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Experimental study of the rearrangements of valence protons and neutrons amongst single-particle
orbits during double-β decay in 100Mo
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The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-β decay
of 100Mo have been determined by measuring cross sections in (d,p), (p,d), (3He,α), and (3He,d) reactions on
98,100Mo and 100,102Ru targets. The deduced nucleon occupancies reveal significant discrepancies when compared
with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix
element associated with the decay probability of double-β decay of the 100Mo system.
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I. INTRODUCTION

Over the past decade, observations of neutrino flavor
oscillations have provided fundamental information about the
relative masses of neutrinos and mixing angles. However, the
process of neutrinoless double-β (0ν2β) decay, if it is ever
observed, would establish that the neutrino is a Majorana
fermion and could be a way of obtaining the absolute scale for
neutrino mass eigenstates. During such a decay, two neutrons
in the ground state of an even-even nucleus transform into
protons, usually in the ground state of the final nucleus, with
the simultaneous emission of two electrons. The rate of decay
can be expressed as a product of three independent factors
(see, for example, Ref. [1]):

1

T 0ν
1/2

= G0ν |M0ν |2〈mββ〉2.

Here, G0ν is the so-called phase-space factor and the
information on the absolute mass scale appears via the term
〈mββ〉, which is the effective neutrino mass in the simplest
theoretical decay mechanisms. The dependence on nuclear
structure is held in the nuclear matrix element M0ν that
encapsulates the connection between initial and final nuclear
states.

Both the nuclear matrix element and phase space factor
are required if the absolute neutrino mass scale is to be
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deduced from a future half-life measurement of neutrinoless
double-β decay. Indeed, estimates of these quantities are also
critical in planning projects that set out to search for the
decay process; the extremely low expected decay probabilities
corresponding to T 0ν

1/2 � 1025 yr require extremely large-scale,
low-background source-detector systems.

Methods used in the calculation of phase-space factors
are relatively well refined (see, for example, Ref. [2] and
references therein). However, there are significant difficulties
associated with obtaining values of the nuclear matrix ele-
ments. First, there are no other nuclear processes that directly
probe the same matrix element, besides 0ν2β decay itself.
Second, even in a future era where 0ν2β decay may have
been unambiguously observed, it is unlikely that systematic
phenomenological methods, which are common approaches to
developing an understanding of many other complex nuclear
characteristics, will be able to be applied in this case. The scale
of investment required in attempts to observe a process with
such low expected decay probabilities is such that, even if 0ν2β
decay is eventually observed, we are unlikely to have data on
more than one or two isotopes for a considerable period of
time, making phenomenology difficult. Therefore, to proceed,
robust theoretical calculations of the nuclear matrix elements
must be developed.

There has been significant progress in the understanding
of the theoretical calculation of nuclear matrix elements for
0ν2β decay over the last decade. As an illustration, in 2004, a
provocative article [3] suggested that the variation in the size of
matrix elements calculated in different ways could be as much
as two orders of magnitude. Whilst more recent developments
have reduced the variation somewhat (see, for example,
Ref. [1]), the convergence of different theoretical approaches in
itself is no guarantee that they are correct. It is also important to
bear in mind that the matrix element appears as a square in the
decay probability, increasing the variation between different
models in their predictions of observable quantities.
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One way forward is to determine which accessible proper-
ties of nuclei are most directly relevant to the matrix elements.
These properties can then be measured and the results used
to gauge to what extent they can be reproduced by the
models used to calculate the matrix elements. In this way,
the calculational frameworks adopted can be constrained by
comparison with other pertinent nuclear observables.

Double-β decay involves the decay of two neutrons into
two protons within a nuclear system. The simplest of several
mechanisms proposed involves a pair of virtual neutrinos as
the nucleons transform. If neutrinos are Majorana in nature, the
annihilation of the virtual neutrinos leads to the neutrinoless
version of the decay. The whole process is often viewed as
proceeding via the excitation of states in the intermediate
isobaric nucleus between the parent and daughter (see, for
example, Ref. [1] for more details). The short distance scales
within the nuclear system imply the involvement of large
virtual momenta (up to ∼100 MeV/c), leading to high virtual
excitation energies (50–100 MeV) in the intermediate system
and angular momenta up to ∼7–8h̄. Unlike the two-neutrino
form of double-β decay, which proceeds via a small number
of virtual 1+ states at relatively low excitation, neutrinoless
double-β decay involves a large number of states to high
excitation. It therefore seems unlikely that neutrinoless double-
β decay exhibits strong sensitivity to the detailed structure of
the intermediate nucleus. However, the ground states of the
initial and final nuclei must play a role in determining the value
of the matrix element. If there are significant rearrangements
of other nucleons, beyond the simple conversion of the two
neutrons into protons, the decay rates may be diminished; a
change in nuclear deformation accompanying the decay is an
extreme example of such a rearrangement. Such inhibition is
common in other types of nuclear processes. The differences in
the occupation of the valence single-particle states before and
after the decay characterizes such rearrangements, which are
likely to have important consequences for the matrix element.

Determining the valence populations of neutrons and
protons, and the difference in these populations between initial
and final states, addresses a critical ingredient of the overlap
that determines the matrix elements [4]. For example, we
carried out systematic measurements of the valence proton
and neutron occupancies in 76Ge and 76Se, a potential 0ν2β
parent-daughter system [5,6]. Several authors have revisited
theoretical predictions in the light of this data, leading to
a reduction in the difference between predictions of the
matrix elements based on the quasiparticle random phase
approximation (QRPA) compared to those made using the
interacting shell model (as examples, Refs. [7] and [8]). Several
measurements have been made to characterize other systems
and provide further benchmarks for theoretical approaches
[9–11].

Here we report on a consistent set of single-nucleon transfer
experiments that have been used to determine the valence
nucleon occupations for 100Mo and 100Ru. This builds on our
previous experimental study [12] of the validity of the BCS
approximation in these nuclei, which is a basic assumption of
the widely used QRPA method. Nucleon occupancies in 98Mo
and 102Ru were also measured and used as consistency checks.
100Mo and 100Ru are parent and daughter for a potential 0ν2β

decay whose Q value makes it a good candidate in which
to observe the process [1]. There are several experiments
that propose searches for double-β decay of 100Mo. For
example, it is one of the isotopes that may be used in the
SuperNEMO 0ν2β decay experiment and was a source in
the predecessor NEMO-3 [13,14]. Other examples include the
AMoRE [15] and CUPID/LUMINEU [16] experiments, which
have proposed plans to use a cryogenic scintillation detector
based on molybdate crystals.

This potential double-β-decay system lies toward the edge
of an interesting region of the chart of nuclides. Nuclei with
Z ∼ 40 exhibit a sudden onset of deformation resulting in a
dramatic shape change from spherical to prolate shapes near
N = 60. The first indication of this transition came from early
studies of γ emission from spontaneous fission fragments [17],
measurements that have since been refined significantly with
the improvements in detection technology (see, for example,
Ref. [18]). For molybdenum and ruthenium isotopes, the
evolution in shape persists but is more gradual in nature.
For example, a smoother shape transition has recently been
inferred in mean-square charge radii of molybdenum fission
fragments [19] from A ∼ 98 to 104 using laser spectroscopy of
separated singly charged ions. Classical optical spectroscopy
of enriched isotopes of ruthenium [20] paints a similar
picture, although there is some evidence for triaxial shapes
in ruthenium fission fragments beyond N = 60 [21]. The
transitional nature of 100Mo is also clear from pair transfer
studies. For example, our recent (p,t) reaction studies on
targets of 98,100Mo and 100,102Ru [12] found that 95% of the
neutron pair transfer strength to 0+ states is contained in the
ground-state transition, except for the reaction leading to 98Mo,
where a state at 735 keV was populated with ∼20% of the
ground-state transition strength. This transitional nature, and
potential structural differences between parent and daughter,
are likely to present challenges for the calculations of the
associated 0ν2β decay matrix elements.

Over many years, data has been accumulated on single-
nucleon transfer data that might yield the occupancies re-
quired to constrain calculations of the 0ν2β matrix elements.
Molybdenum isotopes have been studied in neutron transfer
experiments. There are several published studies of the (d,p)
and (p,d) reactions on 100Mo [22–31]. Studies of both these
reactions, albeit fewer in number, have been made on targets
of 98Mo [27,32–34] and 102Ru [35–39]. Neutron addition
has been performed on 100Ru [40,41], although the neutron
removal with the (p,d) reaction has not. Of these four
targets, only 100Mo has been studied in the (3He,α) reaction
[42], which is required to provide good matching for large
angular-momentum transfer. Where data does exist in the
literature, the experiments were performed at different times
using different experimental techniques, different bombarding
energies, different ranges of excitation energy, and so on.
Reaction modeling has been employed differently in each
case, using a variety of computer codes and employing a host
of different approximations and potential choices. In some
cases, measured cross sections have not been published. As
a result, the existing literature, whilst useful in establishing
many spin-parity assignments to relevant states, has neither the
overall precision nor the consistency required to determine the
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changes in neutron occupancies between parent and daughter
in this potential 0ν2β system.

With regards to proton transfer reactions, (3He,d) studies
have been made on 98,100Mo [43–45], but not on the relevant
ruthenium isotopes. The majority of previous studies were
done at significantly worse resolution than the current work;
resolution was one of the contributory factors in determining
how high in excitation energy measurements could be un-
dertaken. The comments above concerning the consistency
of experimental approach and reaction modeling are also
pertinent for the proton transfer data in the literature.

In the current work, several transfer reactions have been
employed. The (p,d) and (d,p) reactions were used to gain
spectroscopic information on the low-� valence neutron states.
In these reactions, we have determined the normalization of the
necessary reaction model calculations by requiring the sums
of strength for addition and removal to be equal to the total
degeneracy of the relevant orbits. The (3He,α) reaction was
used to measure high-� states, with a reaction normalization
determined by the requirement that the sum of associated high-
� strength and the normalized low-� strength from the (p,d)
reactions yields the expected number of valence neutrons.
Using these reaction normalizations, neutron occupancies are
deduced from the neutron-removing reactions for the 0g7/2,
1d, 2s1/2, and 0h11/2 orbitals.

For protons, the (3He,d) reaction was used to determine
proton vacancies. This reaction is reasonably well matched for
all the valence orbitals of interest and was therefore normalized
by requiring the total extracted transfer strengths to sum to the
total number of valence proton holes. Orbital vacancies were
then deduced for the proton 0g9/2, 1p, and 0f5/2 orbitals.

This current publication is organised in the following way.
Common aspects of the experimental methodology will be
discussed first. The features of the neutron and proton transfer
reaction experiments will be considered in separate sections
covering specific features of the results and analysis, the spin-
parities of the populated states and features of the transfer
strength distributions. The approach used to normalize the
reaction modeling for the transfer of both types of nucleon
will be described followed by a discussion of the extracted
occupancies and their uncertainties. The deduced proton and
neutron occupancies will finally be compared to those used in
theoretical calculations of the double-β decay matrix elements
and some conclusions are reached. For the sake of brevity,
the detailed experimental data is available as Supplemental
Material [46], and discussion here will concentrate on more
global information such as summed strengths.

II. EXPERIMENTAL METHODS

Beams of the required ions were delivered by the MP
tandem accelerator at the Maier-Leibnitz Laboratorium of
the Ludwig-Maximilians Universität and the Technische Uni-
versität München. They were used to bombard isotopically
enriched targets of 100Mo (97.39%), 100Ru (96.95%), 98Mo
(97.18%), and 102Ru (99.38%) with nominal thicknesses of
100 μg/cm2, which were evaporated onto thin carbon foils
with thicknesses in the range of 8–20 μg/cm2. Beam currents
were measured using a Faraday cup behind the target ladder

connected to a current integrator and were typically between
500 and 700 nA.

Light reaction products were momentum analyzed using a
Q3D magnetic spectrometer [47]. The spectrometer entrance
aperture, which defines the solid-angle acceptance of the sys-
tem, was set at a nominal value of 13.9 msr throughout the
entire experiment to minimize systematic uncertainties. At the
focal plane of the spectrometer, a multiwire gas proportional
counter backed by a plastic scintillator was used to measure
position, energy loss, and residual energy of the ions passing
through it [48]. The focal-plane position was determined
by reading out 255 cathode pads, positioned every 3.5mm
across the counter. Each pad was equipped with an individual
integrated preamplifier and shaper. Events were registered
when three to seven adjacent pads had signals above threshold.
The digitized signals on active pads were then fitted with a
Gaussian line shape resulting in a position measurement with
a resolution that was better than 0.1 mm. Outgoing particles
were identified by a combination of their magnetic rigidity and
their energy-loss characteristics in the proportional counter and
scintillator.

To extract absolute cross sections, the product of the target
thickness and the solid angle of the spectrometer entrance
aperture was determined using Coulomb elastic scattering.
The data were collected in two distinct running periods and
elastic scattering was performed separately for both. In the
first run, elastic scattering of 12-MeV 3He ions at θlab = 25◦
was used and in the second, similar measurements with
9-MeV deuterons at θlab = 12◦. The elastic scattering cross
sections under these conditions are predicted to be within 2%
and 4% of the Rutherford scattering formula, respectively,
according to optical-model calculations performed with the
potentials discussed below. Lower beam currents were used for
the elastic-scattering measurements compared to the transfer
reactions, requiring a different scale on the current integrator.
The calibrations of all the scales used during the experiment
were determined using a calibrated current source to ensure
that relative values are well known. Consistent results were
obtained from the two different running periods and the overall
uncertainty in the cross sections deduced using this approach
was estimated to be around 5%.

Reaction modeling must be performed to extract spectro-
scopic strengths from the measured cross section and the asso-
ciated calculations were performed using the distorted-wave
Born approximation (DWBA). The approximations involved
are best met at the first maximum of the angular distribution
of transfer products. To extract robust spectroscopic factors,
data were therefore taken at the angles corresponding to
these maxima for the relevant � transfers in each reaction.
Measurements were also made at some other angles when time
allowed. The angles where data were taken are summarized
in Table I for each reaction. Although much of the measured
strength was associated with states having pre-existing spin-
parity assignments, the resulting sets of data map out angular
distributions that were sufficient to discriminate between
different angular momentum transfers to confirm or, where
necessary, make � assignments. The comparison between
the differently matched reactions, (p,d) and (3He,α), helps
to extend the range of momentum transfers investigated in
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TABLE I. List of laboratory angles at which mea-
surements were made for each of the reactions used.
Due to target problems, data were not measured for the
98Mo(3He,d) reaction at 14◦ and 22◦.

Reaction Laboratory angles

(p,d) 6◦, 18◦, 31◦, 40◦

(d,p) 8◦, 18◦, 27◦, 33◦

(3He,α) 10◦, 15◦, 20◦, 25◦

(3He,d) 6◦, 10◦, 14◦, 18◦, 22◦

the angular distributions and the differences in cross section
assisted some of the � assignments, as discussed below.

Given the large number of cross-section measurements
made to states populated over a range of several MeV in
excitation, in four different reactions at several angles and
on four different targets, the state-by-state cross-section data
is given in the Supplemental Material [46].

A. Neutron transfer reactions

The neutron-removal reactions, (3He,α) and (p,d), were
carried out with beams of 3He ions at an energy of 36 MeV

FIG. 1. Spectra of protons from the (d,p) reaction on targets of
98Mo, 100Mo, 100Ru, and 102Ru at a laboratory angle of 8◦ as a function
of the excitation energy in the residual nucleus. The portions of the
spectra to the right of the dotted line have been scaled up by a factor
of five. The broader peaks that appear in these spectra are reactions
on light target contaminants, the strongest of which are marked by an
asterisk.

and protons at 24 MeV, respectively. The (d,p) neutron-adding
reaction was also performed using a deuteron beam at 15 MeV.
Data were recorded up to excitation energies of at least 3 MeV
in each residual nucleus. For the (d,p) and (p,d) reactions, this
was achieved using three different magnet settings, arranged
so that the subsequent spectra overlapped in excitation by at
least 100 keV. The lower dispersion associated with the magnet
settings for the (3He,α) reaction enabled data to be recorded
at one magnet setting. Figures 1, 2, and 3 show typical energy
spectra of outgoing ions from these reactions. The spectra were
calibrated using previously observed strongly populated final
states [49–52].

Excitation energies were estimated to be accurate to better
than ∼3 keV for the (d,p) reaction and around ∼2 keV for the
(p,d) reaction. For the (3He,α) reaction, low-lying states are
accurate to ∼5 keV, rising to ∼10 keV at the higher excitation
energies measured. Typical energy resolutions obtained were
∼30 keV FWHM for (3He,α) and ∼8 keV FWHM for (p,d)
and (d,p) reactions.

Peaks corresponding to reactions on carbon and oxygen
target contaminants are present in the (d,p) spectra with
larger widths than those from the main target material due to
their larger kinematic shift. These contaminant peaks obscured
groups of interest at some angles, but the difference in their
kinematic shifts meant that angles were always available where

FIG. 2. Spectra of deuterons from the (p,d) reaction on targets
of 98Mo, 100Mo, 100Ru, and 102Ru at a laboratory angle of 6◦ as a
function of the excitation energy in the residual nucleus. The portions
of the spectra to the right of the dotted line have been scaled up by a
factor of five.
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FIG. 3. Spectra of α particles from the (3He,α) reaction on targets
of 98Mo, 100Mo, 100Ru, and 102Ru at a laboratory angle of 10◦ as a
function of the excitation energy in the residual nucleus.

clean measurements could be made. The spectra were also
checked carefully for the presence of any peaks arising from
isotopic contaminants in the target material and these were
excluded from subsequent analysis.

The differences in the kinematic matching between the two
different neutron-removal reactions are apparent in the spectra.
For example, the � = 0 ground state in 99Mo is clearly visible in
the (p,d) spectrum (Fig. 2) with a cross section of 2.98 mb/sr.
However, it is hardly discernible at all in Fig. 3, having a cross
section of only 7 μb/sr in the (3He,α) reaction at 10◦, and
approaches the observation limit of around 1 μb/sr at other
angles. The ground state is only visible at all due to the low
level density in this region; other excited � = 0 transitions in
the (3He,α) reaction are generally much weaker and obscured
by stronger transitions.

For many of the states populated in the residual odd nuclei,
angular-momentum quantum numbers have already been de-
termined in a variety of previous studies that are summarized in
Refs. [49–52]. Overall more than 85% of the transfer strength
used in the sum-rule analysis from which the occupancies
are extracted (as described below) is associated with states
that have a previously determined assignment. Where new
assignments were made or previous assignments checked,
this was done on the basis of the angular distribution of the
light reaction product and a comparison of the cross section
between the differently matched neutron-removal reactions.
Some examples of angular distributions are shown in Fig. 4,
where the first maxima clearly appear at higher angles for

FIG. 4. Examples of angular distributions for the (d,p), (p,d),
(3He,d), and (3He,α) reactions on a 100Mo target. An example of
each � value is shown and compared to the results of DWBA
calculations using parameters listed in Sec. III; � = 0 (black), � = 1
(orange), � = 2 (red), � = 3 (brown), � = 4 (green), and � = 5 (blue).
Transitions with � = 0, 1, and 3 were not strongly observed in
the (3He,α) reaction. The angular distributions are labeled with the
excitation energy in the residual system in units of MeV.

higher � transfers, except for the mismatched (3He,α) reaction
where the forward-peaked shapes are less characteristic of the
� transfer. The strategy adopted when making new assignments
was to use the shape of the distributions from (p,d) and
(d,p) reactions, but confirm any high-� assignments using
the comparison of the cross sections from (p,d) and (3He,α)
reactions. Examples of the latter are shown in Fig. 5, where the
ratio of these cross sections at forward angles for � = 4 and
� = 5 transitions is plotted. The momentum matching was such
that � = 5 transitions are characterized by larger (3He,α) to
(p,d) cross-section ratios than those with � = 4. Cross-section
ratios for transitions with � < 4, not shown in Fig. 5, are
smaller by factors of ten compared with those plotted. Whilst
most of the consideration of such ratios was done using
data at 6◦ for the (p,d) reaction and 10◦ for the (3He,α)
reaction, ratios involving cross sections at other laboratory
angles have similar features and were used where needed,
as noted in the Supplemental Material [46]. This assignment
methodology produced results that were consistent with
previous assignments where they are available in the literature.
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FIG. 5. The ratio of the cross section leading to the population
of states in the (3He,α) reaction at a laboratory angle of 10◦ to that
leading to the same states in the (p,d) reaction at 6◦ for � = 4 (green)
and � = 5 (blue) transitions, plotted as a function of excitation energy
in the residual nucleus. The plots are labeled by the target isotope.

Most of the states with significant contributions to the
sum-rule analysis discussed below have assignments from
previous work. There are a few strong states where new
assignments have been made here, most notably in the neutron-
removal reactions on Mo targets populating states via � = 5
transfer. Newly assigned states at 2.043 and 2.089 MeV in
97Mo, carry 59% and 7% of the measured � = 5 strength,
respectively, in that system. Similarly, two newly assigned
states at 1.662 and 1.818 MeV in 99Mo contribute a third
of the observed � = 5 strength in 101Mo. These states have
(p,d) cross sections that peak at the most backward angles
studied and the ratios of (3He,α) to (p,d) cross sections are
large and consistent with other � = 5 transitions. In the (d,p)
reaction, around a third of the � = 2 strength on each of the
molybdenum targets was from states with new assignments. In
the (p,d) reaction, the only significant newly assigned strength
of relevance to the later analysis was the addition of new � = 0
strength in 99Ru. Much of this newly assigned low-� strength
arises from extending the excitation-energy range over which
measurements have been made; for example, states populated
in (d,p) reactions on molybdenum targets are only reported
to around 1.5 MeV in the literature [49,51]. For some weaker
newly observed transitions, only tentative assignments were
possible, but the contribution of these to the overall sum-rule
analysis is naturally very small.

It is instructive at this point to consider the distribution
of transfer strength in the residual nuclei. Figures 6 and 7
show the distributions of spectroscopic strength defined as the
spectroscopic factor C2S for removal reactions or (2j + 1)C2S
for addition reactions. (The spectroscopic factors have been
obtained using the DWBA modeling and reaction normaliza-
tion discussed in detail in Sec. III and are available as part of
the Supplemental Material [46].)

Figure 6 shows the distribution of spectroscopic strength for
low � transfers obtained from the (d,p) and (p,d) reactions
as a function of excitation energy, where strength associated
with states populated in the latter reaction is plotted at negative

FIG. 6. Distributions of the spectroscopic strength of states
populated in (p,d) and (d,p) neutron transfer reactions on targets
of 102Ru (violet), 100Ru (green), 100Mo (blue), and 98Mo (red) as
a function of excitation energy for (a) � = 0, (b) � = 2, (c) � = 1,
and (d) � = 3 transfers. Note the difference in the vertical scales
of the strength distributions for the valence orbitals in (a) and (b)
compared to those of the out-of-shell strengths in (c) and (d). For the
purposes of the figure, strengths are plotted at negative energies for
the (p,d) reaction and at positive energies for the (d,p) reaction. The
strength of individual states has been obtained from the measured
cross sections using the DWBA reaction modeling and normalization
procedures described in Sec. III. For clarity, the strengths for the
ground-state transitions in the two reactions have been combined and
shifted slightly in excitation energy from zero.

excitation energies. Considering first the strength distributions
for valence orbitals, the � = 0 distributions are approximately
Lorentzian in form with a centroid close to zero and a width of
around 100 keV. The � = 2 strength is similarly centered at low
excitation energies. Not all the states with � = 2 have a firm
Jπ assignment in the literature, but many of the stronger states
at low excitation do have information on the spin quantum
numbers. For example, the strong states clustered around
0 MeV in Fig. 6 are 5/2+ states. Most of the states with
a strength greater than 0.5 at energies above 250 keV have
3/2+ assignments, where Jπ assignments are available. This is
qualitatively consistent with the energetic ordering of the d5/2

and d3/2 orbitals. Rough estimates of the unobserved strength
were obtained in the following way. Lorentzian curves were
fitted to the data and the area under these fits outside of the
excitation energy range of the measurements was only ∼2 to
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FIG. 7. Distributions of the spectroscopic strength of states
populated in (3He,α) neutron transfer reaction on targets of 102Ru
(violet), 100Ru (green), 100Mo (blue), and 98Mo (red) as a function of
excitation energy for (a) � = 4 and (b) � = 5 transfers. The strength of
individual states has been obtained from the measured cross sections
using the DWBA reaction modeling and normalization procedures
described in Sec. III. The asterisks indicate states with a J π = 9/2+

assignment in the literature. Some states have been displaced slightly
from their true excitation energy for clarity.

3% of the total, suggesting that the majority of the low-lying
strength of the s1/2 and d orbitals has been captured in the
data. Such estimates are consistent with similar studies that
have been performed [53].

The out-of-shell strength distributions are somewhat dif-
ferent in character and weaker in overall strength; note the
difference in the scale of the vertical axes for Figs. 6(a) and
6(b) compared with Figs. 6(c) and 6(d). The � = 1 strength,
shown in Fig. 6(c), appears at higher energies in both reactions,
consistent with the tails of strength distributions from the next
oscillator shells above and below the valence orbitals.

The � = 3 strength [see Fig. 6(d)] is similarly weak and
mostly at high excitation in the (d,p) reaction, constituting
a tail of strength from the shell above. There are single
low-lying states populated by the (d,p) reaction in 99Mo,
101Ru, and 103Ru with spectroscopic strengths up to ∼0.6; these
states have also been observed in previous work, for example,
Refs. [37,40,54]. Low-lying � = 3 strength of this magnitude,
associated with the 1f7/2 orbital from the shell above, has
been predicted by modeling these transitional systems as a
single neutron outside a weakly prolate core (see detailed
discussion in Ref. [40] and references therein). In the (p,d)
reaction, � = 3 strength is limited to a small number of very
weakly populated states lying below 2 MeV. No strength has
been identified with 100Ru and 98Mo targets, a single state
with spectroscopic strength of 0.05 in 101Ru and two rather
tentative � = 3 transitions in 99Mo, each with strength less
than 0.01, have been found. These observations put a limit on
the occupancy of 1f orbitals in the ground states of the target
nuclei. It appears that the occupancy of the 1f orbital in these
nuclei is � 0.05 neutrons, while the 0f shell is well below the
Fermi surface.

Figure 7 shows a similar plot of spectroscopic strength for
higher � transfers taken from the (3He,α) reaction. The � = 5
strength is confined to a small number of states at excitation
energies in each residual nucleus at or below ∼2 MeV. The � =
4 strength distribution is somewhat different with a number
of strong states at low energy, then the strength falls with
increasing excitation until some more prominent � = 4 peaks
are encountered above 2 MeV. This is consistent with an overall
picture of low-lying � = 4 strength associated with the valence
g7/2 orbital, but the presence of the deeper lying g9/2 state at
higher excitation. Indeed, below 2 MeV, all the states with
spectroscopic strengths larger than 0.4 have been assigned
as Jπ = 7/2+ in the literature [49–51], although some weak
9/2+ states are also present in the same energy region. States
whose spins are known to be 9/2+ are indicated by an asterisk
in Fig. 7, although above 2 MeV the spins of most of the states
are unknown. However, in 97Mo, the strong state at 2.510 MeV
was assigned as Jπ = 9/2+ from analyzing powers measured
in a (d,t) reaction [55]. The lack of a complete set of Jπ

assignments introduces some problems for the current work
in disentangling g7/2 and g9/2 strengths. A choice was made
to associate all � = 4 strength below 2 MeV that does not
have a previous Jπ = 9/2+ assignment with the g7/2 orbital.
Clearly, other choices might be made in the absence of new
spin assignments, which introduces a systematic error in the
final occupancy analysis that will be discussed below. To place
this choice on a more quantitative footing, more than 90% of
the strength associated here with the g7/2 orbital is in states
with existing 7/2+ assignments.

B. Proton transfer reactions

The (3He,d) proton-adding reactions were initiated using
beams at an energy of 36 MeV. Data were recorded up to
excitation energies of at least 2.7 MeV, performed at one
magnet setting. Excitation energies of states in the residual
nucleus were obtained by comparison with previously ob-
served states taken from Refs. [49–51] and some representative
spectra are shown in Fig. 8. The excitation energies obtained
were generally measured to better than 3 keV, although in the
ruthenium targets this rises to 10 keV at the highest excitations
measured as there are fewer previously known states for
calibration. Typical energy resolutions of 20 keV FWHM were
obtained and measurements were made at a series of angles
listed in Table I.

The assignments of � transfer were checked using angular
distributions, and Fig. 4 shows some examples. There are no
previously reported data for this reaction on ruthenium targets
in the literature, although nearly all of the states carrying
strength from the valence nucleon orbitals have assignments
deduced by other types of measurement [49–51]. In total,
92% of the strength used in deducing the proton occupancies
is associated with the population of states with previous
assignments; across the individual targets used, the percentage
of strength with previous assignments are 99%, 82%, 97%,
and 93% for 98Mo, 100Mo, 100Ru, and 102Ru, respectively. In
the reactions on 100Mo, the new assignments made here were
predominately � = 4 states. Some examples of the relevant
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FIG. 8. Spectra of deuterons from the (3He,d) reaction on targets
of 98Mo, 100Mo, 100Ru, and 102Ru at a laboratory angle of 6◦ as a
function of the excitation energy in the residual nucleus.

angular distributions are compared to that for the known � = 4
ground-state transition and to DWBA predictions in Fig. 9.

The distributions of spectroscopic strength (2j + 1)C2S for
proton addition obtained using the (3He,d) reaction are shown
in Figs. 10(a)–10(e). The transfer associated with the proton
valence orbitals has � = 1, 3, and 4. With increasing excitation
energy, the � = 1 strength falls off rapidly and is contained
mostly in the first 1.5 MeV as shown in Fig. 10(b). There is
not much � = 3 strength, all of which lies at energies below
1.1 MeV; no � = 3 transitions were apparent in reactions on the
98Mo target. For � = 4, the majority of the strength identified
in the (3He,d) reaction is in a single low-lying 9/2+ state
below 0.5 MeV in each residual nucleus, with some weaker
fragments at energies up to 1.5 MeV [see Fig. 10(e)].

The distributions of strength associated with nonvalence
orbitals with � = 0 and 2 [see Figs. 10(a) and 10(c)] cover
higher excitation energy regions compared to the valence
strengths. For example, the distribution of � = 0 strength [see
Fig. 10(a)] appears above 1 MeV, consistent with a tail of
relatively weak strength from the shell above the valence
orbitals. Similarly, much of the � = 2 strength lies in many
small fragments at higher excitations. There is some � = 2
strength that appears in a number of individual states at
energies less than 1 MeV that have been interpreted previously
by core-coupling [56] and Coriolis-coupling [57] models,
where 2d strength is brought down in excitation energy, with
spectroscopic strengths similar to those observed here, by

FIG. 9. Examples of angular distributions for � = 4 transitions
assigned in the current work from the 100Mo(3He,d) reaction and
for the previously assigned � = 4 transition populating the residual
ground state. The data are compared to the results of DWBA
calculations using parameters listed in Sec. III for � = 4. The angular
distributions are labeled by the target nucleus and the excitation
energy in the residual system in units of MeV.

a mechanism somewhat analogous to the low-lying � = 3
neutron strength discussed above.

Proton-removal reactions were not studied in the current
work due to limitations in the available beam energy for
(d,3He) reactions and difficulties with tritium handling for
(t,α) reactions. However, limited information is available in
the literature, albeit only on molybdenum isotopes, which
can be used to assess the contributions to non-valence-
shell orbitals in the ground states. A study of the (d,3He)
reaction [58] has been performed and polarized (t,α) data
is reported in Ref. [59]. Neither reaction on 98,100Mo targets
populated any � = 0 strength. There are some inconsistencies
between these two studies concerning � = 2 strength, which
are likely attributable to the lower resolution of the (d,3He)
measurement. In 97Nb, the (d,3He) work observed states with
� = 2 strength at 1.764 and 2.090 MeV extracted by fitting
several states to broad multiplet peaks; the (t,α) study had
higher resolution, made different assignments, and reported
no � = 2 population in this nucleus. A state was observed at
0.817 MeV in both (d,3He) and (t,α) reactions, the latter also
populated states in 99Nb at 0.469 and 0.763 MeV, all with
tentative � = 2 assignments. Using the DWBA prescription
presented below and cross-section data from these references,
the spectroscopic factors for the 0.469-, 0.763-, and 0.817-keV
states were estimated to be 0.09, 0.04, and 0.11. This allows
us to estimate a limit for the occupation of � = 2 in the ground
state of 99Nb at the level of at most ∼0.1 protons.
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FIG. 10. Distributions of the relative strength of proton states populated in the (3He,d) reactions on targets of 102Ru (violet), 100Ru (green),
100Mo (blue), and 98Mo (red) as a function of excitation energy for (a) � = 0, (b) � = 1, (c) � = 2, (d) � = 3, and (e) � = 4 transitions. The
relative strength of individual states has been obtained from the measured cross sections using the DWBA reaction modeling and normalization
procedures described in Sec. III. The strength associated with the population of the ground states have been displaced in some cases slightly
from 0 MeV for clarity.

III. DWBA MODELING AND NORMALIZATION

Spectroscopic factors were deduced from the experimen-
tally measured cross sections by comparison with the results of
calculations using the distorted-wave Born approximation per-
formed with the finite-range code PTOLEMY [60]. The optical
potentials and bound states used in these calculations were cho-
sen to be consistent with a recent global analysis of the quench-
ing of spectroscopic strength [61] and are summarized below.

The form factors associated with the light-ion wave func-
tions were taken from recent microscopic calculations. Those
for the deuteron in (d,p) and (p,d) reactions were deduced
using the Argonne v18 potential [62]. Recent Green’s function
Monte Carlo calculations provided form factors for A = 3 and
A = 4 species [63].

The single-particle wave functions of the transferred
particle in the heavy bound state were generated using
a Woods-Saxon potential with fixed geometric parameters:
radius parameter r0 = 1.28 fm and diffuseness a = 0.65 fm.
The depth was chosen to reproduce the measured binding
energies. A spin-orbit component based on the derivative of a
Woods-Saxon form with a geometry defined by rso = 1.10 fm
and aso = 0.65 fm, with a depth Vso of 6 MeV was used.

The distortions of incoming and outgoing partial
waves were described using global optical-model poten-
tials for protons, deuterons, helions, and tritons taken from
Refs. [64–66]. An α potential deduced from elastic scattering
in the A = 90 region [67] was used.

To best satisfy the approximations of the DWBA approach,
spectroscopic factors were deduced from cross sections at

angles closest to the first peak of the angular distributions.
In neutron transfer, the (d,p) and (p,d) reactions were used to
determine spectroscopic strength for the lower orbital angular
momentum transfer, � = 0 and 2, and that for � = 4 and 5 were
deduced from (3He,α) to ensure optimal momentum matching.
The (3He,d) reaction is reasonably well-matched for all the
relevant � in proton transfer.

The DWBA calculations used to extract spectroscopic
factors from experimental cross sections carry an uncertainty
in overall absolute normalization. Methods for determining
the value of this normalization have been developed using the
Macfarlane-French sum rules [68] that associate the summed
spectroscopic strength to occupancies and vacancies of nu-
cleon orbitals. Consistent results can be obtained by adopting
a systematic approach to this process (see, for example,
Ref. [53]). If the total low-lying strength is normalized to
the full independent-particle value, the degree to which the
resulting normalization factor deviates from unity is related
to the quenching of single-particle strength that has been
observed in other types of reactions such as (e,e′p). Here
we follow methods of Ref. [61] where a large-scale analysis
resulted in normalization factors that were quantitatively
consistent with previous measurements of such quenching.

For neutron-transfer reactions the following normalization
procedure was adopted. The first step was to use the (d,p) and
(p,d) data to deduce the summed spectroscopic strength for
� = 0 and 2, associated with the 2s1/2 and 1d orbitals. Via the
sum rules [68], the summed strength for the neutron-adding
reaction is proportional to the vacancy in the associated orbital.
Similarly for the neutron-removing reaction, the summed
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TABLE II. Normalization factors for the DWBA calculations
obtained using procedures described in the text.

(d,p)/(p,d) (d,p)/(p,d) (3He,α) (3He,d)
� = 0 � = 2 � = 4 and 5

102Ru 0.642 0.673 0.570 0.682
100Ru 0.610 0.555 0.572 0.647
100Mo 0.624 0.617 0.576 0.639
98Mo 0.595 0.612 0.538 0.622
Mean 0.618 0.614 0.564 0.647
St Dev 0.020 0.048 0.018 0.025

strength is proportional to the occupancy. A DWBA normaliza-
tion was chosen such that the overall sum of strength from both
neutron addition and removal gives the orbital degeneracy.
Initially, this was done separately for both � = 0 and 2 and for
reactions on each target. The resulting normalization factors
are shown in Table II. The average normalization across all
targets for 2s1/2 transfer was found to be 0.618 and that for
the combined strengths associated with 1d orbitals was 0.614.
The individual normalization values varied across the targets
used by 3% and 8% for � = 0 and � = 2, respectively. This
variation, and that between the two � transfers, is small and so
the overall average normalization constant of 0.616 was used
in the subsequent analysis.

Assuming that the N = 50 shell is closed, valence neutrons
only occupy the 2s1/2, 1d, 0g7/2, and 0h11/2 orbits (see
comments above about the validity of this assumption). A
normalization for the (3He,α) reaction was deduced by requir-
ing that the sum of the previously normalized spectroscopic
strength from (p,d) data for � = 0 and 2 (i.e., the occupancy
of those orbitals) and the spectroscopic strength for � = 4 and
5 states from the (3He,α) reaction results in the expected total
number of valence nucleons. The average normalization for
� = 4 and 5 transitions in the (3He,α) reaction was found to
be 0.564, with a 3% variation across the four targets.

For proton transfer, a similar procedure was used where
the total spectroscopic strength populated using the (3He,d)
reaction for all states corresponding to valence protons was
required to equal the expected number of proton vacancies in
the Z = 50 shell. The resulting normalization factor was 0.647
and the variation across targets was 4%.

A substantial set of transfer data was analyzed recently
in a consistent fashion to determine the normalization of
DWBA calculations and the associated quenching factor for
single-particle motion in near-stable nuclei [61]. That analysis
indicated that spectroscopic factors for a variety of light-ion
induced transfer reactions across targets from 16O to 208Pb are
quenched with respect to values from mean-field theory by
a factor of 0.55, with a root-mean square spread of 0.1. This
compares favorably with the normalization factors deduced in
the current work. The consistency with independent data sets,
along with the consistency across all four targets and between
the different � values, gives confidence in the methodology
used.

When considering isospin effects in the reactions, it should
be noted that neutron adding and proton removal result in the

population of states with a single value of isospin T + 1/2,
where T is the isospin of the target. In contrast, in proton
adding and neutron removal, states with both T + 1/2 and
T − 1/2 are accessible. The set of states with higher isospin
lie at higher excitation energies and are not observed in the
kind of experiment described here. However, the summation
in the Macfarlane and French sum rules should, in principle,
contain strength associated with both values of isospin and
the normalization procedure described above needs correcting
for the unobserved strength. Using isospin symmetry, this
could be done for proton-adding/neutron-removal reactions
using spectroscopic strengths associated with the same orbitals
populated in neutron-adding/proton-removal reactions [69].
However, protons and neutrons in these nuclei reside in
different oscillator shells and the valence orbitals populated in
neutron removal from all the target nuclei considered here are
empty of protons. Subsequently, the required proton-removal
strength is small. Given that the isospin Clebsch-Gordan
coefficient is also small, the correction for the unobserved
higher isospin is smaller still. Similarly for proton addition,
the expectation is that the neutron-adding spectroscopic factors
for g9/2fp orbits would be small due to their high occupancy.
Indeed, even if all the observed (d,p) strength for � = 1,
3, or 4 observed here were associated with the 1p, 0f5/2,
and 0g9/2 orbitals, which is clearly a gross over-estimate,
the normalization factors only change by a few percent. The
isospin corrections were therefore considered small, compared
to other uncertainties, in the current work and were not applied
to the final analysis.

IV. NUCLEON OCCUPANCIES

Nucleon occupancies were deduced from summed spectro-
scopic strengths determined using the normalization factors
described in the previous section. The neutron occupancies
were extracted from the neutron-removing reactions and are
listed in Table III. Proton vacancies obtained from the (3He,d)
reaction are given in Table IV. These data are also shown
graphically in Fig. 11. As noted above, the occupancy of
nonvalence orbitals in the ground states of these nuclei is
estimated to be lower than 0.1 nucleons.

There are a number of systematic effects that could
potentially influence the methodology adopted in deducing
the nucleon occupancies. For example, it is well known that
the results of DWBA calculations carry significant sensitivity
to the input parameters used. The sensitivity of the current
calculations was investigated using a variety of different
optical-model potentials. Whilst the absolute values of the
calculated cross sections varied considerably (by up to ∼20%),
the relative numbers relevant for the current analysis varied by
up to 5%. Since statistical contributions are generally small,
this is the largest contribution to the uncertainty in the deduced
orbital occupancies and has been used as a basis to estimate
the errors quoted in Tables III and IV; the high-� neutron
occupancies have an additional contribution discussed below.
Using these estimates, the combined error on the total number
of valence particles inferred from the experiment is typically
∼0.2–0.3, depending on target. This is roughly consistent
with the root-mean-square deviation of this number from the
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TABLE III. Experimental neutron occupancies determined from neutron-removing reactions. The difference between the summed
occupancy and the expected number of valence neutrons is also given. The decreases in neutron occupancies of each orbital associated
with double-β decay of 100Mo are given at the bottom of the table. The errors quoted are based on relative variations due to choices of potentials
in the DWBA and, in the case of high-� orbitals, a contribution to reflect a systematic effect from spin assignment for � = 4 (see text for details).

2s1/2 1d 0g7/2 0h11/2 Total Expected Difference

102Ru 0.29(1) 2.89(14) 2.88(38) 2.00(14) 8.05(43) 8 0.05
100Ru 0.23(1) 2.50(12) 2.19(15) 1.13(8) 6.05(21) 6 0.05
100Mo 0.33(2) 3.40(17) 2.48(19) 1.89(13) 8.09(29) 8 0.09
98Mo 0.17(1) 3.34(17) 1.13(6) 1.25(9) 5.88(20) 6 −0.12
100Mo-Ru 0.09(2) 0.90(21) 0.30(24) 0.76(15) 2.05(36)

expected number of valence particles across the targets, 0.1
for neutrons and 0.2 for proton holes. These error estimates
are also similar to those obtained in occupancy measurements
of other nuclear systems [5,6,9–11].

Beyond direct nucleon transfer, there are other more
complicated reaction mechanisms that can contribute to the
measured yields. Recent transfer work on nickel isotopes [53]
presented a method to estimate the contribution of multistep
processes by comparing the spectroscopic strength of states
populated by a well-matched and a poorly-matched reaction.
This was applied to � = 4 transitions in the current data set
populated by the (p,d) and (3He,α) reactions and gave a very
similar estimate to that in Ref. [53]. Multistep processes are
estimated to contribute at a level of around 0.002(2j + 1) in
the spectroscopic strength of states deduced using a reaction
with good matching. Most of the strength contributing to the
sum-rule analysis is from states populated much more strongly
than this level and therefore multistep processes appear not to
influence the data strongly.

There are a few influences associated with spin assignments
that could affect the deduced occupancies. The most important
of these is the assignment of the spins of states populated via
� = 4 transfer in neutron-removal reactions. As noted above, a
choice was made to associate all � = 4 strength below 2 MeV
with the 0g7/2 orbital unless it had a previous 9/2+ assignment,
but other approaches could be adopted. For example, one could
use only the strength associated with states with a previous
7/2+ assignment. If this were done, the 0g7/2 occupancies in
the A = 100 isotopes change by ∼0.1 neutrons due to changes
in the summed � = 4 strength in those nuclei, with a smaller
5% decrease in � = 5 occupancies due to the associated shift
in the (3He,α) normalization. However, the consistency in
the individual normalization factors is then worse than in the

adopted approach, probably reflecting variation in the extent of
Jπ assignments for the residual nucleus in the literature. These
effects have been added in quadrature to the errors for � = 4
and 5 orbitals in Table III as an estimate of this systematic
effect. Variation in the excitation-energy limit used to exclude
the higher-lying 0g9/2 strength has less consequence.

In addition, there are a number of states observed in the
(3He,α) reaction that are not obviously populated in the (p,d)
reaction; these are candidates for � = 4 or 5 transitions, but the
lack of (p,d) data makes assignment difficult and they have
not been included in the analysis. If they were introduced, the
maximum effect they make for the occupancies of the high-�
neutron orbitals is 0.1 nucleons. Other minor complications,
such as tentative assignments and unresolved doublets, affect
the final results at a much lower level.

V. DISCUSSION

The measured neutron occupancies shown in Fig. 11
indicate that neutrons occupy each of the orbitals in the shell
above N = 50, with the different � values full to at least 10% of
the maximum occupancy. Although the current measurements
cannot distinguish between the two 1d orbitals, much of the
� = 2 strength populated here is associated with states that
have a Jπ assignment in the literature (as summarized in
Refs. [49–52] and references therein). The fraction of � = 2
strength without a Jπ assignment varies from ∼10 to 25%
across the different targets. Using the known Jπ = 5/2+
strength, a lower limit on the occupancy of the 1d5/2 orbital
is estimated as 1.8, 1.9, 2.4, and 3.0 neutrons in 102,100Ru and
100,98Mo, respectively, indicating that this orbital is responsible
for most of the observed 1d occupancy.

TABLE IV. Experimental proton vacancies determined from the (3He,d) reaction. The difference between the summed vacancy and the
expected number of valence proton holes is also given. The increases in proton occupancy in each orbital associated with double-β decay of
100Mo are also given at the bottom of the table. The errors quoted are based on relative variations due to choices of potentials in the DWBA
(see text for details).

1p 0f5/2 0g9/2 Total Expected Difference

102Ru 1.43(7) 0.90(5) 3.98(20) 6.32(22) 6 0.32
100Ru 1.21(6) 0.35(2) 4.44(22) 6.00(23) 6 0.00
100Mo 1.49(7) 0.47(2) 5.94(30) 7.89(31) 8 −0.11
98Mo 0.91(5) — 6.78(34) 7.69(34) 8 −0.31
100Mo-Ru 0.28(10) 0.12(3) 1.50(37) 1.90(38)
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FIG. 11. Experimentally determined neutron occupancies and
proton vacancies for the valence orbits in 100Mo and 100Ru, along
with 102Ru and 98Mo, which are used for consistency checks.

The proton Fermi surface lies below Z = 50. The pattern of
proton vacancy is shown in Fig. 11 and illustrates that the 0f5/2

orbital is almost full and the 1p orbitals carry around two-thirds
of their maximum occupancy, whereas the 0g9/2 state is only
partially occupied. For the � = 1 strength, at least 90% of the
states populated on each target have a Jπ assignment in the
literature (see Refs. [49–52] and references therein). Applying
these Jπ assignments suggests that the 1p3/2 orbital has a
vacancy of at most 14% across the different targets, with the
1p1/2 orbital empty to the level of at most 39%. Given the
vacancy in the 1p orbitals, it would appear from these results
that the Z = 40 subshell closure, assumed in some shell-model
calculations, is somewhat weak in these systems.

The comparison of measured nucleon occupancies with
those extracted from theoretical studies of nuclear matrix
elements for double-β decay has proved very instructive
in the past, as illustrated by the example of Ref. [7] in
the case of 76Ge decay. However, quantitative occupancy
numbers are not always given in theoretical publications.
The 100Mo-100Ru system has been the subject of several
theoretical determinations of the nuclear matrix element for
0ν2β decay and associated orbital occupancies are available
for calculations using the interacting boson model (IBM) and
quasiparticle random-phase approximation (QRPA). Nucleon
occupancies can be extracted from the IBM wave functions
relatively easily as discussed in Ref. [71]. QRPA calculations
take as input single-particle energies and occupancies, often
from BCS calculations using a Woods-Saxon potential (WS).
Whilst it is easy to use such inputs to compare with measured
occupancies, it would be more consistent to compare the
current results with the occupancies contained in the correlated
QRPA ground states. This results in complications as standard
QRPA methods do not automatically conserve particle number,
even on average. Reformulations of QRPA methods that ensure
average particle number conservation do exist; for example,
the self-consistent renormalized approach (SRQRPA) taken
in Ref. [7] has been applied to the 76Ge 0ν2β decay system.
There are differences in occupancies predicted by the BCS
approximation and SRQRPA, but these tend to be small except

FIG. 12. Experimentally determined neutron occupancy and pro-
ton vacancy for the valence orbits in 100Mo and 100Ru compared to
those predicted by the interacting boson model (IBM) [70,71] and
two different Woods-Saxon calculations [72,73].

for some orbitals with higher orbital angular momentum [72].
Since, to the best of our knowledge, SRQRPA calculations
have not been done for the A = 100 system, here we will com-
pare with the available occupancies used as inputs to QRPA
calculations and note this issue for future theoretical attention.

Valence neutron occupancies and proton vacancies are
shown in Fig. 12 compared to IBM and WS calculations. Two
sets of results for the Woods-Saxon potential are shown; one
taken from a standard parametrization adopted near the line of
stability [73] (labeled WS in Fig. 12) and one (labeled WS ADJ
in Fig. 12) after adjustments to better reproduce quasiparticle
states in nearby odd-A nuclei (see Ref. [72] and references
therein for details). This set has been used as input not only
to calculations of both single EC, single β, and two-neutrino
double-β decays [72,74], but it has also been used for 0ν2β
decay [74,75].

For protons, most of these calculations appear to give
a reasonable overall description of the measured vacancies.
For the IBM calculations, the discrepancies are at the level
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FIG. 13. Left: Changes in the occupancy of valence nucleon orbitals during a double-β decay of 100Mo deduced from experimentally
measured occupancies (EXP) compared to those predicted by a number of different theoretical calculations of double-β decay, where the same
labeling as Fig. 12 has been used (see text for details). The signs are chosen such that a reduction in the number of neutrons and a gain in the
number of protons are positive numbers. Right: The difference between the theoretical calculations and experimental numbers plotted with
experimental errors.

of a couple of tenths of a nucleon and probably within
the uncertainties in the experiments. For the WS results,
the overall picture is similar, but discrepancies are slightly
larger. However, in the case of the adjusted Woods-Saxon
calculations, the comparison with the experimental vacancies
is worse than the other calculations, particularly for 100Mo,
where there is significant over-prediction of the vacancy of the
0g9/2 orbital.

For neutrons, the comparisons are more mixed. The IBM
calculations appear to slightly overestimate the neutron occu-
pancy of the positive-parity orbitals at the expense of the 0h11/2

orbit, which is predicted to have significantly lower occupation
than the current data suggests. The underestimation of the
occupancy of this intruder orbit persists in the WS calculations
but results in over-prediction for 1d neutrons. The adjusted WS
calculations do have a better reproduction of the experimental
0h11/2 occupancy but fail to reproduce the numbers of neutrons
in the 1d and 0g9/2 orbitals; these discrepancies appear to be
more dramatic in the case of 100Mo. The larger discrepancies
referred to here are significant compared to the experimental
uncertainties, accompanied by less significant issues with 2s1/2

neutrons. None of the calculations fare as well with the neutron
occupancies as they do with the predictions of the arrangement
of protons in the valence orbits.

The changes in nucleon occupancies during a potential
double-β decay of 100Mo are also given in the Tables III and IV
and displayed graphically in Fig. 13. For convenience, changes
in the numbers of neutrons and protons are both quoted as
positive numbers and therefore indicate the number of neutrons
lost and the number of protons gained in the decay process.
The neutron occupancy measurements indicate that the 1d
(mainly the j = 5/2 spin-orbit partner, assuming estimates
above using existing assignments are correct) and 0h11/2 orbits
participate strongly in a double-β decay process between the
ground states of the parent and daughter. There are smaller
contributions from the 2s1/2 and 0g7/2 orbitals. The number of
protons increases during the decay mainly in the 0g9/2 orbital,
with the 1p protons (presumably with j = 1/2) playing a
lesser role and a much smaller contribution from the 0f5/2

orbital.
Since the distribution of protons amongst the valence

orbitals in the parent and daughter nuclei are fairly well
reproduced in the WS and IBM calculations, the picture of
rearrangements of protons in such a decay are also reasonably
well predicted overall, with some small differences in the
contributions from different proton orbits as shown in Fig. 13.
The adjusted Woods-Saxon results appear to exaggerate the
rearrangement of protons during a decay; increases in 0g9/2
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occupancy by more than two protons is compensated by
depletion of proton 0f5/2 and 1p orbitals. Similarly, in the
same calculation, more than two neutrons disappear from the
2s1/2 and 1d orbitals, balanced by increases in the 0h11/2 and
0g7/2 neutron occupancy. Such dramatic rearrangements are
not substantiated in the experimental measurements for either
type of nucleon. The predicted neutron occupancy changes in
the WS and IBM calculations are rather similar to one another
and to the experimental results for 2s1/2 and 1d neutrons, but
the observed balance of neutron 0h11/2 and 0g7/2 contributions
to the decay is not well reproduced.

None of the theoretical descriptions presented here repro-
duce all of the orbital occupancies and nucleon rearrange-
ments, deduced from the current experimental work, that
would occur during the double-β decay of 100Mo. The effect of
the discrepancies on decay probability is somewhat difficult to
judge without further theoretical investigation. Certainly the
dramatic rearrangement of nucleons implicit in the adjusted
Woods-Saxon calculations, which naïvely might hinder a
decay, seem unwarranted by the current results. These appear
to arise mostly from problems with the adjustments made in
the case of 100Mo. Indeed, the data presented here and in
the Supplemental Material [46] for single-particle excitations
in odd-A nuclei form a good basis on which to reassess
the adjustments associated with both 100Mo and 100Ru, with
additional constraining data for the other nuclei populated in
the current work on 98Mo and 102Ru targets. While the IBM
and unadjusted WS models seem to give a reasonable overall
picture for protons, significant differences arise for the pre-
dicted neutron occupancies and rearrangements, particularly
for the higher-� orbits. It may prove instructive to determine
the quantitative effect on the nuclear matrix element for 0ν2β

decay if these theoretical approaches were adjusted to more
accurately reproduce the measured occupancies and also to
extract theoretical occupancies at the QRPA level to refine the
comparison with data presented here.

VI. CONCLUSION

We report on an experimental determination of neutron oc-
cupancies and proton vacancies from data on the (d,p), (p,d),
(3He,α), and (3He,d) reactions on 98,100Mo and 100,102Ru
isotopes. The work provides a detailed quantitative assessment
of the rearrangements of protons and neutrons amongst the
valence single-particle orbitals during double-β decay of
100Mo. There are significant disagreements with theoretical
calculations of the same properties, calculations that have also
been used to determine the nuclear matrix element for 0ν2β
decay. We hope that these data will stimulate further theoretical
attention to refine future calculations of this quantity, which
could be a critical component in developing our understanding
of the properties of neutrinos should the rare process of 0ν2β
decay ever be observed.
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