https://doi.org/10.3354/meps12346

Vol. 583: 95-106, 2017 MARINE ECOLOGY PROGRESS SERIES

Mar Ecol Prog Ser

Fei©®

Gall-forming protistan parasites infect southern
bull kelp across the Southern Ocean, with
prevalence increasing to the south
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ABSTRACT: Protistan pathogens can have devastating effects on marine plants, yet the processes
that affect their distributions and infection intensities are poorly understood. Species within the
brown algal genus Durvillaea are major ecosystem engineers throughout the sub-Antarctic and
cold-temperate Southern Hemisphere, and a newly described genus of protistan parasite,
Maullinia, was recently found infecting D. antarctica in Chile. We set out to address 3 key ques-
tions. (1) Is there evidence for trans-oceanic dispersal of Maullinia? (2) Does Maullinia infect other
Durvillaea species? (3) Does infection prevalence vary throughout the hosts’' ranges? We sampled
Maullinia on Durvillaea populations along coasts in Chile (D. antarctica, from 32° to 42°S: 8 sites),
Australia (D. potatorum and D. amatheiae, from 36° to 38°S: 5 sites) and sub-Antarctic Marion
Island (46°53"'47" S, 37°43' 32" E). We used a genetic marker (18S rRNA) to verify the presence of
Maullinia on Durvillaea at all sites and visual surveys of Maullinia galls to assess infection preva-
lence in Chile and Australia. We confirm that Maullinia infects Australian Durvillaea species, but
our results indicate that each host species is parasitised by a different Maullinia lineage. Maullinia
infection prevalence increased with latitude. Long- and short-distance dispersal events are
inferred to have occurred based on genetic patterns. We conclude that Maullinia protists are
broadly distributed and affect multiple host species, including at least 3 Durvillaea species (2 in
Australia, and 1 in both Chile and Marion Island), and that environmental factors influence host
susceptibility to infection.
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INTRODUCTION

The infection intensities and geographic ranges of
many parasitic organisms are expected to increase
under forecast scenarios of environmental change
(Eggert et al. 2010, Gleason et al. 2013). These in-
creases may prove devastating where infections
affect keystone species at low trophic levels, even
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potentially leading to ecosystem collapse (see Mou-
ritsen et al. 2005, Collinge et al. 2008). As such,
understanding the factors shaping parasite biogeog-
raphy and patterns of infection is an important part of
predicting how ecosystems will respond to global
environmental change.

Large algae (e.g. kelps) are critical components of
many shallow marine ecosystems as both food and
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habitat for diverse organisms (Jones et al. 1997). The
susceptibility of marine algae to pathogen infection
can be influenced by factors including population
density, tissue damage and life stage (Andrews
1976). Analyses of kelp pathosystems have also re-
vealed evidence for a molecular basis to host resist-
ance, whereby some species or genetic lineages of
marine algae are more prone to infection than others
(Carius et al. 2001, Gachon et al. 2009, 2010). Marine
pathogen and parasite infections may increase along
environmental gradients (e.g. depth, longitude and
latitude), and their distributions and intensities can
indicate dispersal routes and barriers, and biogeo-
graphical regions (Rohde 2002).

Durvillaea is a brown algal genus comprising large,
keystone species inhabiting rocky intertidal and
shallow subtidal shores in the Southern Hemisphere.
In Australia, 2 Durvillaea species occur: D. amatheiae
is found along the south-eastern coasts of New South
Wales, Victoria and Tasmania, and D. potatorum
along the coasts of eastern South Australia, western
Victoria and Tasmania (Fraser et al. 2009, Weber et
al. 2017). D. antarctica is not found in Australia but
has a broad, circumpolar distribution that includes
the sub-Antarctic islands, New Zealand and much of
the coast of Chile (Fraser et al. 2010). The species is
highly buoyant and dispersive, and has previously
been inferred to have transported an endophytic
algal parasite, Herpodiscus durvillaeae, across the
Pacific Ocean (Fraser & Waters 2013).

Maullinia is a recently identified genus of phyto-
myxean parasite that can infect several brown algal
genera including Macrocystis, Ectocarpus and Aci-
netospora (Maier et al. 2000, Goecke et al. 2012). The
microscopic organisms produce motile zoospores
which disperse and infect new hosts, causing gall-
like hypertrophies of host tissue (Neuhauser et al.
2011). The production of resting spores may enable
the parasite to disperse long distances and survive
adverse conditions (Neuhauser et al. 2011). While
some research has described phytomyxids, including
Maullinia, as parasites that infect hosts without
directly leading to mortality (Neuhauser et al. 2014),
on flexible species such as D. antarctica the forma-
tion of galls has been suggested to reduce the host's
ability to survive in high-energy wave environments
(Eggert et al. 2010). In laboratory cultures, Maullinia
ectocarpii was also found to heavily infect the game-
tophytes of algal species such as Macrocystis pyrifera
(Maier et al. 2000), which could reduce the reproduc-
tive potential of its host. The host range, life cycle
and infection pathway of M. ectocarpii are relatively
well characterised, but the factors shaping its

virulence in natural populations are not. The only
Maullinia recorded on Durvillaea appears likely to
be a newly recognised species (‘Maullinia sp.' in
Goecke et al. 2012; now M. braseltonii: Muria et al.
2017). Although Australian Durvillaea populations
have not yet been confirmed to host Maullinia, galls
resembling those of the parasite were observed at
Sorrento in southern Australia several decades ago
(Jahnke 1978), and samples of M. ectocarpii were
confirmed by Maier et al. (2000) on local populations
of Ectocarpus siliculosus.

D. antarctica is able to raft long distances and has
even been known to wash up on Australian shores,
1000s of km from the nearest source population
(Moore & Cribb 1952). We hypothesised that Maul-
linia would thus have a broad distribution and that
distant populations—possibly even those affecting
other host species—would show evidence of connec-
tivity. We further hypothesised that infection preva-
lence would vary along latitudinal gradients, with
the greatest infection prevalence toward the north-
ern limits of the hosts’ ranges, where kelps are most
physiologically stressed (e.g. Tala et al. 2016). We
tested these hypotheses using ecological and genetic
surveys of infected Durvillaea along the southern
Australian and southern-central Chilean coasts.

MATERIALS AND METHODS
Sample collection

Sampling was conducted in Australia, Chile and
sub-Antarctic Marion Island (Fig. 1). Australian sam-
pling and surveys were carried out at 5 sites: Tathra,
City Rock, Mallacoota, Cape Conran and Cape
Schanck. In Chile, intertidal sampling was carried
out at 8 sites: Pichicuy, Quintay, Pichilemu, Cura-
nipe, Queule, Chaihuin, Hua Huar and Pumillahue.
Infected tissue from Marion Island was collected
opportunistically from 3 sites: Macaroni Bay, Trypot
Beach and Rockhopper Bay. All sampling occurred in
late spring and summer 2015/16. For visual quantifi-
cation of infections in the field (Australia and Chile
only), morphological identification of galls was based
on descriptions in Aguilera et al. (1988), Jahnke
(1978) and Goecke et al. (2012). Infection prevalence
was quantified along a series of 10 m transects. Num-
bers of kelp transect™! varied within and between
sites, leading to differing sample sizes at each loca-
tion (Table 1). Three transects site™! were surveyed in
Australia, and 3 to 5 transects site™! were surveyed in
Chile, depending on the extent and accessibility of
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Fig. 1. (A) Global projection of Antarctica and sub-Antarctic areas, showing the main marine currents and the location of

sub-Antarctic Marion Island. The study areas on (B) the Australian coast, (C) the Chilean coast and (D) Marion Island and

their local marine currents are also indicated. Black dots indicate sampling and survey sites. The geographic distribution of
Durvillaea antarctica along the Chilean coast is indicated

Table 1. Sampling and sequencing information for intertidal sites visited

Country Site Individuals Samples Samples Samples Number of
surveyed collected amplified sequenced unique sequences

Australia Tathra 63 8 4 4 2
City Rock 63 2 2 2 1
Mallacoota 79 9 9 9 1
Cape Conran 64 7 4 3 1
Cape Schanck 125 12 7 4 2

Chile Pichicuy 112 4 1 1 1
Quintay 133 17 8 4 2
Pichilemu 158 10 4 4 4
Curanipe 76 4 3 2 1
Queule 164 2 2 2 2
Chaihuin 144 24 14 5 3
Hua Huar 317 24 13 7 4
Pumillahue 145 32 18 7 4

kelp beds. Transect lines were laid on rocky plat-
forms partially or completely emergent at low tide.
As Durvillaea species often inhabit fragmented rocky
platforms composed of a number of reefs separated
by water, it was not always possible to lay transects

parallel to one another. Rather, they were laid on the
edges of such platforms, separated by at least 2 m if
on the same platform, where kelp are likely to expe-
rience similar exposure to environmental factors
between sites. The number of healthy and diseased
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kelp were counted on each transect, with only those
plants whose stipe intercepted a transect being con-
sidered. To confirm the presence of Maullinia at each
site (as other organisms are known to produce gall-
like structures on D. antarctica in Chile; Saavedra
2011), and to enable phylogeographic analyses, tis-
sue samples for genetic analysis were collected from
galls from every third infected kelp. Samples were
placed in a 50 ml Eppendorf tube filled with 70%
ethanol, with the alcohol replaced once after several
hours. After 24-48 h, samples were either air-dried
on clean paper towel or in an oven at 60°C for several
hours, then stored with silica gel.

In order to determine the rafting potential of Maul-
linia, we examined recently stranded specimens of D.
antarctica on 33 sandy and boulder beaches along
the Chilean coast (28—-42°S) during austral winters
and summers of 2 consecutive years (2014-2015)
across the benthic and pelagic geographical range of
the continental clade of D. antarctica (Fig. 1C). Within
each beach, recently stranded individuals of D.
antarctica were collected on foot following the coast-
line along the most recent flotsam lines (i.e. the last
2-3 high tides). For each complete kelp individual
(including holdfast and fronds), the presence of galls
of Maullinia was determined, and the frequency of
infected specimens was calculated. The details of the
sampling protocols used for collection and measure-
ment of stranded specimens of D. antarctica are
described in Lépez et al. (2017a).

Genetic analyses

Small (<2 mm) pieces of infected, dried kelp tissue
were excised using a scalpel sterilised with alcohol
and flame, and DNA was extracted following the stan-
dard Chelex© protocol (Walsh et al. 1991). Extrac-
tions were diluted 1:100 in MilliQ water to reduce the
possibility of alginates blocking PCR processes (see
Wilson et al. 2016). PCR amplification was conducted
in a 20 pl solution, comprising 12.5 pl MilliQ water,
0.2 pl each of forward and reverse 10 mM primers,
4 pl of 1 mM dNTPS, 0.1 pl of PerfectTaq polymerase,
2 yl of PerfectTaq buffer (5Prime) and 1 nl of diluted
DNA extraction. Maullinia-specific primers that
would not amplify host DNA were used: Mau2F
(5'ACGGGTACGAGGGACGTGGG) and Mau9R
(6' TGCATCAGTGTAGCGAGCGT) (Goecke et al.
2012). These primers amplified part of the 18S
nuclear ribosomal gene, which is used for taxonomic
identifications, descriptions of variation between
populations of differing geographical origin and

analyses of protist phylogenetic relationships (Paw-
lowski et al. 2012, Hadziavdic et al. 2014, Wang et al.
2014). PCRs were run in an Eppendorf Mastercycler
(Epgradient S) using the Maullinia Touchdown pro-
tocol of Goecke et al. (2012). PCR products were puri-
fied using a QIAQuick PCR Purification Kit (Qiagen)
to be sent for sequencing at the University of Otago's
Genetic Analysis Services (Otago, New Zealand),
using an Applied Biosystems 3730xl capillary se-
quencer (Thermo Fisher Scientific).

Phylogenetic analyses

Sequences were aligned and trimmed, and ambi-
guities were corrected in Geneious 6.1.8 (Kearse et
al. 2012). Two published sequences, i.e. 1 from M.
ectocarpii on Ectocarpus alga in Chile and 1 from
Maullinia sp. (now M. braseltonii) on D. antarctica
in Chile, were included in the alignment alongside
related outgroup sequences from GenBank (Phago-
myxa odontellae AF310904; Spongospora subter-
ranea AF310899). Haplotype networks were created
using TCS 1.21 (Clement et al. 2000).

The most appropriate model of DNA evolution was
determined using jModeltest2 (Darriba et al. 2012)
according to Akaike's information criterion adjusted
for small sample sizes (AICc). Model parameters
were: TtN+G (gamma shape 0.4240, proportion inv
sites 0). The maximum likelihood (ML) phylogenetic
tree was constructed in PhyML 3.0 (Guindon et al.
2010) with support for nodes determined using 1000
bootstrap iterations. The Bayesian phylogenetic tree
was constructed in MrBayes 3.2.0 (Ronquist & Huel-
senbeck 2003) with Markov chain Monte Carlo
(MCMC) searches of 4 chains and burn-in of 10000
trees. Trees were sampled every 100 generations for
a total of 5000000 generations.

Ecological analyses

Testing for latitudinal effects in infection preva-
lence using a binomial model showed over-dispersion,
so a negative binomial distribution with a logarithm
link function (Lawless 1987) was used instead. Mod-
elling was based on the number of infected kelps
transect™! by latitude, offset by the natural log of total
kelp due to variability in total numbers of kelp tran-
sect™!. Data from Chile and Australia were tested
separately. Likewise, to verify the relationship of
the frequency of stranded individuals of D. antarctica
with M. braseltonii and latitude, analyses were per-
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formed using generalised linear models (GLMs) for
the total and for each field survey separately, offset
by the natural log of the total number of sampled
kelps. The model used was:

model =
glm.nb (count of infected individuals ~ latitude +
offset (log(total individuals per beach)), data = data).

All statistical tests were done with R 3.4., using the
‘MASS' and 'visreg' packages (R Development Core
Team 2017).

RESULTS

Infections of Maullinia braseltonii in Chile and
Marion Island were similar in shape, size and colour
to those described by Goecke et al. (2012) and
Aguilera et al. (1988); gall diameters ranged from 2 to
15 cm. Infections in Australia were smaller than their
Chilean counterparts, ranging in diameter from 1 to
5 cm. Infected tissue had a warty appearance, raised
and tougher than surrounding areas and often show-
ing concentric rings of discolouration.

Sequencing confirmed Maullinia infections on
Durvillaea at all intertidal sites visited in Australia
(Fig. 2) and Chile (Fig. 3), as well as from the 3 Mar-
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ion Island sites. Successful amplification of tissue
collected from galls was not always achieved (~60 %
success in Chile, ~70% in Australia, ~50 % Marion
Island; Table 1), but some amplification failure is
common in PCR, particularly for algal extractions
that include inhibitors (Wilson et al. 2016). Further-
more, the primers we used were developed for M.
ectocarpii, and although they also amplify M.
braseltonii, there might be other Maullinia or re-
lated phytomyxean species affecting these kelp
populations that our primers could not detect. In an
attempt to improve our capacity to detect other spe-
cies and resolve fine-scale structure for Maullinia,
we designed and assayed a range of other primers
for alternative markers based on available sequences
from other genera (though few such sequences
were available), but none performed well and all
were therefore discarded (see Table S1 in the Sup-
plement at www.int-res.com/articles/suppl/m583p095
_supp.pdf). New sequences recently published for
M. ectocarpii (see Schwelm et al. 2016) may assist in
future primer development. Based on the morpho-
logical similarity of amplified and non-amplified
infections, and the confirmation of Maullinia at
all sites, we considered visual field identifications
adequate for analyses of infection prevalence. Each
unique sequence generated during this research
was deposited in GenBank (accessions MF872442—
MF872453).

Phylogenetic analyses

We obtained Maullinia sequences from 54 samples
from 8 intertidal sites in Chile and 5 intertidal sites in
Australia, with 12 distinct sequences detected (8 se-
quences from 32 samples in Chile, and 4 sequences
from 22 samples in Australia). Ten samples were
sequenced from Marion Island. The 18S ML and
Bayesian phylogenetic trees showed strong consis-
tency in overall topology and branch support (Fig. 4).
No sequences were shared between Australia and
Chile, although the published M. ectocarpii se-
quence of Maier et al. (2000) from Chile was closely
related to Australian Maullinia (Fig. 2). All sequences
from Marion Island were identical to sequence MC4
from M. braseltonii, which is widespread in Chile
(Figs. 3 & 4). There was up to 0.3 % divergence (un-
corrected P distance) within each country, and
2.4-2.6 % between the 2 countries.

Australian sequences appeared to show separation
into eastern and western groups, with sequence MA1
being present at all eastern sites and MA4 being
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Fig. 4. Maximum likelihood phylogeny of Maullinia samples
collected in Australia, Chile and Marion Island. Haplotype
colours correspond to those in Figs. 2 & 3. Bootstrap values
>75% are shown above major branches and Bayesian poste-
rior probabilities below. Outgroups have been trimmed for
clarity. Two previously published sequences of Maullinia
(M. ectocarpii from an Ectocarpus host in Chile, Maier et al.
2000; and M. braseltonii from a Durvillaea host in Chile,
Goecke et al. 2012) were included. To the right of the tree,
vertical text indicates host Durvillaea species and geo-
graphic region. Top inset photo: relatively small Maullinia
gall on D. antarctica tissue from Quintay, Chile. Bottom in-
set photo: galls on D. antarctica at Marion Island in 2007
(observed a decade prior to this genetic research)

most abundant at Cape Schanck (Fig. 2). No se-
uences were shared between eastern and western
areas, corresponding to the geographical distribu-
tions of different host species described by Weber
et al. (2017); however, a greater number of samples
would be needed to confirm if this trend was not
simply a result of the relatively small number of
pathogen sequences.
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In Chile, the 3 most abundant sequences (MC1,
MC3 and MC4) were found across large parts of
the host's range, from the southernmost to northern
sampled regions. Sequence MC4 exactly matched
the published sequence of Maullinia sp. (Goecke et
al. 2012; now M. braseltonii: Muruaa et al. 2017) and
sequences from Marion Island (Fig. 4). There was
greater overall diversity in the Chilean than the Aus-
tralian samples, but there was also a strong positive
relationship between number of unique sequences
detected and number of samples sequenced at sites.

Latitudinal effects

For Australia, GLMs supported latitude as being a
significant predictor of infection prevalence (p =
0.015), with numbers of infected kelp increasing
towards higher latitudes (Fig. 5). For Chile, infection
prevalence also appeared to increase with latitude,
but the relationship was not significant. Data from
Quintay, however, had a marked influence on the
strength of the relationship, and when Quintay data
were excluded, latitude was a strong predictor (p <
0.001) of infection prevalence.

In the case of recently stranded individuals of D.
antarctica from continental Chile, a positive and sig-
nificant relationship between the frequency of indi-
viduals infected with M. braseltonii and latitude was
observed for the total of all surveys (p < 0.001), as
well as for each individual survey (winter 2014, p =
0.002; summer 2014/2015, p < 0.001; winter 2015, p <
0.001; summer 2015/2016, p = 0.005; Fig. 6).

DISCUSSION

Our results confirm, for the first time, infections of
Maullinia ectocarpii on populations of Durvillaea (D.
potatorum and D. amatheiae) in Australia. Different
parasite lineages were found associated with each
algal host species, suggesting some host specificity.
Infections of M. braseltonii were found on D. antarc-
tica throughout central Chile and at Marion Island
more than 8000 km away, indicating that recent
long-distance dispersal of the parasite has occurred,
presumably by dispersal with its buoyant algal host.

Our hypothesis that infections would be greatest
toward the northern range limits of the hosts was not
supported by our results. Environmental gradients do
appear to influence infection levels, however, as we
observed a pattern of increased parasite prevalence
with increasing latitude.

o

Infection incidence (Linear predictor of # infected per transect)

-32 -34 -36 -38 -40 -42
Latitude

Fig. 5. Relationship of latitude to infection prevalence (num-
ber of infected kelp transect™, offset by the natural log of to-
tal kelp) in (A) Australia and (B) Chile. Trendlines are pre-
sented with 95% confidence intervals (shaded). For Chile,
infections recorded from transects at a single site, Quintay
(indicated by filled blue dots), had a strong influence on the
trend (dashed blue line). When Quintay data were removed
from analyses, the general trend of decreasing infection with
decreasing latitude was strongly emphasised (black line)

Genetic trends for Maullinia

The 2 deeply divergent (2.4-2.6 %, Fig. 4) clades
appear to represent distinct species: M. ectocarpii
in Australia and M. braseltonii in Chile and Marion
Island.

Within-country genetic patterns, with identical se-
quences detected at sites separated by hundreds of
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Fig. 6. Percentages of stranded individuals of Durvillaea antarctica with Maullinia braseltonii found in surveys on sandy and
boulder beaches from 28° to 42° S along the Chilean coast, during winters and summers of 2014-2016

kilometres (Figs. 2 & 3), indicate that coastal disper-
sal of this parasite probably occurs, perhaps through
both rafting of infected tissue and larval/zoosporic
stages. The Chilean coast is affected by a number of
oceanic current systems, in particular the Humboldt
Current, which transports cool water towards the
equator, and the Peru Countercurrent, which trans-
ports warmer subtropical water to the south (Silva et
al. 2009). These currents affect a range of organisms
along the Chilean coast (Peters & Breeman 1993),
including kelp rafts (Rothausler et al. 2011), with sim-
ilar currents affecting organismal larval stages (Gay-
lord & Gaines 2000). As such, the lack of strong
phylogeographic structure in Chile across more than
1000 km of coastline (Fig. 3) may be attributable to
passive dispersal mechanisms (see also Haye et al.
2012). Likewise, a recent study on the red seaweed
Gelidium lingulatum, which is frequently found grow-
ing in D. antarctica holdfasts, showed that some hap-
lotypes were common in southern as well in northern
localities (Lopez et al. 2017Db).

In contrast, coastal current systems in south-eastern
Australia are likely to maintain the separation of
pathogen populations to the east and west of south-
ern Victoria. Indeed, our results show considerable
(0.3%, 18S) divergence among eastern and western
populations of M. ectocarpiiin Australia. The eastern
and western lineages appear to align with the
disjunct distributions of hosts D. potatorum and D.
amatheiae (Fig. 2), suggesting there may be host-
specificity and/or other processes maintaining bio-

geographic structure in both hosts and pathogens.
Although our sample sizes and sampling range were
too limited in this study to allow detailed analysis
of such fine-scale structure, a biogeographic break
across Wilson's Promontory in southern Victoria
would be consistent with patterns observed in a wide
range of other taxa (O'Hara & Poore 2000, Waters
2008), including the host genus Durvillaea (Fraser et
al. 2009, Weber et al. 2017). While this biogeographic
pattern is broadly thought to be a historical outcome
of vicariant processes related to the Bassian Isthmus
land bridge during the Last Glacial Maximum (Fraser
et al. 2009), it is thought to have been maintained
through modern oceanographic systems and through
density-dependent ecological processes (Waters et
al. 2005, 2013).

Identical M. braseltonii sequences were obtained
from Chile and from Marion Island (more than
8000 km away), suggesting that long-distance dis-
persal of the parasite has recently occurred. Further-
more, although Maullinia collected from Durvillaea
in Australia and in Chile formed distinct geographic
clades, the similarity of M. ectocarpii sequences from
Durvillaea in Australia, and from Ectocarpus in Chile,
also supports long-distance dispersal of Maullinia.
The Antarctic Circumpolar Current connects the
sub-Antarctic islands and the major continents of the
Southern Hemisphere (Fig. 1), and detached macro-
algae floating eastward in the path of this ocean
highway have been inferred to have transported a
range of rafting organisms (including another algal
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parasite, Herpodiscus durvillaeae: Fraser & Waters
2013) among distant landmasses (e.g. Helmuth et al.
1994, Nikula et al. 2010, 2013, Fraser et al. 2011,
Cumming et al. 2014). Interestingly, the strong link
between M. braseltonii from both central Chile and
the sub-Antarctic (Marion Island) is not reflected in
the kelp genetics, as these 2 areas have distinct
clades of D. antarctica (Fraser et al. 2010). That we
nonetheless here infer movement of the parasite with
its buoyant host between the sub-Antarctic and
central Chile supports suggestions that phylogeo-
graphic structure in D. antarctica results from density-
dependent processes that maintain structure even
with frequent dispersal (Waters et al. 2013).

Despite some evidence for host-specificity (with
different Maullinia lineages detected on each Durvil-
laea species), our data suggest this parasite readily
shifts hosts, much like other phytomyxids (Neu-
hauser et al. 2014). Indeed, infections of M. ectocarpii
in Australia have previously been recorded on the
alga E. siliculosus (Maier et al. 2000). Host shifting
may allow parasites to survive for long time periods
in environments with ephemeral hosts or adverse
environmental conditions (Neuhauser et al. 2014), as
infections on one species can supplement those on
another.

Latitudinal effects on infection prevalence

Our hypothesis that infection prevalence would
increase towards the hosts' northern latitudinal range
limits due to increasing physiological stress was not
supported. However, the infection prevalence was
instead found to increase towards higher latitudes, or
the southern range limit of the host (Fig. 5). For Chile,
this effect was strongest when data from Quintay,
where prevalence was remarkably high, were
removed. Quintay might have unusually high infec-
tion levels due to an environmental stressor, such as
pollution; pollution has increasingly been implicated
in outbreaks of marine disease (Li et al. 2010, Saave-
dra 2011), including for algae (Buschmann et al.
2014), and Quintay was the closest site to Valparaiso,
the most densely populated coastal city within our
sampled range in Chile. The observed trend in multi-
year samplings of stranded individuals of D. antarc-
tica confirms the pattern that Maullinia infection
rates tend to increase with latitude, although there
may be some temporal variability (Fig. 6).

Our observations of increased Maullinia infections
at higher latitudes are consistent with the suggestion
by Aguilera et al. (1988) that infections within this

pathosystem might intensify towards the south in
Chile. Despite our low sample numbers and limited
sampling range, geographic variability in infection
prevalence suggests parasite susceptibility to local
conditions (Poulin et al. 2012), and several possibili-
ties could explain the observed patterns, as follows.

Population densities

Pathogen transmission can increase with higher
densities and greater connectivity between hosts
(Poulin et al. 2012, Izhar & Ben-Ami 2015). Durvillaea
species in Australia are known to transition from
being a relatively rare intertidal element at Tathra
(the northern range limit) to a dominant habitat-
forming species on rocky intertidal platforms in Tas-
mania (southern part of the species’ range) (Millar
2007). D. antarctica in Chile experiences competition
from other algal species including Lessonia spp.
towards its northern latitudinal range limit, reducing
its density and prevalence, but is more abundant
toward the south (Santelices et al. 1980), where
abundant rafting populations of large adult plants
have also been observed (Lépez et al. 2017a). In this
research, we sampled southward from the northern
range limits of Durvillaea in Chile and Australia,
such that more southern populations also had higher
host densities, which could have led to increased
pathogen transmission, and thus infection levels, at
high latitudes.

Temperature effects

Although we hypothesised that hosts would prove
most susceptible to infection towards their range
limits due to higher physiological stress, these hosts
might actually have greater resistance due to their
ability to survive in marginal conditions. Although
ecotype effects have not been demonstrated previ-
ously for Durvillaea, they have been inferred for
other algal species including the kelp Undaria pinna-
tifida (Gao et al. 2013), for which populations varied
in temperature resistance depending on the latitude
from which samples were collected. Such ecotypes
often develop due to strong environmental patterns,
the most pervasive of which are temperature gradi-
ents in the marine intertidal realm (Cruces et al.
2013). Along the Chilean coast, mean surface water
temperatures range from around 18°C in the north
to 6-8°C in the far south (Locarnini et al. 2013), and
within the region that we sampled, temperatures
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range from around 14°C (winter) to 19°C (summer) in
the north to 12°C (winter) to 17°C (summer) in the
south (Tala et al. 2016). Such latitudinal temperature
changes can present different physiological chal-
lenges for intertidal taxa (Tala et al. 2016), and thus
might also lead to geographic genetic variation in the
host kelp.

Our detection of identical sequences of M. brasel-
tonii in both central Chile and in the sub-Antarctic
suggests that at least some lineages of the parasite
can survive at a range of temperatures, but their vir-
ulence might increase, and/or host resistance might
decrease, in cooler waters. The relationship between
latitude and water temperature is well-recognised
along a range of coastlines (Tuya et al. 2012), with
both Australia and Chile showing a decrease in mean
water temperature towards higher latitudes. Temper-
ature effects have been shown in a range of terres-
trial and marine pathosystems (Case et al. 2011), act-
ing on both host and parasite. For Durvillaea species,
increasing temperature has been associated with in-
creased physiological stress (Cruces et al. 2013), and
while such effects remain unquantified for Maullinia
species (Neuhauser et al. 2011), the parasite might be
similarly affected. For some marine species, larvae
have been found to persist for shorter periods at sea
when exposed to higher temperatures (Bradbury et
al. 2008, Cowen & Sponaugle 2009), limiting their
ability to disperse and, in the case of parasites, infect
new hosts. As such, at cooler temperatures Maullinia
might be more virulent and have improved dispersal
and survival of zoospores, as also suggested by the
tendency for slightly higher infestation rates during
winter months (see Fig. 6). In the face of warming sea
temperatures, this may thus counteract the virulence
of the parasite, pushing its range south to cooler areas.

CONCLUSIONS

Understanding the factors underpinning outbreaks
of marine disease is essential for appropriate moni-
toring and management of marine ecosystems into
the future. Our research emphasises the value of
combining molecular and ecological approaches in
order to describe pathosystem dynamics, particularly
for micro-organisms whose visual identification can
prove challenging.

Previous research had only shown M. braseltonii
infecting Durvillaea hosts in central Chile. We have
demonstrated that the parasitic genus infects multi-
ple host species within the genus Durvillaea in Chile,
Marion Island and Australia. Further, these popula-

tions are probably connected via dispersal of the par-
asite with floating macroalgal hosts. The presence of
this parasite on brown algal hosts across the Pacific
and Indian Oceans would suggest a high likelihood
of the pathosystem extending to other locations. Vari-
able prevalence over latitudinal ranges suggests that
environmental or ecological factors shape infection
patterns, and these data may assist in understanding
how the pathogen will respond to a changing cli-
mate. A broader study that assesses the phylogeogra-
phy of Maullinia from other landmasses with D.
antarctica populations (such as New Zealand and
other sub-Antarctic islands) would help to provide a
clearer picture of the dispersal potential of this
pathogen. Molecular analyses using a greater num-
ber of markers, and modelling of a wide range of en-
vironmental factors, could also provide greater insights
into how Maullinia spp. infections will change under
future climate scenarios.
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