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Abstract—This paper establishes a general theorem concern-
ing the eigenvalue invariance of certain inhomogeneous matrix
products with respect to changes of individual multiplicands’
orderings. Instead of detailed entries, it is the zero-nonzero
structure that matters in determining such eigenvalue invariance.
The theorem is then applied in analyzing the convergence rate of
a distributed algorithm for solving linear equations over networks
modelled by undirected graphs.

Index Terms—Distributed Algorithms; Eigenvalue Invariance.

I. INTRODUCTION

INTENSIVE research efforts have recently been devoted
to studying distributed control of networked systems, the

goal of which is to achieve global objectives through lo-
cal coordination among connected subsystems [1]–[3]. Net-
worked systems operating in discrete time may often lead to
a mathematical model involving inhomogenous products of
matrices. Such inhomogeneity can result from, for example,
change of network structure [4], [5], cyclic consideration
(measurement or control) of subsystems, or communications
among subsystems in the overall networked system [6], [7],
or alternation of different operations, such as seeking local
optimization involving one subsystem, followed by deliberate
incorporation with another subsystem, then reversion to the
local optimization using distributed optimization [8]–[10].

A common style of interaction between subsystems joined
in a network involves gossiping, a process where, typically
in a random sequence, individual pairs of systems exchange
information, often with a view to establishing something like
a common average of initially stored values. Deterministic
periodic gossiping is also one distributed way of driving all
nodes in a network to achieve a consensus that can be the
global average of all nodes’ initial state values, though on
practical grounds random gossiping [11] may be preferred.
Nevertheless, periodic gossiping [12] brings with it a de-
terministic convergence, which is determined by the second
largest eigenvalue of an inhomogeneous product of matrices
[13] (Such convergence could be further speeded up by a
computable amount by allowing multi-gossiping correspond-
ing to disjoint edges [14]). The convergence rate has been
shown to be invariant with respect to the gossip orders for
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tree networks due to an invariant property of eigenvalues of a
class of inhomogeneous products [15]–[17].

In a quite different direction, by a combination of the
consensus idea with projections to linear constraints on nodes’
states, distributed algorithms have recently been developed
for solving linear equations [18]–[22]. It is possible to use
periodic gossiping as the tool for achieving consensus in
these distributed algorithms, and it then transpires that a class
of inhomogeneous products of matrices becomes relevant in
considering the convergence. These products are inherently
different from (and indeed structurally more complicated than)
those arising in ordinary periodic gossiping aimed at achieving
an average of initially stored variables. Surprisingly we have
observed that the property of eigenvalue invariance still holds
as long as the underlying network is a tree. Proof of this obser-
vation is nontrivial since previous results in [15]–[17] based
on the details of matrix entries are not directly applicable. This
motivates us to establish a general theorem of linear algebra
about the invariance of eigenvalues of certain inhomogeneous
matrix products with respect to changes of ordering of the
individual multiplicands.

Accordingly in this paper, we seek to first explain the
general theorem, and then show how it applies to the case of
a decentralized discrete-time algorithm for solving Ax = b.
The approach to proving the main linear algebra result is
motivated by the proofs we found for a result on achieving
consensus using periodic gossiping [15]–[17]. The proof in
this paper involves delicately interrelating properties of graphs
with properties of block matrices; however it does not draw
on the detailed structure of the individual blocks. Any such
details are in fact a distractor, though they become relevant
in considering particular applications of the theorem, and are
needed in computing convergence rates for infinite products.

The next section of the paper establishes the eigenvalue
invariance property for inhomogeneous products. It is followed
by sections treating the distributed solution of Ax = b.
Simulations and conclusions complete the paper.

II. EIGENVALUE INVARIANCE OF A CLASS OF
INHOMOGENEOUS MATRIX PRODUCTS

Consider an n-node-n̄-edge simple graph E, i.e. undirected
with no self-loops or multiple edges. An n× n block matrix
Q ∈ Rnm×nm is called a primitive matrix for edge (i, j) in
E if each block in its diagonal is Im except the iith and the
jjth, and each off-diagonal block is 0m except the ijth and the
jith. Note that in a primitive matrix for edge (i, j), we do not
put any restrictions on its iith, ijth, jith and jjth block entry.
As will be shown later, the detailed contents of these block



entries have no impact to the eigenvalue invariance property
that we will establish.

Let E = e1, e2, ..., en̄ denote an ordered edge sequence. If
ei 6= ej for any i 6= j in E and {e1, e2, ..., en̄} is the edge
set of E, the ordered edge sequence E is called complete.
Correspondingly, the matrix product E = Qn̄Qn̄−1 · · ·Q1 is
called a complete matrix of E, where Qh is a primitive matrix
for the edge eh, h = 1, 2, ..., n̄. Let G(G) denote the set of
complete matrices of any simple graph G. By an isolated node
of G is meant any node in G with degree zero; any node of
G with positive degree is non-isolated. If G ∈ G(G) and i
is an isolated node, then both the ith block row and the ith
block column of G have Im in the ith block entry and zeros
elsewhere. By a spanning subgraph of G is meant a graph
with the same set of nodes as G but a subset of edges of G
(Even an empty subset is allowed here).

A major result of this paper is the following theorem,
which presents the invariance of characteristic polynomials of
complete matrices under certain permutations.

Theorem 1: Let E = Qn̄Qn̄−1 · · ·Q1 be a complete
matrix of an n-node-n̄-edge simple graph E, where Qh is a
primitive matrix for the edge eh in E, h = 1, 2, ..., n̄. Let
Eπ = Qπ(n̄)Qπ(n̄−1) · · ·Qπ(1), where π : {1, 2, ..., n̄} →
{1, 2, ..., n̄} denotes a permutation map. Let cp(·) denote the
characteristic polynomial of a matrix. Then

cp(E) = cp(Eπ)

if π satisfies one of the following conditions:
1) π is the identity map.
2) π is a cyclic permutation of {1, 2, ...., n̄}
3) π interchanges h and h + 1 provided that eh and eh+1

are disjoint, that is, not incident on the same node;
4) π interchanges h and h + 1 provided that eh and eh+1

are incident on the same node but neither edge is
contained in any cycle of E.

Remark 1: One might conjecture whether the theorem is too
restrictive. We have searched but have not found any permuta-
tions that maintains the eigenvalue invariance properties other
than those four in Theorem 1, especially when we consider
a special class of primitive matrices, which has 1s in the
diagonal and 0s off-diagonal except the iith, ijth, jith and
jjth entries equal to 1

2 corresponding to an edge (i, j) [13].
To prove Theorem 1, we need the following two lemmas

with proofs to be provided in the Appendix.
Lemma 1: Suppose that G1,G2, . . .Gr are spanning sub-

graphs of a simple graph G such that the union of
G1,G2, . . .Gr is G; and for any 1 ≤ i, j ≤ r, Gi and Gj have
no non-isolated node in common. Then for any G ∈ G(G),
there exists Gi ∈ G(Gi), i = 1, 2, ..., r such that

G = Gπ(1)Gπ(2) · · ·Gπ(r)

for any permutation map π : {1, 2, . . . , r} → {1, 2, . . . , r}.
Lemma 2: Suppose that G1,G2, . . .Gr are spanning sub-

graphs of an n-node simple graph G. Suppose node n is
the only common non-isolated node of all Gi, i = 1, 2, .., r,
and for any 1 ≤ i, j ≤ r, Gi and Gj have no other
common non-isolated node except node n. Then for any

Fig. 1. Graphs that have the same set of nodes indicated by black dots but
different edges: G1 (with edges in the red circle), G2 (with edges in the green
circle), G3 (with edges in the black circle), Ḡ1 (with edges in red color), and
Ḡ2 (with edges in green color);

permutation map π : {1, 2, . . . , r} → {1, 2, . . . , r} and any
Gi ∈ G(Gi), i = 1, 2, . . . , r, one has

cp
(
Gπ(r)Gπ(r−1) · · ·Gπ(1)

)
= cp (GrGr−1 · · ·G1) . (1)

Proof of Theorem 1: It is easy to verify that Theorem 1 is
true under Condition 1) or 2), and accordingly we omit the
details of the proof. Next note that if two edges have no node
in common, their corresponding primitive matrices commute,
which implies Theorem 1 holds under condition 3). All we
still need to do is to prove the theorem is true under condition
4) by showing cp(E) = cp(Eπ), where

E = Qn̄ · · ·Qh+2 Qh+1Qh Qh−1 · · ·Q1

and
Eπ = Qn̄ · · ·Qh+2 QhQh+1 Qh−1 · · ·Q1.

Without losing any generality, and with inessential node
renumbering if necessary we suppose Qh and Qh+1 corre-
spond to the edges (u, n) and (v, n), respectively, of E. Let G
denote a spanning subgraph of E which results from deleting
(u, n) and (v, n) from E. As indicated in Fig.1, we let G1

be the spanning subgraph of E with edges indicated in red
circle, which are edges of the connected component in G
containing node u; let G2 denote the spanning subgraph of
E with edges indicated in the green circle, which are those
of the connected component in G containing node v; let G3

denote the spanning subgraph of E with edges indicated in
the black circle. Here, G3 is obtained by deleting (u, n), (v, n)
and all edges belonging to G1 and G2. Then G is the union of
G1,G2,G3. Note that G1,G2 are necessarily connected while
G3 may not be. Let Ḡ1, Ḡ2 denote the spanning subgraphs of
E, with edge set of G1 plus (u, n) and edge set of G2 plus
(v, n), respectively. Then E is the union of Ḡ1, Ḡ2,G3.

By cyclic permutations to the matrix product E, one can
construct a matrix product M , where

M = Qh−1 · · ·Q1Qn̄Qn̄−1 · · ·Qh+2 (2)

Then
cp(E) = cp(Qh+1QhM).

Note that M ∈ G(G), G is the union of G1,G2,G3, and
G1,G2,G3 are spanning subgraphs of E. Since (u, n) and
(v, n) are not contained in any cycle in E, then any two of



{G1,G2,G3} do not have a non-isolated node in common. By
Lemma 1, we have

M = G2G1G3 (3)

where G1 ∈ G(G1), G2 ∈ G(G2), G3 ∈ G(G3). Then

cp(E) = cp(Qh+1QhG2G1G3). (4)

Note that (u, n) and any edge of G2 are disjoint. Thus Qh
commutes with G2. It follows that

cp(E) = cp(Qh+1G2QhG1G3). (5)

Observe that QhG1 ∈ G(Ḡ1), Qh+1G2 ∈ G(Ḡ2), and any
two of Ḡ1, Ḡ2,G3 only have n as the non-isolated node in
common. Thus by Lemma 2, we have

cp(E) = cp(QhG1Qh+1G2G3). (6)

Note that Qh+1 commutes with G1 since (v, n) and any edge
of G1 are disjoint; and G2 commutes with G1 since any edge
in G1 and any one in G2 are disjoint. Hence, we have

cp(E) = cp(QhQh+1G2G1G3) (7)

which by (3) leads to

cp(E) = cp(QhQh+1M) (8)

with M as defined in (2). Again by cyclic permutation to
QhQh+1M at the right-hand side of (8), one has

cp(E) = cp(Qn̄ · · ·Qh+2QhQh+1Qh−1 · · ·Q1) = cp(Eπ).

This completes the proof.

III. A DISTRIBUTED ALGORITHM FOR SOLVING LINEAR
EQUATIONS

The purpose of this section is to illustrate that a distributed,
periodic, iterative algorithm for solving linear equations which
rests on a gossiping framework can be obtained. Moreover,
when an undirected tree graph underpins the algorithm , a
very similar result to our previous gossiping results [15]–
[17] can be obtained on the independence of the rate of
convergence to the ordering of the individual steps in one
period. Additionally, assuming a periodic algorithm is used, its
rate of convergence can be obtained. Knowing a deterministic
rate of convergence is of course considered advantageous,
sometimes even de rigueur, in any discussion of iterative linear
algebra algorithms which do not converge in a finite number
of steps. It would clearly be harder to ‘sell’ an algorithm using
probabilistic selection of individual steps to a potential user,
given the inability to make any statement guaranteeing the rate
of convergence in any one instance.

A. Outline of the algorithm

Consider the equation Ax̄ = b, A ∈ Rm̄×m, b ∈ Rm̄,
and assume that a unique solution exists. Of course, this
means that m̄ ≥ m and A is with full column rank. We
arbitrarily partition the matrix A into a number of n blocks,
say A =

[
A1 A2 · · · An

]>
where A>i has mi rows and

m1 + m2 + · · · + mn = m̄. The vector b is correspondingly

partitioned, with bi denoting now the i-th subvector of dimen-
sion mi. A straightforward partition is by using blocks with
one row. Consider also a connected and simple graph E with
n nodes and n̄ edges. Associate with node i an m-vector xi,
initialized so that there holds A>i xi(0) = bi. Suppose that a
single step of the algorithm can be associated with a particular
edge of the graph, say edge h adjacent to nodes i and j. In this
step, a combined projection-gossip operation is undertaken.
The gossip component is

xig(k + 1) =
1

2
[xi(k) + xj(k)]

xjg(k + 1) =
1

2
[xi(k) + xj(k)]

and the projection component serves to project xig(k +
1), xjg(k+1) onto, respectively, the two affine spaces A>i xi =
bi, A

>
j xj = bj . Let Pi ∈ Rm×m denote the projection

matrix to the kernel of Ai. One has the following combined
projection-gossip operation for updating states of node i and
j given by

xi(k + 1) = xi(k) + Pi[xig(k + 1)− xi(k)]

= (Im −
1

2
Pi)xi(k) +

1

2
Pixj(k) (9)

xj(k + 1) = xj(k) + Pj [xjg(k + 1)− xj(k)]

=
1

2
Pjxi(k) + (Im −

1

2
Pj)xj(k); (10)

and leaving all other nodes’ states unchanged, namely

xl(k + 1) = xl(k), l = 1, 2, ..., n, l 6= i, l 6= j (11)

We have just described a single step of the algorithm
corresponding to one edge in E. These steps could be put
together in the order defined by a periodic, ordered, infinite
sequence E,E,E, ...,, in which E = e1, e2, . . . , en̄ is an
ordered sequence of all the edges in E, with each edge
appearing just once. Then we are led to a periodic algorithm
and over one period, the combined projection-gossip steps
occur in the order defined by E.

B. Convergence of the algorithm

In this section, we show that the algorithm in question
converges by using cyclic projections. We claim:

Theorem 2: Given a linear equation Ax̄ = b, with A ∈
Rm̄×m and b ∈ Rm̄, which has a unique solution. Then the
algorithm just described above on a connected and undirected
graph E with n nodes and n̄ edges results in xi(k) for all i
approaching a common limit, viz. x̄, as k →∞
Proof of Theorem 2: Let

x(k) = [x1(k)>, x2(k)>, . . . , xn(k)>]> ∈ Rmn.

For any edge h that is incident on nodes i, j, we define an
operation Sh on x(k) which replaces the subvectors xi(k)
and xj(k) by their average, leaving the other subvectors
unchanged. Notice that this operation is actually a projection.
Also, define an operation Ph on x(k) which replaces the sub-
vectors xi(k), xj(k) by their projections on to the affine spaces
A>i xi = bi, A

>
j xj = bj , again leaving the other subvectors

unchanged. Notice that this operation is also a projection.



Finally notice that one step of the algorithm, corresponding to
a combined projection-gossip operation associated with edge
h, consists of application of the composite operator PhSh to
x(k). It is evident that over one period of the algorithm, which
has n̄ steps in it, corresponding to edges e1, e2, . . . en̄, there
results

x(k + n̄) = Pn̄Sn̄Pn̄−1Sn̄−1 . . .P1S1x(k) (12)

It is standard, see [23], that the vector resulting from
repeated iterations of such cyclic projections, converges ex-
ponentially fast to a point which lies in the intersection of all
the projected sets, i.e. in the set

{∩PhRmn}
⋂
{∩ShRmn}

The connectedness of E ensures that ∩ShRmn = {x =[
x>1 x>2 · · · x>n

]> ∈ Rmn} with x1 = x2 · · · = xn.
Call the common value x∗. Then the requirement that x =[
x>∗ x>∗ . . . x>∗

]> ∈ PhRmn for all h implies that
A>i x∗ = bi for all i, i.e. x∗ = x̄.

C. Invariance of the Convergence Rate

We will now argue that the main result Theorem 1 can
effectively be extended to capture algorithms of the form
just described. To this end, recall that the equations (9)-(11)
capture what happens for a projection-gossip operation on
edge h at time k, which leads to the corresponding update
in x(k) given by

x(k + 1) = Qhx(k) (13)

Here Qh denotes an n × n block matrix with entries of
size m × m and whose entries in blocks ii, ij, ji, jj are
Im − 1

2Pi,
1
2Pi,

1
2Pj , Im −

1
2Pj ; the other entries of Qh are

0m off the diagonal and Im on the diagonal. Thus Qh is a
primitive matrix corresponding to the edge h in E. For the
periodic algorithm just described above with edge sequence
E = e1, e2, . . . , en̄ in one period, one could define

TE = Qn̄Qn̄−1 . . . Q1. (14)

Then the convergence rate of the periodic algorithm is deter-
mined by the second largest eigenvalue of TE by [23]. For an
arbitrary permutation π : {1, 2, . . . , n̄} → {1, 2, . . . , n̄}, one
defines

TEπ = Qπ(n̄)Qπ(n̄−1) . . . Qπ(1) (15)

Notice that TE and TEπ are all complete matrices. The
eigenvalues of TE and TEπ are the same if the permutation is
of certain types. More specifically, with these definitions and
Theorem 1, we have:

Theorem 3: Consider the algorithm of the type described
above for solving the equation Ax̄ = b that is known to
have a unique solution. Suppose the associated connected and
simple graph E has n nodes and n̄ edges. Let E be an ordered
edge sequence of length n̄ that defines a complete matrix
TE as in (14). Consider the group Π(E) (under composition)
of permutations π : {1, 2, . . . , n̄} → {1, 2, . . . , n̄} generated
by permutations of the four types listed in the statement of

Theorem 1. Let TEπ be as defined in (15). Then for any π in
Π(E), TE and TEπ have the same eigenvalues.

Remark 2: Obviously if the underlying graph E is a tree,the
convergence rate of the periodic algorithm described above
will be the same irrespective of the order of the combined
projection-gossip steps. This invariance property implies that
the convergence rate of such periodic algorithms will be purely
determined by the underlying tree topology, which will moti-
vate a control engineer to figure out the optimal convergence
rate by investigating the underlying tree topologies.

IV. SIMULATIONS

In this section, we will perform numerical simulations on a
six-node simple graph as indicated in Fig. 2 for the validation
of Theorem 1- Theorem 3. Let

1

2

3
4

5 6

Fig. 2. A six-node simple graph E

A =


0.4249 0.0741 0.1425 0.9394 0.0684 0.9616
0.1192 0.3939 0.2681 0.2212 0.4363 0.7624
0.4951 0.0034 0.1749 0.4827 0.1739 0.0073
0.7064 0.2207 0.1386 0.3760 0.0261 0.6800
0.2436 0.0013 0.5989 0.5238 0.9547 0.7060
0.7851 0.1892 0.9011 0.2649 0.4306 0.6451


and

b =
[
0.5523 0.2181 0.7724 0.2280 0.3709 0.8909

]>
whose entries are picked uniformly from the interval [0, 1].
The linear equation Ax̄ = b has a unique solution

x̄ =
[
−0.1106 1.3378 1.3245 1.3965 −0.4357 −1.0094

]>
Suppose each node i knows the ith row of A and b, i =
1, 2, ..., 6, and updates its state vector xi(k) according to the
periodic algorithm for solving linear equations described in
the paper, in which the sequence in one period is

E = (1, 2), (2, 3), (3, 1), (3, 4), (3, 5), (5, 6).

Let V (k) = 1
2

∑6
i=1 |xi(k) − x̄|2 measure the closeness

between all xi(t) and the unique solution x∗. Simulations
in MATLAB suggest that V (k) converges to 0 exponentially
fast as indicated in Fig. 3. Then all xi(t) converge to x̄
exponentially fast, which agrees with Theorem 2.

Let TE denote the complete matrix defined by the edge
sequence E, that is, TE = Q56Q35Q43Q13Q23Q12. The
convergence rate of xi(t) to x̄ is determined the second largest
eigenvalue of TE. Let TĒ denote the complete matrix defined
by the edge sequence

Ē = (1, 2), (2, 3), (3, 1), (3,5), (3,4), (5, 6).

Simulations in MATLAB suggest cp(TE) = cp(TĒ). This is
because the edge sequence Ē could be achieved by permute
edges (3, 5), (3, 4) in E, where (3, 5) and (3, 4) has one
common adjacent node but neither of them is in any cycle
in the graph E.



V(k)

k

Fig. 3. Simulations show the exponential convergence of V (k) to 0.

V. CONCLUSION

In this paper we have established a general theorem about
the eigenvalues invariance of certain inhomogeneous matrix
products with respect to changes of individual multiplicands’
orderings. Each matrix in the product corresponding to an edge
in a simple graph is a block matrix with no restriction to the
details of blocks. We then present a periodic algorithm for
solving linear equations, and employ the general theorem to
achieve invariance of the convergence rate of the proposed
distributed algorithm.

APPENDIX

Proof of Lemma 1: Since for any 1 ≤ i, j ≤ r, Gi and Gj
have no non-isolated node in common, any edge in Gi and any
edge in Gj are not adjacent to the same node. Correspondingly,
a primitive matrix corresponding to any edge in Gi commutes
with any primitive matrix coresponding to any edge in Gj
for any 1 ≤ i, j ≤ r. In other words, two primitive matrices
commute when they belong to any two different spanning sub-
graphs from {G1,G2, ...,Gm}. Thus for any G ∈ G(G), there
exists a permutation map π : {1, 2, . . . , r} → {1, 2, . . . , r}
such that

G = Gπ(1)Gπ(2) · · ·Gπ(r)

where Gi ∈ G(Gi). Note further that Gi ∈ G(Gi) commutes
with Gj ∈ G(Gj) when i 6= j. Thus π could be any
permutation map.

Before proving Lemma 2, we will show how to apply the
classical systems and control concept of a matrix transfer
function to describe certain properties of graphs, and to explain
how the transfer function associated with a union of graphs
under certain conditions can be related to the transfer functions
of the individual graphs. For any real (p + 1)m × (p + 1)m

matrix M =

[
A B
C D

]
with D ∈ Rm×m, we let τ(M) denote

its associated transfer function , i.e. τ(M) is the reduced
rational function

C(sI −A)−1B +D

Note that

sI −M =

[
sI −A −B
−C sI −D

]
=

[
sI −A 0
−C I

] [
I −(sI −A)−1B
0 sI − τ(M)

]
Then it follows easily that

cp(M) = ip(M)det(s− τ(M)) (16)

with ip(M) = cp(A) that we call the internal polynomial of
M . Moreover, for any square matrix M ∈ R(p+1)m×(p+1)m

and any permutation matrix T which leaves unchanged the
last block row of TM , one has

τ(TMT>) = τ(M) ip(TMT>) = ip(M) (17)

This results from the fact that the Markov parameter sequences
of τ(TMT>) and τ(M) are the same.

The proof of Lemma 2 will depend on the use of the
following lemma:

Lemma 3: Let K and L be spanning subgraphs of a n node
graph G. Suppose that node n is a non-isolated node in both
K and L. All non-isolated nodes of K except n are isolated
nodes of L. Then for all K ∈ G(K) and L ∈ G(L)

τ(KL) = τ(K)τ(L) (18)

ip(KL) =
1

(s− 1)(n−1)m
ip(K)ip(L) (19)

Proof of Lemma 3: Let q + 1 denote the number of non-
isolated nodes of K. Suppose first that q + 1 = n. Since all
non-isolated nodes of K are isolated nodes of L, this means
that L must have at least n−1 isolated nodes. But this can be
true only if all n nodes of L are isolated. Therefore the only
matrix in G(L) is the nm × nm identity. Thus (18) is true.
Moreover ip(Inm×nm) = (s−1)(n−1)m, so (19) must be true.

Now suppose that q+1 < n. Let {i1, i2, . . . , in} be any per-
mutation of the set {1, 2, . . . , n} for which {i1, i2, . . . , iq, n}
is the set of labels of the non-isolated nodes of K and write T
for that permutation matrix which represents the permutation
{1, 2, . . . , n − 1, n} → {i1, i2, . . . , in−1, n}. By assumption,
the nodes with labels in {i1, i2, . . . , iq} must all be isolated
in L. Then for j ∈ {i1, i2, . . . , iq} the jth block row and the
jth block column of L must have Im in the jth block entry
and zero blocks elsewhere. This means that the matrix TLT>

must be of the following form

TLT> =

Iqm×qm 0 0
0 A B
0 C D

 , (20)

where D ∈ Rm. Note that {iq+1, . . . , in−1} are all isolated
nodes of K. Then for j ∈ {iq+1, . . . , in−1}, one has the jth
block row and the jth block column of K must have Im in its
jth block entry and zeros elsewhere. This means that means
that the matrix TKT> must be of the form

TKT> =

Ā 0 B̄
0 I(n−q−1)m×(n−q−1)m 0
C̄ 0 D̄

 , (21)



where D̄ ∈ Rm. Note that the definition of T implies that it
leaves unchanged the last block rows of TK and TL, implying
that (17) holds. In view of this, all that is necessary to complete
the proof is to show that

τ(TKLT>) = τ(TKT>)τ(TLT>) (22)

ip(TKLT>) =
1

(s− 1)(n−1)m
ip(TKT>)ip(TLT>) (23)

Here we exploit the fact that TKLT> = TKTT>LT>. Note
that

TKLT> =

Ā B̄C B̄D
0 A B
C̄ D̄C D̄D

 (24)

because of (20) and (21). Clearly

ip(TKLT>) = cp(Ā)cp(A) (25)

But ip(TLT>) = (s − 1)qmcp(A) because of (20) and
ip(TKT>) = (s − 1)(n−q−1)mcp(Ā) because of (21). From
these two relations and (25) it follows that (23) is true.

From (24), one has

τ(TKLT>) =
[
C̄ D̄C

]
M−1

[
B̄D
B

]
+ D̄D (26)

where
M =

[
sI − Ā −B̄C

0 sI −A

]
Note that

M−1 =

[
(sI − Ā)−1 (sI − Ā)−1B̄C(sI −A)−1

0 (sI −A)−1

]
It follows that

τ(TKLT>) = C̄(sI − Ā)−1B̄D

+[C̄(sI − Ā)−1B̄][C(sI −A)−1B]

+D̄C(sI −A)−1B + D̄D

which can be rewritten as

(C̄(sI − Ā)−1B̄ + D̄))(C(sI −A)−1B +D)

Thus
τ(TKLT>) = τ(TKT>)τ(TLT>)

Thus (22) is true. We complete the proof.
Proof of Lemma 2: Note that any two spanning subgraphs
in {G1,G2, ...,Gr} only have n as the non-isolated node in
common. Then for any i ∈ {1, 2, . . . r − 1}, n is the only
common non-isolated node of the union graph ∪iq=1Gπ(q)

and the graph Gπ(i+1). Moreover, all non-isolated nodes of
the union graph ∪iq=1Gπ(q) are isolated nodes in Gπ(i+1). It
follows from Lemma 3 that for any i ∈ {1, 2, . . . r − 1}
τ(Gπ(i+1) · · ·Gπ(2)Gπ(1)) = τ(Gπ(i+1))τ(Gπ(i) · · ·Gπ(1))

ip(Gπ(i+1) · · ·Gπ(2)Gπ(1)) =
1

(s− 1)(n−1)m
ip(Gπ(i+1))

·ip(Gπ(i) · · ·Gπ(1))

These equations clearly imply that
τ(Gπ(r)Gπ(r−1) · · ·Gπ(1)) = τ(Gπ(r))τ(Gπ(r−1)) · · · τ(Gπ(1))

ip(Gπ(r)Gπ(r−1) · · ·Gπ(1)) =
1

(s− 1)(r−1)(n−1)m
ip(Gπ(r))

·ip(Gπ(r−1)) · · · ip(Gπ(1))

Together with (16), these equations imply (1) and prove
Lemma 2.
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