105 cm−3 and nH2,crit,2 ≈ 1010 cm−3.
See GKH16 for more details.

Our treatment of protostellar radiative feedback is a fairly
crude approach motivated by K11, and supported numerically by
Krumholz et al. (2016). We assume that the centre of self-gravitating
clouds collapses first, forming a protostellar seed, then the rest of the
cloud accretes on to it. The energy of the matter accreted by this seed
is radiated within the optically thick core. The temperature of the
material depends on the accretion rate on to the protostar (and thus
the mass and dynamical time of the gas around it), and on the energy
yield per unit mass from accretion, which we denote �. The value
of � is set by the protostellar mass–radius relation, and K11 shows
that it is determined primarily by the effects of deuterium burning,
which regulates the central temperatures of protostars. Because deu-
terium burning begins when protostars are only a few × 10−2 M�,
and, for low-mass protostars continues for ∼10 Myr, it is the dom-
inant factor in setting � during the bulk of a molecular cloud’s
star-forming history. Comparing with detailed protostellar evolu-
tion calculations, K11 finds that � ≈ 2.5 × 1014 erg g−1 to better
than half a dex accuracy for all protostellar masses in the range 0.05–
1 M�, and to better than a dex accuracy from 0.01 to 0.05 M�. We
therefore adopt this value of � throughout the remainder of this
paper. If we assume a spherically symmetric system then, following

K11, the gas at R distance from an accreting protostar is heated up
to a temperature of

T 4
heat ≈ �

√
G

4πσSB
M3/2R−7/2, (2)

where M is the mass enclosed in radius R, while G, σ SB are the
gravitational and Stefan–Boltzmann constant, respectively. Crudely,
this scaling reflects energy conservation as L = 4πR2σSBT 4

heat for
the opaque cloud (see K11 for more details). Combined, internal
heating and the physical processes captured by the EOS of the model
set the temperature as

T 4 = T 4
EOS + T 4

heat. (3)

Note that in the feedback only case, we use an isothermal EOS that
means that TEOS = T0 where T0 is the initial temperature of the
cloud.

It is important to note that protostellar feedback is not scale-
free. By using equation (2) and assuming virial equilibrium, we can
find the length-scale λheat around a protostar below which heating
becomes important (Theat ≥ T0):

λheat =
(

�
√

G

4πσSB

)1/2 (
kB

GμmH

)3/4

T
−5/4

0 ≈0.02 pc

(
T0

10 K

)5/4

,

(4)

where μ is the mean molecular weight measured in units of mH and
kB is the Boltzmann constant. For our numerical calculations, we
adopt μ = 2.3, appropriate for fully molecular H2 with 1 He per
10 H nuclei. We can similarly find the characteristic mass scale

Mheat ≈ 0.5 M�
(

T0

10 K

)−1/4

(5)

that sets the peak of the IMF (see K11 for a more detailed calculation
that leads to Mheat ∝ T

−1/18
0 ).

To easily identify the results for different models and parameters,
we use the labels shown in Table 1. The STD label refers to initial
conditions similar to Milky Way GMCs, while ULIRG runs have
the very high temperature and strong turbulence characteristic to the
clouds of ultra luminous infrared galaxies (ULIRGs). There are also
a number of runs where the physical parameters are not varied but
the numerical ones are, so that we can identify numerical artefacts
in our results.

2.3 Clustering and multiplicity statistics

For each simulation, we have as output a list of stellar masses
and positions. From these, we compute several statistical quantities
describing the stellar distribution. Our first quantity of interest is
the correlation function. In this paper, we adopt the usual definition
of the 3D correlation function ξ (r),

P (r, dr) = 〈N (r, dr)〉
〈n〉 dV

1 + ξ (r) = lim
dr→0

P (r, dr), (6)

where N(r, dr) is the number of objects whose distance is ∈ [r,
r + dr], n is the density of objects, dV = 4πr2dr and 〈...〉 denotes
ensemble averaging.

We can similarly define the 2D correlation function ξ 2D(r), which
is identical to ξ except that one computes the distance only in
two of the three orthogonal directions. Unlike ξ , the stellar ξ 2D(r)
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Table 1. Initial conditions of the different models presented in this paper. The actual input parameters of our models are the GMC mass MGMC, sonic mass
Msonic and length Rsonic, from which more physical parameters like initial temperature (T0), radius (R) and Mach number (M0) at the cloud scale (R = RGMC)
can be derived. The resolution of each ‘refinement level’ of our semi-analytic calculation is set by N3: but each structure is continuously followed and
sub-refined. This cascade is terminated when a cloud reaches Rmin/R0 relative size, the cascade ‘termination scale’, without fragmentation. All calculations
were performed for a statistical ensemble (20–200) of GMCs.

Label Input parameters Derived parameters Thermodynamics

MGMC (M�) Rmin/R0 N Msonic (M�) Rsonic (pc) T0 (K) R0 (pc) M0

Isohermal – MW 104 10−2 32 1.6 0.1 10 11.1 10.5 Isothermal
Isothermal_SmallR 104 10−3 32 1.6 0.1 10 11.1 10.5 Isothermal
Isohermal – ULIRG 104 10−2 32 0.31 0.0026 75 0.66 13.1 Isothermal
Heating – MW 104 10−2 32 1.6 0.1 10 11.1 10.5 Protostellar heating
Heating – ULIRG 104 10−2 32 0.31 0.0026 75 0.66 13.1 Protostellar heating
Heating_N16 104 10−2 16 1.6 0.1 10 11.1 10.5 Protostellar heating
Heating_N64 104 10−2 64 1.6 0.1 10 11.1 10.5 Protostellar heating
Heating_M1E3 103 10−2 32 1.6 0.1 10 3.5 5.2 Protostellar heating
Heating_M1E5 105 10−2 32 1.6 0.1 10 35.4 16 Protostellar heating
Heating_SmallRmin 104 10−3 32 1.6 0.1 10 11.1 10.5 Protostellar heating
Heating_LargeRmin 104 10−1 32 1.6 0.1 10 11.1 10.5 Protostellar heating
Heating+EOS – MW 104 10−2 32 1.6 0.1 10 11.1 10.5 Heating+EOS
Heating+EOS – ULIRG 104 10−2 32 0.31 0.0026 75 0.66 13.1 Heating+EOS

is measurable and it is easy to show that ξ 2D(r) ∝�∗(r), where
�∗(r) is the mean surface density of stars measured in an annu-
lus at r distance from other stars. For the purpose of generating
quantities that can be readily compared to observations, we must
also account for sensitivity limits, which make it difficult to de-
tect low-mass objects. Since studies of stellar correlation have been
performed with a wide range of sensitivities, we simply choose a
roughly representative limiting mass Mmin = 0.5 M�, and compute
our correlation function using only stars more massive than this
limit.

Our second characteristic of interest is the multiplicity properties
of the stars – both the multiplicity fractions and the distribution
of periods and mass ratios. Since our calculations involve no dy-
namical evolution after the protostars are formed, deriving these
statistics is not trivial, as the newly formed stars form a fractal-like
structure where each star is bound to a number of other stars. Such
a configuration is expected for young star clusters based on simu-
lations, and is completely consistent with the observed distribution
of newly formed stars (e.g. Bate 2009; Kruijssen 2009; Krumholz
et al. 2012). However, it makes identification of distinct, bound
systems difficult, and leads to structures that are very unlikely to
survive for even a single cluster crossing time (e.g. non-hierarchical
quadruple systems orbiting each other). Thus, it is important that we
try to correct for this behaviour. In this paper, we use the hierarchi-
cal algorithm introduced by Bate (2009), which has the following
steps.

(i) Calculate the binding energy between all pairs of stars.
(ii) Find the most bound pair and replace it with a single point

mass with the same total mass and momentum, located at the centre
of mass of the removed pair.

(iii) Recursively repeat steps 1 and 2 until no more bound stars
are left, with the exception that we do not combine pairs of objects
if the resulting bound aggregate would consist of more than four
individual stars. If such an aggregate is the most bound pair at any
point, proceed to the next most bound pair, terminating if no other
bound pair exists. Also, in order to get stable, hierarchical multiples,
we require that the period of a newly assigned star is at least 10 times
higher than that of the original aggregate.

This algorithm provides a list of single, binary, triple and quadru-
ple star systems with which we can calculate the multiplicity fraction
f, defined as

f (M) = B + T + Q

S + B + T + Q
, (7)

where S, B, T, Q are the number of single, binary, triple, quadruple
systems within which the most massive star (primary star) has
mass M. This definition has the advantage that it can be observed
fairly robustly (Hubber & Whitworth 2005; Bate 2009), as this
does not differentiate between the classes of multiple star systems,
so f does not change if a new companion star is discovered in a
binary system. Note that to account for the decreased sensitivity of
observations to very low mass (VLM) stars, we neglect companions
below 0.01 M�.

3 R ESULTS

3.1 The stellar correlation function

Fig. 1 shows the predicted stellar correlation function for a selection
of our models, computed using an ensemble average of the ∼20–
200 GMCs we have run for each case. The shape is close to a power
law, ξ (r) ∝ r−γ with γ � 2, with a cutoff at the size scale of the
parent GMC. These properties are remarkably robust to changes in
initial conditions and even to changes in the underlying small-scale
physics.

Qualitatively, the isothermal pure-power-law behaviour can be
understood with a simple toy model: small objects form after sig-
nificant contraction and a number of fragmentation events for which
the physics is self-similar in the isothermal case. So imagine that a
cloud contracts by a factor of ε, then fragments into two equal-mass
fragments. Then each of these two fragments contracts and pro-
duces two more fragments, and so on. This prescription is similar
to a well-studied fractal, the Cantor Set (Cantor Dust more specif-
ically). For this, the correlation function is a power law with slope
f(ε) ∼ 2 for ε ∼ 1/2 (see Appendix D).

Fig. 2 compares our predictions to the observed surface density
of stars (proportional to the 2D correlation function). In examining
this plot, note that the absolute values of the stellar surface densities
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Figure 1. Stellar correlation function for SF models with isothermal physics
(Isothermal), protostellar heating (Heating) and protostellar heating with an
artificial EOS (Heating+EOS) for two sets of initial conditions: the MW-like
MW and the more extreme ULIRG. It is apparent that the initial conditions
and underlying physics have limited effect on the qualitative behaviour that
is close to a power law (the sub-isothermal regime of the EOS models
cause a slight difference in the slope). The different large-scale cutoffs are
introduced by the different initial cloud sizes, and the different normalization
simply results from the different linewidth-size relation between the Milky
Way and ULIRG cases.

Figure 2. Observed surface density of neighbouring stars (�∗, which is
proportional to the projected correlation function ξ2D) for Chamaeleon,
Ophiucus, ρ Oph, Taurus, Trapezium, Upper Sco, Lupus and Vela (using
data from Simon 1997; Nakajima et al. 1998; Hartmann 2002; Hennekemper
et al. 2008; Kraus & Hillenbrand 2008) compared to predicted �∗ functions
for our models including protostellar heating (solid lines, Heating_M1E3,
Heating-MW, Heating_M1E5). The absolute values of the observation de-
pend on a number of external factors so they are normalized to roughly
match simulations in the 0.1–1 pc range.

are not meaningful, since these are just dictated by our choice of
sonic length, and thus can be tuned freely by considering slightly
different physical scalings, exactly as one might expect when con-
sidering a range of star-forming regions of widely varying density,
mass and velocity dispersion. Instead, the meaningful comparison is

the shapes of the functions. In this regard, we see that the simulated
correlation functions have a slope quite similar to the observations
at scales larger than ∼10−2 pc. Below this scale, our models cannot
reproduce the significant steepening of the correlation function. We
show below that this directly manifests in the distribution of short
period binaries where the simulation fall short of observations at
the same scale. This is the length-scale of the largest protostellar
discs, which suggests that disc physics (which are neglected in these
models) is responsible for the steepening. However, we must stress
that dynamical relaxation does affect the observed, finite age sys-
tems and is probably responsible for outlier systems like Trapezium
and Upper Sco. Both of these systems are dynamically older, in the
sense that they have existed for more crossing times, than the other
systems shown, which supports this conjecture. One should be care-
ful not to draw the false conclusion that this model fully explains the
observed stellar spatial distribution simply because it reproduces the
correlation function. It has been shown that very different geome-
tries (e.g. fractal versus spherical) can lead to similar correlation
function slopes (Gouliermis, Hony & Klessen 2014). Nevertheless,
we can say that this model is at least consistent with the observed
stellar correlation function in the large scale, fractal-like regime.

3.2 Multiplicity

After grouping stars into bound systems following the procedure
described in Section 2.3, we assign each star one of the following
labels.

(i) Single: the star is not bound to any other stars.
(ii) Multiple: the star is the most massive (primary) star of a

multiple star system.
(iii) Non-primary: the star is part of a multiple star system, but it

is not the primary star.

Not all of the companion stars that emerge from our analysis
would be detectable by current techniques. In particular, brown
dwarf companions to main-sequence stars are quite hard to detect.
Therefore, we must correct for completeness before comparing to
observations. As a guide to the current observational capabilities,
we follow the summary given in table 8 of De Rosa et al. (2014).
Based on this summary, we apply the following cuts to our data.

(i) For primaries with mass M > 0.08 M�, we discard any com-
panions with masses below 0.08 M�.

(ii) For primaries with mass M < 0.08 M�, we discard compan-
ions for which the secondary to primary mass ratio is <0.2.

While these cuts are only an approximate representation to the
diversity of observational survey selection functions in the literature,
they provide a reasonable approximation to the capabilities of the
current state of the art.

Fig. 3 shows the fraction of stars in each of the three classes as a
function of stellar mass before and after applying the observational
bias. Since the isothermal model has no inherent physical scale, in
an ideal case we would not expect any mass dependence. However,
the finite initial mass MGMC and the cutoff imposed by observational
selection affect the results. The former leads to finite size effects at
larger masses. Specifically, since there is a finite total mass, there
must be a single most massive star, and for obvious reasons it cannot
be non-primary. Similarly, other stars that are near the most massive
are also biased against being non-primary. This effect is responsible
for the decline in the non-primary curve at high masses. At the other
end of the mass spectrum, the fact that brown dwarf companions to
hydrogen-burning primaries are difficult to detect explains the sharp
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Figure 3. Fraction of stars in bound systems as a function of mass in our models of isothermal fragmentation (left; Isothermal – MW) and including protostellar
heating (right; Heating – MW). We assign each star one of the single, multiple and non-primary labels. The dashed lines show the true distribution predicted
by the model, while the solid lines show the results that would be observed given the completeness limits of current surveys. The brackets show the results
of Moe & Di Stefano (2016) based on their analysis of the Raghavan et al. (2010) observations. The sudden change around 0.1 M� is due to the different
observational bias for VLM stars; see the main text for details.

decline in the non-primary fraction and sharp rise in the multiple
fraction for the lowest mass bin. The sharp change in behaviour
above and below 0.1 M� has a simple explanation: for hydrogen-
burning stars, multiplicity surveys are primarily conducted in the
field, while for brown dwarfs, they are mainly conducted in young
clusters. Since brown dwarfs are easier to detect in young clus-
ters than in the field, surveys of brown dwarf primaries are much
more complete in finding brown dwarf companions than surveys of
hydrogen-burning primaries.

The case including stellar radiation feedback looks qualitatively
similar to the isothermal one. In both cases, we recover the simple
rule that more massive stars tend to be the primary stars of systems
while smaller stars tend to be their companions. However, most of
the stars in the isothermal model were born in systems of multiple
stars, while there are a significant number of single stars in the
radiative heating case. The transition from where it becomes more
common for stars to be the primaries of multiple systems than to
be single is ∼1 M� that is a result of the peak in the stellar mass
function imposed by heating, which suppresses the formation of
stars below the IMF peak at ∼0.3 M�. Smaller stars are unlikely to
be primaries mainly because there are increasingly few lower mass
stars available to be their companions.

We can also compare the results of our models to observations.
In Fig. 3, we plot in the right-hand panel the results of Moe & Di
Stefano (2016), based on analysis of the observations of Raghavan
et al. (2010). Compared to these observations, our model slightly
overpredicts the multiplicity of solar-type stars and underpredicts
the fraction that are single.

We compare the stellar multiplicity as a function of primary mass
with observations in Fig. 4. We find that the observed results for
the heated and isothermal cases are similar, and both qualitatively
reproduce the observational result that the multiplicity fraction is
near unity for primaries substantially above 1 M�, dropping to tens
of percent for ∼0.3 M� or smaller primaries. However, the appar-
ent similarity between the observed distributions for the isothermal
and heated cases is primarily an illusion due to observational com-

Figure 4. The multiplicity of stars of different masses in the isothermal
case (Isothermal – MW) and the model with protostellar heating (Heating
– MW) compared to the observed multiplicity fractions (black circles with
error bars) from the review of Duchêne & Kraus (2013). The dashed lines
show the results without the observational bias. Both models overpredict the
multiplicity fraction as dynamical processes are neglected in our simulations,
but the effect is far more severe for the isothermal model, particularly at low
masses. Note that the sudden change around 0.1 M� is due to the different
observational bias for VLM stars.

pleteness effects. In the isothermal case, essentially every ∼1 M�
primary has an undetected brown dwarf companion, and thus the
true multiplicity fraction for primaries of this mass is close to unity.
It is only our inability to detect these brown dwarfs that makes the
predicted distribution in the isothermal case at all compatible with
the observations.
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Figure 5. The relative frequency of most massive companions of solar-type stars (left) and VLM stars (right). Red and blue points and dashed lines show
the results of our simulations with and without applying the observational bias, as indicated in the legend, while hatched histograms show the observations
of Raghavan et al. (2010) for solar-type stars and Burgasser et al. (2007) for VLM stars. While both the isothermal and radiative models are consistent
with observations after applying completeness limits, the isothermal simulations predict the existence of a very large number of currently unseen low-mass
companions that would be detectable in deeper observations. Also, none of our results reproduce the peak at unit relative mass that could be the result of either
preferential dynamical hardening/ejection or missing physics in the model (e.g. disc physics).

It is also worth investigating how these results would be affected
by protostellar disc fragmentation. To do so, we construct a toy
model for protostellar disc fragmentation that can be used to post-
process our simulation results, based on the works of Kratter et al.
(2010) and Offner et al. (2010). They define the thermal parameter
of the disc as ξ = ṀinG/c3

s,d, where Ṁin is the infall accretion rate
on to the disc and cs, d is the sound speed of the disc. Both find that
ξ is the main parameter in determining whether a protostellar disc
fragments or not. Physically, ξ is just the ratio of the accretion rate
Ṁin into the disc to the maximum rate at which a gravitationally
stable disc with dimensionless viscosity α � 1 can deliver mass to
the central star, which is ∼c3

s,d/G.
Using our protostellar heating prescription, we can express c2

s,d ∝
Td ≈ Theat (Rd/Rcore)−1/2 where we have used that T4 ∝ R−2 in an
opaque medium. As noted above, the outer edge of the disc should
be found at a radius Rd ≈ βRcore, where β is the rotational kinetic
energy divided by the binding energy. Using equation (2) to evaluate
Td at this radius Rd yields

ξ ∼
(

G7/8μmH(4πσSB)1/4

�1/4kb

)3/2

β3/4R−3/16
core M15/16, (8)

where we used c2
s = kBT /μmH with μmH as the molecular weight

of the gas. ξ has a weak dependence on the radius, so we can safely
use the R ∼ 10−4 pc protostellar disc size scale. This leads to ξ ≈
0.65(M/M�)15/16. Based on fig. 2 of Kratter et al. (2010) fragmen-
tation is very likely if ξ > 1, which corresponds to collapsing final
fragment masses >1.5 M� in our model. Thus, in this crude ap-
proximation, the only effect protostellar disc fragmentation would
have on our multiplicity fraction in Fig. 4 is that it would reach
unity at a somewhat lower stellar mass. Our conclusion that low-
mass discs are for the most part too warm to fragment, but that disc
fragmentation should be common for somewhat super-Solar and
larger stars, is consistent with the numerical results of Offner et al.
(2010).

3.3 Demographics of the binary population

3.3.1 Mass ratios and the brown dwarf desert

One of the key observed properties of binaries is the apparent flat
mass distribution of companion masses with a cutoff at VLMs (the
so-called brown dwarf desert). In Fig. 5, we test to what extent
our models can reproduce this observation by comparing the mass
distribution of the most massive companions in our simulations
with observations of this quantity for solar-type and VLM stars
(M ∼ 0.1 M�). Although in principle, we could compute other
mass ratios (e.g. the mass ratios of all pairs of stars in multiple
systems, cf. Raghavan et al. 2010), we focus on the most massive
companions because these are the most robustly determined from
observations. It is extremely challenging observationally to identify
secondary and tertiary companions of a star in a triple or quadruple
system. As a result, observations are most likely to discover the
most massive companion rather than all companions, making the
primary to secondary mass ratio the most well determined. This
also has the advantage that the most massive companion is the least
likely to be ejected by dynamical processes. For our heated models,
however, in practice it makes relatively little difference whether we
include all companions or just the most massive one.

Examining Fig. 5, it is clear that the isothermal and heated models
are both roughly consistent with observations after the observational
bias is applied. The primary exception is that both models some-
what underpredict the frequency of near-equal mass companions;
such companions can plausibly be attributed to disc fragmentation,
which tends to produce mass ratios close to unity (Bate 2000). It is
important to note that without the observational bias the isothermal
model predicts an overwhelming number of VLM ratio compan-
ions. Meanwhile the results for solar-type stars in the heated case
are only slightly affected by observational bias, which means that
the brown dwarf desert is not an observational bias.

To gain further insight into why our heated models are able to
reproduce the brown dwarf desert, while our isothermal models fail,
let us compare these companion mass distributions with the null

MNRAS 468, 4093–4106 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/468/4/4093/3089746/Protostellar-feedback-in-turbulent-fragmentation
by Music Library, School of Music, National Institute of the Arts, Australian National University user
on 09 October 2017



4100 D. Guszejnov, P. F. Hopkins and M. R. Krumholz

Figure 6. The two panels show the PDF of mass ratios between the two most massive stars in a given system, for primary masses Mprimary = 0.1 M� (solid
blue) and Mprimary = 1 M� (solid red). We show these quantities both for the isothermal case and the model with protostellar heating, as indicated. For
comparison, the dotted lines show the distributions that would result from the null hypothesis that companions are randomly drawn from the IMF. Note that
the underlying simulation results shown here are identical to those shown in Fig. 5, but they have been binned differently here for clarity.

hypothesis that that companion masses are randomly drawn from
the IMF2. Fig. 6 compares our measured companion mass ratio
distribution with that we would expect under the null hypothesis,
again considering only the most massive pair in a given star system.3

The figure shows that in no case are the results consistent with
random sampling of companions from the IMF. In the isothermal
case, the companion distribution for both Solar and VLM primaries
follows the IMF for VLM companions, but that there is a significant
excess of companions at mass ratios ∼0.5–1. In the heated case, the
situation is qualitatively similar, in that mass ratios near unity are
overrepresented compared to the null hypothesis.

Now let us consider the implications of this finding for the brown
dwarf desert. The companion mass ratio distribution is a product
of two factors: the underlying IMF of all stars, and any biases
imposed by the fact that the stars whose mass distribution we are
computing are non-primaries. With or without heating, we find that
mass ratios near unity are favoured compared to a null hypothesis
of random IMF sampling. That is, if we collect two samples of stars

2 Binaries forming from randomly sampling the IMF has been ruled out
(Reggiani & Meyer 2011), making it an important test for theoretical models.
3 Computing the null hypothesis distribution requires some care, because
for systems with >2 stars, even if all companions are drawn randomly from
the IMF, the mass distribution for the most massive companion does not
follow the IMF. Specifically, suppose we have an IMF dN/dM = p(M), so
that the cumulative distribution function (CDF) of masses (i.e. the proba-
bility that a randomly chosen star has mass <M) is P (M) = ∫ M

0 p(M) dM .
Now consider a system where the primary has mass Mp. Since we re-
quire companion masses to be smaller than Mp, they follow the conditional

CDF P (M | Mp) ∝ ∫ min(M,Mp)
0 p(M) dM , which for M < Mp has the same

shape as the CDF for single stars. However, now consider a system con-
sisting of n stars. The most massive companion has a mass <M only if
all n − 1 companions have mass <M, and if the companion masses are
independent the probability of this is P(M|Mp)n − 1. This does not have the
same shape as the single star CDF. For the purposes of Fig. 6, we account
for this effect by generating our null hypothesis lines as a weighted sum
P1(M|Mp) = ∑

n > 1wn(Mp)P(M|Mp)n − 1, where both the single star CDFs
P(M|Mp) and the relative frequencies wn(Mp) of multiplicity n are measured
directly from the simulations for each primary mass Mp.

with the same upper mass limit, and for one sample, we randomly
select only non-primary stars and for the other we randomly select
stars without regard to multiplicity characteristics, the non-primary
sample will typically be more massive. For solar-type primaries,
the combination of a bias towards higher mass companions and the
overall negative slope of the IMF near 1 M� (so that lower mass
stars are more probable overall) yields a relatively flat mass ratio
distribution – the IMF shape and the bias nearly cancel.

Now let us consider VLM stars. For VLM primaries, the bias
towards equal-mass companions is qualitatively similar to that for
solar-type stars. For our isothermal case, and unlike in reality, the
IMF slope near 0.1 M� is also about the same as that near 1 M�,
due to the overall scale-free nature of isothermal fragmentation.
Because both the IMF slope and the bias are about the same for
Solar and VLM stars, the distribution of companion mass ratios is
also qualitatively similar. For our heated case, as in reality, we have a
very different situation. The slope of the IMF is negative near 1 M�,
but positive (or at least close to flat) near 0.1 M�. As a result, for
VLM primaries both the bias towards massive companions and the
IMF itself favour more massive objects as companions. The result is
a companion mass ratio distribution that is sharply biased towards
stellar companions and away from brown dwarfs, producing the
observed brown dwarf desert. We therefore find that the brown
dwarf desert is a result of the change in the IMF slope between
∼0.1 and ∼1 M�, which in turn is imposed by thermal feedback
causing a deviation from scale-free behaviour during gas collapse
and fragmentation.

3.3.2 Binary separations

In addition to the mass ratio distribution, our spatially resolved
model allows us to examine the predicted semimajor axis distribu-
tion of binaries. We do so in Fig. 7 for solar-type stars. The distri-
bution appears peaked that comes from the peak of the companion
mass ratio distribution (Fig. 6) with the corresponding length-scale
of ∼GMp

c2
s

≈ 0.05 pc.
Comparing with the observations from Marks et al. (2011),

we can see that on large scales our model of common core
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Figure 7. Semimajor axis distribution for binaries with fixed primary mass
(∼1 M�) in the case of the isothermal model (dashed) and the case with pro-
tostellar heating (solid). The figure also includes the observed present-day
distribution from Moe & Di Stefano (2016) for solar-type stars. The observed
period distribution of solar-type stars could plausibly be explained by com-
mon core fragmentation at large scales, but there a serious discrepancy for
short-range binaries, further implying that protostellar disc fragmentation
or dynamical effects play a crucial role.

fragmentation seems to very roughly reproduce the present-day
observations. Although our results only give the ‘at-formation’ pe-
riod distribution, the comparison is still meaningful because, as
explained in Section 2, we have attempted to limit the systems we
count in our model to hierarchical systems that should be dynam-
ically stable. In any case, it is clear that, similar to the case of the
2D correlation function (Fig. 2), turbulent fragmentation is unable
to reproduce the observations on small scales. Another source for
such binaries is required at ≤100 au, for which protostellar disc
fragmentation is a good candidate.4 Note that decreasing Rmin/R0

would technically improve the fit (see Appendix C), but this would
require unphysically low values.

4 C O N C L U S I O N S

The aim of this paper is to investigate the origin of the stellar
correlation function and multiplicity statistics, and in particular to
understand which features of these distributions result from pure
scale-free isothermal fragmentation, and which bear the imprints of
scale-dependent stellar feedback. Using the MISFIT semi-analytical
turbulent fragmentation framework of GH16 and GKH16, we find
that the shape of the correlation function is almost entirely set by
isothermal turbulence. Stellar feedback, which operates primarily
on small scales, has little effect. On smaller scales (≤100 au) both
a purely isothermal model and one including stellar radiation feed-
back underpredict the stellar correlation, suggesting that our turbu-

4 It should be noted that disc fragmentation simulations also fail to produce
extremely close binaries (≤10 au). These are likely to have either formed
from a wider binary whose separation decreased due to orbital decay (e.g.
Stahler 2010; Korntreff, Kaczmarek & Pfalzner 2012), or from exchange
interactions in star clusters.

lent fragmentation models lack certain small scale physics (likely
protostellar disc fragmentation). As with the correlation function,
we find that our models provide a reasonable match to the ob-
served the binary period distribution at large separations regardless
of whether we include protostellar heating or not, but that we fail
to produce enough very close binaries. We again conjecture that
these close binaries are a result of disc fragmentation and N-body
interaction, which our model does not include.

The situation for the mass ratios and multiplicity fraction of
binaries is quite different. Isothermal fragmentation produces far
too many multiple stars compared to what is observed, with even
∼1 M� stars predicted to have multiplicities near unity. Adding
protostellar heating substantially improves the situation, though the
multiplicity fraction is still somewhat too high, likely because our
models do not include dynamical evolution that will disrupt unstable
systems. These differences, however, are almost completely washed
out by the observational biases.

Most interestingly, if we neglect the observational bias we find
that while turbulent fragmentation with or without protostellar heat-
ing can adequately reproduce the observed companion mass dis-
tribution for solar-type stars (except for VLM companions), but
only when protostellar heating is included can we reproduce the
mass distribution of companions for low-mass primaries. In partic-
ular, only our models including radiative feedback reproduce the
‘brown dwarf desert’, whereby the companions to low mass stars
(∼0.1 M�) are overwhelmingly stellar objects (i.e. close to a mass
ratio of unity) rather than brown dwarfs. Models that include only
scale-free physics predict a companion mass ratio distribution for
low mass stars that is qualitatively similar to that for solar-type
stars, a direct consequence of the scale-free nature of these models.
In contrast, protostellar heating suppresses the number of brown
dwarfs relative to stars, so that the companion mass ratio distribu-
tion is very different for solar-type stars that lie above the IMF peak
and low-mass stars that lie at or below it. We therefore conclude
that the brown dwarf desert is a consequence of the physical mass
scale imprinted by protostellar heating into the otherwise scale free
SF process.
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A P P E N D I X A : IM P ROV E M E N T S TO P R E V I O U S
M O D E L

Two papers (Guszejnov & Hopkins 2016; Guszejnov et al. 2016)
have been published so far using the MISFIT semi-analytical SF
framework as this paper. Since the publication of those results,
several improvements have been made to the algorithm, all of which
are implemented for this paper. These do not change any of the
published qualitative IMF results (e.g. general shape, sensitivity to
initial conditions). They include the following.

(i) Correction of a bug that suppressed fragmentation at the end
of the cloud evolution, violating self-similarity at a weak level. The
effects on our previous work are small, but are substantial on the
statistics on low-mass companions. This is now fixed.

(ii) Fragments are properly tracked and taken into account for
the evolution of their parent (e.g. their contribution to the gravita-
tional potential is taken into account as long as the parent has not
yet contracted beyond their position). This causes no qualitative
difference.

(iii) Instead of using an absolute termination scale (taken to be
Rmin = 10−4 pc in the previous papers, roughly the size of proto-
stellar discs), the collapse of clouds now terminates once clouds
have contracted to a fixed fraction of their initial radius, chosen
to be roughly when angular momentum support becomes domi-
nant. This assumes that the source of angular momentum for clouds
is from random turbulent motion. The resulting distribution for
β = Erot

Epot
is strongly peaked around a few per cent (Burkert &

Bodenheimer 2000). If collapse happens at constant virial parame-
ter than the size scale where angular momentum starts dominating
is βR0. This is the scale where the cloud flattens and forms a disc,
which we choose as our termination point.5

(iv) We set a lower limit of 0.007 M� on fragment masses based
on the opacity arguments of Low & Lynden-Bell (1976). This is
in fact equivalent to a simplified EOS model, where we terminate
the fragmentation once the cloud reaches the adiabatic limit. This
provides a natural termination for the fragmentation cascade in our
‘isothermal’ models, otherwise our results would not converge (see
GKH16)

APPENDI X B: C OMPARI SON W I TH D ETAILED
H Y D RO DY NA M I C S I M U L AT I O N S

There have been a number of hydrodynamical simulations attempt-
ing to find the multiplicity statistics and separation distribution of
newly formed stars (e.g. Delgado-Donate et al. 2004; Goodwin,
Whitworth & Ward-Thompson 2004; Bate 2009, 2012; Offner
et al. 2010; Krumholz, Klein & McKee 2012). The semi-analytical
approach we present in this paper has several advantages over these
(e.g. faster, no absolute resolution limit, starts from GMC) but at the
cost of several strong assumptions, so it is crucial that we compare
our results with theirs. We choose to compare with the simulations
of Bate (2012), as these have the largest sample of multiple systems.
Since we know the full binary distribution from the simulations,
we make this comparison without the observational completeness
correction that we apply when comparing to observations in the
main text.

Figs B1–B3 show that our results are qualitatively, and in many
cases quantitatively, consistent with the simulations of Bate (2012).

5 The choice of a relative termination scale instead of an absolute value has
the added benefit of imprinting no absolute length-scale into the problem,
preserving self-similarity.
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Figure B1. The multiplicity of stars of different masses in the isothermal
case (Isothermal – MW) and the model with protostellar heating (Heating –
MW) compared to the results of Bate (2012) (black circles with error bars).

An important difference between our current model and the tradi-
tional simulations is that MISFIT does not have a finite resolution
limit, but it does neglect disc physics. This leads to the discrepancy
at small separations shown in Fig. B3.

A P P E N D I X C : N U M E R I C A L T E S T S A N D
C O N V E R G E N C E

In this section, we show how the GMC mass MGMC, the termina-
tion scale R0/Rmin and the resolution parameter N affect our results.
To explore these questions, we have repeated our fiducial Heat-
ing – MW run with different resolutions (N = 16, 32, 64), GMC
masses (MGMC = 104, 105, 106 M�) and different termination scales
(R0/Rmin = 10−3, 10−2, 10−1). The full list of runs performed in
given in Table 1. Note that unlike the results in the main text, these
are not modified to account for observational biases.

Figure B3. Cumulative semimajor axis distribution for multiple systems
where (Mprimary > 0.1 M�) in the case of the isothermal model (blue) and
the case with protostellar heating (red) along with the results of Bate (2012).
This includes all separations, hierarchical triples and quadruples contribute
two and three values, respectively.

We first examine how our results affect the same of the IMF
produced by our models. Fig. C1 shows that the shape of the IMF is
robust to changes in N, reaching convergence around N = 32. The
location of the IMF peak and the high-mass slope are also essentially
insensitive to the GMC mass; the location of the peak does shift by
an extremely small amount as we vary the GMC mass, as a result
of its dependence on the Mach number of the turbulence; the two
are related thanks to our assumption that clouds have virial ratios
αvir ≈ 1. However, this shift is only ∼10 per cent over a plausible
range of GMC masses. The IMF shows its greatest sensitivity to
the relative termination scale Rmin/R0, particularly the abundance
of brown dwarfs beyond the peak. In reality, our choice of a single
Rmin/R0 value is an oversimplification, since real turbulence fields
produce a distribution of rotational kinetic energies β, and thus a

Figure B2. The relative frequency of most massive companions of small stars (left, Mprimary = 0.1–0.5 M�) and VLM stars (right, Mprimary = 0.1 M�). Red
and blue points show the results of our simulations without applying the observational bias, while hatched histograms show the results of Bate (2012).
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Figure C1. Effects of the simulation resolution N (top left), parent GMC mass (top right) and the relative termination scale Rmin/R0 (bottom) on the IMF.

distribution of Rmin/R0 parameters; the real IMF should therefore
resemble a weighted average of the curves shown in Fig. C1.

Fig. C2 shows how variation of our three parameters affects
the stellar correlation function. As with the IMF, we find that the
correlation function is insensitive to changes in both the resolution
parameter N and the initial GMC mass – the former produces no
noticeable differences past N = 32, while the latter mostly rescales
the outer cut-off/size scale. Also, as with the IMF, larger initial
masses lead to verly slightly shallower slopes. This is consistent with
the discussion in Section 3.1 and Appendix D: larger masses mean
stronger initial turbulence that in turn means easier fragmentation.
However, as with the IMF, the effect is extremely modest. Finally,
the bottom panel of Fig. C2 shows that the relative termination scale
has no effect on the correlation function apart from introducing a
small-scale cutoff.

Fig. C3 shows the peak of the separation distribution converges
above N = 32, and the parent GMC mass has little effect on it. The
relative termination scale Rmin/R0 sets the width of the peak; its
position is set by GMprimary

c2
s

, as discussed in Section 3.2. Decreasing
Rmin/R0 increases the abundance of binaries at small separations,
since it pushes the transition between common core fragmentation
(which we are modelling) and disc fragmentation (which are not)
to smaller scales. However, as noted in the main text, only a value
of Rmin/R0 that is unphysically small would produce enough short-
period binaries to be consistent with the observations.

A P P E N D I X D : C A N TO R - L I K E MO D E L O F
F R AG M E N TAT I O N

One of the most important properties of isothermal fragmentation
is that it is scale-free, so we expect self-similar, fractal-like struc-
tures to emerge. We can formulate a simple toy model to describe
this process where self-gravitating clouds contract to about ε rela-
tive scale before breaking into two (see Fig. D1) along a random
axis. The distance of the two fragments is uniformly chosen be-
tween 0 and Rparent. The fragments then rearrange themselves into
spheres at the same density as their parent (meaning their radius is
2−1/3Rparent). This model is very similar to the generalized Cantor
dust (3D analogue of the generalized 1D Cantor set) that have the
fractal dimensions of Dset = ln 2

ln 2−ln ε
and Ddust = 3 ln 2

ln 2−ln ε
, leading to

a 3D correlation function of rD − 3.
We can analytically calculate the fractal dimension of our Cantor-

like model if we take the separation between fragments to be the
mean value of Rparent/2. If we take the initial radius of the first
sphere to be unity then, after n iterations, the number of the objects
is N = 2n while their size is Rn = εN2−N/3. If we choose a random
fragment, then the number of fragments within an Rm radius is
Nm = 2n − m, thus

D ≡ d ln Nm

d ln Rm

= ln 2
1
3 ln 2 − ln ε

. (D1)
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Figure C2. Effects of the simulation resolution N (top left), parent GMC mass (top right) and the relative termination scale Rmin/R0 (bottom) on the stellar
correlation function.

Fig. D2 shows that this result is actually exact. Since isothermal
fragmentation is quite similar to this toy model, we expect the
predicted stellar correlation function to have a slope between −1
and −3 (for reasonable ε values). This also implies that if some
additional physics makes fragmentation harder (increasing the den-
sity threshold and thus decreasing ε), then the correlation function
becomes steeper.

This model has the free parameter ε that we can restrict by as-
suming that the fragmentation criteria is set by the Jeans instability.
It is known that the mass of fragments would be of the Jeans-mass
MJeans ∝ ρ−1/2 ∝ ε3/2. The number of fragments is M/MJeans = 2
that leads to ε = 0.63. For this value, equation (D1) gives D = 1
leading to a ξ ∝ r−2 power law, in perfect agreement with our results
from Fig. 1.
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Figure C3. Effects of the simulation resolution N (top left and right), parent GMC mass (bottom left) and the relative termination scale Rmin/R0 (bottom right)
on the stellar correlation function.

Figure D1. The 3D Cantor-set-like toy model of isothermal fragmentation.
Every cloud contracts to ε relative scale before breaking into two along a
randomly chosen plane and the process repeats itself.

Figure D2. Numerically calculated slopes of the 3D Cantor-like model
(symbols) along with the analytical approximation (red) and the analytical
result for the generalized 1D Cantor set (black) and 3D Cantor dust (blue).
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