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Abstract: This paper analyses the DeGroot-Friedkin model for evolution of the individuals’
social powers in a social network when the network topology varies dynamically (described by
dynamic relative interaction matrices). The DeGroot-Friedkin model describes how individual
social power (self-appraisal, self-weight) evolves as a network of individuals discuss opinions
on a sequence of issues. We seek to study dynamically changing relative interactions because
interactions may change depending on the issue being discussed. Specifically, we study relative
interaction matrices which vary periodically with respect to the issues. This may reflect a
group of individuals, e.g. a government cabinet, that meet regularly to discuss a set of issues
sequentially. It is shown that individuals’ social powers admit a periodic solution. Initially, we
study a social network which varies periodically between two relative interaction matrices, and
then generalise to an arbitrary number of relative interaction matrices.
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1. INTRODUCTION

In the past decade and a half, the systems and control com-
munity has conducted extensive research on multi-agent
systems. A multi-agent system is comprised of multiple
interacting agents. Problems such as formation control,
distributed optimisation, consensus based coordination
and robotics have been intensively studied, see (Cao et al.,
2013; Knorn et al., 2016) for two overviews.

On the other hand, the control community has recently
turned to study multi-agent systems that appear in the
social sciences. Specifically, a social network consisting of
groups of people interacting with their acquaintances can
be considered from one point of view as a multi-agent
system. The emergence of social media platforms such as
Facebook, Instagram and Twitter has only increased the
relevance of research on social networks.

A problem of particular interest is “opinion dynamics”,
which studies how opinions within a social network may
evolve as individuals discuss an issue, e.g. religion or
� This work was supported by the Australian Research Council
(ARC) under the ARC grants DP-130103610 and DP-160104500, by
the National Natural Science Foundation of China (grant 61375072),
and by Data61-CSIRO (formerly NICTA). The work of Liu and
Başar was supported in part by Office of Naval Research (ONR)
MURI Grant N00014-16-1-2710, and in part by NSF under grant
CCF 11-11342.

politics. The classical DeGroot model (DeGroot, 1974) is
closely related to the consensus process (Jadbabaie et al.,
2003; Shi and Johansson, 2013). Other models include the
Friedkin-Johnsen model (Friedkin and Johnsen, 1990), the
Altafini model (Altafini, 2013; Altafini and Lini, 2015),
and Hegselmann-Krause model (Hegselmann and Krause,
2002; Etesami and Başar, 2015). The DeGroot-Friedkin
model proposed and analysed in (Jia et al., 2015) is a two-
stage model for multi-issue discussions, where issues are
discussed sequentially. For each issue, the DeGroot model
is used to study the opinion dynamics; each individual
updates its own opinion based on a convex combination
of its opinion and those of its neighbours. The coefficients
of the convex combination are determined by 1) the indi-
vidual’s self-weight (which represents self-appraisal, self-
confidence) and 2) the weights assigned by the individual
to its neighbours (which might be a measure of trust or
friendship). At the beginning of each new issue, a reflected
appraisal mechanism is used by each individual to update
its own self-weight. This mechanism takes into account
the individual’s influence and impact on the discussion of
opinions on the prior issue. From one perspective, an indi-
vidual’s self-weight is a representation of that individual’s
social power in the social network.

The key contribution of this paper is the study of
the DeGroot-Friedkin model with issue-varying interac-
tions among the individuals. Because interactions in the

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 12408

On the Analysis of the DeGroot-Friedkin
Model with Dynamic Relative Interaction

Matrices �

Mengbin Ye ∗, Ji Liu ∗∗, Brian D.O. Anderson ∗,∗∗∗,∗∗∗∗

Changbin Yu ∗,∗∗∗, and Tamer Başar ∗∗
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discussed sequentially. For each issue, the DeGroot model
is used to study the opinion dynamics; each individual
updates its own opinion based on a convex combination
of its opinion and those of its neighbours. The coefficients
of the convex combination are determined by 1) the indi-
vidual’s self-weight (which represents self-appraisal, self-
confidence) and 2) the weights assigned by the individual
to its neighbours (which might be a measure of trust or
friendship). At the beginning of each new issue, a reflected
appraisal mechanism is used by each individual to update
its own self-weight. This mechanism takes into account
the individual’s influence and impact on the discussion of
opinions on the prior issue. From one perspective, an indi-
vidual’s self-weight is a representation of that individual’s
social power in the social network.

The key contribution of this paper is the study of
the DeGroot-Friedkin model with issue-varying interac-
tions among the individuals. Because interactions in the
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opinions on the prior issue. From one perspective, an indi-
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DeGroot-Friedkin model are modelled by a matrix termed
the “relative interaction matrix”, we will be investigating
relative interaction matrices which dynamically change
between issues but remain constant during each issue.
In particular, we will investigate periodic issue-varying
interactions as to be explained shortly. As an extension
of the DeGroot-Friedkin model, a modified version was
proposed and analysed in (Xu et al., 2015; Chen et al.,
2015, 2017). Time-varying interactions on this modified
DeGroot-Friedkin model was studied in (Xia et al., 2016).
On the other hand, there have been no results study-
ing issue-varying interactions for the original DeGroot-
Friedkin model proposed in (Jia et al., 2015) (which as-
sumed a constant relative interaction matrix during each
discussion and between all issues).

This paper considers issue-dependent interactions that
change periodically. Periodically changing interactions
may occur if a group meets regularly to discuss the same
set of issues. For example, consider a government cabinet
that meets regularly to discuss several different issues,
e.g. defence, finance, and social security. Because different
ministers will have different portfolios and specialisations,
it is likely that the weights assigned by an individual to
its neighbours (used in the opinion dynamics component
of the DeGroot-Friedkin model) will change depending
on the issue at hand. Initially, we consider the situation
where the social network switches periodically between
two different interaction topologies. We show that the
self-weight of each individual in the social network has a
periodic solution where each individual always has strictly
positive self-weight that is less than one. This result is then
generalised to multiple periodically switching interaction
topologies.

The remainder of the paper is organised as follows. Sec-
tion 2 provides mathematical notation and introduces the
DeGroot-Friedkin model. Section 3 considers interactions
which change periodically with issues. Simulations are
presented in Section 4 and the conclusion of the paper
is presented in Section 5.

2. BACKGROUND AND PROBLEM STATEMENT

We begin by introducing some mathematical notations
used in the paper. Let 1n and 0n denote, respectively,
the n × 1 column vectors of all ones and all zeros. For a
vector x ∈ Rn, 0 � x and 0 ≺ x indicate component-
wise inequalities, i.e., for all i ∈ {1, 2, . . . , n}, 0 ≤ xi

and 0 < xi, respectively. Let ∆n denote the n-simplex,
the set which satisfies {x ∈ Rn : 0 � x,1�

nx = 1}.
The canonical basis of Rn is given by e1, . . . , en. Define

∆̃n = ∆n\{e1, . . . , en} and int(∆n) = {x ∈ Rn : 0 ≺
x,1�

nx = 1}. For the rest of the paper, we shall use the
terms “node”, “agent”, and “individual” interchangeably.
We shall also interchangeably use the words “self-weight”
and “individual social power”.

An n × n matrix is called a row-stochastic matrix if its
entries are all nonnegative and its row sums all equal 1.

2.1 Graph Theory

The interaction between agents in a social network is
modelled using a weighted directed graph, denoted as

G = (V, E). Each individual agent is a node in the finite,
nonempty set of nodes V = {v1, . . . , vn}. The set of
ordered edges is E ⊆ V × V. We denote an ordered edge
as eij = (vi, vj) ∈ E , and because the graph is directed, in
general the assumption eij = eji does not hold. An edge eij
is outgoing with respect to vi and incoming with respect
to vj . The presence of an edge eij connotes that individual
j’s opinion is influenced by the opinion of individual i (the
precise nature of the influence will be made clear in the
sequel). The incoming and outgoing neighbour set of vi
are respectively defined as N+

i = {vj ∈ V : eji ∈ E}
and N−

i = {vj ∈ V : eij ∈ E}. The relative interaction
matrix C ∈ Rn×n associated with G has nonnegative
entries cij , termed “relative interpersonal weights” in (Jia
et al., 2015). The entries of C have properties such that
0 < cij ≤ 1 ⇔ eji ∈ E and cij = 0 otherwise. It is
assumed that cii = 0 (i.e. with no self-loops), and we
impose the restriction that

∑
j∈N+

i
cij = 1 (i.e. that C

is a row-stochastic matrix).

A directed path is a sequence of edges of the form
(vp1 , vp2), (vp2 , vp3), . . . where vpi ∈ V, eij ∈ E . Node i
is reachable from node j if there exists a directed path
from vj to vi. A graph is said to be strongly connected if
every node is reachable from every other node. The relative
interaction matrix C is irreducible if and only if the as-
sociated graph G is strongly connected. If C is irreducible
then it has a unique left eigenvector c� associated with
the eigenvalue 1, with the property c�1n = 1 (Perron-
Frobenius Theorem, see (Godsil et al., 2001)). Henceforth,
we shall call this left eigenvector c�, the dominant left
eigenvector of C.

2.2 Modelling the Dynamics of the Social Network

The discrete-time DeGroot-Friedkin model is comprised
of a consensus model and a mechanism for updating self-
appraisal (the precise meaning of self-appraisal will be
made clear in the sequel). We define S = {1, 2, 3, . . .} to
be the set of indices of sequential issues which are being
discussed by the social network. For a given issue s, the
social network discusses the issue using the discrete-time
DeGroot consensus model. At the end of the discussion
(i.e. when the DeGroot model has effectively reached
steady state), each individual judges its impact on the
discussion (self-appraisal). The individual then updates its
own self-weight and discussion begins on the next issue
s+ 1.

DeGroot Consensus of Opinions For each issue s ∈ S,
each agent updates its opinion yi(s, ·) ∈ R at the t + 1th

time instant as

yi(s, t+ 1) = wii(s)yi(s, t) +

n∑

j∈N+
i
,j �=i

wij(s)yj(s, t) (1)

where wii(s) is the self-weight individual i places on its
own opinion and wij ’s are the weights given by agent i
to the opinions of its neighbour individual j. The opinion
dynamics for the entire social network may be expressed
as

y(s, t+ 1) = W (s)y(s, t) (2)

where y(s, t) = [y1(s, t) · · · yn(s, t)]
� is the vector of

opinions of the n+1 agents in the network at time instant
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t. This model was first proposed in (DeGroot, 1974) with
S = 1 (i.e. only one issue was discussed). Below, we provide
the model for the updating ofW (s) (and specifically wii(s)
via a reflected self-appraisal mechanism).

Friedkin’s Self-Appraisal Model for Determining Self-
Weight The Friedkin component of the model proposes
a method for updating the self-weight (self-appraisal, self-
confidence or self-esteem) of agent i, which is denoted by
xi(s) = wii(s) ∈ [0, 1] (the ith diagonal term of W (s)) (Jia
et al., 2015). Define the vector x(s) = [x1(s) · · · xn(s)]

�

as the vector of self-weights for the social network, with
starting self-weight x(1) ∈ ∆n. The influence matrixW (s)
can be expressed as

W (s) = X(s) + (In −X(s))C (3)

where C is the relative interaction matrix associated with
the graph G and X(s)

.
= diag[x(s)]. From the fact that C

is row-stochastic with zero diagonal entries, (3) implies
that W (s) is a row-stochastic matrix. The self-weight
vector x(s) is updated at the end of issue s as

x(s+ 1) = w(s) (4)

where w(s) is the dominant left eigenvector of W (s) with
the properties that 1�

nw(s) = 1 and w(s) � 0 (Jia et al.,
2015). This implies that x(s) ∈ ∆n for all s.

In (Jia et al., 2015), the DeGroot-Friedkin model was
studied under the assumption that C was constant for
all t and all s. In this paper, we investigate the model
when C(s) varies between issues. We assume that each
agent’s opinion, yi(s, t), is a scalar for simplicity. The
results can readily be applied to the scenario where each
agent’s opinion state is a vector yi ∈ Rp, p ≥ 2, by using
Kronecker products.

It is shown in [Lemma 2.2, (Jia et al., 2015)] that the
system (4), with C independent of s, is equivalent to

x(s+ 1) = F (x(s)) (5)

where the nonlinear vector-valued function F (x(s)) is
defined as

F (x(s)) =




ei if xi(s) = ei, for any i

α(x(s))




c1
1− x1(s)

...
cn

1− xn(s)




otherwise

(6)

with α(x(s)) = 1/
∑n

i=1
ci

1−xi(s)
and where ci is the ith

entry of the dominant left eigenvector c� of the relative
interaction matrix C.

Theorem 1. (Theorem 4.1, (Jia et al., 2015)). For n ≥ 3,
consider the DeGroot-Friedkin dynamical system (5) with
a relative interaction matrix C that is row-stochastic,
irreducible, and has zero diagonal entries. Assume that the
digraph G associated with C does not have star topology 1

and define c� as the dominant left eigenvector of C. Then,

1 A graph G is said to have star topology if there exists a node i
such that every edge of G is either to or from node i.

(i) For all initial conditions x(1) ∈ ∆̃n, the self-weights

x(s) converge to x∗ as s → ∞. Here, x∗ ∈ ∆̃n is the
unique fixed point satisfying x∗ = F (x∗).

(ii) There holds x∗
i < x∗

j if and only if ci < cj , for any

i, j, where ci is the ith entry of the dominant left
eigenvector c. There holds x∗

i = x∗
j if and only if

ci = cj .
(iii) The unique fixed point x∗ is determined only by c�,

and is independent of the initial conditions.

2.3 Problem Formulation

This paper studies the extended DeGroot-Friedkin model
where C is allowed to change when moving from one issue
to the next. For a given s, however, C is assumed to
remain constant for all t. Thus, the relative interactions
among the individuals, i.e. C(s), may change between
issues, but remains constant for all t for a given issue.
We will consider alternative situations corresponding to
alternative assumptions. We leave the details of these
assumptions to their corresponding future sections.

To facilitate our analysis, we make the following two
assumptions which will hold in all models considered in
this paper.

Assumption 1. The graph G does not have star topology,
the relative interaction matrix C(s) is irreducible, and
n ≥ 3.

Assumption 2. The initial conditions of the DeGroot-

Friedkin model dynamics (5) satisfy x(1) ∈ ∆̃n.

Note that Assumption 1 requires n ≥ 3, because for
n = 2, any irreducible C(s) is doubly stochastic and
corresponds to a star topology. Assumption 2 ensures that
no individual begins with self-weight equal to 1 (autocratic
configuration).

3. PERIODIC SWITCHING

In this section, we investigate the situation where C(s)
changes periodically. In order to simplify the problem, we
make the following assumption.

Assumption 3. The social network switches between two
relative interaction matrices, C1 and C2, where both ma-
trices are irreducible, row-stochastic, but not necessarily
doubly stochastic. More specifically, the social network
switches between C1 and C2 periodically, with period
T = 2, as given by

C(s) =

{
C1 if s is odd

C2 if s is even
(7)

Note that for a constant C, simulations show that con-
vergence of x(s) to x∗ typically occurs after only a few
issues (Jia et al., 2015) (i.e. exponential convergence is
conjectured). In light of this, we are therefore interested
in periodic switching with a fast switching between issues
(e.g. a sequence C1,C2,C1,C2, . . .) as opposed to a slow
switching between issues (e.g. C1, . . . ,C1,C2, . . . ,C2).

3.1 Transformation into a Time-Invariant System

Under Assumption 3, the update of the self-weights occurs
as x(s + 1) = F (x(s), s), where we now acknowledge the
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Friedkin’s Self-Appraisal Model for Determining Self-
Weight The Friedkin component of the model proposes
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can be expressed as

W (s) = X(s) + (In −X(s))C (3)

where C is the relative interaction matrix associated with
the graph G and X(s)
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= diag[x(s)]. From the fact that C

is row-stochastic with zero diagonal entries, (3) implies
that W (s) is a row-stochastic matrix. The self-weight
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and define c� as the dominant left eigenvector of C. Then,

1 A graph G is said to have star topology if there exists a node i
such that every edge of G is either to or from node i.

(i) For all initial conditions x(1) ∈ ∆̃n, the self-weights

x(s) converge to x∗ as s → ∞. Here, x∗ ∈ ∆̃n is the
unique fixed point satisfying x∗ = F (x∗).

(ii) There holds x∗
i < x∗

j if and only if ci < cj , for any

i, j, where ci is the ith entry of the dominant left
eigenvector c. There holds x∗
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j if and only if
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(iii) The unique fixed point x∗ is determined only by c�,

and is independent of the initial conditions.

2.3 Problem Formulation

This paper studies the extended DeGroot-Friedkin model
where C is allowed to change when moving from one issue
to the next. For a given s, however, C is assumed to
remain constant for all t. Thus, the relative interactions
among the individuals, i.e. C(s), may change between
issues, but remains constant for all t for a given issue.
We will consider alternative situations corresponding to
alternative assumptions. We leave the details of these
assumptions to their corresponding future sections.

To facilitate our analysis, we make the following two
assumptions which will hold in all models considered in
this paper.

Assumption 1. The graph G does not have star topology,
the relative interaction matrix C(s) is irreducible, and
n ≥ 3.

Assumption 2. The initial conditions of the DeGroot-

Friedkin model dynamics (5) satisfy x(1) ∈ ∆̃n.

Note that Assumption 1 requires n ≥ 3, because for
n = 2, any irreducible C(s) is doubly stochastic and
corresponds to a star topology. Assumption 2 ensures that
no individual begins with self-weight equal to 1 (autocratic
configuration).

3. PERIODIC SWITCHING

In this section, we investigate the situation where C(s)
changes periodically. In order to simplify the problem, we
make the following assumption.

Assumption 3. The social network switches between two
relative interaction matrices, C1 and C2, where both ma-
trices are irreducible, row-stochastic, but not necessarily
doubly stochastic. More specifically, the social network
switches between C1 and C2 periodically, with period
T = 2, as given by

C(s) =

{
C1 if s is odd

C2 if s is even
(7)

Note that for a constant C, simulations show that con-
vergence of x(s) to x∗ typically occurs after only a few
issues (Jia et al., 2015) (i.e. exponential convergence is
conjectured). In light of this, we are therefore interested
in periodic switching with a fast switching between issues
(e.g. a sequence C1,C2,C1,C2, . . .) as opposed to a slow
switching between issues (e.g. C1, . . . ,C1,C2, . . . ,C2).

3.1 Transformation into a Time-Invariant System

Under Assumption 3, the update of the self-weights occurs
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fact that F (x(s), s) is an explicit function of time. More
specifically, and in accordance with (6), we have

x(s+ 1) =

{
F 1(x(s)) if s is odd

F 2(x(s)) if s is even
(8)

The function F p, for p = 1, 2, is

F p(x(s)) =




ei if xi(s) = ei, for any i

αp(x(s))




c1,p
1− x1(s)

...
cn,p

1− xn(s)




otherwise

(9)

with αp(x(s)) = 1/
∑n

i=1
ci,p

1−xi(s)
. Here ci,p is the ith

element of the dominant left eigenvector cp
� associated

with the relative interaction matrix Cp.

We now define a new state y ∈ R2n as

y(2s) =

[
y1(2s)
y2(2s)

]
=

[
x(2s− 1)
x(2s)

]
(10)

and study the evolution of y(2s) for every s ∈ S. Note
that

y(2s+ 2) =

[
y1(2s+ 2)
y2(2s+ 2)

]
=

[
x(2s+ 1)
x(2s+ 2)

]
(11)

In view of the fact that x(2s+1) = F 2(x(2s)) and x(2s+
2) = F 1(x(2s+ 1)) for any s, we obtain

y(2s+ 2) =

[
F 2(x(2s))

F 1(x(2s+ 1))

]
(12)

Similarly, by noticing that x(2s) = F 1(x(2s − 1)) and
x(2s+ 1) = F 2(x(2s)) for any s, we obtain

y(2s+ 2) =


F 2

(
F 1(x(2s− 1))

)

F 1

(
F 2(x(2s))

)

 (13)

=


F 2

(
F 1(y1(2s))

)

F 1

(
F 2(y2(2s))

)

 (14)

=

[
F 3(y1(2s))
F 4(y2(2s))

]
(15)

for the time-invariant nonlinear composition functions
F 3 = F 2 ◦ F 1 and F 4 = F 1 ◦ F 2.

We can thus express the periodic system (8) as the
nonlinear time-invariant system

y(2s+ 2) = F̄ (y(2s)) (16)

where F̄ = [F�
3 ,F

�
4 ]

�, and seek to study the equi-
librium of this system. More specifically, suppose that
y∗ = [y∗

1
� y∗

2
�]� is an equilibrium of the system (16).

In the following subsection, we show that F 3 and F 4

are continuous. It is then straightforward to see that if
limk→∞ y(k) → y∗, then x(s) is an asymptotic periodic
sequence where

x(s) =

{
F 3(y

∗
1) if s is odd

F 4(y
∗
2) if s is even

(17)

Define yi (respectively F̄i) as the i
th element of the vector

y (respectively F̄ ). From the above, some manipulation
allows us to obtain, for i = 1, . . . , n,

F̄i(y1(2s)) = α2(F 1(y1(2s)))
ci,2

1− α1(y1(2s))
ci,1

1−yi(2s)

(18)

where α1(y1(2s)) = 1/
∑n

j=1
cj,1

1−yj(2s)
and

α2(F 1(y1(2s))) =
1∑n

p=1
cp,2

1−α1(y1(2s))
cp,1

1−yp(2s)

(19)

3.2 Existence of a Periodic Sequence

In this subsection, we establish properties of the function
F̄ . More specifically, we detail properties of F 3(y1(2s)).
Because F 3(y1(2s)) is similar in form to F 4(y2(2s)), a
similar proof can be used to establish similar properties
for F 4(y2(2s)). Due to space limitations, the proofs for
Lemma 2 and Theorem 3 are provided in an extended
version of this paper, available on ArXiv (Ye et al., 2017).

Lemma 2. The following properties of F 3(y1(2s)) hold.

P1 The quantity α2(F 1(y1(2s))) > 0 if y1(2s) ∈ ∆̃n, for
any s.

P2 If y1(2s) = ei for any i, then F 3(y1(2s)) = ei. In
other words, the n vertices of ∆n are fixed points of
F 3.

P3 The function F 3(y1(2s)) : ∆n → ∆n is continuous.
P4 There exists at least one fixed point in int(∆n).

Lemma 2 states that F 3 and F 4 each have at least one
fixed point, which we denote by y∗

1 and y∗
2 respectively.

We will leave the study of whether the fixed points are
unique or not, as well as analysis of convergence to the
fixed points for future work. We now state the following
theorem which establishes the periodic behaviour of (8).

Theorem 3. Suppose that Assumption 3 holds.

T1 Suppose further that for some s1 ∈ S, there holds
x(2s1 − 1) = y∗

1, where y∗
1 ∈ int(∆n) is any fixed

point of F 3. Then, for all s ≥ 2s1 − 1, there holds

x(s) =

{
y∗
1 if s is odd

y∗
2 if s is even

(20)

where y∗
2 ∈ int(∆n) is a fixed point of F 4.

T2 Suppose now that, instead of T1, there holds for some
s1 ∈ S, x(2s1) = y∗

2, where y∗
2 ∈ int(∆n) is any fixed

point of F 3. Then, (20) holds for all s ≥ 2s1, with
y∗
1 ∈ int(∆n) being a fixed point of F 3.

Note that the above result establishes that a periodic
sequence exists, but convergence to this sequence has not
been established. We conjecture that F 3 does in fact have
a unique fixed point (i.e. a unique periodic sequence for

x(s)) and that any y1(0) ∈ ∆̃n will converge to the unique
y∗
1. We conjecture a similar result for F 4. In Section 4, we

provide simulations in support of these two conjectures.

Remark 4. Theorem 3 leads to an interesting conclusion.
Consider the case where, at some point in the evolution
of the system trajectory, we have x(s) = y∗

1 or y∗
2 (e.g.

the self-weights are initialised as x(1) = y∗
1). Then, the

self-weights will exhibit a periodic sequence. Furthermore,
for each individual in the network, that individual’s self-
weight/social power is never zero.

Remark 5. Notice that in the Theorem 3, we did not
require the fixed points of F 3 and F 4 to be unique.
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Suppose that there are two distinct fixed points of F 3,
which we label y∗

1,a and y∗
1,b. The theorem concludes that

if x(2s) = y∗
1,a for some s, then the system (8) will exhibit

a periodic sequence. If on the other hand x(2s) = y∗
1,b for

some s, the system (8) will also exhibit a periodic sequence,
but different from the sequence involving y∗

1,a.

3.3 Generalisation to M Topologies

We now generalise the above framework to the case where
the social network switches between M different topolo-
gies. The following assumption is now placed on the social
network instead of Assumption 3.

Assumption 4. The social network switches between M ≥
3 relative interaction matrices in the following manner.
For issue s = M(q − 1) + p, where q ∈ Z>0 and p ∈
{1, 2, . . . ,M} 2 , the relative interaction matrix C(s) is
given by

C(M(q − 1) + p) = Cp (21)

The matrices Cp are all irreducible, row-stochastic and in
general Ci �= Cj , ∀ i, j ∈ {1, 2, . . . ,M}.
With the above Assumption 4, the update of the self-
weights is given by

x(M(q − 1) + p+ 1) = F p(x(M(q − 1) + p)) (22)

for all q ∈ Z>0 and any p ∈ {1, 2, . . . ,M}. The function
F p is given in (9), but now for p = 1, 2, . . . ,M . Following
the steps in subsection 3.1, we now show the generalised
transformation of the time-varying system with M differ-
ent topologies to a time-invariant nonlinear system.

A new state variable y ∈ RMn is defined as

y(Mq) =




y1(Mq)
y2(Mq)

...
yM (Mq)


 =




x(M(q − 1) + 1)
x(M(q − 1) + 2)

...
x(M(q − 1) +M)


 (23)

and we study the evolution of y(Mq) for every strictly
positive integer q. It follows that

y(M(q + 1)) =




y1(M(q + 1))
y2(M(q + 1))

...
yM (M(q + 1))


 =




x(Mq + 1)
x(Mq + 2)

...
x(Mq +M)




(24)

Following the logic in subsection 3.1, but with the precise
steps omitted due to space limitations, we obtain that

y(M(s+ 1)) =




FM (FM−1(. . . (F 1(y1(Mq)))))
F 1(FM (. . . (F 2(y2(Mq)))))

...
FM−1(FM−2(. . . (FM (yM (Mq)))))




=




G1(y1(Mq))
G2(y2(Mq))

...
GM (yM (Mq))


 (25)

Note that each GM is a time-invariant nonlinear function.
Due to the complexity of each Gi, we do not reproduce
2 Note that any given s ∈ S can be uniquely expressed by a
given fixed positive integer M , a positive integer q, and positive
p ∈ {1, 2, . . . ,M}, as shown.

their expressions here, but their forms are similar to the
expressions in (18) - (19). The transformed nonlinear
system is expressed as

y(M(q + 1)) = Ḡ(y(Mq)) (26)

The generalisations of Lemma 2 and Theorem 3 are now
given below.

Lemma 6. The following properties of Ḡ(y(Mq)) hold, for
any p ∈ {1, 2, . . . ,M}:
P1 The quantity αj > 0, ∀ j ∈ {1, 2, . . . ,M} if yp(Mq) ∈

∆̃n, for any q.
P2 If yp(Mq) = ei for any i, then Gp(yp(Mq)) = ei, i.e.

the n vertices of ∆n are fixed points of Gp.
P3 The function Gp(yp(Mq)) : ∆n → ∆n is continuous.
P4 There exists at least one fixed point forGp in int(∆n).

Theorem 7. Suppose that Assumption 4 holds. Suppose
further that for some q1, there holds x(M(q1−1)+p) = y∗

p,
where y∗

p ∈ int(∆n) is a fixed point of Gp. Then, for all
s = M(q − 1) + j ≥ M(q1 − 1) + p, q ≥ q1, there holds

x(s) = y∗
j , for any j ∈ {1, 2, . . . ,M} (27)

where y∗
j ∈ int(∆n) is a fixed point of Gj , and y∗

j = y∗
p

for j = p.

The proofs for the above two results are not included here
due to space limitations, and can be found in the extended
arXiv version of the paper (Ye et al., 2017).

4. SIMULATIONS

In this section, simulations are provided which corroborate
and illustrate the statements of Lemma 2, Lemma 6,
Theorem 3 and Theorem 7. The simulated social network
has 8 individuals, with three possible sets of interactions
described by three different irreducible relative interaction
matrices, C1, C2 and C3. Their precise forms (i.e. the
values of the entries of C1, C2 and C3) are omitted due to
space limitations and can be found in the extended arXiv
version of the paper (Ye et al., 2017).

Figure 1 shows the evolution of the individual social
power (self-weight xi(s)) over a sequence of issues for
the periodically switching relative interaction matrices C1

and C2. The initial condition x(s = 1) was generated
randomly. For the same two relative interaction matrices,
Fig. 2 shows the evolution for a second randomly generated
initial condition x(s = 1) different from the first figure.
Figure 3 shows the evolution of x(s) for a social network
that periodically switches between C1, C2 and C3.

Figures 1 and 2 illustrate that Theorem 3 holds. In other
words, x(s) has a periodic solution. Notice from Figures 1
and 2 that even for different initial conditions, x(s) asymp-
totically reaches the same periodic solution. This supports
our conjecture that F̄ has a unique fixed point and that the
fixed point is attractive for all x(s) ∈ int(∆n). Our goal is
to verify this in future work. Figure 3 illustrates the results
developed in subsection 3.3 on generalising to multiple
periodically switching relative interaction matrices.

5. CONCLUSION

In this paper, the DeGroot-Friedkin model has been used
to analyse a social network with dynamically changing net-
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Suppose that there are two distinct fixed points of F 3,
which we label y∗

1,a and y∗
1,b. The theorem concludes that

if x(2s) = y∗
1,a for some s, then the system (8) will exhibit

a periodic sequence. If on the other hand x(2s) = y∗
1,b for

some s, the system (8) will also exhibit a periodic sequence,
but different from the sequence involving y∗

1,a.

3.3 Generalisation to M Topologies

We now generalise the above framework to the case where
the social network switches between M different topolo-
gies. The following assumption is now placed on the social
network instead of Assumption 3.

Assumption 4. The social network switches between M ≥
3 relative interaction matrices in the following manner.
For issue s = M(q − 1) + p, where q ∈ Z>0 and p ∈
{1, 2, . . . ,M} 2 , the relative interaction matrix C(s) is
given by

C(M(q − 1) + p) = Cp (21)

The matrices Cp are all irreducible, row-stochastic and in
general Ci �= Cj , ∀ i, j ∈ {1, 2, . . . ,M}.
With the above Assumption 4, the update of the self-
weights is given by

x(M(q − 1) + p+ 1) = F p(x(M(q − 1) + p)) (22)

for all q ∈ Z>0 and any p ∈ {1, 2, . . . ,M}. The function
F p is given in (9), but now for p = 1, 2, . . . ,M . Following
the steps in subsection 3.1, we now show the generalised
transformation of the time-varying system with M differ-
ent topologies to a time-invariant nonlinear system.

A new state variable y ∈ RMn is defined as

y(Mq) =




y1(Mq)
y2(Mq)

...
yM (Mq)


 =




x(M(q − 1) + 1)
x(M(q − 1) + 2)

...
x(M(q − 1) +M)


 (23)

and we study the evolution of y(Mq) for every strictly
positive integer q. It follows that

y(M(q + 1)) =




y1(M(q + 1))
y2(M(q + 1))

...
yM (M(q + 1))


 =




x(Mq + 1)
x(Mq + 2)

...
x(Mq +M)




(24)

Following the logic in subsection 3.1, but with the precise
steps omitted due to space limitations, we obtain that

y(M(s+ 1)) =




FM (FM−1(. . . (F 1(y1(Mq)))))
F 1(FM (. . . (F 2(y2(Mq)))))

...
FM−1(FM−2(. . . (FM (yM (Mq)))))




=




G1(y1(Mq))
G2(y2(Mq))

...
GM (yM (Mq))


 (25)

Note that each GM is a time-invariant nonlinear function.
Due to the complexity of each Gi, we do not reproduce
2 Note that any given s ∈ S can be uniquely expressed by a
given fixed positive integer M , a positive integer q, and positive
p ∈ {1, 2, . . . ,M}, as shown.

their expressions here, but their forms are similar to the
expressions in (18) - (19). The transformed nonlinear
system is expressed as

y(M(q + 1)) = Ḡ(y(Mq)) (26)

The generalisations of Lemma 2 and Theorem 3 are now
given below.

Lemma 6. The following properties of Ḡ(y(Mq)) hold, for
any p ∈ {1, 2, . . . ,M}:
P1 The quantity αj > 0, ∀ j ∈ {1, 2, . . . ,M} if yp(Mq) ∈

∆̃n, for any q.
P2 If yp(Mq) = ei for any i, then Gp(yp(Mq)) = ei, i.e.

the n vertices of ∆n are fixed points of Gp.
P3 The function Gp(yp(Mq)) : ∆n → ∆n is continuous.
P4 There exists at least one fixed point forGp in int(∆n).

Theorem 7. Suppose that Assumption 4 holds. Suppose
further that for some q1, there holds x(M(q1−1)+p) = y∗

p,
where y∗

p ∈ int(∆n) is a fixed point of Gp. Then, for all
s = M(q − 1) + j ≥ M(q1 − 1) + p, q ≥ q1, there holds

x(s) = y∗
j , for any j ∈ {1, 2, . . . ,M} (27)

where y∗
j ∈ int(∆n) is a fixed point of Gj , and y∗

j = y∗
p

for j = p.

The proofs for the above two results are not included here
due to space limitations, and can be found in the extended
arXiv version of the paper (Ye et al., 2017).

4. SIMULATIONS

In this section, simulations are provided which corroborate
and illustrate the statements of Lemma 2, Lemma 6,
Theorem 3 and Theorem 7. The simulated social network
has 8 individuals, with three possible sets of interactions
described by three different irreducible relative interaction
matrices, C1, C2 and C3. Their precise forms (i.e. the
values of the entries of C1, C2 and C3) are omitted due to
space limitations and can be found in the extended arXiv
version of the paper (Ye et al., 2017).

Figure 1 shows the evolution of the individual social
power (self-weight xi(s)) over a sequence of issues for
the periodically switching relative interaction matrices C1

and C2. The initial condition x(s = 1) was generated
randomly. For the same two relative interaction matrices,
Fig. 2 shows the evolution for a second randomly generated
initial condition x(s = 1) different from the first figure.
Figure 3 shows the evolution of x(s) for a social network
that periodically switches between C1, C2 and C3.

Figures 1 and 2 illustrate that Theorem 3 holds. In other
words, x(s) has a periodic solution. Notice from Figures 1
and 2 that even for different initial conditions, x(s) asymp-
totically reaches the same periodic solution. This supports
our conjecture that F̄ has a unique fixed point and that the
fixed point is attractive for all x(s) ∈ int(∆n). Our goal is
to verify this in future work. Figure 3 illustrates the results
developed in subsection 3.3 on generalising to multiple
periodically switching relative interaction matrices.

5. CONCLUSION

In this paper, the DeGroot-Friedkin model has been used
to analyse a social network with dynamically changing net-
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Fig. 1. Evolution of an individual’s self-weight for C1 and
C2.
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Fig. 2. Evolution of an individual’s self-weight for C1 and
C2, different initial conditions.
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Fig. 3. Evolution of an individual’s self-weight for C1, C2

and C3.

work topology described by relative interaction matrices
which are allowed to change between any two consecutive
issues discussed by the social network. In particular, we
have developed results on the evolution of an individual’s
social power (or self-weight). We have shown that when
the relative interaction matrices change periodically, then
an individual’s self-weight admits at least one periodic so-
lution, where the individual’s self-weight is always strictly
positive and less than 1. Future work will focus on ob-
taining a convergence result for the periodic switching
scenario. Beyond this, we aim to generalise the DeGroot-
Friedkin model to allow for arbitrary switching between
irreducible relative interaction matrices.
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T. (2017). On the analysis of the DeGroot-
Friedkin model with dynamic relative interaction ma-
trices. URL https://arxiv.org/abs/1703.04901.
ArXiv:1703.04901 [cs.SI].

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

12413


