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SUMMARY

This paper proposes a distributed model-independent algorithm to achieve leaderless consensus on a directed
network where each fully-actuated agent has self-dynamics described by Euler-Lagrange equations of
motion. Specifically, we aim to achieve consensus of the generalised coordinates with zero generalised
velocity. We show that on a strongly connected graph, a model-independent algorithm can achieve the
consensus objective at an exponential rate if an upper bound on the initial conditions is known a priori. By
model-independent, we mean that each agent can execute the algorithm with no knowledge of the equations
describing the self-dynamics of any agent. For design of the control laws which achieve consensus, a control
gain scalar and a control gain matrix are required to satisfy several inequalities involving bounds on the
matrices of the agent dynamic model, bounds on the Laplacian matrix describing the network topology and
the set of initial conditions; design of the algorithm therefore requires some knowledge on the bounds of the
agent dynamical parameters. Because only bounds are required, the proposed algorithm offers robustness
to uncertainty in the parameters of the multiagent system. We systematically show that additional relative
velocity information improves the performance of the controller. Numerical simulations are provided to
show the effectiveness of the algorithm.

KEY WORDS: model-independent, Euler-Lagrange system, semi-global, directed graph, leaderless
consensus

1. INTRODUCTION

Coordination and control of autonomous, cooperating agents to achieve a common objective is an
area of research which has grown in significance over the last two decades. A group of interacting
agents is collectively called a multiagent system, and in certain applications, a correctly coordinated
multiagent system offers advantages over a single complex agent. The term “agent” can be applied
to many different controllable subsystems and as a result, multiagent systems research has a broad
range of applications. Recent topics on cooperative multiagent systems are surveyed in [1, 2].

Consensus problems are an important and widely studied subset of multiagent coordination
problems. The leaderless consensus problem studies how a network of agents can be controlled to
reach agreement on a commonly defined state value(s) by communication and negotiation between
neighbours. Focus is placed on developing distributed control laws which allow consensus to be
achieved; by distributed we mean that each agent can execute the control law without requiring
information about the network as a whole, see [3]. Apparently, the topological constraints of the
network are linked to the self-dynamics of agents when it comes to studying control laws which
guarantee consensus. Comprehensive treatment of consensus problems for agents with single-,
double-integrator and linear self-dynamics, for a wide range of topological constraints can be found
in [3, 4]. The surveys [1, 2] cover consensus problems for agents with general nonlinear dynamics.
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The nonlinear Euler-Lagrange equations of motion can be used to model the dynamics of a large
class of mechanical, electrical and electromechanical systems. As such, multiagent coordination
problems where each agent has self-dynamics described by Euler-Lagrange equations are well
motivated. Some existing results have studied control laws which utilise exact knowledge of the
Euler-Lagrange equations describing the agent dynamics [5, 6, 7]. Euler-Lagrange equations can
also be linearly parametrised [8, 9]. This linear parametrisation can be used in adaptive algorithms
to estimate uncertain agent parameters. Containment control, a variation of trajectory tracking, using
adaptive algorithms is studied in [10, 11, 12]. Leaderless consensus is also studied in [11]. Adaptive
tracking algorithms are studied in [13, 14, 15, 16, 17]. Rendezvous to a stationary leader using
adaptive control with collision avoidance capabilities is proposed in [18].

In comparison, there have been relatively few works studying model-independent algorithms,
i.e. algorithms for obtaining robust controllers. Almost all existing results assume neighbouring
agent interactions are modelled by an undirected graph. The pioneering work in [19] considered
leaderless position consensus on an undirected graph. When each agent has an individual target set
of generalised coordinates, consensus to the intersection of the target sets is studied on an undirected
graph in [20]. Consensus on an undirected network in the presence of time-delays is studied in [21].
In [22], flocking is achieved assuming an undirected graph. Tracking of a leader with nonconstant
velocity where the subgraph of followers is undirected is studied in [23, 24, 25, 26]. Robust
containment control for an undirected follower subgraph is considered in [27]. Rendezvous to a
stationary leader with collision avoidance is studied on an undirected graph in [28]. Directed graphs
representing unilateral information flow are seen as more desirable than undirected graphs (i.e.
bilateral information flow) from the following two points of view. Firstly, a directed network allows
for agents with heterogeneous sensing and/or communicating capabilities (e.g. different sensing
radius). Secondly, a directed graph allows each agent to reduce its sensing/communicating burden by
reducing the number of neighbouring agents. The passivity analysis in [29] showed synchronisation
of the velocities (but not the positions) on strongly connected graphs. Rendezvous to a stationary
leader is studied on a directed spanning tree in [30]. Tracking of a moving leader on a directed
spanning tree is studied in [26], but restrictive constraints are imposed on the leader’s trajectory.

Further study of model-independent algorithms is desirable for several reasons. In the context of
adaptive algorithms, given a unique Euler-Lagrange equation, determining the minimum number of
parameters required is difficult in general [8]. The linear parametrisation also requires knowledge of
the exact equation structure. This means that the adaptive algorithms cannot cope with unmodelled
agent dynamics. By their definition, the same form of a model-independent controller can be applied
to various agents with minor alterations. Model-independent algorithms are reminiscent of robust
controllers; stability is guaranteed given limited knowledge of upper bounds on parameters of the
multiagent system [21, 30].

In [30], and as we show in this paper, model-independent controllers can achieve the control
objective exponentially fast, with a computable minimum rate of convergence. Exponentially stable
systems are desired over systems which are asymptotically stable, but not exponentially so, because
they offer better rejection to noise and disturbances. Adaptive controllers will yield exponential
stability if certain conditions, e.g. persistency of excitation, are satisfied. However, satisfaction of
these conditions has not been verified for most existing works studying adaptive controllers in Euler-
Lagrange networks.

1.1. Contributions and Paper Structure

The key contribution of this paper is to show that a network of heterogeneous Euler-Lagrange
agents can achieve leaderless consensus if the interaction topology is strongly connected. While
several model-independent results exist for leader-follower consensus on directed graphs, to date,
no results are available for model-independent algorithms achieving leaderless position consensus.
The algorithm studied in this paper requires knowledge of the graph topology. In addition, a
control gain scalar and a control gain matrix, used by every agent must satisfy a set of lower
bounding inequalities. These inequalities require some limited knowledge of the bounds on the
agent dynamic parameters, limited knowledge of the network topology and an upper bound on the
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initial conditions (which may be arbitrarily large). The last requirement means the algorithm is
semi-globally stable. In other words, a bound on initial conditions simply requires recomputation
of the control gain and stability is assured. Design of the algorithm is therefore centralised, but the
algorithm is distributed when executed. While this paper draws some intellectual insights from [30],
the problem of rendezvous to a stationary leader, and not the problem of consensus, is studied in
[30]. The findings in [30] concerning control gain design and semi-global stability are consistent
with what will be presented in this paper. Furthermore, we show that additional relative velocity
information can be utilised to systematically achieve faster convergence. The exponential stability of
the algorithm proposed in this paper is a desirable advantage over the model-independent algorithms
in [19, 21, 25, 26, 27, 28], which do not have the property of being exponentially stable.

The paper structure is as follows. Section 2 provides the mathematical background required to
analyse the proposed algorithm. At the same time a formal definition of the leaderless consensus
problem is provided. The algorithm and stability proof are detailed in Section 3. Section 4 provides
simulations to show the effectiveness of the proposed algorithm, and the paper is concluded in
Section 5.

2. BACKGROUND AND PROBLEM STATEMENT

2.1. Mathematical Notation and Matrix Theory

We begin by providing definitions of notation and several lemmas and theorems for later use. We
use ⊗ to denote the Kronecker product, refer to [31] for the properties of Kronecker products.
The p× p identity matrix is Ip and the n× 1 column vector of all ones (respectively all zeros)
as 1n (respectively 0n). The Euclidean norm of a vector is denoted by ‖ · ‖2. For a square matrix
A, the spectral norm is the matrix norm induced by the Euclidean vector norm and denoted as
‖A‖2. The properties of the spectral norm will be frequently used in this paper, see [31] for details.
A symmetric matrix A ∈ Rn×n which is positive definite (respectively nonnegative definite) is
denoted by A > 0 (respectively A ≥ 0). We order the eigenvalues of A as λ1(A) = λmin(A) ≤
λ2(A) ≤ ... ≤ λn−1(A) ≤ λn(A) = λmax(A). For two symmetric matrices A,B, the expression
A > B is equivalent to A−B > 0. The following eigenvalue inequality expressions will be
frequently used in the paper.

λmin(A) > λmax(B)⇒ A > B (1)
λmax(A+B) ≤ λmax(A) + λmax(B) (2)
λmin(A+B) ≥ λmin(A) + λmin(B) (3)

λmin(A)x>x ≤ x>Ax ≤ λmax(A)x>x (4)

Theorem 1 ([31])
Consider a symmetric block matrix, partitioned as

A =

[
B C

C> D

]
ThenA > 0 if and only ifB > 0 andD −C>B−1C > 0. Equivalently,A > 0 if and only ifD > 0
and B −CD−1C> > 0.

Lemma 1
Let a quadratic function with arguments x,y ∈ Rn be expressed as

W =

[
x
y

]> [
B C

C> D

] [
x
y

]
, with

[
B C

C> D

]
> 0

Define G := D −C>B−1C. Then there holds

λmin(G)y>y ≤ y>Gy ≤W (5)
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Proof
The proof is immediate obtained by recalling Theorem 1 and observing that

W = y>Gy + [y>C>B−1 + x>]B[B−1Cy + x]

Theorem 2 ([31])
Let A ∈ Rn×n be symmetric and partitioned as

A =

[
B C

C> D

]
with B ∈ Rm×m,D ∈ R(n−m)×(n−m),C ∈ Rm×(n−m). Then λi(A) ≤ λi(D) ≤ λi+m(A).

Lemma 2
Let g(x, y) be a function given as

g(x, y) = ax2 + by2 − cxy2 − dxy (6)

for real positive scalars a, c, d > 0. Then for a given Y > 0, there exist b > 0 such that g(x, y) is
positive definite for all y ∈ [0,Y] and x ∈ [0,∞).

Proof
Observe that ∂g

∂x = 2ax− cy2 − dy. For some fixed value y, the minimum of g(x, y) is at x =
cy2+dy

2a := z(y). Note that this point is a minimum because ∂2g
∂x2 = 2a > 0. Define the new function

h(y) := g(z(y), y), and observe that

h(y) = z(y)2a+ y2b− z(y)cy2 − z(y)dy

=
1

4a
y2(4ab− c2y2 − d2 − 2cdy)

It follows that

b >
c2Y2 + d2 + 2cdY

4a
(7)

implies 4ab− c2y2 − d2 − 2cdy > 0 for y ∈ [0,Y], which in turn yields h(y) > 0 for y ∈ [0,Y]. The
definition of h(y) then yields the lemma statement.

2.2. Graph Theory

The information flow between agents can be modelled by a weighted directed graph, given as
G = (V, E ,A), with the finite, nonempty set of nodes V = {v1, . . . , vn} with node indices I =
{1, 2, ..., n}, and with a corresponding set of ordered edges E ⊆ V × V . We denote an ordered edge
of G as eij = (vi, vj) and the assumption eij = eji does not hold in general because G is a directed
graph. The edge eij = (vi, vj) is said to be outgoing with respect to vi and incoming with respect
to vj . In other words, an edge (vi, vj) indicates that vj obtains information about vi (the precise
nature of the information is detailed in Section 2.4). The weighted adjacency matrix A ∈ Rn×n
of G has nonnegative elements aij . The elements of A are defined such that aij > 0⇔ eji ∈ E
while aij = 0 if eji /∈ E and it is assumed aii = 0,∀i. The neighbour set of vi is denoted by
Ni = {vj ∈ V : (vj , vi) ∈ E}. The n× n Laplacian matrix, L = {lij}, of the associated digraph G
is defined as

lij =

{∑n
k=1,k 6=i aik for j = i

−aij for j 6= i

A directed path is a sequence of edges of the form (vp1 , vp2), (vp2 , vp3), ..., where vpi ∈ V, eij ∈ E .
Node i is reachable from node j if there exists a directed path from vj to vi. A graph is said to be
strongly connected if every node is reachable from every other node.

For use in the sequel we now provide a key lemma and the definitions of a certain projection
matrix and orthonormal matrix.
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Lemma 3 ([32])
Let G be a strongly connected directed graph, with associated Laplacian L. Denote γ = [γ1, ..., γn]>

as the unique left eigenvector of L associated with the simple zero eigenvalue, with γi > 0, ∀ i and
note that there holds γ>1n = 1. Let Γ = diag{γ1, ..., γn}. Then

ΓL+ L>Γ := L̃ ≥ 0

Because the elements of γ are strictly positive and γ>1 = 1, it follows that λi(Γ) < 1,∀ i and thus
‖Γ‖2 < 1. Observe that 1>ΓL = γ>L = 0 and ΓL1 = 0. This implies that ΓL is the Laplacian of
a balanced and strongly connected graph, and thus L̃ is the Laplacian of an undirected connected
graph [33]. For future use, we order the eigenvalues of L̃ as in Section 2.1: λ1(L̃) = 0 < λ2(L̃) ≤
... ≤ λn(L̃).

2.2.1. Projection Matrix For future use, we define the projection matrix Z ∈ Rn×n as:

Z = In −
1

n
11> (8)

where n corresponds to the number of agents in the network. Now observe the following useful
properties. Since Z is a projection matrix, it is idempotent; Z = Z> = Z2. Notice that the row and
column sums of Z are equal to zero; Z has a single eigenvalue at 0 with corresponding eigenvector
1n. All other eigenvalues are equal to 1. It can also be verified that LZ = L because each row sum
of L is equal to zero. Furthermore, ZL̃Z = L̃ where L̃ is defined in Lemma 3. Further, let us define

Zm = Z ⊗ Im (9)

Since both Z and Im are idempotent, so is Zm [34]. The properties of Kronecker products and
the fact that any nonzero vector is an eigenvector of the identity matrix yield that the kernel of
Zm is spanned by 1⊗ x where x ∈ Rm. Furthermore, from the definition of the spectral norm it is
observed that ‖Zm‖2 = 1, ∀n,m

2.2.2. Orthonormal Matrix For later use we define an orthonormal matrix T ∈ Rn×n with first
column 1√

n
1n as below:

T =
[

1√
n
1n

... T̃
]

(10)

Denote T p = T ⊗ Ip and T̃ p = T̃ ⊗ Ip. By recognising the orthonormal properties of T , observe
that

ZT =
[
I − 1

n11>
] [

1√
n
1n

... T̃
]

=
[
0n

... T̃
]

(11)

For some q ∈ Rnp, let q = T pq̄ (or q̄ = T>p q). Then

Zpq =
([

0n
... T̃

]
⊗ Ip

)
q̄ (12)

Let q̃ = [q̄(p+1), q̄(p+2), ..., q̄np]
> i.e. q̃ = q̄ with the first p entries removed. Observe that(
T̃ ⊗ Ip

)
q̃ =

([
0n

... T̃
]
⊗ Ip

)
q̄ = Zpq (13)

Three useful properties of T̃ p are now given.

P1 For any vector x ∈ Rnp, and because T̃
>
T̃ = In−1, there holds ‖T̃ px‖2 =

√
x>T̃

>
p T̃ px =

‖x‖2.
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P2 The identity Z = T̃ T̃
>

follows by multiplying (11) on the right by T> to give

ZTT> =
[
0n

... T̃
] 1√

n
1n

. . .

T̃
>


Z = T̃ T̃

>

Using Kronecker products, one also has Zp = T̃ pT̃
>
p

P3 From property P1, and because projection matrices are contractive, we obtain the inequality
‖T̃ pq̃‖2 = ‖Zpq‖2 = ‖q̃‖2 ≤ ‖q‖2.

Lastly, we provide a lemma and a corollary for later use

Lemma 4
Let A ∈ Rnp×np and B ∈ R(n−1)p×(n−1)p be symmetric matrices, and let T̃ be defined as above.
Then there holds

λmin(A) ≤ λmin(T̃
>
p AT̃ p) (14a)

λmax(T̃
>
p AT̃ p) ≤ λmax(A) (14b)

λi(B) = λi(T̃ pBT̃
>
p ) (15)

Proof
Observe that

T>p AT p =
([

1√
n
1

... T̃
]
⊗ Ip

)>
A
([

1√
n
1

... T̃
]
⊗ Ip

)
=

[
1
n (1> ⊗ Ip)A(1⊗ Ip) 1√

n
(1> ⊗ Ip)AT̃ p

1√
n
T̃
>
p A(1⊗ Ip) T̃

>
p AT̃ p

]
(16)

The expressions in (14) are then obtained using Theorem 2 and by observing that T>p AT p is similar
to A, i.e. they have the same eigenvalues (since T−1p = T>p ). Likewise, (15) can be obtained from
the following similarity transformation

T p

[
0 0p×(n−1)p

0(n−1)p×p B

]
T>p =

[
0 0p×(n−1)p

0(n−1)p×p T̃ pBT̃
>
p

]
(17)

Corollary 1
Let T̃ be defined as above. Let L̃ be the Laplacian of an undirected, connected graph. Then the
n− 1 eigenvalues of T̃

>
L̃T̃ are the same as the n− 1 nonzero eigenvalues of L̃. It follows that

T̃
>
L̃T̃ > 0.

Proof
Recall firstly that for an undirected, connected graph, the associated symmetric Laplacian L̃ has a
single eigenvalue at zero and all other eigenvalues are strictly positive. Furthermore, 1>n L̃ = L̃1n =
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0n. From the fact that T> = T−1, we conclude that L̃ is similar to T>L̃T . Observe that

T>L̃T =
[

1√
n
1

... T̃
]>
L̃
[

1√
n
1

... T̃
]

=

[
1
n1>n L̃1n

1√
n
1>n L̃T̃

1√
n
T̃
>
L̃1n T̃

>
L̃T̃

]

=

[
0 0>n−1

0n−1 T̃
>
L̃T̃

]
(18)

Because of similarity, the eigenvalues of L̃ are equal to the eigenvalues of T>L̃T (including their
algebraic multiplicity). The corollary statement is then trivially obtained from expression (18).

2.3. Euler-Lagrange Systems

The dynamics of each agent in G is described using the nonlinear Euler-Lagrange equations, and the
general form for the ith agent equation of motion is:

M i(qi)q̈i +Ci(qi, q̇i)q̇i = τ i (19)

where qi ∈ Rp is a vector of the generalised coordinates, M i(qi) ∈ Rp×p is the inertia matrix,
Ci(qi, q̇i) ∈ Rp×p is the Coriolis and centrifugal force matrix and τ i ∈ Rp is the control input
vector. Note that (19) is a subclass of Euler-Lagrange equations as it does not contain the vector of
potential forces, commonly denoted as gi(qi). This work assumes that all agents are fully-actuated.
For each agent, let superscript (j) denote the jth generalised coordinate; qi = [q

(1)
i , ..., q

(p)
i ]>. † We

assume that the systems described using (19) have the following properties given below (typical for
this class of problems). See [8, 9] for details:

A1 The matrix M i(qi) is symmetric positive definite.

A2 There exist scalar constants km, kM > 0 such that kmIp ≤M i(qi) ≤ kMIp,∀ i, qi. It follows
that supqi

‖M i‖2 ≤ kM and km ≤ infqi
‖M−1

i ‖2
−1

for all i.

A3 The matrix Ci(qi, q̇i) is defined such that Ṁ i − 2Ci is skew-symmetric. It follows that
Ṁ i = Ci +C>i .

A4 There exists a scalar constant kC > 0 such that ‖Ci‖2 ≤ kC‖q̇i‖2,∀ i, q̇i.

2.4. Problem Statement

The objective of this paper is to develop a model-independent, distributed algorithm which allows
a directed network of Euler-Lagrange agents to achieve leaderless consensus of their generalised
coordinates with zero generalised velocity. The leaderless consensus objective is achieved if:

limt→∞ ‖qi(t)− qj(t)‖2 = 0 , ∀i, j = 1, ..., n
limt→∞ ‖q̇i(t)‖2 = 0 , ∀i = 1, ..., n

The interaction between the agents is captured by the fixed, weighted, directed graph G with an
associated Laplacian L. Specifically, if for agent vi we have aij > 0, then agent i knows aij and can
obtain the quantity qi − qj , i.e. the relative generalised coordinates. The method by which qi − qj
is obtained is left open to interpretation and adaptation to the specific multiagent scenario. One
can imagine robotic manipulators transmitting measured coordinates or vehicles measuring relative
positions. In addition, we assume that agent i can measure its own velocity q̇i.

†Note that q(j)i does not denote the jth derivative of qi.
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Finally, we make an assumption on the initial conditions. Specifically, let ‖q(0)i‖2 ≤ ka/
√
n and

‖q̇i(0)‖2 ≤ kb/
√
n for all i, and where n is the number of agents and ka, kb ≥ 0 are known a priori.

This is not unreasonable, as many systems will have an expected operating range for q and q̇ (in
particular the initial conditions of (19)). This assumption on the initial conditions results in a semi-
globally stable control algorithm; in the sequel, ka, kb are used to compute the lower bounds on a
control gain which ensures that the system trajectories are bounded by known values. We also show
that for any given ka, kb it is always possible to find a sufficiently large gain which ensures that the
leaderless consensus objective is achieved.

By model-independent, we mean that the algorithm does not contain M i,Ci ∀ i and does not
contain the linear parametrisation. An agent’s algorithm is distributed if, during execution, the agent
only needs to receive information about its neighbours.

Notice that it is possible forM i 6= M j andCi 6= Cj for any i, j but qi ∈ Rp, ∀i. In other words
this work treats Euler-Lagrange agents which have heterogeneous parameters but with generalised
coordinates which are defined such that qi − qj ,∀i, j is meaningful.

3. MAIN RESULT

Consider the following model-independent algorithm for the ith agent

τi = −
∑
j∈Ni

aij(qi − qj)− µγ−1i Kpq̇i (20)

where aij is the weighted (i, j) entry of the adjacency matrix A associated with the weighted
directed graph G. The control gain matrixKp ∈ Rp×p is symmetric positive definite, and the control
gain scalar µ is strictly positive. Both Kp and µ are universal for all agents. The terms γi are the
elements of γ as defined in Lemma 3, and denote mini γi = γ and maxi γi = γ̄. The terms µ and
Kp are to be designed to satisfy several inequalities to ensure the control objective is achieved. Of
course, µ and Kp can be combined to form a single positive definite matrix. However, we elect to
keep them separate because, as will be seen below, it makes proof of stability intuitively easier. It is
also straightforward to see that the algorithm (20) satisfies that model-independent requirements in
Section 2.4. At the end of Section 3.2 we provide a step-by-step guide to designing µ,Kp.

For reasons which will become apparent in the proof, the matrix Kp is required to satisfy the
following inequality

λmin(Kp) >
‖L‖2

2λ2(L̃)
(21)

where L̃ is defined in Lemma 3, with L being the Laplacian associated with the strongly connected
graph G. From henceforth, we assumeKp has been designed to satisfy (21) and the primarily focus
for the rest of the paper will be on deriving inequalities for µ which guarantee stability.

Let q = [q>1 , ..., q
>
n ]> be the stacked column vector of all qi. Consensus of the generalised

coordinates can then be expressed as q = 1n ⊗ x where x ∈ Rp is the vector of final generalised
coordinate values. Similarly, let q̇ = [q̇>1 , ..., q̇

>
n ]>. Let M(q) = diag[M1(q1), ...,Mn(qn)],

C(q, q̇) = diag[C1(q1, q̇1), ...,Cn(qn, q̇n)] and K = Kp ⊗ In. Since M i ∀ i and Kp are
symmetric positive definite, then M and K are also symmetric positive definite.

With this notation and applying control law (20) to each agent, the closed-loop networked system
is

M(q)q̈ +C(q, q̇)q̇ + (L ⊗ Ip)q + µΓ−1Kq̇ = 0 (22)

where Γ was defined in Lemma 3, and expressed as the autonomous system

q̇ = v

v̇ = −M(q)−1
[
C(q,v)v + (L ⊗ Ip)q + µΓ−1Kv

]
(23)

One may trivially verify that the set of equilibrium points of (23) is given by
M = {q,v : q = 1n ⊗ x,v = 0},x ∈ Rp.
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Remark 1 (Previous model-independent controllers)
Controllers of the form (20) have been used to study consensus in undirected networks of Euler-
Lagrange agents e.g. [19, 21]. However, to the authors’ knowledge, there have been no results
studying leaderless consensus using the control law (20) on directed graphs. Because the Laplacian
L is nonsymmetric for a directed graph, the analysis techniques in [19, 21] do not yield a stability
result, and no apparent minor variation of the techniques would appear to suffice. One of the
key contributions of this paper is to develop the analysis showing that the same controller can be
extended to directed graphs. A second key contribution is to show that, for a sufficiently large control
gain, convergence is in fact exponential. This exponential property is not proven in the undirected
results of [19, 21].

Remark 2 (Synthesis of event-based controllers)
In the last few years, heavy focus has been placed on event-based controllers for coordinating multi-
agent systems [35] because of the practical advantages of event-based controllers. Event-based
control of Euler-Lagrange networks has been relatively unstudied. In [36], an event-based adaptive
controller is proposed but has the disadvantage of requiring continuous relative measurements
qi − qj . In [37], a model-independent event-based controller is proposed for an undirected graph. As
observed by the authors in recent preliminary investigations, simple model-independent controllers
of the form in (20), and in [19, 30], have an advantage in the sense that they are easier to study
in the event-based framework. This is in contrast to the complex model-independent controllers in
[25, 26, 27].

3.1. An Upper Bound Using Initial Conditions

Before we proceed with the main proof, a method is given to calculate a not necessarily tight upper
bound on the initial states expressed as ‖q̃(0)‖2 < X and ‖q̇(0)‖2 < Y using the bounds on the
initial condition, ka, kb. In the sequel, we show that these bounds hold for all time, and that as a
consequence the leaderless consensus objective is achieved at an exponential rate. Due to spatial
limitations, we only compute the bound on q̇ and leave the reader to follow an identical process for
q̃. In keeping with the model-independent nature of the paper, define the following function

V̄µ =

[
q̃
q̇

]> [
λmax(L̃)I(n−1)p + 1

2 T̃
>
pKT̃ p

1
2µ
−1(γ̄kM + δ)T̃

>
p

1
2µ
−1(γ̄kM + δ)T̃ p

1
2 (γ̄kM + δ)Inp

][
q̃
q̇

]
(24)

The definitions of T̃ p and q̃ are given in Section 2.2.2. The scalar δ > 0 is fixed, and will defined
further below. Note that (kM + δ)Inp >M and that V̄µ is not a Lyapunov function; it is a
Lyapunov-like function to be used for stability analysis in the sequel. Let the matrix in (24) be
G, and it follows that V̄µ is positive definite in q̃, q̇ ifG > 0. Theorem 1 and Lemma 4 (specifically
expression (14a)) are used to conclude that G > 0 for all µ ≥ µ∗1 such that

µ∗1 >

√
γ̄kM + δ

2λmax(L̃) + λmin(K)
(25)

While V̄µ is a function of q̃ and q̇, we use V̄µ(t) to denote V̄µ(q̃(t), q̇(t)). Property P1 is used to
yield

V̄µ ≤
(

1

2
λmax(K) + λmax(L̃)

)
‖q̃‖22 +

1

2
(γ̄kM + δ)‖q̇‖22 + µ−1(γ̄kM + δ)‖q̃‖2‖q̇‖2 (26)

Next, let

V̂µ=

[
q̃
q̇

]> [ 1
4λ2(L̃)I(n−1)p + 1

2 T̃
>
pKT̃ p

1
2µ
−1(γkm − δ)T̃

>
p

1
2µ
−1(γkm − δ)T̃ p 1

2 (γkm − δ)Inp

][
q̃
q̇

]
(27)

where γ is the smallest diagonal element of Γ defined in Lemma 3 and is necessarily less than 1.
Call the matrix in (27) L. Let δ be further constrained to require that (γkm − δ) > 0 holds. From
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Theorem 1 and expression (15), one can conclude that L > 0 for all µ ≥ µ∗2 such that

µ∗2 >

√
2(γkm − δ)

λ2(L̃) + 2λmin(K)
(28)

and because λ2(L̃) > 0, there always exists a µ satisfying the inequality. Set µ∗3 = max{µ∗1, µ∗2}.
Define

ρ1(µ) =
1

2
(γ̄kM + δ)− 1

4
µ−2(γ̄kM + δ)2λmax(L̃)−1 (29a)

ρ2(µ) =
1

2
(γkm − δ)− µ−2(γkm − δ)2λ2(L̃)−1 (29b)

ρ3(µ) =
1

2
γkm −

1

2
µ−2(γ̄kM )2λ2(L̃)−1 (29c)

and observe that for sufficiently large µ there holds ρ1(µ) > ρ2(µ) and ρ3(µ) > ρ2(µ). Assume
without loss of generality that both ρ1(µ) > ρ2(µ) and ρ3(µ) > ρ2(µ) hold (if not, one could
always find a µ∗4 > µ∗3 such that ρ1(µ) > ρ2(µ) and ρ3(µ) > ρ2(µ) for all µ ≥ µ∗4). Recalling that
‖q̃‖2 ≤ ‖q(0)‖2 ≤ ka and ‖q̇(0)‖2 ≤ kb, compute

V̄ ∗ =

(
1

2
λmax(K) + λmax(L̃)

)
ka

2 +
1

2
(γ̄kM + δ)kb

2 + (µ∗3)−1(γ̄kM + δ)kakb (30)

and note that for any µ ≥ µ∗3 there holds V̄µ(0) ≤ V̄ ∗ and ρ1(µ∗3) ≤ ρ1(µ). Furthermore, we have
assumed that ρ1(µ) > ρ2(µ). It follows from Lemma 1 and (5) that

‖q̇(0)‖2 ≤

√
V̄µ(0)

ρ1(µ)
≤

√
V̄µ(0)

ρ1(µ∗3)
≤

√
V̄ ∗

ρ1(µ∗3)
<

√
V̄ ∗

ρ2(µ∗3)
:= Y (31)

Following the same process, the bound ‖q̃(0)‖2 < X can also be obtained using V̄ ∗ and ρ2(µ∗3).
Note that the quantity Y in (31) is independent of µ. The bound ‖q̇(0)‖2 < Y (and similarly
‖q̃(0)‖2 < X ) can therefore be used for all µ ≥ µ∗3. We now proceed to the main result.

3.2. Stability Proof

Theorem 3
Suppose each Euler-Lagrange agent, with dynamics described by (19), uses the model-independent
control law, (20). Then the consensus objective is semi-globally achieved at an exponential rate if
G is strongly connected, and if µ exceeds lower bounds computable from eigenvalue bounds on the
matrices in the agent models, bounds on the eigenvalues ofL and the bounds on the initial conditions
ka, kb. For a given strongly connected G, there always exists a µ which satisfies the lower bounds.

Proof
The proof will be presented in four parts. In Part 1, we present a Lyapunov-like candidate function,
V . As will be apparent below, V is not a Lyapunov function because its arguments are not the states
of (23). However, analysis of V and its time derivative will show leaderless consensus is achieved.
In Part 2, we analyse the derivative V̇ and conclude a negative definite property. Part 3 studies the
assumption that the above computed values X ,Y are such that ‖q̃(t)‖2 < X and ‖q̇(t)‖2 < Y hold
for some time interval [0, T2). We show that a finite T2 creates a contradiction, i.e. T2 can be taken
to be infinite. With T2 infinite, we conclude that the trajectories remain bounded for all time. Part 4
concludes the leaderless consensus objective is achieved exponentially fast.

Part 1: Consider the following Lyapunov-like candidate function

V =
1

2
q̃>T̃

>
p

(
(L̃ ⊗ Ip) +K

)
T̃ pq̃ + µ−1q̃>T̃

>
p ΓpMq̇ +

1

2
q̇>ΓpMq̇ = V1 + V2 + V3 (32)
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where Γp = Γ⊗ Ip, and L̃,Γ, q̃ and T̃ p were given below (24). Note that ΓpM is symmetric. In
quadratic form, V is expressed as

V =

[
q̃
q̇

]> [ 1
2 T̃
>
p

(
(L̃ ⊗ Ip) +K

)
T̃ p

1
2µ
−1T̃

>
p ΓpM

1
2µ
−1MΓpT̃ p

1
2ΓpM

][
q̃
q̇

]
(33)

Define the matrix in (33) as H . It follows that V is positive definite in the variables q̃, q̇ if H > 0,
and notice thatH depends on q. From Theorem 1 and the assumed properties ofM i, it follows that
H > 0 if and only if

1

2
T̃
>
p

(
(L̃ ⊗ Ip) +K

)
T̃ p −

1

2
µ−2T̃

>
p ΓpMT̃ p > 0 (34)

Lemma 4 and the properties of the spectral norm yield λmax(T̃
>
p ΓpMT̃ p) ≤ λmax(ΓpM) < γ̄kM .

Corollary 1 and the properties of the Kronecker product yield λmin(T̃
>
p (L̃ ⊗ Ip)T̃ p) = λ2(L̃).

Combining this with (1), it follows that the inequality (34) is implied by

µ >

√
γ̄kM

λ2(L̃) + λmin(K)
(35)

and there always exists such a µ. Although V is a function of q̃, q̇, for simplicity we denote
V (q̃(t), q̇(t)) as V (t). It is straightforward to verify for all µ ≥ µ∗5 such that

µ∗5 >

√
2γ̄kM

λ2(L̃) + 2λmin(K)
(36)

there holds G >H > L > 0 and thus V (t) < V̄µ(t),∀ t (see Appendix). Since H > 0 for any
µ ≥ µ∗5, it follows that V is positive definite in q̃, q̇. Notice that λmin(H) > λmin(L) > 0 and
λmax(H) < λmax(G) <∞. In addition, λmin(L), λmax(G) are independent of q, q̇. It follows
that 0 < λi(H) <∞,∀ i and for all q̃, q̇. We conclude that V is radially unbounded. From the
conclusions obtained immediately above, and in similar fashion to (26), observe that

V ≤ 1

2

(
λmax(L̃) + λmax(K)

)
‖q̃‖22 +

1

2
γ̄kM‖q̇‖2

2
+ µ−1γ̄kM‖q̃‖2‖q̇‖2 (37)

which implies that V (0) < V̄ ∗ for all µ ≥ µ∗5 because there holds µ∗5 ≥ µ∗3 (as is easily checked
from (25), (28) and (36)).

Part 2: The derivative of V with respect to time, along the trajectories of the system (22),
yields V̇ = V̇1 + V̇2 + V̇3 with notation as in (32). Recalling the properties of T̃ p,Zp and q̃ in
Sections 2.2.1 and 2.2.2, it follows that

V̇1 = q̃>T̃
>
p

(
(L̃ ⊗ Ip) +K

)
T̃ p ˙̃q = q̃>T̃

>
p

(
(L̃ ⊗ Ip) +K

)
Zpq̇

= q̃>T̃
>
p (L̃ ⊗ Ip)q̇ + q̃>T̃

>
pKq̇ (38)

with the last term obtained by noting that KZp = ZpK. The derivative V̇2 is

V̇2 = µ−1 ˙̃q
>
T̃
>
p ΓpMq̇ + µ−1q̃>T̃

>
p ΓpṀq̇ + µ−1q̃>T̃

>
p ΓpMq̈ (39)

Using the properties of the Kronecker product and the properties of Zp, T̃ p, observe that

Γp(L ⊗ Ip)q = Γp(L ⊗ Ip)Zpq = (ΓL ⊗ Ip)T̃ pq̃
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In addition, by recalling that Zpq = T̃ pq̃, substitutingMq̈ from (22) and recalling assumption A3,
we obtain

V̇2 = µ−1q̇>ZpΓpMq̇ + µ−1q̃>T̃
>
p ΓpC

>q̇ − µ−1q̃>T̃
>
p (ΓL ⊗ Ip)T̃ pq̃ − q̃>T̃

>
pKq̇ (40)

Lastly, V̇3 = q̇>ΓpMq̈ + 1
2 q̇
>ΓpṀq̇. Analysis similar to that of V̇2 above yields

V̇3 = −q̇>(ΓL ⊗ Ip)T̃ pq̃ − µq̇>Kq̇ (41)

Combining V̇1 + V̇2 + V̇3, and recognising that the symmetric part of ΓL is 1
2 L̃, we obtain

V̇ =−
[
µ−1

1

2
q̃>T̃

>
p (L̃ ⊗ Ip)T̃ pq̃ + µq̇>Kq̇ − µ−1q̇>ZpΓpMq̇ − µ−1q̃>T̃

>
p ΓpC

>q̇

− q̃>T̃
>
p (ΓL ⊗ Ip)q̇

]
(42)

Note that (42) can be written in quadratic form, similar to (33) but there is a difficulty with using
the form: assumption A4, along with the property of norms, yields ‖C>‖2 ≤ kC‖q̇‖2. The fact
that ‖C‖2 is proportional to ‖q̇‖2 makes it difficult to apply Theorem 1 to obtain a definiteness
property for the block matrix in the quadratic form for V̇ . This motivates us to consider the following
alternative method for studying the definiteness of V̇ .

From the fact that ‖Γ‖2 < 1, and with property P1, we obtain

q̃>T̃
>
p ΓpC

>q̇ ≤ kC γ̄‖q̃‖2‖q̇‖22 (43)

Using spectral norm properties, assumption A2, Corollary 1 and property P1 it follows that

−V̇ ≥
(
µλmin(K)− µ−1γ̄kM

)
‖q̇‖22 +

1

2
µ−1λ2(L̃)‖q̃‖22 − µ−1kC γ̄‖q̃‖2‖q̇‖22

− ‖L‖2‖q̃‖2‖q̇‖2 := g(‖q̃‖2, ‖q̇‖2) (44)

Define the region given by ‖q̃(t)‖2 ∈ [0,∞) and ‖q̇(t)‖2 ∈ [0,Y] as D, where Y > 0 was computed
in Section 3.1. Observe that g(‖q̃‖2, ‖q̇‖2) in (44) is of the form of g(x, y) given in Lemma 2
with ‖q̃‖2 = x and ‖q̇‖2 = y, with 1

2µ
−1λ2(L̃) = a, µγλmin(K)− µ−1γ̄kM = b, µ−1kC γ̄ = c and

‖L‖2 = d. According to Lemma 2, designing µ such that

µλmin(K)− µ−1γ̄kM >
(µ−1kC γ̄)2Y2 + ‖L‖22 + 2µ−1kC γ̄‖L‖2Y

2µ−1λ2(L̃)
(45)

ensures V̇ ≤ −g(‖q̃‖2, ‖q̇‖2) < 0 for all ‖q̃‖2, ‖q̇‖2 ∈ D. Straightforward calculations show that
(45) is implied by

µ2
(

2λmin(K)λ2(L̃)− ‖L‖22
)
− 2µkC γ̄‖L‖2Y −

(
(kC γ̄Y)2 + 2λ2(L̃)γ̄kM

)
> 0 (46)

BecauseKp satisfies (21), the coefficient of µ2 in (46) is strictly positive. Thus, one can always find
a µ∗6 ≥ µ∗5 such that (46) holds for all µ ≥ µ∗6; this ensures that V̇ < 0 in the region D.

Part 3: With the objective of obtaining a contradiction, suppose that T2 <∞ is the infimum of
those values of t for which one of the inequalities ‖q̃(t)‖2 < X , ‖q̇(t)‖2 < Y fails to hold. In other
words, [0, T2) is maximal. Note that T2 is necessarily strictly positive, since the values of q̃(t), q̇(t)
necessarily change continuously. The strict inequalities are satisfied at t = 0. Define the compact
regionW ⊂ D as

W := {q̃, q̇ : ‖q̃‖2 ∈ [0,X ], ‖q̇‖2 ∈ [0,Y]} (47)

It is obvious that at t = 0, the system is inW and thus V̇ < 0. In fact, V̇ < 0 will continue to hold up
to and including t = T2. This implies that V (T2) < V (0). In addition, recall the conclusion below
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(37) that V (0) < V̄ ∗, where V̄ ∗ was computed in Section 3.1. Shortly, we use Lemma 1 on the
matrix H in (33). In anticipation of this, let

χ = λmin

(1

2
ΓpM − 1

2
µ−2Ξ

)
(48)

where Ξ = MΓpT̃ p
(
T̃
>
p (L̃ ⊗ Ip)T̃ p

)−1
T̃
>
p ΓpM . From (3), we observe that χ ≥ λmin( 1

2ΓpM)−

λmax(Ξ). Recall that T̃
>
p (L̃ ⊗ Ip)T̃ p > 0. From the fact that rank(AB) ≤ min{rank(A), rank(B)}

[31], we conclude rank(MΓpT̃ p) ≤ (n− 1)p. It follows from these two observations that Ξ ≥ 0
and rank(Ξ) ≤ (n− 1)p, which implies that λmax(Ξ) = ‖Ξ‖2. It is straightforward to compute,
using Lemma 4, that ‖Ξ‖2 ≥ (γ̄kM )2λ2(L̃)−1. It follows that

χ ≥ 1

2
γkm −

1

2
µ−2(γ̄kM )2λ2(L̃)−1 = ρ3(µ) > ρ2(µ) (49)

In accordance with Lemma 1, it follows that there holds

‖q̇(T2)‖2 ≤

√
V (T2)

χ
<

√
V̄ ∗

χ
<

√
V̄ ∗

ρ2(µ∗3)
= Y (50)

A similar expression to (50) can be obtained to show ‖q̃(T2)‖2 < X . The existence of (50) (and
similarly ‖q̃(T2)‖2 < X ) establishes that T2 is not maximal, which contradicts the definition of T2.
As a result, the bounds ‖q̃(t)‖2 < X , ‖q̇(t)‖2 < Y hold for all time. See Remark 4 below for further
insight into the bounds.

Part 4: Because we have established that the bounds, explored immediately above, hold for all
time, then we draw the conclusion that trajectory of the system (22) remains in the regionW ⊂ D
for all time. Recall the conclusion below (36) that G >H > L > 0. It follows that

λmin(H)‖[q̃>, q̇>]>‖2
2
≤ V ≤ λmax(G)‖[q̃>, q̇>]>‖2

2
(51)

Next, observe that V̇ is upper bounded by −g(‖q̃‖2, ‖q̇‖2) and −g(‖q̃‖2, ‖q̇‖2) is negative definite
in the compact region W . Because W is compact, there exists a strictly positive ξ such that
V̇ ≤ −g(‖q̃‖2, ‖q̇‖2) ≤ −ξ‖[q̃>, q̇>]>‖2

2
< 0 holds in W . It follows that V̇ ≤ −ψV where ψ =

ξ/λmax(G) and the strict positivity of ξ and λmax(G) ensures ψ is strictly positive. This allows us
to conclude that V decays to zero exponentially fast, with a minimum rate of e−ψt. The inequality
λmin(H)‖[q̃>, q̇>]>‖2

2
≤ V will then imply that [q̃>, q̇>]> decays to zero exponentially fast. We

conclude that q̃ and q̇ decay to zero. Recalling that T̃ q̃ = Zpq, it follows that Zpq decays to zero.
Recalling the nullspace of Zp, observe that Zpq = 0 implies q = 1n ⊗ x where x ∈ Rp. Because
{q = 1n ⊗ x, q̇ = 0} ∈ M, this implies that the system (23) reaches a point in its set of equilibrium
points. Convergence must in fact be to a single point inM, because inM there holds q̇ = 0. The
leaderless consensus objective is achieved and the proof is completed.

We conclude the stability proof section by providing a simple step-by-step guide to designing the
control gains µ,Kp.

1. Design Kp to satisfy (21) and for all following steps, assume Kp is fixed.

2. Compute µ∗3 = max{µ∗1, µ∗2} using (25) and (28), then compute V̄ ∗ using (30). Next, compute
Y using (31). Lastly, compute µ∗5 according to (36).

3. Compute µ∗6 ≥ µ∗5 to satisfy (46) and set µ ≥ µ∗6.

Remark 3 (Knowledge of Global Information)
Design of µ requires limited knowledge of parameters associated with the multiagent system; this
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implies centralised design as opposed to the implementation of control laws. Specifically, the bounds
kC , km, kM , which are associated with the agent dynamic models, are required. In terms of the
network topology, λ2(L̃), ‖L‖2,γ are required. One can also use bounds if exact information is
unavailable (in the case of γ, approximations may be used as the exponential stability property
protects against small variations in the system). We also require the upper bounds on the initial
conditions ka, kb. It is logical to assume these three limited classes of information are available
for most multiagent systems. Other papers studying multiagent coordination of Euler-Lagrange
networks also require centralised design of control gains. In [23] and [24], kC , km, kM , λmin(L),
bounds on the derivatives of the leader trajectory and the initial conditions are required to design
a control gain. In [21], to deal with time-delay, a control gain is designed to be sufficiently large
and requires knowledge of the upper bound on the time-delay. Using global knowledge to design
control gains for coordination of Euler-Lagrange networks is also reported in e.g. [18, 28], and
for coordination of directed networks where agents have general nonlinear dynamics described by
Lipschitz continuous functions [38, 39].

Semi-global results in consensus literature include [23, 24, 25, 26, 27, 30, 40], and can arise
when the agent dynamics are modelled by nonlinear functions which are not globally Lipschitz
(Assumption A4 indicates that typical Euler-Lagrange systems do not satisfy this global Lipschitz
condition).

Remark 4 (The quantities X and Y)
By using the quantity Y to design µ according to (46), we ensure that the trajectory of (22) remains
in the regionW for all time because V̇ is negative definite inW . The leaderless consensus objective
is achieved as a consequence. The bound ‖q̃(t)‖2 < X ,∀ t is in fact not required for computation
of a µ which guarantees stability. However, computation of X does provide a bound on the system
trajectory, and can be used to compute the rate of convergence, ψ, both of which may be useful in
analysis of system performance. The requirement to compute Y can be removed for the subclass of
Euler-Lagrange equations which satisfies ‖Ci‖2 ≤ kC ,∀ i, with kC strictly positive. In other words,
the norm of Ci,∀ i is upper bounded by a constant. In this case, one can obtain a global stability
result.

Remark 5 (Convergence speed)
The focus throughout the proof of Theorem 3 has been to design µ to be sufficiently large such that
it satisfies several lower bounding inequalities. However, making µ arbitrarily large has a negative
impact on the convergence of (22) to the leaderless consensus objective. Observe that µ−1 is in the
coefficient of ‖q̃‖22 in (44); increasing µ decreases ψ, which leads to slower consensus. On the other
hand, a designer may choose to increase λ2(L̃) by multiplying each aij of (20) by a large, strictly
positive constant, call it α; this increases the coefficient of ‖q̃‖22. However, this also leads to an
increase in ‖L‖2 in (44), which will require a larger λmin(Kp). As a result, ψ can decrease and slow
consensus. This implies that in order to maximise rate of convergence, the graph topology (i.e. edges
and their weights) must be designed to minimise the ratio λmax(L)/λ2(L̃). These observations are
confirmed in the simulations in Section 4.

Remark 6 (Robustness)
The controller proposed in (20) exhibits robustness in two aspects. Firstly, the controller achieves
the leaderless consensus objective exponentially fast. The exponential stability property of the
networked system provides improved robustness against small perturbations and disturbances when
compared to a system which is asymptotically stable, but not exponentially so. Secondly, the
information required to design µ (including computation of Y) requires bounds, rather than exact
values. Thus, if there is uncertainty in a parameter, e.g. kM , then a conservative estimate can be
made. This provides robustness against uncertainty in modelling of the multiagent system in a)
the agent dynamic model (kM , kM , kC), b) the network model (λ2(L̃), λmax(L), γ) and c) initial
conditions. In contrast, adaptive algorithms utilising the linear parametrisation of (19) can only
handle uncertainty involving constant parameters of (19); adaptive algorithms are intrinsically not
robust against unmodelled/uncertain dynamics.
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3.3. Additional Velocity Information For Better Performance

Consider additional flow of q̇i − q̇j information between neighbouring agents over the same graph
G, which models flow of relative generalised coordinate information. The new control law is
proposed as

τi = −
∑
j∈Ni

aij

(
(qi − qj) + µ(q̇i − q̇j)

)
− µγ−1i Kpq̇i (52)

This yields the closed loop system

M(q)q̈ +C(q, q̇)q̇ + (L ⊗ Ip)(q + µq̇) + µΓ−1Kq̇ = 0 (53)

and the set of equilibrium points for (53) is also given byM. Due to space limitations and because
of its similarity with the proof in Theorem 3, we omit the proof of stability for the system (53)
but summarise the key steps of the omitted proof. The bounds involving the quantities X ,Y are
computed as in Section 3.1 using the given V̄µ and V̂µ. The Lyapunov-like function is the same as
that proposed in (33). It is straightforward to verify that the function V̇ evaluates to

V̇ = −
[
µ−1

1

2
q̃>T̃

>
p (L̃ ⊗ Ip)T̃ pq̃ + µq̇>

(
K +

1

2
(L̃ ⊗ Ip)

)
q̇ − µ−1q̇>ZpΓpMq̇

− µ−1q̃>T̃
>
p ΓpC

>q̇
]

(54)

which is upper bounded as follows

V̇ ≤
[
µ

(
λmin(K) +

1

2
λ2(L̃)

)
−µ−1γ̄kM

]
‖q̇‖22 +

1

2
µ−1λ2(L̃)‖q̃‖22−µ−1kCγ‖q̃‖2‖q̇‖22

(55)

Straightforward conditions then show that the equivalent condition of (46), which ensures V̇ < 0 in
W , is given by

µ2
(

2λmin(K)λ2(L̃) + λ2(L̃)2
)
−
(
kC

2Y2 + 2λ2(L̃)kM

)
> 0 (56)

Since the coefficient of µ2 is strictly positive, one can always find a µ∗7 ≥ µ∗5 such that the inequality
(56) holds for all µ ≥ µ∗7 and thus V̇ < 0 inW . The conclusions on boundedness of the trajectories
and exponential convergence to the leaderless consensus objective can then be made using the same
arguments as in the proof of Theorem 3.

Notice from (54) that the term ‖L‖2 has disappeared, and a new term 1
2µq̇

>(L̃ ⊗ Ip)q̇ is
introduced. This implies that ψ has increased; the additional information results in faster consensus.
Furthermore, increasing λ2(L̃) by multiplying each aij by a large, strictly positive constant α will
increase ψ and result in faster consensus. This is in contrast to the discussions in Remark 5 which
showed that α slowed consensus. Notice further that there is no longer an inequality requirement
onKp. The advantages of smoother transient and faster convergence should be weighed against the
additional requirement of generalised velocity information flow, with the specific application of the
control law in mind.

Remark 7
Note that in (52) we have assumed both additional pieces of information have been incorporated.
It is possible that only additional relative generalised velocity information is available, or that only
γ is available. In these cases, similar stability proofs will yield similar lower bounding inequalities
which µ must satisfy to guarantee leaderless consensus is achieved. It is straightforward to show
that for both cases, there always exists a µ which satisfies the lower bounding inequalities.
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4. SIMULATIONS

A simulation is provided to demonstrate the distributed algorithm (20) on a network of six two-link
revolute robot arms. A model is shown in Fig. 1 and the equations of motion are derived in [8],
pp. 259-262 (note that our dynamics has gi = 0, ∀ i). The generalised coordinates for agent i are
qi = [q

(1)
i , q

(2)
i ]>, which are the angles of each link in radians. The equation of motion for the ith

agent is given as [
M11 M12
M21 M22

][
q̈
(1)
i

q̈
(2)
i

]
+

[
C11 C12
C21 C22

][
q̇
(1)
i

q̇
(2)
i

]
=

[
τ
(1)
i

τ
(2)
i

]
(57)

The model is shown in Fig. 1 and the elements in the M i,Ci matrices are given below:

- M11 = m1lc1
2 +m2(l1

2 + lc2
2 + 2l1lc2 cos q

(2)
i ) + I1 + I2

- M12 = M21 = m2(lc2
2 + l1lc2 cos q

(2)
i ) + I2

- M22 = m2lc2
2 + I2

- C11 = −hq̇(2)i

- C12 = −h(q̇
(1)
i + q̇

(2)
i )

- C21 = hq̇
(1)
i

- C22 = 0

- h = m2l1lc2 sin q
(2)
i

The geometric parameters m1,m2, l1, l2, lc1, lc2, I1, I2 are shown in Table I with SI units of kg
for m1,m2 and m for l1, l2, lc1, lc2 and kg m2 for I1, I2. The parameters were selected to be
representative of robotic manipulators found in industry [9]. The initial conditions of the system
are also provided in Table I with units of radians for the generalised coordinates and radians per
second for generalised velocity. The directed graph G, shown in Fig 2, has the following Laplacian

L =


1.5 0 0 0 0 −1.5
−0.8 1.8 −1.0 0 0 0

0 −1.5 3.2 −1.5 −0.2 0
0 0 −2.0 2.0 0 0
0 0 0 0 0.5 −0.5
0 −3 0 0 −0.5 3

 (58)

with γ = [0.1718, 0.3222, 0.1895, 0.1421, 0.0758, 0.0985]> and verify that it is strongly connected.
Note that the computed µ is necessarily conservative due to the inequalities used to ensure stability
and boundedness of the trajectories. The computed µ can be further adjusted using standard
techniques, e.g. a line search, to improve convergence performance. The control gain pair is
µ = 1,Kp = I2,∀ i.

The results are shown in Figures 3, 4 and 5. Figure 3 shows consensus of the generalised
coordinates q(1) and q(2). The generalised velocities, q̇(1) and q̇(2), all tend to zero in Fig. 4. The
control torques are shown in Fig. 5. In general, it is not possible to quantitatively determine the final
consensus value of the generalised coordinates. Observations from multiple simulations show that
the values aij , µKp and the individual agent parameters all have an effect on the final consensus
value, which is clearly dependent on the unknown specific values of the model parameters. Recall
from Theorem 3 that we require µ to satisfy lower bounding inequalities for stability. Figure 6
shows the generalised coordinates of a simulation where the parameters are identical to Table I,
with the same graph topology and same Kp. The only change is that we decrease the control scalar
to µ = 0.4. We see the instability as a result of the smaller µ.



MODEL-INDEPENDENT CONSENSUS FOR EULER-LAGRANGE NETWORKS 17

Table I. Agent parameters used in simulation

• m1 m2 l1 l2 lc1 lc2 I1 I2 q
(1)
i (0) q

(2)
i (0) q̇

(1)
i (0) q̇

(2)
i (0)

Agent 1 6.5 2 0.3 0.25 0.1 0.05 0.1 0.02 π/7 3π/4 0.3 -0.8
Agent 2 4 2.5 0.3 0.3 0.15 0.08 0.15 0.05 3π/8 π/8 0.6 -0.6
Agent 3 5.2 1.8 0.25 0.25 0.25 0.08 0.1 0.02 7π/8 −5π/8 0.1 0.2
Agent 4 3 3 0.35 0.2 0.12 0.1 0.13 0.02 π −π/2 0.2 0.3
Agent 5 7 1.3 0.26 0.26 0.12 0.1 0.13 0.02 5π/8 0 0 0.6
Agent 6 6.5 2.2 0.2 0.25 0.1 0.09 0.15 0.08 6π/7 −π/8 -0.5 0.1

x1

y1

lc1

l1
lc2

l2

x2

y2

q1

q2

Figure 1. Two-link arm, generalized coordinates
q = [q1, q2]>

1

2 3 4

56a16=1.5 a56=0.5

a62=3
a21=0.8

a23=1

a32=1.5

a35=0.2

a43=2

a34=1.5

Figure 2. Strongly Connected Graph Used For
Simulations
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Figure 3. Plot of generalised coordinates vs. time

Conversely, increasing µ substantially can degrade performance by increasing the time required
for consensus. For a simulation where µ = 5 and otherwise identical parameters, the results are in
Fig. 7. If each aij is multiplied by 2 with µKp = I2 then, as observed in Fig. 8, there is an increase
in the transient oscillations with slower convergence. Both these results are in accordance with
the conclusions in Remark 5. Intuitively, we can consider µK as a damping term in the nonlinear
system (22); as the damping increases the transient response is slowed. Likewise, the term in (22)
involving L may represent a nonlinear spring in a nonlinear spring-mass-damper system. Lastly,
using the algorithm in Section 3.3, Fig. 9 shows fast convergence and smooth transient behaviour
when additional information is utilised.
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Figure 4. Plot of generalised velocity vs. time
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Figure 5. Plot of control input torque vs. time
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Figure 6. Plot of generalised coordinates vs. time, with unstable µKi = 0.4I2
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Figure 7. Plot of generalised coordinates vs. time, with µKi = 5I2
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Figure 8. Plot of generalised coordinates vs. time, with each aij multiplied by 2
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Figure 9. Plot of generalised coordinates vs. time, using the controller (52).
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5. CONCLUSION

A distributed model-independent algorithm is proposed in this paper which allows a directed
network of agents with Euler-Lagrange dynamics to achieve leaderless consensus, and the network
is required to be strongly connected. To ensure stability, a control gain scalar and a control gain
matrix are designed to satisfy several lower bounding inequalities. These bounds require limited
knowledge of global quantities associated with the networked system and so algorithm design
is centralised while the algorithm is distributed in execution (knowledge of these quantities is
reasonable). One of the required quantities is a bound on the possible initial conditions; this
requirement means the algorithm is semi-globally stable. We use the bound on the initial conditions
to derive a not necessarily tight upper bound on the trajectory of the networked system, and show
that the bound holds for all time. We conclude that the leaderless consensus objective is achieved
exponentially fast, at a computable minimum rate. Simulations are provided to show the algorithm’s
effectiveness and highlight remarks made about convergence speed and stability. Future work will
consider time-delays in the network, switching topologies and relaxation of the graphical constraint
from strongly connected to a directed spanning tree. A second direction of future work is to consider
a gain-scheduling-like process to yield less conservative values of the control gain scalar.

APPENDIX

To show that there holds G >H > L > 0, it is sufficient to show that G >H and H > L. The
conclusion L > 0 is obtained from the arguments leading up to, and including the inequality (28).
Observe that showing H > L is equivalent to showing H −L > 0. Notice that ΓpM − (γkm −
δ)Inp > 0. Taking this into consideration, Theorem 1 then implies that

H −L =

[
1
2 T̃
>
p (L̃ ⊗ Ip)T̃ p − 1

4λ2(L̃)I(n−1)p
1
2µ
−1T̃

>
p

[
ΓpM − (γkm − δ)Inp

]
1
2µ
−1[MΓp − (γkm − δ)Inp

]
T̃ p

1
2ΓpM − 1

2 (γkm − δ)Inp

]
> 0 (59)

is satisfied if there holds
1

2
T̃
>
p (L̃ ⊗ Ip)T̃ p −

1

4
λ2(L̃)I(n−1)p −

1

2
µ−1T̃

>
p

[
ΓpM − (γkm − δ)Inp

]
T̃ p > 0 (60)

Using Lemma 4 we obtain the following inequality

λmax(T̃
>
p

[
ΓpM − (γkm − δ)Inp

]
T̃ p) ≤ λmax

[
ΓpM − (γkm − δ)Inp

]
≤ γ̄kM − (γkm − δ) < γ̄kM (61)

Using Corollary 1, expressions (1) and (4), it is then straightforward to compute that (60) is implied
by 1

4λ2(L̃)− 1
2µ
−1γ̄kM > 0 and holds for all µ ≥ µ∗5 where µ∗5 is defined in (36). We have therefore

established that H > L.
Next, consider G−H as shown in (62). Because (γ̄kM + δ)Inp − ΓpM > 0, Theorem 1

indicates that

G−H =

[
λmax(L̃)I(n−1)p − 1

2 T̃
>
p (L̃ ⊗ Ip)T̃ p 1

2µ
−1T̃

>
p

[
(γ̄kM + δ)Inp − ΓpM

]
1
2µ
−1[(γ̄kM + δ)Inp −MΓp

]
T̃ p

1
2 (γ̄kM + δ)Inp − 1

2ΓpM

]
> 0 (62)

is implied by

λmax(L̃)I(n−1)p −
1

2
T̃
>
p (L̃ ⊗ Ip)T̃ p −

1

2
µ−1T̃

>
p

[
(γ̄kM + δ)Inp −MΓp

]
T̃ p > 0 (63)

Similar to (61), the following inequality holds

λmax(T̃
>
p

[
(γ̄kM + δ)Inp −MΓp

]
T̃ p) ≤ λmax

[
(γ̄kM + δ)Inp −MΓp

]
≤ (γ̄kM + δ)− γkm < γ̄kM (64)
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Straightforward computation will then shown that (63) is implied by 1
2λmax(L̃)− 1

2µ
−1γ̄kM > 0,

and is satisfied for all µ ≥ µ∗5, and thus G >H .
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