
Journal of Geophysical Research: Solid Earth

Estimating network effect in geocenter motion: Theory
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Abstract Geophysical models and their interpretations of several processes of interest, such as sea
level rise, postseismic relaxation, and glacial isostatic adjustment, are intertwined with the need to realize
the International Terrestrial Reference Frame. However, this realization needs to take into account the
geocenter motion, that is, the motion of the center of figure of the Earth surface, due to, for example,
deformation of the surface by earthquakes or hydrological loading effects. Usually, there is also a
discrepancy, known as the network effect, between the theoretically convenient center of figure and the
physically accessible center of network frames, because of unavoidable factors such as uneven station
distribution, lack of stations in the oceans, disparity in the coverage between the two hemispheres, and the
existence of tectonically deforming zones. Here we develop a method to estimate the magnitude of the
network effect, that is, the error introduced by the incomplete sampling of the Earth surface, in measuring
the geocenter motion, for a network of space geodetic stations of a fixed size N. For this purpose, we use,
as our proposed estimate, the standard deviations of the changes in Helmert parameters measured by a
random network of the same size N. We show that our estimate scales as 1∕

√
N and give an explicit formula

for it in terms of the vector spherical harmonics expansion of the displacement field. In a complementary
paper we apply this formalism to coseismic displacements and elastic deformations due to surface
water movements.

1. Introduction

At the millimeter level precision that the space geodetic techniques are fast approaching, understanding
geocenter motion (GM) is critical in interpreting global mass redistribution processes such as sea level rise,
atmospheric and ocean circulation, continental hydrology, ocean tides, ice mass balance, glacial isostatic
adjustment (GIA), and geophysical processes taking place in the Earth’s core and mantle (see, for example,
Wu et al. [2012], and the references therein for an overview). GM is also intimately connected to the stability
and accuracy of global reference frames, such as the International Terrestrial Reference Frame (ITRF) [Altamimi
et al., 2002, 2007, 2011, 2016], in particular, since it is derived from the position time series of geodetic stations
situated on the Earth’s surface. Precise observation of the GM, however, is difficult in practice. Despite Satellite
Laser Ranging (SLR) being the most reliable space geodetic technique for estimating GM, currently, the esti-
mates are comparable in magnitude to the background noise [Collilieux et al., 2009]. Besides being a relatively
small signal, the existence of the network effect, that is, the error arising from the finite size of the net-
work of geodetic stations, presents another significant obstruction to the accurate measurements of the GM.
Although several recent studies have evaluated the magnitude of this effect for particular cases [e.g., Zhang
and Jin, 2014; Zhou et al. 2016], a systematic approach to estimate the expected error due to this effect is still
lacking.

In order to conserve the linear momentum of the Earth system, the center of mass (CM) of the Earth must
be a kinematic fixed point. The ITRF defines its origin as a long-term average of satellite CM realization. Since
stations can only be placed on the surface of the Earth, it is theoretically convenient to define the center of
figure (CF) of the surface. The GM is usually defined as the relative motion of the CM with respect to the CF
[Trupin et al., 1992]. As the sensitivity of space geodetic measurements grows, it is now becoming possible to
reliably resolve this motion with high accuracy. Since the satellites orbit around the CM, knowledge of the GM
ties the motions of the stations and the satellites together. In practice, the CF itself, in turn, is approximated
by the center of network (CN) of the stations. The discrepancy between the CF and the CN, due to the finite
size and the uneven distribution of the network, is referred to as the network effect [Altamimi et al., 2005;
Collilieux et al., 2009]. In other words, the CF would coincide with the CN if the entire surface of the Earth could
be covered uniformly by geodetic stations, and then no network effect would be observed.
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In general, to characterize instantaneous Euclidean similarity transformations between coordinate systems,
we need seven parameters, usually called the Helmert parameters: three translation parameters, one scale
parameter, and three rotation parameters. For reference frames moving uniformly, the time derivatives of
these seven parameters also need to be specified. In this paper, in order to distinguish them, we will refer to
the first set as the “instantaneous parameters” and the second set as the “derivative parameters,” while the
unqualified “Helmert parameters” will mean the two sets combined. Note that the shift in the CF parameters
caused by a surface deformation measured in the CM frame is the opposite of the induced GM of the CM with
respect to the CF.

The main aim of this paper is to introduce a simple framework to numerically estimate the network effect due
to a displacement field over the Earth surface. As such, it can be applied to any theoretical model that predicts
crustal deformation. For this purpose, we identify the standard deviation of the shift in a Helmert parame-
ter, as seen by a random network of a fixed finite size, as a potentially useful measure of the network effect.
Here the station positions of a random network are chosen with a uniform probability distribution over the
surface of the Earth. We will call this measure, for simplicity, the “expected bias” in the parameter in question,
since it measures the tendency of a random network to deviate from sampling the parameter uniformly. We
demonstrate our method for the cases of (instantaneous) coseismic deformation and (time-dependent) elas-
tic deformation due to surface water movements in a complementary paper that we will refer to as “Part 2”
[Zannat and Tregoning, 2017] in the following. We will, however, briefly outline the theoretical prerequisites
for the models that we will use in Part 2 for the two geophysical processes in sections 3.4 and 4.3 of this paper,
respectively, for later convenience.

The formulation of our method becomes markedly simplified for what is called the summation method in
Zhou et al. [2016] of determining the instantaneous parameters. We find that in accordance with the Central
Limit Theorem (CLT) of probability theory, the expected bias scales as the inverse of the square root of the net-
work size. We also verify, via Monte Carlo simulations, that the scaling remains the same for the CN parameters
calculated by the transformation method. It may be noted that the differences between the two methods can
be shown to vanish as the network size increases [Zhou et al., 2016]. In other words, the analytical expressions
for the standard deviations of the displacement fields presented in section 3.3, in conjunction with the scaling
suggested by the CLT, are adequate for the purpose of estimating the expected bias, no matter which method
is used. We also present a natural extension of the summation method to the time-dependent case based
on simple linear regression theory. Finally, we present an alternative method to measure the CN parameters
using the Voronoi decomposition of the surface of the Earth. In Part 2, we will show that for realistic network
distributions, this method offers the possibility of a reduction of the network effect, that is, a more accurate
measurement of the GM.

The expected bias, as defined here, may be interpreted as the statistical uncertainty in the determination of
the Helmert parameters by finite geodetic networks. Alternatively, it may be viewed as a measure of the for-
mal error due to discrete sampling associated with the prediction of GM by a geophysical crustal deformation
model. One distinct advantage of this estimate is that it may be calculated entirely within the framework of the
theoretical model even in the absence of any details of the sampling network. We also note that sometimes
the uncertainty in the input parameters of a model, such as the fault slip model for an earthquake, introduces
an uncertainty in the GM that is comparable in magnitude with the GM itself. A deterministic calculation of
the network effect in that case is not too useful, and our stochastic approach may be used to partially val-
idate the compatibility of competing models with the space geodetic observations of surface deformation.
Similarly, our approach may also be useful when the models are incomplete in their spatiotemporal domains.
Additionally, it may be used to quantify the precision of geodetic systems since the measurement of the GM is
a robust system performance indicator [Crétaux et al., 2002; Moore and Wang, 2003; Kang et al., 2009]. Finally,
often when constructing a reference frame, in order to meet various constraints such as reliability, consis-
tency, time span of operation, or linear motion of its constituent stations, the choices of core geodetic sites
are rather limited. A possible use of our framework is to help find the optimal network size to ensure that the
network effect does not overwhelm the advantages of such a carefully chosen network.

2. Shifts in CF Parameters Due To Deformation

Here we consider the GM caused by an arbitrary instantaneous deformation of the Earth surface. We model
the Earth to be spherically stratified, nonrotating, elastic, isotropic (SNREI), and initially undeformed so that
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Figure 1. Schematic diagram of the shift in the CF frame parameters of
the deformed Earth (filled circle) with respect to the CM frame of the
total undeformed Earth system (dotted circle), and the accompanying
network effect, that is, the difference between the CN of geodetic
stations (green dots) and the CF. The GM is the negative of the shifts in
the CF parameters.

the CM and the CF frames coincide. We
want to find the translation vector TCF, the
scale factor DCF, and the rotation vector
RCF, from the stationary CM frame to the
modified CF frame due to the displace-
ment field u(r), where r is the position
vector and u is measured with respect to
the inertial CM frame (Figure 1).

The definitions of the instantaneous CF
parameters may be motivated by con-
sidering the displacement fields associ-
ated with their corresponding similarity
transformations. The goal is to approx-
imate the original displacement field u
with these fields as accurately as possible,
or in other words, to minimize the overall
error in the transformed coordinates. For
this purpose, we temporarily imagine the
Earth to be a hollow shell of uniform sur-
face density. It can be shown that for an

infinitesimal translation by TCF and an infinitesimal rotation by (the antisymmetric dual tensor of ) RCF, the
error is minimized when [Wu et al., 2012; Zhou et al., 2016]

TCF = 1
4𝜋 ∫𝜕⊕

u dΩ (1a)

RCF = 3
8𝜋r2

⊕
∫𝜕⊕

r × u dΩ, (1b)

where r⊕ is the Earth radius, 𝜕⊕ is the Earth surface, and dΩ = sin 𝜃 d𝜃 d𝜙 is the differential area on the unit
sphere. For an infinitesimal expansion by a factor of DCF, the error is minimized when

DCF = 1
4𝜋r2

⊕
∫𝜕⊕

r ⋅ u dΩ. (2)

See Appendix A for a proof of this expression.

To evaluate these expressions, as usual [Takeuchi and Saito, 1972], we decompose the displacement field into
vector spherical harmonics. This amounts to separating the spheroidal and the toroidal motion fields:

uS
nm(r, 𝜃, 𝜙) = yS

1, nm(r) Rnm(𝜃, 𝜙) + yS
3, nm(r) Snm(𝜃, 𝜙) (3a)

uT
nm(r, 𝜃, 𝜙) = yT

1, nm(r) Tnm(𝜃, 𝜙) (3b)

where the vector spherical harmonics are

Rnm = Ynm r̂ (4a)

Snm = 𝜕

𝜕𝜃
Ynm 𝜃̂ + 1

sin 𝜃

𝜕

𝜕𝜙
Ynm 𝜙̂ = ∇1Ynm (4b)

Tnm = 1
sin 𝜃

𝜕

𝜕𝜙
Ynm 𝜃̂ − 𝜕

𝜕𝜃
Ynm 𝜙̂ = −r̂ × ∇1Ynm (4c)

not to be confused with the translation and the rotation parameters TCF and RCF, and

∇1 = 𝜃̂
𝜕

𝜕𝜃
+ 𝜙̂

1
sin 𝜃

𝜕

𝜕𝜙
(5)

is the surface gradient operator. The spherical coordinates (r, 𝜃, 𝜙), the corresponding unit vectors (r̂, 𝜃̂, 𝜙̂),
and the spherical harmonics Ynm(𝜃, 𝜙) all have their usual meanings. The radial functions yS

1, nm, yS
3, nm and yT

1, nm
are the coefficients that characterize u in this decomposition. We follow the normalization conventions of
Pollitz [1996] for the spherical harmonics.
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It can be shown that, at least theoretically, only the spheroidal degree-1 modes contribute to TCF and
the toroidal degree-1 modes contribute to RCF, with the help of identities [Okubo and Endo, 1986; Xu and
Chao, 2015]

∫
S2

Tnm dΩ = 0, ∫
S2

Rnm dΩ = 1
2∫S2

Snm dΩ = 𝛿n,1𝚫m (6)

where

𝚫0 = 2

√
𝜋

3
ẑ, 𝚫1 = −

√
2𝜋
3

(x̂ + iŷ), 𝚫−1 = −𝚫∗
1 = −

√
2𝜋
3

(−x̂ + iŷ) (7)

and x̂, ŷ, and ẑ are the Cartesian unit vectors. A normalization-independent characterization of 𝚫 is given by
the relation

r̂ =
1∑

m=−1

Y∗
1,m 𝚫m. (8)

Similarly, only the spheroidal degree-0 mode contributes to DCF (see Appendix A). One only needs to
substitute the decomposition given by equation (3) of

u =
∞∑

n=0

n∑
m=−n

uS
nm + uT

nm (9)

into the definitions in equations (1) and (2) to obtain

TCF = 1
4𝜋

1∑
m=−1

(
yS

1,1,m(r⊕) + 2yS
3,1,m(r⊕)

)
𝚫m (10a)

DCF = 1

2
√
𝜋r⊕

yS
1,00(r⊕) (10b)

RCF = 3
8𝜋r⊕

1∑
m=−1

2yT
1,1,m(r⊕)𝚫m. (10c)

However, it should also be noted that this simplification holds only for the case of complete infinite coverage
of the surface of the Earth. In practice, the other modes can alias into the measurement of the CN frame
parameters through the finiteness of the observation network [Wu et al., 2002].

3. Instantaneous Case

There are at least two methods, called the transformation method and the summation method, to estimate the
CF parameters from the measurements of a network of geodetic stations [Zhou et al., 2016], that is, to calculate
the CN parameters. The ITRF realization employs a variation of the transformation method to calculate the
Helmert parameters of transformation between different reference frames [Altamimi et al., 2002]. This method,
taking a design matrix approach, has the advantage of solving for all the Helmert parameters simultaneously
to minimize the error in the transformed coordinates of a set of stations.

The calculations of the different CN parameters are decoupled in the summation method, and therefore,
this method is amenable to a simpler treatment. In contrast, in the transformation method, there is mixing
between the components through the design matrix of partial derivatives, although measurement errors can
be integrated into the framework more naturally.

In this section we restrict ourselves to instantaneous deformations, and therefore, the Helmert parameters
to solve for are the seven instantaneous ones. Our case study here will be the coseismic displacements
caused by great earthquakes. In section 4.1, we will consider time-dependent displacement fields, and
hence, the transformation method will involve solving for all 14 of the Helmert parameters, as in the ITRF
realization case.
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3.1. Transformation Method
For the instantaneous case, each station contributes three equations to the (overdetermined) linear system
to solve for the CN parameters in the transformation method,

uk =
[

I r r×
]

k

⎡⎢⎢⎣
T
D
R

⎤⎥⎥⎦
CN

(11)

where uk is the displacement of the station with index k, I is the 3×3 identity matrix, rk =
[

x y z
]T

k
is the

position of the station with index k as a 3×1 matrix,

r×k =
⎡⎢⎢⎣

0 z −y
−z 0 x
y −x 0

⎤⎥⎥⎦
k

, (12)

is a 3×3 matrix representing the cross product operation with the station position vector, and TCN, DCN, and RCN

are the translation, the scale, and the rotation parameters deduced from the measurements of the network
of stations, respectively.

In the next section we develop a statistical interpretation of the summation method. We note here, however,
that such a direct interpretation is not readily available for the CN parameters obtained by the transforma-
tion method. In Part 2, therefore, we resort to performing a Monte Carlo simulation over possible network
configurations in order to quantify the network effect for a random network according to this method.

3.2. Summation Method
In the summation method, for a network of N stations at positions rk on the surface of the Earth, where 1 ≤
k ≤ N, the (geometric) CN is defined to be [Wu et al., 2012]

rCN = 1
N

N∑
k=1

rk. (13)

Thus, the shifts in the CN origin and the CN orientation due to a deformation field u(r), all measured with
respect to the stationary CM frame, are

TCN = 1
N

N∑
k=1

u(rk) (14a)

RCN = 1
N

3
2r2

⊕

N∑
k=1

rk × u(rk). (14b)

The change in scale, by similar reasoning, is

DCN = 1
N

1
r2
⊕

N∑
k=1

rk ⋅ u(rk). (15)

If we define auxiliary fields, for convenience,

w(r) = 3
2

r × u(r)
r2
⊕

, s(r) = r ⋅ u(r)
r2
⊕

(16)

then equations (1b) and (2) take the same form as equation (1a), and similarly, equations (14b) and (15) take
the same form as equation (14a), with u substituted for w or s as appropriate. Thus, we can identify the CN
parameters to be the discrete averages of the u, the s, or the w fields for a specific network, while the CF
parameters are the continuous averages of these fields over the entire Earth surface.

3.3. Statistical Interpretation of the CN Parameters
Our key observation here is that we may interpret the u(r), the s(r), and the w(r) fields as stochastic observ-
ables when the station position r is chosen at random. Here the probability of an observation point r being
sampled is taken to be uniform over the surface of the Earth. We can then immediately identify TCF, DCF,
and RCF as the (population, or, distribution) mean of the u(r), the s(r), and the w(r) fields, respectively, since
∫
𝜕⊕

dΩ = 4𝜋. That is,

TCF = ⟨u⟩, DCF = ⟨s⟩, RCF = ⟨w⟩. (17)
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Moreover, if we imagine N points on the Earth surface being randomly picked to construct a network, then
the network itself can be interpreted as a random sampling of sample size N. In that case, TCN, DCN, and
RCN are seen to be the sample means, and their probability distributions may be identified as the sampling
distributions of those sample means. It follows immediately that

⟨TCN⟩ = TCF, ⟨DCN⟩ = DCF, ⟨RCN⟩ = RCF. (18)

Furthermore, the classical Central Limit Theorem (CLT) can now be applied to the distributions of the CN
parameters. In the form most relevant to us, the CLT states that for a random sample of size N from a probability
distribution with mean𝜇 and standard deviation 𝜎, the sampling distribution of the sample mean approaches
the normal distribution with mean 𝜇 and standard deviation 𝜎∕

√
N, as N increases. Thus, in our case, for

large N,

std(TCN) ≈
std(u)√

N
, std(DCN) ≈

std(s)√
N

, std(RCN) ≈
std(w)√

N
. (19)

We are, however, primarily interested in the deviations of the CN parameters from the CF parameters. Fortu-
nately, because of our identification of the CF parameters as the population means, the standard deviations
of the CN parameters provide a natural measure of the expected magnitude of the desired deviations. We
identify the standard deviation of a CN parameter to be an estimate of the magnitude of the network effect
in that parameter, that is, to be the expected bias. Therefore, we define the expected biases in the Helmert
parameters to be

ΔT = std(TCN), ΔD = std(DCN), ΔR = std(RCN). (20)

The CLT then guarantees that ΔT , ΔD, and ΔR scale as 1∕
√

N. An alternative interpretation of this scaling
may be obtained by considering the deviation of the measurement of one of these fields at a point from the
corresponding CF parameter as an error in the measurement of that CF parameter. For N randomly chosen
points, the sum of these uncorrelated errors scales as

√
N, as in the case of a random walk, and therefore,

the corresponding deviation of the CN parameter from the CF parameter, that is, the average of these errors,
scales as 1∕

√
N. It is instructive, in this light, to interpret the formula for the CF frame parameters as the sample

means when the network is infinite and uniformly distributed.

This scaling, in practice, is extremely robust since the displacement field is bounded and is fairly applicable
even for a very small network (Figure 2). Therefore, to calculate the expected bias for a finite network, it suffices
to know the standard deviations of the fields u, s, and w themselves, which may be interpreted as sample
means of sample size N = 1. These latter standard deviations can also be calculated analytically, noting that

var(u) = 1
4𝜋 ∫𝜕⊕

(u − TCF)2 dΩ = 1
4𝜋 ∫𝜕⊕

u2 dΩ − T2
CF (21a)

var(s) = 1
4𝜋 ∫𝜕⊕

(s − DCF)2 dΩ = 1
4𝜋 ∫𝜕⊕

s2 dΩ − D2
CF (21b)

var(w) = 1
4𝜋 ∫𝜕⊕

(w − RCF)2 dΩ = 1
4𝜋 ∫𝜕⊕

w2 dΩ − R2
CF (21c)

where TCF and RCF are given by equation (10), and it can be shown that

1
4𝜋 ∫𝜕⊕

u2 dΩ = 1
4𝜋

∑
n,m

|||yS
1, nm(r⊕)

|||2
+ n(n + 1)

(|||yS
3, nm(r⊕)

|||2
+ |||yT

1, nm(r⊕)
|||2)

(22a)

1
4𝜋 ∫𝜕⊕

s2 dΩ = 1
4𝜋 r2

⊕

∑
n,m

|||yS
1,lm

|||2
(22b)

1
4𝜋 ∫𝜕⊕

w2 dΩ = 9
16𝜋 r2

⊕

∑
n,m

n(n + 1)
(|||yS

3, nm(r⊕)
|||2
+ |||yT

1, nm(r⊕)
|||2)

(22c)

by the orthogonality properties of the vector spherical harmonics (see Appendix B for a proof).
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Figure 2. The dependence of the expected bias on the network size. The standard deviations of (left) TCN and (right)
RCN scales as 1∕

√
N. The example coseismic displacement field here is due to a double-couple point source of moment

magnitude Mw 9.0 at a depth of 10 km.

We note, however, that it is not necessary for the utility and the applicability of the expected bias that the
displacement field be given in its vector spherical harmonics decomposition form. If, for example, the dis-
placement field is provided on a regular grid, one can still construct the discretized and normalized frequency
distribution of the field as an approximation to its true probability distribution. In this case the expected bias
can still be calculated from equations (19) and (20) from such an approximate distribution.

Furthermore, the expected bias estimates the network effect well even if regions of the Earth surface is
excluded from consideration, as for the case we consider in Part 2 for the ITRF core site networks perturbed by
coseismic deformations. Fortunately, not only can the expected bias be calculated as before but also the sam-
pling distribution of the CN parameters themselves can still be obtained from the probability distributions of
the u, the s, and the w fields.

For notational convenience, we choose a random variable X , with the probability density function (PDF) pX ,
to demonstrate this method. X may stand for any component of the u, the s, or the w fields. For a random
sampling of X by a network, the measurements Xk = X(rk) all share the PDF pX , and so the PDF of the sum
S =

∑
k Xk is

pS = pX ∗ … ∗ pX
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

N times

(23)

where ∗ denotes convolution, since Xk are independent. The PDF of the sampling mean X̄ = S∕N is given by

pX̄ (x) = N pS(N ⋅ x) (24)

by a simple rescaling that preserves the total probability. The expected bias ΔX may be calculated immedi-
ately as the standard deviation of the sampling distribution pX̄ . The consequences of the CLT are illustrated
in Figure 3 where the sampling distributions, obtained by this procedure, are seen to approach normal
distributions of increasingly narrower widths with increasing network size N.

To summarize this method, in order to calculate the expected bias for network size N, we may want to proceed
by partitioning the surface of the Earth into a large number of equal area pieces, evaluate the displacement
field u, and thereby s and w, on one representative point per piece, using the crustal deformation model we
are considering. We then aggregate the data to form a frequency distribution for each component of the
fields. Then, after convolving the distribution with itself N times and a final rescaling of the distribution by
1∕N, we obtain the frequency distributions of TCN, DCN, and RCN, respectively. The expected bias will then be
the standard deviations of these distributions.

3.4. Case Study: Coseismic Displacements
Our model of the Earth throughout this paper and Part 2 is the (modified) preliminary reference Earth model
(PREM) [Dziewonski and Anderson, 1981] for the layered structure of the Earth. As is shown in Figure 4, it fea-
tures sharp changes in the density and the elastic moduli at the Mohorovičić discontinuity (Moho) and at the
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Figure 3. The distributions of the Cartesian components of the contributions from the degree-1 modes to TCN for the
coseismic displacement field due to a double-couple point source of moment magnitude Mw 9.0 at a depth of 10 km.
Although only the x component has a nonzero mean of 1.85 mm for the chosen source, all the components contribute
significantly to the network effect, as can be seen by the comparable width of the distributions for all three components.

core-mantle boundary. We find and report in Part 2 that the GM is particularly sensitive to the placement of
the seismic source with respect to the Moho.

To calculate the coseismic displacement field for an SNREI Earth without gravity by the normal mode summa-
tion method, the traction forces on the spherical shell at radius r for the spheroidal and the toroidal modes
are, as in equation (3), decomposed into

r̂ ⋅ 𝜎S
nm(r, 𝜃, 𝜙) = yS

2, nm(r) Rnm(𝜃, 𝜙) + yS
4, nm(r) Snm(𝜃, 𝜙) (25a)

r̂ ⋅ 𝜎T
nm(r, 𝜃, 𝜙) = yT

2, nm(r) Tnm(𝜃, 𝜙) (25b)

where 𝜎 is the stress tensor. The equation of static equilibrium is

∇ ⋅ 𝜎 = M ⋅ ∇
(
𝛿(r − rs)

)
(26)

where M is the moment tensor of the point source at rs and 𝛿 and ∇ are the Dirac delta and the vector differ-
ential operator, respectively. The solutions of this equation must be regular at the origin r = 0, and the free
boundary condition r̂ ⋅ 𝜎(r⊕, 𝜃, 𝜙) = 0 is imposed on the Earth surface. In terms of the y functions, for each
n ≥ 0, and |m| ≤ n the problem decouples into a system of linear first-order ordinary differential equations
[Takeuchi and Saito, 1972; Pollitz, 1992]

dynm

dr
= An ynm (27)

where An(r) is a matrix dependent on the physical properties of the layered Earth. The solutions are again
required to be regular at r = 0 and on the surface,

yS
2, nm(r⊕) = yS

4, nm(r⊕) = yT
2, nm(r⊕) = 0. (28)

There is, however, a discontinuity,

Δynm = ynm(r+s ) − ynm(r−s ) (29)

due to the dislocation at the source radius rs yet to be specified. Explicit expressions for the An matrices may be
found in Pollitz [1992]. Note that due to spherical symmetry, the equation of motion is degenerate so that the
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Figure 4. The profiles of the physical properties of the layered Earth for the preliminary reference Earth model (PREM) as
a function of depth from the Earth surface. The (top row) Moho discontinuity is at ∼15–25 km depth and the (bottom
row) core-mantle boundary is at ∼3000 km depth. Beneath the core-mantle boundary the Earth is liquid and thus
possess no shear modulus.

matrix An is independent of m. Our implementation for constructing the solutions to these equations utilizes
the matrizant matrix technique [Takeuchi and Saito, 1972].

In epicentral coordinates, Δynm is zero when |m|> 2 [Gilbert and Dziewonski, 1975], and consequently, ynm

also vanish. Expressions for the remaining nonzero components of the discontinuity due to a point source
were first derived in Saito [1967]. We adopted the expressions given in Pollitz [1996] for the discontinuity in
terms of the components of the moment tensor in our implementation. For completeness, we note that the
relationship between the fault geometry to the moment tensor is given by

dM = 𝜆s Δu ⋅ dA + 𝜇s (Δu ⊗ dA + dA ⊗ Δu) (30)

where 𝜆s and 𝜇s are the Lamé coefficients of the layer that the source belongs to, Δu is the dislocation, dA is a
differential (vector) area on the fault plane, and ⊗ denotes the dyadic, or, the tensor product. It can be shown
that due to the rotational symmetries of the sources, a point source can create only four linearly independent
coseismic displacement fields [see, e.g., Aki and Richards, 2002] instead of the six possible for the symmetric
tensor given in equation (30). Hence, we use a set of four physically meaningful linearly independent sources
for our calculations in Part 2.

The degree-1 modes of the displacement fields, however, require special attention. They are distinguished by
the property that they include rigid translations and rotations [Okubo and Endo, 1986], as was discussed in
section 2. Since the equations of motion are invariant under such rigid body motions, the boundary conditions
for the degree-1 modes are degenerate. The extra boundary conditions required for the uniqueness of the
solutions come from the physical requirement of the conservation of linear and angular momenta [Sun and
Dong, 2014] that hold in the inertial CM frame,

∫⊕

𝜌 u dV = 0, ∫⊕

𝜌 r × u dV = 0 (31)
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where ⊕ denotes the Earth interior, dV = r2 dr dΩ is the volume element, and 𝜌(r) is the density of the
layered Earth. One can show, using results from section 2, that these conditions reduce to [Sun and Okubo,
1993; Xu and Chao, 2015]

∫
r⊕

0
𝜌
(

yS
1, 1,m + 2yS

3, 1,m

)
r2 dr = 0 (32a)

∫
r⊕

0
𝜌 yT

1, 1,m r3 dr = 0 (32b)

for |m| ≤ 1, respectively. Note that our interpretation of the term “geocenter motion” closely follows that
of Sun and Dong [2014] as the motion of the CF, rather than that of Xu and Chao [2015] as the motion of the
center of the solid Earth (CE).

The equations of motion reduce to a simpler system for the degree-0 case relevant to the determination of
the scale parameter, but the boundary conditions are, unlike the degree-1 case, not degenerate.

4. Time-Dependent Case

Here we introduce the relevant methods of determining the CN parameters from a time-dependent displace-
ment field. The transformation method presented here is a specialized form of the more general method given
in Altamimi et al. [2002] that also incorporates velocity measurements at the stations. The extension of the
summation method to the time-dependent case that we present here is based on linear regression theory.

Our case study here is the elastic deformation field due to surface water movements. We note that we
are primarily interested in the secular drifts in the CN parameters, that is, the derivative parameters in the
time-dependent case.

4.1. Transformation Method
According to the transformation method, for a time series of station positions at a discrete set of epochs tj ,
the Helmert parameters may be estimated by the least square fit to the set of overdetermined equations

uj,k =
[

I r r×k 𝛿tj I 𝛿tj r 𝛿tj r×k
]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

T
D
R
Ṫ
Ḋ
Ṙ

⎤⎥⎥⎥⎥⎥⎥⎥⎦CN

(33)

in the notation of equation (11). Here 𝛿tj = tj − tref for some reference epoch tref, uj,k is the displacement of the
station with index k at the epoch with index j, ṪCN and ṘCN are the velocity and angular velocity parameters
respectively, and ḊCN is the rate of scale change.

4.2. Summation Method
To present an analogue of the summation method in the time-dependent case, we introduce the (weighted)
time average ⟦f⟧ of a time-dependent quantity f (t). Suppose the end points of the relevant time inter-
vals are 𝜏0, 𝜏1,… , 𝜏p, where p is the number of intervals, the epochs are the midpoints of these intervals
tj =

1
2

(
𝜏j−1 + 𝜏j

)
, and f is evaluated at these epochs, fj = f (tj). Then we define

⟦f⟧ = 1
𝜏p − 𝜏0

p∑
j=1

fj Δtj (34)

where Δtj = 𝜏j − 𝜏j−1 is the length of the jth interval.

In this scheme, the secular translational GM is modeled by

Tmodel(t) = TCN + (t − tref) ṪCN. (35)

The parameters TCN and ṪCN are estimated by minimizing the time-averaged deviation ⟦(T − Tmodel

)2⟧where
Tj is the instantaneous CN at the epoch with index j,

Tj =
1
N

N∑
k=1

uj,k. (36)
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In accordance with simple linear regression theory, this procedure results in,

TCN = ⟦T⟧ = 1
𝜏p − 𝜏0

p∑
j=1

Tj Δtj (37a)

ṪCN =
⟦(T − ⟦T⟧) (t − ⟦t⟧)⟧⟦(t − ⟦t⟧)2⟧ =

cov(T, t)
var(t)

(37b)

by choosing tref = ⟦t⟧, where the underlined operators cov and var denote the (weighted) covariance and
variance in time. To facilitate direct comparison with the transformation method, we make the same choice
of tref for both of the methods in our simulations in Part 2. Similarly,

RCN = ⟦R⟧ = 1
𝜏p − 𝜏0

p∑
j=1

Rj Δtj (38a)

ṘCN =
⟦(R − ⟦R⟧) (t − ⟦t⟧)⟧⟦(t − ⟦t⟧)2⟧ =

cov(R, t)
var(t)

(38b)

DCN = ⟦D⟧ = 1
𝜏p − 𝜏0

p∑
j=1

Dj Δtj (38c)

ḊCN =
⟦(D − ⟦D⟧) (t − ⟦t⟧)⟧⟦(t − ⟦t⟧)2⟧ =

cov(D, t)
var(t)

(38d)

where

Rj =
1
N

N∑
k=1

wj,k (39)

Dj =
1
N

N∑
k=1

sj,k (40)

are the instantaneous shift in orientation and the instantaneous change in scale of the CN frame.

4.3. Case Study: Elastic Deformation Due To Hydrological Loading
We assume, as is customary, that the Earth is the sum of two components: a solid elastic Earth, and a thin
layer of water on the surface, described by its surface density, that redistributes itself over time. With the usual
spherical harmonics expansion of the surface density 𝜎 and the resulting “load potential” V ,

𝜎(𝜃, 𝜙) =
∑
n,m

𝜎nm Ynm(𝜃, 𝜙), V(𝜃, 𝜙) =
∑
n,m

Vnm Ynm(𝜃, 𝜙), (41)

Poisson’s equation takes the form [Blewitt, 2003],

Vnm

g
=

4𝜋 r3
⊕

M⊕

𝜎nm

2n + 1
(42)

where g is the average acceleration due to gravity at the surface of the Earth and M⊕ is the mass of the whole
Earth system. The elastic deformation of the Earth due to the load is given by the load Love number theory
to be

yS
1,nm = hn

Vnm

g
, yS

3,nm = ln

Vnm

g
(43)

in our expansion of u in equation (3), where hn and ln are the usual Love and Shida numbers, respectively,
calculated for our model of the Earth: PREM. There is no toroidal mode in this case. Therefore, the shifts in
Helmert parameters due to this deformation is again given by equation (10), but RCF is now identically zero.
Since we assume that the total water mass is conserved, DCF also vanishes.

In Part 2, we consider the water mass deduced from the time-dependent gravity anomaly field observed by
Gravity Recovery and Climate Experiment (GRACE) [Tapley et al., 2004] as a model of surface water movements.

ZANNAT AND TREGONING ESTIMATING NETWORK EFFECT: THEORY 8370



Journal of Geophysical Research: Solid Earth 10.1002/2017JB014246

For the sake of simplicity as an illustrative case study, we use the GRACE data as is, and therefore, our subse-
quent results also contain contributions from a few other processes such as the glacial isostatic adjustment
(GIA). The “space potential” measured by GRACE is expressed in terms of the load Love numbers kn as

Unm = (1 + kn) Vnm (44)

However, calculating the degree-1 coefficients, central to the problem of determining the shifts, is problematic
in the CM frame. This is because in this frame, k1 = −1, and hence V1,m are indeterminate in equation (44).

Fortunately, it is possible to estimate the GM by combining GRACE data with independently derived ocean
models [Swenson et al., 2008]. The resulting U1,m are given in the CF frame where they do not vanish. From
here, we need to transform the degree-1 field to the CM frame in order to find the total displacement field in
the CM frame. This is done with the help of the result obtained by Blewitt [2003] that the effect of translation
along the load moment vector

m = r3
⊕ ∫𝜕⊕

𝜎 r̂ dΩ = r3
⊕

1∑
m=−1

𝜎1,m 𝚫m (45)

is to transform the degree-1 load Love numbers in frame A to frame B according to

[
h1

]
B
=
[

h1 − 𝛼B

]
A

(46a)[
l1
]

B
=
[

l1 − 𝛼B

]
A

(46b)[
k1

]
B
=
[

k1 − 𝛼B

]
A

(46c)

where for a given translation vector [TB]A the factor [𝛼B]A is defined by the relation:

[TB]A = [𝛼B]A
m

M⊕

. (47)

By composing the transformation from the CF frame to the center of solid Earth (CE) frame with the
transformation from the CE frame to the CF frame, we finally obtain

[1 + k1]CF = [1 + k1 − 𝛼CF]CM = −1
3
[h1 + 2l1]CM ≠ 0 (48)

which enables us to solve equation (44) for V1,m. The resulting GM is shown in Figure 5.

5. Voronoi Decomposition of the Earth Surface

The definitions of the CF parameters, for example, in equations (1) and (2), suggest another natural
discretization,

TCWN =
N∑

k=1

u(rk)
Ak

A⊕

, DCWN =
N∑

k=1

s(rk)
Ak

A⊕

, RCWN =
N∑

k=1

w(rk)
Ak

A⊕

(49)

where A⊕ = 4𝜋r2
⊕

is the surface area of the Earth and Ak is the surface area assigned to the station with index
k. That is, we assign a weight proportional to the area of the surface of the Earth that a station represents to its
measurements. Here we investigate one such choice of the weight: the area of the Voronoi cell of the station.
We will call the resulting frame the center of weighted network (CWN) frame. Although equation (49) shows
formulas for the CWN frame parameters using the summation method, the weights can also be incorporated
into the transformation method by the usual process of encoding them into a weight matrix.

For a fixed set of N stations, the Voronoi cell [Voronoi, 1908] corresponding to a particular station is the set
of points on the surface closer to that station than any other station (Figure 6a). Here the distance between
two points on the sphere is their great-circle distance. Thus, the surface of the sphere is partitioned into N
spherical polygons, consisting of the perpendicular bisectors between neighboring stations, whose areas are
our required weights. In the following, we restrict ourselves to the unit sphere for simplicity.

It is well known that Voronoi decomposition is related to Delaunay triangulation in that the vertices of the
Voronoi cells are the circumcenters of the Delaunay triangles (Figure 6b). The Delaunay triangulation of a
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Figure 5. Shifts in CF translational parameters caused by hydrological loading deformations for the period 2004–2014.
The green curve shows the quasiperiodic instantaneous position of the CF with respect to the CM frame. The blue line is
our estimate of the secular motion of the CF as discussed in section 4.2. The associated GM is the negative of the
depicted motion of the CF.

set of points has the characteristic property that no point lies inside the circumcircle of any of the triangles.
Fortunately, the latter problem is simplified by the observation [Brown, 1979; Renka, 1997; Caroli et al., 2010]
that for a sphere, finding the Delaunay triangulation is equivalent to the familiar problem of calculating the
convex hull of the stations. Many efficient implementations of the convex hull problem are available, and we
have used the SciPy (http://www.scipy.org) bindings to the Qhull (http://www.qhull.org) library.

Figure 6. (a) Voronoi decomposition of the surface of the sphere. The eight illustrative stations are shown in green dots.
(b) Duality between Delaunay triangulation and Voronoi decomposition, shown on the flat Euclidean plane for the ease
of illustration. The Voronoi cell (red polygons) around a station (green dots) is constructed by sequentially joining the
circumcenters (red dots) of the triangles (green triangles) that have the station as a common vertex, as depicted for the
example (yellow fill) cell.

ZANNAT AND TREGONING ESTIMATING NETWORK EFFECT: THEORY 8372

http://www.scipy.org
http://www.qhull.org


Journal of Geophysical Research: Solid Earth 10.1002/2017JB014246

For a spherical triangle on the unit sphere with the stations P, Q, and R as its vertices, the circumcenter may
be found by normalizing the vector (P − R) × (Q − R) perpendicular to the (Euclidean) triangle. The Voronoi
cell of a station is then the spherical polygon constructed by sequentially joining the circumcenters of the
set of triangles around it. The cells are then divided into spherical triangles whose areas are calculated by the
classical L’Huilier’s formula. The areas on the Earth surface are easily recovered by multiplying with r2

⊕
.

Our simplified algorithm, although easy to implement, has the unfortunate drawback of being numerically
less stable than the more involved algorithm in Caroli et al. [2010] that we have not implemented yet. In prac-
tice, our algorithm cannot resolve stations within a few meters of each other reliably, and therefore, in Part 2
we selected only one representative from the colocated stations from different geodetic techniques.

Our motivation for this particular choice of weights comes from the discrepancy in coverage between the
continents. In reality, for example, Europe is more densely covered than Africa by geodetic stations. Therefore,
the GM signature of a hypothetical earthquake in Europe would be disproportionately more pronounced than
the same earthquake in Africa for the CN frame. However, we may anticipate some compensation of this effect
for the CWN frame, since it would on an average assign lesser weights to the European stations compared to
the African ones.

6. Conclusions

In summary, we have proposed an intuitive and computationally inexpensive estimate of the network effect.
When the displacement field predicted by a geophysical model is given in its natural vector spherical harmon-
ics decomposition form, the analytical formulas for the standard deviations of the fields given in equations (21)
and (22), along with the 1∕

√
N scaling, may be used to quantify the expected error in measuring the Helmert

parameters by a network of size N.

We have also presented the theory needed to apply this method to two geophysical processes of interest in
Part 2: coseismic displacements by an earthquake as a case study for the instantaneous Helmert parameters
and elastic deformation due to surface water movements as a case study for the derivative Helmert parame-
ters. We find in Part 2 that the expected bias is generally within an order of magnitude of the observed network
effect for realistic networks, provided that we take cautionary measures to prevent overestimation of the error
for networks specially designed not to be perturbed by the events.

Furthermore, our application of the Voronoi cell decomposition of the Earth surface to modify the relative
weights of the displacements recorded by the stations is seen to perform better in Part 2 than its geometric
counterpart. However, we also find that this improvement is not universal: in rare cases this method may in
fact degrade the determination of GM by a geodetic network.

Appendix A: Derivation of Expressions for the Instantaneous Helmert Parameters

Here we present sketches of derivations of several formulas appearing in the main text, and unless otherwise
stated, we follow the same notations.

Each of the CF parameters TCF, DCF, and RCF is associated with a displacement field:

vT = TCF (A1a)

vD = DCF r (A1b)

vR = RCF × r (A1c)

and the goal is to minimize the error, ∫
𝜕⊕
(u−v)2 dΩ, in approximating the displacement field u by these fields.

For the scale DCF, this amount to solving

𝜕

𝜕DCF ∫𝜕⊕

(u − vD)2 dΩ = 0 (A2)

or,

∫𝜕⊕

u ⋅ r dΩ = ∫𝜕⊕

vD ⋅ r dΩ = DCF ∫𝜕⊕

r2 dΩ = 4𝜋 r2
⊕

DCF (A3)
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from which equation (2) follows immediately. The derivation of equation (1) is analogous, although compar-
atively more involved. The discrete counterparts of these formulas for the CN parameters in the summation
method, equations (14) and (15), may be derived mutatis mutandis. For the transformation method, one
only needs to consider the combined displacement field v = vT + vD + vR and solve for all the parameters
simultaneously.

Putting the vector spherical harmonics expansion of u, equation (9), into these formulas, we get, for the scale
parameters, for example,

4𝜋 r2
⊕

DCF = ∫𝜕⊕

u ⋅ r dΩ = r⊕
∑
n,m

yS
1,nm(r⊕) ∫𝜕⊕

Ynm dΩ. (A4)

Since Y00 = 1

2
√
𝜋

in our normalization, the orthogonality relation for the spherical harmonics reads

∫
S2

Y∗
00 Ynm dΩ = 1

2
√
𝜋 ∫

S2
Ynm dΩ = 𝛿n,0 𝛿m,0 (A5)

from which the scale factor formula in equation (10) follows. The other formulas in equation (10) may also be
derived analogously.

Appendix B: Derivation of Analytical Expressions for the Expected Bias

As in the last section, we demonstrate the proof of the scale factor formula in equation (22) explicitly, eliding
the similar but more involved formulas for simplicity. Since

s = u ⋅ r
r2
⊕

= 1
r⊕

∑
n,m

yS
1,nm(r⊕) Ynm (B1)

and s is real,

∫𝜕⊕

s2 dΩ = ∫𝜕⊕

s∗ ⋅ s dΩ = 1
r2
⊕

∑
n,m,n′ ,m′

yS∗
1,nm(r⊕)y

S
1,n′m′ (r⊕)∫𝜕⊕

Y∗
nmYn′m′ dΩ (B2a)

= 1
r2
⊕

∑
n,m,n′ ,m′

yS∗
1,nm(r⊕)y

S
1,n′m′ (r⊕) 𝛿n′ ,n 𝛿m′ ,m (B2b)

= 1
r2
⊕

∑
n,m

|yS
1,nm|2 (B2c)

We note that for the derivation of the other two formulas, the orthogonality relations of the vector spherical
harmonics in the space of square-integrable functions, that is, the Hilbert space,

∫
S2

R∗
n′ ,m′ ⋅ Rnm dΩ = 𝛿n,n′ 𝛿m,m′ (B3a)

∫
S2

S∗
n′ ,m′ ⋅ Snm dΩ = n(n + 1) 𝛿n,n′ 𝛿m,m′ (B3b)

∫
S2

T∗
n′ ,m′ ⋅ Tnm dΩ = n(n + 1) 𝛿n,n′ 𝛿m,m′ (B3c)

as well as

∫
S2

R∗
n′ ,m′ ⋅ Snm dΩ = 0, ∫

S2
R∗

n′ ,m′ ⋅ Tnm dΩ = 0, ∫
S2

S∗
n′ ,m′ ⋅ Tnm dΩ = 0 (B4)

are helpful.
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