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Abstract A 1.2 km thick Paleogene volcaniclastic section at International Ocean Discovery Program Site
351-U1438 preserves the deep-marine, proximal record of Izu-Bonin oceanic arc initiation, and volcano evo-
lution along the Kyushu-Palau Ridge (KPR). Pb/U ages and trace element compositions of zircons recovered
from volcaniclastic sandstones preserve a remarkable temporal record of juvenile island arc evolution. Pb/U
ages ranging from 43 to 27 Ma are compatible with provenance in one or more active arc edifices of the
northern KPR. The abundances of selected trace elements with high concentrations provide insight into the
genesis of U1438 detrital zircon host melts, and represent useful indicators of both short and long-term var-
iations in melt compositions in arc settings. The Site U1438 zircons span the compositional range between
zircons from mid-ocean ridge gabbros and zircons from relatively enriched continental arcs, as predicted for
melts in a primitive oceanic arc setting derived from a highly depleted mantle source. Melt zircon saturation
temperatures and Ti-in-zircon thermometry suggest a provenance in relatively cool and silicic melts that
evolved toward more Th and U-rich compositions with time. Th, U, and light rare earth element enrichments
beginning about 35 Ma are consistent with detrital zircons recording development of regional arc asymme-
try and selective trace element-enriched rear arc silicic melts as the juvenile Izu-Bonin arc evolved.

Plain Language Summary How does subduction of tectonic plates begin, and how does this pro-
cess lead to the formation of new explosive volcanoes on the sea floor? Understanding the early stages of
these important geologic processes is challenging, because their rock record is usually hidden, buried deep
beneath younger rock and sediment. International Ocean Discovery Program Expedition 351 set out to
answer these questions by recovering a continuous, 1.6 km long drill core from beneath the Philippine Sea
floor that contains a rock record of these geologic events. Sedimentary rocks recovered from deep below
the sea floor during the expedition preserve a remarkable record of submarine volcanoes above a new sub-
duction zone. Radioactive isotopes and trace elements in minerals from these sediments reveal a 15 million
year-long account of the growth and evolution of explosive submarine volcanoes.

1. Introduction

Understanding the petrologic evolution of oceanic arc magmas through time is important because these
arcs reveal the processes of formation and early evolution of juvenile continental crust. The compositions of
oceanic arc lavas broadly mimics average granodioritic (andesitic) continental crust (e.g., Taylor, 1967), yet
the common basaltic-andesitic lavas in these settings are typically relatively depleted in lithophile minor
and trace elements compared to average continental crust (Rudnick & Gao, 2004). However, a key character-
istic of many oceanic arcs is the observed increase, inboard from the volcanic front, of incompatible and
especially lithophile element abundances (e.g., Gill, 1981). For example, low K basalts and andesites along
the Izu-Bonin volcanic front in the western Pacific have significantly lower U, Th, Th/U and are depleted in
rare earth elements (REE) compared to medium and high-K rear arc lavas, the latter being comparable to
average granodioritic continental crust (e.g., Hochstaedter et al., 2001; Ishizuka et al., 2003, 2006b; Kimura
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et al., 2010; Tamura et al., 2010; Tani et al., 2015). Therefore, for a full accounting of the genesis of juvenile
continental crust, we need to understand spatial and temporal variations within such geochemically asym-
metrical oceanic arcs that lead to generation of these more enriched silicic magmas in oceanic arc settings.

In this report, we describe the utility of zircons from proximal arc-derived volcaniclastic rocks for constrain-
ing the temporal evolution of silicic rear arc magmas in a prototypical oceanic arc, the Izu-Bonin-Mariana
(IBM) arc system of the western Pacific. Arc-derived forearc, and back-arc volcaniclastic sequences provide
important long-term records of magmatic evolution that complement bedrock sampling of incompletely
exposed arc edifices and dredging of submerged arc surfaces (Arculus et al., 1995; Dickinson, 1974, 1982;
Draut & Clift, 2006, 2013; Gill et al., 1994). Detrital zircon can augment petrographic and bulk geochemical
studies of these arc volcaniclastic rocks because, through analyses of Pb/U and trace elements, zircons pro-
vide closely coupled temporal and geochemical records of silicic melt evolution (Barth et al., 2013; Kern
et al., 2016; Walker et al., 2010).

We describe detrital zircons recovered from proximal volcaniclastic rocks deposited on the distal (relative to
the trench) flank of the early IBM arc, with the goal of quantifying the timing and geochemical nature of
rear arc silicic melt formation following intraoceanic arc initiation. Pb/U ages of detrital zircons recovered at
International Ocean Discovery Program (IODP) Site 351-U1438 provide precise maximum depositional ages
that reinforce shipboard biostratigraphy and magnetostratigraphy of the volcaniclastic sequence. Trace ele-
ment abundances and ratios of these zircons are compared to regional and global zircon suites. These new
data indicate that detrital zircons yield insights into the generation of silicic melts early in the evolutionary
history of the Izu-Bonin oceanic arc. Furthermore, the internally consistent data sets of oceanic arc-derived
zircon generated by this project will form a set of useful geochemical proxies for interpreting detrital zircon
provenance.

2. Geologic Setting

The IBM arc system (Figure 1) has been targeted for studies of oceanic arc evolution because it is one of
several western Pacific intraoceanic arcs initiated �50 Ma (Arculus et al., 2015b; Stern, 2004) and because
of its prominent spatial asymmetry with widespread development of relatively enriched rear arc lavas

Figure 1. Bathymetric map of the eastern Philippine Sea, including the active Izu-Bonin and Mariana arcs—the western
Pacific plate is subducting beneath the active arcs. The Kyushu-Palau Ridge is a 50–25 Ma remnant arc, separated from
the active arcs by spreading between about 25 and 15 Ma in the Shikoku and Parece Vela basins. White stars are IODP
Project IBM sites, and numbered dots are other DSDP and ODP sites. Inset map shows detailed bathymetry of the north-
ern Kyushu-Palau Ridge in the vicinity of Site 351-U1438. Red boxes show the location and 40Ar/39Ar ages (in Ma) of
dredge samples from the northern Kyushu-Palau Ridge (Ishizuka et al., 2011b).
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(Hochstaedter et al., 2000, 2001; Tamura et al., 2009, 2013; Tollstrup et al., 2010). Understanding the IBM sys-
tem has broad significance for global studies of subduction initiation, arc inception, and subsequent arc
evolution. The IBM system shows clear evidence for intraoceanic arc inception in early Eocene time (Ishizuka
et al., 2011a), and geomorphic and geochronologic evidence indicates early oceanic arc evolution is pre-
served in a remnant arc, the Kyushu-Palau Ridge (KPR). The KPR forms the western margin of the Shikoku
and Parece Vela basins, the locus of Miocene rifting that separated the KPR from the modern, active Izu-
Bonin arc (Ishizuka et al., 2011b). Geochemical evidence from volcaniclastic rocks and tephra glasses sug-
gests both spatial and temporal variation in melt chemistry as the arc evolved (Gill et al., 1994; Straub, 2003,
Straub et al., 2015), and geophysical evidence from velocity models indicates arc evolution was associated
with formation of a broadly ‘‘continental’’ (i.e., tonalitic) middle crust in this intraoceanic setting (Kodaira
et al., 2007; Nishizawa et al., 2007; Takahashi et al., 2007, 2008, 2009).

For these reasons, IODP Project IBM identified three drilling targets in the forearc, back-arc, and west of the
KPR remnant arc to elucidate the nature of preexisting arc crust, the subduction initiation process, and
spatial-temporal variations in arc magmatism. Recovering a sedimentary record of early IBM magmatism fol-
lowing arc initiation was one of the key objectives of Expedition 351 in the proximal rear arc of the IBM sys-
tem. 40Ar/39Ar ages of cored and dredged samples suggest volcanism in the KPR was active until 28–25 Ma
(Ishizuka et al., 2011b, Figure 3), and the enriched compositions of many KPR lavas suggest a rear arc affin-
ity. A temporally well-constrained record of initiation and evolution of Paleogene magmatism in the KPR is
important because these magmas more closely approximate juvenile continent crust, and their distinctive
rare earth and high field strength element abundances should be recognizable in high-frequency sampling
of the volcaniclastic record.

IODP Expedition 351 drilling at Site U1438 recovered a basement and sedimentary record of arc initiation
from the Amami Sankaku Basin, the proximal back-arc of the northern KPR (Figures 1 and 2) (Arculus et al.,
2015b). The principal drilling objectives for this site were to characterize the nature of the igneous crust and
mantle prior to IBM arc inception and to characterize the Paleogene compositional evolution of the nascent
IBM magmatic arc utilizing the volcaniclastic record overlying basement. Four stratigraphic units above
basement were cored at Site 351-U1438 (Arculus et al., 2015a; hereafter ‘‘U1438’’ for brevity). Unit I is com-
prised of Oligocene to recent terrigenous and biogenic mud with discrete tephra layers. Units II, III, and IV
are Eocene to Oligocene volcaniclastic rocks, increasingly lithified and hydrothermally altered with depth,
which constitute a �1.2 km thick sedimentary record of KPR arc initiation and evolution. The overall pattern
of upward coarsening through Unit III is interpreted to record building of the early arc edifices. Abrupt fin-
ing of the upper �200 m of the section in Unit II is interpreted to record the waning and demise of the arc
with onset of rifting of the active arc away from the KPR by opening of the Shikoku Basin.

A section comparable to U1438 was recovered on Ocean Drilling Program (ODP) Leg 195 at Site 1201 in the
proximal back-arc of the southern KPR (Figure 1) (Salisbury et al., 2006). Although the section at Site 1201 is
thinner than at U1438, aspects of the sedimentary sequences are strikingly similar (Figure 2). A thin Eocene
pelagic section is overlain by late Eocene through Oligocene volcaniclastic turbidites derived from the KPR,
followed by a transition to late Oligocene and Neogene deep-sea pelagic sedimentation after extinction of
the KPR arc.

3. Sampling

3.1. IODP Sites 351-U1438 and 195–1201
Drill core samples of medium to coarse-grained, massive to laminated sandstones from Units II, III, and IV at
U1438 and Unit II at Site 1201 were collected as 7–10 cm quarter-rounds from working core halves and as
half and whole-rounds from core catcher material. Samples were rinsed and ultrasonicated in deionized
water, cleaned by grinding all cut surfaces with SiC paper, ultrasonicated twice more, and air dried. The
cleaned core samples were disaggregated with a high-voltage electric pulse fragmentation device (SELFRAG
Lab) and zircons were concentrated using conventional panning and purification using methylene iodide.

3.2. IODP Expedition 351 Drilling Mud
Drill core samples may be contaminated by mud added to drilling fluids to sweep and stabilize a borehole
during hard-rock drilling with a rotary core barrel system. JOIDES Resolution used a sepiolite drilling mud
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on Expedition 351 that contained detrital zircons. In order to provide a quantitative framework for evaluat-
ing possible contamination of U1438 drill cores, zircons were recovered from a shipboard sample of this
drilling mud using standard gravimetric techniques.

3.3. Dredge Samples
Intrusive igneous rocks dredged from the KPR and Parece Vela Basin provide monogenetic zircon suites for
comparison with polygenetic populations of detrital zircons. Sample D08B-02 is a 37.5 Ma biotite horn-
blende tonalite dredge sample from the south side of Komahashi-Daini Seamount on the northern KPR, and
was described by Haraguchi et al. (2003). Sample MKH is a 48.5 Ma granodiorite dredge sample from
Minami-Koho Seamount on the northern KPR, and was described by Ishizuka et al. (2011b). We compare
these KPR samples to broadly coeval dredge samples of early Eocene intrusive igneous rocks from Santa
Rosa Bank in the forearc of the southern IBM (Reagan et al., 2013). Between the KPR and the Marianas, sam-
ples D7-002 and D18-002 are 11–12 Ma oxide gabbro and plagiogranite, respectively, dredged from the
Godzilla oceanic core complex, which lies along the southwestern side of the spreading center in the south-
ern Parece Vela basin (Tani et al., 2011a).

4. Analytical Methods

4.1. Secondary Ion Mass Spectrometry
Isotopic compositions and minor and trace element concentrations in zircons were measured by secondary
ion mass spectrometry (SIMS) on the SHRIMP-RG ion microprobe at Stanford University, jointly operated by
the U.S. Geological Survey and Stanford University. Cathodoluminescence images were used to guide
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Figure 2. Graphic lithologic logs for IODP Site 1438 (Arculus et al., 2015b) drilled on Expedition 351 in the proximal back-
arc of the northern Kyushu-Palau Ridge, and the thinner section recovered at ODP Site 1201 to the south (Salisbury et al.,
2006). See Figure 1 for locations. On the site columns, open symbols are drill core samples that did not yield zircon, and
filled symbols yielded one or more detrital zircons.
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selection of analysis points. Isotopic ratios and U, Th, and Pb concentrations were measured using a
�20–30 lm diameter, 3.5–4 nA O2

2 primary beam and data reduction procedures described in Barth and
Wooden (2006) using Squid 2.51 (Ludwig, 2009). Ages based on isotopic ratios were standardized against
Temora-2 zircon (416.8 Ma) (Black et al., 2004). Errors on individual zircon spots are reported at 1 sigma
(supporting information Table S1). Calculated ages are reported as weighted means with 2 sigma standard
error. The grain mounts were lightly repolished and analyzed for a suite of trace elements by SIMS using a
�15–20 lm diameter, 1–2 nA O2

2 primary beam, and analytical and data reduction procedures described
by Barth and Wooden (2010). Trace element concentrations were standardized against Madagascar Green
(MADDER) zircon (supporting information Table S2).

4.2. Laser Ablation Mass Spectrometry
Isotopic compositions and trace element concentrations in zircons from Expedition 351 drilling mud were mea-
sured by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on the Agilent mass spec-
trometer at the University of Tasmania, using methods described by Meffre et al. (2007). Ages based on
isotopic ratios were standardized against 91500 zircon (1062.4 Ma) (Wiedenbeck et al., 1995) and trace element
concentrations were standardized against NIST 610 glass (supporting information Figure S1 and Table S3).

5. Results

5.1. Zircon Geochronology
Zircon is expected to be rare or absent in intraoceanic arcs such as the IBM due to generally high eruption
temperatures of typical lavas and low Zr abundances which require low estimated temperatures of zircon sat-
uration. In consideration of this general observation, our sampling tested the feasibility of recovering detrital
zircons from arc-proximal volcaniclastic rocks in the intraoceanic arc setting at U1438. Zircon is present,
though not abundant. We recovered zircons from 8 of 35 processed samples in Unit III (Figure 2); no zircons
were recovered from our samples of Units II and IV. The zircons are euhedral grains and grain fragments typi-
cally <80 lm in long dimension, but rare euhedral prismatic grains up 250 lm in length were recovered.

The U1438 zircons have Eocene to Oligocene Pb/U ages (43 to 27 Ma; Figure 3). These ages and their associ-
ated trace element compositions are incompatible with drilling contamination but compatible with
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provenance in the KPR oceanic arc. We tested potential contamination during core recovery by analyzing
zircons from the drilling mud used during Expedition 351. This sepiolite-based mud was made up from
lacustrine sediments in Nevada, USA; it contains Neogene zircons derived from the volcanic and plutonic
rocks of the Death Valley part of the Basin and Range province, as well as older grains from local Mesozoic
and Proterozoic crystalline basement rocks (see also Andrews et al., 2016). Our sepiolite mud sample yielded
only a single Oligocene grain and none in the 43–27 Ma (Eocene to Oligocene) age range of U1438 zircons.
In addition, the majority of U1438 zircons have Th/U �0.6 and Yb/Gd >15, which further distinguishes
them geochemically from Neogene zircons in the drilling mud that are typically high Th/U (�0.8–2.8) and
have lower Yb/Gd. We conclude from these data that we recovered zircons that did not result from drilling
contamination.

SIMS geochronology of U1438 detrital zircons is based on 206Pb*/238U ages, with radiogenic Pb (206Pb*)
being corrected for common Pb using measured 207Pb/206Pb (Ireland & Williams, 2003). Calculated
207Pb/206Pb or 207Pb/235U ages are not presented due to low radiogenic yield from such young zircons and
generally low measured U concentrations (80% <100 ppm). We assume that loss of radiogenic Pb is negligi-
ble from these low U zircons. Measured 206Pb*/238U ages increase systematically downcore and there is sub-
stantial overlap in age ranges among grains from nearby cores (Figure 4). Six of the eight samples show a
spread of spot ages in excess of what is expected based on analytical errors alone. We therefore calculated
the weighted mean 206Pb*/238U age of the youngest homogeneous population in these samples (<1.6 Ma
2 sigma; 30 to >50% of analyses) as our best estimate of the maximum depositional age of each core. Cal-
culated maximum depositional ages increase from 28.9 6 0.7 Ma in core D17R at �364 mbsf near the top of
Unit III to 37.2 6 0.9 Ma from core E18R at just below 1000 mbsf (Figure 4 and supporting information Table
S4). We find generally good agreement between these detrital maximum depositional ages and sediment
depositional ages calculated from biostratigraphy and magnetostratigraphy of Unit III. Older grains are also
present in six of eight samples, typically ranging from 2 to 4 million years older than the youngest popula-

tion, but as much as 9 million years older in core D53R.

We also attempted to recover zircon from the thinner Paleogene
volcaniclastic section at Site 1201; however, we recovered only a single
zircon from fifteen processed samples (Figure 2). The zircon, from core
36R at �418 mbsf, yielded a 206Pb*/238U age of 35.0 6 1.1 Ma. Magne-
tostratigraphy indicates an age of �33.0–34.5 Ma for this depth interval
(Salisbury et al., 2002).

The range of U1438 and 1201 detrital zircon ages overlaps with, but
is predominantly older than volcanic rocks recovered from the
northern KPR flanking the Amami Sankaku Basin. 40Ar/39Ar ages of
dredged lavas and shallow core samples from atop the northern
KPR, the inferred source area of U1438 Units II, III, and IV volcaniclas-
tic sediments, lie within the narrow range of 28–25 Ma, similar to
the range of ages of volcanic rocks for the entire KPR (Ishizuka et al.,
2011b). These younger whole rock ages of surface lavas confirm
that the 43–27 Ma zircons in volcaniclastic rocks of the Amami San-
kaku Basin record melts formed during initiation and/or constructive
phases of KPR volcanoes in the northern Izu-Bonin arc system.

5.2. Zircon Minor and Trace Element Geochemistry
Minor and trace element geochemistry of magmatic zircons provide
two key categories of petrologic information that supplements Pb/U
geochronologic data. Zircon compositions reflect the magmatic
environment at zircon saturation, and melt evolution with continued
crystallization toward eruption or complete solidification (Anderson
et al., 2008; Barth & Wooden, 2010; Cooper et al., 2014; Walker et al.,
2010). Trace element abundances and key trace element ratios in
populations of magmatic zircons are also useful for discrimination of
the tectonic environment within which a magma system evolves
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(Grimes et al., 2007, 2015). The geochemistry of detrital magmatic zircons can therefore provide indepen-
dent information on the compositions and tectonic setting of provenance magmatic rocks and can comple-
ment inferences from bulk rock compositions. U1438 detrital zircons are compositionally heterogeneous
within and between core samples, providing insights into the magmatic environment and evolution of melt
compositional diversity of their magmatic provenance rocks. Zircon compositional diversity at U1438 thus
provides an age-controlled record that complements tephra and melt inclusion records of magmatic evolu-
tion in the juvenile Izu-Bonin arc (Arculus et al., 1995; Brandl et al., 2017; Straub, 2003; Straub et al., 2015).

Detrital zircons from U1438 are solid solutions with Hf abundances primarily between 8000 and 11000 ppm
(Figure 5) and REE abundances that are strongly heavy REE-enriched (Ce/Yb< 0.04) with positive Ce and nega-
tive Eu anomalies (0.7–0.3). Ce/Yb values are lower than is typical for continental zircon suites but overlap
with the range of values observed in zircons from mid-ocean ridges. Titanium, Th, and U abundances are
crudely positively correlated with Hf, as is typical for suites of zircons from arc plutonic and volcanic rocks. Ti
concentrations mostly range between 5 and 35 ppm. Th and U abundances are commonly low (<60 and
<100, respectively), at the low end of the range of magmatic zircon values, and Th/U is typically <0.6.
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tion ranges, with greater scatter than observed in most zircon suites from granitic rocks. Data sources for IBM granitic
rocks: Santa Rosa Bank, southern Mariana forearc, 51.5 Ma gabbro from Reagan et al. (2013), 48.5 Ma Koho granodiorite,
and 37.5 Ma Komahashi tonalite from the Kyushu to Palau Ridge (this study).
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Zircons from the 37.5 Ma tonalite at Komahashi-Daini seamount in the northern KPR have broadly similar
ranges of Hf, Ti, and REE abundances (Figure 5). A well-defined negative correlation is observed between Hf
and Eu/Eu* for the tonalite zircons, overlapping with the relatively most fractionated detrital zircons. In com-
parison, the greater scatter in Hf and Ti abundances and Eu/Eu* suggest that the detrital zircons record
growth in melts along multiple evolutionary pathways. Zircons from the 48.5 Ma granodiorite from Minami-
Koho seamount are distinctive when compared to the detrital and Komahashi-Daini tonalite zircons, having
deeper negative Eu anomalies (�0.2) and low Sc (<40 ppm). Gabbro and plagiogranite from the Parece
Vela Basin (Godzilla oceanic core complex) contain zircons with distinctively low Sc, high Nb, and deep neg-
ative Eu anomalies (0.1–0.25) compared to zircons from Amami Sankaku Basin volcaniclastic and KPR intru-
sive rocks.

6. Discussion

The Eocene through Oligocene volcaniclastic sequence of Units II, III, and IV at U1438 constitute a record of
early Izu-Bonin arc evolution, for which the tephra glass record is relatively sparse (Arculus et al., 2015a).
The ages of arc-derived zircons from this study provide maximum depositional ages for multiple core inter-
vals within Unit III, in particular improving the temporal resolution in the lower two-thirds of Unit III for
which age constraints from paleomagnetic data and fossils are more limited and where diagenetic destruc-
tion of primary volcanogenic components is pervasive. Below we discuss how the U1438 detrital zircons as
a group record oceanic arc provenance in their trace element compositions, and how these compositions
record the evolution of compositional asymmetry in the early Izu-Bonin arc.

6.1. Oceanic Arc Provenance of Detrital Zircon
Trace element compositions of zircon populations can be compared to global oceanic zircon data sets to
infer the tectonic setting of the provenance (e.g., Grimes et al., 2007). In this regard, zircons from the Izu-
Bonin arc provide a critical and previously unavailable primitive oceanic arc end-member of magmatic arc-

derived zircons. The depositional setting of Amami Sankaku
Basin volcaniclastic rocks at U1438 and the Pb/U ages of zir-
cons establishes a juvenile oceanic arc provenance for detrital
zircons in this sequence. Following the methodology of
Grimes et al. (2015), linear discriminant analysis of global data
sets of multielement analyses (Figure 6) indicates that detrital
zircons in U1438 volcaniclastic rocks are largely composition-
ally distinct from oceanic zircons formed in mid-ocean ridge
and intraplate tectonic settings, albeit showing some overlap
with the range of mid-ocean ridge zircons, and are also com-
positionally distinct when compared with zircons from conti-
nental arcs. The discriminant functions describing these
distinctions are weighted toward relative differences in Ti, U,
Nb, Sc and the middle to heavy REE. Abundances of these
elements and key ratios can be used to discriminate popula-
tions of zircons from distinctive oceanic tectonic settings
and to discriminate first-order differences among arc tec-
tonic settings.

It should be noted first that the oceanic arc field overlaps the
mid-ocean ridge field (Figure 6). In this analysis, the distinc-
tion of intraoceanic arc from mid-ocean ridge and continental
arc zircons depends strongly on Sc abundances to separate
arc-derived from mid-ocean ridge zircons. For most other
trace elements and ratios intraoceanic arc, zircons lie within
the range of mid-ocean ridge zircon compositions or exhibit a
transitional signature toward more enriched continental arcs.
An example of this tendency is that the mid-ocean ridge zir-
con array has median values for U/Yb and Th/Yb of 0.07 and
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0.04 while median values for the Izu-Bonin arc zircons are 0.12 and 0.06, respectively, lying within the upper
part of the mid-ocean ridge array (Figure 7). Ce/Yb also shows a transitional signature in REE enrichment
from mid-ocean ridge to arc data arrays. Thus the overall compositional signature of intraoceanic arc zir-
cons, when compared to mid-ocean ridges, clearly shows that the melts from which these arc zircons crys-
tallized were produced from comparably depleted sources. While these arc melts are modestly enriched
with respect to the bulk mid-ocean ridge composition, this enrichment is not enough to produce zircon
compositions that are always distinct from those of mid-ocean ridge zircons.

In a practical sense then, a continuum of zircon compositions is observed from mid-ocean ridges through
intraoceanic arcs toward a variety of continental arc settings. We illustrate the differences between these intra-
oceanic and continental arc zircon suites using ratios of trace elements that are sensitive to slab contributions
to arc magmas but minimize the effects of fractionation, following the empirical approach used for volcanic
rocks (Grimes et al., 2015; Pearce, 1982; Pearce & Peate, 1995). Nb represents a conservative element in arc sys-
tems, as it is conserved in the slab and not transferred to arc melts, and U represents a nonconservative ele-
ment that records slab contributions to arc magmas. In the Nb/Yb versus U/Yb diagram (Figure 8a) mid-ocean
ridge and intraplate zircons define the main oceanic zircon array, reflecting relative mantle source enrichment
in both U and Nb. In the context of the oceanic array, zircons from the Godzilla oceanic core complex in the
Parece Vela Basin record formation from melts with intermediate enrichment in these elements, consistent
with the compositions of Parece-Vela Basin lavas (Hickey-Vargas, 1991). In contrast, U1438 detrital zircons lie
mainly within and above the main oceanic zircon array, reflecting modest U enrichment and Nb depletion of
the melts from which these zircons formed in comparison to zircons crystallized from melts in mid-ocean
ridge and back-arc basin settings. The oceanic arc data define a compact field at U/Yb about 0.05–0.25, reflect-
ing a transitional compositional character between mid-ocean ridge zircons and those from modern continen-
tal arcs with relatively higher U/Yb (�0.3–5.0). The well-known range of lithophile element enrichment among
arc suites from distinct arc tectonic settings is illustrated for zircons in the Hf versus U/Yb diagram (Figure 8b).
Here the U1438 detrital zircons and zircons from dredge samples of KPR tonalite and granodiorite, originating
in a relatively primitive low K oceanic arc system, are significantly less enriched than zircons from medium to
high-K continental arcs settings illustrated by zircons from the modern North American Cascades and South
American Andes. We conclude that U/Yb in populations of zircons is a sensitive indicator of the nonconserva-
tive element enrichment in host arc melts, and the low U/Yb and Nb/Yb in U1438 zircons is consistent with
the juvenile oceanic arc provenance inferred for Unit III.

Low Sc abundances and Sc/REE are typical of zircons from mid-ocean ridge and oceanic intraplate settings,
when compared to a global data set of arc-derived zircons (Grimes et al., 2015). U1438 zircons generally
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have Sc> 40 and Sc/Gd> 1, typical of arc zircon suites and having limited compositional overlap with mid-
ocean ridge zircons (Figure 9). Discrimination of oceanic arc-derived zircons from other oceanic zircon sour-
ces by Sc/REE may be generally applicable due to the relatively extensive fractionation required to saturate
mid-ocean ridge melts in zircon, suggesting that many arc melts are not extensively fractionated at the point

of zircon saturation.

6.2. Silicic Melt Provenance of Detrital Zircon
The Izu-Bonin arc, like other intraoceanic arcs, is typified by
alkali-poor and relatively low Zr melts and a scarcity of magmatic
zircon. Zircon has been reported, however, in several tuffs recov-
ered by Expedition 350 in the proximal Izu-Bonin rear arc (Schmitt
et al., 2017), in Late Miocene dacite from the Izu Peninsula, and in
the 37.5 Ma Komahashi-Daini tonalite (Tani et al., 2010, 2011b).
The provenance of U1438 detrital zircons in terms of the petro-
logic character of host melts provides insights into the genesis
of Zr-saturated magmas in the Izu-Bonin arc.

Comparison of zircon saturation temperatures of IBM melts with
Ti abundances in detrital zircons provides constraints on the tem-
perature and composition of the detrital zircon host melts.
Incompatible alkalis and Zr are concentrated in fractionating
melts, yielding progressively higher estimated temperatures for
zircon saturation using the silicate melt saturation model of Wat-
son and Harrison (1983; see also Boehnke et al., 2013). Model sat-
uration temperatures for typical IBM low-K arc front lavas are
<7508C using this melt model, but model temperatures are as
high as �8508C for medium-K, Zr-richer rear arc lavas (Figure 10).
Zircon saturation is therefore unlikely in high temperature inter-
mediate to silicic arc-front lavas (900–11008C in silicic andesite to
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rhyolite) (de Moor et al., 2005; Shukuno et al., 2006). Zircon saturation is possible, however, in relatively
cooler, hydrous. and fractionated silicic lavas and intrusions—particularly those with Zr-enriched rear arc
melt compositions. Titanium concentrations in zircons provide model crystallization temperatures that may
be compared to these ranges of melt saturation temperatures (Watson et al., 2006). Because the melt sour-
ces of the detrital zircons are not known, we calculated model zircon-melt temperatures using the calibra-
tion of Ferry and Watson (2007) with aSiO2 and aTiO2 ranging from 0.7 to 1.0., within the range of calculated
titania activities in felsic melts that are consistent with the zircon thermometer (Hayden & Watson, 2007).
Maximum temperatures are calculated at the highest Ti abundances and silica activities. Ti abundances in
detrital zircons range from 6 to 30 ppm; maximum model temperatures based on these abundances using
the thermometer of Ferry and Watson range from �830 to 8708C, reflecting both a range in Ti abundances
and a range in reasonable values for silica activity less than unity (Figure 10). Igneous zircons from
Komahashi-Daini tonalite yield slightly lower maximum temperature ranges of �770–8108C. These model
results support a hypothesis that U1438 detrital zircons were derived from saturated KPR melt hosts with
rear arc compositional affinity, melts that were Zr-rich, silicic, and relatively cool compared to modern arc
front lavas. Dacite tephras in modern arc systems that are zircon-bearing (e.g., Pinatubo, San Pedro, >3000
y.b.p. Mount St. Helens dacites) are medium to high K and yield experimentally verified temperatures of
780 to 8508C, and these cool silicic melts are characterized by high water contents and oxygen fugacities
(NNO 11 to 13) (Costa et al., 2004; Gardner et al., 1995; Geschwind & Rutherford, 1992; Rutherford &
Devine, 1996; Scaillet & Evans, 1999). The range of model temperatures for Izu-Bonin zircons support a prov-
enance for detrital zircons in such cool and hydrous silicic melts.

Detrital zircon REE abundances suggest growth in melts with flat to slightly REE-enriched compositions, an
observation that further supports a rear arc affinity for the host melts. Chondrite-normalized REE abundan-
ces of host melts were calculated using dacite-melt partition coefficients, and model average melt REE pat-
ters were calculated for each time interval in Unit III from which zircons were recovered (Figure 11).
Chondrite-normalized model melt compositions have rather flat middle and heavy REE and are modestly
light REE-enriched, especially after 35 Ma, with average chondrite-normalized Nd/Yb �1–3. The light REE-
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enriched model melts are similar to KPR and modern Izu-Bonin rear arc dacites and rhyolites, and to 29–30
Ma plagioclase and clinopyroxene-hosted dacitic to rhyolitic melt inclusions from U1438 (Nd/Yb �1.5–2.5)
(Brandl et al., 2017).

6.3. Juvenile Arc Evolution Recorded in Detrital Zircon Ages and Compositions
Regional turbidite and tephra records for the Izu-Bonin arc system indicate diverse magma types have
erupted during initiation and building of the arc, including dacite and rhyolite (Arculus et al., 1995; Gill
et al., 1994; Straub, 2003; Straub et al., 2015). The KPR-IBM arc system initiated by infant arc spreading and
eruption of highly depleted arc basalt and boninite above the foundering Pacific Plate from �52 to 44 Ma
(Arculus et al., 2015b; Ishizuka et al., 2006a). Building of the juvenile oceanic arc from �42 to 28 Ma is
recorded by early eruption of low-K, high-Mg andesite, followed by arc tholeiitic basalt and andesite as
deep subduction became well established beneath the arc after 37 Ma (Brandl et al., 2017). KPR whole rock
data, tephra glasses, and melt inclusions from U1438 volcaniclastic rocks indicate arc asymmetry developed
�37–35 Ma with eruption of medium-K rear arc andesite, along with less common dacite and rhyolite
(Brandl et al., 2017; Ishizuka et al., 20011b; Straub et al., 2015). Slab rollback and intra-arc rifting beginning
�28 Ma stranded the KPR remnant arc east of the Shikoku and Parece Vela back-arc basins.

At U1438 in the Amami Sankaku Basin, the �52–44 Ma infant arc stage is represented by igneous basement
(Unit 1) and overlying clastic rocks of Unit IV and lowermost Unit III. No detrital zircons have yet been recov-
ered from these intervals. However, 51.5 and 46.5 Ma intrusive rocks from Santa Rosa Bank in the Mariana
forearc and 48.5 Ma granodiorite from Minami-Koho seamount in the northern KPR yielded magmatic zir-
cons crystallized during the infant arc stage (Ishizuka et al., 2011b; Reagan et al., 2013). Zircons from 51.5
Ma gabbro are compositionally distinctive with a wide range in Hf and deep negative Eu anomalies com-
pared to younger detrital zircons (Figure 5). Zircons from the younger (46.5 Ma) Santa Rosa tonalite are
compositionally more similar to zircons from younger late Eocene intrusive rocks and to U1438 detrital zir-
cons (M. Reagan, personal communication, 2017), suggesting crystallization from melts that were not as Zr-
depleted and/or extensively fractionated prior to zircon saturation. Although the data are limited in number,
these zircons are compositionally transitional between mid-ocean ridge and magmatic arc in geochemical
character and illustrate that zircon compositional data may be able to capture the boninitic infant arc stage
of magmatism.

Detrital zircons were recovered from most of Unit III, and their 16 million year age range represents nearly
the full inferred duration of the juvenile stage of Izu-Bonin oceanic arc magmatism (Arculus et al., 2015b;
Figure 2). Ages ranging from 43 to 27 Ma indicate that zircon-saturated melts formed in the KPR arc
throughout Unit III time, but our data suggest such melts became progressively more common after 35 Ma,
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during deposition of the last two coarsening-upward packages generated immediately prior to rifting and
demise of the KPR arc. Detrital zircons show significant variations in trace element compositions with time
in Unit III (Figure 12). Trends in zircon composition are illustrated relative to a baseline zircon compositional
group, present throughout, defined by low U concentrations (�60 ppm). Compared to this baseline low-U
trend, zircon compositions became more varied and enriched between about 35 and 30 Ma. These more
enriched compositions include especially higher concentrations of lithophile elements U and Th, and light
REE. In contrast to these incompatible elements, the more compatible elements Ti and Sc do not show com-
parable enrichments.

The transition in compositions of detrital zircons at �35 Ma reflects an increase in the frequency of occur-
rence of enriched compositions that can be explained by generation of relatively enriched melts of rear arc
affinity. There is little evidence that the range of trace element abundances and ratios are primarily con-
trolled by the extent of in situ fractionation of the host melts. Although trace element ratios such as U/Yb,
Th/U and Ce/Yb show significant increase in average values between 35 and 30 Ma, reflecting Th, U, and
light REE enrichment, the range and average Hf solid solution show little change through time (Figure 12).
This observation suggest that nonconservative, incompatible trace element ratios of the detrital zircons
record a shift toward more enriched silicic melt compositions in the early Izu-Bonin arc beginning at about
35 Ma.
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The detrital zircon record of juvenile Izu-Bonin silicic magmatism at site U1438 supports and supplements
the existing record from whole rock lavas and melt inclusions. The volcanotectonic model of Ishizuka et al.
(2011b), based primarily on basalt and andesite whole rock data, suggests that arc asymmetry developed
after 40 Ma and persisted until the timing of rifting and demise of the Izu-Bonin (Kyushu-Palau) juvenile arc.
Clinopyroxene and plagioclase-hosted melt inclusions from U1438 volcaniclastic rocks are primarily basaltic
to andesitic as well, although dacitic to rhyolitic melt inclusions are more abundant in 31–29 Ma cores
(Brandl et al., 2017). The melt inclusion record indicates diverse melts, some with rear arc affinity, were gen-
erated as the juvenile arc evolved after 37 Ma. The temporally well-constrained detrital zircons are consis-
tent with and supplement these data sets, recording generation of variably enriched silicic melts over the
�16 Ma life of this juvenile oceanic arc. The most enriched zircon-saturated melts are evident after 35 Ma,
and these zircon data provide support for models of well-developed arc asymmetry from �35 to 28 Ma that
are based on lava and melt inclusion records.

7. Conclusions

Detrital zircons recovered from proximal back-arc volcaniclastic sandstones record infant and juvenile
stages of the IBM arc. Pb/U maximum depositional ages reinforce shipboard biostratigraphy and magneto-
stratigraphy of the volcaniclastic sequence, indicating that zircons were generated in the juvenile arc stage
and delivered promptly to the proximal back-arc site of deposition. Trace element abundances and ratios of
these zircons have key similarities and differences when compared to regional and global oceanic zircon
suites. Detrital zircons span the compositional range between zircons from mid-ocean ridge gabbros and
zircons from relatively enriched continental arcs, as predicted for melts in a primitive oceanic arc setting
derived from a highly depleted mantle source. Melt zircon saturation temperatures and Ti-in-zircon ther-
mometry suggest a provenance in cool and silicic melts that evolved toward more Th and U-rich composi-
tions after about 35 Ma. These temporal trends in detrital zircon compositions suggest regional arc
asymmetry characterized by enriched rear-arc silicic melts developed at this time in the evolutionary history
of the juvenile IBM arc.
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