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Abstract: Aluminum is an alternative plasmonic material in the visible regions of the spectrum
due to its attractive properties such as low cost, high natural abundance, ease of processing,
and complementary metal-oxide-semiconductor (CMOS) and liquid crystal display (LCD)
compatibility. Here, we present plasmonic colour filters based on coaxial holes in aluminium that
operate in the visible range. Using both computational and experimental methods, fine-tuning of
resonance peaks through precise geometric control of the coaxial holes is demonstrated. These results
will lay the basis for the development of filters in high-resolution liquid crystal displays, RGB-spatial
light modulators, liquid crystal over silicon devices and novel displays.
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1. Introduction

Ebbesen et al. [1] reported for the first-time extraordinary optical transmission through
sub-wavelength holes in metal films. Since then, there has been a rapid expansion of research into
plasmonic filter effects [2–6]. Recently, hole-based micron sized plasmonic colour filters have received
attention due to a high transmission of more than 35% and integration onto a CMOS chip [2–5].
Baida and Van Labeke initially proposed plasmonic filters based on coaxial hole arrays (CHs) which
exhibited a high transmission [6–11]. The CHs are plasmonic structures with an array of subwavelength
coaxial apertures in a metal film. The resonance peaks in a CH geometry are predominantly due
to Fabry–Pérot resonances (localized surface plasmons, LSPs) supported in a cylindrical resonance
cavity. This cavity is excited by cylindrical surface plasmons formed by a metal film with finite
thickness and two end faces [7,9–15]. There is also a minor contribution to the resonance due to surface
plasmons polaritons (SPPs). The main advantages of the CH-based filters are the high transmission
and geometric tunability of the structure (major resonance peak can be obtained through different
combinations of the inner (R1) and outer radius (R2)). The desired resonance peak (transmission peak
when the sample operates in transmission mode) can be estimated using the equation, thickness of the
metal film (l) = (nπ − Ω)/β [7], where n is the order of the Fabry–Pérot resonance, Ω is the phase of
reflection constant, and β is the propagation constant. The CH-based plasmonic filters are superior to
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their hole-based counterpart because the colour tuning is achieved by varying inner and outer radii,
transmission up to 90% is reachable [6] with the CH geometry, and there is no shift in the resonance
peak with respect to angle of incidence because the Fabry–Pérot resonances are relatively robust to
angle of incidence.

Recently, CH-based plasmonic filters in gold and silver have received much attention [10,11].
However, CH based filters on aluminium (Al) are highly desirable compared to gold and silver
for making colour filters because Al is inexpensive, compatible with existing liquid crystal display
(LCD)/CMOS technology, and has good adhesion to many substrates without an extra adhesion layer,
thus making fabrication easier [16–18]. There are other advantages to using Al, such as lower optical
loss in the 400–500 nm range due to its high plasma frequency [14], and the oxide layer of alumina
forms a protective layer. Furthermore, they are recyclable, flexible, have reduced cross-talk, are durable
at high temperature, and are resilient to prolonged exposure to ultraviolet radiation [4]. In addition,
the CH array reported so far is based on a square arrangement. However, for practical applications such
as in plasmonic colour filters, plasmonic band pass filters, solar cells, and chemical sensors, a hexagonal
arrangement is preferable to a square arrangement. This is because the hexagonal arrangement has a
higher fill factor compared to the square array for the same period, and hence increased transmission
efficiency. This fill factor is very important for the development of colour filters where vacant spaces
will cause performance degradation and reduced transmission efficiency. For the square array, if the
period in the x direction is slightly different from the y direction, the array is sensitive to fabrication
tolerances. Additionally, the square geometry is polarization sensitive. However, the hexagonal
arrangement of CH is more resistant to fabrication tolerances and is polarization insensitive.

In this letter, we have presented plasmonic colour filters based on coaxial aperture array using
a hexagonal arrangement in aluminium. Here, fine-tuning of the colour is achieved by combining
Fabry–Pérot resonances with surface plasmon resonances to reduce colour cross-talk. Our study
begins to optimize the coaxial geometry to obtain different colours using the computational method.
Two coaxial hole-based plasmonic filters were subsequently fabricated using focused ion beam (FIB),
and their experimental performance is demonstrated.

2. Plasmonic Filter Design

CH-based plasmonic filters were computationally investigated using the finite element method
(FEM) implemented in COMSOL MULTIPHYSICS. A hexagonal arrangement was used for the filter
design. The simulation model to find the wavelength at which maximum transmission of the filters
occurs consisted of a 150-nm layer of aluminium (Al) on a semi-infinite glass substrate (n = 1.5).
A 3-nm thick alumina coated the Al with a semi-infinite air superstrate. To simulate a hexagonal
array, a unit cell consisting of a single aperture at the centre and one-quarter of an aperture at each
corner was used. Periodic boundary conditions were applied on four sides. The centre-to-centre
pitch of the arrays was assumed to be 430 nm. Figure 1 (insets) shows results of simulations together
with transverse and vertical cross-sections of a single coaxial hole for the CH-based red, green, and
blue plasmonic filters at resonance. Light excitation was done from the Al side. S- parameters were
used to find absolute transmission (|S21|2). Here, the wavelength was swept from 400 to 700 nm
due to its applications as colour filters in the visible region. Firstly, tuning of the resonance in a CH
array by varying the width between inner (R1) and outer (R2) radii is considered. Figure 1 shows
computationally-obtained transmission spectra corresponding to three colours: red, green, and blue.
Three different values of R1 and R2 were used to produce red, green, and blue colours. For the red
filter, the inner and outer radii were 130 nm and 121 nm, respectively, and pitch was 430 nm. This
produced a transmission peak at 700 nm. For the green filter, the inner and outer radii decreased to
130 nm and 106 nm, respectively (pitch 430 nm). This resulted in shifting of the resonance from 700 nm
to 560 nm (green). For R1–130 nm and R2–80 nm with pitch 460 nm, the resonance shifted to 480 nm
(blue). It is also noted that as the width of the gap increased, the spectrum blue-shifted. The thickness
of the Al used was the same for all geometries (150 nm). These results show that a few nanometers’
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change in the inner and outer radii resulted in a tens of nanometers shift in the wavelength, and hence
it is possible to tune to any colour. By keeping the inner and outer radii of CHs constant, the thickness
of Al was swept from 130 nm to 170 nm to study the effect of the film thickness on peak wavelength.
As the thickness of Al increased, the peak wavelength red-shifted for CH geometries, as shown in
Figure 2, where R1 and R2 were kept at 130 nm and 115 nm, respectively. The red shift is mainly
due to change in the modes of cylindrical plasmons in the CH with respect to thickness of the metal
film. Though the resonance was predominated by the LSPs for the coaxial holes, there were effects
due to the excitation of surface plasmon polaritons. From the spectra shown in Figure 1, there are
additional features in the spectra in addition to the required LSP peak. For the red filter, the SPPs
produced a peak at 570 nm. The SPPs produced extra peaks around 500 nm for green, and 410 nm and
540 nm for blue filters, respectively. These extra peaks cause colour cross-talk and affect colour filtering
performance. To circumvent this issue, we have shown tuning of both the LSPs and SPPs to suppress
unwanted peaks. Here, the LSP was tuned first by varying the inner and outer radius to the required
wavelength. If there is any additional resonance (minor peak) due to SPP, the pitch can be tuned to
suppress resonance due to the SPP. The pitch can also be tuned in such a way that any additional peak
due to SPP is pushed away from the visible region or overlap with LSP peak. To demonstrate this
scheme, we have used the green filter as an example. As shown in Figure 1b, there are two peaks for
green spectrum. The LSP produced a peak at 560 nm and SPP at 500 nm. To suppress the peak at
500 nm due to SPP, the pitch was tuned to 280 nm from 430 nm by keeping the same inner and outer
radii (130 nm and 106 nm). Figure 3 shows that colour cross talk due to the extra peak is supressed.
This also increased the transmission efficiency from 11% to 27%. A reduction in the pitch also slightly
contributed to the increased transmission. This tuning method of both LSPs and SPPs can be applied
to any CH-based colour filter to suppress unwanted peaks in the resonance.
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Figure 1. Simulated transmission spectrum for (a) red (R1–130 nm, R2–121 nm, and pitch 430 nm);
(b) green (R1–130 nm, R2–106 nm, and pitch 430 nm); and (c) blue (R1–130 nm, R2–80 nm, and pitch
430 nm) plasmonic colour filters. The inset in each plot shows normalised electric field and cross-section
of a coaxial hole (CH) for red, green, and blue at 700 nm, 560 nm, and 480 nm, respectively (TE11 modes).
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Figure 3. Transmission characteristics of CH-based green filter after tuning both localized and surface
plasmon resonances.

3. Device Fabrication

An array of coaxial holes in an Al film on the glass substrate was fabricated using focused ion
beam (FIB) technique. The glass substrate of thickness 500 µm was cleaned using acetone, isopropyl
alcohol (IPA), and DI water. A 150 nm Al film was evaporated at a rate of 0.4 Å/s on the wafer
(Intlvac Nanochrome II, Intlvac Thin Film Corporation, Fort Collins, CO, USA). The CH array was
milled into the Al using an FEI Helios NanoLab 600 Dual Beam focused ion beam (FEI, Hillsboro,
OR, USA). The current was varied from 1.5 pA to 9.5 pA by setting the voltage at 30 kV. The optical
response of the CH array is very sensitive to fabrication tolerances, and hence the lowest current was
used for making the filters at the cost of increased fabrication time for fabrication of a large array. To
prove the feasibility of our proposed method, two CH-based geometries were fabricated—green and
red—due to short fabrication time (narrow gaps) required to fabricate an array using FIB. Figure 4a,b
insets show optical images of green and red filters and an SEM image of the CH filter.
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4. Results and Discussion

The fabricated devices were characterized using white excitation light from a halogen lamp
(100 W). The light was focused onto the CH samples using a Nikon TE2000-S Eclipse inverted
microscope (Nikon, Melville, NY, USA). A 40× dry objective lens was used to collect the transmitted
light through the sample followed by focusing the light onto a charge-coupled device (CCD) equipped
imaging spectrometer to measure transmission spectra (Andor Shamrock 303i, 150 l/mm 800 nm Blaze
grating and Newton DU920P-BR-DD CCD array (Andor, Belfast, UK). A custom-made spectrometer
also was used for the spectral measurements. Figure 4 shows the spectra obtained for the green (G) and
red (R) filters. The inset (a) shows images of the arrays under an optical microscope. The experimental
results were compared with simulation results for green filter and red filter. The resonance peaks
measured from the experimentally obtained samples were red-shifted due to inclined sidewalls in
coaxial holes after fabricating with FIB. This will result in a gap that is smaller than the designed gap
(for example, if the required gap is 50 nm (R1 − R2) for a filter, it is possible to get a gap closer to 50 nm
near the top surface of the aluminium film, but the gap starts to decrease approaching the bottom side
(to less than 50 nm) due to the thickness of aluminium film (150 nm). This results in a decrease in the
average gap compared to what is expected and causes a red shift in resonance. From the experimental
results, it was observed that the resonance peaks of the CH geometries are highly sensitive to the gap,
and even fabrication tolerances such as a few-nanometer variation in gap, the thickness of Al, and
oxidation of Al (alumina) can result in a notable shift in resonance and broadening of resonance.

5. Conclusions

We have demonstrated the design and fabrication of plasmonic colour filters in Al. Tuning of
colours is achieved by geometric control of the CH array. The presence of unwanted peaks in the
transmission spectrum is minimised by tuning both the SPPs and LSPs. This work will have potential
application in high-resolution liquid crystal displays, RGB-spatial light modulators, liquid crystal over
silicon devices and novel displays.
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